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Preface

This volume is part of the five-volume proceedings of the 19th International
Conference on Neural Information Processing (ICONIP 2012), which was held
in Doha, Qatar, during November 12–15, 2012. ICONIP is the annual conference
of the Asia Pacific Neural Network Assembly (APNNA). This series of confer-
ences has been held annually since 1994 and has become one of the premier
international conferences in the areas of neural networks.

Over the past few decades, the neural information processing community has
witnessed tremendous efforts and developments from all aspects of neural infor-
mation processing research. These include theoretical foundations, architectures
and network organizations, modeling and simulation, empirical study, as well
as a wide range of applications across different domains. Recent developments
in science and technology, including neuroscience, computer science, cognitive
science, nano-technologies, and engineering design, among others, have provided
significant new understandings and technological solutions to move neural in-
formation processing research toward the development of complex, large-scale,
and networked brain-like intelligent systems. This long-term goal can only be
achieved with continuous efforts from the community to seriously investigate
different issues of the neural information processing and related fields. To this
end, ICONIP 2012 provided a powerful platform for the community to share their
latest research results, to discuss critical future research directions, to stimulate
innovative research ideas, as well as to facilitate multidisciplinary collaborations
worldwide.

ICONIP 2012 received tremendous submissions authored by scholars coming
from 60 countries and regions across six continents. Based on a rigorous peer-
review process, where each submission was evaluated by at least two reviewers,
about 400 high-quality papers were selected for publication in the prestigious se-
ries of Lecture Notes in Computer Science. These papers cover all major topics
of theoretical research, empirical study, and applications of neural information
processing research. In addition to the contributed papers, the ICONIP 2012
technical program included 14 keynote and plenary speeches by Majid Ahmadi
(University of Windsor, Canada), Shun-ichi Amari (RIKEN Brain Science In-
stitute, Japan), Guanrong Chen (City University of Hong Kong, Hong Kong),
Leon Chua (University of California at Berkeley, USA), Robert Desimone (Mas-
sachusetts Institute of Technology, USA), Stephen Grossberg (Boston University,
USA), Michael I. Jordan (University of California at Berkeley, USA), Nikola
Kasabov (Auckland University of Technology, New Zealand), Juergen Kurths
(University of Potsdam, Germany), Erkki Oja (Aalto University, Finland), Mar-
ios M. Polycarpou (University of Cyprus, Cyprus), Leszek Rutkowski (Technical
University of Czestochowa, Poland), Ron Sun (Rensselaer Polytechnic Institute,
USA), and Jun Wang (Chinese University of Hong Kong, Hong Kong). The
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ICONIP technical program included two panels. One was on “Challenges and
Promises in Computational Intelligence” with panelists: Shun-ichi Amari, Leon
Chua, Robert Desimone, Stephen Grossberg and Michael I. Jordan; the other
one was on “How to Write Better Technical Papers for International Journals in
Computational Intelligence” with panelists: Derong Liu (University of Illinois of
Chicago, USA), Michel Verleysen (Université catholique de Louvain, Belgium),
Deliang Wang (Ohio State University, USA), and Xin Yao (University of Birm-
ingham, UK). The ICONIP 2012 technical program was enriched by 16 special
sessions and “The 5th International Workshop on Data Mining and Cybersecu-
rity.” We highly appreciate all the organizers of special sessions and workshop
for their tremendous efforts and strong support.

Our conference would not have been successful without the generous pa-
tronage of our sponsors. We are most grateful to our platinum sponsor: United
Development Company PSC (UDC); gold sponsors: Qatar Petrochemical Com-
pany, ExxonMobil and Qatar Petroleum; organizers/sponsors: Texas A&M Uni-
versity at Qatar and Asia Pacific Neural Network Assembly. We would also like
to express our sincere thanks to the IEEE Computational Intelligence Society,
International Neural Network Society, European Neural Network Society, and
Japanese Neural Network Society for technical sponsorship.

We would also like to sincerely thank Honorary Conference Chair Mark Wei-
chold, Honorary Chair of the Advisory Committee Shun-ichi Amari, the members
of the Advisory Committee, the APNNA Governing Board and past presidents
for their guidance, the Organizing Chairs Rudolph Lorentz and Khalid Qaraqe,
the members of the Organizing Committee, Special Sessions Chairs, Publication
Committee and Publicity Chairs, for all their great efforts and time in organiz-
ing such an event. We would also like to take this opportunity to express our
deepest gratitude to the members of the Program Committee and all reviewers
for their professional review of the papers. Their expertise guaranteed the high
quality of the technical program of the ICONIP 2012!

We would like to express our special thanks to Web manager Wenwen Shen
for her tremendous efforts in maintaining the conference website, the publica-
tion team including Gang Bao, Huanqiong Chen, Ling Chen, Dai Yu, Xing He,
Junjian Huang, Chaobei Li, Cheng Lian, Jiangtao Qi, Wenwen Shen, Shiping
Wen, Ailong Wu, Jian Xiao, Wei Yao, and Wei Zhang for spending much time
to check the accepted papers, and the logistics team including Hala El-Dakak,
Rob Hinton, Geeta Megchiani, Carol Nader, and Susan Rozario for their strong
support in many aspects of the local logistics.

Furthermore, we would also like to thank Springer for publishing the pro-
ceedings in the prestigious series of Lecture Notes in Computer Science. We
would, moreover, like to express our heartfelt appreciation to the keynote, ple-
nary, panel, and invited speakers for their vision and discussions on the latest
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research developments in the field as well as critical future research directions,
opportunities, and challenges. Finally, we would like to thank all the speakers,
authors, and participants for their great contribution and support that made
ICONIP 2012 a huge success.

November 2012 Tingwen Huang
Zhigang Zeng
Chuandong Li

Chi Sing Leung
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Abstract. Centroid Neural Network (CNN) with simulated annealing
is proposed and applied to a color image segmentation problem in this
paper. CNN is essentially an unsupervised competitive neural network
scheme and is a crucial algorithm to diminish the empirical process of pa-
rameter adjustment required in many unsupervised competitive learning
algorithms including Self-Organizing Map. In order to achieve lower en-
ergy level during its training stage further, a supervised learning concept,
called simulated annealing, is adopted. As a result, the final energy level
of CNN with simulated annealing (CNN-SA) can be much lower than
that of the original Centroid Neural Network. The proposed CNN-SA
algorithm is applied to a color image segmentation problem. The ex-
perimental results show that the proposed CNN-SA can yield favorable
segmentation results when compared with other conventional algorithms.

Keywords: Color image, Gray level, Segmentation, Centroid Neural
Network.

1 Introduction

Image segmentation is the process of partitioning an image into a set of dis-
jointed areas with uniform and homogeneous attributes such as intensity, color,
tone or texture. A large number of different segmentation techniques have been
developed to enable the object recognition and localization system to execute
more accurately.

Thresholding is a widely used method in segmenting monochrome images. Bi-
level thresholding method assigns a pixel to one class if its gray level is less than
a specified threshold, and otherwise assigns it to the other classes [1]. Generally,
one can select more than one threshold, and use these thresholds to separate the
whole range of gray values into several sub ranges. This process is called multi-
level thresholding. This method does not require prior information of the image
and also has a low computation complexity. Nevertheless, it does not work well
for an image without any obvious peaks or with broad and flat valleys. Moreover,
it does not use any spatial information at all. Compared to monochrome images,
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color images are useful or even necessary in computer vision, because they pro-
vide additional information such as intensity. Color image processing thus is be-
coming more practical nowadays. Among many existing methods of color image
segmentation, four main categories can be distinguished: pixel-based techniques,
region-based techniques, contour-based techniques, and hybrid techniques. Un-
supervised learning is widely applied in some applications, where the image fea-
tures are unknown, such as nature scene understanding, satellite image analysis,
etc. Many algorithms impose spatial constraints on clustering algorithms for seg-
menting image data. One of the most widely used algorithms employing fuzzy
clustering techniques is the Fuzzy c-Means (FCM) [2], which has been proposed
as an improvement on earlier clustering algorithms such as the Self-Organizing
Map (SOM) [3] and the k-Means. Nevertheless, the FCM has the problem of
exhaustive computational burden in classifying each pixel based on color feature
space, especially for large images. Recently, Guo and Ming [4] have developed
a hybrid technique that incorporates SOM and Simulated Annealing (SA) into
color image segmentation. The SA is used to find optimal clusters from SOM
prototypes; however, its drawbacks include the need for a lot of trial and error to
obtain the optimal parameters, and it is very hard to implement such extensive
trial and error.

In this paper, we adopt Centroid Neural Network (CNN) [5] to construct the
”natural grouping” of the image without using any prior knowledge. The CNN
algorithm does not require a predetermined schedule for learning coefficient and
a total number of iterations for clustering. We integrate a supervised learning
concept, called simulated annealing into CNN to intensify the performance in
order to achieve lower energy level during its training stage further. As a result,
the final energy level of CNN with simulated annealing (CNN-SA) can be much
lower than that of the original Centroid Neural Network. The effect of color
image segmentation is dependent not only the algorithm but also on the color
coordinate, hence the paper surveys RGB and L*u*v* coordination to obtain
the best in color segmentation. We compare the segmentation results of natural
scene images extracted from Berkeley database to show the effectiveness of the
proposed method.

2 Choosing Color Information

Color is discerned by humans as a combination of tristimuli R (red), G (green),
and B (blue), which are usually called the three primary colors. We can derive
other kinds of color representations (spaces) by using either linear or nonlinear
transformations from RGB representation. Several color spaces, such as RGB,
CIE XYZ, HSI, L*u*v* are utilized in color image segmentation, but none of
these can transcend the others for all kinds of color images. Selecting the best
color space for all cases is still one of the difficulties in color image segmentation
[6].

The RGB color space can be geometrically illustrated in a 3-dimensional cube.
The coordinates of each point inside the cube represent the values of red, green
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and blue constituents, respectively. The RGB space is suitable for color display,
but not good for color segmentation and analysis because of the high correla-
tion among the R, G, and B components. High correlation means that if the
intensity changes, these three components will change accordingly. Moreover,
the measurement of a color in RGB space does not represent color differences in
a uniform scale. Hence, it is impossible to evaluate the similarity of two colors
from their distance in RGB space.

Fig. 1. L*u*v* color space represented in a 3-dimensional cube

Fig. 1 depicts color distributions in L*u*v*. It is concluded that the Modified
CIE L*u*v* performs better than other color spaces. The CIE L*u*v* color
space is defined from the CIE standard color model XYZ. L* is the luminance
component, u* and v* are color components, the u* axis varies from green to
red, and the v* axis changes from blue to yellow. The conversion from RGB to
Modified CIE L*u*v* is a nonlinear transformation that includes the following
two steps.

2.1 RGB to CIE XYZ

CIE XYZ can be transmuted from RGB by a 3x3 matrix transformation using
Equation (1). ⎡⎣XY

Z

⎤⎦ =

⎡⎣0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

⎤⎦ ⎡⎣RG
B

⎤⎦ (1)

2.2 CIE XYZ to Modified CIE L*u*v*

Intermediate quantities u’ and v’ can be computed using Equation (2).

u′ =
4X

X + 15Y + 3Z
v′ =

9Y

X + 15Y + 3Z
(2)

In [4], researchers used Modified CIE L*u*v* in lieu of standard CIE L*u*v*
because the brightness L is proportional to

√
Y rather than 3

√
Y for a complex

viewing environment. Then, we have the relations, shown in Equation (3).

L∗ = 10
√
Y u∗ = 13L∗(u′ − u′n) v

∗ = 13L∗(v′ − v′n) (3)

where(u′n, v
′
n) = (0.1978, 0.4683) is used by default.
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3 Application of Centroid Neural Network

3.1 Centroid Neural Network

The CNN algorithm originated from the conventional k -means algorithm finds
the centroid of data in corresponding clusters at each presentation of the data
vector. In lieu of calculating the centroids of the clusters while every piece of
data is being presented, the CNN algorithm updates data weights only when
the status of the output neuron for the presenting data has changed: that is,
the weights of the winner neuron in the current epoch for the data change only
when the winner neuron did not win the data in the previous presentation and
the weights of the winner neuron in the previous epoch for the data change only
when the neuron does not win the data in the current epoch. We call the former
one a ”winner neuron” and the latter one a ”loser neuron”. When an input vector
x is applied to the network at time n, the weight update equations for winner
neuron j and loser neuron i in CNN can be written as in Equations (4) and (5).

wj(n+ 1) =
1

Nj + 1
[Njwj(n) + x(n)] = wj(n) +

1

Nj + 1
[x(n)− wj(n)] (4)

wi(n+ 1) =
1

Ni − 1
[Niwi(n)− x(n)] = wi(n)−

1

Ni − 1
[x(n)− wi(n)] (5)

In Equations (4) and (5), wj(n) and wi(n) represent the weight vectors of the
winner neuron and the loser neuron, respectively, while Ni and Nj denote the
number of data vectors in cluster ith and jth at the time of iteration, respectively.

The learning rule for CNN is based on the following theorem and on the
condition for minimum energy clustering:

– Theorem 1: The centroid of data in a cluster is the solution that gives
minimum energy in L2 norm.

– Minimum energy condition: The weights for a given output neuron
should be chosen in such a way as to minimize the total distance in L2

norm from the vectors in its class, such as

wj = min
w

Nj∑
i=1

‖xj(i)− w‖2 (6)

Using Theorem 1, Equation (6) can be expressed as

wj =
1

Nj

Nj∑
i=1

xj(i) (7)

where Nj is the number of members in cluster j.
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When CNN is compared with other conventional competitive learning algo-
rithms, the CNN produces very comparable results with less computational ef-
fort. That is, the CNN requires neither a predetermined schedule for learning
gain nor a total number of iterations for clustering; it converges stably to subop-
timal solutions, while the conventional algorithms, including the Self Organizing
Map (SOM), may give unstable results depending on the initial learning gain
and the total number of iterations.

(a) (b) (c) (d) (e) (f)

Fig. 2. Advantages of the CNN algorithm over other conventional algorithms in image
segmentation example (a) LENA image; Segmented image by using: (b) CNN (c) FCM
after first execution (d) FCM after second execution (e) SOM with after execution (f)
SOM after second execution

Other modifications of this clustering technique are realized by increasing the
dimensions of the feature space by introducing additional features, such as the
geometrical coordinates of a pixel in the image. Fig. 2 is the result of segmenting
the LENA color image by using L*u*v* and horizontal and vertical coordination.
By visually comparing the segmented images, the image segmented by using
CNN is more stable than that done by FCM and SOM, because the two other
algorithms yield different results depending on the initial conditions.

3.2 CNN-SA Algorithm

The aim of Simulated Annealing (SA) is to seek the optimal clusters in terms
of energy like most of unsupervised algorithms. The energy function (or cost
function), E, in L2 norm is defined as follows:

Find {wi, 1 ≤ i ≤M} such that minimize

E =

M∑
i=1

Ei =

M∑
i=1

Ni∑
j=1

‖xi(j)− wi‖2 (8)

with N =
M∑
i=1

Ni

where M is the number of clusters.
The process of SA clustering is summarized as follows:

(1) T = Tmax, distribute M data to K clusters, generate the initial energy J;
(2) While (T > Tmin)
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For (i=1 to N) (N: the number of point redistribution)
Transfer one point randomly from cluster ci to cj;
Compute the energy J’;
If (J ′ < J) Accept the new state;
Else Reject the new state;

End for
Decrement T;
End while

We apply SA algorithm in the middle of CNN right before generating new cluster.
Detail of CNN is stated in [5]. Applying SA after completed CNN is inefficient
in some cases. Experiments present this circumstance.

4 Experiments

In the experiments, the configuration of SOM-SA is: initial learning rate: 0.7,
total number of iterations: 500. SOM-SA are executed several times to get rea-
sonable above parameters as well as results when compare with CNN-SA. In
order to get fair results between algorithms, the parameters of SA are identical
to all methods and set as follows. Maximum temperature (Tmax): 100, minimum
temperature (Tmin): 90, annealing factor: 0.98, number of point redistribution:
200.

Table 1. Energy of algorithms

Image cluster no. Mixed CNN-SA CNN-SA SOM-SA

House 4 k=2: 27.83352E5 28.83325E5 41.08434E5
k=3: 15.00047E5
k=4: 11.15889E5

Flower 3 k=2: 53.20481E5 49.13851E5 80.86287E5
k=3: 47.10243E5

Valley 3 k=2: 37.37489E5 39.48386E5 37.97711E5
k=3: 15.00047E5

Pyramid 3 k=2: 28.97152E5 28.75196E5 28.11466E5
k=3: 19.68023E5

In Table 1, the energy in mixed CNN-SA algorithm always decreases along
with going up of number of clusters (k).

We use the evaluation function in [7] to measure the segmentation results
quantitatively as follows:

Q(I) =

√
R

10000(W ×H)
×

R∑
i=1

[
e2i

1 + logAi

]
(9)

where W x H is the image size, R is the number of regions of the segmented
image, Ai is the area of the ith region, ei is the sum of Euclidean distance
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 3. Color image segmentation of ”House”, ”Flower”, ”Valley” and ”Pyramid” im-
ages (a) Original ”House” image sized 481×321; (b) Segmented ”House” image by
mixed CNN-SA; (c) Edge of segmented regions of ”House” image by mixed CNN-SA;
(d) Original ”Flower” image sized 481×321; (e) Segmented ”Flower” image by mixed
CNN-SA; (f) Edge of segmented regions of ”Flower” image by mixed CNN-SA; (g)
Original ”Valley” image sized 481×321; (h) Segmented ”Valley” image by mixed CNN-
SA; (i) Edge of segmented regions of ”Valley” image by mixed CNN-SA; (j) Original
”Pyramid” image sized 481×321; (k) Segmented ”Pyramid” image by mixed CNN-SA;
(l) Edge of segmented regions of ”Pyramid” image by mixed CNN-SA

between the L*u*v* color vectors of the pixels of region i in original image and
the color vector attributed to region i in the segmented image.

In Table 2, the quantitative errors of mixed CNN-SA algorithm are smaller
than other algorithms. Fig. 3 depicts final segmented images, which show the
proposed CNN-SA algorithm is a very efficient segmentation method.
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Table 2. Quantitative error of algorithms

Image SOM-SA CNN-SA Mixed CNN-SA

House 13.6063E-3 9.6539E-3 2.0519E-3

Flower 50.3777E-3 20.3523E-3 16.1658E-3

Valley 11.4188E-3 12.0573E-3 7.427E-3

Pyramid 5.8216E-3 6.9215E-3 3.3516E-3

5 Conclusions

This paper proposes an unsupervised learning algorithm for color image segmen-
tation by using CNN-SA. The selection of proper parameters in SOM has been
left in state of the art while CNN can significantly diminish the influences of the
related parameters for SOM including the location of initial cluster centers and
the number of iterations. In the color image segmentation, we employ L*u*v*
space, which gives relatively better results. Since SOM-SA requires an intensive
parameter tuning process to get the reasonable parameters, it can be concluded
that the proposed CNN-SA algorithm is a very efficient segmentation method.
SA’s drawbacks include the need for a great deal of computing load for many
runs and carefully chosen tunable parameters.

Acknowledgements. This work was supported by National Research Founda-
tion of Korea Grant funded by the Korean Government (2012-004950).
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Abstract. A novel method is proposed in this paper to restore document 
images. The proposed method is based on finding the degree of similarity 
between the tested pixel and its neighbors in different door's sizes. If the tested 
pixel in every door size has enough similarity with at least two pixels, then the 
tested pixel is deemed original pixel. The number of two pixels is chosen, to 
make sure that the tested pixel is a part of an original text or a part in a series of 
similar pixels. Simulation results indicate that the new method delivers superior 
performance rapidly and efficiently either in terms of the noise removal or 
details preservation. 

Keywords: Image denoising, Impulse noise, Non-linear filter. 

1 Introduction 

Data of documents that are taken from optical scanning or digital camera represents 
the image pixels. Many pre-processing tasks are performed on the attained pixels for 
further image analysis such as noise reduction to reduce extraneous data. Impulse 
noise besides the Gaussian noise is the common noises that may affect the document 
images. Thus, there is a demand to restore different corrupted documents images that 
may contain handwritten signatures, vehicle license numbers, handwritten-texts, and 
machine printed texts. To this end, many papers are proposed to tackle this problem. 
The average mean square error method is proposed by Meloche and Zamar [1] to 
remove Gaussian noise based on the content of the neighboring pixels. In [2] 
Hitchcock and Glasbey attempt to recover binary images of blob-like and filamentous 
objects from multilevel pixel values. Heanue, Gürkan and Hesselink [3] propose a 
non-linear recursive method, based on Veterbi algorithm with Decision Feedback to 
detect the binary data in the presence of inter-symbol interference. This technique 
sometimes suffers from error propagation. 

Total variation minimizing models[4-6] are used by many authors to restore the 
document images. In [7] the authors proposed a convergent method to restore the 
corrupted binary images by finding global minimizer of the total-variation energy 
functional.  

Besides the above techniques is thresholding technique. It is simple but it is  effective 
method used to separate the objects from the image background. Thresholding techniques 
are implemented to extract printed characters, logo, and graphical content from the 
document images [8-11]. In [12] Mitra proposes an efficient method based on maximizing 
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the ratio of the standard deviations of two different overlapping pixel clusters to restore 
document images corrupted by impulse and Gaussian noises. Among all the much known 
approaches is the mathematical morphological technique, which is used in the processing 
of geometrical structures. It is most commonly implemented on digital images in different 
research areas as image restoration, edge detection, and object recognition. The noise 
reduction methods mentioned in [13-16] to reduce the noise in document images are based 
on the mathematical morphological theory and they have achieved great success. 
However, Most of the previous methods are used for the removal of salt and pepper noise, 
Gaussian noise, or both. In the current paper, a different noise named as random valued 
impulse noise is used. Random-valued impulse noise is more difficult to detect, since it 
may take any values in the dynamic range of [0,255]. Images degraded by salt and pepper 
noise are restored as well. Note that, salt and pepper noise unlike the random noise in the 
sense that salt and pepper noise has two levels 0 and 255 but random valued impulse noise 
has 256 levels. During the simulation experiments we assumed that the random noise is 
distributed uniformly over the image and the values of the document images may take any 
value in the dynamic range. The restoration results show that the proposed method 
removes the noise efficiently and at the same time preserve the image details.   

2 Algorithm Description 

The goal of the proposed algorithm is to detect the noisy pixels and to estimate their 
original values. The proposed algorithm is based on: (1) The fact that the noisy pixels 
are random, and therefore they have random values. (2) The original pixels of the 
original text are similar in values which have a specific range of differences. (3) The 
original pixels are connected together in one or more directions. (4) Any tested pixel 
to be considered original pixel it should have similarity with at least two other 
consecutive pixels allied in one direction. The following shapes show the expected 
connections between the tested pixel and its surrounding. 
 
 
 
 
 
  
 

     (a)                                          (b) 
 
 
 
 
 
              (c)                                          (d) 

Fig. 1. The expected connections between the tested pixel xo, and two other surrounding pixels. 
Connections in a, b, c, and d are most probably occur between original pixels. Connections in 
e,f, and g are most probably happen between noisy pixels. 

xo xo 

xo xo 
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                     (e)                                (f) 
 
  
 
 
 
 
 
 
                                    (g) 

Fig. 1. (continued) 

In shapes a, b, c and d, the tested pixel xo is connected with two consecutive 
pixels. Shape (a) shows two pixels horizontally connected in the same row. Shape (b) 
shows two pixels vertically connected in the same column. Shapes (c) and (d) show 
two pixels each in different column are connected obliquely. Shapes (e) and (f) show 
two disconnected pixels in two non-consecutive columns. Shape (g) shows two 
disconnected pixels in the same column but in different rows.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 

                         (a)                                                               (b) 

 
Fig. 2. Two doors each of two edges that are used in detecting the originality of the tested pixel 
x0. Fig. (a) has edge E1 with 5 pixels and edge E2 with 9 pixels. Fig. (b) has edge E2 with 9 
pixels and edge E3 with 13 pixels. 

xo 

xo 

xo 

xo 

E3 

  
E2

xo 

  E2 

  
E
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The expected connections can be found in Fig.2 which looks like a door. From Fig.2, 
one can conclude that the tested pixel x0 that has connections with two disconnected 
(inconsequence) pixels is most probably noisy pixels. Also, there is a likelihood that the 
tested pixel in shapes a, b, c, and d in Fig.1 be connect with other two consecutive pixels 
but these pixels are noisy pixels, which leads to a false detection  

For resolving these ambiguities, we pass the tested pixel into cascade of tests each 
includes a door of two edges and of different size. The pixels that satisfy the condition of 
the first door are tested again by using another door of higher size, as shown in fig.2. 
Pixels that satisfy the entire conditions of the different door sizes are considered original 
pixels. For describing this method, define the edges E1 and E2 of the door number i as: 
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where, i=1,2,3,..N, and id
11x  as an example, denotes to the first pixel in the first edge 

E1 of door i. For measuring the intensity distance )x(γ  between the tested pixel and 

its surrounding ones, we propose the following formula as: 

1
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where }EE{x i
2

i
1 ∪⊂ pixel x is a pixel located in E1or E2 around the tested pixel 

x0. I is constant and it is measured by taking the average intensity differences between 
the pixels in different images. From 3, two vectors 1Γ  and 2Γ  are attained as: 
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where, the best similarity between x0 and x is obtained when x0=x, and the worst 
similarity is attained when the absolute difference between x0 and x is maximum, i.e., 
|x- x0|=255. One can conclude that the bounds of )x(γ  are described as:  

    
}1)/255{()(1 −≤≤− Ixe γ

                          (6) 

if |x- x0| ≤ I , then 1)x( ≤γ . Therefore, the range of  )x(γ  that indicates the 

connectivity or similarity between x0 and x is specified as:    
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1)(1 ≤≤− xe γ
                            (7) 

But if |x- x0| > I, then 1)x( >γ  . That means x0 is dissimilar to x.  

From equations (4), (5), and (7), two vectors i
1A  of size m for E1 and i

2A  of size 

n for E2 are obtained. Each element in the two vectors has similarity value γ ≤1and in 

this case, γ  is replaced by the parameter a . As an example, if i

11

dγ ≤1 then 

i

11

dγ = i

11
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The verdict of the originality of the tested pixel is based on the similarity parameter S 
that is defined by using equations (8) and (9) as:  
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Note that, 1b =  if 2mn ≥+ , otherwise b<1. That means, the tested pixel should 
have similarity at least with other two neighboring pixels as explained in Fig.1. The 
verdict of the originality of the tested pixel x0 is expressed as the following: 

}1|{}1{ 00
>∪≤= sxSxx no

                    (11) 

The noisy pixel xno is restored by taking the median of the four or the eight pixels X 
that are surrounding the detected noisy pixel at the location ij as: 

      
)( ij

rest Xmedianx ij =
                         (12) 
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3 Simulation Results 

The proposed algorithm is tested through several simulation experiments. In which, 
different corrupted document images are restored. Tested images are corrupted 
artificially either by fixed valued or random valued impulse noise at different rates. 
The visual qualities of the restored images reflect the strength of the proposed 
algorithm and show its ability in preserving the image details. Images of different font 
sizes are used through the experiments. The advantage of the proposed algorithm is 
that it can rapidly and efficiently discriminate between the noisy and the original pixel 
by using several consecutive tests. Any pixel to be considered as original pixel it 
should be an element in a series of similar pixels. All the experiments are carried out 
by using MATLAB version 7.2. Figs. 3 and 4 demonstrate the restoration 
performance of the proposed algorithm in restoring two document images corrupted 
with random valued impulse noise. In Fig.3 post-office image is corrupted with 10% 
noise. It is clear that although Fig.3 has lines, picture, handwritten text, the noise is 
removed efficiently and the image details are preserved. In Fig.4 machine-printed text 
with 5% random valued impulse noise is used. In Fig.5, hand-written text corrupted 
with 10% salt and pepper noise is restored. It is clear that the proposed algorithm has 
removed the noise efficiently and maintains the image details in the different tested 
images. In Fig.6, the new algorithm is compared with two known methods ACWM 
filter and TSM filter[16-17] in restoring 5% corrupted document image. It is obvious 
that the proposed method delivers the best performance since it preserves the fine 
details and almost removes all the noisy pixels.  The proposed algorithm is very fast 
since it takes times between 5 to 37 seconds to restore the simulated experiments. In 
all the experiments, three doors are used in the detection process. More extra doors 
are needed for more heavily corrupted images, since in every door part of the noisy 
pixels are detected. Thus, we have to increase the number of the doors until the image 
becomes fully recovered. Parameter I which represents the maximum difference in 
intensity between two similar pixels is equal to 40 in the first three figures. In Fig. 5 I 
may be increased, the reason is that fixed valued impulse noise has two level of noise 
either 0 or 255, while random valued impulse noise has 256 levels between 
[0,255].Thus, in Fig.5 I=80 since the results do not depend precisely on the value of I 
and it is easy to find its value or values that deliver the optimum performance. 

 

                   (a)                                   (b) 

Fig. 3. Restoration of 10% corrupted post-office document image with random valued impulse 
noise :(a) Corrupted version (b) Restored version. Consumed time: 36.3 seconds. 
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                     (a)                                  (b) 

Fig. 4. Restoration of 5% corrupted machine-printed document image with random valued 
impulse noise: (a) Corrupted version (b) Restored version. Consumed time: 5 seconds. 

 
 
 
 

 

(a)                                    (b) 

Fig. 5. Restoration of 10%corrupted hand-written document image with salt and pepper 
impulse noise :(a) Corrupted version (b) Restored version. Consumed time: 12.5 seconds. 

(a) (b)

 
(c)                                   (d) 

Fig. 6. Restoration of 5% corrupted machine-printed document image with random valued 
impulse noise: (a) Corrupted version (b) New method, (c) ACWMF[17], (d) TSMF[18] 

4 Conclusion 

Corrupted document images are restored in this paper. The restoration process is 
performed by calculating first norm, degree of similarity, and range of similarity. The 
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current pixel to be considered original pixel, it should fulfill the conditions in 
different door's sizes. Simulation experiments demonstrate that the proposed method 
restores efficiently and rapidly the corrupted documents by salt and pepper noise, or 
random valued impulse noise. The restored images are readable and maintain the 
image details.  
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Abstract. In this paper, a new time-series forecasting model based on the 
Flexible Beta Operator Neural Tree (FBONT) is introduced. The FBONT 
model which has a tree-structural representation is considered as a special Beta 
basis function multi-layer neural network. Based on the pre-defined Beta 
operator sets, the FBONT can be formed and optimized. The FBONT structure 
is developed using the Extended Genetic Programming (EGP) and the Beta 
parameters and connected weights are optimized by the Particle Swarm 
Optimization algorithm (PSO). The performance of the proposed method is 
evaluated using time series forecasting problems and compared with those of 
related methods. 

Keywords: Flexible Beta Operator Neural Tree model, Extended Genetic 
Programming, Particle Swarm Optimization algorithm, Time-series forecasting. 

1 Introduction 

Time series forecasting play a major role in the characterization of time series 
performance by predicting the future value and understanding fundamental features in 
systems, so it has been a center of attention of several researches. Recently, various 
nonlinear time series forecasting methods have been proposed such as artificial neural 
networks (ANN) [1, 2, 3, 4], SVM [5], adaptive algorithms [6, 7], and have been 
successfully applied. 

A neural network’s performance depends mainly on two issues which are the 
network structure and the parameter’s adjustment on the continuous parameter space 
and these issues are closely coupled. For a given problem, the neural network structure 
is not unique and also it may be a single hidden layer is not enough. Thus, the design 
of ANN automatically is required and many important attempts have been developed 
such as evolutionary programming [8], Neuro Evolution of augmenting topologies [9]. 
Furthermore, weights and kernel parameters of ANNs can be learned by many 
methods, i.e., back-propagation algorithm [10], genetic algorithm [11], differential 
evolution algorithm [1, 3, 4], particle swarm optimization algorithm [2] and so on. 

Although conventional representation of ANN has the nonlinear approximation 
capability, it also presents many weaknesses, for example, the neural network’s structure 
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is difficult to regulate, it suffers from slow convergence characteristics and over-fitting 
phenomenon leading the decline of its generalization, it is prone to be trapped in local 
minima [12]. Thus a special multi-layer feedforward ANN has been proposed by Chen 
[13] and it is called flexible neural tree (FNT). FNT allows over-layer connections, input 
variables selection and different activation functions for different nodes [12]. Recent 
studies have begun to explore this representation of neural networks in the context of 
classification [14], recognition [15], approximation [16] and control [17], etc. To form 
the flexible neuron model, the most used flexible activation function is the Gaussian 
function. However, the Beta function [18, 19] shows its performance for standard 
representation of ANN against the Gaussian function due to its great flexibility and its 
universal approximation ability [1-4, 11]. For these reasons we adopted in this research 
the flexible Beta function to establish the flexible neuron model. 

In this paper, a flexible Beta operator neural tree (FBONT) model is proposed for 
time-series prediction problem. Based on the predefined Beta operator sets, a flexible 
Beta operator neural tree model can be created and evolved. The hierarchical structure 
is evolved using the Extended Genetic Programming (EGP). The fine tuning of the 
Beta parameters (centre, spread and the form parameters) and weights encoded in the 
structure is accomplished using the Particle Swarm Optimization algorithm (PSO).  

The paper is planned as follows: Section 2 describes the basic flexible Beta operator 
neural tree model. A hybrid learning algorithm for evolving the Beta function neural 
tree models is the subject of Section 3. The set of some simulation results are provided 
in Section 4. Finally, some concluding remarks are presented in Section 5. 

2 Flexible Beta Operator Neural Tree Model 

In this work, we have used the tree-based encoding method as it defined by Chen [12-
17] for representing a FBONT model. The function node set F and terminal node set 
T used for generating a FBONT model are described as follows: , , … ,  , … ,                    (1) 

where +n (n = 2,. . . , N) denote non-terminal nodes and represent flexible neuron Beta 
operators with n inputs.  

x1, x2,. . ., xM are terminal nodes and defining the input vector values. The output of 
a non-terminal node is calculated as a flexible neuron model (fig.1). 

In the creation process of Beta operator neural tree, if a non-leaf node, i.e., +n is 
selected, n real values are randomly created to represent the connected weight 
between the node +n and its offspring. In addition, seen that the flexible activation 
function used in this study is the beta function, four adjustable parameters (the 
center  c , width σ  and the form parameters p , q  are randomly generated as 
flexible Beta operator parameters. For each non-terminal node, i.e., +n, its total 
excitation is calculated by:  ∑                                 (2) 

where  ( j = 1, …, n) are the inputs to node +n. The output of node +n is then 
calculated by: 
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the (1-T)% best individuals are selected to survive to the next generation and the 
remaining individuals are removed and replaced with new ones.  

Crossover: the tree structure crossover operation is implemented by taking randomly 
selected sub-trees in the individuals and selecting randomly one non-leaf node in the 
hidden layer for each chromosome, and then swapping the selected sub-trees. 

Mutation: four different mutation operators were used to generate offspring from the 
parents. These mutation operators are as follows: 

1. Changing one leaf node: select one leaf node randomly in the neural Beta operator 
tree and replace it with another leaf node;  

2. Changing all the leaf nodes: select all leaf nodes in the neural Beta operator tree 
and replace it with another leaf node;  

3. Growing: select a random leaf node in hidden layer of the neural Beta operator tree 
and replace it with a randomly generated sub-tree;  

4. Pruning: randomly select a Beta operator node in the neural tree and replace it with 
a random leaf node.  

After each mutation or crossover operator, a redundant terminals pruning operator 
will be applied, if it is possible; i.e. if a Beta operator node has more than two 
terminals, the redundant terminals should be deleted. 

3.2 Parameter Optimization with PSO 

PSO was proposed by Kennedy and Eberhart [20] and is inspired by the swarming 
behavior of animals. The initial population of particles is randomly generated. Each 
particle has a position vector denoted by xi. A swarm of particles ‘flies’ through the 
search space; with the velocity vector vi of each particle. Each particle records its best 
position corresponding to the best fitness in a vector pi. Moreover, the best position 
among all the particles obtained in a certain neighborhood of a particle is recorded in 
a vector pg. At each iteration, a new velocity for particle i is updated by: 1             (4) 

where ,  (acceleration) and  (inertia) are positive constant and  and  are 
randomly distributed number in [0,1]. The velocity vi is limited in[-vmax ,+vmax]. Based 
on the calculated velocities, each particle changes its position: 1 1 1                       (5) 

3.3 Fitness Function 

To find an optimal FBONT, the Root Mean Squared Error (RMSE) is employed as a 
fitness function: 
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  ∑                         (6) 

where P is the total number of samples,   and  are the actual time-series and 
the FBONT model output of jth sample.  denotes the fitness value of ith 
individual. 

3.4 The Learning Algorithm for FBONT Model 

To find an optimal or near-optimal FBONT model, architecture and parameters 
optimization are used alternately. Combining of the EGP and PSO algorithms, a 
hybrid algorithm for evolving FBONT model is described as follows and is depicted: 

(a) Randomly create an initial population (FBONT trees and its parameters); 
(b) Structure optimization is achieved by the Extended Genetic Programming 

(EGP) as described in section 3.1; 
(c) If a better architecture is found or a maximum number of generation is attained, 

then go to step (d), otherwise go to step (b); 
(d) Parameter optimization is achieved by the PSO algorithm. The architecture of 

FBONT model is fixed, and it is the best tree found by the structure search. The 
parameters (weights and flexible Beta function parameters) encoded in the best 
tree formulate a particle; 

(e) If the maximum number of iterations is attained, or no better parameter vector 
is found for a fixed time then go to step (f); otherwise go to step (d); 

(f) If satisfactory solution is found, then the algorithm is stopped; otherwise go to 
step (b). 

4 Experimental Results  

To evaluate its performance, the proposed FBONT model is submitted to time-series 
prediction problems: Mackey-Glass chaotic and the Jenkins–Box time series.  

4.1 Mackey–Glass Time Series Prediction 

A time-series prediction problem can be constructed based on the Mackey–Glass [21] 
differential equation:     1 10                                             (7) 

The setting of the experiment varies from one work to another. In this work, the same 
parameters of [2] and [14], namely a = 0.2, b = 0.1 and  ≥ 17, were adopted, since 
the results from these works will be used for comparison. 500 data pairs of the series 
were used as training data, and 500 were used to validate the model identified. The 
used Beta operator sets to create an optimal FBONT model is , , ,  , , , , where  (i = 1, 2, 3, 4) denotes ,
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Fig. 4. The evolved FBONT and its output for forecasting Jenkins–Box data 

Table 2. Comparison of testing errors of Box and Jenkins 

Method  Prediction error 
(MSE) 

ANFIS model [23] 0.0073 
FuNN model [24] 0.0051 
FNT [14] 0.00066 
HMDDE [3] 0.0581 
FBONT 0.000135 

5 Conclusion  

In this paper, a Flexible Beta Operator Neural Tree model and its design and 
optimization algorithm are proposed for time-series forecasting problems. The work 
demonstrates that the FBONT model can successfully evolve the structure and 
parameters of artificial neural networks simultaneously by using a tree representation. 
In fact, the FBONT structure is developed using Extended Genetic Programming 
(EGP) and the Beta parameters and connected weights are optimized by Particle 
Swarm Optimization algorithm (PSO). The experiment results show that the FBONT 
model can effectively predict the time-series problem such as Mackey-Glass chaotic 
time series and the Jenkins–Box time series. 
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Abstract. In this paper, we propose a novel Bayesian nonparametric
statistical approach of simultaneous clustering and localized feature se-
lection for unsupervised learning. The proposed model is based on a
mixture of Dirichlet processes with generalized Dirichlet (GD) distribu-
tions, which can also be seen as an infinite GD mixture model. Due to the
nature of Bayesian nonparametric approach, the problems of overfitting
and underfitting are prevented. Moreover, the determination of the num-
ber of clusters is sidestepped by assuming an infinite number of clusters.
In our approach, the model parameters and the local feature saliency are
estimated simultaneously by variational inference. We report experimen-
tal results of applying our model to two challenging clustering problems
involving web pages and tissue samples which contain gene expressions.

Keywords: Mixture Models, Clustering, Dirichlet Process, Nonpara-
metric Bayesian, Generalized Dirichlet, Localized Feature Selection, Vari-
ational Inference.

1 Introduction

Clustering is a critical technique in unsupervised learning problems which is
used to partition the data into homogeneous groups. While there exist many
algorithms for clustering, we focus on finite mixture models, which is one of the
most powerful techniques and has been widely applied in many fields such as data
mining, machine learning, image processing and bioinformatics. Among various
mixture models, Gaussian mixture model has been a popular choice due to its
simplicity and maturity of relevant techniques [13,16]. However, when the data
clearly appears with a non-Gaussian structure, other distributions may provide
better modeling capabilities, such as the generalized Dirichlet (GD) distributions
[6,7]. One of the most challenging issues regarding finite mixture models is to
determine the appropriate number of clusters underlying the data. According to
recent development, a nonparametric Bayesian technique namely Dirichlet pro-
cess (DP) [12] may provide an elegant solutions to this model selection problem.
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The DP mixture model can be considered as an infinite mixture model, such
that its complexity increases as the data set grows. Thanks to the development
of Markov chain Monte Carlo (MCMC) techniques, the use of Dirichlet process
has been spread across many domains [20,22]. However, in practice, the use of
MCMC techniques is highly computational demanding and is often limited to
small-scale problems. An alternative to the MCMC technique is a deterministic
approximation technique known as variational inference [15,2]. It has received
significant attention and has provided promising performance in many applica-
tions, especially in finite mixture models [3,10,11,17]. Furthermore, variational
inference only requires a modest amount of computational power which makes
it suitable to large applications. In [5], the authors have proposed a general vari-
ational inference algorithm for DP mixtures with exponential family based on
the stick-breaking representation [21]. In their work, the model is a full Dirichlet
process and the approximated variational distributions are truncated to yield a
finite dimensional representation.

The main purpose of this paper is to develop a novel unsupervised clustering
approach based on a nonparametric Bayesian model with variational framework.
Our contributions are listed as the following: First, we develop an infinite GD
mixture model using stick-breaking construction such that the difficulty of choos-
ing the correct number of components is avoided. Second, rather than using the
global (i.e produce a common feature subset for all the mixture components)
unsupervised feature selection method which is commonly used in many works
[16,9,8], we adopt a localized feature selection scheme [17] where different feature
subsets are associated to the different mixture components. The motivation of
this particular choice is based on the fact that it has been shown that global
feature selection may not be realistic in real life applications and that localized
feature selection can generally provide better results [10,17]. Third, we develop
a variational inference framework for learning the proposed model, such that the
model parameters and the local feature saliency are estimated simultaneously.

The rest of this paper is organized as follows: In Section 2, we develop the
infinite GD mixture model with localized feature selection scheme and learn
it through the variational inference. Section 3 is devoted to the experimental
results. Finally, conclusion is provided in Section 4.

2 Model Specification and Variational Learning

Given a random vector Y = (Y1, . . . , YD) which is drawn from a finite mix-
ture of generalized Dirichlet (GD) Distributions with M components, such that

[7]: p(Y |π,α,β) =
∑M

j=1 πjGD(Y |αj ,βj), where α = {α1, . . . ,αM} and β =
{β1, . . . ,βM}. αj and βj are the parameters of the GD distribution represent-
ing component j with αj = {αj1, . . . , αjD} and βj = {βj1, . . . , βjD}. π =
{π1, . . . , πM} denotes the mixing coefficients, subject to the constraints: 0 ≤
πj ≤ 1,

∑M
j=1 πj = 1. The GD distribution of Y with parameters αj and βj is

defined as
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GD(Y |αj ,βj) =

D∏
d=1

Γ (αjd + βjd)

Γ (αjd)Γ (βjd)
Y

αjd−1
d

(
1−

d∑
k=1

Yk

)γjd

(1)

where
∑D

d=1 Yd < 1 and 0 < Yd < 1 for d = 1, . . . , D, αjd > 0, βjd > 0,
γjd = βjd−αjd+1−βjd+1 for d = 1, . . . , D−1, and γjD = βjD−1. In this paper,
following an interesting mathematical property of the GD distribution which is
thoroughly discussed in [8], we can rewrite the finite GD mixture model in the
following form

p(Xi|π,α,β) =
M∑
j=1

πj

D∏
d=1

Beta(Xid|αjd, βjd) (2)

where X i = (Xi1, . . . , XiD), Xi1 = Yi1 and Xid = Yid/(1−
∑d−1

k=1 Yik) for d > 1,
and Beta(Xid|αjd, βjd) is a Beta distribution defined with parameters (αjd, βjd).
The motivation of adopting this property is that the independence between the
features now becomes a fact rather than an assumption as considered in previous
unsupervised feature selection Gaussian mixture-based approaches [16,9].

In this paper, we construct our Dirichlet process using the stick-breaking con-
struction. Specifically, given a random distribution G, it is distributed according
to a Dirichlet process (G ∼ DP (ψ,H)) if the following conditions are satisfied:

λj ∼ Beta(1, ψ), θj ∼ H, πj = λj

j−1∏
s=1

(1 − λs), G =

∞∑
j=1

πjδθj (3)

where δθj denotes the Dirac delta measure centered at θj . The mixing weights πj
are obtained by recursively breaking a unit length stick into an infinite number
of pieces such that the size of each successive piece is proportional to the rest of
the stick. We then extent (2) into an infinite mixture model by assuming that the
observed data set is generated from a GDmixture model with a countably infinite
number of components as: p(Xi|π,α,β) =

∑∞
j=1 πj

∏D
d=1 Beta(Xid|αjd, βjd).

Next, we deploy a localized feature selection scheme [17] which has been shown
to outperform the global one. Thus, the distribution of each feature Xid can be
approximated by p(Xid) � Beta(Xid|αjd, βjd)

φijdBeta(Xid|σjd, τjd)1−φijd , where
φijd is a binary latent variable and known as the feature relevance indicator, such
that φijd = 0 if feature d of component j is irrelevant (i.e. noise) and follows a
Beta distribution: Beta(Xid|σjd, τjd). The prior distribution of φ is defined as:

p(φ|ε) =
∏N

i=1

∏∞
j=1

∏D
d=1 ε

φijd

jd1
ε
1−φijd

jd2
, where each φijd is a Bernoulli variable

such that p(φijd = 1) = εjd1 and p(φijd = 0) = εjd2 . The vector ε represents
the features saliencies (i.e. the probabilities that the features are relevant) where
εjd = (εjd1 , εjd2) and εjd1 + εjd2 = 1. In addition, a Dirichlet distribution is

placed over ε with positive parameter c: p(ε) =
∏∞

j=1

∏D
d=1 Dir(εjd|c). Next, a

binary latent variable Zi = (Zi1, Zi2, . . .) is placed over each vector Xi, such
that Zij ∈ {0, 1} and Zij = 1 if Xi belongs to component j and 0, otherwise.
Thus, by setting Ω = {Z,φ,α,β,σ, τ}, we can write the likelihood function of
the infinite GD mixtures with latent variables Z = (Z1, . . . ,ZN ) as



28 W. Fan and N. Bouguila

p(X|Ω) =

N∏
i=1

∞∏
j=1

[
D∏

d=1

Beta(Xid|αjd, βjd)
φijdBeta(Xid|σjd, τjd)1−φijd

]Zij

(4)

The prior distribution of latent variables {Zij} are given discrete by: p(Z|π) =∏N
i=1

∏∞
j=1 π

Zij

j . According to the stick-breaking construction of DP as stated in
(3), π is a function of λ and we can redefine the probability distribution of Z as:

p(Z|λ) =
∏N

i=1

∏∞
j=1

[
λj

∏j−1
s=1(1− λs)

]Zij
. As shown in (3), λ follows a specific

Beta distribution: p(λ) =
∏∞

j=1 Beta(1, ψj). Based on the fact that Gamma
distribution is conjugate to the stick lengths of the Dirichlet process mixture
model [5], we add another layer to the Bayesian hierarchy for the sake of more
flexibility by placing a Gamma prior G(·) over the hyperparamete ψ: p(ψ) =
G(ψ|a, b), where a and b are positive. Last, we need to introduce conjugate
priors over parameters α, β, σ and τ of Beta distributions. Here, as proposed
in [18], we assume that these Beta parameters are statistically independent and
Gamma priors are adopted to approximate the conjugate priors. Thus, we have:
p(α) = G(α|u,v), p(β) = G(β|p, q), p(σ) = G(σ|g,h) and p(τ ) = G(τ |s, t).

Next, we develop a variational framework for learning the infinite GD mixture
model with localized feature selection. To simplify the notation, we define Θ =
{Z,φ,α,β,σ, τ ,λ,ψ, ε}. The main idea in variational learning is to find an
approximation Q(Θ) for the posterior distribution p(Θ|X ). Here, we adopt a
factorial approximation for the variational inference. Furthermore, motivated by
[5], we truncate the stick-breaking representation for the infinite GD mixture

model at a value of M as: λM = 1 , πj = 0 when j > M ,
∑M

j=1 πj = 1. Here,
the truncation level M is a variational parameter which can be freely initialized
and will be optimized automatically during the learning process. In variational
inference, the general expression for updating a variational factor is given by:
Qs(Θs) =

(
exp

〈
ln p(X , Θ)

〉
�=s

)
/
( ∫

exp
〈
ln p(X , Θ)

〉
�=s

dΘ
)
, where 〈·〉�=s denotes

an expectation with respect to all the factor distributions except for s. Then, we
obtain their variational solutions as

Q(Z) =
N∏
i=1

M∏
j=1

r
Zij

ij , Q(λ) =
M∏
j=1

Beta(λj |θj , ϑj), Q(ψ) =
M∏
j=1

G(ψj |a∗j , b∗j ) (5)

Q(ε) =
M∏
j=1

D∏
d=1

Dir(εjd|c∗) , Q(φ) =
N∏
i=1

M∏
j=1

D∏
d=1

f
φijd

ijd (1− fijd)
(1−φijd) (6)

Q(α) =
M∏
j=1

D∏
d=1

G(αjd|u∗
jd, v

∗
jd) , Q(β) =

M∏
j=1

D∏
d=1

G(βjd|p∗jd, q∗jd) (7)

Q(σ) =

M∏
j=1

D∏
d=1

G(σjd|g∗jd, h∗
jd) , Q(τ) =

M∏
j=1

D∏
d=1

G(τjd|s∗jd, t∗jd) (8)

where the variational parameters in the above equations are defined as
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rij =
exp
[∑D

d=1〈φijd〉ξ+
∑D

d=1〈1−φijd〉�+〈lnλj〉+
∑j−1

s=1〈ln(1−λs)〉
]

∑M
j=1 exp

[∑D
d=1

〈φijd〉ξ+∑D
d=1

〈1−φijd〉�+〈lnλj〉+
∑j−1

s=1〈ln(1−λs)〉
] ,

fijd =
exp
[
〈Zij〉ξ+〈ln εjd1 〉

]
exp
[
〈Zij〉ξ+〈ln εjd1 〉

]
+exp

[
〈Zij〉�+〈ln εjd2 〉

] ,

ξ =
[R̃jd + (ᾱjd − 1) lnXid + (β̄jd − 1) ln(1−Xid)

]
, θj = 1 +

∑N
i=1〈Zij〉 ,

� =
[F̃jd+(σ̄jd−1) lnXid+(τ̄jd−1) ln(1−Xid)

]
, ϑj = 〈ψj〉+∑N

i=1

∑M
s=j+1〈Zis〉 ,

v∗jd = vjd −∑N
i=1〈Zij〉〈φijd〉 lnXid , a∗j = aj + 1 , b∗j = bj − 〈ln(1− λj)〉 ,

c∗1 = c1 +
∑N

i=1〈φijd〉 , c∗2 = c2 +
∑N

i=1〈1− φijd〉 ,
u∗
jd = ujd+

∑
i〈Zij〉〈φijd〉ᾱjd[Ψ(ᾱjd+β̄jd)−Ψ(ᾱjd)+β̄jdΨ

′(ᾱjd+β̄jd)(〈lnβjd〉−ln β̄jd)] ,

where Ψ(·) is the digamma function. Note that, R̃ and F̃ are the lower bounds

of R =
〈
ln Γ (α+β)

Γ (α)Γ (β)

〉
and F =

〈
ln Γ (σ+τ)

Γ (σ)Γ (τ)

〉
, respectively. Since these expecta-

tions are intractable, we use the second-order Taylor series expansion to find
their lower bounds as proposed in [18]. The solutions to the hyperparameters of
Q(β), Q(σ) and Q(τ ) can be computed similarly as for u∗ and v∗. The expected
values in the above formulas are given by

ᾱjd = u∗
jd/v

∗
jd , β̄jd = p∗jd/q

∗
jd , σ̄jd = g∗jd/h

∗
jd , τ̄jd = s∗jd/t

∗
jd (9)

〈Zij〉 = rij , 〈ψj〉 = a∗j/b
∗
j ,

〈
φijd

〉
= fijd , 〈ln β〉 = Ψ(p∗)− ln q∗ (10)

〈
lnλj

〉
= Ψ(θj)− Ψ(θj + ϑj) ,

〈
ln(1− λj)

〉
= Ψ(ϑj)− Ψ(θj + ϑj) (11)

〈
ln εjd1

〉
= Ψ(c∗1)− Ψ(c∗1 + c∗2) ,

〈
ln εjd2

〉
= Ψ(c∗2)− Ψ(c∗1 + c∗2) (12)

Since the solutions to each variational factor are coupled together through the
expected values of other factors, the optimization of the model can be solved in
a way analogous to the EM algorithm. First, we need to initialize the trunca-
tion level M and the values of all the hyperparameters. The variational E-step:
estimate the expected values in (9)∼(12), use the current distributions over the
model parameters. The variational M-step: update the variational solutions for
each factor by (5) ∼ (8) using the current values of the moments. These two
steps repeat until convergence criteria is reached. The optimal number of com-
ponents M can be detected by eliminating the components with small mixing
coefficients close to 0.

3 Experimental Results

In this section, we validate the proposed algorithm through two challenging real
world applications, namely the web page clustering and the tissue sample catego-
rization. The main goal of our experiments is to investigate the advantages of the
proposed infinite GD mixture model with localized feature selection (InLFsGD)
approach by comparing it to: the infinite GD mixture model with global feature
selection (InGFsGD), the infinite GD mixture model without feature selection
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(InGD), the finite GD mixture model with localized feature selection (LFsGD)
proposed in [10] and the infinite Gaussian mixture model with localized fea-
ture selection (InLFsGM ). To make a fair comparison, all of these methods are
learned in a variational way. It is also noteworthy that all results are averaged
over 20 runs of the algorithm. According to the experimental results that we have
obtained, we initialize the proposed model as the following: the initial truncation
level M is set to 15, the initial values of hyperparameters u, p, g and s of the
Gamma priors are set to 1, v, q, h, t are set to 0.01, the hyperparameters a and
b are set to 1, while c1 and c2 are both set to 0.1.

3.1 Web Page Clustering

In this experiment, the application of web page clustering is highlighted. In our
case, a subset of the WebKB data set1 is adopted, which is known as the WebKB4
data set. The WebKB4 consists of 4,199 web pages from the four most populous
categories: student (1641 pages), faculty (1124 pages), course (930 pages), and
project (504 pages). The methodology of our text clustering approach is decried
as the following: First, the Rainbow package2 was used as a preprocessing step
to select the top 500 words by removing the rare (occurred less than 30 times)
and stop words (such as “the”, “and”, “or”, etc.). Next, each web page was rep-
resented by a vector of counts (i.e. a histogram that containing the frequency
of occurrence of each word in its vocabulary). Then, the latent Dirichlet alloca-
tion (LDA) model [4] was applied to reduce the dimensionality of those vectors.
Accordingly, each document was represented by a vector of proportions. After
applying the geometric transformation presented in Section 2, these vectors were
then modeled by our infinite mixture using the algorithm in the previous section.
Finally, the classification is performed by applying Bayes’ decision rule. Table 1
shows the confusion matrix of the WebKB4 data set obtained by applying the
proposed InLFsGD. The average performances of web page clustering using dif-
ferent methods are shown in Table 2. As we can observed from this table, it is
clear that the InLFsGD achieves the best performance among the five meth-
ods in terms of the highest classification accuracy rate (81.51%) and the most
accurate estimated number of components (4.04).

Table 1. Average rounded confusion matrix calculated by InLFsGD

Student Faculty Course Project Acc (%)

Student 1381 110 78 72 84.2

Faculty 135 893 51 45 79.4

Course 63 30 796 41 85.6

Project 41 49 27 387 76.8

Overall Rate 81.5

1 The data set is available at: http://www.cs.cmu.edu/~textlearning/
2 http://www.cs.cmu.edu/~mccallum/bow/

http://www.cs.cmu.edu/~textlearning/
http://www.cs.cmu.edu/~mccallum/bow/
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Table 2. The average accuracy rate (Acc) (%) and the number of categories (M̂) ob-
tained using different methods. The numbers in parenthesis are the standard deviation
of the corresponding quantities.

Method InLFsGD InGFsGD InGD LFsGD InLFsGM

M̂ 4.04 (0.16) 4.21 (0.69) 4.97 (0.63) 5.23 (1.12) 4.78 (0.82)

Acc (%) 81.51 (1.56) 79.36 (1.32) 76.23 (1.75) 73.49 (2.01) 77.81 (1.55)

3.2 Tissue Sample Categorization

Clustering gene expression microarray data is a very challenging task and has
received significant attention recently. One of the most effective technique for
handling this clustering task is to adopt finite mixture models [19,14]. How-
ever, most of these approaches require some model selection criteria (ex. BIC,
AIC, etc) to determine the number of components. In this experiment, we apply
the proposed nonparametric variational approach for categorizing tissue sam-
ples which contain gene expressions. Unlike finite mixture model approaches
mentioned above, our approach is able to bypass the problem of model selection
and allows simultaneous separation of data in to similar clusters and selection of
relevant features. In this case, we use the well-known Lymphoma data set which
is introduced in [1] to measure the gene expression levels using Lymphochip mi-
croarrays. This data set contains 80 tissue samples and 4062 genes. Within those
samples, there are 29 cases of of B-cell chronic lymphocytic leukaemia (B-CLL),
42 cases of diffuse large B-cell lymphoma (DLBCL) and 9 cases of follicular
lymphoma (FL).

Table 3. The average accuracy rate (Acc) (%) and the number of categories (M̂)
obtained using different methods

Method InLFsGD InGFsGD InGD LFsGD InLFsGM

M̂ 3.22 (0.23) 3.51 (0.46) 4.03 (0.95) 4.34 (1.23) 3.55 (0.71)

Acc (%) 86.15 (1.18) 85.02 (1.37) 82.39 (1.68) 79.08 (1.92) 84.36 (1.29)

In the preprocessing step, we normalized the data set into a range of [0, 1] such
that one feature (the gene repression levels in one particular array) would not
dominant the others in our algorithm. Then, these vectors were learned using the
proposed InLFsGD. Finally, the classification is performed by by assigning the
tissue samples to the group which has the highest posterior probability according
to Bayes’ rule. Table 3 illustrates the clustering results acquired by employing
different methods. According to the results in this table, it is clear again that
infinite localized feature selection outperforms other methods.

4 Conclusion

In this paper, we have proposed a novel approach for simultaneous clustering and
localized feature selection based on the variational learning of infinite GDmixture
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models (orDirichlet processes ofGDdistributions)with localized feature selection.
By using this model, the difficulty of determining the number of clusters is avoided
and the problems of overfitting and underfitting are prevented. The effectiveness of
the proposed approach has been evaluated on two real applications involving web
pages clustering and tissue samples categorization.
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Abstract. Fuzzy Cluster is a powerful for cluster analysis. However, 
inappropriate parameters selection leads Fuzzy Clustering to produce unreliable 
results. In addition, Fuzzy Clustering is sensitive to initialization and could be 
struck in local minima. Although, clustering results are validated by Cluster 
Validity Index but these methods obtain the best clustering result by reproduce 
clustering with various parameters and it is computation expensive. In order to 
overcome these issues, Generalized Agglomerative Fuzzy Clustering is 
proposed in this paper. Our proposed method is capable to find the optimum 
number of clusters and fuzzifier during the clustering execution. Moreover, this 
method is applicable to Fuzzy Clustering and its variants. Comprehensive 
experiments show that our agglomerative method obtained the right number of 
clusters and fuzzifier. 

Keywords: Cluster validation, Fuzzifier, Parameter, Number of clusters. 

1 Introduction 

Clustering is a technique to separate unlabeled data into finite and discrete set. 
Traditional clustering like K-Means [1] puts each data into exactly one cluster. For 
overlapped datasets where some data can be allocated to multiple clusters, K-Means 
may not be the right method to analyze the dataset. To achieve better clustering, 
Fuzzy C-Mean (FCM) [2, 3] was proposed by incorporating with uncertainty to allow 
data being assigned of all clusters at different degree of membership. FCM requires 
predefined number of clusters and fuzzifier (fuzzy exponent) which do not know a 
priori. Even though, FCM is a powerful clustering algorithm but estimating right 
parameters is a difficulty that prevents FCM producing good quality [4-16]. In order 
to obtain an optimum result, FCM is executed with variation of input parameters. 
Major cluster characteristics of FCM results are compared among each other in term 
of compactness and separation by Cluster Validity Index (CVI). Compactness 
indicates the variation of the data within a cluster, and separation indicates the 
isolation of the clusters from each other. In addition, CVI is a tool to find the number 
of clusters which is a subject of cluster validity problem. Nevertheless, using CVIs 
require FCM to execute with the number of clusters starts from 2 and sequentially 
increase in later execution. This method consumes lot of efforts and computational 
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resources. Furthermore, some CVIs are sensitive to noise and increase monotonically 
when number of clusters approaches number of data [16]. 

To overcome these drawbacks, we proposed an agglomerative FCM that determine 
number of clustering on the fly. Our method is capable to apply to any FCM variants. 
This paper is organized as follow. In section 2, we review existing CVI technique and 
agglomerative fuzzy clustering. In section 3, we propose agglomerative method by 
determining centroids for merging. In section 4, we evaluate our approach on real 
dataset. In Section 5, the conclusion is drawn with our future works. 

2 Related Works 

Fuzzy clustering i.e. FCM partitions a set of dataset δ (xi ϵ δ, i=1..N) into k clusters. It 
involves uncertainty i.e. the data could not belong to one cluster nevertheless all data 
belong to all clusters with the different degree of membership (µij). The data is 
assigned to clusters by comparing its distance or dissimilarity (dij

2) to the cluster 
centroids (vj).  The optimum membership and centroid are obtained as (1) and (2). 

 1/ ∑  (1) 

 ∑ / ∑  (2) 

In some circumstances, FCM assign degree of membership too high level of fuzzy 
thus Exponential Fuzzy Clustering (XFCM) is FCM enhancement to improve 
membership assignment by reformulate objective function in exponential [4,17]. The 
optimum membership and centroid of XFCM are obtained as (3) and (4). 

 / ∑  (3) 

 ∑ / ∑  (4) 

Basically, FCM requires number of clusters (k) and fuzzifier (m) as input parameters 
to execute. Inappropriate parameters leads algorithm to produce poor clustering 
quality. In general, m is in range between [1.5,2.5][8] or setting to 2 in most cases 
[16]. The upper limit of m can be estimated using Eigen value of the matrix [5] and 
actual value can be estimated by a relation of number of data and dimensions [7]. 
However, FCM and XFCM produces crisp result (result similar to K-Means) if 
fuzzifier approaches 1. In reverse, if fuzzifier is too high, clustering produce average 
result i.e. the degrees of membership become 1/k [17]. To obtain optimum number of 
cluster, it is the subject of cluster validity problem. Most CVIs have their own 
benefits and weakness but fundamental approach is the same which based on 
separation and compactness. The most popularity CVI was proposed by Xie and Beni 
[9] which used the FCM’s objective function as compactness. Kwon [10] extends the 
index of Xie and Beni by adding penalty term to eliminate monotonically decrease 
when number of clusters approaches number of data. Well-known of CVIs are 
summarized in Table 1. 
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Table 1. Well-known Cluster Validity Index 

Xie and Beni [9] 
∑ ∑

  

Kwon [10] 
∑ ∑ ∑

  

Fukuyama and 
Sugeno[11] 

∑ ∑ min   

Gath and Geve [12] ∑ ∑ ∑ /
  

Pakhira and 
Bandyopadhyay 
[13,14] 

∑ , ..∑ ∑   

Wu and Yang [15] ∑ ∑ ∑ ∑ exp .∑ /   

Zhang [16] 

/ ∑ ∑ ∑
 , ∑  1 max max ∈ min  / ../ ..  

As aforementioned, obtaining number of clusters using CVI is computational 
expensive because of the long trail of clustering execution. Moreover, initialization 
can influence FCM and XFCM to local minima. In order to overcome these issues, 
agglomerative competitive fuzzy clustering (AFC) was proposed [18] and later 
improved using Entropy regularization [19]. These approaches start by over specify of 
number of clusters and repeatedly merge clusters by competitive compare cardinality 
of each cluster. Adjacent clusters with lower cardinality will be merged to clusters 
with higher cardinality where cardinality is the total degrees of membership of cluster. 
These algorithms do not sensitive to the selection of initialized seeds therefore these 
methods are applicable to specific algorithms [19]. In order to generalize these 
methods to other fuzzy variants, we propose centroid similarity as a merging 
condition for AFC. 

3 Generalized Agglomerative Fuzzy Clustering 

In general, Fuzzy clustering and its variants are similar in term of implementation. 
These methods begin with the setting of fuzzifier and number of clusters as input 
parameters. Fuzzy clustering is iteratively executed and outputs degree of 
membership and centroids. The main advantages of AFC method are that the number 
of clusters is obtained during the execution and clustering is not influenced by 
initialize and local minima. This method merges clusters from the over specify of 
number of cluster at start. The clusters with total degrees of membership lower than a 
specify threshold will be merged. Nevertheless, small clusters could be merged to the 
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centroids at the end of step 2, these process would cost O(k log k) and it is always 
lower than O(Nk). In the last process of step 2 which repeat all process again. This 
repetition is also similar to FCM. Assume that it requires l iterations, thus time 
complexity for step 2 would be O(Nkl) which is the same as FCM. For FCM to obtain 
the optimum k, it requires O(Nklq) where q is the iteration process on top of normal 
clustering procedure. Hence, AFC uses lower time complexity. In step 3, m is 
increased and process fuzzy clustering until value of VXB

* is decreased (see Fig.1(b)). 
This step ensures that the optimum fuzzifier is obtained. It processes on top of step 2. 
Assume it requires p iterations, thus it is O(Nklp) for the algorithm to get both 
optimum k and m. However the AFC is very flexible, it can be processed by 
discarding step 3 or apply only step 2 or step 3 to other FCM and its variants 
procedure. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Procedure of Fuzzy Clustering using CVI with fuzzifier effect 

4 Experiments 

We implement AFC on FCM (AFCM) and XFCM (AXFCM) and validate their 
performance. First, we perform clustering using AFC (k=10 is used for initial number 
of clusters) to compare optimum centroids produce from each algorithm by 
initialization with the true centroids of dataset. Second, we compare the number of 
clusters with popular CVIs in Table 1. Four real datasets from UCI and 2 synthetics 
dataset are used in these experiments as summarized in Table 2. 

Table 2. Dataset information for experiments 

Dataset Information 

IRIS 150 instances, 3 classes, 4 attributes 
Wine 178 instances, 3 classes, 13 attributes 
Diagnostic Breast Cancer (WDBC) 569 instances, 2 classes, 30 attributes  
Prognostic Breast Cancer (WPBC) 198 instances, 2 classes, 32 attributes  
Synthetic data E4 184 instances, 4 classes, 2 attributes  
Synthetic data E2 202 instances, 2 classes, 2 attributes 

Step 1: Input k, θ, m=1.1 and ε (Terminate coefficient). 
Step 2: Execute Agglomerative Fuzzy Clustering. 
- Compute similarity between data and centroids. 
- Compute degree of membership of each data against centroids. 
- Compute centroids based on degree of membership. 
- Compute centroid similarity as (5) and compare with threshold. 
- Merge centroid and update the number of clusters. 
- Repeat Step 2 until Terminate condition is met.  
Step 3: Obtain optimum fuzzifier 
- Set m=m+0.1, k=optimum number of clusters from Step 2. 
- Perform normal Fuzzy Clustering 
- Calculate Vxb* as (6)  
- Repeat Step 3 and return output if Vxb* begins to drop. 
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4.1 Experiment 1 

In this experiment, we perform AFC and normal fuzzy clustering (using m=2) on IRIS 
and 2 synthetics datasets E2 and E4. The dataset (E4) consists of 4 clusters with 46 
instances in each clusters. This dataset is generated by uniform distribution within the 
boundary of non-overlapping of 4 ellipse shapes which defined as (7). The dataset 
(E2) consists of 2 clusters with 101 instances in each cluster. The data points are 
uniformly selected within the boundary of two overlapped clusters which defined as 
(8). 

  (7) 

  (8) 

We execute clustering 10 times per dataset and measure the centroids errors by 
comparing the produced centroids with the true centroids using MAE as defined in 
(9). The true centroid from IRIS obtained from Kothari et, al. [6]. 

  ∑ /  (9) 

Table 3. MAE and Variance produces from FCM, XFCM, AFCM and AXFCM 

Dataset FCM XFCM AFCM AXFCM 
IRIS 0.21 0.13 0.10 0.07 
E2 11.23 12.42 2.98 12.27 
E4 19.91 18.16 14.81 11.33 

From Table 3, the results show that Generalized Agglomerative method that applies to 
both FCM and XFCM yield the centroid errors less than original FCM and XFCM. 
One reason is that the number of initialization uses in Agglomerative method is larger 
than actual number of clusters. Consequently, the opportunity to get data from valid 
clusters is increased. In addition, some centroid errors produced on IRIS is jump to 
0.6 from 0.03 for FCM and XFCM. 

4.2 Experiment 2 

We perform AFCM and AXFCM to obtain the number of clusters on real 4 datasets 
comparing to the results of FCM that validate by CVIs in Table 1. 

Table 4. Optimum Number of clusters from AFCM, AXFCM comparing to other CVIs [16] 

Dataset k* AFCM AXFCM VXB VK VFS VFHV VPMBF VPCAES VW 
IRIS 3 3 3 2 2 5 3 3 2 3 
Wine 3 3 3 3 3 13 3 3 3 3 
WDBC 2 2 2 2 2 12 2 2 2 2 
WPBC 2 2 2 2 2 4 2 2 2 2 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) 191195.3       ,193.3411

19494       ,191125.1211
2222

2222

=−+−=−+−
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From Table 4, both AFCM and AXFCM return the number of clusters as same as 
actual number of clusters (k*) and better than other well-known CVIs sometimes. In 
addition, time consumed by AFCM and AXFCM (see Table 5) is a bit lower than 
FCM and XFCM except E2. The lower usage time is from the number of similarity 
computation decreases when clusters are merged by Agglomerative method. On the 
other hand, FCM and XFCM need longer time than Agglomerative method before 
converge. It is noted that FCM and XFCM required multiple execution of clustering 
process in order to obtain the right number of clusters while AFCM and AXFCM 
return the right number of clusters by single execution. 

Table 5. Execution time in seconds by FCM, XFCM, AFCM and AXFCM 

Dataset FCM XFCM AFCM AXFCM 

E2 10 9 13 12 
E4 20 18 16 11 
IRIS 10 13 6 8 
Wine 100 65 50 33 
WDBC 106 70 61 66 
WPBC 46 42 32 39 

Table 6. Fuzzifier value obtained from AFCM 

Dataset E2 E4 IRIS Wine WDBC WPBC 

AFCM 4.0 2.9 1.8 1.3 1.1 3.2 
Estimation [7] 8.5 8.7 3.2 1.3 1.1 1.1 

We compare fuzzifier value obtained from AFCM with the esimation equation 
proposed by Schwammle [7]. For Wine and WDBC, both methods yield the same 
result. However, the fuzzifier obtained from Estimation for E2 and E4 are too high. At 
these fuzzifier values, most membership produced from algorithm approaches 1/k 
which does not seem right comparing to the structure of dataset in Fig.3 therefore 
AFCM is more reliable. 

5 Conclusion 

Select the right value of fuzzifier and number of clusters parameters is crucial for 
fuzzy clustering. The number of clusters are usually obtained by validating the 
clustering result with Cluster Validity Index. Nevertheless, this method does not take 
fuzzifier into account. Even though, there exist a general recommendation for 
fuzzifier but the right value of fuzzifier for particular dataset is difficult to estimate. 
We propose the Generalized Agglomerative Fuzzy Clustering that is applicable to 
Fuzzy Clustering variants. We demonstrate Generalized Agglomerative Fuzzy 
Clustering by applying to FCM and XFCM and validate their performance with 
various experiments. The results show that Agglomerative Fuzzy Clustering obtained 
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number of clusters and select the right fuzzifier during the execution. However, this 
method could be improved by studying the threshold in the relation with initial seeds 
and dataset by statistical reasoning and it is the area of future improvement. 
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Abstract. Along with the fast advance of internet technique, internet users have to 
deal with novel data every day. For most of them, one of the most useful 
knowledge exploited from web is about the transfer of the information expressed 
by dynamically updated data. Unfortunately, traditional algorithms often cluster 
novel data without considering the existent clustering model. They have to cluster 
input data over again, once input data are updated. Hence, they are time-consuming 
and inefficient. For efficiently clustering dynamic data, a novel Self-Adaptive 
Clustering algorithm (abbreviated as SAC) is proposed in this paper. SAC comes 
from Self Organizing Mapping algorithm (abbreviated as SOM), whereas, it 
doesn't need to make any assumption about neuron topology beforehand. Besides, 
when input data are updated, its topology remodels meanwhile. Experiment results 
demonstrate that SAC can automatically tune its topology along with the update of 
input data. 

Keywords: Self-adaptive algorithm, Competitive learning, Minimum spanning 
tree, Self-organizing-mapping. 

1 Introduction 

Due to the fast advance of internet technique, the data from web are unstable and 
dynamically updated at times (this kind of data is denoted as dynamic data in this 
paper). This phenomenon forces internet users to face to novel data anywhere and 
anytime. In general, via clustering dynamic data, it is easy to acquire the knowledge 
about, what information appears, what information disappears, and what information 
maintains. This kind of knowledge is essential to the men who need to make the 
decisions via observing dynamic data. 

As indicated by [1], there have been proposed many methods to cluster dynamic 
data as followings. 

Dhillon et al in [2] just propose a dynamic clustering algorithm to help analyze the 
transfer of information. Unfortunately, this algorithm is time-consuming and 
impractical, since it needs to run several times. Ghaseminezhad and Karami in [3] 
improve this algorithm by employing SOM structure, which forms an initial neuron 
topology at first and then dynamically tunes its topology once input data are updated.  
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In order to enable neuron topology easily to be altered, some self-adaptive 
algorithms have been proposed. The prominent merit of them is that they don’t need 
to set any assumption about neuron topology in advance. For example, Melody in [4] 
initializes a neuron topology of small scale at first and then gradually expands it 
following the update of input data. Tseng et al in [5] improve this algorithm by tuning 
neuron topology in virtue of dynamically creating and deleting arcs between neurons. 

Unfortunately, aforementioned self-adaptive algorithms have two defects. One is 
that, when neuron topology isn’t suitable for current input data, these algorithms will 
insert or split neurons, whereas, these newly created neurons may locate out of the 
area where input data distribute. The other is that, these algorithms fail to preserve 
topology order. Therefore, they can’t perform competitive learning as transitional 
SOM based algorithms, which will generate some dead neurons and they will never 
be tuned. The detailed discussions are indicated in [6, 7]. 

For effectively clustering dynamic data, a novel Self-Adaptive Clustering 
algorithm (abbreviated as SAC) is proposed in this paper. Its neuron topology can be 
dynamically tuned following the update of input data. Moreover, it employs local 
density to create neurons, and imports minimum spanning tree to perform competitive 
learning. Experiments demonstrate that, our algorithm earns better performance than 
most of traditional topology fixed and topology self-adaptive algorithms. 

2 Self-Adaptive Clustering Algorithm (SAC) 

In this paper, we design a novel self-adaptive clustering algorithm. It links neurons by 
arcs, and dynamically creates and deletes links to enable this neuron topology easily 
to be altered. Besides, it employs local density to create new neurons to avoid “some 
neurons out of the area where input data distribute”, and imports minimum spanning 
tree to perform competitive learning to avoid “dead neuron”. 

2.1 Neuron Creation 

As indicated by [8], the general way to expand neuron topology is to combine the 
neuron which has the largest accumulation error with its least similar neighbor to 
form a new one. Unfortunately, this plan brings an inconvenient consequence that it 
may create the neurons which locate out of the area where input data distribute. 

For dealing with it, SAC imports local density, proposed by Duan et al in [9], to 
create new neuron. 

Let Di represent one datum among input data. The neuron which is created from Di 
is marked as Ni. The process that creates Ni from Di by local density is as follows: 

Choose t samples from input data, where t is decided by user. Among them, the kth 
sample has kth similarity to Di. Calculate local density of Di and each sample among 
those t data by 

 1
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where, SDik represents the datum which has kth similarity to Di. Neighbor(SDik,r) 
represents the datum which has rth similarity to SDik. m represents the quantity of the 
neighbors which are adjacent to SDik, and it often equals to t. Density(SDik) represents 
the density of the district around SDik, and can be calculated by 
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2.2 Training Process of SAC 

Due to lacking of topology order, the adjacent neurons of the winner neuron (the 
neuron which has the maximal similarity to training sample) can’t be found by 
traditional self-adaptive algorithms. Thus, they can’t perform competitive learning as 
indicated by [10]. Since our algorithm is also a kind of self-adaptive algorithms, we 
employ minimum spanning tree to form topology order as performed by [11]. 

In virtue of minimum spanning tree, we can define neuron adjustment range in the 
following equation, which is never carried out by traditional self-adaptive algorithms. 
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where, Nm represents the winner neuron. ε represents the set which includes the 
neurons that are directly connected to Nm in minimum spanning tree, such as Nb. a(t) 
is learning rate which monotonously drops along with training process [12]. 

By means of neuron adjustment range, we can tune neurons by 
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( 1) ( ) ( ) *exp( )*[ ( )];    ( , )

2 ( , )
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b b i b b

R
N t N t a t D N t N m t

m t
δ

δ
+ = + − − ∈  (4) 

where, Nm represents the winner neuron which has the maximal similarity to Di. t 
represents the index of training steps. Rbm is relation value between Nm and Nb. It 
indicates the weight of the link between Nm and Nb, and can be acquired by 
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where, C represents the quantity of clusters, which equals to the number of neurons. 
Simpq represents the similarity between two neurons, such as Np and Nq. 
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where, z represents the dimension of neuron vector. Wpk represents the weight of kth 
entry in Np. So is to Wqk.  
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So, why we choose the neurons, which are directly connected to the winner neuron, 
to form neuron’s adjustment range? The reason is that, the neurons which are directly 
connected to the winner neuron are more similar to the winner neuron than to other 
neurons. Training process of SAC is listed as follows: 

1. Let NEURON represent neuron set. Let LINK represent link set. Each link has 
two parameters. One of them is relation parameter to indicate its weight. The other is 
age parameter to denote its creating time. Initialize error coefficient of each neuron 
with 0. Let Inset represent data set. Let t represent the index of training steps. 

2. Randomly choose a datum from Inset, and mark it as Di. Calculate the similarity 
between Di and each neuron in NEURON by Eq.6. 

3. Choose the neuron which has the maximal similarity to Di as the winter neuron, 
and mark it as MBN. Tune MBN and its adjacent neurons by Eq.4. Increase error 
coefficient of MBN by 

 
2| |m m ierr err D MBN= + −  (7) 

where, errm represents error coefficient of MBN. 
4. Choose the neuron which has the secondly maximal similarity to Di, and mark it 

as SBN. If there is no link between MBN and SBN, go to 5. If not, go to 6. 
5. Create a link between MBN and SBN, mark it as lms, and insert it in LINK. 
6. Apply Eq.5 to calculate relation parameter-Rms of lms. Assign age parameter-

Agems of lms with 0. 
7. Add 1 to age parameter of each link in LINK. 
8. Check each link in LINK. If there is a link whose age parameter is beyond the 

average value of all the links, remove it. 
9. Check each neuron in NEURON. If there is a neuron which isn’t connected by 

any link, remove it. 
10. Increase t to t+1. 
11. Let s denote quantity of input data. If (t mod s) equals 0, go to 12, else, go to 2. 
12. Choose the neuron which has the maximal error coefficient, and mark it as Nq. 

Choose the neuron which is adjacent to Nq and has the minimal similarity to Nq, and 
mark it as Nf. 

13. Combine Nq and Nf to create a new neuron by 

 
2

q f
r

N N
N

+=  (8) 

Mark this newly created neuron as Nr. Create the links between Nq and Nr, Nf and Nr, 
and insert them in LINK. Initialize age parameter of each created link with 0. 

14. Reduce error coefficients of Nq and Nf by 

 / 2q qerr err=  (9) 

 / 2f ferr err=  (10) 
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Assign Nr with new error coefficient by 

 
2

q f
r

err err
err

+=  (11) 

15. Check whether neuron topology has met convergence condition or not. If yes, 
stop. If not, go to 2. 

2.3 The Process to Cluster Dynamic Data 

For helping explain how to use SAC to cluster dynamic data, let’s adopt some symbols. 
Let t1 and t2 represent two time phases. Let InSett1 and InSett2 represent the data sets 
respectively collected in t1 and t2. For clustering the dynamic data from t1 to t2, we firstly 
use SAC to form a neuron topology according to InSett1. When InSett1 is updated, for 
example, changing to InSett2, we use SAC to alter the existent neuron topology according 
to InSett2. The altering process is just the same to the training process of SAC. Once data 
set is updated again, it only needs to run this training process once more to alter the 
existent neuron topology according to the updated data set. 

3 Experiments and Analyses 

3.1 Experiments on Clustering Performance 

As indicated by [13], UCI data set is one of the most prevalent testing corpora for 
clustering algorithms. Since it contains too many kinds of data sets, we only select 
some extensively applied data sets as the standard testing corpus to compare the 
performance of SAC with that of the other clustering algorithms in Table 1. They are 
GNG [14] PSOM [15], DASH [16], SOM [17], GSOM [18], and GHSOM [19].  

In the following experiments, we employ Purity in [20] as the measurement, which 
can be calculated by 
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where, z represents the quantity of clusters. n represents the quantity of input data. Sr 
represents rth cluster formed by clustering algorithm. nr represents the quantity of the 
data included by Sr. P(Sr) can be calculated by 
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In UCI, it already partitions testing data into some predefined clusters. Let Cq 
represent qth cluster among the predefined clusters. Let nq represent the quantity of 

the data included by Cq. Let =q q
r rn n n , which represents the quantity of the data, 

belonging to Cq in testing corpus and belonging to Sr after clustering algorithm. 
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Table 1. Purities of different clustering algorithms on the selected data sets 

#DATA SETS/METHODS SOM GSOM GHSOM GNG PSOM DASH SAC 
Thyroid Gland 78.37 79.64 81.25 77.56 76.22 78.38 82.19 

Japanese Credit Approval 74.18 76.36 79.94 74.93 73.48 77.50 80.86 
Wine Recognition 75.32 77.32 81.04 76.58 75.83 80.21 81.56 

Breast Cancer 76.54 78.43 80.07 73.61 74.69 79.54 82.04 
Iris 81.12 82.01 83.25 78.82 76.31 82.07 84.59 

Sonar Target 75.40 77.51 79.37 76.80 75.65 78.93 80.31 
Ionosphere 78.33 80.17 81.95 79.56 77.30 80.03 82.73 

Heart Disease 72.09 73.24 75.81 72.51 69.33 74.96 77.20 
Waveform 70.66 71.83 73.87 70.91 69.07 73.09 75.11 

Pima Diabetes 74.59 78.11 80.34 76.82 74.33 79.22 81.55 
Multiple Feature 71.60 75.88 77.93 72.11 70.39 76.78 78.27 

Optical Digit 78.62 80.13 82.31 79.58 77.54 80.43 82.68 
German Credit Approval 72.17 73.45 75.71 73.36 70.08 72.69 77.08 

Car Evaluation 76.76 79.86 81.65 78.65 76.34 80.77 82.51 

 
Obviously, SAC has the best performance than any other clustering algorithm. This 

is because, it doesn’t need to make any assumption about neuron topology 
beforehand, and can dynamically form neuron topology to simulate the distribution of 
input data. Besides, to further boost its performance, it constructs minimum spanning 
tree to perform competitive learning. Through pervious operations, SAC consequently 
earns the best performance. 

3.2 Experiments on Dynamic Data 

The data from UCI data set don’t change along with time passing. Therefore, we can’t 
utilize them to test the performance of SAC for dynamic data. For this reason, we 
crawl ten thousands news web-pages from website over the entire year of 2010 as 
testing corpus, and separate it into four sets to represent the dynamic data collected in 
four time phases. Let InSett1, InSett2, InSett3, InSett4 represent the data sets 
respectively including the news from January to March, from April to June, from July 
to September, from October to December. Clustering results are shown in Table 2. 

Table 2. Purities of different clustering algorithms based on the existent neuron topology 

#DATA SETS/METHODS SOM GSOM GHSOM GNG PSOM DASH SAC 
January to March 75.37 74.64 76.25 74.56 72.22 75.38 81.19 

April to June - - - 68.33 66.48 69.71 79.24 
July to September - - - 63.23 61.67 64.31 78.13 

October to December - - - 58.76 56.39 59.25 77.42 

As Table 2 shows, traditional topology fixed algorithms can’t perform clustering 
on dynamic data, and traditional topology self-adaptive algorithms can cluster 
dynamic data based on the existent neuron topology. However, due to lacking of 
solutions to deal with “dead neuron” and “neurons locating out of area where input 
data distribute”, when input data update, the performances of traditional topology 
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self-adaptive algorithms drop sharply. Correspondingly, SAC keeps its high 
performance. This is because, SAC imports density to create new neurons, and 
imports minimum spanning tree to perform competitive learning. Besides, the method 
adopted by SAC via creating and deleting links between different neurons can make 
neuron topology easily to be altered along with the update of input data. 

4 Conclusion 

Along with the fast advance of internet technique, novel data appear every day. In 
order to cluster them, a novel self-adaptive clustering algorithm is proposed in this 
paper, which is abbreviated as SAC. This algorithm doesn’t need to make any 
assumption about neuron topology in advance, and can dynamically form it to 
simulate the distribution of input data. For avoiding neurons from locating out of the 
area where input data distribute, it adopts local density to create new neurons. 
Besides, minimum spanning tree is imported to perform competitive learning to 
further enhance its performance. Experiment results demonstrate that SAC works 
better than most of traditional clustering algorithms. It can cluster dynamic data very 
well. 
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Abstract. In this paper, global exponential synchronization of a class
of discrete delayed complex networks with switching topology is inves-
tigated by using Lyapunov-Ruzimiki method. The impulsive scheme is
designed to work at the time instant of switching occurrence. A time-
varying delay dependent criterion for impulsive synchronization is given
to ensure the delayed discrete complex networks switching topology tend-
ing to a synchronous state. Furthermore, a numerical simulation is given
to illustrate the effectiveness of main results.

Keywords: Complex networks, impulsive synchronization.

1 Introduction

It has long been understood that many physical, social, biological, and technolog-
ical networks are modeled by a graph with non-trivial topological features. In this
model, every node is an individual element of the whole system with certain pat-
tern of connections, in which connections between each pair of nodes are neither
entirely regular nor entirely random[1],[2],[3].Secure communication[4],[5],parallel
image processing[6] and chemical reaction implemented by coupled chaotic sys-
tems have been an active research field during the last two decades. As a conse-
quence, theory and methods for synchronization of different families of complex
networks have been extensively studied by many researchers(such as,[7]–[10]) and
references therein). The improvement on different regimes of synchronization of
discrete complex networks are abstracted from papers authored by [9]. Some gen-
eral cases of synchronization of complex networks with switching topology can be
found in the literatures of [14]. Adaptive synchronization, impulsive synchroniza-
tion scheme and pining control synchronization have been considered by authors
in[14]-[16]. Impulsive control has been successfully used to stabilize and synchro-
nize dynamical systems, for examples, [11]-[13]. And impulsive control technique
could be an efficientmethodwhen a discrete change behavior is needed.The adjust-
ment interest rate could agree with that. In this paper, we proposed an impulsive

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 50–57, 2012.
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synchronization scheme for a state delayed discrete complex networkswith switch-
ing topology. For this control scheme, we consider that the impulsive control signal
is designed to be input into all of nodes.

The paper is organized as follows. Section 2 presents some mathematical pre-
liminaries needed in this work, and a generalized mathematical model for de-
layed discrete complex networks with switching topology. The main theorem for
global synchronization of this type of discrete complex networks are then given
in Section 3. In Section 4, a small-world networks with 3 sub-networks involving
30 nodes is constructed to illustrate the effectiveness of our result. Section 5
concludes the paper.

2 Preliminary

First, we need to introduce some notations and definitions for the sake of ex-
ploring our main results. Let‖ • ‖ denote the Euclidean norm; IRn denotes the
n–dimensional Euclidean space,the set of natural numbers IN = {0, 1, 2, . . .},
and, for certain positive integer τ , we let ZZ−τ = {−τ,−τ + 1, . . . , 0}. The fam-
ily of N linearly coupled discrete complex networks, consisting of time delay with
respect to its system state and the switched topology, can be described by

xi(k + 1) = Axi(k) +Bf(xi(k)) +Df(xi(k − τ(k))) + I(k)

+
N∑
j=1

cij,σ(k)Γxj(k − τ(k)), i = 1, 2, ..., N, k ∈ IN (1)

xik0 = φ(θ), θ ∈ ZZ−τ , (2)

where xi(k) = (xi,1, xi,2, ..., xi,n) ∈ Rn represents the state vector of the i–
th node at every instant of time k and n denotes the number of nodes af-
filiated to each sub-networks. A ∈ IRn×n, B ∈ IRn×n and D ∈ IRn×n are
known real matrices. f(xi(k)) = (f1(xi,1(k)),f2(xi,2(k)), ...,fn(xi,n(k)))

T

and f(•) : IRn −→ IRn is a smooth nonlinear vector-valued functions. I(k) =
(Ii(k), I2(k), ..., In(k))

T is a n-dimensional vector from external input. S is a
finite index set of r elements: S = {s1, s2, ..., sr}. Let the switching function be
denoted by σ(k) : IN −→ S, which is the switching signal from sudden changing
of system dynamic without jumps in the state x at any switching instant. Specifi-
cally, we consider that it is a piecewise constant function and continuous from the
right, indicating certain active subsystem regime, at every instant of time k the
index σ(k) = sk ∈ S; meanwhile, let the switching instants of σ be denoted by
km,x(m = 1, 2, ...) and let k0,x := 0 (without chattering). Csk = (cij,sk) ∈ ZZN×N

represents the outer coupling configuration symmetric matrix defined as follows:
for each active subsystem regime sk , if there is a connection from node j to
node i (j �= i), then cij,sk = cji,sk > 0 ; otherwise cij,sk = cji,sk = 0 . Assume
that

cii,sk = −
N∑

j=1,j �=i

cij,sk = −
N∑

j=1,j �=i

cji,sk , i ∈ N, sk ∈ S. (3)
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The notation represents Γ ∈ IRn×n the diagonal inner coupling matrix between
two connected nodes. τ(k) is a time-varying delay with respect to each instant
of time k and satisfies τ(k) ∈ ZZ−τ . φ(•) : ZZ−τ −→ IRn×N is continuous
everywhere except at a finite number of points. The norm of φ(•) is defined
by ‖φ(θ)‖τ = supθ∈ZZ−τ

{‖φ(θ)‖} . We assume that at each active subsystem

regime, the existence and uniqueness of a solution of system (1) for every initial
condition and piecewise/continuous input can be guaranteed. In order to design
an impulsive control scheme to synchronize system (1), we consider the evolu-
tionary state is abruptly jumping at every impulsive instant of time ku from its
open-loop state , which can be formularized by

Δxi(km,u) = Jux
∗
i (km,u), m = 1, 2, ...IN (4)

where x∗i (km,u) stands for the primal state at time instant km,u without impul-
sive jump. As usual, every impulsive instant of time kl,u satisfies 0 = k0,u <
k1,u < k2,u < · · · < km,u < km+1,u < · · · and limm→∞ km,u = ∞;Ju : IRn →
IRn(m = 1, 2, ...) represents the impulsive jump strength. Therefore, at every im-
pulsive instant of time km,u , the coupled states xi(k)−xj(k) between connected
node i and j can be described by

xi(km,u)− xj(km,u) = x∗i (km,u)− x∗j (km,u) + Ju[x
∗
i (km,u)− x∗j (km,u)]. (5)

Intuitively, a family of impulsive controller can be designed as

Ui(k, xi(k)) =

∞∑
u=1

δ(k − km,u)Ju(x
∗
i (km,u)), m = 1, 2, ...IN, (6)

where Ui(k, xi(k)) represents a class of impulsive controller at each instant of
time km,u; δ(•) denotes the Dirac discrete-time function.

Assumption 1. For each nonlinear function fi(•)(i=1,2,...,n),suppose that it
is globally Lipschitz continues function and satisfies

‖fi(x1)− fi(x2)‖ ≤ l̂i‖x1 − x2‖, i = 1, 2, ..., n, for any x1, x2 ∈ IR, (7)

where l̂i is certain positive constant.

Definition 1. The system of the impulsive controlled discrete complex networks
(7) is said to be globally exponentially synchronized, if for any initial condition
φ(•) : ZZ−τ → IRn×N , and there exist two positive constants λ and M0 ≥ 1 such
that

‖xi(k)− xj(k)‖ ≤M0e
−λ(k−k0), 1 ≤ i ≤ j ≤ N (8)

holds for all k > k0.

Lemma 1. Let W = (wij)N×N , P ∈ IRn×n,x = (x1, x2, ..., xN )T and y =
(y1, y2, ..., yN )T with xk,yk ∈ IRn(k=1,2,...,N). If W = W T and each row sum
of W is zero, then

xT (W ⊗ P )y = −
N−1∑
i=1

N∑
j=i+1

wij(xi − xj)
TP (yi − yj). (9)
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3 Main Results

When the impulsive controller can be functioning simultaneously at the state of
discrete complex networks’ switching signal, the equivalent impulsive controlled
system is rewritten by using the matrix Kronecker product

x(k + 1) = (IN ⊗A)x(k) + (IN ⊗B)F (x(k)) + (IN ⊗D)F (x(k − τ))

+ I(k) + (Cσ(k) ⊗ Γ )x(k − τ), k �= km,u (10)

x(km,u) = [IN ⊗ (IN + Ju(km,u))]x(km,u − 1), (11)

for any k,m ∈ IN.

Theorem 2. Under Assumption 1. the impulsive controlled complex net-
work(12) is exponentially synchronized if there exists certain positive integer
mτ , positive scalars εσ(k),pσ(k), qσ(k) and positive-definite matrices Pσ(k) ∈
Rn×n,Ql,σ(k) ∈ Rn×n (l=1,2,...6) such that

(i) Given μ ≥ 1 and Pσ(km,x) ≤ μPσ(km+1,x), for any k ∈ [km,x, km+1,x − 1] in
corresponding sub-state σ(km,x),

pσ(km,x) −
[
λmax(Πσ(km,x))

λmin(P
−1
σ(km,x)

)
+ μqσ(km,x)

λmax(Ωσ(km,x))

λmin(P
−1
σ(km−mτ ,x)

)

]
≥ 0, (12)

where

Πσ(km,x) = ATPσ(km,x)A+ LTBTPσ(km,x)BL+ATQ1,σ(km,x)A

+ LTBTPT
σ(km,x)

Q1,σ(km,x)Pσ(km,x)BL+ATQ−1
2,σ(km,x)

A

−NCσ(km,x)A
TQ−1

3,σ(km,x)
ANCσ(km,x) + LTBTQ4,σ(km,x)BL

− LTNCσ(km,x)B
TQ5,σ(km,x)BNCσ(km,x)L,

Ωσ(km,x) = LTDTPσ(km,x)DL−NC2
σ(km,x)

Γ TPσ(km,x)Γ

+ LTDTPT
σ(km,x)

Q2,σ(km,x)Pσ(km,x)DL

− Γ TPT
σ(km,x)

Q3,σ(km,x)Pσ(km,x)Γ

+ LTDTPT
σ(km,x)

Q4,σ(km,x)Pσ(km,x)DL

− Γ TPT
σ(km,x)

Q5,σ(km,x)Pσ(km,x)Γ

− LTNCσ(km,x)D
TQ−1

6,σ(km,x)
DNCσ(km,x)L

− Γ TPT
σ(km,x)

Q6,σ(km,x)Pσ(km,x)Γ.

(ii) μλ2max(1 + Ju(km,x)) < eεσ(km,x)(km+1,x−km,x).

(iii) qσ(km,x) ≥ eεσ(km,x)(km+1,x−km,x+1)+
∑mτ−1

i=0 εkm−i,x
(km+1−i,x−km−i,x),

where mτ = � τ
inf{km,x−km−1,x}�.
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Proof. Consider the following Lyapunov function:

V (k) = xT (k)(W ⊗ Pσ(k))x(k), (13)

for any k ∈ [km,x, km+1,x − 1], m=1,2,...
where

W =

⎡⎢⎢⎣
N − 1 −1 ... −1
−1 N − 1 ... −1
... ... ... ...
−1 −1 ... N − 1

⎤⎥⎥⎦
.
One observes that for the case k ∈ ZZτ ,

V (θ) = xT (θ)(W ⊗ Pσ(0))x(θ)

=

N−1∑
i=1

N∑
j=i+1

(xi(θ) − xj(θ))
TPσ(0)(xi(θ)− xj(θ))

= ϕ(‖φ(θ)‖2τ ). (14)

Choose M ≥ 1, such that

ϕ(‖φ(θ)‖2τ ) ≤Mϕ(‖φ(θ)‖2τ )e−λ(k1,x−k0,x)e−εσ(k0,x)(k1,x−k0,x)

< qσ(k0,x)ϕ(‖φ(θ)‖2τ ). (15)

By claiming that

V (k) ≤Mϕ(‖φ(θ)‖2τ )e−λ(km,x−k0,x), k ∈ [km−1,x, km,x − 1], m ∈ N. (16)

And by virtue of mathematical induction, the claim (16) is true for each k ∈ IN.
In view of (16) and Definition 1., it can be obtained that

V (k) ≤Mϕ(‖φ(θ)‖2τ )e−λ(k−k0,x), k ∈ [km−1,x, km,x − 1], m ∈ IN. (17)

For any k ∈ IN,

min
{
λmin(Pσ(k))

}N−1∑
i=1

N∑
j=i+1

‖xi(k)− xj(k)‖2

≤
N−1∑
i=1

N∑
j=i+1

(xi(k)− xj(k))
TPσ(k)(xi(k)− xj(k))

≤Mϕ(‖φ(θ)‖2τ )e−λ(k−k0,x). (18)

Therefor, for any k ∈ IN,

N−1∑
i=1

N∑
j=i+1

‖xi(k)− xj(k)‖2 ≤ min
{
λ−1
min(Pσ(k))

}
Mϕ(‖φ(θ)‖2τ )e−λ(k−k0,x), (19)
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which implies

‖xi(k)− xj(k)‖ ≤M0e
−λ(k−k0,x), 1 ≤ i ≤ j ≤ N. (20)

Therefore, the discrete complex networks (1) is globally exponentially synchro-
nized under impulsive control. The proof is thus completed. �

Remark 1. We consider a multiple Lyapunov function for each sub-networks
with arbitrarily fast switching signal in our theorem, which results in a less
conservation criterion.

Remark 2. In the switched Lyapunov function, pσ(k) gives an upper bound on
the estimation of divergence rate for each running sub-networks. By condition (ii)
of Theorem 1., the impulsive control gain is designed to compensate divergence
from system itself and deteriorating effect from arbitrarily fast switching. If some
certain sub-networks could be self-synchronizing, the impulsive control gain only
need to compensate deteriorating effect.

4 Example and Numerical Simulations

This section presents a typical example to illustrate our result. Let us consider
a 2-dimensional discrete chaotic neural networks is given as the isolated node of
a small world network with 30 nodes,

x(k + 1) = Ax(k) +Bf(x(k)) +Df(x(k − τ(k))) + I(k), (21)

where x(k) = (x1(k), x2(k))
T ,f(x(k)) = (tanh(x1(k)), tanh(x2(k)))

T ,I(k) =
(0, 0)(T ),

A =

[
−1 0
0 −1

]
, B =

[
2 −0.11
−5 3.2

]
, D =

[
−1.6 −0.1
−0.18 −2.4

]
,

and τ(k) = ek

1+e(k)
.Obviously, Lipschitz constants can be 1 here.Consider a small-

world model involved with three different subsystem. The trajectory of each
single node of this small-world model has random initial values in the interval
[0.3,3] and [-3,-0.3], respectively. Given a switching signal σ(t) in Fig1.(a), we
have the state response of the switched complex networks, see Fig.1(b). From

Theorem 1, for each sub-network, we have J1 =

[
−0.6667 0

0 −0.667

]
. J2 =[

−0.4079 0
0 −0.4079

]
. J3 =

[
−1.1576 0

0 −1.1576

]
.

It is shown that all of nodes in each sub-networks could not reach into a
synchronous state without a control. Indeed, the switched signal plays a role
of deterioration accelerator to diverge the synchronous state,shown in Fig.1(b).
Once the feasible impulsive controller is placed on discrete complex networks
with topology switching, such complex networks would be synchronized, see
Fig.1(c).



56 C. Li, D.Y. Gao, and C. Liu

0 20 40 60 80 100 120
0

1

2

3

4

5

t

S
w

itc
hi

ng
 S

ig
na

ls

a.

0 20 40 60 80 100 120
−40

−20

0

20

40

t

X
1−

X
30

b.

0 20 40 60 80 100 120
−80

−60

−40

−20

0

20

40

60

t

X
1−

X
30

c.

Fig. 1. (a) The switching signal σ(t); (b)The state responses of the switched system;
(c)The synchronized state under impulsive control

5 Conclusion

In this paper, we have investigated impulsive synchronization control of a discrete
delayed complex networks with switching topology by using Lyapunov Ruzimiki
method. A time-varying delay dependent criteria for exponential synchronization
is presented guarantee the switched discrete complex networks tending to be
a synchronous manifold. It is worthwhile to see time-varying delay can take
any value, even larger than any dwell time of a sub-networks.Futhermore, a
numerical example with 3 sub-networks are presented by using the impulsive
control technique.

Acknowledgements. This research is supported by Australia Government
grant through the Collaborative Research Network(CRN) to the university of
Ballarat.

References

1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Na-
ture 393, 440–442 (1998)

2. Barab, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

3. Strogatz, S.H.: Exploring Complex Networks. Nature 410, 268–276 (2001)
4. VanWiggeren, G.D., Roy, R.: Communication with chaotic lasers. Science 279,

1198–1200 (1998)



Impulsive Synchronization of State Delayed Discrete Complex Networks 57

5. Fischer, I., Liu, Y., Davis, P.: Synchronization of chaotic semiconductor laser dy-
namics on subnanosecond time scales and its potential for chaos communication.
Physical Review A 62, 011801-1–011801-4 (2000)

6. Hoppensteadt, F.C., Izhikevich, E.M.: Pattern recognition via synchronization in
phase-locked loop neural networks. IEEE Transacations on Neural Networks 11,
734–738 (2000)

7. Wang, X.F., Chen, G.R.: Synchronization in scale-free dynamical net-
works:robustness and fragility. IEEE Transacations on Circuits and Systems – I,
Reg. Papers. 49, 54–62 (2002)

8. Wu, C.: Synchronization in networks of nonlinear dynamical systems coupled via
a directed graph. Nonlinearity 18, 1057–1064 (2005)

9. Wang, Z., Wang, Y., Liu, Y.: Global synchronization for discrete-time stochastic
complex networks with randomly occurred nonlinearities and mixed time delays.
IEEE Transacations on Neural Networks 21, 11–25 (2010)

10. Li, X., Wang, X.F., Chen, G.: Pinning a complex network to its equilibrium. IEEE
Transacations on Circuits and Systems – I, Reg. Papers 51, 2074–2087 (2004)

11. Li, C.D., Shen, Y.Y., Feng, G.: Stabilizing effects of impulse in delayed BAM
neural networks. IEEE Transactions on Circuits and Systems–II, Brief papers 53,
1284–1288 (2008)

12. Li, C.J., Li, C.D., Liao, X.F., Huang, T.W.: Impulsive effects on stability of high-
order BAM neural networks with time delays. Neurocomputing 74, 1541–1550
(2011)

13. Li, C.J., Li, C.D., Huang, T.W.: Exponential stability of impulsive high order
Hopfield-type neural networks with delays and reaction–diffusion. International
Journal of Computer Mathematics 88, 3150–3162 (2011)

14. Lu, J., Ho, D.W.C., Wu, L.: Exponential stabilization in switched stochastic dy-
namical networks. Nonlinearity 22, 889–911 (2009)

15. Huang, T., Chen, G., Kurth, J.: Synchronization of chaotic systems with time-
varying coupling delays. Discrete and Continuous Dynamical Systems – Series B 16,
1071–1082 (2011)

16. Huang, T., Li, C., Gao, D., Xiao, M.: Anticipating synchronization through optimal
feedback control. Journal of Global Optimization 52, 281–290 (2012)



Salient Instance Selection

for Multiple-Instance Learning

Liming Yuan�, Songbo Liu, Qingcheng Huang, Jiafeng Liu,
and Xianglong Tang

School of Computer Science and Technology, Harbin Institute of Technology,
Harbin 150001, China
yuanleeming@163.com,

{sbliu,huangqc,jefferyliu,tangxl}@hit.edu.cn

Abstract. Multiple-instance learning (MIL) is a variant of traditional
supervised learning, where training examples are bags of instances. In
this learning framework, only the labels of bags are known while the
labels of instances in bags are unknown. This ambiguity in labels of in-
stances leads to significant challenges in MIL. In this paper, we propose
an efficient instance selection method to solve this problem, called Salient
Instance Selection for Multiple-Instance Learning (MILSIS). MILSIS has
two roles: first, selecting discriminative instances and eliminating redun-
dant or irrelevant instances from each bag; second, selecting an instance
prototype from each positive bag to construct an embedding space in
order to convert the MIL problem to the standard single instance learn-
ing problem. Accordingly, based on the first role, we present two novel
MIL methods, called MILSIS-kNN-C and MILSIS-kNN-B; based on the
second role, we present another new MIL method, called MILSIS-SVM.
Experimental results on some synthetic and benchmark data-sets demon-
strate the effectiveness of our methods as compared to others.

Keywords: Multiple-instance Learning, Salience, Instance Selection, K-
nearest Neighbor Classification, Support Vector Machines.

1 Introduction

Multiple-instance learning (MIL) was first introduced by Dietterich et al. when
they were investigating the problem of drug activity prediction [1]. In this learn-
ing framework, each training example is a bag composed of one or more instances.
A bag is positive if it contains at least one positive instance; otherwise, negative.
The labels of training bags are known while the labels of instances in those bags
are unknown. Since then, MIL has gained significant attention in the machine
learning and computer vision communities [2–6].

Many MIL methods have been proposed during the past decade. To name a
few, APR [1], DD [7], Multi Instance Neural Networks (MI-NN) [8], Citation-
kNN and Bayesian-kNN [9], EM-DD [10], MI-SVM and mi-SVM [11]. Recently,
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several instance selection-based methods have been proposed, namely DD-SVM
[12], MILES [13], MILD [14] and MILIS [15], which tackle the MIL problem by
converting MIL into single instance learning (SIL). The basic idea is mapping
each bag into a new feature space constituted by some instance prototypes (IP)
selected from training bags, and then learning a SVM classifier in this new
feature space named the embedding space. It should be noted here that the
main difference between these methods is how to select IPs, and a good instance
selection method may lead to a good performance.

In this paper, we propose a new instance selection method to tackle the
MIL problem, named Salient Instance Selection for Multiple-Instance Learning
(MILSIS). The novelty lies in considering the salience of every instance in each
positive bag, which will be detailed in Section 2. Then we present three MIL
methods based on MILSIS in Section 3, named MILSIS-kNN-C, MILSIS-kNN-B
and MILSIS-SVM. In Section 4, we evaluate and discuss our methods on some
synthetic and benchmark data-sets. In Section 5, we conclude and give some
future research directions.

2 Salient Instance Selection for MIL

2.1 Notations

Let B+
i denote a positive bag and B−

i denote a negative bag. Accordingly,
B+

ij denotes an instance in B+
i and B−

ij denotes an instance in B−
i . Let B =

{B+
1 , B

+
2 , . . . , B

+
n+ , B

−
1 , B

−
2 , . . . , B

−
n−} denote a training set comprised of n+ pos-

itive bags and n− negative bags. For the sake of simplicity, we will denote a bag
as Bi with Bij(s) when the label of it does not matter. Without ambiguity, Bij

also represents the feature vector of it depending on the context. l(Bi) and l(Bij)
are the labels associated with Bi and Bij , respectively. Note that l(Bij) is not
directly observable.

2.2 MILSIS

From the definition of MIL, we know that the ambiguity in labels arises from
positive bags, since there may be not only positive instances but also negative
instances in a positive bag, whereas all instances in each negative bag are labeled
as negative. Our MILSIS method is aiming at identifying true positive instances
in positive bags.

Assumption 1. In general, any two positive or negative instances are close to
each other while any positive and negative instance are far from each other.

Definition 1. ∀Bij ∈ Bi, the salience of Bij is defined as follows:

Sal(Bij) =
∑

Bik∈Bi\{Bij}
d(Bij , Bik) , (1)

where d(·, ·) is a distance function between two instances, which takes the form
of Euclidean distance here.
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Remark 1. Definition 1 indicates that an instance would be further from all other
instances in the same bag if its salience is higher; otherwise, it would be closer
to them.

Theorem 1. Assume that Bij ∈ B+
i is the only one positive or negative in-

stance. Then
∀Bik ∈ B+

i \ {Bij}, Sal(Bij) > Sal(Bik) . (2)

Proof. By Definition 1, the salience of Bij and Bik is

Sal(Bij) =
∑

Bit∈B+
i \{Bij}

d(Bij , Bit) = d(Bij , Bik)+
∑

Bit∈B+
i \{Bij ,Bik}

d(Bij , Bit) ,

(3)

Sal(Bik) =
∑

Bit∈B+
i \{Bik}

d(Bik, Bit) = d(Bik, Bij)+
∑

Bit∈B+
i \{Bik,Bij}

d(Bik, Bit) .

(4)
Hence:

Sal(Bij)− Sal(Bik) =
∑

Bit∈B+
i \{Bij ,Bik}

[d(Bij , Bit)− d(Bik, Bit)] , (5)

where d(Bij , Bit) is the distance between a positive and negative instance, while
d(Bik, Bit) is the distance between two negative or positive instances. Therefore,
we would have Sal(Bij) > Sal(Bik) by Assumption 1. ��
Remark 2. We now consider the general case of Theorem 1, i.e. there are multiple
positive and negative instances in a positive bag. Let m+ and m− denote the
numbers of positive and negative instances, respectively. Then the salience of any
positive instance largely depends on m− distances between the positive instance
and other negative instances by Definition 1 and Assumption 1 while the salience
of any negative instance largely depends on m+ distances between the negative
instance and other positive instances. Assuming that the distance between any
positive and negative instance fluctuates near a fixed value, then the above
salience is largely dependent on m− and m+. Thus, the salience of any positive
instance would be greater than that of any negative instance if m− is greater
than m+; otherwise, the former would be less than the latter. Strictly speaking,
the above assumption does not always hold since there may exist outliers and
noise in the data-set. However, it might hold within the small scope of a single
bag and could be largely satisfied according to the better experimental results in
Section 4, at least on data-sets used in this paper. We give the formal definition
of the above description in Generalization 1.

Generalization 1. Assume that {B+
i1, B

+
i2, . . . , B

+
im+} ⊂ B+

i is the subset of

positive instances and {B−
i1, B

−
i2, . . . , B

−
im−} ⊂ B+

i is the subset of negative in-
stances. Then, ∀j ∈ {1, 2, . . . ,m+}, k ∈ {1, 2, . . . ,m−},

Sal(B+
ij)

{
> Sal(B−

ik) if m+ < m− ,

< Sal(B−
ik) if m+ > m− .

(6)
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If we can estimate which of m+ and m− is greater given a positive bag, we could
depend on Generalization 1 to select true positive instances from the positive
bag. When m+ < m−, the salience of any positive instance is greater than
that of any negative instance by Generalization 1. Note that negative instances
dominate the positive bag in this case. Thus, the higher its salience, the further
a candidate positive instance from all other negative instances by Definition 1
and Assumption 1, which means it is more likely to be positive. In this case,
we can select instances with high salience as true positive ones. Similarly, when
m+ > m−, we can select instances with low salience as true positive ones. The
following Theorem 2 offers one possible solution to the above problem.

Definition 2. Let B− = {Brt|Brt ∈ B−
r , r = 1, 2, . . . , n−} be the given set of

negative instances. The probability that an instance Bij is positive given B− is:

Pr(l(Bij) = 1|B−) = 1− exp(−D(Bij ,B−)/σ2) , (7)

where σ is a scaling factor larger than 0, and

D(Bij ,B−) = min
Brt∈B−

d(Bij , Brt) . (8)

Remark 3. FromDefinition 2, we can easily deduce that 0 ≤ Pr(l(Bij) = 1|B−) ≤
1, Pr(l(Bij) = 1|B−) = 0 when D(Bij ,B−) = 0 and Pr(l(Bij) = 1|B−) = 1 when
D(Bij ,B−) = +∞. This is well consistent with our intuition. If an instance is
far from a set of negative instances, they would have a low similarity and hence
the instance is likely to be labeled as positive; otherwise, the instance is likely
to be labeled as negative.

Theorem 2. ∀B+
i , B̃

+
i is its corresponding re-sorted bag in descending order of

the salience of instances. Let m+ and m− be the numbers of positive and negative
instances in B̃+

i , respectively, and m = m+ +m−. Assume that B− is the given
set of negative instances, then

m+

{
< m− if Pr(l(B̃i1) = 1|B−) > Pr(l(B̃im) = 1|B−) ,

> m− if Pr(l(B̃i1) = 1|B−) < Pr(l(B̃im) = 1|B−) .
(9)

Proof. Premise 1: Pr(l(B̃i1) = 1|B−) > Pr(l(B̃im) = 1|B−). Assume m+ > m−,
then we would have by Generalization 1:

Sal(B̃+
ij) < Sal(B̃−

ik) ∀j ∈ {1, 2, . . . ,m+}, k ∈ {1, 2, . . . ,m−} . (10)

And Sal(B̃i1) > Sal(B̃im), thus B̃i1 is a negative instance and B̃im is a positive
instance. Now by Assumption 1, D(B̃i1,B−) < D(B̃im,B−). Then we will have,
by (7):

Pr(l(B̃i1) = 1|B−) < Pr(l(B̃im) = 1|B−) . (11)

This would contradict Premise 1, and thus cannot happen. So m+ < m−.
Premise 2: Pr(l(B̃i1) = 1|B−) < Pr(l(B̃im) = 1|B−). Similarly, one can prove
that m+ > m− in Premise 2. ��
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Algorithm 1. MILSIS

Input: Training set B, the number of salient instances per bag SalNum
Output: the set of IPs T
1: B− = {Brt|Brt ∈ B−

r , r = 1, 2, . . . , n−}
2: optPosInst = RoughSelection(B,B−)
3: T = FineSelection(B,B−, optPosInst,SalNum)

Procedure 1. RoughSelection

Input: Training set B, the set of negative instances B−

Output: the optimal positive instance optPosInst
1: maxDist = 0
2: for i = 1 to n+ do
3: Compute Sal(B+

ij) for each instance in B+
i by Definition 1

4: Re-sort all instances in B+
i in descending order of salience

5: Compute D(B+
i1,B−) and D(B+

im,B−) by (8) // m is the number of instances
6: if D(B+

i1,B−) > D(B+
im,B−) and D(B+

i1,B−) > maxDist then
7: maxDist = D(B+

i1,B−) and optPosInst = B+
i1

8: else if D(B+
im,B−) > D(B+

i1,B−) and D(B+
im,B−) > maxDist then

9: maxDist = D(B+
im,B−) and optPosInst = B+

im

10: return optPostInst

Procedure 2. FineSelection
Input: Training set B, the set of negative instances B−, the optimal positive instance

optPosInst, the number of salient instances per bag SalNum
Output: the set of IPs T
1: optNegInst = argmaxt∈B− d(t, optPosInst)
2: for i = 1 to n+ do
3: if d(B+

i1, optNegInst) > d(B+
im, optNegInst) then

4: Add B+
i1, . . . , B

+
iSalNum to T

5: else
6: Add B+

i(m−SalNum+1), . . . , B
+
im to T

7: return T

Since Pr(l(Bij) = 1|B−) is proportional to D(Bij ,B−) in (7), we only need to

compute D(B̃i1,B−) and D(B̃im,B−) for the comparison in (9).
Based on the above foundations, we can now present our MILSIS method.

MILSIS is composed of two procedures, named “Rough Selection” and “Fine
Selection”. In “Rough Selection”, we consider instances in all negative bags
as B− in Theorem 2 and select one true positive instance from each positive
bag according to Generalization 1, then choose an optimal positive instance
out of them which is furthest from B−. In “Fine Selection”, we first select an
optimal negative instance from B−, which is furthest from the optimal
positive instance. Then we regard it as B− and select true positive instances
again. Algorithm 1 summarizes the whole process.
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MILSIS has two major advantages: first, unlike the instance selection method
in DD-SVM [12], MILSIS relies on the optimal negative instance to select IPs,
so it is more robust to labeling noise; second, the computational cost of MILSIS
is from two aspects, i.e. inside each positive bag and between each positive
bag and the set of all negative instances. Generally, the number of instances in
any bag is much less than that of all negative instances, so the computational
cost mainly depends on the latter. Assuming the number of all positive bags
is n+, the number of instances in all positive bags is v+ and the number of
instances in all negative bags is v−, then the computational cost of MILSIS
is approximately O(2n+v−) + O(2n+)(≈ O(n+v−)) according to Algorithm 1.
As for the instance selection methods in DD-SVM [12], MILES [13], MILD [14]
and MILIS [15], the computational costs are O((v+ + v−)(v+ + v−)), O((v+ +
v−)(v++v−)), O(v+(v++v−)) and O(v+v−), respectively. In general, n+ is less
than v+ unless the number of instances per positive bag equals to 1, which is
virtually impossible since MIL has become SIL in this case. Therefore, MILSIS
has the lowest computational cost among all these instance selection methods.

3 Multiple-Instance Learning Methods Based on MILSIS

3.1 MILSIS-kNN-C and MILSIS-kNN-B

In “Fine Selection” of Algorithm 1, we use the selected IPs from each positive
bag to substitute the original bag. As for the negative bags, we deal with them
in the same way. There are two reasons for dealing with the negative bags like
this: first, the selected instances are still negative ones; second, since we have to
use the same scheme to handle testing bags, the instances far from the optimal
negative instance will be selected from every negative testing bag. If we select
instances near to the optimal negative instance from negative training bags, the
substitute for each negative testing bag is obviously likely to be wrongly classified
since the substitutes for negative training bags are far from it; otherwise, the
probability that it is correctly classified will be high. After the above procedure
is finished, we use the substitute bags to learn Citation-kNN or Bayesian-kNN
[9]. Note that when the number of instances in a bag is less than that of IPs per
bag (SalNum, refer to Algorithm 1), we select all instances from this bag and
hence different substitute bags may have different numbers of instances.

3.2 MILSIS-SVM

We first employ MILSIS to select an IP from each positive bag and use all the
selected IPs to construct the corresponding embedding space. Next, we map
each bag to a point in this embedding space with the feature mapping function
defined in (12). Finally, we use these new feature vectors to learn a standard
SVM classifier with the RBF kernel.

Definition 3. The feature mapping function of MILSIS-SVM is defined as

f(·) = [D(·, t1), . . . , D(·, ti), . . . , D(·, tn+)] , (12)

where ti ∈ T , i = 1, 2, . . . , n+, T is the set of IPs and n+ is the size of T .
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Fig. 1. Robustness of MILSIS and MILD to labeling noise

4 Experiments and Discussion

4.1 MILSIS on Synthetic Data-Sets

We use the synthetic data-sets generated out of the MNIST database1 of hand-
written digits to evaluate the performance of MILSIS. Since the digits 0 and 6
are similar in appearance, they are considered as the positive and negative in-
stances, respectively. We randomly generate 100 positive bags and 100 negative
bags, each containing 5 instances. Every positive bag contains only one positive
instance. To evaluate the robustness of MILSIS to labeling noise, we randomly
generate d% of positive bags to substitute d% of random negative bags, then de-
liberately mislabel these positive bags as negative to create noise in labels. This
process is performed ten times for a single noise level d% and the average selec-
tion accuracies of MILSIS and MILD [14] on different noise levels of data-sets are
shown in Fig. 1. Here MILD is chosen for comparison since the instance selec-
tion method in it also tries to uncover the properties of true positive instances in
each positive bag as our MILSIS method does. Obviously, MILSIS is superior to
MILD with respect to performance and robustness. Moreover, the computation
time of MILSIS is only 0.8 second on a a 3GHz PC with 8GB memory while
that of MILD is 7.7 seconds, thus MILSIS is more efficient than MILD.

4.2 MILSIS-Based MIL Methods on Benchmark Data-Sets

In the second experiment, we use five standard MIL benchmark data-sets, i.e.
Musk1, Musk2, Elephant, Fox and Tiger2, to evaluate our MILSIS-based meth-
ods. MILSIS-kNN-C and MILSIS-kNN-B have three parameters, i.e. SalNum
(for details, refer to Algorithm 1), RefNum and CiterRank [9], where

1 The MNIST database is available at http://yann.lecun.com/exdb/mnist/
2 These data-sets are available at
http://www.uco.es/grupos/kdis/mil/fs/#experiments/

http://yann.lecun.com/exdb/mnist/
http://www.uco.es/grupos/kdis/mil/fs/#experiments/
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CiterRank equals to 0 for MILSIS-kNN-B. MILSIS-SVM has two parameters,
i.e. the penalty parameter C and the kernel parameter γ, where LIBSVM [16]
is applied to train all SVMs with the RBF kernel. In our experiments, SalNum
is restricted in {1, 2, . . . , avgInstNum}, where avgInstNum represents the av-
erage number of instances per bag. RefNum is chosen from {1, 2, . . . , 10} and
CiterRank is set to RefNum+ 2 based on the suggestion in [9]. Both C and
γ are chosen from {2−10, 2−9, . . . , 29, 210}. Those giving the maximum 2-fold
cross-validation accuracy on each training set are chosen and fixed in the sub-
sequent experiments. Note that SalNum in MILSIS-kNN-B is not the optimal
one but empirically set to that in MILSIS-kNN-C and CiterRank predefined as
RefNum+ 2 may not be the best choice.

Then we randomly run 10 times of 10-fold cross-validation on each data-set
and report the average classification accuracies and corresponding 95% confi-
dence intervals in Table 1 where the best performance is highlighted in boldface.
We also list some other results which are taken from [3, 14, 17]. We can see that
MILSIS-kNN-C and MILSIS-kNN-B outperform Citation-kNN and Bayesian-
kNN, respectively. MILSIS-SVM is competitive with the state-of-the-art MIL
methods and better than them with respect to the average performance. The
better performance is due to our MILSIS method, and this also validates that
MILSIS could give a possible solution to the problem presented in [9], i.e. “how
to remove those false positive instances from the positive bags”.

Table 1 also shows that MILSIS-kNN-B is highly comparable to MILSIS-kNN-
C, which indicates MILSIS could keep the effectiveness of kNN without resorting
to Citation [9]. This is beneficial to the learning process since not Reference but
Citation leads to most of the time consumption in Citation-kNN. Meanwhile, the
computational complexity brought by MILSIS is very low according to Section
2.2 and Section 4.1. Therefore, we could use MILSIS to substitute Citation in
the MIL setting. The computation time of 2-fold cross-validation on each data-
set is given in Table 2. We can find that MILSIS-kNN-B is the most efficient
one among all these methods. In addition, MILSIS-kNN-C and MILSIS-kNN-B
are more efficient than Citation-kNN and Bayesian-kNN, respectively, which is
mainly due to our MILSIS method. More importantly, the classification response
is significantly speeded up with the help of MILSIS. Overall, MILSIS-kNN-B is
the best one among all these kNN-based methods in terms of both classification
accuracy and computation time.

For those instance selection-based methods in Table 1, the computation time
is the sum of that spent on model selection and classifier learning. For all these
methods, the computation time spent on classifier learning is close except MILIS
[15] that employs a time-consuming iterative optimisation framework, while that
spent on model selection mainly depends on the corresponding instance selection
methods. Thus, according to the theoretical and empirical analysis in Section
2.2 and Section 4.1, we can conclude that MILSIS-SVM is the most efficient one
among all these instance selection-based methods in Table 2.
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Table 1. Classification accuracies (%) of various MIL methods on benchmark data-sets

Method Musk1 Musk2 Elephant Fox Tiger Avg.

MILSIS-kNN-C 90.9[±4.0] 84.4[±2.9] 84.5[±2.5] 63.5[±3.6] 80.3[±2.2] 80.7
MILSIS-kNN-B 92.0[±1.5] 84.4[±3.6] 81.7[±2.6] 64.5[±2.7] 78.5[±2.1] 80.2
Citation-kNN [9] 88.8[±4.7] 82.6[±4.0] 80.7[±2.5] 58.1[±2.8] 79.5[±3.1] 77.9
Bayesian-kNN [9] 87.8[±4.4] 80.6[±3.3] 73.3[±3.5] 59.5[±3.7] 77.7[±2.1] 75.8

MILSIS-SVM 90.1[±2.9] 85.6[±2.6] 81.8[±1.8] 66.4[±3.5] 80.8[±3.2] 80.9
MI-SVM [11] 77.9 84.3 81.4 57.8 84.0 77.1
mi-SVM [11] 87.4 83.6 82.2 58.2 78.4 78.0
DD-SVM [12] 85.8 91.3 83.5 56.6 77.2 79.0
MILES [13] 86.3 87.7 84.1 63.0 80.7 80.4
MILD B [14] 88.3 86.8 82.9 55.0 75.8 77.8
MILIS [15] 88.6 91.1 N/A N/A N/A N/A

Table 2. Computation time (in seconds) of various kNN-based MIL methods on bench-
mark data-sets (time spent on instance selection + time spent on classification.)

Data-set MILSIS-kNN-C MILSIS-kNN-B Citation-kNN Bayesian-kNN

Musk1 0.17 + 0.57 0.17 + 0.36 0 + 0.99 0 + 0.64
Musk2 16.64 + 5.52 16.61 + 3.68 0 + 162.81 0 + 80.95
Elephant 0.62 + 5.35 0.63 + 3.47 0 + 8.65 0 + 5.59
Fox 0.63 + 3.18 0.63 + 2.02 0 + 7.54 0 + 4.90
Tiger 0.60 + 4.19 0.60 + 2.59 0 + 6.53 0 + 4.26

5 Conclusions and Future Work

The intrinsic property making MIL difficult to tackle is that instance labels
in positive bags are unknown, which is the essential difference between MIL
and SIL. In this paper, we try to address this issue with an explicit instance
selection method. Our method tries to uncover the characteristics of true positive
instances in positive bags. This may be more valuable than simply making an
accurate prediction since it can help us to understand the connections between
instances and bags or the source of ambiguity in instance labels. Based on our
instance selection method, we propose three novel MIL methods. Theoretical
analysis and experimental results demonstrate that all our methods are more
effective and efficient than the state-of-the-art.

We are considering several possible directions for our future work. First, more
experiments would be done to validate our methods, especially large-scale data-
sets. Next, it is interesting to explore the scheme for noise removal since there
exists labeling noise in most real applications. Finally, we are trying to extend
our instance selection method to the multi-instance multi-label learning context.



Salient Instance Selection for MIL 67

Acknowledgments. This research has been supported by the National Natural
Science Foundation of China under the Grant Nos. 61173087 and 61073128.

References

1. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the Multiple Instance
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Abstract. When manufacturer motivates retailer groups to increase
sales efforts with a linear transfer payment contract, we assume that
retailers concern about fairness and the channel structure which retailer
access to information corresponds to the small-world network, and built
a multi-agent model to mainly observe the impact of small-world net-
work characteristics on the incentive effects. Experimental results show
that the greater probability of replacement objects, the lower manufac-
turer’s profit and products sales. The retailer gets very small amount
of other retailers related information will have a huge negative impact
on incentive effects, if the number of objects in comparison achieves a
certain number, the manufacturers profit and products sales will not be
affected to a large extent.

Keywords: Sales Efforts, Linear Transfer Payment Contract, Fairness
Preference, Small-world Network, Multi-agent Simulation.

1 Introduction

In most situations, retailer sales efforts are important in influencing demand [1].
Since the agents efforts are more difficult it is to monitor generally, the agents
effort level is not a contractible variable. [2] designed a linear transfer payment
contract to coordinate the supply chain and achieve a Win-Win outcome. The
supply chain structure previously described in the literature is one-to-one, in the
real world, incentive to subjects of manufacturer are retailer groups, people are
not self-interested, rational agents, however, recent developments in behavioral
economics suggest that actors may care about fairness in addition to economic
benefits [3,4]. In supply chain, the members have sense of fairness when care
about others welfare, some literature assumes that the income information is
completely known for all members [5,6]. But in reality, retailers are unlikely
to obtained the revenue and cost information of all other retailers in the same
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industry. So we assume that the channel structure which agents access to rele-
vant information corresponds to the small-world network structure. Small-world
properties are found in many real-world phenomena, such as retail networks.

When manufacturer need to stimulate retailer groups increasing sales efforts
with a linear transfer payment contract, and retailers concern about fairness in
the distribution, and the channel structure which retailer access to revenue and
cost information corresponds to the small-world network structure, how will the
properties of small-world network impact the incentive effects? The objective of
this paper is to clarify the impact mechanisms, and help manufacturer improve
the incentive effect for the practice management, allocate retail networks and
take advantage of the communication channels between retailers reasonably, so
as to improve its own profit performance. This paper construct an agent-based
simulation model to mainly observe the impact of small-world network charac-
teristics on the incentive effect when the agents with inequity aversion, as sup-
ply chain systems involving many heterogeneous agents who have autonomous
decision-making capacity. The remainder of this paper is structured as follows.
Section 2 we illustrate our design for agents attributes and decision-making. Sec-
tion 3 describes agents interactive in system and operation process of system.
Section 4 presents our experiment scenarios and initial parameters setting in
simulation. Section 5 analyzes the results of the simulation studies. Section 6
summarizes the insights gained from this study.

2 Multi-agent Design

2.1 Consumer Agent

We consider a model which involved one manufacturer, M retailers and N con-
sumers. Consumers make different purchasing decisions according to threshold
utility, uicdenotes threshold utility of consumer i, if sales efforts of retailer i ex-
ceeds uic, consumer i will make a purchase. Otherwise, consumer i will not make
a purchase in this period. In reality, consumer i can not compare all retailers
when make purchasing decisions. So we assume that consumers search and com-
pare retailers within a range (aic), consumers i will compare some number of
retailers within its search range. Some consumers tried out a product or ob-
tained information about it at one retail store but ended up buying the product
at another store. This pattern of consumer behavior gives rise to the well-known
free riding phenomenon that occurs in a multi-channel supply chain [7]. So this
model assumes that have a certain proportion (pc) of all consumers who have a
purchase motivation or decision that buy product from the retailer who has the
best sales efforts, and have (1− pc) proportion consumers make a purchase from
the retailer who be selected at random from their search range (aic). After all
consumers make decisions on whether to purchase or not, retailers will achieve
their actual product sales accordingly.
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2.2 Manufacturer Agent

The manufacturer signed linear transfer payment contract with its all retailers.
Before selling season, the manufacturer offers a sales target to retailer, if the
final sales quantity is above the target, the manufacturer gives the retailer a
rebate; otherwise, the retailer gives a payment to the manufacturer as penalty.
The transfer payments (T (sir)) between manufacturer and retailer as follows:

T (sir) = χ(sir − sTr ) . (1)

We use sir as actual sales of retailer i and sTr as sales target which determined
by manufacturer. Let χ be the transfer payments coefficient, denote that the
size of the transfer payments for each additional unit of sales when the retailer’s
sales more than (or less than) the sales target. Manufacturer sells products to
retailer i through channel i, so the profit (πi

m) manufacturer gets from channel
i as follows:

πi
m = (wm − cm)sir − T (sir) . (2)

Let wm be the manufacturer’s wholesale price, cm be the manufacturer’s produc-
tion cost, πm be the manufacturer’s total income which is the sum of profit from
all channels, that is πm =

∑M
i=1 π

i
m . The manufacturer’s sales target in every

period is proportional (η)to the total sales of all retailers, namely sTr =
η
∑M

i=1 sir
M .

2.3 Retailer Agent

Let p be the retail price of all retailers, as a result of competition. Let cir be
the marginal cost per unit of product of retailer i, we use eir as the sales efforts
of retailer i, to summarize the retailer’s activities in promoting sales and let

gir(e
i
r) be the retailer i’s cost of exerting a efforts level eir , gir(e

i
r) =

ki
r(e

i
r)

2

2 ,
kir are positive constants, denote the relationship between sales efforts and sales
cost. There are differences in the marginal cost and promotional cost between
retailers, namely cir , kir all difference between retailers, in order to describe
inherent ability discrepancies between retailers. Let πi

r be the actual profit of
retailer i as follows:

πi
r = (p− wm − cir)s

i
r −

kir(e
i
r)

2

2
+ T (sir) . (3)

In real life, retailers can not obtain the related information of all competitors in the
same industry, this paper assumes that the channels structure for retailers access-
ing to information conforms to small-world network structure. Small-world net-
works, characterized by relatively numerous short-range interconnections along
with a few long-range contacts, it is complex networks research results in recent
years andwidely exist in the real network.A small-world network can be generated
by regular networks with q nodes, these nodes are connected in a ring, and each
node is symmetrically connected with its k nearest neighbors, so have k edges, and
assumes that q ≥ k ≥ lnq ≥ 1 in general. Each edge keeps an endpoint unchanged;
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rewire the other endpoint to a different node with pr probability, so we can make
networks from completely regular network (pr=0) to completely random network
(pr=1) transformation by adjusting pr value. A small-world network with q nodes
generated as described above has a total of q × k links, which is in the order of k
[8].

Each retailer can obtain related information of others which keep connected in
network. This paper adopts FS inequity aversion model [9] which is used widely
to describe retailer i’s fairness utility, let f i

r denote it. In FS model, the fairness
utility function considers only the gap between agents’ revenue, our model do not
focus on the revenue gap, but consider the revenue to cost ratio of agents, and
the fairness utility function considers the gap between agent’s ratio. So retailer i

will compare own revenue to cost ratio (
πi
r

cir(T ) ) to other retailers’ average revenue

to cost ratios (
∑

j �=i[π
j
r/c

j
r(T )]

k ) who have connections in network, and get fairness
utility (f i

r) as follows:

f i
r =

πi
r

cir(T ) − αi
r

[
max(

∑M
j �=i π

j
r/c

j
r(T )

k − πi
r

cir(T ) , 0)

]
−βi

r

[
max(

πi
r

cir(T ) −
∑M

j �=i π
j
r/c

j
r(T )

k , 0)

] (4)

In formula (4), πi
r(π

j
r) denotes the actual profit of retaileri(j), cir(T ) denotes

the total cost of retailer i, where αi
r (βi

r)measures the retailer i’s disutility of
revenue to cost ratio less than (more than) its competitors. According to the
economic experimental results, past research has shown that “subjects suffer
more from inequity that is to their monetary disadvantage than from inequity
that is to their monetary advantage” [10], we further assume αi

r > βi
r and 1 >

βi
r ≥ 0 , especially, when αi

r = βi
r , means the agent has pure self-interested

preferences. Retailer i will adjust the sales efforts according to its fairness utility,
the adjustment rules are shown as formula (5).

eir(t) =

{
eir(t− 1)

[
1 + cou(f

i
r(t)− f i

r(t− 1))
]

if f i
r(t) ≥ f i

r(t− 1)

eir(t− 1)
[
1− cou(f

i
r(t− 1)− f i

r(t))
]

if f i
r(t) < f i

r(t− 1)
(5)

eir(t) denotes sales efforts of retailer i in t period, and f i
r(t) denotes fairness

utility of retailer i in t period, cou denotes adjustment coefficient, for describing
the impact of fairness utility on the sales efforts.

3 Process of Operation and Decision-Making

In the first period of experiment, retailers have an initial value of sales efforts,
therefore consumers first decide whether to buy and finish their purchasing be-
havior, so it generated total sales of all retailers and actual sales of each retailer.
The manufacturer is responsible for contract parameters, the manufacturer de-
cides the sales target (sTr ) for next season’s sales according to the actual total
sales of the products. Retailers can calculate their actual profit according to
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own actual sales volumes, the manufacturer’s wholesale price (ws) and reward
and punishment (χ). Then retailers can calculate their fairness utility by using
fairness evaluation function and fairness aversion model, and adjust sales efforts
accordingly. When retailers complete making decision regarding sales efforts pre-
pared for the next sales season, consumers make their purchasing decisions again,
and the interaction process is the same as described above. After the end of each
sales season, the channels which accessing to information reconnection between
retailers, they will be determined by the operating rules of small world network.

4 Experiment Scenarios and Initial Parameters Setting

Initialization settings of the basic parameters in experiment are shown in
Table 1. We designed two experiment scenarios: First, research on the impact of
rewiring probability (pr) on the incentive effects, we keep the number of nodes
(k=10)connected to each retailer constant,pr increases in steps of 0.1 from 0
to 1 in each experiment, for each pr, Experiments are scheduled to run during
4000 periods, and statistical analysis of experimental data. Second, research on
the impact of the number of nodes (k) connected to each retailer on the incen-
tive effects, we keep rewiring probability (pr=0.4) constant, set the number of
connection nodes (k) in turn to take 2, 10, 20,30,40,50,60,70,80,90 respectively,
Experiments are scheduled to run during 4000 periods also for each k value. All
the other parameters keep unchanged during two experiments. In order to obtain
the necessary experimental data, the program will be repeated fifteen times for
average.

Table 1. Initializations of the experimental parameters

Parameters Scale Parameters Scale Parameters Scale

M 100 N 10000 χ 2
ui
c R[1,100] aic 3 pc 0.6

wm 8 cm 1 η 0.8
p 20 cir R[1,3] eir R[50,100]
kir R[0.001,0.01] air R[0.5,1] βi

r R[0,0.5]
k 10 pr 0.4 cou 0.5

5 Experimental Results and Analysis

5.1 The Impact of Random Rewiring Probability on Incentive
Effects

The manufacturer’s profit and products sales under different rewiring probabil-
ities (pr) are shown in Fig.1. As rewiring probability between retailers in the
small world network increasing, the manufacturer’s profit (Fig.1(a)) as well as
products sales (Fig.1(d)) showed a downward trend. As rewiring probability
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increases, it means that the probability of retailer’s replacement objects in com-
parison after the end of each sales period increasing, so replace the objects in
comparison frequently will have a negative effect on products sales and profit of
manufacturer.

Fig. 1. The manufacturer’s profit and sales under different rewiring probabilities

When the transfer payments were completed between agents, retailer groups
were divided into two groups which were rewarded (E) and punished (P). Fig.1(b)
and 1(c) are shown that the manufacturer obtains the profit derived from re-
warded and punished retailers respectively, Fig.1(e) and 1(f) are shown that the
average products sales of two groups of retailers above respectively. It can be
seen from the figures, when pr =0, network is completely regular, retailers’ aver-
age sales efforts are the highest level, it means that the retailers’ average fairness
utility are maximal. However, with pr increasing, while the network change from
completely regular network toward to completely random network, the retailers’
average fairness utility decline gradually, they feel more and more unfair due
to replace the objects in comparison frequently. Thus, when the manufacturer
motivate retailer groups increasing the sales efforts using linear transfer payment
contract, the retailers have unfairness aversion preferences, should limit the chan-
nels for retailers accessing to competitors’ revenue and cost information within a
certain range, can not replace the objects in comparison frequently. Manufacture
should try his best to keep channels structure for retailers accessing to informa-
tion conforms to completely regular network, it means that retailers could know
their neighbors’ revenue and cost information, and not to know other retailers’
related information expect their neighbors.

5.2 The Impact of Number of Connected Nodes on Incentive
Effects

Fig.2 shows the manufacturer’s profit and products sales under different number
of connected nodes (k). When each retailer can get two other retailers’ revenue
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and cost information (k=2), the manufacturer’s profit and products sales are
very low. Compared to the condition of k=2, manufacturer’s profit and sales
increase significantly when k=10. Manufacturer’s profit has been a slowly rising
trend when k ≤40. Experimental results showed that if retailers have unfairness
aversion preference and their channels structure for accessing to information
conforms to small-world network characteristics, manufacturer need to keep the
number of connected nodes maintain the principle of proportionality to have
better incentive effects. The retailer gets very small amount of other retailers’
related information will have a huge negative impact on his fairness utility, so
cause sales efforts reduction further. However, if the number of objects in com-
parison of retailers achieves a certain number, the manufacturer’s profit and
products sales will not be affected to a large extent.

Fig. 2. The manufacturer’s profit and sales under different number of connected nodes

Therefore, manufacturer should keep the information transfers between retail-
ers maintain the principle of proportionality during the incentive process, while
the motivated objects have unfairness aversion.When the number of objects in
comparison reaches a certain level, many indicators in our experiments remain
within a certain level. So the manufacturer need to measures to keep the number
of objects in comparison is not too small.

6 Conclusions

When retailer sales efforts are important in influencing demand, manufacturer
needs to stimulate retailer groups increasing sales efforts with a linear transfer
payment contract, this paper assumes that retailers concern about fairness in
the distribution and the channel structure which retailer access to revenue and
cost information corresponds to the small-world network structure. We construct
an agent-based simulation model to mainly observe the impact of small-world
network characteristics on the incentive effect when the agents with inequity
aversion. This paper designed two experiment scenarios research on the impact
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of the probability of replacement objects and the number of objects in compar-
ison on incentive effects. Experimental results show that the greater probability
of replacement objects, the lower manufacturer’s profit and products sales, the
manufacturer should not replace the objects in comparison frequently. The re-
tailer gets very small amount of other retailers’ related information will have a
huge negative impact on incentive effects, if the number of objects in comparison
of retailers achieves a certain number, the manufacturer’s profit and products
sales will not be affected to a large extent.
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Abstract. An interactive genetic algorithm with evaluating individuals
using variational granularity was presented in this study to effectively
alleviate user fatigue. In this algorithm, multiple language sets with dif-
ferent evaluation granularities are provided. The diversity of a population
described with the entropy of its gene meaning units is utilized to first
choose parts of appropriate language sets to participate in evaluating the
population. A specific language set for evaluating an individual is further
selected from these sets according to the distance between the individual
and the current preferred one. The proposed algorithm was applied to a
curtain evolutionary design system and compared with previous typical
ones. The empirical results demonstrate the strengths of the proposed
algorithm in both alleviating user fatigue and improving the efficiency
in search.

Keywords: Genetic Algorithm, Interaction, User Fatigue, Granularity,
Entropy.

1 Introduction

Interactive genetic algorithms (IGAs), proposed in the mid 1980s, are effective
methods suitable for handling optimization problems with qualitative indices,
however, the user may fail to perform the evolutionary process to reach a satis-
factory solution due to fatigue. So developing appropriate methods to effectively
alleviate user fatigue is of great significance for IGAs.

Some studies have been motivated to alleviate user fatigue of IGAs, and they
can roughly be classified into three categories. The first is to construct surrogate
models to approximate the user’s evaluations and employ them in the subsequent
evolutions to estimate the fitness of all or a part of individuals instead of the
user[1,2]. The second is to reduce the number of human-computer interactions
by accelerating the process of searching for satisfactory solutions with improved
genetic operators[3]. And the last is to design friendly interfaces or adopt more
natural evaluation styles to directly reduce the evaluation burden of the user[4,5].

In view of the user’s fuzzy cognition to individuals, we utilized a fuzzy number
to express an individual’s fitness[5]. However, the distinguishable degree of the
evaluations for subtle individuals’ differences, is same. Intuitively, a language set
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with a smaller number of linguistic values has a rougher or larger granularity and
vice versa. In fact, in IGAs, adopting language sets with variational granularity
to evaluate a population with different distributions and individuals in diverse
areas is necessary, which can well balance the burden and the accuracy of the
user’s evaluations.

To this end, an IGA with variational granularity of individuals’ evaluations
(IGA-VGIE) was presented. Multiple language sets with different evaluation
granularities are used to evaluate individuals; several language sets suitable for
evaluating the current population are first selected in terms of its diversity, and
then a specific set for evaluating an individual in the population is determined
according to its distance to the current preferred one. The advantage of this
algorithm is that when the population has good diversity, language sets with a
rough granularity will be preferably employed to evaluate it in order to alleviate
the user’s evaluation burden. In contrast, when the diversity of the population
is bad and its individuals are similar to the current preferred one, language
sets with a fine granularity will be utilized so that a small difference among
these individuals can well be distinguished and accurate evaluations are easily
obtained. Consequently, the evaluation burden and accuracy are well balanced.

The main contributions of this work are: 1) proposing a method of quantita-
tively describing the diversity of a population with the entropy of gene meaning
units, and hence getting an interval to which the diversity belongs; 2) presenting
an approach to quantitatively describing the discerning capability of a language
set based on the number of linguistic values belonging to it, and further ob-
taining the membership function that describes the evaluation applicability of a
language set; 3) giving a strategy of determining the evaluation granularity for
an individual based on the diversity and its distance to the current preferred
one.

2 Proposed Algorithm

The following optimization problem was considered:

max f(x)
s.t. x ∈ S ⊆ Rn.

(1)

where f(x) is a performance index to be optimized, x is an n-dimensional variable
belonging to domain S. In this work, an IGA is used to solve the above problem,
the corresponding individual and the search space are also denoted as x and S,
respectively.

2.1 Diversity of Population

In our study, the entropy of each gene meaning units was defined to depict the
diversity of a population[6]. Without loss of generality, decision variables encoded
with binary bits were considered here. Denote a population, with the population
size of N , in the t-th generation as x(t), the i-th gene meaning unit as Ui(t),
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the allelic gene meaning unit of Ui(t) for the j-th individual as U j
i (t) and the

number of individuals with the same value of U j
i (t) as α

j
i (t). Then α

j
i (t) can be

calculated with the following formula:

αj
i (t) =

N∑
q=1

n(U j
i (t), U

q
i (t)), (2)

where

n(U j
i (t), U

q
i (t)) =

{
1 U j

i (t) = U q
i (t),

0 U j
i (t) �= U q

i (t).
(3)

The entropy of Ui(t), designated as H(Ui(t)), can be expressed as follows:

H(Ui(t)) = − 1

N

N∑
j=1

log2
αj
i (t)

N
. (4)

Evidently, from equations (2) and (4), we can conclude thatH(Ui(t)) ∈ [0, log2N ].
NormalizeH(Ui(t)) and denote it asH ′(Ui(t)), which can be defined as follows:

H ′(Ui(t)) =
H(Ui(t))

log2N
(5)

An interval was adopted to reflect the diversity in this work.Denote the total num-
ber of genemeaning units in an individual asnU and the diversity ofx(t) asD(x(t)),
which can be reflected with an interval determined by min

i∈{1,2,···,nU}
H ′(Ui(t)) and

max
i∈{1,2,···,nU}

H ′(Ui(t)) as:

D(x(t)) ∈ [ min
i∈{1,2,···,nU}

H ′(Ui(t)), max
i∈{1,2,···,nU}

H ′(Ui(t))]. (6)

2.2 Selection of Language Sets

Discrimination of Language Set. The discrimination of a language set on
evaluations was first defined with entropy. Obviously, the more the linguistic
values included in a language set, the stronger the discrimination it has on
evaluating individuals.

Denote the number of language sets as nF , the i-th language set as Si( i =

1, 2, · · · , nF ) with linguistic values of s1i , s
2
i , · · · , s

|Si|
i . Assume that the sizes of

these sets satisfy |S1| ≤ |S2| ≤ · · · ≤ |SnF |. If a language set is treated as
an information source, the linguistic values contained in the language set can
be regarded as the messages of this information source. For Si, the selection
frequency of any linguistic value is 1

|Si| , consequently, the entropy of this language
set can be calculated as follows:

H(Si) = −
|Si|∑
k=1

p(ski ) log2 p(s
k
i ) = log2 |Si| . (7)
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It can easily be observed from equation (7) that SnF has the strongest discrim-
ination. If the discrimination of SnF was denoted as one, the discrimination of
fuzzy language set Si, denoted as I(Si), can be described as follows:

I(Si) =
H(Si)

H(SP )
. (8)

Language Sets for Population Evaluation. To get the required language
sets, the adaptability of a language set in evaluating a population was first
presented. Evidently, it is a fuzzy concept and can thus be expressed with a
membership function. Denote the adaptability of language set Si in evaluating
x(t) as FSi(x(t)) which has a close relationship with D(x(t)), as analyzed before,
i.e., FSi(x(t)) can be formulated as a function of D(x(t)). So it is nature to take
FSi(x(t)) as a membership function defined in the range of [0, 1].

For convenience to illustrate, here four language sets were used, i.e., nF = 4
and |S1| = 3,|S2| = 5,|S3| = 7, |S4| = 9. Because of I(S1) = 0.5, I(S2) = 0.732,
I(S3) = 0.886 and I(S4) = 1, S4 has the finest granularity among the four
sets, and is only required to evaluate a population when the diversity of the
population is very low. Accordingly, its adaptability reaches the maximum in
the anaphase. Since S1 only has a half discrimination of S4, the adaptability of
S1 will be high for a diverse population, especially for the population in the initial
generation. As for S2 and S3, since their discriminations lie in between S1 and
S4, their adaptabilities can be the maximal when the diversity of the population
reaches at a certain level and decreases along with the decrease (or increase) of
the diversity of the population at the two sides of that level. Motivated by these
analyses, FSi(x(t))(i = 1, 2, 3, 4) are illustrated in Figure 1.

Fig. 1. Adaptability of language sets

To choose appropriate language sets to evaluate the current population, the
adaptabilities of each language set to both limits of [ min

i∈{1,2,···,nU}
H ′(Ui(t)),
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max
i∈{1,2,···,nU}

H ′(Ui(t))] to which the diversity of the population belongs are cal-

culated. Language sets with the maximal adaptability to both limits are first
selected; further, other sets whose granularities fall in between those of the two
selected sets are also picked up.

Language Set for Individual Evaluation. Having selected language sets for
evaluating a population, the method of choosing a specific set to evaluate an
individual in the population was presented in this subsection. All individuals in
the current population are first classified into several clusters with the nearest
neighbor-based method, and the number of clusters is equal to that of language
sets used to evaluate the population. Then, according to the distance between
the center of a cluster and the preferred individual, a specific language set for
evaluating all individuals in this cluster can be collected.

For the current population x(t), denote the number of fuzzy language sets
selected for evaluating it as nF , namely, S1, S2, · · ·, SnF . The current x(t) is first
classified into nF clusters. To this end, denote the most preferred individual in
x(t) as xB(t), and the distance between the j-th individual in x(t) and xB(t−1)
as dj(t), then the center individual of the i-th cluster, designated as xCi (t), can
be expressed as follows.

xCi (t) = arg

⌊
max

j=1,2,...,N
dj(t)− i−1

nF−1 · ( max
j=1,2,...,N

dj(t)− min
j=1,2,...,N

dj(t))

⌋
.

( i = 1, 2, · · · , nF )
(9)

The language set with the finest granularity is picked up from language sets
for evaluating x(t) to evaluate the cluster closest to xB(t − 1), i.e., the cluster
with the largest i. The granularity of the language set for evaluating individuals
increases along with the decrease of i, consequently, the language set used to
evaluate individuals in the 1-st cluster has the maximal granularity among all
sets for evaluating x(t).

3 Application in Evolutionary Curtain Design System

An evolutionary curtain design system was developed based on the framework
of our algorithm. In addition, some other algorithms, including IGA-VGIE,
TIGA(i.e., an individual’s fitness is expressed by an exact value,), IGA-SLE3
(i.e., the IGA-SLE|S| whose |S| = 3) and IGA-SLE9 (i.e., the IGA-SLE|S| whose
|S| = 9) were compared with the proposed one according to their applications
in the system to fully demonstrate the advantages of our algorithm in both
alleviating user fatigue and improving the search ability.

3.1 Backgrounds and Encoding

The evaluation of a user to a curtain depends mainly on its appearance, charac-
terized with the corresponding pattern and color. Obviously, it is hard to find a
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uniform and explicit objective to evaluate a design, suggesting that traditional
GAs cannot solve this problem, whereas IGAs can.

In our evolutionary curtain design system, the binary encoding scheme was
adopted for all comparative algorithms to represent the genotype of an individ-
ual. Since a curtain is made up of three independent parts, each part is treated as
a gene meaning unit and can be expressed with a six-bit binary string, the total
length of the genotype of a curtain is 18. Specifically, the first six-bit represents
the style of top, the 6th to 11th bits expresses the drapery and the last six-bit
expresses the crossover leno. With the aforementioned encoding, there are total
218 = 262144 curtains to be explored by an IGA in this system.

3.2 Parameter Settings

The population size of all algorithms was set as 100, but the user only evaluated
eight individuals in each generation, the other ones were automatically estimated
by the system. For IGA-VGIE, according to the clustering results, li individuals
were selected from cluster {xCi (t)} to be evaluated by user, satisfying l1

|{xC
1 (t)}| =

l2
|{xC

2 (t)}| = · · · = lnF

|{xC
nF

(t)}| and
nF∑
i=1

li = 8. The fitness of the rest individuals

were estimated based on the evaluated ones. According to the transformation
form presented in [7] for comparing linguistic values with different granularities,
the estimate of the fitness contained two parts, i.e., a linguistic value s and its
deviation α. For the other three comparative algorithms, individuals with the
same value of di(t) are classified into the same cluster, and li individuals are
randomly selected from cluster {xCi (t)} to be evaluated by the user.

The same genetic operators and parameters were adopted in all algorithms,
specifically, tournament selection with size of 2, one-point crossover and one-
point mutation. The probabilities of crossover and mutation, pc and pm, were
0.6 and 0.05, respectively, and the maximal number of generations was 20, i.e.,
Tmax = 20. The algorithm would automatically be stopped after the population
had evolved for Tmax generations or manually be stopped if the user had got the
most satisfactory curtain. Four language sets with different numbers of linguistic
values were used in our algorithm, i.e., |S1| = 3,|S2| = 5,|S3| = 7, |S4| = 9.

3.3 Results and Analysis

To compare the performances of different algorithms, the evolutionary curtain
design system was independently run 20 times for each algorithm, and the num-
ber of individuals searched by the system, the number of generations and the
time consumed by the user were recorded. Besides their averages and variances
(as listed in Table 1), t-test results were also provided to determine whether
there are significant differences on these indices between the proposed algorithm
and the comparative one. Suppose that the null hypothesis for the number of
individuals searched by the system are H0 : μ1 > μ2 and H1 : μ1 ≤ μ2, and for
the number of generations and the time consumed by the user are H0 : μ1 ≤ μ2
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Table 1. Number of individuals searched by system, number of generations and time
consumed by user

number of individuals number of time consumed
searched by system generations by user(s)

average variance average variance average variance

IGA-VGIE 89.78 20.61 13.20 2.06 204.30 536.01
TIGA 86.35 16.33 16.15 1.53 525.35 534.93

IGA-SLE3 76.95 21.75 16.55 2.05 342.95 1203.45
IGA-SLE9 84.45 18.95 15.50 1.45 381.15 805.23

Table 2. Results of t-test

number of individuals number of time consumed
searched by system generations by user(s)

TIGA VS.
2.46 6.79 42.18

IGA-VGIE
IGA-SLE3 VS.

8.59 7.20 14.49
IGA-VGIE

IGA-SLE9 VS.
3.69 5.35 21.05

IGA-VGIE

and H1 : μ1 > μ2, where μ1 is the average of the comparative algorithm and
μ2 that of the proposed algorithm. The significance level was set as 0.05, so the
rejection region of the null hypothesis is t > t1−α(m+n−2) = 1.684. The results
of the t-tests were given in Table 2.

As can be observed from data in Table 1,

(1) For the number of individuals searched by the system, the proposed al-
gorithm obtains the most, 89.78, followed by TIGA with 86.35, IGA-SLE9 with
84.45 and IGA-SLE3 with 76.95. The t-test results listed in the first column of
Table 2 demonstrate that the number of individuals searched by the system using
IGA-VGIE is significantly larger than those using the other three algorithms.

(2) For the number of generations, the proposed algorithm requires the least,
13.20, whereas IGA-SLE3 has the most, 16.55, and IGA-SLE9 needs slightly
smaller than TIGA. The t-test results listed in the second column of Table 2
show that there are significant differences between the proposed algorithm and
the comparative ones, suggesting that our algorithm outperforms the other three
in the number of generations.

(3) The time consumed by the user employing the proposed algorithm is
204.30”, the least among all algorithms, TIGA is the largest, 525.35”, and IGA-
SLE9 is slightly larger than IGA-SLE3. The time spent by the user using the
proposed algorithm is significantly smaller than those spent by the other three,
which can easily be obtained based on data in the third column of Table 2.

To sum up, the proposed algorithm finds the most individuals with the small-
est generations and the shortest time consumed by the user in evaluations,
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suggesting that the proposed algorithm is remarkably improved in the search
ability and alleviating user fatigue.

4 Conclusions

A novel IGA adopting language sets with variational granularity to evaluate
individuals was investigated in this study. According to the diversity of the pop-
ulation and the distance between the unevaluated individual and the preferred
one of the user to pick up a specific language set for evaluating an individual,
the proposed algorithm remarkably benefits to well balance the burden and the
accuracy of evaluations.

While the triangle membership function was designed to describe the adapt-
ability of a language set, other types of functions, e.g., bell or trapezoid, can
potentially be adopted, which will produce different results in selecting language
sets to evaluate a population. Furthermore, if other ways are used to divide the
population, an individual’s fitness may also change. These issues will further be
investigated in the future.
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Abstract. In this paper we propose a new flexible group tensor analysis
model called the linked CP tensor decomposition (LCPTD). The LCPTD
method can decompose given multiple tensors into common factor matri-
ces, individual factor matrices, and core tensors, simultaneously. We ap-
plied the Hierarchical Alternating Least Squares (HALS) algorithm to the
LCPTD model; besides we impose additional constraints to obtain sparse
and nonnegative factors. Furthermore, we conducted some experiments of
this model to demonstrate its advantages over existing models.

Keywords: Tensor decompositions of multi-block data, PARAFAC/CP
model, Group Analysis, Hierarchical Alternating Least Squares (HALS).

1 Introduction

The group (multi-block) tensor decomposition is a very important technique in
neuroscience, image analysis, and some multi-modal data processing [3,6,11,7].
The group analysis seeks to identify some factors that are common in two or
more blocks in a group [3]. The simultaneous tensor decomposition (STD) is
known as one of the methods to extract common factor matrices from a group of
subjects. The STD model can be applied into tensor based principal component
analysis (PCA) and feature extraction for EEG classification [12].

In this paper, we consider a more flexible decomposition model called the
linked tensor decomposition (LTD). The LTD method extracts not only their
common factor matrices but also their individual (statistically independent) fac-
tor matrices at the same time. The LTD model can be characterized as a gen-
eralized model of the STD. In fact, it is an intermediate model between the
STD model and the individual tensor decomposition model (i.e. standard tensor
decomposition of individual blocks).

In order to implement the LTD model, we applied the Hierarchical Alternating
Least Squares (HALS) algorithm with the CP (Canonical Polyadic) constraint
and two options of sparsity and non-negativity constraints. We call this method
the “Linked CP Tensor Decomposition” (LCPTD). Although the CP model is
generally unique we will impose some constraints to obtain more meaningful
components.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 84–91, 2012.
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The rest of this paper is organized as follows. In Section 2, the existing mod-
els of tensor analysis are briefly explored. In Section 3, we introduce a novel
linked tensor decomposition and its algorithm. In Section 4, we demonstrate ex-
periments using our new method and present the results of these experiments.
Finally, we give our conclusions in Section 5.

2 Tensor Decompositions

2.1 Single Tensor Decomposition Based on CP Model

The Canonical Polyadic (CP) model which is also called PARAFAC [8] or CAN-
DECOMP [2] has been well used in positron emission tomography (PET), spec-
troscopy, chemometrics and environmental science [6,1]. The CP model can be
expressed as

Z ≈ Ẑ : = [[G;U (1),U (2), . . . ,U (N)]] =

J∑
j=1

gju
(1)
j ◦ u(2)

j ◦ · · · ◦ u(N)
j , (1)

where Z ∈ RI1×···×IN is an N -order tensor and model, U (n) = [u
(n)
1 , . . . ,u

(n)
J ]

∈ RIn×J is an n-mode factor matrix with components u
(n)
j , G = Λ ∈ RJ×···×J

is a diagonal core tensor with entries gj on the main diagonal. The goal of CP
decomposition is to estimate factor matrices by minimizing a Frobenius norm of
residual tensor E := Z − Ẑ. The criterion is given by:

minimize ||E||2F =
∣∣∣∣∣∣Z −ΣJ

j=1gju
(1)
j ◦ · · · ◦ u(N)

j

∣∣∣∣∣∣2
F
, s.t. ||u(n)

j || = 1, (2)

for n = 1, . . . , N and j = 1, . . . , J .
When we treat a real-world data, sparsity and non-negativity of factor matrices

mayplay a key role to extractmeaningful components.There aremanymethods for
feature extraction and blind source separation using sparsity and non-negativity
constraints such as sparse principal component analysis [9] and nonnegative ma-

trix factorization [10,6]. A sparsity constraints are given by ||u(n)
j ||1 < v, where

|| · ||1 is l1-norm, and v is a threshold parameter. When it is added into (2), then
the criterion provides sparse factor matrices. Next the non-negativity constraint is

given by u
(n)
ji ≥ 0, gj ≥ 0 ∀j, i, n. In the same way, when the constraints is added

into (2), then the criterion realizes nonnegative tensor factorization (NTF).

2.2 Simultaneous Tensor Decomposition

In this section, we introduce the simultaneousCP tensor decomposition (SCPTD).
This is very important to explain the proposed method; since the STD is closely
related to our new LCPTD.We discuss multiple tensor decompositions from here;
besides we assume that there are S tensors of the same dimensions and we obtain
S decompositions.We can consider S as the number of blocks (e.g. each block data
represents one subject).
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One of the objective of group tensor analysis is to decompose individual ten-
sors one by one based on the CP model which is principally unique. We describe
this model as the individual CP tensor decomposition (ICPTD). However, in
such case the factor matrices are not directly linked.

On the other hand, it is meaningful to extract some common factors for each
block which link block by some common factors. The formulation of the SCPTD

is given by Z(s) ≈ Ẑ
(s)

:= [[G(s);U (1), . . . ,U (N)]] =
∑J

j=1 g
(s)
j u

(1)
j ◦ · · · ◦ u(N)

j .

The key-point here is that the basis components (u
(n)
j of U (n)) are the same for

all blocks. Only the core tensors G(s) are different for individual blocks which
represent features [12].

3 Linked CP Tensor Decomposition

In this section, we propose a new model of simultaneous decomposition called
the “Linked CP tensor decomposition”(LCPTD) as

Z(s) ≈ Ẑ
(s)

= [[G(s);U (1,s), . . . ,U (N,s)]] =

J∑
j=1

g
(s)
j u

(1,s)
j ◦ . . . ◦ u(N,s)

j , (3)

where each factor matrix U (n,s) = [U
(n)
C ,U

(n,s)
I ] ∈ RIn×J is composed of two set

of bases:U
(n)
C ∈ RIn×Ln (with 0 ≤ Ln ≤ J), which is a common factor matrix for

all blocks and corresponds to the same or maximally correlated components and

U
(n,s)
I ∈ RIn×J−Ln , which corresponds to different individual characteristics.
The LCPTD can be considered as a generalized model of simultaneous de-

composition. When we put Ln = J , its decomposition is equivalent to the simul-
taneous common factor decomposition [12]. On the other hand, when Ln = 0,
its decomposition of each subject is equivalent to the standard tensor decompo-
sition. Then the LTD is an intermediate decomposition between simultaneous
and normal tensor decomposition.

3.1 LCPTD-HALS Algorithm

In this section, we introduce a new HALS algorithm for LCPTD. Optimization
criterion for LCPTD is given by

minimize

S∑
s=1

∣∣∣∣∣∣Z(s) −
J∑

j=1

g
(s)
j u

(1,s)
j ◦ . . . ◦ u(N,s)

j

∣∣∣∣∣∣2
F
, (4)

subject to u
(n,1)
j = · · · = u(n,S)

j for j ≤ Ln, ||u(n,s)
j || = 1, (5)

for all n, s, and j. Furthermore, we add ||u(n,s)
j ||1 < v or u

(n,s)
ji ≥ 0, g

(s)
j ≥

0 ∀i, j, n, s into (5) if we want to get sparse or nonnegative components.
The Hierarchical ALS (HALS) algorithm was first proposed for the Non-

negative Matrix Factorization and Nonnegative Tensor Factorization (NTF) in
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[5]. The HALS algorithm were applied to the CP model and it achieved good
performances in [4]. In this algorithm, we consider J local-problems and solve
them sequentially and iteratively instead of solving (4) and (5), directly. Let

Y
(s)
j := Z(s) −

∑
i�=j g

(s)
i u

(1,s)
i ◦ . . . ◦ u(N,s)

i , the j-th local problem is given by

minimize
S∑

s=1

||Y (s)
j − g

(s)
j u

(1,s)
j ◦ . . . ◦ u(N,s)

j ||2F , (6)

subject to u
(n,1)
j = · · · = u(n,S)

j if j ≤ Ln, ||u(n,s)
j || = 1, (7)

for all n and s. The LTD-HALS algorithm can be summarized as Algorithm 1;
note it does not require matrix inversion and is solved by only simple calculation.

Algorithm 1. LTD-HALS algorithm

Input: {Z(s)}Ss=1, J , and {Ln}Nn=1

Initialize: {g(s), {U (n,s)}Nn=1}Ss=1.

E(s) = Z(s) −ΣJ
j=1g

(s)
j u

(1,s)
j ◦ · · · ◦ u(N,s)

j for all s;
repeat

for j = 1, . . . , J do
Y

(s)
j = E(s) + g

(s)
j u

(1,s)
j ◦ · · · ◦ u(N,s)

j for all s;
for n = 1, . . . , N do

Updating u
(n,s)
j :

u
(n,s)
j ← g

(s)
j Y

(s)
j ×1 u

(1,s)
j · · · ×n−1 u

(n−1,s)
j

×n+1 u
(n+1,s)
j · · · ×N u

(N,s)
j for all s; (8)

if j ≤ Ln, t←∑S
s=1 u

(n,s)
j ; u

(n,s)
j ← t for all s; end if

Normalize u
(n,s)
j ← u

(n,s)
j /||u(n,s)

j || for all s;
end for
Update g

(s)
j :

g
(s)
j ← Y

(s)
j ×1 u

(1,s)
j · · · ×N u

(N,s)
j for all s; (9)

E(s) = Y
(s)
j − g

(s)
j u

(1,s)
j ◦ · · · ◦ u(N,s)

j for all s;
end for

until
∑S

s=1 ||E(s)||2F converge

Output: {g(s), {U (n,s)}Nn=1}Ss=1

If we want to obtain sparse components, we implement the following updates
after (8):

u
(n,s)
j ← sign(u

(n,s)
j )� [abs(u

(n,s)
j )− ξn1]+ for all s; (10)

where ξn is a positive parameter deciding on their sparsity.
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(a) Generating model (b) Result of Ln = 2

(c) Result of Ln = 1 (d) Result of Ln = 0

Fig. 1. Linked Multi-block Tensor Factorization

If we want to obtain nonnegative components, we implement the following
updates after (8) and (9):

u
(n,s)
j ← [u

(n,s)
j ]+ for all s, (11)

g
(s)
j ← [g

(s)
j ]+ for all s. (12)

4 Experiments

4.1 Toy Problem for Linked Multi-block Tensor Factorization

In this part, we applied the LCPTD to a toy problem (benchmark) for linked
multi-block tensor factorization. We generated two block data tensors consisting
of a one common basis factor and two individual basis factors with noise (see
Fig. 1(a)). And we decompose them by our LCPTD model with nonnegative
constraints for various number of common bases Ln ∈ {2, 1, 0} for n = 1, 2. Fig.
1(b,c,d) depict the results of this experiment. It is obvious that the result of
Ln = 2 couldn’t represent the original data tensors since the degree of freedom
of model is not sufficient. On the other hand, the result of Ln = 0 could represent
the original data tensors, but each basis is not matched, completely. The result
of Ln = 1 could represent not only the original data tensors, but also each basis;
besides, the additive noise were reduced.

We can see that the LCPTDmodel can be very useful assuming that some com-
ponents are common in generatingmodel.The blind source separation can separate
into two original sources from two observed signals. It is very interesting that the
LCPTD can achieve separation of three bases (i.e., a common and two individual
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PSNR 15 dB 17.2 dB 21.4 dB 21.3 dB 21.2 dB 20.6 dB

Fig. 2. Face images corrupted by additive noise and the reconstructed images (PSNR=
15 dB, J = 40): 1st column: original images, 2nd column: noisy images, 3rd column:
ICPTD model, 4th column: LCPTD (Ln = 35), 5th column: LCPTD with sparse con-
straint (Ln = 35), 6th column: LCPTD with nonnegative constraint (Ln = 35), 7th
column: SCPTD model.
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Fig. 3. PSNRs for various noisy data sets
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bases) fromonly twoobserved tensors.We shouldnote that the selectionofLncould
be very important deciding factor to obtain proper decomposition for the LCPTD
method from this experiment.

4.2 Images (Faces) Reconstruction and Denoising

In this part, the LCPTD was applied to face reconstruction problems and the
performances were compared with other models. The Yale face database consists
of 165 gray-scale images of 15 individuals. There are 11 images per subject with
different facial expressions or configurations. In this experiments, we used 15 full-
face images; we took a one image from each subject. Size of images are 215×171
pixels, then we considered that I1 = 215, I2 = 171, and S = 15. Furthermore,
we prepared salt-and-pepper noised data sets: SNR ∈ {5, 10, 20} [dB].

We applied our new LCPTD model, a sparse LCPTD, and a nonnegative
LCPTD with various numbers of common components for the noise free and
noised data sets; the number of bases was fixed as J = 40, and number of
common components was changed in Ln ∈ {0, 5, 10, . . . , 40}. We computed
the PSNR between the original faces and the reconstructed faces.

Fig. 2 depicts the results of face reconstruction. We can see that the ICPTD
model couldn’t reduce the noise well, and the SCPTD model was robust with
respect to noise but reconstructed faces were too fuzzy (distorted). However, the
LCPTD based methods gave the appropriate and intermediate decompositions
for both models.

Fig. 3 depicts the graphs of PSNR for various number of common components.
We can see that if the noise level becomes larger, the maximum points of PSNR
move to right. In noise free data set Fig. 3(a), the maximum PSNR was obtained
at Ln = 0 for all methods; so the ICPTD model is the best for them in this case.
On the other hand, the maximum PSNRs were obtained by the LCPTD based
methods in Fig. 3(b,c,d,e). It is also interesting that the nonnegative LCPTD
kept high PSNR for smaller number of common components in comparison with
the other methods in high noise level (see Fig. 3(d,e,f)). It can be considered
that the nonnegative constraint is useful for this problem.

In general, because real data includes often some noise factors, the proposed
method could be very useful and practical for the real tensor data analysis. The
higher noise level requires large number of common components, but multitude
of common components often only hampers the fitting. However, we have to
select the best parameter of Ln and the open problem is how to select it. We
may be able to select Ln depending on PSNR if it is known as prior information.

5 Conclusion

We have presented a method of linked CP tensor decomposition (LCPTD) in-
cluding sparse and nonnegative factorization by using the HALS algorithm.
LCPTD can be considered as a generalized model of simultaneous CP tensor
decomposition with common factors, and it provides some improvement over
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existing methods by selecting optimal parameters of Ln and ξn. The parameter
selection can be considered as a key issue of flexible model. The Bayesian method
or cross validation method may be able to determine such parameters. Its detail
and application are reserved for our future works.
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Abstract. Premature convergence to local optimal solutions is one of
the main difficulties when using evolutionary algorithms in real-world
optimization problems. To prevent premature convergence and degener-
ation phenomenon, this paper proposes a new optimization computation
approach, human-simulated immune evolutionary algorithm (HSIEA).
Considering that the premature convergence problem is due to the lack
of diversity in the population, the HSIEA employs the clonal selection
principle of artificial immune system theory to preserve the diversity of
solutions for the search process. Mathematical descriptions and proce-
dures of the HSIEA are given, and four new evolutionary operators are
formulated which are clone, variation, recombination, and selection. Two
benchmark optimization functions are investigated to demonstrate the
effectiveness of the proposed HSIEA.

Keywords: Human-simulated intelligence, Artificial immune systems,
Evolutionary algorithm, Clonal selection, Evolutionary operators.

1 Introduction

Evolutionary algorithms (EAs) are one of the important approaches in stochastic
search techniques with the essential characteristics of parallelism, adaptiveness
and randomicity. However, there are still challenging difficulties when applying
EAs to large-scale and complex real-world optimization problems. One of such
difficulties is premature convergence, which occurs when the population reaches
a suboptimal state on which most of the operations are no longer functional to
produce improved offspring [1,2].

Much effort has been made to improve the performance of EAs. Cen [3] and
Yang et al. [4] have proposed a hybrid scheme, in which simulated annealing is
employed to help an adaptive genetic algorithm escape from local optima and
thus prevent premature convergence. Meanwhile, the tabu search algorithm was
introduced to increase convergence speed. Herrera et al. [1] presented gradual
distributed real-coded genetic algorithms that apply a different crossover op-
erator to each subpopulation to deal with the premature problem. Using the
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concept of information theory, Yeh and Jang [5] and Bhattacharya [6] devel-
oped information-guided evolutionary operators to avoid premature convergence.
Other developments in this area include references [7] and [8].

Among the developments of various EAs, the Mind Evolutionary Algorithm
(MEA) [9,10] was proposed through introducing human-simulated machine learn-
ing. It simulates the process of human thinking and learning in certain social
environments [11]. In spite of these advances, some shortcomings are also ex-
posed in the applications of the MEA. Because MEA’s operators amend the
individuals of the population randomly, the degeneration phenomenon becomes
inevitable. In particular, when solving a complex real-world problem, the prob-
lem’s characteristics, which can help resolve the degeneration and improve the
convergence speed, are ignored by the MEA.

Artificial immune system technologies are new developments following artifi-
cial neural networks and EAs. There have been many successful artificial immune
system applications, especially in the optimization area [12,13]. The clonal se-
lection principle is a basic and important model in an artificial immune system.
Xie et al. [14] incorporated this model into the MEA to deal with the premature
convergence problem. However, detailed understanding of the clone selection
principle with applications in complex real-world optimization problems are yet
to be developed. This motivates the research of this work.

This paper proposes a new optimization computation approach: human-
simulated immune evolutionary algorithm (HSIEA). Similar to the MEA, the
HSIEA simulates the evolution process of human society and makes use of the
co-evolution and information-guided mechanism. However, the HSIEA is funda-
mentally different from the MEA in algorithm architecture and operators. It will
be shown that the HSIEA solves the premature and degeneration problems and
outperforms the MEA in computational efficiency.

The paper is organized as follows. Section 2 formalizes the fundamentals of
the HSIEA. The flowchart of the HSIEA is developed in section 3. Then, two
benchmark functions are investigated to ascertain the good performance of the
HSIEA in section 4. Finally, section 5 concludes the paper.

2 Fundamentals of the HSIEA

Investigations into the human intelligence development have revealed that two
important and universal modes exist: similar-taxis and dissimilation. The similar-
taxis refers to human being’s capability of adopting existing technique validated
by others to handle various problems; while the dissimilation describes human
being’s prowess in developing innovative approach from existing ones to deal with
unknown fields of the world. These two different modes interact to each other
to drive the progress of human intelligence development. During this progress,
society division and cooperation are also developed with the understanding that
no one will survive and succeed without such an collaborative society environ-
ment and the aims of every person’s study are definite at the same time. From
this understanding, a human-simulated evolutionary computation model can be
developed with its mechanism being illustrated in Fig. 1.



94 G. Xie et al.

Fig. 1. The Mechanism of the
human-simulated evolutionary
algorithm

As a multi-group-based evolutionary algo-
rithm, the HSIEA applies the similar-taxis
searching scheme to achieve the local op-
timal competition. Two types of similar-taxis
searching processes have been embedded into
the HSIEA: individual similar-taxis and group
similar-taxis.

In individual similar-taxis searching, an indi-
vidual becomes the winner in a group through
local competition, and the winner’s information
is recorded in the local memos. This process is
executed repeatedly, producing a local optimal
solution for each group.

In group similar-taxis searching, all groups exchange information for replen-
ishing knowledge that cannot be achieved by any group itself. Also, the global
memos will determine the parameter spaces and the number of iterations for
every group in the next iteration. Group similar-taxis will be executed when
individual similar-taxis meets the terminal condition.

Dissimilation searching is a searching process in which the global solution is
selected from the local optimal solutions produced in the similar-taxis searching.
Along with the operation of the similar-taxis, some individuals produce several
temporary groups in course of searching the whole solution space. If the scores
of any temporary group are higher than those of any mature superior group, the
temporary group would replace the superior group and become a new superior
group. Thus, dissimilation searching is a global competition process.

Mathematically, the HSIEA is formulated as

HSIEA = {Φ,X,M,N,K, f(X), D(Xi, Xj),

O((TC , PC), (TV , PV ), (TR, PR), (TS , PS)), E}, (1)

where Φ is the antigen, i.e., the optimized function for the numerical optimiza-
tion problem; X represents the solution space of the optimized function and
mathematically is the whole of the antibodies set {Abi(t)}, Abi(t) indicates the
tth time individual; M ∈ I is the number of initial antibodies (candidates of
solutions); N ∈ I is the number of groups with the highest affinity between
the antigen and antibody; K is the number of antibodies in each groups; f(X)
denotes the affinity between the antigen and antibody; D(Xi, Xj) is the affinity
between antibodies Xi and Xj ; O is the operators of the HSIEA; and E is the
terminal criterion; respectively. The four operators of the HSIEA are denoted
by (TC , PC) for clone operator, (TV , PV ) for variation operator, (TR, PR) for
recombination operator, and (TS , PS) for selection operator, respectively.

Definition 1. Antigen-antibody affinity denoted by f(X) is defined as a cal-
culating result after an antibody is substituted into the antigen Φ. It describes
the matching degree of the optimal solution to the object function.
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Definition 2. Antibody-antibody affinity D(Xi, Xj) is a norm between two
affinities when antibodies Xi and Xj are substituted into the antigen Φ:

D(Xi, Xj) = ‖f(Xi)− f(Xj)‖, (2)

where, ‖ · ‖ represents any norm.

Four evolutionary operators of the HSIEA, i.e., the clone operator, variation op-
erator, recombination operator, and selection operator, are respectively described
in the following four definitions. The symbol Tα indicates the correspondingly
mapping of respective operators, the subscript α denotes the operators, t is the
time of iteration, Ab means antibody, Pα is a probability.

Definition 3. The clone operator (TC , PC) is defined as:

TC(X) = [TC(Abi(t)] , i = PC ×K, (3)

PC =
1

σ
√
2π
e

−(x−μ(X))2

2σ2 (4)

where K is the size of an antibody group, μ is the expectation of X, and σ is the
standard deviation selected from Equation (5):

σi =

{
0.1, if ΔAbi ≥ 0.1;
ηΔAbi , if ΔAbi < 0.1,

(5)

where, ΔAbi is the Euclidean distance in the ith dimension between the new
winner and the best winner from older generation; 0 < η < 1 is a constant.
Then, the generation after the clone operation is called Ab

′
i(t) = TC(Abi(t)).

Definition 4. The variation operator (TV , PV ) is defined as:

TV [X ] = [TV (Ab
′
i(t))], i = PV ×K, (6)

PV =

{
PDH

V (1− PV )
(1−DH ), if Ab

′
i(t) ∈ Abi(t);

0, if Ab
′
i(t) /∈ Abi(t),

(7)

where DH = d(Ab
′
i(t), Ab

∗
i (t)) represents the Hamming Distance of two anti-

bodies. The clone variation operation with probability PV is carried out on the
antibodies generated by the clone operation. The generation of the population
after the variation operation is expressed by Ab∗i (t) = TV (Ab

′
i(t)).

In order to reserve the information of the original population, the variation
operator is only applied to the new antibodies generated by the clone operation.

Definition 5. The recombination operator (TR, PR) is described as:

TR(X) = [TR(Ab
∗
i (t))], i = PR ×K, (8)

PR =

{
> 0, if same numbers 0, 1 in Ab∗i (t) and Ab#i (t);
= 0, else,

(9)

where Ab#i (t) = TR(Ab
∗
i (t)) ∪ TV (Ab

′
i(t)) represents the generation after the

recombination operation.
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Definition 6. The selection operator (TS, PS) is described as:

TS(X) = [Ab#i (t) | max f(X) or | min f(X)] (10)

PS =

⎧⎨⎩
1, if f(Ab#i (t)) > f(Abi(t+ 1));

exp (Δf/a), if Δf ≥ 0 and Ab#i (t) not the best antibody;

0, if Δf ≥ 0 and Ab#i (t) is the best antibody,

(11)

where Δf = f(Abi(t+ 1))− f(Ab#i (t)), a > 0 is a value related to the diversity
of the antibody population. higher the diversity is, the higher the value of a is.

Definition 7. The terminal criterion E is quantitatively described by a lim-
ited number of iterations or the best solution that cannot be improved in a certain
number of iterations, or a combination of both. A termination criterion can be:

| f∗ − f best |< ε; OR: | f∗ − f best |< ε | f∗ |, if 0 <| f∗ |< 1, (12)

where f∗ is the optimal value of the objective function; f best is the best value of
the objective function in the current generation.

3 Logic Flow of the HSIEA

From the fundamentals described in the previous section, the logic flow and
procedures of the HSIEA can be developed and are shown in Figure 2.

4 Numerical Experimentation

Two benchmark test functions are investigated in this section to demonstrate
the HSIEA: Michalewicz’s function denoted by f1 and the rotated hyper-ellipsoid
function denoted by f2:

f1 =

5∑
i=1

sin(xi) sin

(
i · x2i
π

)20

, xi ∈ [0, π], (13)

f2 = −
5∑

i=1

⎛⎝ i∑
j=1

xj

⎞⎠2

, x ∈ [−65.536, 65.536]. (14)

For the Michalewicz’s function f1, there are 5! local optima and the global min-
imum is f1min = −4.687. The rotated hyper-ellipsoid function f2 has a global
minimum f2min = 0 at xi = 0, i = 1, · · · , 5.

To make comparisons between the HSIEA and MEA, we consider the con-
vergence speed, the quality of the solution, and the off-line performance [15]:

X∗
e (A) = 1

T

∑T
t=1 f

∗
e (Abi(t)), where f

∗
e (Abi(t)) = best{fe(Ab1(t)), fe(Ab2(t)),

· · · ,fe(Abi(t))} is the best object function value or the best affinity at the tth

iteration, T is the number of iterations of the algorithm.
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Fig. 2. Flowchart of the HSIEA

In our simulations, the initial number of individuals is set to be M = 200.
The terminal number of iterations is 100 generations, and the terminal threshold
ε = 0.0001. The number of successful optimizations is denoted by NTS , and the
number of failures is denoted by NTF , respectively. We have NTS +NTF = 100.

The results are summarized in Table 1 and Figures 3 and 4. It is seen from
these results that compared with the MEA, the HSIEA not only converges faster
but also gives a better solution and off-line performance for both functions.
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Table 1. Results of the HSIEA and MEA (the threshold ε = 0.0001)

Test function
MEA HSIEA

Real Solution
NTS NTF Solution NTS NTF Solution

f1 in (13) 0 100 −4.583 86 14 −4.679 −4.687
f2 in (14) 0 100 1.296E+1 97 3 4.979E-10 0
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Fig. 3. Optimization of Michalewicz’s function in Equation (13)
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Fig. 4. Optimization of the rotated hyper-ellipsoid function in Equation (14)

5 Conclusion

A new evolutionary algorithm, the HSIEA, has been developed in this paper.
The algorithm inherits the advantages of the MEA method and also introduces
the features of the artificial immune systems. Because of the introduction of the
clonal selection principle, the HSIEA has used several new evolutionary opera-
tions such as antigen recognition, clone, variation, recombination, and selection
in comparison with the MEA method. This makes the HSIEA fundamentally dif-
ferent from the MEA and other evolutionary algorithms. The effectiveness of the
HSIEA approach has been demonstrated through three benchmark functions.
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Abstract. In order to extract the peaks of PHD, a novel method STPHD has 
been proposed recently. This method can provide more accurate target state es-
timates than the general clustering algorithm such as k-means clustering. This 
paper presents a version of STPHD for multi-sensor scene and makes two con-
tributions. First, we generalize the STPHD algorithm to a multi-sensor scenario 
with an existing framework of fusion.  The framework includes an association 
step and a fusion step. This generation can get better performance in accuracy. 
But the association step is time-consuming. The second contribution is a novel 
model for computing the cost of two sets of particles with sub-weights in the 
association step. The numerical simulation results show that the proposed me-
thod can significantly reduce the time cost with a very slight loss in accuracy 
compared with the previous methods. 

Keywords: Multi-sensor fusion, STPHD, Particle filter. 

1 Introduction 

In recent twenty years, a new method called Probability Hypothesis Density (PHD) 
filter proposed by Mahler [1] attracts much interest. In contrast to the conventional 
Bayesion filter, this method propagates the first moment of posterior density, so 
called PHD, in fact an intensity function instead of the probability density function 
(pdf) which takes a lot in computation. The advantage of the PHD filter is that the 
expected number of targets can be obtained by computing the integral on the region of 
interest while the disadvantage is that there is no analytic solution to the filter. The 
mainly implementations of PHD are the Sequential Monte Carlo (SMC) method [2] 
and the Gaussian Mixture (GM) method [3], and the latter developed in the li-
near/Gaussian dynamics can obtain a closed-form solution while the former with 
dense computing task can be used widely not only the linear/Gaussian condition. The 
subject we discuss in this paper is based on the SMC method. 

A phase of extracting state is necessary after estimating the number of targets. The 
method of clustering analysis, such as k-means clustering [7] and Tobias' peak extrac-
tion algorithm [8], is used in this step. The drawback of the clustering is no particle 
can be assigned to multiple targets as every particle has one weight. A novel approach 
called STPHD (Single-Target PHD) is proposed by Zhao in [4], which has been veri-
fied by simulation that it outperforms the above methods. In the new method, a vector 
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of weights is attached to a particle, each component of which responds to a specific 
measure.  

In this paper, we propose a generalization of the STPHD in the multi-sensor scena-
rio based on an existing framework [5] and give a new method of computing the cost 
of two set of weighted particles. Simulations are also provided to measure the perfor-
mance of the fusion algorithm. The remainder of the paper is organized as follows. In 
section 2, we review the SMC implementation of PHD. A brief description of STPHD 
will be presented in section 3. We introduce a framework of association and fusion of 
multi-sensor in section 4. The results of simulation are provided in section 5 while the 
conclusion is in section 6. 

2 The SMC Implementation of PHD 

Due to the high dimensionality of integral, there isn't analytic solution to the PHD 
equations in a general condition. To make the method feasible, a particle filter imple-
mentation can be introduced into PHD to get a suboptimal solution. The brief three 
steps will be described as follows. 

2.1 Prediction  

In prediction step, we still assume that the set of weighted particles { } 1

111 , −

=−−
kL

i
i
k

i
k wx  

at time 1k −  is available. For 1,,1 −= kLi  , sample i
kx~   from ( )k

i
kk Zxq ,| 1−⋅  res-

ponding to the survival particles and evaluate the predicted weights. For 

kkk JLLi ++= −− 11 ,,1 , where kJ  denotes the number of the particles new born, 

sample i
kx~   from ( )kk Zp |⋅  responding to the new born particles and evaluate the 

predicted weights. Thus we get the predicted set of weighted particles 

{ } kk JL

i

i
kk

i
k wx

+

=−−
−1

11|1
~,~ . 

2.2 Correction 

In correction step, the weights can be updated by the collection of measures arriving. 
For kk JLi += −1,,1 , the new weights are evaluated by 
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2.3 Resampling 

In resampling step, we evaluate the sum of all the weighs by 
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=
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expected number of the targets in the surveillance region. But kkN |
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3 STPHD  

In [4], Zhao has demonstrated that in the correction step, the updated 
PHD ( )kkk ZxD :1| |   can be expressed as  
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where  ( ) ( ) 1|| | −=Δ kkkk DxxD υφ   denotes the PHD of the measure undetected.  

So in correction step of the particles filter implementation of PHD, ji
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Suppose that the expected number of target we estimate is kT̂ , compute the sum of 

sub-weights responding to jkz ,  denoted by j
kW  where 
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,~ . Then 

choose the greatest kT̂  ones to estimate the target state. 

4 Multi-sensor Association Fusion 

A framework of multi-sensor particle filter cloud fusion was proposed in [5], which 
consists of association step and fusion step. These steps will be presented as follows. 
Like literature [5], we assume there are only two sensors in the surveillance region and 
we only discuss the condition at time k , so we ignore the index k  in the following 
discussions. 
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4.1 Association Step 

Suppose that ( )1T̂  targets are estimated from sensor 1 and ( )2T̂  targets are estimated 

from sensor 2. From the STPHD, we obtain the responding two sets of particles with 
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Thus the problem of association can be handled by solving the following constraint 
condition 
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where  ( ) ( )( )21
21

~,~ ii xxd  is the distance between ( )
1
1

~ ix  and ( )
2
2

~ ix . The minimization above 

can be solved by using linear programming interior point methods in matlab. But it 

takes too much time. So we provide another form of ( ) ( )( )21
21 ,cost jj ΞΞ  by 
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For a weighted particle, the weight presenting the importance is an important part of 
the particle. When we estimate the state of a target from a set of weighted particles, 
we should evaluate the weighted sum of particles with normalized weights. Similarly, 

we use the weight ( )
ss ji

sw ,  to multiply the state vector of particle ( ) 2,1,~ =sx si
s  to get a 

new state vector of particle. We consider the new ones have no difference in the re-
gion of weight since the information of weight has been fused into the new state vec-
tor. Every new state vector of particle includes the previous state vector and previous 
weight information. So the group of new state vectors can be considered as a se-
quence of characters without order of the previous set of weighted particles. The dif-
ference between the two sets of particles can be measured by the distance of two 
groups of characters. Thus, we get the new minimization (7), which is used to alter-
nate the previous minimization (6). To solve the new minimization problem above, 
the Munkres algorithm in [8] can be used. Thus, due to the best χ , we get some as-

sociated pairs such as ( ) ( ){ }21
21 , ll ΞΞ . 

4.2 Fusion Step 
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Figure 1 shows the entire fusion process of multi-sensor based on STPHD. In associa-
tion step, we have two different forms of models i.e. the previous minimization (6) 
and the new minimization (7). 

STPHD 
2

STPHD 
1

Association 
step

Fusion 
step

1 2, ,k kζ ζ kχ
( ) ( ){ } ( ), 1

1 1 1

1

,
, 1 , 1 1

,
kL

i i j
k k i

x w
=

 

( ) ( ){ } ( ), 2
2 2 2

2

,
, 2 , 2

1
,

kL
i i j
k k

i
x w

=
 

( ) ( ){ } ( )1, 1
1 1

1
1, 1 1, 1

1
,

kL
i i
k k

i
x w

−

− − =

( ), 1kZ

( ), 2kZ

( ) ( ){ } ( )1, 2
2 2

2
1, 2 1, 2

1
,

kL
i i
k k

i
x w

−

− − =

 

Fig. 1. The entire process of the fusion of multi-sensor based on STPHD 

5 Simulations 

We assume the number of sensors is two as [5], and the positions are 
( ) ( )( ) ( )100,0, 11 −=yx  and ( ) ( )( ) ( )100,0, 22 =yx . Suppose that the targets number is 

unknown time-varying and the targets move in the region [ ] [ ]100,100100,100 −×− . 
The state equation is 
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and the measure equation is 
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where ( )Tkkkkk yyxxX  ,,,= , kv  is a 2-D zero-mean Gaussian white noise with the 

covariance matrix ]01.0,1[diag and ( )j
kin , ( )2,1, =ji are the independent zero-mean 

Gaussian white noise with standard deviation 2.5. 1T =  is the sampling period. 
There are four targets as [5] appearing randomly and their initial positions follow the 

intensity function ( )QxNpk ,,⋅=  where ( )Tx 3,0,3,0 −=  and ]1,10,1,10[diagQ = . 
The number of clutter follows a Poisson distribution with the parameter γ  while the 
clutter points follow a uniform distribution in the surveillance region. We set the de-
tection probability 1=DP  and the number of scans is 15. 
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Fig. 2. Wasserstein miss-distance at r=0 and r=5 

We denote the previous algorithm from the equation (6) by PA and denote the new 
algorithm from (13) by NA, and compare them as follows.  

The four Wasserstein miss-distances displayed in figure 5 shows the results of sen-
sor 1, PA and NA. The left one is at r=0 while the right one is at r=5. 

Table 1 and table 2 shows the average results over 20 Monte Carlo runs including 
the mean and the variance of the miss-distance error and the associated time of PA 
and NA at r=0 and r=5 respectively. From the two tables, we can see that PA and NA 
outperform the algorithm without fusion. And compared with NA, PA has a signifi-
cant advantage in running time and a comparable accuracy. The NA spends much less 
time than PA. 

Table 1. Average results over 20 Monte Carlo runs (r=0) 

 
Miss distance error(r=0) 

Run time(s) 
Mean Variance 

PA 5.208 0.780 48.151 

NA 5.461 0.900 0.403 

Sensor 1 5.831 1.388 / 

Sensor 2 6.528 1.372 / 

Table 2. Average results over 20 Monte Carlo runs (r=5)  

 
Miss distance error(r=5) 

Run time(s) 
Mean Variance 

PA 6.456 0.792 15.157 

NA 6.528 0.798 0.254 

Sensor 1 7.010 1.637 / 

Sensor 2 6.572 1.069 / 
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6 Conclusions 

In this paper, we generalized the STPHD algorithm to a multi-sensor scenario based 
on an existing framework and give a new method to compute the cost of two set of 
weighted particles. The simulation results show that the NA can obviously reduce the 
time cost with a very little loss in accuracy compared with the PA.  
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Abstract. Sparse Inverse Covariance Selection (SICS) is a popular tool
identifying an intrinsic relationship between continuous random vari-
ables. In this paper, we treat the extension of SICS to the grouped feature
model in which the state-of-the-art SICS algorithm is no longer applica-
ble. Such an extended model is essential when we aim to find a group-
wise relationships between sets of variables, e.g. unknown interactions
between groups of genes. We tackle the problem with a technique called
Dual Augmented Lagrangian (DAL) that provides an efficient method
for grouped sparse problems. We further improve the DAL framework by
combining the Alternating Direction Method of Multipliers (ADMM),
which dramatically simplifies the entire procedure of DAL and reduce
the computational cost. We also provide empirical comparisons of the
proposed DAL–ADMM algorithm against existing methods.

Keywords: Sparse Inverse Covariance Selection, Dual Augmented La-
grangian, Alternating Direction Method of Multipliers.

1 Introduction

The identification of a graphical model structure corresponds to finding a con-
ditional independence among random variables. In a Graphical Gaussian Model
where a continuous random variable x = (x1, x2, . . . , xd)

	 ∈ Rd follows a zero–
mean normal distribution N (0d, Λ

−1), the identification of a structure is equiva-
lent to finding zero entries in a precision matrix Λ ∈ Rd×d or an inverse covariance
matrix. This means that two variables xi and xj are statistically independent
given remaining variables if and only if the (i, j)th entry of Λ is zero, that is,

xi⊥⊥xj | other variables ⇔ Λij = 0 .

Finding zero entries in a precision matrix is referred as covariance selection [1].
Recently, several authors have proposed to use a �1 regularization technique for
this problem [2–4]. The problem is formulated as

min
Λ
0

f(Λ) ≡ − log detΛ+ tr (SΛ) + ρ‖Λ‖1 (1)

where S ∈ Rd×d is a sample covariance matrix, ‖Λ‖1 is an entry-wise �1-norm

defined as ‖Λ‖1 =
∑d

i,j=1 |Λij | and ρ is a non–negative regularization parameter.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 108–115, 2012.
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The positive definiteness of Λ is imposed so that the optimal parameter Λ∗ to
become a valid precision matrix. We refer to the problem (1) as Sparse Inverse
Covariance Selection (SICS) following Scheinberg et al. [5]. Note the case ρ = 0
corresponds to the maximum likelihood estimate Λ∗ = S−1. For ρ > 0, the
additional �1 term enforces some small entries in Λ to shrink to exactly zeros
and the estimator Λ∗ gets sparse.

The �1 regularization term in (1) can be replaced with some other norms on Λ.
Duchi et al. [6] have introduced a group structure in the elements of Λ and gen-
eralized the problem using group–regularization techniques [7, 8]. This extended
group SICS model is helpful when we aim to find the dependency between set
of variables, e.g. unknown interactions between groups of genes [6]. Both SICS
(1) and group SICS are convex optimization problems and the unique global
optimum is available. Especially for the problem (1), several optimization proce-
dures have been proposed [5, 6, 9–12]. Amongst these methods, QUIC [12] would
be the most practical state-of-the-art method with some theoretical guarantees.
However, the efficiency of QUIC heavily depends on the specific property of the
�1–norm and not applicable to the extended framework in general.

The main scope of this paper is to propose a new algorithm for the group SICS
problem [6] which can treat general group regularization terms. The proposed
method relies on the Dual Augmented Lagrangian (DAL) method [13] which
provides an efficient algorithm for convex and sparse regularization problems.
We further update the DAL framework by combining the Alternating Direction
Method of Multipliers (ADMM) [5, 10, 14] and propose a DAL–ADMM algo-
rithm. This update makes the entire procedure dramatically simple and helps
reducing the practical computational cost.

The remainder of the paper is organized as follows. In Section 2, we review
the extended SICS problem with a group structure. In Section 3, we introduce
the DAL based optimization method, and then update it by combining ADMM
and propose DAL–ADMM algorithm in Section 4. The validity of the proposed
method is presented through synthetic experiments in Section 5. Finally, we
conclude the paper in Section 6.

2 Group Sparse Inverse Covariance Selection

In this section, we briefly review the extension of SICS (1) into its grouped
variant [6, 15]. In group SICS, all d2 entries in a precision matrix Λ are parti-
tioned into M disjoint groups. Here, let I be a set of all d2 indexes in Λ, that
is, I = {(i, j); 1 ≤ i, j ≤ d}. Then, each of M groups Gm (1 ≤ m ≤ M) is repre-
sented as a subset of I where Gm ∩ Gm′ = φ for m �= m′ and ∪M

m=1Gm = I. We
also use a notation ΛGm to represent a vector composed of entries in Λ specified
by Gm, that is, ΛGm = (Λij)(i,j)∈Gm

. While the objective of the ordinal SICS is
to identify whether each (i, j)th entry of Λ is zero or not, the objective of group
SICS is to infer which of ΛGm gets simultaneously zeros among M groups. For
example, this setting is relevant to the identification of dependencies between
two sets of genes. In such a case, we partition the entries of Λ into four disjoint
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groups; two of them corresponds to the block–diagonal entries representing in-
ner group interactions while the other twos specify block–off–diagonal entries
related to the interaction between the groups. If latter two entries are simulta-
neously zeros, it means that two sets of genes do not involve any interactions
between them.

Duchi et al. [6] and Schmidt et al. [15] formulated this problem as follows
using group–regularization techniques [7, 8],

min
Λ
0

g(Λ) ≡ − log detΛ+ tr (SΛ) +

M∑
m=1

ρm‖ΛGm‖pm . (2)

Here, ‖ΛGm‖pm is a �pm–norm of ΛGm with pm ∈ [1,∞] and parameters ρm
and pm are assigned individually to each group. Note that the problem (2) is
a generalization of SICS since setting ρm = ρ and pm = 1 results in (1). For
pm > 1, a set of parameters ΛGm shrinks to zeros simultaneously due to the
group effect. Hence, the optimal solution Λ∗ has a group–wise sparse structure.
A parameter pm is typically set to 2 or ∞ due to computational considerations.
In the latter of this paper, we focus on these two specific cases.

3 Dual Augmented Lagrangian for Group SICS

Now, we derive the algorithm for group SICS (2) using Dual Augmented La-
grangian (DAL) [13]. DAL is an algorithm applying an Augmented Lagrangian
technique [14] to the dual of the target problem. It is known that DAL is super–
linearly convergent, hence it is well suited for sparse regularization problems [13].

The dual of group SICS [6] is given as

min
W
0,Y

− log detW s.t. ‖YGm‖qm ≤ ρm , W − Y − S = 0p×p . (3)

Here, W ∈ Rd×d is a dual parameter, which satisfies W ∗ = Λ∗−1 at its optimal
from the duality [6]. An operator ‖ ∗ ‖qm denotes a dual norm of ‖ ∗ ‖pm with
p−1
m + q−1

m = 1. We have also introduced the additional parameter Y for the
sake of compatibility with the latter discussion. A subscript Gm is used for Y
according as ΛGm . In DAL, we first formulate the following AL function,

Lβ(W,Y, Z) = − log detW +

M∑
m=1

δρm(YGm) +
β

2

∥∥W − Y + β−1Z − S
∥∥2
F

where β > 0 is an algorithm parameter, ‖ ∗ ‖F is a Frobenius–norm, Z ∈ Rd×d

is a Lagrange multiplier, and δρm(YGm) is an indicator function given as

δρm(YGm) =

{
0 , ‖YGm‖qm ≤ ρm
∞ , otherwise

.

Note an AL function with β = 0 corresponds to the ordinal Lagrangian function.
Here, we limit ourselves to the case pm = qm = 2. The basic approach of DAL
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is to relax the equality constraint of (3) in the intermediate steps of the algo-
rithm and make it fulfilled at the termination. In every DAL updates, we first
optimize W and Y so that Lβ(W,Y, Z

(k)) is minimized. Then, we update the
dual parameter Z(k) as Z(k+1) = Z(k)+β(W (k+1)−Y (k+1)−S). In every steps,
a value of β is also gradually increased so that the super–linear convergence is
achieved [13]. Under qm = 2, the optimization of Y for a fixed W (k+1) is merely

minimizing ‖YGm −BGm‖
2
2 under the constraints ‖YGm‖2 ≤ ρm for all m where

B = W (k+1)−β−1Z(k)+S. The solution is given as Y (k+1) = B−prox(B) where

prox(B) =

(
max(‖BGm‖2 − ρm, 0)

BGm

‖BGm‖2

)
1≤m≤M

.

Hence, the first update step of DAL can be simplified as follows [13],

W (k+1) ∈ argmin
W
0

− log detW +
β

2

∥∥∥prox(W + β−1Z(k) − S
)∥∥∥2

F
.

This is a smooth convex optimization problem and solvable with some proper
methods, e.g. via a quasi–Newton method.

4 Group SICS via DAL–ADMM

The DAL algorithm derived in the preceding section has a super–linear conver-
gence property. This property is based on the simultaneous update of W and Y
and a gradual increase of β in every steps. However, group SICS involves O(d2)
free parameters to be optimized and the computation of the gradient over W
requires O(d3) complexity. This can be too demanding even for middle sized d.
Therefore, we need to reduce the number of gradient evaluations so that the
entire procedure to become much more efficient. In this section, we tackle this
problem by introducing an idea of Alternating Direction Method of Multipliers
(ADMM) [5, 10, 14] and propose a DAL–ADMM algorithm.

In ADMM, we decouple the minimization of W and Y into sequential steps,

W (k+1) ∈ argmin
W
0

Lβ(W,Y
(k), Z(k)) ,

Y (k+1) ∈ argmin
Y

Lβ(W
(k1+1), Y, Z(k)) .

It means that the optimization of Lβ(W,Y, Z
(k)) over W and Y is solved only

in an approximate manner. Under this relaxation, as we see later, we can con-
struct an analytic update procedure for W which requires only one eigenvalue
decomposition in every update steps. This modification has another advantage
that we can use both pm = 2 and ∞ while it was limited to pm = 2 in DAL.
On the other hand, unlike DAL, only a linear convergence is guaranteed for
DAL–ADMM. However, as we sill see in numerical experiments, a reduction
of the number of gradient evaluation overwhelms this drawback and results in
the faster computation. In the next subsection, we detail the above two update
procedures.
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4.1 Solutions to Inner Optimization Problems

The inner optimization problem over W is given as follows,

min
W
0

− log detW +
β

2

∥∥∥W − Y (k) + β−1Z(k) − S
∥∥∥2
F
.

By setting the derivative over W to zeros, we get the optimality condition
W − (Y (k) − β−1Z(k) − S) − β−1W−1 = 0d×d. Here, let Y

(k) − β−1Z(k) − S =
UDU	, D = diag(σ1, σ2, . . . , σd) be an eigenvalue decomposition. Then, we get
W (k+1) = UD̃U	, D̃ = diag(σ̃1, σ̃2, . . . , σ̃d) where σ̃i = (σi+

√
σ2
i + 4β−1)/2 [10].

Note the positive definiteness of W (k+1) directly follows from this result.
As we already mentioned, an optimization of Y under a fixed W is a convex

constrained problem. The following is a general form for an arbitrary pm ∈ [1,∞],

min
‖YGm‖qm≤ρm

1

2
‖YGm −BGm‖22 .

For pm = 2, qm = 2 while qm = 1 for pm = ∞. Solutions to both cases are
available in O(|Gm|) computational complexities [15].

4.2 Convergence

Here, we list two convergence properties of DAL–ADMM under a fixed β > 0.

1. A sequence {Z(k)}∞k=1 converges to the optimal parameter Z∗ = Λ∗.
2. A function value g̃(W,Y ) = − log detW+

∑M
m=1 δρm(YGm) converges linearly

to its global minimum g̃(W ∗, Y ∗).

These results are available as follows. We first get the optimality condition Z∗ =
W ∗−1 by setting the derivative of L0(W,Y, Z) to zeros. Then, applying the
general theorem for ADMM [14, 16] and recallingW ∗ = Λ∗−1, the claims follow.

4.3 Implementation Details

In our implementation of DAL–ADMM, we use two gaps r
(k+1)
p = ‖W (k+1) −

Y (k+1)−S‖F and r
(k+1)
d = ‖Y (k+1)−Y (k)‖F presented by Boyd et al. [14] for the

termination criteria. When both of them are under a given threshold ε, we regard
that the process has converged and stop the iteration. Here, two gaps measure
how much the equality constraint in (3) and the optimality of parameters are
fulfilled respectively.

The choice of an algorithm parameter β also needs some consideration in prac-
tice. Unlike DAL, we can not merely increase β in every steps since it may lead
to a non–optimal solution. In the proposed algorithm, we introduce a heuristic

from Boyd et al. [14]; we update β as β(k+1) = 2β(k) for r
(k+1)
p ≥ 10r

(k+1)
d ,

β(k+1) = 0.5β(k) for r
(k+1)
d ≥ 10r

(k+1)
p , and β(k+1) = β(k) for remaining cases.

This heuristic balances two gaps and makes them small simultaneously.
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5 Simulations

In this section, we demonstrate the validity of DAL–ADMM through synthetic
experiments. All simulations in this section have been conducted on Windows 7
(64bit), Intel Xeon W365 CPU machines with a 6GB RAM.

5.1 Data Description

In our simulations, we have generated data in the following manner. First, we
give a number of gaussian variables d and its partition d1, d2, . . . , dK where∑K

k=1 dk = d. For each dk, we generate elements of a random matrix Uk ∈
Rdk×5dk independently from a unit normal distribution N (0, 1). Then, generate
a positive definite matrix Ck = LkL

	
k and set the resulting precision matrix

Λ ∈ Rd×d as a block–diagonal matrix with C1, C2, . . . , CK on its block–diagonal.
Here, each group Gm corresponds to a pair of dk and dk′ variables with 1 ≤ k, k′ ≤
K and the total number of groups isM = K2. In the simulation, we considered 3
cases with d = 20, 60, 100. For each case, the number of partition K and a value
d1 = d2 = . . . = dK = r are set to (K, r) = (2, 10), (3, 20), (4, 25) respectively.
After a precision matrix Λ is derived, we generated n = 5d independent samples
from a normal distribution N (0d, Λ

−1).

5.2 Baseline Methods

In the simulation, we adopted a PQN algorithm [15] to contrast with DAL–
ADMM. We also introduced DAL to compare with DAL–ADMM aiming to
observe the advantage of an ADMM relaxation. Each of DAL–ADMM, DAL
and PQN are implemented using MATLAB and C. We used a DAL package 1

and implemented a DAL procedure for group SICS. We have also modified a
PQN package 2 and used for our simulation. For the compatibility purpose with
DAL, our experiments are conducted using a hyper–parameter pm = 2 for all
groups. In the simulation, we set ρ = dρ0 where ρ0 varies in 13 different values
ranging from 10−3 to 100 in a log–scale.

5.3 Results

We randomly generated datasets 1000 times for each setting and compared the
running time of DAL–ADMM, DAL and PQN. The results are summarized in
Fig. 1. In the figure, we plotted median times that each method achieved a
relative error (g(Λ(k)) − g(Λ∗))/g(Λ∗) under tolerance parameters εgap = 10−2

and 10−5. The vertical bars extend from 25% to 75% quantiles of the running
time. Note PQN did not achieve a relative error under εre = 10−5 for larger ρ0
and thus omitted from the graph.

1 Available at http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/
2 Available at http://www.di.ens.fr/~mschmidt/Software/PQN.html

http://www.ibis.t.u-tokyo.ac.jp/ryotat/dal/
http://www.di.ens.fr/~mschmidt/Software/PQN.html
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PQNDAL-ADMM DAL

(a) d = 20 (b) d = 60 (c) d = 100

(d) d = 20 (e) d = 60 (f) d = 100

Fig. 1. Median running time of each method until achieving a relative error under
εre = 10−2 and 10−5 with vertical bars extending from 25% to 75% quantiles

In any experimental setting, we observe that DAL–ADMM outperforms other
twos. Especially, we can see the gradual decrease of the DAL–ADMM running
time for larger ρ0. We conjecture this property is what DAL original had as
an efficient optimization method for sparse regularization problems, and is also
inherited to DAL–ADMM. Through simulations, we observed that the inner
optimization process in DAL gets a practical bottleneck and is resolved by an
ADMM relaxation resulting in a dramatic improvement. A solution sequence
in PQN approached to the optimal solution in a relatively small running time.
However, at some point, this speed drastically decreases and the improvement
of the solution seems to be bounded afterward.

6 Conclusion

In this paper, we treated a group SICS problem (2) where the state-of-the-art
method for SICS (1) is no longer available. Our proposed DAL–ADMM algorithm
is based on the DAL which we relaxed by introducing an ADMM approximation.
In synthetic experiments, we observed that this relaxation dramatically improved
the running time against naively applying DAL. A comparison of DAL–ADMM
against PQN also showed favorable results that DAL–ADMM is faster and hence
works well for larger ρ where PQN tends to require a longer running time.

Several future works have been indicated. The optimal choice of an algorithm
parameter β remains an open problem. In our algorithm, we used a heuristic up-
date which works practically well but does not have any theoretical guarantees.
An introduction of a skipping technique in [5] would be a promising extension
of DAL–ADMM to further improve its performance.
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Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 196–212.
Springer, Heidelberg (2010)

12. Hsieh, C., Sustik, M., Dhillon, I., Ravikumar, P.: Sparse inverse covariance matrix
estimation using quadratic approximation. In: Advances in Neural Information
Processing Systems, vol. 24, pp. 2330–2338 (2011)

13. Tomioka, R., Suzuki, T., Sugiyama, M.: Super-linear convergence of dual aug-
mented lagrangian algorithm for sparsity regularized estimation. The Journal of
Machine Learning Research 12, 1537–1586 (2011)

14. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foun-
dations and Trends in Machine Learning 3(1), 1–122 (2011)

15. Schmidt, M., Van Den Berg, E., Friedlander, M., Murphy, K.: Optimizing costly
functions with simple constraints: A limited-memory projected quasi-newton al-
gorithm. In: Proceedings of the 12th International Conference on Artificial Intelli-
gence and Statistics, pp. 456–463 (2009)

16. He, B., Yuan, X.: On the o(1/n) convergence rate of the douglas–rachford alter-
nating direction method. SIAM Journal on Numerical Analysis 50, 700–709 (2012)

http://www.optimization-online.org/DB_FILE/2009/09/2390.pdf


Multiple Outlooks Learning

with Support Vector Machines

Yinglu Liu, Xu-Yao Zhang, Kaizhu Huang, Xinwen Hou, and Cheng-Lin Liu

National Laboratory of Pattern Recognition
Institute of Automation, Chinese Academy of Sciences,
95 Zhongguancun East Road, Beijing 100190, China

{ylliu,xyz}@nlpr.ia.ac.cn, kaser.huang@gmail.com

Abstract. Multiple Outlooks Learning (MOL) has recently received
considerable attentions in machine learning. While traditional classifi-
cation models often assume patterns are living in a fixed-dimensional
vector space, MOL focuses on the tasks involving multiple representa-
tions or outlooks (e.g., biometrics based on face, fingerprint and iris);
samples belonging to different outlooks may have varying feature di-
mensionalities and distributions. Current MOL methods attempted to
first map each outlook heuristically to a common space, where samples
from all the outlooks are assumed to share the same dimensionality and
distribution after mapping. Traditional off-the-shelf classifiers can then
be applied in the common space. The performance of these approaches
is however often limited due to the independence of mapping functions
learning and classifier learning. Different from existing approaches, in this
paper, we proposed a novel MOL framework capable of learning jointly
the mapping functions and the classifier in the common latent space. In
particular, we coupled our novel framework with Support Vector Ma-
chines (SVM) and proposed a new model called MOL-SVM. MOL-SVM
only needs to solve a sequence of standard linear SVM problems and
converges rather rapidly within only a few steps. A series of experiments
on the 20 newsgroups dataset demonstrated that our proposed model
can consistently outperform the other competitive approaches.

Keywords: Multiple outlooks learning, multiple views learning, trans-
fer learning, support vector machines.

1 Introduction

Traditional pattern classification models often assume that the patterns are liv-
ing in a fixed-dimensional vector space. However, in practice, many learning
tasks involve multiple representations, for example, biometrics based on face,
fingerprint and iris. Each representation is denoted as an outlook. Samples be-
longing to different outlooks may have varying feature representations, e.g. dif-
ferent dimensionalities and distributions. Moreover, the number of samples in
some particular outlook may be very small which is insufficient to achieve a high
accuracy by single outlook learning. The purpose of Multiple Outlooks Learning

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 116–124, 2012.
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(MOL) [5,6] is to make full use of all the information in different outlooks for
boosting the classification accuracy in a particular outlook.

Multiple outlooks learning is highly related to multiple views learning (MVL)
[1,7,9]. The key difference is that: in MVL each sample can be represented by
all the views, which means we have the instance-correspondence across different
views. Contrarily, in MOL the samples in different outlooks have no relationship
except the class labels. Features from different outlooks can be extracted from
different samples, and no common entities exist among different outlooks. MOL
is also related to transfer learning (TL) [3,4,8], where the distributions of the
training and the test data are usually different. In MOL different outlooks may
also have distribution transfer. However, TL assumes the features are in the
same space, but in MOL, different outlooks live in different feature spaces. In
this sense, both MVL and TL can be considered as special cases of MOL.

MOL is often handled in two steps. First, a mapping function is learned for
each outlook, and then all the outlooks are mapped into a common latent space,
in which the mapped features from different outlooks share the same dimension-
ality and distribution. Therefore, the traditional classification models, such as
SVM, KNN, ANN etc., can then be applied successfully in the common latent
space to classify all the transformed samples from different outlooks. So far,
there are two main ideas for learning the mapping functions. One is to constrain
the distribution similarities of different outlooks. For example, Harel et al. [5,6]
proposed an algorithm called Multiple Outlook MAPping algorithm (MOMAP),
which is applied to learn an orthogonal matrix for each outlook by matching the
empirical distributions of different outlooks. The other idea is to constrain the
sample similarities that belong to the same class from different outlooks. In par-
ticular, Wang et al. [10] proposed a model for pursuing three goals in the common
latent space: matching instances with the same labels, separating instances with
different labels, and preserving topology of each given domain.

However, these models only consider to learn the mapping functions in some
heuristic manners. More seriously, the learning of the mapping functions is in-
dependent with the learning of the classifier. This shortcoming limits the per-
formance, since the mapping functions and the classifier in the common latent
space are closely related to each other. To attack this problem, we proposed a
novel model in this paper to learn the mapping functions and the classifier simul-
taneously. Our model is a combination of multiple outlooks learning and support
vector machines (MOL-SVM), where the mapping function of each outlook and
the SVM in the common latent space are learned jointly in an alternating op-
timization framework. Specifically, MOL-SVM only needs to solve a sequence
of standard linear SVM problems, which can be implemented efficiently with
many successful softwares such as the libSVM [2]. One appealing feature is that
the involved optimization usually converges rapidly within a few epoches (typi-
cally fewer than 5 epoches in our experiment). Experiment on the 20 newsgroups
dataset also demonstrated that MOL-SVM can outperform the traditional MOL
models (e.g. MOMAP) and the single models (trained in each single outlook),
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which indicates (1) the benefits of MOL in improving the classification perfor-
mance against the single task models; and (2) the advantages of joint learning
of mapping functions and classifier for multiple outlooks learning.

2 Multiple Outlooks Learning with Support Vector
Machines

In this section, we introduce the MOL-SVMmodel for multiple outlooks learning.
Suppose we have K outlooks D = {(X(1), y(1)), (X(2), y(2)), . . . , (X(K), y(K))},
where X(i) = {X(i)

1 , X
(i)
2 , . . . , X

(i)
Ni
}, X(i)

j ∈ Rdi and y(i) = {y(i)1 , y
(i)
2 , . . . , y

(i)
Ni
},

y
(i)
j ∈ {1, 2, . . . ,M}. di is the feature dimensionality of the i-th outlook andM is
the number of classes. Here we use the superscript to denote the outlook index,
and the subscript to denote the sample index. The main challenges of multiple
outlooks learning (MOL) include: (1) different outlooks may have different fea-
ture dimensionalities (d1 �= d2 �= · · · �= dK); and (2) the distributions of different
outlooks may be different from each other (distribution transfer).

We first give the objective function of the traditional SVM model as:

min
W,ξ

1
2‖W‖2 + C

∑N
i=1 ξi

s.t. yi(W
Txi + b) ≥ 1− ξi

ξi ≥ 0

∀i = 1, . . . , N

For multiple outlooks problems, since different samples from different outlooks
are in distinct feature spaces, we cannot train a classifier using the traditional
SVM. Hence, we propose to learn a mapping function F (k) ∈ Rd×dk for each
outlook. After the mapping, samples in different outlooks are transformed into
a common latent space Rd where a standard SVM {W ∈ Rd, b ∈ R} can be
trained with all the mapped samples. The formulation of MOL-SVM is:

min
W,b,F (k),ξ

α
2 ‖W‖2 +

∑K
k=1

β(k)

2 ‖F (k)‖2 +
∑K

k=1

∑Nk

i=1 ξ
(k)
i

s.t. y
(k)
i (WTXmap

(k)

i + b) ≥ 1− ξ
(k)
i

Xmap
(k)
i = F (k)X

(k)
i

ξ
(k)
i ≥ 0

∀k = 1, . . . ,K

∀i = 1, . . . , Nk

where Xmap
(k)
i refers to the mapped data from the k-th outlook. The ‖X‖2

denotes the L2 norm when X is a vector and the Frobenius norm when X is a
matrix. This is a quadratically constrained quadratic program (QCQP) problem.
This objective yields a convex quadratic program in W , b given {F (k)}, and a
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convex quadratic program in {F (k)} given W . Therefore we can solve the model
efficiently with the alternating optimization framework.

When fixing F (k), the optimization of {W, b} is a standard SVM problem

with input data {Xmap
(k), k = 1, 2, . . . ,K}. When we fix W , the problem can

be divided into K independent optimization problems of F (k) separately. By
omitting the superscript, the general form of learning F is:

min
F,ξ

β
2 ‖F‖2 +

∑N
i=1 ξi

s.t. yi(W
TFXi + b) ≥ 1− ξi ∀i

ξi ≥ 0

We first reformulate the left part of the above constraints as follows.

WTFXi + b = tr(WTFXi) + b

= tr(FXiW
T ) + b

= vec(FT )T vec(XiW
T ) + b

where vec(x) is the operation that spreads a matrix into a vector. Let F̃ =
vec(FT ), X̃i = vec(XiW

T ), the formulation is equivalent to:

min
F̃ ,ξ

β
2 ‖F̃‖2 +

∑N
i=1 ξi

s.t. yi(F̃
T X̃i + b) ≥ 1− ξi ∀i

ξi ≥ 0

We can see this problem is also a standard SVM problem with input data X̃i.
The complete procedure for MOL-SVM is to solve two standard linear SVM

problems repeatedly until convergence. After that we can get the classifier {W, b}
and the mapping functions F (k) for each outlook. We summarize the MOL-SVM
model in Algorithm 1.

3 Experiment

In this section, we conducted a series of experiments on the 20 Newsgroups
dataset and compared our proposed MOL-SVM with several other methods,
including the single outlook learning and the combined outlooks learning with
different mapping methods.

3.1 Dataset Description

The 20 Newsgroups dataset1 is a collection of approximately 20,000 newsgroup
documents, partitioned (nearly) evenly across 20 different newsgroups. We con-
sider the main topics as classes, and the subtopics as outlooks. For example,

1 http://people.csail.mit.edu/jrennie/20Newsgroups/

http://people.csail.mit.edu/jrennie/20Newsgroups/


120 Y. Liu et al.

Algorithm 1. MOL-SVM

Input: D = {(X(1), y(1))}, (X(2), y(2)), . . . , (X(K), y(K)), ε

Initialize F (k), k = 1, 2, . . . ,K
repeat

Calculate mapped data for SVM learning

Xmap = [F (1)X(1) F (2)X(2) . . . F (K)X(K)]
SVM learning W, b

minW,b
1
2 ‖W‖2 + C

∑N
i=1 max(0, 1 − (WTXmapi + b))

Calculate transformed data for mapping functions learning

X̃(k) = vec(X(k)WT ) ∀k = 1, 2, . . . ,K

Mapping functions learning F̃ (k), k = 1, 2, . . . ,K

min
F̃ (k),b

1
2‖F̃ (K)‖2 + C

∑Nk
i=1 max(0, 1 − (F̃ (k)T X̃

(k)
i + b))

Revive the mapping functions{
vec−1(F̃ (k))

}T → F (k)

until ‖ΔW‖2 ≤ ε

Output: F (k), k = 1, 2, . . . ,K and {W, b}

rec.sport.baseball and rec.sport.hockey belong to the same class (sport), while
they are from two outlooks. In our experiment, we select rec.sport.baseball and
talk.politics.misc as outlook 1, and rec.sport.hockey and talk.politics.mideast as
outlook 2.2

3.2 Experimental Setting

Our purpose is to classify two classes of outlook 1 (rec.sport.baseball and talk.po-
litics.misc). Moreover, we assume that the labeled samples of outlook 1 are lim-
ited (by taking a few samples of outlook 1 for training), and the labeled data
of outlook 2 are sufficient (by using all the samples for training). Hence, the
objective of multiple outlooks learning (MOL) is to utilize the outlook 2’s in-
formation to improve the outlook 1’s classification accuracy. We compared our
method with several other algorithms in two cases: Case 1 when the data from
two outlooks have the same dimensionality, Case 2 when they have different
dimensionalities. The compared methods are listed as follows:

– Outlook 1(original): we trained the classifier just using the data from
outlook 1.

– Combined outlooks: we mapped the data from outlook 1 and outlook 2
to a common space, and used the combined mapped data in the common
space to train the classifier. We evaluated three different mapping functions.

• original: we used the original combined data without mapping.

• MOMAP: The Multiple Outlook MAPping (MOMAP) algorithm pro-
posed by [6] is aimed to learn the mapping functions by matching the

2 Experiments on another group of data (Outlook 1: comp.sys.ibm.pc.hardware &
sci.med; Outlook 2: comp.sys.mac.hardware & sci.space) also revealed the best per-
formance of our model. Due to the space limitation, we omitted the results in this
paper.
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mean and the principle directions of two outlooks. The goal is to map
the outlook with more information (outlook 2) to the outlook with little
information (outlook 1). We learned a mapping function by MOMAP,
mapped the data from outlook 2 to outlook 1, and then trained the clas-
sifier with the combined mapped data in the common space (outlook 1).

• MOL-SVM: the detailed procedure of the proposed MOL-SVM model is
shown in Algorithm 1. Note that MOL-SVM is to map the outlook with
little information to the outlook with more information (from outlook 1
to outlook 2), which is opposite to MOMAP.

In order to compare the performance of the mapping functions more obviously,
we also tested the methods by just using the mapped data of outlook 2 for
training, and testing on the data of outlook 1.

– Outlook 2: we trained the classifier just using the mapped data of outlook 2.

• original: we used the original data of outlook 2 without mapping.

• MOMAP: we learned a mapping function by MOMAP, mapped the data
of outlook 2 to the common space (outlook 1), and trained the classifier
with the mapped data of outlook 2.

• MOL-SVM: we learn a mapping function by MOL-SVM, train the classi-
fier with the original data of outlook 2, and map the test data of outlook 1
to the common space (outlook 2) for testing.

In Case 1, we evaluated all the mentioned above methods, while in Case 2, we
just compared Outlook 1 (original), Combined outlooks (MOL-SVM), Outlook 2
(original, MOMAP, MOL-SVM). This is because when the feature dimensional-
ities from two outlooks are different, the traditional combined method (combine
outlook 1 and outlook 2 without mapping) will not be applicable. Note that, In
[6], MOMAP merely used the mapped data of outook 2 (without outlook 1) for
training, but we find that the combined outlooks will improve the performance
in Case 1 due to the same dimensionality while it does not work well in Case 2.
Therefore, we evaluated this method in Case 1 but omitted it in Case 2.

We now report the experimental setup. The original dimensionality of features
is 61,188, which is difficult to process. For simplicity, we reduced the dimensional-
ity by PCA after normalizing each dimension with zero mean and unit variance.
In Case 1, we reduced the dimensionality to 30 for both outlook 1 and outlook 2.
In Case 2, we reduced the final dimensionality of outlook 1 to 20 and outlook 2 to
10. We used all the training data from outlook 2 (the total number is 1,162) and
different numbers of training data from outlook 1 (the total number is 1,058),
and calculated the test error rate (the number of test data from outlook 1 is
707). While it is difficult to apply cross validation when the number of training
data from outlook 1 is too small, we sampled 20 samples from outlook 1’s test
dataset as the validation dataset (the remaining as the test dataset) and selected
the parameters on it.
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Table 1. Test set error rate comparison (Case 1)

# training outlook1 combined outlooks combined outlooks combined outlooks
(outlook1) (original) ( original ) ( MOMAP ) ( MOL-SVM )

10 22.94 (± 5.15) 38.25 (± 1.09) 27.88 (± 5.46) 20.31 (± 5.53)
20 17.25 (± 2.20) 35.36 (± 1.51) 25.05 (± 7.19) 14.45 (± 3.86)
30 17.03 (± 4.55) 35.02 (± 1.43) 29.96 (± 7.23) 16.39 (± 3.97)
40 16.16 (± 3.55) 33.72 (± 1.89) 24.99 (± 7.63) 15.02 (± 4.31)
50 14.91 (± 4.33) 30.79 (± 2.23) 23.12 (± 5.90) 13.19 (± 3.86)
100 13.10 (± 3.67) 27.07 (± 1.11) 20.23 (± 7.16) 12.80 (± 2.49)
200 12.79 (± 2.91) 23.12 (± 1.88) 23.77 (± 6.12) 11.09 (± 1.48)
300 10.99 (± 1.43) 20.20 (± 1.47) 17.99 (± 6.48) 9.84 (± 1.76)
400 12.20 (± 3.25) 19.90 (± 2.15) 19.46 (± 5.46) 9.59 (± 1.29)
500 10.25 (± 1.52) 18.18 (± 1.01) 15.60 (± 3.69) 9.27 (± 0.68)
all 8.59 (± 0.00) 14.99 (± 0.00) 11.5 (± 0.00) 8.44 (± 0.00)

Table 2. Test set error rate comparison (Case 2)

# training outlook1 combined outlooks
(outlook1) (original) ( MOL-SVM )

10 22.21 (± 7.91) 20.35 (± 7.58)
20 16.64 (± 3.29) 16.68 (± 4.60)
30 17.15 (± 3.10) 16.17 (± 2.88)
40 14.06 (± 2.72) 13.81 (± 3.15)
50 12.96 (± 3.63) 12.49 (± 3.01)
100 11.28 (± 2.44) 10.86 (± 2.50)
200 11.99 (± 2.53) 11.11 (± 2.45)
300 10.57 (± 1.89) 9.52 (± 1.43)
400 9.97 (± 1.86) 8.82 (± 0.55)
500 10.38 (± 1.52) 8.41 (± 0.62)
all 8.59 (± 0.00) 8.59 (± 0.00)

3.3 Experimental Result

We evaluated several algorithms under different numbers of training samples of
outlook 1. For each number we sampled randomly from outlook 1 for 10 times,
and reported the average error rates on the test set. Table 1 presents the perfor-
mance in Case 1. Table 2 shows the results in Case 2. We can see our method
presents the best performance on both cases. Figure 1 shows the results when
we just used the mapped data of outlook 2 for training. The x-axis presents
the sampled number of training data from outlook 1, and the y-axis refers to
the error rate. We can see our method is significantly better than MOMAP and
the original combined method. In this experiment, the performance of combined
outlooks by MOMAP is not as good as single outlook. Since it is difficult to eval-
uate the distribution when the sample number is small, and also difficult to get
the proper mapping functions which can well match the two spaces. However,
our method does not minimize the distance among outlooks or among sam-
ples, but focuses on minimizing the classifier output of the same class among
different outlooks. This is much easier to be satisfied and hence can lead to
more robust performance. The optimization usually converged rapidly within 5
epoches.
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Fig. 1. Test set error rate with different mapping functions

4 Conclusion

In this paper, we proposed a novel method to deal with the multiple outlooks
problem, where the features from different outlooks have no common entities
and different outlooks have different dimensionalities and distinct distributions.
Compared to other multiple outlooks methods, we learned the mapping func-
tions jointly with the classifier, which proves more accurate and robust. More-
over, our model is to constrain the output similarities (the label space) among
different outlooks, while the traditional method is to constrain the input sim-
ilarities among different outlooks (e.g. matching the empirical distributions of
feature space). Therefore our model could be more readily to be satisfied when
the features are from quite different spaces. A series of experiments on real data
demonstrated the effectiveness of our model. In the future, we will extend our
method to the kernel space for solving the non-linear problems.
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Abstract. Multi-task learning solves multiple related learning problems
simultaneously by sharing some common structure for improved gen-
eralization performance of each task. We propose a novel approach to
multi-task learning which captures task similarity through a shared basis
vector set. The variability across tasks is captured through task specific
basis vector set. We use sparse support vector machine (SVM) algorithm
to select the basis vector sets for the tasks. The approach results in a
sparse model where the prediction is done using very few examples. The
effectiveness of our approach is demonstrated through experiments on
synthetic and real multi-task datasets.

Keywords: Multi-task learning, Support vector machines, Kernel meth-
ods, Sparse models.

1 Introduction

Multi-task learning (MTL) is used in situations where one has to solve several
related learning problems. Multi-task learning models each learning problem as
a separate task but instead of learning the tasks independently, learns them
together [1]. It is extremely effective when each learning problem is associated
with a limited dataset. It enables a task to be learnt using the data from multiple
related tasks. This results in a better predictive performance of the individual
tasks. It has been shown that multi-task learning performs better than learning
tasks independently [2,3,4]. Multi-task learning methods are successfully applied
to applications like user preference modeling [5] and conjoint analysis [6].

Multi-task learning (MTL) has recently created a lot of interest in the machine
learning community. Many approaches have been proposed to effectively learn
multiple related tasks. Task similarity could be captured by restricting different
task functions to be close to each other in some distance measure [4]. Bayesian
approaches [5] capture task similarity by sharing a common prior among dif-
ferent tasks. Other approaches capture task similarity by sharing a common
internal representation [2,3] across all the tasks. Most of the kernel based multi-
task learning approaches [4] use all the training examples to make a prediction,
resulting in higher computational and storage requirements. Also, they try to
capture only task similarity and not task variability.
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We propose a novel multi-task learning model in which task similarity is cap-
tured by sharing a common set of basis vectors across all tasks. In addition, it
has task specific basis vectors which capture the variability across different tasks.
It uses both the common set and the task specific set to make predictions for the
test data. The use of both the common set and the task specific set helps it to
capture the relatedness between tasks more effectively. The basis vector sets are
learnt by extending the sparse SVM algorithm [7] for single task learning to the
multi-task scenario. It results in a sparse model which requires very few train-
ing examples to make a prediction. This enables it to make predictions much
faster and is extremely useful when dataset size is large. Experimental results
on synthetic and real datasets show the usefulness of our approach.

We discuss some related work in section 2. Section 3 discusses the proposed
sparse multi-task learning approach in detail. Section 4 presents the experimen-
tal results of running the proposed approach on synthetic and real multi-task
datasets. Finally we conclude in section 5.

2 Related Work

We consider multi-task learning problems with T tasks. Each task t is associated
with a dataset Dt with mt examples, i.e. Dt = {xti, yti}mt

i=1. Let n =
∑T

t=1mt

be the total number of examples from all the tasks. Each task specific dataset
Dt comes from the same input and output space X × Y where X ⊂ Rd and
Y = {+1,−1} for classification or Y ⊂ R for regression. We assume that task
specific datasets are associated with a different but related sampling distributions
Pt. The goal is to learn T functions f1, f2, . . . , fT for T tasks such that each task
specific function ft gives good generalization performance.

Regularized multi-task learning [8] captures similarity among tasks by as-
suming all the task specific functions to be close to each other. The parameters
of task specific functions are learnt using the modified SVM framework. The
approach uses almost the entire training examples to make a prediction. The
proposed sparse multi-task learning approach differs from it in using very few
training examples to make a prediction. Radial basis function network for multi-
task learning [9] captures similarity by sharing the basis functions across all the
tasks. The proposed approach differs from it in having a task specific basis func-
tion set in addition to the shared set. It enables the proposed approach to more
effectively capture the task relations.

3 Sparse Multi-Task Learning

Sparse multi-task learning approach captures the similarity between tasks by
restricting the task specific functions to share some common structure. It models
this by assuming the predictive function for a task to have a common part shared
by all the tasks and a task specific part particular to the task. It represents the
predictive function for a task t as ft(x) = wc.φ(x)+wt.φ(x), where φ is a feature
map which maps the examples from input space X to some reproducing kernel
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Hilbert space H with an associated kernel function K. The common part wc

captures the similarity among the tasks, while the task specific part wt captures
the variability across different tasks. We assume that the common part wc takes
the basis function expansion form wc =

∑N
c=1 αcφ(xc) where φ(xc) is the basis

associated with the example xc in the common basis vector set C of size N and
α is the parameter associated with the common set C. Examples in the common
basis vector set C could belong to any task. Similarly the task specific part wt

for a task t is represented as wt =
∑Mt

j=1 βtjφ(xtj), where φ(xtj) is the basis
associated with the example xtj in the task specific basis vector set Jt of size
Mt and βt is the parameter associated with the task specific set Jt. Examples
in the task specific basis vector set Jt belongs only to task t. Using the basis
function expansion form and kernels to represent the inner product between
basis functions, the predictive function ft for a task t could be written as

ft(x) = KxC .α
	 +KxJt.β

	
t (1)

whereKxC = [K(x, x1), . . . ,K(x, xN )], α = [α1, . . . , αN ],KxJt = [K(x, xt1), . . . ,
K(x, xtMt)], βt = [βt1, . . . , βtMt ] and K(xi, xj) = φ(xi).φ(xj).

The selection of basis vector sets and the estimation of parameters for multi-
task classification problems are done by minimizing the objective function

argmin
α,β1,...,βT ,C,J1,...,JT

γ

2
αKCCα

	 +
λ

2

T∑
t=1

βtKJtJtβ
	
t +

1

2

T∑
t=1

∑
i∈It

(1 − ytioti)
2 (2)

where γ and λ are regularization parameters, KCC is the kernel matrix formed
from examples in the common set C, KJtJt is the kernel matrix formed from
examples in the task set Jt, oti = KiCα

	 + KiJtβ
	
t is the output of the ith

example belonging to task t, and It = {i : 1− ytioti > 0}.
The regularization parameter controls the common and task specific basis

vector sizes. A low value of γ relative to λ selects more common basis vectors
than task specific basis vectors. This is ideal for the situations in which tasks
are similar to each other. In the limit when γ

λ tends to 0, this is equivalent to
combined task learning in which a single classifier is learned by pooling together
data from all the tasks. But in situations where tasks are dissimilar it is ap-
propriate to choose a low value for λ relative to γ resulting in the selection of
more task specific basis vectors than common basis vectors. In the limit when
λ
γ tends to 0,this is equivalent to single task learning in which tasks are learnt
independently using their respective datasets.

The basis vector sets and the parameters are obtained by extending the sparse
SVM [7] approach for single task learning to the multi-task learning scenario. We
select the common basis vector set and task basis vector sets incrementally. After
each basis selection we re-estimate the common and task parameters. Section 3.1
discusses the procedure to estimate the parameters assuming we have selected
common basis vector set C and task basis vector sets Jt’s. Section 3.2 discusses
the procedure to select the common and task basis vector sets.
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3.1 Parameter Estimation

Sparse MTL approach needs to estimate T +1 parameters, one common param-
eter α and T task parameters βt. We use an alternative optimization approach
to estimate the parameters. The approach minimizes the objective function (2)
with respect to one of the parameter keeping others fixed. This is repeated for
each parameter and the entire procedure is continued until the relative decrease
in objective function value becomes small. Algorithm (1) describes the parameter
estimation procedure in detail.

Algorithm 1
Procedure Parameter Estimation
Input: C, J1, . . . , JT
Output: α, β1, . . . , βT
1. Set k = 0. Choose suitable starting vectors α(0), and βt

(0) for each task t.
repeat

2. For the current values of task parameters(βt
(k)), obtain α(k+1) by min-

imizing the objective function (2) with respect to α using Newton
method with line search.

3. for each task t
4. For the current value of common parameter(α(k+1)), obtain

βt
(k+1) by minimizing the objective function (2) with respect

to βt using Newton method with line search.
5. k ←k+1
6. until relative decrease in objective function value (2) is small.

The parameter estimation uses the Newton method and it requires the calcula-
tion of the gradients and the generalized Hessians of the objective function (2).
The gradients and the generalized Hessians of the objective function (2) with
respect to the parameters α and βt’s are

gα = γKCCα
	 −

∑T
t=1KCIt [yIt − oIt ] Pα = γKCC +

T∑
t=1

KCItKItC

gβt = λKJtJtβ
	
t −KJtIt [yIt − oIt ] Pβt = λKJtJt +KJtItKItJt∀t (3)

Here g and P denote the gradient and the generalized Hessian respectively with
respect to the parameters denoted by the subscripts, yIt is the column vector of
labels from task t indexed by It, and oIt is the column vector of outputs from
task t indexed by It.

3.2 Basis Vector Selection

The basis vectors are selected greedily in an incremental mode. The selection
involves adding basis vectors to the common set and to T task specific sets. The
basis vectors for the common set are obtained from examples from all the tasks
while basis vectors for the task specific set are obtained from the task specific



Multi-Task Learning Using Shared and Task Specific Information 129

examples. Common basis vectors are selected first and task specific basis vectors
are selected later. The basis vectors are selected until the relative decrease in
the objective function value becomes small. Alternatively, one can predefine the
number of basis vectors to be selected. The basis vector selection procedure
results in a sparse model with very few elements in the common set and task
specific sets. Algorithm 2 describes the basis vector selection procedure in detail.

Algorithm 2
Procedure Basis Vector Selection
1. repeat
2. Select a basis vector from the complete training data.
3. Add the selected basis vector to the common set C.
4. Perform parameter estimation using Algorithm 1.
5. until relative decrease in objective function value is small
6. for each task t
7. repeat
8. Select a basis vector from the training dataset Dt.
9. Add the selected basis vector to the task specific set Jt.
10. Perform parameter estimation using Algorithm 1.
11. until relative decrease in objective function value is small

During basis vector addition, a basis vector is selected from the training set
which results in maximum decrease in objective function value on addition of
it to the basis set. Selecting a basis vector from the entire training set is time
consuming. Hence the basis vector is selected from a candidate set of size κ
containing κ examples selected randomly from the training set. During basis
selection, the objective function is optimized only with respect to the parameter
corresponding to the newly added basis vector. In this case the objective function
is a simple quadratic function in the variable of optimization. Therefore the
optimization variable and the decrease in the objective function value can be
calculated analytically. Let the newly added basis vector to the common set be
c and the parameter corresponding to it be αc. Then αc and the reduction in
the objective value is given by −gαc/Pαc and g2αc

/Pαc respectively, where

gαc = γKcCα−
T∑

t=1

∑
i∈It

KcIt(yIt − oIt) Pαc = γKcc +

T∑
t=1

KcItKItc (4)

We could obtain similar expressions for task specific basis vector selection also.
After each basis vector addition we obtain new values of the parameters by
following the parameter estimation procedure described in section 3.1.

Newton method and basis vector selection require modifications in the gener-
alized Hessian due to changes in the sets It, C and Jt. It could be done cheaply by
maintaining a Cholesky decomposition of the generalized Hessian [7] and using
efficient rank one updates [10]. Let the number of training examples in each task
specific dataset be m and total number of examples be n (n = Tm). Let current
number of elements in the common basis vector set be N and task specific basis
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vector set beM . On addition of a new common basis vector the cost incurred for
computing new elements of the generalized Hessian and maintaining its Cholesky
decomposition are O(TmN) and O(N2) respectively. Assuming N � n the cost
of a single common basis vector addition is O(κnN). Setting maximum num-
ber of common basis vectors to Nmax, common basis vector set selection takes
O(κnN2

max) time. Similarly the addition of a single task specific basis vector
takes O(κmM) time(assuming M < m). Setting maximum number of task spe-
cific basis vectors toMmax, task specific basis vector selection takesO(κmM2

max)
time. For all tasks it takes O(κTmM2

max) = O(κnM2
max) time.Hence the time

complexity of the proposed approach is O(κnN2
max) +O(κnM2

max).
Multi-task regression problems are solved in a similar way to the classifi-

cation problems. The difference comes in the objective function which uses a
least squares loss function instead of the squared hinge loss function used in the
multi-task classification problem (5). Multi-task regression problem minimizes
the following objective function.

argmin
α,β1,...,βt,C,J1,...,JT

γ

2
αKCCα

	 +
λ

2

T∑
t=1

βtKJtJtβ
	
t +

1

2

T∑
t=1

mt∑
i=1

(yti − oti)
2 (5)

The calculation of gradients and generalized Hessians for the objective function
(5) is similar to (3) except that It contains the entire training examples from
task t.

4 Experiments

We conduct experiments for both multi-task classification and regression prob-
lems. Classification experiments are conducted on a synthetic dataset. Regres-
sion experiments are done on a real dataset. We compare the proposed sparse
multi-task learning model (sparseMTL) against regularized multi-task learn-
ing (regMTL) [4], combined task learning (sparseCTL) and single task learning
(sparseSTL). SparseCTL is learnt by pooling together data from all the tasks
and then learning a single model on the combined dataset using sparse SVM
[7]. The results reported for sparseCTL use the same number of basis vectors as
sparseMTL. In sparseSTL each task is learnt independently using sparse SVM
on the dataset corresponding to that task. The results reported for sparseSTL
use the entire training dataset corresponding to the task as the basis vector set.

All the experiments use the Gaussian kernel, K(xi, xj) = exp
(
− ||xi−xj||2

2σ2
d

)
.

4.1 Multi-task Classification

Multi-task classification experiments are done on a synthetic dataset. The syn-
thetic data models the preferences of individuals while choosing products. The
dataset is simulated as described in [4]. The synthetic data consists of 30 tasks.
Every task is associated with 96 training examples and 96 test examples. In total
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Table 1. Mean misclassification error and mean number of basis vectors (given in
brackets) for regMTL, sparseMTL, sparseSTL and sparseCTL on the synthetic data.
Bolded column indicates the best result. We also report mean number of common basis
vectors and task basis vectors obtained for sparseMTL on the synthetic data.

Similarity RegMTL SparseMTL SparseCTL SparseSTL

High 8.16%(964) 7.22%(60) 15.59%(60) 10.49%(96)

Low 9.79%(1330) 9.40%(70) 29.06%(70) 10.44%(96)

Similarity Common Task

High 18 42

Low 12 58

there are 2880 training and 2880 test examples. We consider two kinds of syn-
thetic data, one in which tasks are less similar and the other in which tasks are
more similar. For both the cases we consider synthetic datasets with low noise.
Table 1 shows the mean misclassification error of different approaches over 5 in-
dependent runs on the dataset. It also reports the mean number of common and
task basis vectors obtained for sparseMTL. Each approach is run for different
hyper-parameter value settings and the best among those is reported.

We could observe from Table 1 that sparseMTL gives the best result for both
the high similarity and the low similarity dataset. In addition the sparseMTL
approach provides an advantage in terms of number of basis vectors needed for
prediction. SparseMTL requires an order of magnitude less number of basis vec-
tors than regMTL and performs better than regMTL. In the low similarity case
sparseMTL is found to select relatively less number of common basis vectors and
more number of task specific basis vectors in order to capture the dissimilarity
among tasks . In the high similarity case, it is found to select relatively more
number of common basis vectors and less number of task specific basis vectors.

4.2 Multi-task Regression

Multi-task regression experiments are done on school dataset[4]. The dataset
consists of examination records of 15362 students over 139 schools. Each student
record has 27 dimensions and the number of student records associated with
each school varies from 20-150. The goal is to predict exam scores of students
from each school. We used 75% of the examples from each task as the training
set and the remaining 25% as the test set. In total the training data contains
11472 examples and the test data contains 3890 examples. The performance
metric used is the explained variance[4] which is defined as 1− sum squared error

total variance .
Table 2 reports the mean explained variance and the mean number of basis
vectors required for regMTL, sparseMTL, sparseSTL, and sparseCTL over 10
independent runs on the school dataset. It also reports the mean number of
common and task basis vectors selected by sparseMTL.

We could observe from Table 2 that sparseMTL performance is marginally
better than regMTL. More importantly it could achieve this performance with
very less number of basis vectors. SparseMTL is found to select more number
of common basis vectors than task basis vectors capturing the high similarity
among the tasks in the school dataset.
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Table 2.Mean explained variance and mean number of basis vectors (given in brackets)
for regMTL, sparseMTL, sparseSTL and sparseCTL on the school data. Bolded column
indicates the best result among the different approaches. In sparseSTL every task uses
the entire training data corresponding to it as the basis vector set and its size varies
across tasks. We also report the mean number of common and task basis vectors selected
by sparseMTL on the school dataset.

RegMTL SparseMTL SparseCTL SparseSTL

0.3275(11330) 0.3282(75) 0.2833(75) 0.2710

Total Common Task

75 65 10

5 Conclusion

We proposed a novel approach to multi-task learning which captures the task
relationships through common and task specific basis vector sets. We also devel-
oped an approach to select the basis vector sets. It resulted in a sparse multi-task
model which uses very few training examples for predictions. The sparse model
can handle very large datasets and makes predictions faster. Experimental re-
sults showed that the proposed approach was able to achieve the generalization
performance close to that achieved by other multi-task approaches with very
few number of basis vectors. The proposed approach, however, is not directly
applicable to multi-label classification problems since the tasks share the dataset.
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Abstract. Using Bayesian networks (BNs) for classification tasks has
received significant attention as BNs can encode and represent domain-
experts’ knowledge as well as data in their structures and conditional
probability tables. While structure learning and constructing the struc-
ture by hand according to an ensemble of domain-expert opinions are
two common approaches to make a BN structure, finding an optimal
structure to attain a high correct classification rate -especially for high
dimensional problems- is still a challenging task. In this paper we propose
a framework - called Local Bayesian Network Experts Fusion (LoBNEF)
- in that, instead of making a single network, multiple Bayesian Net-
work Classifiers (BNCs) are built and their outputs are attentively fused.
The attentive fusion process is learned interactively using a Bayesian re-
inforcement learning method. We demonstrate that learning different
BNCs in the first step and then fusing their decisions in an attentive and
sequential manner is an efficient and robust method in terms of correct
classification rate.

Keywords: BayesianNetwork,DecisionFusion,ReinforcementLearning.

1 Introduction

Applying Bayesian network (BN) for classification task has received significant
attention recently. While generative BNs aim at finding a description of whole
data, discriminative BNs -a.k.a.Bayesian network classifiers (BNC)- focus on
finding models which accurately discriminate between different class labels given
attributes (features). In both contexts, finding the optimal BN is a demanding
task especially when the number of features grows. Since a BN is defined by a
structure and a set of parameters, they must be specified either by incorporating
learning methods or using domain-expert knowledge.

Given the BNC structure, first attempts for discriminative parameter learning
were made by [1]. They proposed a method, Extended Logistic Regression (ELR),
which tries to minimize conditional log-likelihood by using a gradient descent
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approach. Although ELR is a computationally demanding method, it leads to
more accurate classifiers in comparison to generative parameter learning meth-
ods such as maximum likelihood. Later, Su et al. [2] suggested Discriminative
Frequency Estimate (DFE). DEF significantly involves less computations but re-
sults in classifiers which are nearly as accurate as those built by ELR method.

Finding a near optimal structure is another challenge in the context of BNCs.
While some methods use a fixed structure, such as naive Bayes, others try to
learn the structure from data. Friedman et al. [3] proposed Tree Augmented
Naive Bayes (TAN) algorithm. TAN algorithm limits the number of parents
an attribute variable can have and find a globally optimal structure subject to
this constraint. Using hill-climbing with different scoring functions has also been
used for discriminative structure learning. Grossman and Domingos [4] used hill-
climbing in order to find a structure that maximizes conditional log-likelihood
(CLL) score. More recently, Carvalho et al. [5] have managed to estimate CLL
score via a factorization, called Factorized Conditional Log-Likelihood (FCLL),
which exhibits promising characteristics such as decomposability.

As mentioned, another approach to develop the structure of a BNC is to use
domain-experts’ knowledge. The main challenge in this approach is aggregation
of experts’ opinions as different experts may have dissimilar opinions regarding
the structure. In other words, it is very likely that each expert’s speciality is not
complete over the high dimensional problem space. It means that not only is very
probable that each expert’s perception over the problem domain is partial, it also
can mislead the final decision making when they try to respond to questions they
have never experienced before. Disparity among experts can be rooted in having
different experiences, having access to different feature spaces, and dissimilarity in
paying attention to feature set in addition to having different beliefs.

Moreover, in many applications, like medical ones, data collection is done
in different locations. In such cases diversity in the recorded features across
the recording sites is usual. It is equivalent to having many missing entries.
Constructing a single BNC either by learning or by hand- using such a dataset
is a challenge. Therefore, the question here is if making a single BNC -using data
or experts’ knowledge- is better than making different BNCs and then learning
to fuse their outputs.

Using different BNCs for classification is not a new approach; see [3], [6]
and [7] as examples. Nevertheless, what makes our approach different from the
existing ones is the way we fuse the decisions of BNCs. In our approach, we
train one BNC for each expert or for each data collection site. Then we train a
fuser agent, using a reinforcement learning method, for attentive fusion of BNCs
decisions. By Attentive we mean that the decision fuser learns to sequentially
consult with a subset of BNCs for each sample.

2 Bayesian Network Classifier for Large Feature Spaces

Classification aims at accurately predicting the class label given attributes (fea-
tures). In probabilistic framework, it is equivalent to estimating conditional like-
lihood P (li|Fi) where li ∈ {l1, ..., lw} and Fi = {f1

i , ..., f
n−1
i } are the class label
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and features representing sample i(i = 1, ..., N) respectively. It is well-known
that given a large dataset, it is possible to learn a BN exhibiting a close ap-
proximation of the underlying joint distribution. By having a joint distribution,
it is possible to calculate any other conditional distribution such as conditional
likelihood of a class label. Therefore, for classification, we first make the struc-
ture of a BN then train it for estimating the joint probability distribution by
maximizing log-likelihood. Finally, the BN is used for calculating the conditional
likelihood. However, in practice, this approach usually leads to inaccurate clas-
sifiers. As it is shown in [3], this is usually due to the fact that the likelihood
term is mainly dominated by the joint distribution of features rather than the
conditional likelihood. Technically, the log-likelihood function can be written as:

LL(B|TD) =
N∑
i=1

log(PB(li|f1
i , ...f

n−1
i )) +

N∑
i=1

log(PB(f
1
i , ..., f

n−1
i )) (1)

where PB(.) is the probability calculated using the BN and TD is the training
data.

As previously mentioned, to have better BNCs we should optimize conditional
log-likelihood (CLL). Given the correct network structure, the parameters that
maximize log likelihood (LL) also maximize CLL. Nevertheless, usually in prac-
tice, the optimal structure is unknown and maximum LL estimation will not
optimize CLL. In addition, optimizing CLL does not have a closed-form solu-
tion. Moreover, unlike LL, CLL is not a decomposable score, which hinders the
process of structure and parameter learning for CLL maximization.

It is also notable that as the number of features grows, LL will be dominated by
the second term; because the possible instantiations of {f1, ..., fn−1} increases.
Consequently, usually PB(f

1
i , ..., f

n−1
i ) decreases. Therefore LL maximization

pays less attention to maximization of PB(li|Fi). As a result, we prefer to make
multiple BNCs, each with a limited number of features, and then fusing their
decisions.

3 Proposed Method

3.1 Using Reinforcement Learning for Attentive Fusion

Here, we introduce the framework, called Local Bayesian Network Experts Fu-
sion (LoBNEF), by which the decisions of multiple BNCs are attentively fused.
Instead of following the common practices in the fusion literature, in LoBNEF
we map the problem of decision fusion to a Markov Decision Process (MDP).
Then we incorporate a reinforcement learning method to solve the MDP. The
fusion learner is called the learning agent.

The corresponding MDP is defined by 4-tuple {S,A,T ,R} in which S is the
set of states, A is the set of actions, T : S × A × S → [0, 1] is the transition
probability function and R : S ×A× S → R is the reward function.

Let denote the finite set of features of the classification task by F and assume
that we have m BNCs; see Fig 1. Also let denote the subset of features that
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the jth classifier has access to by Fj ⊆ F (j = 1, ...,m). BNC’s decision vector
(output) for the ith sample is defined as Decji = [P (L = l1)|Fj

i , ..., P (L = lw)|Fj
i ]

where P (L = lk|Fj
i ) is the probability of belonging sample i to class lk in the view

of jth BNC. In our setting, as in [8], the learning agents state is the augmentation
of decision vectors of those BNCs which the agent has consulted with so far.
Those entries corresponding to BNCs which the agent has not consulted with
are filled with null. Therefore, the agent’s state S is S = [s1s2...sm] where:

sj =

{
Decj if j ∈ selected networks so forj = 1, ...,m
NULL1×w Otherwise

The initial state of the agent is S0 = NULL1×lw.
Action set A is the superset of two sets of actions: Consulting Actions (C)

and Declaration Actions (D); i.e. A = C ∪D. A consulting action for sample i is
asking a BNC its Decji while a declaration action means assigning a class label
to the corresponding sample.

Finally, the reward function is designed to guide the learning agent to as-
sign correct classes with minimum number of consultations (i.e. using minimum
number of BNCs). Less consultation is of interest because each of them requires
running an inference algorithm over the corresponding BNC which can be com-
putationally expensive especially when the number of features grows. The reward
function is:

R =

⎧⎨⎩High reward correct class is assigned
High punishment wrong class is assigned
Low punishment consulted with a BNC

So far, the problem of fusion of different BNCs is transformed to an MDP. Here,
we are facing with an MDP with continuous state space and discrete actions.
There exists a set of reinforcement learning methods to solve this MDP. We

Feature Space 

.     .     . .     .     . 
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Bayesian Network 
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Fig. 1. A cycle of attentive fusion for sample i
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use Bayesian Q-learning approach [9] because of its uncertainty handling and
flexibility in generating prototypes.

Each episode starts by a query and ends by announcing the decided class
label of query. During each episode of learning the learner starts from initial
state S0. Then, at each step it takes a consulting action and asks BNC its
decision vector about the current sample. Finally, at the end of each episode,
the learner takes a declaration action and assigns a label to the corresponding
sample. Fig. 1 illustrates a schematic diagram of decision making in each episode.
After each decision, either consultation or declaration, the agent receives the
corresponding reward and updates its value function using Bayesian RL [9]. This
process is iterated over samples several epochs until the process converges. To
avoid overfitting, during each epoch the parameters of learner are saved. Then,
the best set of parameters is chosen based on the CCR on the evaluation data.

3.2 Local Bayesian Network Learning

As shown in Fig. 1, we need a set of BNCs to attentively fuse their decisions. As
we do not have a set of experts to build a BNC for each, we have two options;
making BNCs for subsets of training data, constructing BNCs for subsets of
features, or a combination of these. The second approach is closer to the real
cases. In addition, it results in constructing fitter BNCs because of having a
smaller number of features for each; see Section 2. We use the method proposed
by Mirian et al. [8] to form the feature subsets.

In order to find the structure of Bayesian networks we use TAN algorithm [3].
TAN augments a naive Bayes structure by adding an additional parent for each
node beside the class node. It is proven that this method constructs the optimal
tree-augmented network that maximizes the likelihood function.

4 Experiments and Results

In this section we empirically evaluate the performance of LoBNEF both on
hand-made and real datasets. In all experiments, 80% of data is used for training
and evaluation; i.e. CV-5. The evaluation data is 10% of the training data,
selected randomly. Also the number of epochs is 30 for all experiments.

4.1 Experiments on Simulated Data

The goal of this simulation is to show that our method can compete with the
optimal-structure classifier and beat its competitors; namely TAN and naive
Bayes. We first make a BN, see Fig 2.a, and generate 500 samples using it.
We use the structure of this BN for the optimal-structure classifier as well.
Then we train three BNCs each with five randomly selected features -out of
the existing eight ones- and our method learns to attentively fuse their decision
vectors. We repeat this process ten times by randomly changing the conditional
probability table of the BN. For each set of data we train the competitors (TAN
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Fig. 2. Comparison of LoBNEF with TAN, Naive Bayes and optimal structure BNC.
We varied the CPTs 10 times and used CV-5. Scatter plots show each classifier’s CCR
with one standard deviation. LoBNEF outperforms TAN (Naive Bayes) 7(8) times and
is very close to the optimal-structure BNC.

and naive Bayes) and the optimal-structure classifier as well. Fig. 2.c(b) shows
that our method beats TAN (naive Bayes) 7(8) times and is very close to the
optimal-structure BNC. As discussed in Section 2, it is very probable that the
structure learning methods fail to find the true structure of the BNC; especially
in high dimensional cases. To simulate this case, we randomly removed from
or added edges to the optimal structure and then trained the networks. We call
these networks suboptimal-structure networks. The results show that drop in the
average CCR of suboptimal-structure networks, in comparison to the optimal-
structure one, is proportional to the probability of having extra or removed edges.
For example, the average CCR falls below 68% when this probability is 10% -
i.e. one edge is removed or is added in our simulation. It means, LoBNEF with
CCR = 68.32% outperforms all of the suboptimal-structure networks. Note that
in LoBNEF, each BNC has fewer features in comparison to the original BNC
and making accurate BNCs for smaller number of features is more probable. In
addition, attentive fusion of BNCs compensates lack of some features in each
BNC. These two properties together, result in better performance for LoBNEF,
in comparison to the suboptimal-structure networks.

4.2 Experiments on Real Datasets

We evaluated the performance of LoBNEF on 11 datasets from UCI repository
[10]. Also, we used Mirian et al. [8] feature subset selection method to generate
multiple feature subsets and the corresponding BNCs. For our experiments, we
implemented LoBNEF, TAN and naive Bayes (NB) and compared the results
with those of some benchmarking and state of the art methods from [7]; namely
boosted augmented NB (BAN) [11], boosted Naive Bayes (BNB) [12], TAN with
parameters optimized for conditional log likelihood (TAN-ELR) [1] and discrim-
inative structure selection via CMDL score (BNC-2P) [4]. Continuous features
were discretized using the supervised method proposed by Fayyad and Irani [13].
The average CCRs along with the standard deviations are shown in Table 1. En-
tries which are filled by N/A were not available for the corresponding datasets.
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Table 1. Comparison between accuracy of TAN, NB, BAN, BNB, TAN-ELR, BNC-
2P, LoBNEF. CV-5 used for all of data sets except Satimage that has pre-defined test
and train sets. The fractions in parenthesise show the average number of consulting
actions over the total number of BNCs. The best performances are in bold face.

Dataset TAN NB BAN BNB TAN-
ELR BNC-2P LoBNEF

Heart 86.27±0.23
82.59±0.91

84.44±0.78
84.07±0.41

81.53±0.98
83.33±1.10

88.12(2.6/4)
±0.64

Hepatitis 82.50±1.85
85.00±1.43

88.75±0.42
87.50±0.85

86.98±0.85
87.50±2.12

84.06(3.3/5)
±1.31

Bupa 62.31±1.25
61.29±0.65 N/A N/A N/A N/A 71.61(2.4/5)

±0.78

Pima 70.84±0.27
72.18±0.87

75.73±0.61
76.06±0.86

76.16±0.32
73.94±0.84

80.99(3/5)
±0.33

Ionosphere 80.21±1.54
81.12±1.48 N/A N/A N/A N/A 79.99(2.4/4)

±1.74

Sonar 71.43±0.64
71.03±2.14 N/A N/A N/A N/A 84.23(2.3/4)

± 1.21

Glass 65.44±1.81
67.32±1.53

68.25±1.31
67.79±3.11

49.82±2.14
64.65±2.12

69.91(1.9/4)
±2.1

Vehicle 68.46±1.67
68.54±1.54

67.24±2.1
67.54±1.78

72.73±1.11
65.48±1.83

67.01(2/4)
±2.11

Waveform 74.34±0.23
82.05±1.40

83.70±0.87
82.15±1.53

74.66±0.54
74.84±1.39

85.12(3.1/5)
±1.20

Satimage 86.26±0.23
80.80±0.65

84.57±1.56
82.88±0.63

85.80±0.41
82.05±2.32

0.87.01(3.7/5)
±1.54

Dermatology 84.13±1.45
85.12±1.32 N/A N/A N/A N/A 91.23(2.9/5)

±2.1

The ratios of average number of consultations over the constructed BNCs in
LoBNEF are reported in the parenthesis. For learning the attentive fusion the
reward function was 100 and -3000 for correct and wrong classification and the
punishment was -5 for every consultation with BNCs. The table shows that
LoBNEF significantly outperforms its competitors on 8 datasets. In addition, in
contrast to BAN and BNB, LoBNEF does not use all BNCs for consultation and
for every sample seeks advice from the most informative BNCs.

5 Conclusion and Future Works

We proposed a method, called LoBNEF, in that multiple BNCs are built to sepa-
rately solve a classification task and then their outputs are attentively fused. The
fusion is learned using a Bayesian reinforcement learning method. We demon-
strated that our approach outperforms its competitors over some benchmarking
datasets in addition to acting close to BNC with the true underlying structure in
the simulations. Moreover, LoBNEF is more robust against error in constructing
the network structure; compared to the case where a single network is used. In
addition, while different domain experts may suggest different and even contra-
dictory BNC structures for a single task, LoBNEF can make attentive use of all
of them whenever they can improve the classification task; even in a portion of
the problem domain. This attentive fusion is very efficient in terms of inference
since it does not need to know every Bayesian networks decisions in order to
assign a class to a sample. This is also highly desirable when the number of
features increases and inference over Bayesian networks becomes a bottleneck.
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This paper mainly studies the empirical side of LoBNEF and studying its
theoretical properties is in our future research list. Extending our approach to
other applications of BNs is among our current researches.
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Abstract. Penalized likelihood is a general approach whereby an objective 
function is defined, consisting of the log likelihood of the data minus some term 
penalizing non-smooth solutions. Subsequently, this objective function is max-
imized, yielding a solution that achieves some sort of trade-off between the 
faithfulness and the smoothness of the fit.  

In this paper we extend the penalized likelihood classification that we pro-
posed in earlier work to the multi class case. The algorithms are based on using 
a penalty term based on the K-nearest neighbors and the likelihood of the train-
ing patterns’ classifications. The algorithms are simple to implement, and result 
in a performance competitive with leading classifiers. 

Keywords: Multiclass, K-nearest neighbor, Penalized likelihood, Pattern classi-
fication, Posterior probability. 

1 Introduction 

The basic concept behind penalized likelihood is that a good model should possesses 
two essential properties: the goodness of fit and the smoothness of the fit [1], [2].   
However, these two are primarily conflicting goals, and usually a trade-off that suits 
the given application is pursued. The penalized likelihood approach seeks to achieve 
that trade-off by defining an overall objective function consisting of the log-likelihood 
of the data minus a roughness measure, and subsequently maximizing this objective 
function. The likelihood function is a measure of the faithfulness of the fit, while the 
roughness function is a penalty term that penalizes non-smooth solutions. An example 
of the roughness function is the integral of the square of the second derivative of the 
function, leading to the following objective function (see [3]): 

 log λ  (1)  

Most of the penalized regression work focused on finding a complete functional for-
mulation and the optimization is performed mostly in the Hilbert space (see [4]). 
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In contrast to the regression framework, there is little work on extending it to the 
classification domain. For the classification problem the underlying function would 
then be the class posterior probabilities. These are the functions which we attempt to 
estimate and for which we impose smoothness. Among the works considering pena-
lized likelihood classification is the work of O’Sullivan et al [5], which was subse-
quently analyzed and extended in many other studies (see [6-9]). A related approach 
is to consider the multinomial logistic regression case in Cawley et al [10]). 

Atiya and Al-Ani [11] proposed a new model for penalized likelihood classifica-
tion. The idea of their approach is to evaluate the posterior probabilities for the  
training and the testing points. They use as a measure of roughness the sum of square 
difference between the posterior of a point and that of its K nearest neighbors. How-
ever, their model applied only to two-class classification, and it was not clear how to 
extend that to the multi-class case, as a new derivation is needed. In this work we 
extend their work to the multi-class case. We derive two new algorithms for obtaining 
the estimates of the posterior probabilities. One of them is based on the gradient  
ascent algorithm, and the other is based on component-wise optimization. 

2 The Proposed Method 

Let ∈  denote the feature vectors for pattern , with , … ,   denoting the 
training patterns, and , … ,   denoting the test patterns. Let  be an index 
of the class number with  being the number of classes:   1,2, …  and let , ,……,  be posterior probabilities of classes 1,2, …  for pattern m   | . Let y  be the class membership for training pattern  which is defined 
as y 1  if it belongs to class g and equals zero otherwise. 

The purpose of the proposed method is to estimate the posterior probabilities , 
both for the training set and the test set. Knowing the posterior probabilities will au-
tomatically determine the classification of the patterns. The posterior probabilities are 
obtained by defining the penalized likelihood function and subsequently maximizing 
it, leading to the proposed iterative algorithms.  

Knowing that 
         ∑ 1  then  1 ∑  (2)  

 
the likelihood of the data is given by ∏ ∏ 1 ∑   (3)  

Denote by  as the set of K-nearest neighbors of point  (their indexes). We 
define a roughness function based on the square differences of the posteriors of 
neighboring data points. Specifically, Roughness measure is given by: 

 K ∑ ∑ ∑∈  

  
(4)  

We define our overall objective function as a combination of (3),(4): 
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J log λS  (5)  ∑ ∑  log 1 ∑  ∑ ∑ ∑∈  
(6)  

The first term in the penalized log-likelihood  focuses on the goodness of fit aspect. 
It measures how well the considered  fit the observed data (i.e. the given class 
memberships).  The second term’s purpose is to penalize the roughness of the under-
lying posterior function. A posterior surface where its values for neighboring points 
are close (i.e. having low S) will generally be smooth, and conversely a high S is in-
dicative of a rough surface. The goal is to find the posterior probabilities that maxim-
ize the penalized log-likelihood . We will therefore achieve a compromise between 
faithfully respecting the class memberships of the training data and the smoothness 
property of the posterior surface, with λ being the parameter that controls the degree 
of smoothness. Note that the testing patterns are also used in the expression for the 
smoothness function (the summation in S is over the entire data set). Even though 
they do not carry classification labels, they could be helpful in bridging the gaps be-
tween the training patterns to achieve a smoother fit. On the other hand, the summa-
tion for the log-likelihood function is over only the training set. The reason is that 
class labels are known only for the training set, but not for the test set. We emphasize 
that the labels of the test data were and should never be used in the classifier design, 
in order to guarantee fair testing. 

3 The Proposed Algorithm 

3.1 Initial  Choice: 

The initial choice of  is selected as 1, … , ,  , and for 1, … , ,   . The goal is to solve the following maximization 

problem: 
Maximize  (given by (6)) w.r.t. the variables: , s.t. 0 1  , 1, … , .  Thus, we are dealing with a constrained maximization optimization 

problem, where the constraints are just bounds for the variables . We propose two 
algorithms for solving the above mentioned optimization problem. The first algorithm 
is based on gradient ascent (Method 1), and the second algorithm is based on cycling 
through all variables, each time optimizing w.r.t. only one of the variables through a 
line search (Method 2). The algorithms are described as follows: 

3.2 Method 1 

By using Gradient Ascent method, we start with initial choice for  as described 
in section 3.1, then update  in the direction of the gradient and repeat until con-
vergence to a good solution. 
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              (7)  

To get  equation (6) is partitioned to two terms 1 (the likelihood part) 

and 2 (the roughness term) 1  ∑ 1  (8)  2 ∑ ∑  (9)  

where   number of neighbors used in KNN,   size of , and  is 
the set of points for which  is a K-nearest neighbor. For any 1 :                     (10)  

Get  for 1  1, apply equation (2) to get the dependent class G proba-
bilities , apply gradient (steepest) ascent from equation (7), and Truncate if  
goes out of the constraint box: 

Set 1 if 1 and set 0 if 0  (11)  

3.3 Method 2 

This is the generalization of the method proposed in [11]. We start with an initial 
choice for  like described in section 3.1. While the change in the posteriors (the 

) between the current and previous iteration is greater than a certain threshold, 
for all patterns m do the following: 

(a) If 0 and  G  1 which means that the training pattern belongs to a 
different class than current considered class g and the dependent last class G, then set: ∑ ∈ ∑ ∈   (12)  

where K the number of nearest neighbors is,  is the set of data points for 
which  is one of the K-nearest neighbors, and  is the size of set . Thus 

is the mean of the values of  for some sort of neighborhood of points around 
. 
(b) If 1, which means that the training pattern belongs to the same current 

class g then set: 

2 2  (13)  

where   , and  is given as in (12). 

(c) If 1, which means that the training pattern belongs to the dependent fi-
nal class , then set:  ∑ ∑

  (14)  
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Note that 1 ∑  here represents the neighborhood average of the posteriors 
of the dependent class . 

(d) If  is a test pattern then set  . Finally apply the constraints on the 
probabilities (2), (11). 

Essentially, what this algorithm performs is iterated local averaging of the posteriors 
(to obtain ), and combining the resulting average in some way with the class 
membership (i.e.  ) of the considered pattern (if known), through (12), (13),(14). 

The iteration cycles change the posteriors. Once the algorithm converges, we use 
the obtained final values of the  as the estimated posteriors of data points 
(whether training data or testing data). Recalling that  |  denotes the 
posterior probability for class g, then the final classification of a data point is esti-
mated as class g if  is the highest. 

The new proposed methods Method1 and Method2 are updated pattern by pattern, 
which means that inside each cycle the ’s of only one pattern are updated at a 
time. Since the dependent class G is dealt with in a special way in the above algo-
rithms, we rotate this selected special class over all problem classes from 1  , 
and apply the algorithm again. We end up with G solutions . To select which 
solution set is the best, we select the one that gives best accuracy over the training set. 
It is this one that will be selected, and applied to the test set. 

4 Simulation Results 

We have compared the performance of the proposed method to that of the following 
well-known classifiers in table 1, together with their abbreviations. We tested me-
thods on real-world pattern classification problems, from the UCI repository [12]. 

Table 1. The classification models used in the comparison, and their abbreviations 

Classifier Abbreviation 
Mainfold Parzen Window Bayes classifier Parzen 
Support vector machines (linear) SVML 
Support vector machines (RBF kernel) SVMR 
K-nearest neighbor KNN 
Neighborhood components analysis NCA 
NaiveBayes kernel Classifier NBk 
Decision Tree Classifier DT 

─ SVM: We tested linear SVM (SVML) and SVM RBF (SVMR). The two methods 
implemented using LIBSVM software [13] using the default values for the parameters. 

─ Parzen [14]: We use manifold Parzen software [15], the value of sigma, the stan-
dard deviation, of the Parzen probability density function is selected as 1.  

─ K-nearest neighbor classifier: We used the value K = 9. 
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─ NCA [16] by NCA software [17], we selected the value of K=9. 
─ NBk: Create NB object by fitting training data kernel smoothing density estimate. 
─ DT: decision tree with binary classification splits; the model of trained tree used to 

predict classes. 

Table 2. The datasets used to evaluate the performance of the classifiers 

Database Name Patterns Attributes Classes 

Teaching Assistant Evaluation (tae) 151 6 3 
Statlog (Heart) 270 14 3 
Breast (Tissue) 106 11 6 
Contraceptive Method Choice (cmc) 1473 10 3 
Dermatology (derm) 358 35 6 
Iris 150 5 3 
Ecoli 336 8 8 
Post-Operative Patient (Patient) 87 9 3 
Vertebral Column (verteb) 310 7 3 

 
Table 2 summarizes the characteristics of the datasets used in this paper. Patterns or 
attributes that consist of missing values were removed from the datasets. We used 10 
fold cross validation for training and testing. This is because some of the data sets are 
small, so a hold-out test would yield a smaller size test set, so we opted for K-fold 
method of rotating the test set. We performed 10 runs for each method. Then we aver-
age the classification accuracies on the test sets of the 10 runs. 

Using experiment on other data we found that for the proposed method the best K 
value equals 9, and the best λ equals 1. The algorithm for Method 2 described in 
Section 3.3 needed only 1 or 2 iterations to converge for all datasets, while the algo-
rithm Method 1 described in Section 3.2 we need maximum 9 iterations to converge 
for all datasets.  

Table 3. Average classification accuracy of the competing methods 

M1 M2 KNN NCA SVML SVMR Parzen NBk DT 
tae 68.88 43.13 39.13 45.08 50.25 52.29 54.92 51.71 57.00
tissue 82.09 63.91 49.09 52.45 92.27 14.82 13.91 86.55 96.27
heart 72.59 68.89 62.59 62.22 69.63 46.67 45.93 67.41 61.48
cmc 56.76 55.61 53.30 46.64 50.59 56.35 53.44 52.68 50.71
derm 87.98 89.92 83.82 78.79 95.82 92.18 91.33 90.77 94.42
verteb 90.00 87.74 81.94 81.29 85.16 48.39 79.35 80.32 79.03
patient 87.22 70.83 66.39 66.25 68.47 70.83 69.72 70.83 65.42
ecoli 89.92 89.92 86.93 75.04 81.27 75.61 42.59 83.69 81.01

iris 99.33 97.33 96.67 96.00 97.33 97.33 92.00 96.00 94.67

Av. 81.64 74.14 68.87 67.09 76.76 61.61 60.35 75.55 75.56
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Table 3 presents the average classification accuracy of the competing methods with 
average of each method over all datasets used. For the given nine datasets the best 
classifier is marked bold, One can observe that Method1 gives the best accuracy for 
seven datasets , while DT, SVML gives the best accuracy for tissue, derm datasets 
respectively. Method2 has average accuracy better than KNN,  NCA, SVMRBF, 
Parzen but worse than SVML, NBK, DT. 

Overall, the average accuracy of Method1 is the best among all competing me-
thods. It is therefore considered a competitive classification method and should be 
tested along with other leading classifiers for any classification task. 

5 Conclusion 

In this paper we have developed two new classification methods based on the pena-
lized likelihood concept. The proposed method was compared with several existing 
classification methods. It gave a best performance over all models. We therefore be-
lieve that the proposed approach offers superior performance, and as such it should be 
one of the major contenders to be tested or used in multi-class classification task. 
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Abstract. Self-Organising Maps (SOM) provide a method of feature
mapping from multi-dimensional space to a usually two-dimensional grid
of neurons in an unsupervised way. This way of data analysis has been
proved as an efficient tool in many applications. SOM presented by
T.Kohonen originally were unsupervised learning algorithm, however it is
often used in classification problems. This paper introduces novel method
for supervised learning of the SOM. It is based on neuron’s class member-
ship and Metropolis-Hastings algorithm, which control network’s learn-
ing process. This approach is illustrated by performing recognition tasks
on nine real data sets, such as: faces, written digits or spoken letters.
Experimental results show improvements over the state-of-art methods
for using SOM as classifier.

Keywords: Self-Organising Maps, Classification, Supervised learning,
Metropolis-Hastings algorithm.

1 Introduction

Self-Organising Map (SOM) is a neural network presented in 1982 by T.Kononen
[11]. Due to human readability of the model, easy implementation and fast learn-
ing, SOM gained great popularity in many data analysis problems [13]. SOM was
originally presented as an unsupervised algorithm, however there are extensions
that enable to use SOM as a classifier. They can be generally divided into three
groups.

The first group of methods is based on class membership of each neuron.
In this approach, SOM is first learned in unsupervised manner. After training,
class membership is found for each neuron, based on sample’s class label. Class
membership can be crisp or fuzzy [8], [9], [18], [20]. In the testing phase, the
simplest approach predicts the class based on the class of winning neuron -
so-called ’winner-takes-all method’ (WTA). There are also more sophisticated
methods based for example on k-Nearest Neighbour rule or interpretation of
weights[21].

The second approach combines class vector in binary coded manner with
attribute vector during learning process. In the testing phase, only the attribute

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 149–156, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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vector is presented to the SOM. Sample’s class is denoted, based on neurons
weights corresponding to the class. There are several approaches for doing this
[2], [9], [19], [16], [22]. However, the [16] algorithm seems to present the most
generalized approach from those.

The third technique for using SOM as a classifier is to use as many SOM
networks as number of classes. This approach is well known from Learning Vector
Quantization (LVQ) algorithm [12]. In the simplest way, each network is trained
on samples from corresponding class [4], [7]. In more complex approach [12], the
network is trained on samples from both corresponding and other classes.

Method presented in this paper combines first and third approach.It uses
Metropolis-Hastings (MH) algorithm [6], [15] and class membership of neurons
to control neurons participation in the training process. The MH is well know
from Simulated Annealing (SA) [10] algorithm. There were several attempts to
use MH [17] or SA [3], [5] in SOM. However, they were focused on weights
optimization rather than boosting SOM’s classification performance.

2 Methods

Let’s denote data set as D = {(xi, ci)}, where xi is an attribute vector, x ∈
Rd and ci is a discrete class number of i-th sample, i = [1, 2, ..., N ] and c =
[1, 2, ..., C]. Sometimes the class number will be encoded as a binary vector and
denoted as yi, where yij = 1 for j = ci and yij = 0 otherwise.

2.1 Unsupervised Learning SOM Algorithm

Herein, we used SOM as a two-dimensional grid of neurons. Each neuron is
represented by a weight vector Wpq, where (p, q) are indexes of the neuron in
the grid. In the learning phase all samples are shown to the network in one epoch.
For each sample we search for a neuron which is closest to the i-th sample. The
distance is computed by:

Disttrain(Di,Wpq) = (xi −Wpq)
T (xi −Wpq). (1)

The neuron (p, q) with the smallest distance to i-th sample is called the Best
Matching Unit (BMU), and we note its indexes as (r, v). Once the BMU is found,
the weight update step is executed. The weights of each neuron are updated with
the following formula:

Wpq(t+ 1) =Wpq(t) + η(Wpq(t)− xi), (2)

where t is an iteration number and η is a learning coefficient. It can be written
as η = μτ , where μ is the size of the learning step and τ is the neighbourhood
function. Learning step size is decreased between consecutive epochs, so that
network’s ability to remember patterns is improved. It is described by μ =
μ0exp(−eλμ), where μ0 is the initial step size, e is the current epoch number
and λμ is responsible for regulating the speed of the decrease. Neighbourhood
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function controls changing of the weights with respect to the distance to the
BMU. It is noted as τ(r, v, p, q) = exp(−α((r−p)2+(v−q)2)), where α describes
the neighbourhood function width. This parameter is increasing during learning
α = α0exp(−(estop − e)λα) - it assures that neighbourhood becomes narrower
during training. Network is trained till chosen number of learning procedure
epochs estop is exceeded.

2.2 SOM-WTA

From the first group of methods we will use SOM in WTA configuration (SOM-
WTA). After unsupervised training process, where BMU for each sample is
found, the class membership for each neuron is computed. BMU contains class
number of the matching samples. After presentation of all the samples, each
neuron’s class membership is decided based on major class number. In the test-
ing phase, the class of an input sample is assigned based on the class of the
computed BMU. The main disadvantage of this method are so-called ’empty
neurons’, when neuron has never been selected as BMU during training but is
selected in the testing[21].

2.3 SOM-LASSO

The second approach used in this paper is the so-called ’Learning Associations
by Self-Organisation’ (SOM-LASSO), first described in [16]. During the learning
phase, additionally to attributes it takes into consideration the class vector yi.
Each neuron contains part of weights corresponding to the attributes W x

pq and a
class vector W y

pq, so Wpq = [W x
pq;W

y
pq]. The measure of the distance used during

training is computed by:

Disttrain(Di,Wpq) = (xi −W x
pq)

T (xi −W x
pq) + (yi −W y

pq)
T (yi −W y

pq). (3)

The rest of the training process is the same as in original SOM. In testing, the
exploitation phase is performed, where only the part with attributes is presented
to the network. The BMU is found by computing a distance between an attribute
input vector and an attribute part of the weights, using the following formula:

Disttest(Di,Wpq) = (xi −W x
pq)

T (xi −W x
pq). (4)

For the tested sample, the designated class corresponds to position of maximum
value in the part which codes class information W y

pq in BMU weights.

2.4 SOM-SNEC

The third method uses separate network for each class, we called it SOM-SNEC.
Each network is learned only with samples from the corresponding class in an
unsupervised manner. In the testing process, the BMU is computed in each
network. Sample’s class is designated from the network with the closest BMU.
The main disadvantage of this method is that it losts possibility to visualize all
samples on a single map.
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2.5 Proposed Method (SOM-MH)

In this method, neuron’s class membership is described by probability. We note
Ppq(h) as probability of neuron’s membership in class number h, where (p, q) are
neuron’s indexes. For each training iteration1 only selected group of neurons will
take part in the training. Selection is described by a matrix T , where T i

pq = 1

means that neuron (p, q) will participate in learning using i-th sample, T i
pq =

0 otherwise. Neurons are selected in two steps. First choose neurons having
maximum probability for the class matching the class ci of the input sample:

T i(1)
pq =

{
1 if argmaxh(Ppq(h)) = ci;
0 otherwise.

(5)

In the second step, remaining neurons are considered, with T
i(1)
pq = 0. The deci-

sion on joining the training with i-th sample is taken upon MH algorithm. The
probability of joining is computed using following equation:

J i
pq = 1− exp(−ρPpq(ci)estop/e), (6)

where ρ is the parameter that controls the number of neurons selected addition-
ally to learning in the MH step, ρ ∈ [0, 1]. The fact that number of epochs e is
presented in eq.(6) ensures that neurons added during MH step will be selected
less frequently at the end of learning process than at its beginning. This can be
interpreted as a hesitation of the neuron, which decreases during the training.
Whether the MH decision will be positive, we draw random number a from an
uniform distribution, a ∈ [0, 1]. The neuron will be added to the training group
if a is smaller than J i

pq:

T i(2)
pq =

{
1 if a < J i

pq;
0 otherwise.

(7)

This procedure is repeated for each sample. The final decision on neuron selection

is a logical ’or’ of the decisions T i
pq = T

i(1)
pq ∨ T i(2)

pq .
After each epoch new probabilities are updated. During training for each i-

th sample the neighbourhood value τi is added to the neuron’s probability of
membership in a given class:

P ′
pq(h) =

N∑
i

T i
pqτi, for h = ci. (8)

The neighbourhood value τi represents the belonging of the neuron to the input
sample’s class. After all iterations in a given epoch, the probability are normal-
ized and updated with formula:

Ppq(h) =
P ′
pq(h)∑C

j=1 P
′
pq(j)

. (9)

1 One iteration is a showing to the network one sample. One epoch is a showing to
the network all samples.
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3 Results

At the beginning we will present properties of proposed SOM-MH method, then
we will compare it to the SOM-WTA, SOM-LASSO, SOM-SNEC and LVQ meth-
ods. The comparison is made on 9 real data sets. We used data sets ’Wine’,
’Ionosphere’, ’Iris’, ’Isolet’, ’Digits’, ’Sonar’, ’Spam’, ’Pima’ from the ’UCI Ma-
chine Learing Repository’ 2 [1], and set ’Faces’ are from the ’The ORL Database
of Faces’3. In all experiments we used following parameters values: estop = 200,
μ0 = 0.1, λ = 0.0345, α0 = 0.1, λα = 0.008. All variants of SOM algorithms
were implemented by authors in Matlab. The LVQ algorithm was used from
Matlab Neural Networks Toolbox with default learning parameters and number
of epochs estop.

Table 1. Description of data sets used to test performance and parameters of networks.
Single net size was used for methods SOM-WTA, SOM-LASSO and SOM-MH, multiple
nets size is for SOM-SNEC and LVQ. (∗) In ’Isolet’ and ’Faces’ data sets, the number
of attributes was reduced with PCA.

Train
examples

Test
examples

Attributes Classes
Single net

size
Multiple
nets size

MH ρ

Faces 320 80 50∗ 40 15x16 2x3 0.005

Ionosphere 280 71 34 2 6x8 4x6 0.005

Iris 120 30 4 3 6x6 3x4 0.25

Isolet 6237 1560 100∗ 26 12x13 2x3 0.75

Digits 4496 1124 64 10 15x16 4x6 0.5

Wine 142 36 13 3 6x6 3x4 0.2

Pima 614 154 8 2 12x12 8x9 0.25

Sonar 166 42 60 2 8x9 6x6 0.1

Spam 3680 921 57 2 12x12 8x9 0.75

To show SOM-MH algorithm properties, we learned 7x7 network with ’Iris’
data set. Fig.1a presents network with neurons assigned to one of the three
classes. Fig.1b presents cumulative number of positive MH decisions taken for
each neuron during the whole training. We can observe that neurons which lay
on the border between the different classes have higher number of positive MH
decisions than neurons which have neighbour neuron from the same class. The
highest number of positive MH decisions are for neuron which lay in the border of
the three classes. Fig.1c presents number of positive MH decisions for network
in each epoch for MH parameter ρ = 0.5. It can be observed that number of
positive MH decisions are decreasing during learning, which can be interpreted
as making the network more confident.

Network sizes used for each data sets are presented in Table.1. For eachmethod,
the total number of used neurons are the same. For SOM-WTA, SOM-LASSO,

2 http://archive.ics.uci.edu/ml/
3 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html

http://archive.ics.uci.edu/ml/
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
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Fig. 1. Properties of SOM-MH network tested on ’Iris’ data set, (a) network with
neuron color presenting class membership, (b) network with neuron color presenting
number of positive MH decisions taken during training, (c) number of positive MH
decisions of all network taken in each training epoch.

SOM-MH for all the classes used a single network. For SOM-SNEC and LVQ, there
are multiple networks, one for each class (and hence different column in Table 1).
For SOM-MH the parameter ρ must be tuned. We checked several values of ρ,
ρ = {1, 0.75, 0.5, 0.25, 0.2, 0.15, 0.1, 0.05, 0.005} and for each data set an optimal
value was selected by cross-validation. Selected ρ values are presented in Table 1.
For each data sets we made 10 repetitions to avoid effect of local minima. As an
accuracy measure, we take the percentage of incorrect classifications. The mean
results for all the methods for training subsets are presented in Table 2.

The poorest accuracy on almost all data sets was obtained by SOM-WTA
method. This was expected, as this method does not use the information about
sample’s class during the tuning of the weights. However, this method was better
than SOM-LASSO on the ’Faces’ training set. Poor accuracy of SOM-LASSO on
this set can be explained by comparable lengths of attribute and class vectors.
The best accuracy on this set was obtained by SOM-SNEC method, which was
also the best method on ’Isolet’ data sets. On ’Pima’ data set the LVQ method

Table 2. Percent of incorrect classification on testing subsets for the SOM-WTA,
SOM-LASSO, SOM-SNEC, SOM-MH and LVQ methods. Results are mean and σ over
10 runs.

SOM-WTA SOM-LASSO SOM-SNEC SOM-MH LVQ

Faces 28.88±4.35 35.75±5.11 3.75±2.04 5.25±2.99 6.5±3.05

Ionosphere 14.23±4.06 13.66±4.2 10.85±3.45 10.42±3.65 13.1±3.93

Iris 6.67±4.97 6±3.06 3.33±2.22 2±1.72 6±4.66

Isolet 21.5±1.74 8.36±0.61 5.96±0.45 6.83±0.8 7.6±0.48

Digits 6.27±0.8 6.29±0.64 3.16±0.44 3.02±0.44 17.94±2.44

Wine 6.94±4.77 4.17±4.39 3.33±2.55 2.74±2.27 4.17±2.36

Pima 28.05±4.59 24.55±2.41 26.69±3.39 22.4±3.36 21.56±3.77

Sonar 36.19±6.99 24.76±5.96 24.05±4.69 23.81±6.04 26.67±6.53

Spam 16.35±1.02 12.74±1.25 12.42±1.17 11.77±1.3 37.74±1.34
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gives the best performance. On all other sets, the SOM-MH method gives the
lowest incorrect classifications. If the comparison is made only for methods that
use single SOM network, SOM-MH is significantly better than SOM-WTA and
SOM-LASSO on all data sets. SOM-SNEC has similar results to SOM-MH.
However, by using SOM-SNEC we lost important feature of SOM - the ability
of data visualization on a single map.

4 Conclusions

A new method SOM-MH for using SOM as a classifier was presented. It uses
neuron’s class membership and Metropolis-Hastings algorithm to control neu-
ron’s learning process. This can be interpreted as simulating neuron’s hesita-
tion during the learning or as simulated annealing of class membership. The
hesitation of neuron decrease during the learning. The proposed method was
compared to other state-of-art methods for using SOM in classification tasks.
Test results confirm that the proposed method improve accuracy of classifi-
cation. The other supervised clustering algorithms can be improved with pro-
posed method. Matlab implementation of the SOM-MH model is available at
http://home.elka.pw.edu.pl/~pplonski/som_mh.
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Abstract. A computationally efficient method for estimating two-dimensional 
(azimuth and elevation) direction-of-arrival (2-D DOA) of coherently distributed 
source is presented. Since the coherently distributed source is characterized by four 
parameters, the azimuth DOA, angular spread of the azimuth DOA, the elevation 
DOA, and angular spread of the elevation DOA, the computational complexity of 
the parameter estimation is normally highly demanding. A low-complexity 
estimation algorithm is proposed based on deduced Schur-Hadamard product 
steering vector which enables the estimation of 2-D DOA decoupled from that of 
angular spread of sources. The estimator constructs cross-correlation matrix from 
subarrays. And then the closed form solution of the elevation and azimuth DOA 
estimation can be obtained sequentially. Therefore, the proposed method avoids 
computationally demanding spectral search step and does not involve any eigen 
decomposition or singular value decomposition as in common subspace techniques 
such as MUSIC and ESPRIT. Numerical examples illustrate the performance of 
the method. 

Keywords: Coherently distributed source, 2-D DOA estimation, Cross-
correlation, Angular spread. 

1 Introduction 

Estimation of 2-D DOA is a key problem in array signal processing field such as 
radar, sonar, radio astronomy, and mobile communication systems[1-2]. Many signal 
source localization algorithm has focused on sources that are modeled as points in 
space. In point source model assumption, the source energy is concentrated at discrete 
angles that are referred to as the source DOA. However, in applications signal 
reflection and scattering phenomena at the source vicinity may result in angular 
spreading of the source energy, which degrade the performance of any array signal 
processing algorithm that uses a point source model. In this complex situation, a 
distributed source model will be more appropriate than the point source one [3-8]. 

Some typical estimators have been proposed for azimuth-only estimation of the 
DOA and angular spread of coherently or incoherently distributed source [5-8]. All 
these methods are involved joint spectral searching and computationally intensive. 
                                                           
* Corresponding author. 
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Some low-complexity estimators have also been given in [9-13]. In the low-
complexity algorithms, some of them are sequential 1-D algorithms instead of joint 2-
D searching [10]. Others are simpler but suboptimal solutions can be achieved by  
the subspace-based approach, which relies on signal subspace and noise subspace  
[11-13]. 

Recently, researchers have focuses on 2-D DOA estimation for distributed sources. 
However, for the problem of estimating the 2-D DOAs, the distributed source is 
characterized by four parameters, the azimuth DOA, angular spread of the azimuth 
DOA, the elevation DOA, and angular spread of the elevation DOA, the 
computational complexity of parameter estimation is normally highly demanding. 
Simpler but suboptimal solutions can be achieved by SOS algorithm [14], which 
relies on eigendecomposition and 1-D searching for estimating the azimuth and 
elevation DOA. Using a uniform circular array, 2-D DOA and angular spreads are 
estimated by a 2-D joint searching method in [15].  

In this paper, we consider the coherently distributed source model and propose a 
low-complexity 2-D DOA estimation method using three uniform linear arrays. Based 
on the special array geometry, the cross-correlation matrix from signals received at 
subarrays is constructed. And then the elevation and azimuth DOA estimation can be 
obtained sequentially. The resultant decoupled algorithm avoids spectral search step 
and does not involve any eigendecomposition or singular value decomposition. 

2 System Model 

Consider an array configuration which consists of three uniform linear subarrays as in 
Fig.1. The interspacing d between sensors in each subarray is equal to a half-
wavelength of incident signals. Let X , Z and W denotes the three subarrays and each 
linear array consists of M elements. 

 
 
 
 
 
 

Fig. 1. The array configuration for 2-D DOA estimation of coherently distributed source 

Suppose that there are q narrow-band sources impinging on the array. The 

received vector of subarray X can be written as  

 ( ) ( ) ( )
1

q

i X
i

t t t
=

= +X S N  (1) 

X 
 W 

…
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(0,0,0) 
…

…

(0,0,d) 
(0,(M-1)d,d) 

(d,0,0) 
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where ( )tX is the array snapshot vector, ( )i tS is the vector that describes the 

contribution of the ith source to the array output, and ( )X tN is additive zero-mean 

noise for subarray X  uncorrelated from the signals. 

In point source modeling, the baseband signal of the ith source is modeled as 

 ( ) ( ) ( ),i i i it s t θ φ=S a  (2) 

where ( )is t is the complex envelope of the ith source, 

( ) ( )( ) ( )( )( ) T
, 1 exp j2π sin sin exp j2π 1 sin sini i i i i id M dθ φ λ θ φ λ θ φ = − − − a 

is the corresponding steering vector, iθ and iφ are the elevation and azimuth DOA, 

respectively, λ is the wavelength of the impinging signal. 
In distributed source modeling, the source energy is considered to be spread over 

some angular volume. Hence, ( )i tS is written as 

 ( ) ( ) ( ), , , d di it tϑ ϕ ς ϑ ϕ ϑ ϕ= S a  (3) 

where ( ), ,i tς ϑ ϕ is the angular signal density of the ith source and can be expressed as 

 ( ) ( ) ( ), , , ;i i i it s tς ϑ ϕ ϑ ϕ= μ  (4) 

under the coherently distributed source assumptions. In (4), ( ), ;ϑ ϕ μ is a 

deterministic angular signal intensity function, and is parametrized by the vector 

( ), , ,θ φθ σ φ σ=μ denoting the elevation DOAθ , angular spread θσ of the elevation 

DOA, the azimuth DOAφ , and angular spread φσ . 

The steering vector of subarray X can be written as 

 ( ) ( ) ( ), , ; d dX ϑ ϕ ϑ ϕ ϑ ϕ= b μ a μ  (5) 

As a common example of the coherently distributed source, assume that the 
deterministic angular signal intensity function ( ), ;ϑ ϕ μ has the Gaussian shape as 

follows, 

 ( ) ( )( ) ( ) ( )( )( )2 22 2, ; 1 2π exp 1 2θ φ θ φϑ ϕ σ σ ϑ θ σ ϕ φ σ= − − + −μ  (6) 

The received signal vector in other subarrays Z and W can also be expressed as  

 ( ) ( ) ( ) ( )( ) ( ) ( )
1

, , ; exp j2π cos d d
q

i Z
i

t d s t tϑ ϕ ϑ ϕ λ ϑ ϑ ϕ
=

= − +Z a μ N  (7) 
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 ( ) ( ) ( ) ( )( ) ( ) ( )
1

, , ; exp j2π sin cos d d
q

i W
i

t d s t tϑ ϕ ϑ ϕ λ ϑ ϕ ϑ ϕ
=

= − +W a μ N  (8) 

and the steering vectors are defined as ( )Zb μ and ( )Wb μ , respectively. 

 ( ) ( ) ( )( ) ( ), exp j2π cos , ; d dZ dϑ ϕ λ ϑ ϑ ϕ ϑ ϕ= −b μ a μ  (9) 

 ( ) ( ) ( )( ) ( ), exp j2π sin cos , ; d dW dϑ ϕ λ ϑ ϕ ϑ ϕ ϑ ϕ= −b μ a μ  (10) 

3 Decoupled 2-D DOA Estimation Algorithm Based on  
Cross-Correlation Matrix 

In general, an optimum estimation method for point or distributed sources can provide 
an excellent performance at the cost of intensive computation. Since the 
computational complexity increases dramatically with high dimensional parameters, 
we have to sometimes find suboptimum methods to reduce the computational cost 
while sustaining the estimation performance within a tolerable level. It is noteworthy 
that a considerable simplification is possible by exploiting and utilizing the special 
array structure of the array geometry in the parameter estimation under coherently 
distributed source model also. 

For Gaussian angular signal intensity, the steering vector ( )Xb μ can be written as 

 
( ) ( )( )( ) ( )( )

( ) ( )( )( )2 22 2

exp j2π 1 sin sin 1 2π

exp 1 2 d d

X m
m d θ φ

θ φ

λ ϑ ϕ σ σ

ϑ θ σ ϕ φ σ ϑ ϕ

= − − ×  

                    − − + −

b μ
 (11) 

where [ ]m
 indicates the mth element of a vector. In distributed source, ϑ  and ϕ  

are all around θ and φ . So with the change of variables ϑ θ θ− =   and ϕ φ φ− =  , 

θ  and φ  are small values. We can rewrite (11) as 

( ) ( ) ( ) ( )( )( )
( )( )

( ) ( )( )

( )( )( ) ( ) ( )( )
( )( )( ) ( )( )( )

2 2 2 2

2 2

2 2

exp j2π 1 sin cos sin cos

1
exp 1 2 d d

2π
1

exp j2π 1 sin sin
2π

exp j2π 1 sin cos exp 1 2 d

exp j2π 1 cos sin exp 1 2 d

X m
m d

m d

m d

m d

θ φ
θ φ

θ φ

φ

θ

λ θ θ θ φ φ φ

θ σ φ σ θ φ
σ σ

λ θ φ
σ σ

λ φ θ φ φ σ φ

λ θ θ φ θ σ θ

≈ − − + + ×  

  − +

= − − ×

− − − ×

− − −






b μ  

   

  

  

      (12) 
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Let us consider the approximate form of ( )Xb μ . Using the integral formula [16], 

 
( ) ( )

( )( ) ( )

2 2

2 2

exp exp j d

π exp 4 exp j

f x p x x

p f p f

α

α

∞

−∞
    − +  

= −


 (13) 

Equation (12) can be expressed as  

 ( ) ( ) ( )( ) [ ] [ ]1 2exp j2π 1 sin sinX m mm
m d λ θ φ≈ − − × ×  b μ g g  (14) 

where [ ] ( ) ( )( )2 22 2 2 2
1 exp 2π 1 sin cos

m
m d φλ θ φσ= − −g , [ ] ( ) ( )( )2 22 2 2 2

2 exp 2π 1 cos sin
m

m d θλ θ φσ= − −g . 

In the matrix form it can be extended to  

 ( ) ( ) 1 2,X θ φ=b μ a g g   (15) 

where  is the Schur-Hadamard or element product. 1g and 2g are real-valued 

because of the symmetry assumption on angular signal intensity. 
For the steering vector ( )Zb μ , there is 

 

( ) ( )( ) ( ) ( )( )
( )( )( )

( ) ( )( )( )2 22 2

exp j2π 1 sin sin

exp j2π cos sin

1
exp 1 2 d d

2π

Z m
m d

d

θ φ
θ φ

λ θ θ φ φ

λ θ θ θ

ϑ θ σ ϕ φ σ ϑ ϕ
σ σ

≈ − − + + ×  

   − − ×

   − − + −

b μ  

  (16) 

Using ( )2π 0d λ θ ≈ , ( )Zb μ can be rewritten as 

 

( ) ( ) ( ) ( ) ( )( )
( )( )

( ) ( )( )( )2 22 2

exp j2π 1 sin sin

exp j2π cos

1
exp 1 2 d d

2π

Z m
m d

d

θ φ
θ φ

λ θ θ φ φ

λ θ

ϑ θ σ ϕ φ σ ϑ ϕ
σ σ

≈ − − + + ×  

  − ×

 − − + −

b μ  

 (17) 

According to (14) and (17), we can write the following equations, 

 ( ) ( )( ) ( )exp j2π cosZ Xd λ θ≈ −b μ b μ  (18) 

For the steering vector ( )Wb μ , we also have 

 ( ) ( )( ) ( )exp j2π sin cosW Xd λ θ φ≈ −b μ b μ  (19) 

To implement the proposed decoupled 2-D DOA estimation algorithm for a single 
coherently distributed source, we formulate a cross-correlation matrix between the 
signals received at the subarrays, i.e., we consider the following cross-correlation matrix, 
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( ) ( ){ } [ ] [ ] [ ] [ ] ( ) ( ){ }
( ) ( ){ }

1 2 1 2exp j2π cos

k k

k k k
XZ k k k k

X Z

d
E t t E s t s t

E t t

θ
λ

∗ ∗

∗

  = = × × × × × +       

  

R X Z g g g g

N N

 (20) 

where [ ]1,k M∈ , ( )k tX  and ( )k tZ  denote signals received at the kth sensors at 

subarrays X and Z, [ ]∗
 is conjugate of a matrix. So the elevation DOA can easily be 

found as 

 ( ) ( )( )( )
1

1
arccos / 2π

M
k
XZ

k

d
M

θ λ
=

= ∠ R


 (21) 

where ( )∠  stands for the phase angle of  . 

For estimating the azimuth DOA, the cross-correlation matrices are defined as 
follows, 

 ( ) ( ){ } [ ] [ ] [ ] [ ] ( ) ( ){ }
( ) ( ){ }1

1
1 2 1 21 1

exp -j2π sin sin

n n

n n n
XX n n n n

X X

d
E t t E s t s t

E t t

θ φ
λ

+

∗ ∗+
+ +

∗

  = = × × × × × +       

  

R X X g g g g

N N

 (22) 

and 

 ( ) ( ){ } [ ] [ ] [ ] [ ] ( ) ( ){ }
( ) ( ){ }

1 2 1 2exp j2π sin cos

n n

n n n
XW n n n n

X W

d
E t t E s t s t

E t t

θ φ
λ

∗ ∗

∗

  = = × × × × × +       

  

R X W g g g g

N N

 (23) 

where [ ]1, 1n M∈ − . 

Equations (22) and (23) both include the azimuth DOA, so it can easily be found as 

 ( ) ( )( )
1

1

1
arctan /

1

M
n n
XX XW

nM
φ

−

=

= ∠ − ∠
−  R R


 (24) 

Equation (24) implies that the azimuth DOA φ


can be estimated without any 

information of θ


, which avoids any error of θ


 effecting the estimation precision of 

φ


. 

It’s clear that the proposed method can estimate the 2-D DOA of coherently 
distributed source with the closed form solution in (21) and (24). It is a suboptimum 
algorithm and can be applicable when there exists a special array geometry. 
Regarding the major computational complexity, the proposed methods avoids 
computationally demanding spectral search step and does not involve any 
eigendecomposition or singular value decomposition as in common subspace 
techniques such as MUSIC and ESPRIT. 
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4 Simulation Results 

Simulations of the 2-D DOA estimator proposed are completed to assess its 
performance. The elements of each antenna array are separated by a half-wavelength. 
The number of antenna elements in each axis is set to 8M = . We have considered a 
single narrowband coherently distributed source. The source has Gaussian shaped 

angular signal intensity functions with parameter = 60 3 75 5  μ    
， ， ， . 

The first simulation presented in Fig. 2(a) shows the root mean square error 
(RMSE) of the 2-D DOAs estimation in degrees for the proposed method compared 
with the SOS algorithm for different SNRs. The RMSE is defined as 

( ) ( )2 2
E θ θ φ φ − + −  

 
. The received signals are obtained with 500 snapshots. The 

simulation results are computed over 500 trials. As it can be seen, the proposed 
algorithm has better estimation performance at high SNR. The explanation of this fact 
is that the bias of cross-correlation estimation has effected the 2-D DOA estimation in 
low SNR scenarios. 

 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2.  (a) RMSEs for 2-D DOA estimates versus SNR, (b) RMSEs for 2-D DOA estimates 
versus the number of snapshots 

Second, let us consider the influence of the number of snapshots on the 
performance in Fig. 2(b) assuming that SNR=15dB. It is observed that the RMSEs in 
proposed method are rather small even when the number of snapshot is not large. 

Third, Fig. 3 shows the RMSEs of the 2-D DOA estimates of the proposed and 
SOS methods as a function of angular spread. We have assumed that the number of 
snapshots 500N =  andSNR 15dB= . As angular spread increases from 1  to 5 , the 
performance of the proposed method degrades. However, it is clear that when the 
angular spread becomes large, the proposed algorithm can still give effective 
estimation. 
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The proposed method is a suboptimum method and applicable when there exists a 
special array geometry, while classical subspace algorithms can be used with arbitrary 
array geometry and generally provide almost optimum performance at the expense of 
higher computational complexity. So there is always a tradeoff between the 
performance and computational complexity.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. RMSEs for 2-D DOA estimates versus angular spread 

5 Conclusions 

In this paper, we have considered the estimation of the parameters of a spatially 
distributed source with a view to provide a statistically and computationally efficient 
algorithm. Based on Schur-Hadamard product steering vector, the proposed algorithm 
is applied to a cross-correlation matrix constructed from the received signal at 
subarrays. And then the 2-D DOA can be estimated decoupledly. Unlike previous 2-D 
DOA estimators for distributed source, the proposed method is capable of estimating 
the azimuth and elevation angles without any peak-finding searching and eigenvalue 
decomposition.  
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Abstract. The under-sample classification problem is discussed for 21 normal 
childrenand 21 children with reading disability. We first rejected data of one 
subject in each group and produced 441 sub-datasets including 40 subjects in 
each. Regarding each sub-dataset, we extracted features through nonnegative 
Tucker decomposition (NTD) from event-related potentials, and used the leave-
one-out paradigm for classification. Averaged accuracies over 441 sub-datasets 
were 77.98% (linear discriminate analysis), 73.55% (support vector machine), 
and 76.97% (adaptive boosting). In summary, assuming K observations with 
known labels, for the new observation without the group information, the 
feature of the new observation can be extracted through performing NTD to 
extract features from data of all observations (K+1). Since the group 
information of the first K observations is known, their features can train the 
classifier, and then, the trained classifier recognizes new features to determine 
the group information of new observation. 

Keywords: Classification, Event-related potential, Mismatch negativity, Multi-
domain feature extraction, Nonnegative Tucker decomposition, Undersample. 

1 Introduction 

Brain-Computer interface (BCI) has become a bridge to connect brain states and 
external devices. Brain states can be often represented by electroencephalography 
(EEG) in BCI [29]. Indeed, EEG data can be divided into three groups including 
spontaneous EEG [24], event-related potentials (ERPs) [16] and ongoing EEG [10]. 
Different kinds of EEG data have very different properties. For the spontaneous EEG, 
the data are usually collected in the rest-state of the participant, and the oscillations 
are often analyzed [24]. Regarding ERPs, a short external stimulus is repeated 
hundreds of times; each time can be called as each single trial or epoch; EEG data of 
those single trials are usually averaged to produce ERPs; the peak amplitudes and 
latencies of ERPs are frequently analyzed [16]. Ongoing EEG are often recorded in 
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the circumstance of real experience of a participant, for example, listening to natural, 
long and continuous music; oscillations can be analyzed; and the temporal course of 
an oscillation can be linked to the stimulus [10]. 

For EEG based BCI studies, the event-related designs have been extensively 
investigated [29]. The single-trial EEG data are mostly analyzed in BCI instead of the 
averaged EEG used in the conventional ERP analysis [29]. In BCI, classifying brain 
states based on machine learning methods [1] is one of the core steps [29]. For such 
classification, the number of single trials is the number of observations and the 
number of features extracted from single-trial EEG data is the number of variables. 
Since the number of analyzed single trials can be hundreds in BCI [32-33], the 
machine learning based classification works very well. Indeed, for the single-trial 
ERP data in BCI, the basic assumption is that the elicited ERP activity in each of 
analyzed single trials is observable [29], [32]. However, some small ERPs tend to be 
invisible in the single trial ERP data and averaging over hundreds of single trials is 
usually required to produce the small ERPs [20-21], [23]. From this point of view, 
classification in BCI cannot be performed on single trials data of such small ERPs. 

Small ERPs can be very important for cognitive research. For example, mismatch 
negativity (MMN) can reflect a subject’s ability of passively detecting the deviant among 
the repeated stimuli in a regular auditory pattern [20], and can be applied to study the 
automatic auditory brain functions, related to discrimination and perception, of the brain 
of children with delayed language development [15], [17]. Specifically, its peak 
amplitude has been acknowledged to be an endophenotype to study normal children and 
children with disorders, owing to the smaller peak amplitude of MMN generated by the 
latter group [11] and the different topographies of peak amplitudes between the normal 
children and children with reading disability (RD) [13]. Because MMN is very small the 
group-level analysis is still the main methodology for its analysis [22]. Usually, statistical 
tests are performed on the peak measurements of participants of different groups, and the 
significance of the difference between/among groups is reported [16]. Indeed, such 
studies are targeted to search the difference between/among groups of participants from 
the view of data processing, which is very similar for the machine learning based 
classification when a participant is regarded as one observation. Compared with 
statistical tests, the machine learning based classification is much more powerful to 
discriminate different observations [1]. Hence, it can be significant to implement the 
machine learning based classification on the ERP data that are the averaged EEG, which 
is towards to a different BCI in contrast to the single-trial ERP data. 

In our previous study [8], we performed the classification on the features extracted 
from the ERP data which were the averages over single trials. For such applications, 
the number of participants is the number of observations for the machine learning 
based classification. However, the problem is that the number of such observations in 
ERP studies is usually limited to be dozens [16], and then, the classification belongs 
to the under-sample problem. Indeed, regarding such a problem, the tensor 
discriminate analysis (TDA) has been proposed [30], [31]. For TDA, features are 
extracted through a supervision manner. If TDA is applied for ERP studies, one 
drawback is that the features are hardly interpreted by the physiological properties of 
ERPs. In this study, we will design a new paradigm for under-sample classification 
based on the multi-domain features of MMN [7], [8] extracted by nonnegative Tucker 
decomposition (NTD) [25], [26].   
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Fig. 1. Stimuli sequence 

2 Method 

2.1 Data Description 

The data were collected in University of Jyväskylä, Finland. In this study, the data of 21 
normal children and 21 children with RD were taken for analysis. For detailed 
information on how to categorize the children, please refer to Huttunen et al., [13]. The 
CONT group consisted of 11 boys and 10 girls and the mean age of this group was 11 
years 6 months (age range: 8 years 8 months to 13 years 2 months); and the RD group 
included 16 boys and 5 girls, and their mean age was 11 years 9 months (age range: 8 
years 8 months to 14 years 2 months). In the study, an uninterrupted sound under the 
oddball paradigm was used to elicit MMN. This paradigm consisted of the uninterrupted 
sound, alternating 100ms sine tones of 600Hz and 800Hz (repeated stimuli, see Fig.1). 
There was no pause between the alternating tones and their amplitudes did not change. 
During the experiment 15% of the 600Hz tones were randomly replaced by shorter ones 
of 50ms and 30ms duration (called as dev50 and dev30 hereinafter). The deviants 
consisted of 7.5% of 50ms deviants and 7.5% 30ms deviants. There were at least six 
repetitions of the alternating 100ms tones between two deviants. 

EEG recordings at nine channels (frontal F3, Fz, F4; central C3, Cz, C4; parietal Pz 
and mastoids M1, M2) were collected with Electro-Cap International 20-electrode cap 
using the standard 10-20 system. The potentials were referenced to the tip of nose. After 
a band-pass filter of 0.1–30Hz was applied, EEG was downsampled with the rate of 
200Hz. Recording started 300ms before the onset of a deviant stimulus and lasted 350ms 
after the onset of a deviant. Thus each trial contained the recordings of 650 ms, i.e., 130 
samples. In order to remove artifacts, two types of exclusion criteria were applied. 
Firstly, trials with amplitude exceeding ±100 μV were rejected. Secondly, trials with 
recordings of zero variance were deleted. After the artifacts rejection, the mean number 
of trials per child was about 331 with the standard deviation of 21.6. In order to obtain 
the stable MMN, the kept trials were averaged for each subject, followed by removing 
the baseline formed by the average of the first 300 ms recordings. Then, the Morlet 
wavelet transform was performed on the average to obtain the time-frequency 
representation (TFR) of MMN. For the wavelet, the half wavelet length was set to be six 
for the optimal resolutions of the frequency and time [28]; the frequency range was set 
from 2 to 8.5Hz, and this was because the optimal frequency band of MMN in our 
dataset was in this range[3], [14]; 256 frequency bins 
were logarithmically distributed within this 
frequency range. 

Then, the data was well prepared for the 
following feature extraction by NTD. It should be 
noted that only the data at one electrode under 
dev50 was chosen for analysis in this study, and 
the task was to classify the normal children and 
children with RD. 
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2.2 Nonnegative Tucker Decomposition 

For a given Nth-order tensor ∈ , NTD model [25], [26] usually reads, 

,                      (1) 

where, , , , ∈ , 1,2, , are common factors or 

loadings represented by component matrices, and ∈  is core tensor. 
Practical NTD algorithms are usually in terms of alternative least squares (ALS) 
minimization of the squared Euclidean distance (Frobenius norm) subject to the 
nonnegativity constraints [27]. An alternative approach for NTD is the use of the all-
at-once algorithms which simultaneously update all the factors and the core tensor 
such as the damped Gauss-Newton algorithm [27]. 

For feature extraction [25], [26], the last mode, i.e., the mode-N, is usually the 
sample/instance and represents the multi-domain features. Subsequently, the 
corresponding learning processing regarding NTD model is as the following , .  (2) 

In a compact form of tensor products [20], the multiplicative update rule for factors 
  ( 1,2, , 1) used in this study is given by 

, , , ,     (3) 

and the update rule [20] for the core tensor  used in this study is as 

                 (4) 

where  and  denote the Hadamard product and division. 

2.3 Feature Extraction and Classification Paradigm 

In this study, each group had 21 subjects. From the view of the leave-one-out policy, 
data of 41 subjects can be used to extract the training features by NTD and learn the 
feature space, and then, the left data can be projected to the learned feature space to 
produce the testing features by NTD. We did not adopt such conventional machine 
learning based classification paradigm in this study because the number of the 
observations in each group was not enough for learning the feature space. 

Considering the undersample problem, we design a new paradigm for the 
classification. It includes two parts. One is to validate the separability of the two 
groups through the features extracted by NTD, and the other is to test the paradigm. 
We take the example of the data in this study to illustrate this new paradigm.  

Firstly, we can learn the feature space and extract features through performing NTD 
on data of all 42 children. Indeed, the feature extraction is not supervised and the group 
information is not exploited here. Then, we try to classify the two groups with the 
derived features along the leave-one-out policy. We use features of 41 subjects to train 
the classifier and test the feature of the left one. The feature of every subject is tested. By 
this way, we can determine whether the two groups are able to be classified or not. If 
they can be classified, the paradigm is useful. Otherwise it is no use. This is the first step. 
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Fig. 2. Accuracies of classification in sub-datasets 

Secondly, data of one subject in each group is rejected, and then, data of 40 subjects 
are left for the feature extraction and classification. We use features of 39 subjects to train 
the classifier and test the feature of the left one. The feature of every subject is tested. In 
case each group has 21 observations, there are 441 different sub-datasets including 40 
observations and any two sub-datasets at least has one different observation. Finally, the 
accuracies for classification in 441 sub-datasets represent the ability of the proposed 
paradigm to classify two groups with the features extracted by NTD. 

We used three classifiers including the linear discriminate analysis (LDA)[12], 
support vector machine (SVM)[12], and adaptive boosting (Adaboost) [12]. For 
SVM, the ‘RBF’ nonlinear kernel was trained. 

2.4 Data Processing 

The features were extracted by NTD from EEG data at F3. This is because the normal 
children have larger magnitude of MMN peak in the right hemisphere, and the children 
with RD have larger one in the left hemisphere [13]. Thus, the data at F3 should be more 
discriminative between two groups in contrast to the data at other electrodes. As 
mentioned above, for the first step of the proposed method, 42 subjects’ data composed a 
third-order tensor including the dimensions of frequency by time by subject; regarding 
the second step, 40 subjects’ data were used. For the spectral and temporal factors, five 
and two components were extracted by NTD, respectively. Hence, ten features were 
extracted by NTD. And then, two most discriminative features were chosen for the 
classification. These parameters were chosen based on cross-validation. 

3 Results 

For the first step using all the data including 42 subjects, the accuracies of the 
classification of normal children and children with RD were 0.8095 (LDA), 0.8095 
(SVM), and 0.9048 (Adaboost). Regarding the second step, the averaged accuracy over 
441 sub-datasets including 40 subjects in each were 0.7798 (LDA), 0.7355 (SVM), and 
0.7697 (Adaboost). Fig.2 
shows the accuracy of the 
classification in every sub-
dataset. The horizontal ordinate 
represents the accuracy of the 
classification, and the vertical 
ordinate denotes the number of 
datasets at certain accuracy.  

Due to the limitation of  
the space of this study, the 
waveforms of ERPs and the 
single-trial ERP data are not 
shown. Please refer to [4], [9] 
for more details.  
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4 Conclusion and Discussion 

In this study, we propose a new classification paradigm that the features are extracted 
by NTD from data including the testing and the training observations. We show that 
such features can be used for the further classification when the undersample problem 
appears in BCI regarding ERPs. Due to the space limitation, we did not compare the 
proposed algorithm with other undersample problem solutions in this study. 

Indeed, for NTD, the conventional machine learning based classification first 
learns the feature space through performing NTD on the training dataset, and then 
projects the testing data onto the learned feature space to produce the testing features 
[8]. Such a paradigm should work well in case the number of observations for the 
classification is enough to learn the feature space. However, in the study of ERPs, 
when a subject is regarded as an observation, the undersample problem often happens 
due to the limited number of observations. Hence, the conventional machine learning 
based feature extraction and classification should be modified to resolve this problem. 
The supervised feature extraction through tensor has been proposed [31]. However, 
since it is difficult to interpret the features extracted by such supervised learning from 
the psychological knowledge of an ERP, we do not exploit such methods in our study. 

In this study, firstly, we learn the feature space and extract features of all 
observations together. Such a procedure is not supervised since we do not exploit the 
group information. Nevertheless, it is different from the conventional machine 
learning based feature extraction mentioned above. This results in that the accuracy of 
the classification using the features extracted from all data is just the special case. 
However, such obtained accuracy can illustrate whether the two or more groups can 
be classified or not through the extracted features with a classifier.  

Secondly, in order to test the idea extracting features from data including the 
testing and the training observations, it is reasonable to reject some data from each 
group to form a sub-dataset, and to repeat the same procedure in the first step. After 
all possibilities to forming the sub-datasets are tested, the accuracy of the 
classification can be reliable. 

Results showed that the accuracy of the classification of normal children and 
children with RD was around 80% in most sub-datasets when LDA was used, 
indicating the success of the proposed feature extraction and classification paradigm. 

In summary, assuming we have K observations including two groups, when the 
new observation without knowing the group information comes, the feature of the 
new observation can be obtained through performing NTD to extract features from 
data of all observations (K+1). Since the group information of the first K observations 
is known, their features can train the classifier, and then, the trained classifier 
recognizes the new feature to determine the group information of the new 
observation.   

It should be noted that group-level analysis using ERP is very important in the 
cognitive research as mentioned earlier. In order to facilitate such analysis, it is 
necessary to formulate the tensor including data of different subjects. This is because 
the component extracted by NTD has the inherent variance indeterminacy [2] which 
cannot be corrected. This is different from independent component analysis (ICA). 
Although the variance of a component extracted by ICA is not determined either, the 
back projection of the component to the sensor field can correct the indeterminacy 
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when the decomposition of ICA is satisfactory in practice [5], [6], [18], [19].  From 
this point of view, ICA can be performed on the individual dataset for group-level 
analysis of ERPs [4], [9], but NTD has to be applied on the datasets including groups 
of subjects [7], [8]. Hence, developing fast NTD algorithm is critical and significant 
in the study of ERPs. 
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Abstract. This paper presents a novel approach to estimate (predict)
the a priori client decision threshold for biometric recognition systems
based on multiple linear regression. Biometric recognition is a complex
classification problem where the goal is to classify a pattern (biometric
sample) as belonging or not to a certain class (client). As in other pat-
tern recognition problems, a correct estimation of the decision threshold
is essential for optimizing the biometric system’s performance. Our pro-
posal is tested in biometric signature recognition, estimating thresholds
for different system working points. A theoretical and practical perfor-
mance analysis is presented, including a comparison with the state of the
art, showing the advantages, in system performance, of our proposal.

Keywords: Threshold prediction, biometric signature recognition, mul-
tiple linear regression.

1 Introduction

This work focuses on the a priori client decision threshold estimation in biomet-
ric person recognition systems, where unique human characteristics (biometrics,
e.g., iris, fingerprint, etc.) are used to recognize the user (client or Target Class,
TC). Biometric recognition task can be split into two groups: identification (who
is the owner of this biometric?) and verification or authentication (Am I the per-
son I claim to be?). This second task is the one approached in this work.

Among the several biometrics used, signature presents some advantages [5],
such as, for example, that it is widely accepted and commonly used in legal
and commercial transactions as an authentication method. In addition, it is the
second most important [10] of the behavioral biometrics. Signature verification
can be split into: i) Static or off-line, where the signature written on paper is
digitized, and ii) Dynamic or on-line, where users write their signature in a
digitizing device. Static systems are restricted to use in legal cases. The experi-
ments have been performed using dynamic signature recognition. Depending on
the test conditions, two types of forgeries can be established: i) skilled forgery,
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where the impostor imitates the client signature, and ii) random forgery, where
the impostor uses his/her own signature as a forgery.

In development tasks, the decision threshold can be estimated a posteriori.
However, in real applications, the threshold must be established a priori, and
it is fundamental to optimize the system performance: A good system operat-
ing with a wrong threshold becomes useless. Several important problems arise
concerning threshold accuracy estimation in real world biometric applications:
i) It is common to have only a few data from the TC, biasing the statistics
estimation[12]. ii) It is difficult, or even impossible, to get an adequate Non-
Target Class, NTC, (impostors) representation in some biometrics (e.g., it is
not legal to get forgeries in manuscript signatures). iii) Generally, to simplify,
the samples are supposed to be i.i.d., but in biometry this is not true; it is
the so-called “biometric menagerie” that was first pointed out in [3] for speaker
recognition, but the same phenomenon has been independently observed in other
biometrics.

Here, a new approach to deal with these problems in a priori client threshold
prediction is shown. Our proposal is based on the use of the Multiple Linear
Regression (MLR). This proposal has been tested for multi-working points, i.e.,
it has been tried to predict thresholds for different, and representatives, sys-
tem performance points (Sec. 4.2). Besides, a comparison with other prediction
proposals in the literature has been performed, showing the advantages, in pre-
diction accuracy, of our proposal.

The paper is organized as follows. We will begin (Sec. 2) with a brief analysis of
the state of the art of threshold estimation in biometric recognition. The main
characteristics of our proposal are shown in section 3, including a theoretical
introduction to MLR. The experimental setup can be seen in section 4. The
performance of our proposal is presented in section 5. The conclusions can be
seen in section 6.

2 Related Works

Given a test sample X , the problem of biometric verification can be stated as a
basic statistical hypothesis test:

H0 : X is from client C and H1 : X is not from client C

The decision between the two hypotheses is performed as shown in Eq. 1

P (X/H0)

{
> θC Accept H0

< θC Reject H0
(1)

Where, θC is the client decision threshold, different for each client. Biometric
verification is a pattern recognition problem, where each client C is represented
by means of a model (HMM, GMM, ANN, etc.) λC . Then, P (X/H0), whose
calculation is not a straightforward task, is estimated (approximated) by means
of the classifier output (score) s(X/λC). As a result, the decision for an authen-
tication system based on user modeling is given by equation 2.
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s(X/λC)

{
> θC Accept H0

< θC Reject H0
(2)

Not much works can be found focused on a priori client threshold estimation,
θ̂C . Perhaps one of the first attempt can be seen in [7], where the importance
of setting thresholds in advance in practical situations is emphasized. In this
work, Furui proposes the equation 3, based on empirical results. Later proposals
are, in general, modifications of the Furui equation. In [12], a comparison among
several methods to predict the client threshold is performed, achieving the best
results with the proposal shown in Eq. 4. Similar approaches can be found in
more recent works, as for example in [2], where equation 5 is proposed, or in [14],
that proposes the equation 6. In [8], the same authors propose an actualization
of the threshold with the data of the client collected during operation.

θ̂C = α(μ̂N
C − σ̂N

C ) + β (3)

θ̂C = βμ̂N
C + (1− β)μ̂M

C (4)

θ̂C = α(μ̂N
C + βσ̂N

C ) + (1− α)μ̂M
C (5)

θ̂C = μ̂M
C − ασ̂M

C (6)

In these equations, μ̂N
C and σ̂N

C are the mean and standard deviation of the
Non-Match (scores for NTC samples) distribution for the client C estimated by
means of the so called Cohort Gallery (Sec. 4.1), μ̂M

C and σ̂M
C are the mean and

standard deviation of the Match (scores for TC samples) distribution for the
client C, estimated by means of the so called Client Gallery (Sec. 4.1), and α
and β are constant parameters which are set experimentally.

Our contribution is different in several ways. First, and important, a well
founded theoretical technique is proposed, given us statistical tools for his eval-
uation and optimization. A pool of independent variables, besides of the mean
and variance, has been proposed for a better modeling of the Match and Non-
Match distributions (Sec. 3). The goal is to include in the model parameters not
only associated with the assumption that the score distributions are gaussian.
Following that shown in [15], some of the independent variables have been in-
cluded to try to model the tail of the distributions, which has not been taken into
account in the previous works; the influence of these variables in the prediction
models will be seen in Sec. 5.1. The use of multiple variables is very important
since for each working point (Sec. 4.2) the selection of the more representative
variables is different. Another difference is the scope of the study: all of the
previous works have generally tested their proposal in a single working point.

3 Our Proposal

Over the last few years, our work has been concerned with biometric recognition
with successful results [16,9]. These works approach technological aspects of the
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system, being focused on the feature extraction and recognition stages. However,
the maturation of the recognition systems, now ready for practical applications,
has encouraged us to go into the final decision stage in greater depth, proposing a
system based on MLR for client threshold estimation, whose main characteristics
are shown here.

3.1 The Multiple Linear Regression Model

Given a dependent variable, Y , and a set of k explanatory variables (W1, . . . ,Wk),
a MLR represents the relationship between both, as shown in equation: Yi =
β0 +

∑k
j=1 βjWij + εi, where, β0 is the constant term, βj are the coefficients

relating the k explanatory variables to the variable of interest Y , and ε is the
random error.

This analysis does not allow us to make causal inferences, but it does allow us
to investigate how a set of explanatory variables is associated with a dependent
variable of interest. The MLR model is based on several assumptions such as
residual normality, homoscedasticity, etc. [13,4], that have been born in mind.
Once the model has been estimated by least squares, the regression residuals are
calculated as ε̂i = Ŷi − Yi, where Yi is the i observed value of Y , and Ŷi is the i
predictand value. The mean magnitude of relative error (MMRE) and Pred(R)
are the most commonly used precision measures. Nevertheless, [11,6] show that
MMRE and Pred(R) really estimate the characteristics of Zi = Ŷi/Yi, so the
use of Z is proposed. Following this, we have used estimations of this variable,
such as its Confidence Interval for the mean, to evaluate the prediction model
accuracy. Furthermore, we have tested the hypothesis about its “optimal” mean
value, H0 : μZ = 1.

Here, this model is proposed to predict the client threshold, i.e: θ̂C = β0 +∑k
j=1 βjWCj , and ZC = θ̂C/θC .

Non-Match

Match

EER
Threshold

Score Best
Non-Match

Worst
Match

Distribution
tails

Fig. 1. Match and Non-Match example distributions. The main features referenced in
the work have been included.

3.2 Independent Variables

Simple but representative independent variables have been selected. These vari-
ables have been estimated using Match and Non-Match sample distributions,
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that have been achieved by means of the scores from the client and cohort gal-
leries, respectively (Sec. 4.1). A better visualization of this part can be seen
in Fig. 1. The selected variables are the following. W1 = A priori Equal Er-
ror Rate (EER) (see Sec. 4.2) threshold achieved using Match and Non-Match
sample distributions. W2 = Client Match distribution mean (μ̂M

C ). W3 = Client
Match standard deviation (σ̂M

C ). W4 = Client Match relative standard deviation

(σ̂′
CM =

σ̂M
C

μ̂M
C

). W5 = Client Non-Match distribution mean (μ̂N
C ). W6 = Client

Non-Match standard deviation (σ̂N
C ). W7 = Client Non-Match relative standard

deviation (σ̂′
CN =

σ̂N
C

μ̂N
C

). W8 = Best Non-Match score. W9 = Worst Match score.

W10 = Cohort Gallery or Client Gallery score just less than the a priori EER
threshold. W11 = Score from Cohort Gallery or Client Gallery just greater than
the a priori EER threshold. W12 = Client Match scores 25th percentile. W13 =
Client Match scores 50th percentile. W14 = Client Match scores 75th percentile.
W15 = Client Non-Match scores 25th percentile.W16 = Client Non-Match scores
50th percentile. W17 = Client Non-Match scores 75th percentile. W18 = A priori
Pmiss fixed value (Sec. 4.2) threshold. W19 = Pfa value for a fixed Pmiss value.

Variables W2 to W7 are based on the assumption that the score distributions
are gaussian. W8 to W11 include information about the tail of the distributions,
in the same way as the 25th and 75th percentiles. W12 to W17 are not based on
the assumption that the score distributions are gaussian. W18 and W19 are only
used when the threshold for a fixed Pmiss value is estimated (Sec. 4.2).

3.3 Independent Variables Selection

A correct selection of the variables [1] is very important to achieve an optimal
setting of the regression model. To achieve this, a working point dependent
selection of the independent variables has been performed.

A stepwise regression has been accomplished by means of the forward selection
implemented in the Statgraphics software. The set is initialized with no variables,
trying out the variables one by one and including them in the selected set if they
are “statistically significant” (R2 is significantly improved).

4 Experimental Setup

In [9] can be seen the main characteristics of the signature recognition system
used here. This was used to participate in the BSEC’2009 signature recognition
evaluation, it being the second best system. The classifier is based on the Dy-
namic Time Warping (DTW) algorithm that has shown a very good performance
in the task; DTW performs a distance calculation between the test signature and
each of the training ones, being the final score the minimum of these distances.
The most popular database in signature recognition has been used: MCYT, with
333 users and 25 authentic and 25 skilled forgery signatures each.
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4.1 Experimental Sets

The corpus was split into the following different random subsets:

– Cohort Set (ChS). Consisting of 50 signatories. An authentic signature
is randomly selected from each one to get the Cohort Gallery, from which
Non-Match sample distribution is estimated.

– Prediction Model Training Set (PMTrS), used to estimate the param-
eters of the MLR model. To test the model accuracy dependence with regard
of this set, two different sizes were taken: i) PMTrS-50 with 50 signatories
and ii) PMTrS-100 with 100 signatories.

– Prediction Model Test Set (PMTeS), used to test the prediction model
accuracy. Consisting of the signatories not used in the previous sets, that is:
i) 233 signatories for PMTrS-50 and ii) 183 signatories for PMTrS-100.

To get the Client Gallery, i.e., samples used to get the Match sample distri-
bution, to be completely realistic, only the training samples of each signatory
were used. Two techniques can be applied: resubstitution and rotation. In the
resubstitution method, each signature is a model of the user, and the distances
with regard to the remaining training signatures are calculated; as 5 signatures
are used for training, we have 10 scores to estimate the Match distribution. Ro-
tation is implemented by the leave-one-out technique, so the number of scores
to estimate the Match distribution are 5. In [17] rotation showed a better per-
formance and, besides, it has fewer distance calculations, so only this technique
is used here.

4.2 Working Points

The system working point is completely dependent on the application. Here, we
try to test if our proposal can be used to predict different thresholds. Thresholds
related with the most used working points to measure system performance in
standard evaluations have been estimated: i) The Equal Error Rate (the error
of the system when the False Match Rate, Pfa, equals the False Non Match
Rate, FNMR or Pmiss), threshold, ii) Pmiss = 0 threshold and iii) Pmiss = 0.1
threshold, i.e., the last two are thresholds for fixed values of FNMR.

5 Experiments

The results achieved with PMTrS-50 and PMTrS-100 were very similar, then,
for a more clarity in the exposition the results achieved with PMTrS-50 will be
only shown here.

5.1 Model Fitting

The performance of our proposal is evaluated by means of the calculation of
the predictive accuracy of the obtained models. These regression equations are
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Table 1. Models for each system working point with PTRS-50

Threshold RND/ R-squared Model
to predict SKI

EER RND 91.51 θ̂C = 4.04 − 0, 81 ∗ W3 + 0.47 ∗ W8 + 0.72 ∗ W12

EER SKI 88.75 θ̂C = 10.63 − 188.06 ∗ W4 + 0.45 ∗ W8 + 0.68 ∗ W14

Pmiss = 0.0 RND 95.54 θ̂C = −13.50 + 0.53 ∗ W12 + 0.51 ∗ W15

Pmiss = 0.0 SKI 88.87 θ̂C = −24.05 + 0.54 ∗ W14 + 0.53 ∗ W15

Pmiss = 0.1 RND 99.47 θ̂C = 6.24 + 0.09 ∗ W8 + 0.24 ∗ W15 + 0.36 ∗ W16 + 0.25 ∗ W19

Pmiss = 0.1 SKI 82.09 θ̂C = −17.94 + 1.01 ∗ W19

Table 2. Testing the models: Results for Z = θ̂/θ using PMTeS-233

Threshold RND/ R2 Confidence H0 : μZ = 1 Max Error
to predict SKI Interval (95%) H1 : μZ �= 1 (%)

(P-value)

EER RND 96.00 [1.0004; 1.0293] 0,0448 2.9
EER SKI 93.41 [0.9845; 1.0262] 0.6167 -
Pmiss = 0.0 RND 97.70 [1.0368; 1.0751] 2.62E-08 7.5
Pmiss = 0.0 SKI 92.98 [1.0306; 1.0867] 5.34213E-05 8.7
Pmiss = 0.1 RND 99.75 [1.0014; 1.0088] 0.0073 0.9
Pmiss = 0.1 SKI 86.45 [1.0103; 1.0741] 0.0097 7.4

fitted with the Prediction Model Training Set (PMTrS-50) and its predictive
power tested with the Prediction Model Test Set (PMTeS-233) (Sec. 4.1).

The obtained models (Sec. 3) and their R-squared are shown in Table 1, for
statistical considerations we can accept all of them. In this table, the influence
of the variables introduced to model the tail of the distributions can be seen
(Sec. 3.2): some of them have been selected in all of the models. Table 2 shows
the accuracy of each model by means of some statistics about the threshold
prediction (θ̂) with respect to the observed value (θ) using the test set. The
p-value of that Table is calculated to test the null Hypothesis that studies the
mean value of Z = θ̂/θ, μZ . At best, Z will have 1 as mean value. When the null
Hypothesis (H0 : μZ = 1) is rejected, the column calledMax Error (%) shows the
maximum difference between 1 and any value of the Confidence Interval for the
mean (maximum prediction error). The null Hypothesis (bold face emphasized
in the table) is not rejected in one of the experiments, and it is rejected in five
experiments, but with an error of 8.7% at most. The R2 is high in all cases. So,
we can accept the predictions achieved from all of the models.

5.2 Performance Comparison

In order to evaluate the goodness of our proposal, we have compared these results
with the state of the art: equations 3, 4, 5 and 6. These equations are fitted with
the Prediction Model Training Set (PMTrS-50), minimizing the mean quadratic

error (
∑

C(θC − θ̂C)
2/50), as in our proposal. Their predictive power is tested

with the Prediction Model Test Set (PMTeS-233), and measured by means of
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Table 3. Performance Comparison of our proposal and the state of the art. D(%) is
the relative Difference: ((MMREEq.(n) − MMREOur)/MMREEq.(n)) ∗ 100; the results in
the table have been calculated without rounded.Dc(%) is the average of the differences
per column and Dr(%) is the average per row (per Eq.(n)).

EER Pmiss = 0.0 Pmiss = 0.1
RND SKI RND SKI RND SKI

MMRE D(%) MMRE D(%) MMRE D(%) MMRE D(%) MMRE D(%) MMRE D(%) Dr(%).

Our 0.088 0.131 0.098 0.164 0.022 0.203
Eq.(3) 0.120 27.2 0.170 22.6 0.102 3.8 0.177 7.7 0.028 23.3 0.230 11.8 16.1
Eq.(4) 0.152 42.6 0.207 36.5 0.157 37.4 0.221 26.2 0.078 72.1 0.309 34.2 41.5
Eq.(5) 0.105 16.4 0.151 13.2 0.098 0.2 0.160 -2.4 0.032 32.8 0.226 10.1 11.7
Eq.(6) 0.268 67.4 0.266 50.6 0.262 62.5 0.264 38.1 0.399 94.6 0.339 40.1 58.9

Dc(%) 38.4 30.7 26.0 17.4 55.7 24.1

MMRE (
∑

C(|θC − θ̂C |/θC)/233), as in our proposal again, for an objective
comparison. Table 3 shows the results.

Focusing on the Dc(%) row and Dr(%) column (Table 3), it can be seen that
our proposal outperforms the rest ones.

Our proposal has achieved the best prediction accuracy for random forgery
(RND) in all cases: EER, Pmiss = 0.0 and Pmiss = 0.1. With regard to the
skilled forgery (SKI), our proposal have obtained the best values, except for
Pmiss = 0.0 with Eq. 5, but with very small difference (2.4%).

The best average performance of the state of the art proposals is achieved
with the Eq. 5, here. Comparing with this, our proposal performs closely for
Pmiss = 0.0, but for EER and Pmiss = 0.1, our proposal outperforms Eq. 5
results clearly (18.1% on average).

6 Conclusions and Future Works

In this work a new methodology, based on MLR for a priori client threshold esti-
mation in biometric person recognition systems, has been shown. This proposal
has been used to predict the threshold in biometric signature, and for several
working points. The prediction models achieved using MLR have been success-
fully validated looking at the statistical significance of the regression equation
and their precision. A comparison with the state of the art has been also per-
formed, showing the advantages, in system performance, of our proposal.

These results are very promising, encouraging us to follow studying in depth
the methodology proposed, using new independent variables, with new biomet-
rics. Another interesting subject related with biometric systems is to predict
the performance of the user (“biometric menagerie” classification); it would be
very interesting to test our proposal in this task. Due to the importance of the
estimation of both threshold and performance in real systems, we think that our
proposal has very useful future applications.
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Abstract. Current well-known data description method such as Sup-
port Vector Data Description is conducted with assumption that data
samples of a class in feature space are drawn from a single distribution.
Based on this assumption, a single hypersphere is constructed to provide
a good data description for the data. However, real-world data samples
may be drawn from some distinctive distributions and hence it does not
guarantee that a single hypersphere can offer the best data description.
In this paper, we introduce a Deterministic Annealing Multi-sphere Sup-
port Vector Data Description (DAMS-SVDD) approach to address this
issue. We propose to use a set of hyperspheres to provide a better data
description for a given data set. Calculations for determining optimal hy-
perspheres and experimental results for applying this proposed approach
to classification problems are presented.

Keywords: Kernel Methods, Deterministic Annealing , Support Vector
Data Description, Multi-Sphere Support Vector Data Description.

1 Introduction

Support Vector Data Description (SVDD) [5] is one of the most well-known
method for one-class classification problems. SVDD assumes that all samples of
the training set are drawn from a single uniform distribution [5]. However, this
hypothesis is not always true since real-world data samples may be drawn from
distinctive distributions [6]. Therefore, a single hypersphere cannot be a good
data description. For example, in Figure 1, data samples are scattered over some
distinctive distributions and one single hypersphere would improperly record
the inside outliers. In [6], a multi-sphere approach to SVDD was proposed for
multi-distribution data. The domain for each distribution was detected and for
each domain an optimal sphere was constructed to describe the corresponding
distribution. However, the learning process was heuristic and did not follow
up learning with minimal volume principle [4]. In [2], a method was proposed
to link the input space to the feature space. Dense regions (clusters) in the
input space were identified and became a single sphere in the feature space.
Again, this method was heuristic and did not abide by learning with minimum
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volume principle. To motivate learning with minimum volume principle, we have
proposed a hard multi-sphere support vector data description (HMS-SVDD) [3].
A set of hyperspheres was introduced to enclose all the data samples. A data
sample will belong to only one hypersphere. The volume of enclosing shape is
minimised to favor generalisation capacity of classifier. However, this method
cannot avoid local minima.

Inspired from physical experiments, a new stochastic optimisation strategy,
Simulated Annealing or Deterministic Annealing (DA) was proposed in [1].
Through analogy to an experimental annealing where a stability of metal is
improved by heating and cooling, solutions for optimisation problem are heated
and cooled in simulation to find one with low costs. DA offers two important
features: ability to avoid the local minima, and the capability to find out the
minima of right objective function even its gradients almost vanish everywhere.
To benefit from DA’s advantageous features, we propose in this paper DA ap-
proach of Multi-Sphere Support Vector Data Description. A set of hyperspheres
is proposed to describe the normal data set assuming that normal data samples
have distinctive data distributions. DA approach allows our solution to avoid
the local minima when the temperature variable is led to approach 0.

Fig. 1. Inside outliers would be improperly included if only one hypersphere is con-
structed [6]

2 Deterministic Annealing Multi-Sphere Support Vector
Data Description (DAMS-SVDD)

2.1 Problem Formulation

Consider a set of m hyperspheres Sj(cj , Rj) with center cj and radius Rj ,
j = 1, . . . ,m. This hypershere set is a good data description of the normal
data set X = {x1, x2, . . . , xn} if each of the hyperspheres describes a distribu-

tion in this data set and the sum of all radii
m∑
j=1

R2
j should be minimised. Let
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matrix U = [uij ]n×m, uij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . ,m where uij is the
membership representing degree of belonging of sample xi to hypersphere Sj

and
m∑
j=1

uij = 1. The optimisation problem of DAMS-SVDD can be formulated

as follows

min
R,c,u,ξ

( m∑
j=1

R2
j +

1

νn

n∑
i=1

ξi

)
(1)

s.t. :

m∑
j=1

uij ||φ(xi)− cj ||2 ≤
m∑
j=1

uijR
2
j + ξi; ξi ≥ 0, i = 1, . . . , n (2)

where R = [Rj ]j=1,...,m is vector of radii, ν is a constant, ξi are slack variables,
φ(.) is a transformation from input space to feature space, and c = [cj ]j=1,...,m

is vector of centres.
Minimising the function in (1) over variables R, c and ξ subjecting to (2) will

determine radii and centres of hyperspheres and slack variables and the partition
matrix U as well. These quantities contribute to form the decision boundary.

For classifying a sample x, the following decision function is used

f(x) = sign
(

max
1≤j≤m

{
R2

j − ||φ(x) − cj ||2
})

(3)

We present in the next sections the way to apply DA to resolve the above OP (1).
The coming solution takes advantage from the capability to converge to global
optimal solution of DA.

2.2 DA Optimization Problem Extension

It is shown that the number of partition matrices U ismn. This huge number cir-
cumvents a brute-force strategy to figure out the optimal solution. Fortunately,
by chance DA can be applied to the above problem. We extend the above OP
by replacing uij by pij that varies in [0; 1] and can be interpreted as probability
where xi belongs to hypersphere Sj. The new OP is as follows

min
R,c,p,ξ

(
m∑
j=1

R2
j +

1
νn

n∑
i=1

ξi + T
n∑

i=1

m∑
j=1

pij ln pij

)
s.t. :

m∑
j=1

pij‖φ(xi)− cj‖2 ≤
m∑
j=1

pijR
2
j + ξi;

m∑
j=1

pij = 1; ξi ≥ 0, i = 1, . . . , n

(4)

where T > 0 is temperature variable.

2.3 Solution

Given T , we alternately keep fixed R, c and p respectively to find out the new
hypersphere set and probability partition matrix respectively. Kullback-Leibler
divergence (KL-divergence) is used as stopping criterion for algorithm.
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Fixed p. By eliminating the constants, we achieve the following OP

min
R,c

(
m∑
j=1

R2
j +

1
νn

n∑
i=1

ξi

)
s.t. :

m∑
j=1

pij‖φ(xi)− cj‖2 ≤
m∑
j=1

pijR
2
j + ξi; ξi ≥ 0, i = 1, . . . , n

(5)

To deal with the above OP, we make use of Karush-Kuhn-Tucker (KKT) theo-
rem. The Lagrange function is of the following form

L(R, c, ξ, α, β) =
m∑
j=1

R2
j +

1
νn

n∑
i=1

ξi

+
n∑

i=1

αi

(
m∑
j=1

pij‖φ(xi)− cj‖2 −
m∑
j=1

pijR
2
j − ξi

)
−

n∑
i=1

βiξi

(6)

Setting derivatives to 0, we obtain

δL
δRj

= 0⇒ 1 =
n∑

i=1

pijαi, j = 1, . . . ,m

δL
δcj

= 0⇒ cj =
n∑

i=1

pijαiφ(xi), j = 1, . . . ,m

δL
δξi

= 0⇒ αi + βi =
1
νn , i = 1, . . . , n

(7)

By substituting (7 to Lagrange function, we obtain the dual form

L(R, c, ξ, α, β) =
n∑

i=1

αiK(xi, xi) +
n∑

i=1

m∑
j=1

pijαi

(‖cj‖2 − 2φ(xi)cj
)

=
n∑

i=1

αiK(xi, xi) +
n∑

i=1

m∑
j=1

pijαi‖cj‖2 − 2
n∑

i=1

m∑
j=1

pijαiφ(xi)cj

=
n∑

i=1

αiK(xi, xi) +
m∑

j=1

n∑
i=1

pijαi‖cj‖2 − 2
m∑

j=1

n∑
i=1

pijαiφ(xi)cj

=
n∑

i=1

αiK(xi, xi) +
m∑

j=1

‖cj‖2 − 2
m∑

j=1

‖cj‖2 = −∑
i,i′

pipi′K(xi, xi′ )αiαi′ +
n∑

i=1

αiK(xi, xi)

(8)

where pi = [pi1, pi2, ..., pim] and pipi′ =
m∑
j=1

pijpi′j .

Therefore, we come up with the following quadratic OP

min
α

(∑
i,i′
pipi′K(xi, xi′)αiαi′ −

n∑
i=1

αiK (xi, xi)

)
s.t. :

n∑
i=1

pijαi = 1; 0 ≤ αi ≤ 1
νn , i = 1, . . . , n

(9)

Fixed R, c. By removing the constants, we gain the following OP

min
p

(
1
νn

n∑
i=1

max

{
0,

m∑
j=1

pijdij

}
+ T

n∑
i=1

m∑
j=1

pij ln pij

)
s.t :

m∑
j=1

pij = 1, i = 1, . . . , n and pij ≥ 0, i = 1, . . . , n, j = 1, . . . ,m

(10)
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where dij = ‖φ(xi)− cj‖2 − R2
j , i = 1, . . . , n, j = 1, . . . ,m, and P = [pij ]n×m

is probability partition matrix.
It is obvious that we can separate the above OP to n individual OPs as follows

min
pi

(
1
νn max

{
0,

m∑
j=1

pijdij

}
+ T

m∑
j=1

pij ln pij

)
s.t. :

m∑
j=1

pij = 1

(11)

To derive the optimisation problem (11), let us introduce two sets

A+ =

{
pi = [pi1, ..., pim] :

m∑
j=1

pijdij ≥ 0 and pij ≥ 0 for all j

}

A− =

{
pi = [pi1, ..., pim] :

m∑
j=1

pijdij < 0 and pij ≥ 0 for all j

} (12)

We examine two possible cases

i) pi ∈ A+

The optimisation problem (11) becomes

min
pi

(
C

m∑
j=1

pijdij + T
m∑
j=1

pij ln pij

)
s.t. :

m∑
j=1

pij = 1 and
m∑
j=1

pijdij ≥ 0

(13)

Again, we apply KKT theorem to cope with this optimisation. The Lagrange
function is of the following form

L(pi, α, λ) = C
m∑
j=1

pijdij +T
m∑
j=1

pij ln pij +λ

⎛⎝ m∑
j=1

pij − 1

⎞⎠−α
m∑
j=1

pijdij (14)

Setting derivatives to 0, we gain

∂L
∂pij

= 0⇒ Cdij + T (1 + ln pij) + λ− αdij = 0⇒ pij = e
α−C

T dij− λ
T −1

m∑
j=1

pij = 1;
m∑
j=1

pijdij ≥ 0; α ≥ 0; α.

(
m∑
j=1

pijdij

)
= 0

(15)

From (15), we have pij(α) = e
α−C

T
dij

m∑
j′=1

e
α−C

T
d
ij′

. To examine the equa-

tion: α.

(
m∑
j=1

pij(α)dij

)
= 0, we define and investigate the function

f(x) =
m∑
j=1

e
x−C
T dijdij where x ≥ 0. We have f ′(x) = 1

T

m∑
j=1

e
x−C
T dijd2ij > 0. It

discloses that f(x) is a strictly increasing function. We branch out two cases.
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� Case 1 (f(0) =
m∑
j=1

e
−C
T dijdij ≥ 0): It means that f(x) > 0, if x > 0. Hence

the equation αf(α) = 0 has got unique solution α = 0 and the solution for

optimisation problem (13) is: pij = pij(0) =
e
−C
T

dij

m∑
j′=1

e
−C
T

d
ij′

.

� Case 2 (f(0) =
m∑
j=1

e
−C
T dijdij < 0): If dij < 0 for all j then A+ = φ and i)

cannot happen. Otherwise, we have lim
x→+∞ f(x) = +∞. Therefore, there exists

unique α1 > 0 such that f(α1) = 0. In practice, we specify the unique solution
of equation f (α) = 0 by Newton-Raphson method.
ii) pi ∈ A−

Similar to the first case, we can fulfill the derivation. This derivation relates to

function g(x) =
m∑
j=1

e
−x
T dijdij and as follows

� Case 1 (g(0) =
m∑
j=1

dij < 0): pij = pij(0) =
1
m for all j.

� Case 2 (g(0) =
m∑
j=1

dij ≥ 0): pij =
e

−α2
T

dij

m∑
j′=1

e
−α2
T

d
ij′

where α2 is the unique solution

of equation g (α) = 0 which can be specified by Newton-Raphson method.

2.4 The Overall Algorithm (DAMS-SVDD)

We start with T = 10. For each T , we attempt to solve out the OP in (4) by
alternately keeping R, c and p fixed. The KL-divergence is used as stopping cri-
terion for each iteration. To direct the local minimizer attained for each T to the
global minimizer, T is led to approach 0. The detail of this algorithm is displayed
in the following.

Initialize
T = 10,ε = 0.001
for(i = 1; i ≤ n; i++) Set pij =

1
m for all j = 1, . . . ,m

q = p
Execute

while(T > ε){
while(DKL(p, q) > ε){
Keep fixed p
Calculate R = [R1, R2, ..., Rm], c = [c1, c2, ..., cm], and
dij = ‖φ(xi)− cj‖2 −Rj

2 as in subsection fixed p.
Keep fixed R, c
q = p
Calculate probability partition matrix p as in subsection fixed R, c
}
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T = T
1.5

}
where DKL(p, q) =

n∑
i=1

m∑
j=1

pij ln
pij

qij

Table 1. The experimental results on 13 data sets

Datasets SVDD HMS-SVDD DAMS-SVDD

Australian 88% 92% 95%

Breast cancer 90% 96% 100%

Astroparticle 94% 91% 98%

Dna 90% 88% 86%

Sonar 79% 76% 88%

Inosphere 87% 96% 94%

Bioinformatics 85% 99% 98%

Diabetes 90% 98% 97%

Liver 88% 92% 90%

Splice 86% 90% 93%

Vehicle 89% 88% 96%

Delp Pump 89% 95% 98%

USPS 93% 94% 96%

Fig. 2. Experimental results on 13 data sets

3 Experiment

To show the performance of the proposed model, we established experiment on
13 data sets of UCI repository. For each data set, we selected one class and ap-
pointed it as normal class. We ran cross validation with five folds. DAMS-SVDD
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was compared with the most well-known kernel-based one-class classification
method SVDD [5] and HMS-SVDD [3].

The popular RBF Kernel K(x, x′) = e−γ‖x−x′‖2

was applied whereas the
parameter γ is varied in grid {2i : i = 2j + 1, j = −8, . . . , 1}. The parameter
ν was selected in grid {0.1i : i = 1, . . . , 9}. The number of hyperspheres m was
searched in grid {2, 3, 5, 7, 9}.

The attained result as shown in Table 1 and Figure 2 illustrates that DAMS-
SVDD outperforms the other methods especially for the data sets with multiple
distributions.

4 Conclusion

We propose DA solution for multi-sphere approach to SVDD. A set of hyper-
spheres is learnt rather than a single sphere. The solution can take advantage of
DA to avoid local minima and converge to the global optimum when temperature
T is approached 0. The experiment established on 13 data sets shows that the
DAMS-SVDD can provide good data description especially for data sets with
multiple distributions.
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Abstract. Kernel Generalised Learning Vector Quantisation (KGLVQ)
was proposed to extend Generalised Learning Vector Quantisation into
the kernel feature space to deal with complex class boundaries and thus
yield promising performance for complex classification tasks in pattern
recognition. However KGLVQ does not follow the maximal margin prin-
ciple which is crucial for kernel-based learning methods. In this paper
we propose a maximal margin approach to Kernel Generalised Learning
Vector Quantisation algorithm which inherits the merits of KGLVQ and
follows the maximal margin principle to favour the generalisation capa-
bility. Experiments performed on the well-known data set III of BCI com-
petition II show promising classification results for the proposed method.

Keywords: Learning Vector Quantisation, Generalised Learning Vector
Quantisation, Kernel Method, Maximising Margin.

1 Introduction

Self-organizing methods such as the Self-Organizing Map (SOM) or Learning
Vector Quantisation (LVQ) introduced by Kohonen [7] provide a successful and
intuitive method of processing data for easy access [5]. Learning Vector Quan-
tisation (LVQ) aims at generating the prototypes or reference vectors which
delegate for the data of classes [6]. Although LVQ is a fast and simple learning
algorithm, sometimes its prototypes diverge and as a result degrade recogni-
tion ability [12]. To address this problem, Generalised Learning Vector Quan-
tisation (GLVQ) [12] was proposed. It is a generalisation of the original model
proposed by Kohonen and the prototypes are updated based on the steepest
descent method to minimise a cost function. GLVQ has been widely applied
and shown good performance in many applications [8], [11], [12]. However, its
performance may deteriorate for complex data sets since pattern classes with
nonlinear class boundaries usually need a large number prototypes; but when
we require a large number of prototypes in the input space, it can be difficult
to determine the reasonable number and their positions while achieving a good
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generalisation performance [10]. To overcome this drawback, in [10] Kernel Gen-
eralised Learning Vector Quantisation (KGLVQ) was proposed for learning the
prototypes of data in feature space. Like LVQ and GLVQ, KGLVQ can be used
for two class and multi-class classification problems. In case of two-class classifi-
cation problem, the entire feature space would be divided into subspaces induced
by two core prototypes and in each subspace a mid-perpendicular hyperplane of
two these core prototypes was employed to classify the data. Nevertheless, these
induced hyperplanes of KGLVQ do not guarantee maximising margins which is
crucial for kernel methods [13].

In this paper, we propose a maximal margin approach to KGLVQ which takes
advantage of maximising margins for increasing the generalisation capability as
seen in Support Vector Machine [1], [2]. Our proposed approach is different from
the approach in [3] which aims at maximising the hypothesis margin rather
than the real margin. In our approach, a finite number of prototypes m and
n are used to represent positive and negative classes, respectively in binary
data sets. The entire feature space is divided into m × n subspaces induced by
pairs of prototypes and in each subspace a mid-perpendicular hyperplane of two
correspondent prototypes is employed to classify the data. The cost function
in our approach takes into account maximising the margins of hyperplanes to
boost the generalisation capability. Experiment on the well-known data set III
of Brain-Computer Interface (BCI) competition II was established. The results
show the prospective for applying the proposed method to BCI data because of
its performance and simplicity.

2 Maximal Margin Kernel Generalised LVQ

2.1 Introduction

Consider a binary training set X = {(x1, y1), (x2, y2), . . . , (xl, yl)} where x1, x2,
. . . , xl ∈ IRd are points and y1, y2, . . . , yl ∈ {−1, 1} are labels. This training
set is mapped into a high dimensional space namely feature space through a
function φ(.). Based on the idea of Vector Quantisation (VQ), m prototypes
A1, A2, . . . , Am of the positive class and n prototypes B1, B2, . . . , Bn of the neg-
ative class will be discovered in the feature space. The decision rule is based on
the minimum distance to the prototypes in each class. More precisely, given a
new vector x the decision function is as follows

f(x) = sign
(
‖φ(x) − bj0‖

2 − ‖φ(x) − ai0‖
2
)

(1)

where i0 = argmin
1≤i≤m

{
‖φ(x) − ai‖2

}
, j0 = argmin

1≤j≤n

{
‖φ(x) − bj‖2

}
, and ai, bj are

coordinates of Ai, Bj , i = 1, . . . ,m; j = 1, . . . , n, respectively.

2.2 Optimisation Problem

Given a labeled training vector (x, y), denote a and b as two prototypes of
the positive class and negative class which are closest to φ(x). Let μ(x, a, b) be
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the function which satisfies the following criterion: if x is correctly classified,
μ(x, a, b) < 0; otherwise μ(x, a, b) ≥ 0. Let g be a monotonically increasing
function. To reduce the error rate, μ(x, a, b) should decrease for all training
vectors. The criterion is formulated as minimising of the following function:

min
{A},{B}

l∑
i=1

g
(
μ
(
xi, a

(i), b(i)
))

(2)

where {A} and {B} are the sequences {A1, A2, . . . , Am} and {B1, B2, . . . , Bn},
respectively, and a(i) and b(i) are two class prototypes which are closest to φ(xi).

2.3 Solution

We assume that the prototypes are linear expansions of vectors φ(x1), . . . , φ(xl).
Denote ai, i = 1, . . . ,m and bj , j = 1, . . . , n as coordinates of the prototypes:

ai =
l∑

k=1

uikφ(xk), i = 1, . . . ,m bj =
l∑

k=1

vjkφ(xk), j = 1, . . . , n (3)

For convenience, if c =
l∑

i=1

uiφ(xi), we rewrite c as c = [u1, u2, . . . , ul]. Given a

labeled training vector (x, y), first we determine two closest prototypes A and
B for two classes with respect to x, second we use gradient descent method to
update the coordinates a and b of A and B, respectively as follows:

a = a− α ∂g
∂μ

∂μ
∂a b = b− α ∂g

∂μ
∂μ
∂b (4)

Algorithm for Vector Quantisation

Initialise
Using C-Means or Fuzzy C-Means clustering to find m protoypes
for positive class and n protoypes for negative class in the input space.
Set t = 0 and i = 0

Repeat
t = t+ 1
i = (i + 1) mod l

At = Ai0 where i0 = argmin
1≤k≤m

{
‖φ(xi)− ak‖2

}
Bt = Bj0 where j0 = argmin

1≤k≤n

{
‖φ(xi)− bk‖2

}
Update ai0 = ai0 − α ∂g

∂μ
∂μ
∂ai0

Update bj0 = bj0 − α ∂g
∂μ

∂μ
∂bj0

Until convergence is reached

where the sigmoid function g = g(μ, t) depends on learning time t. The function
g (μ, t) = 1

1+e−μt is a good candidate for g. If this sigmoid function is applied

then ∂g
∂μ = tg (μ, t) (1− g(μ, t)).
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2.4 Selection of the μ-function

We introduce some candidates for the μ-function. Let (x, y) be a labeled training
vector and a & b are two closest prototypes in two classes to that vector.

Candidate 1 for the μ-function [7] (LVQ)

μ(x, a, b) = y
(
‖φ(x) − a‖2 − ‖φ(x) − b‖2

)
= y(d1 − d2) = η(d1, d2) (5)

Candidate 2 for the μ-function [12] (GLVQ)

μ(x, a, b) =
y
(
‖φ(x) − a‖2 − ‖φ(x) − b‖2

)
‖φ(x) − a‖2 + ‖φ(x) − b‖2

=
y(d1 − d2)

d1 + d2
= η(d1, d2) (6)

where d1 and d2 in (5) and (6) are distances from φ(x) to two prototypes a and
b, respectively. These functions depend primarily on d1 and d2. The formula for
adaptation of prototypes in (4) can be rewritten as follows

a = a− 2α ∂g
∂η

∂η
∂d1

(a− φ(x)) b = b − 2α ∂g
∂η

∂η
∂d2

(b− φ(x)) (7)

If μ(x, a, b) = η(d1, d2) = y(d1 − d2), the equations in (7) become:

a = a− 2α ∂g
∂ηy (a− φ(x)) b = b + 2α ∂g

∂η y (b− φ(x)) (8)

If μ(x, a, b) = η(d1, d2) =
y(d1−d2)
d1+d2

, the equations in (7) become:

a = a− α ∂g
∂η

4yd2

(d1+d2)
2 (a− φ(x)) b = b + α ∂g

∂η
4yd1

(d1+d2)
2 (b − φ(x)) (9)

Candidate 3 for the μ-function [3] (HMLVQ)

μ(x, a, b) =
1

2
y (‖φ(x) − a‖ − ‖φ(x) − b‖) (10)

This μ-function refers to hypothesis margin in [3] and is used in AdaBoost [4].
The hypothesis margin measures how much the hypothesis can travel before it
hits an instance as shown in Fig. 1.

The partial derivatives of μ with respect to a and b are:

∂μ
∂a = − y

2‖φ(x)−a‖ (φ(x)− a) ∂μ
∂b = y

2‖φ(x)−b‖ (φ(x) − b) (11)

Candidate 4 for μ-function (MLVQ and KMLVQ)
This is our proposed maximal margin approach to LVQ. We name it as MLVQ

for the model in the input space, and KMLVQ for that in the feature space. The
μ-function is of the form

μ(x, a, b) =
y(‖φ(x) − a‖2 − ‖φ(x) − b‖2)

‖a− b‖ (12)
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It is noted that the absolute value of the μ-function in Candidate 4 is the sample
margin at φ(x) in Fig. 1, also the distance from φ(x) to mid-perpendicular hy-
perplane of prototypes a and b. When x is correctly classified, this value is equal
to negative sample margin at x. Minimising μ(x, a, b) motivates maximising the
sample margin at x.

The partial derivatives of μ with respect to a and b are

∂μ
∂a = −2y

‖a−b‖ (φ(x) − a)− y(‖φ(x)−a‖2−‖φ(x)−b‖2)
‖a−b‖3 (a− b)

∂μ
∂b = 2y

‖a−b‖ (φ(x) − b) +
y(‖φ(x)−a‖2−‖φ(x)−b‖2)

‖a−b‖3 (a− b)
(13)

Fig. 1. (a) Hypothesis Margin, (b) Sample Margin

2.5 Decision Function

When a convergence is reached, we achieve the final prototypes ai = [uik]k=1,...,l,
i = 1, . . . ,m and bj = [vjk]k=1,...,l, j = 1, . . . , n.

For a new vector x, we can evaluate the distances from φ(x) to the prototypes
using the following:

d(φ(x), ai) = ‖φ(x) − ai‖2 = K(x, x) − 2
l∑

p=1
uipK(xp, x) + ‖ai‖2, i = 1, . . . ,m

d(φ(x), bj) = ‖φ(x) − bj‖2 = K(x, x)− 2
l∑

p=1
vipK(xp, x) + ‖bj‖2, j = 1, . . . , n

(14)
The two closest prototypes to φ(x) and the decision function will be determined
as follows

i0 = argmin
1≤i≤m

{d(φ(x), ai)} j0 = argmin
1≤j≤n

{d(φ(x), bj)}

f(x) = sign (d(φ(x), bj0 )− d(φ(x), ai0 ))
(15)

3 Experimental Results

The chosen data set was the well-known data set III provided by Department
of Medical Informatics, Institute of Biomedical Engineering, Graz University of
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Technology for motor imagery classification problem in BCI Competition II [9].
In data collection stage, a female normal subject was asked to sit in a relaxing
chair with armrests and tried to control a feedback bar by means of imagery left
or right hand movements. The sequences of left or right orders are random. The
experiment consisted of 7 runs with 40 trials in each run. There were 280 trials
in total and each of them lasted 9 seconds of which the first 3 seconds are used
for preparation. Collected data was equally divided into two sets for training and
testing. The data was recorded in three EEG channels which were C3, Cz and
C4, sampled at 128Hz, and filtered between 0.5 Hz and 30Hz. Most of current
algorithms only applied to the channels C3 and C4, and ignored the channel Cz.
They argued that from brain theory, signals from channel Cz provide very little
meaning to motor imagery problem. We truncated the first 3 seconds of each
trial and used the rest for further processing. All trials are pre-processed by sub-
tracting the ensemble mean of all trials. For each trial we extracted Combined
Short-Window Bivariate Autoregressive Feature (CSWBVAR) parameters with
window size of 512, 768 data points corresponding to 1s-segment, 1.5s-segment
and moving window step of 25%, 50%, 75% of the window size. We did not try
experiments with segment’s size greater than 1.5s due to keeping signal approx-
imately stationary and being comfortable with nature of brain signal.

The LVQ algorithms with different μ-functions mentioned above were per-
formed in both the input and feature spaces to compare LVQ, GLVQ and HM-
LVQ with our proposed MLVQ (those are input space models), and to compare
KLVQ, KGLVQ and KHMLVQ with our proposed KMLVQ (those are kernel fea-
ture space models). We also made comparison our method with Linear Support
Vector Machine (LSVM) and Kernel Support Vector Machine (KSVM).

In our experiment, we did not use the sigmoid function g(μ, t) = 1
1+e−μt which

results in the derivative ∂g
∂μ = tg(1 − g). Since the derivative of this function

rapidly decreases to 0 when the time t approaches +∞. For example when t =
100, the derivative is nearly equal to 0 if −0.1 < μ < 0.1. Instead, we applied
g(μ, t) = 1

1+e−μ
√

t
whose derivative is ∂g

∂t =
√
tg(1− g). This function shows two

good features: 1) Its derivative approaches to 0 slower than that of the sigmoid
function. 2) Given t, if |μ| of a vector exceeds a predefined threshold then the
derivative or the rate at this vector is very small and the adaptation is minor.

The cross validation with 5 folds was employed. The learning rate α was set
to 0.05. Both the number of positive and negative prototypes were set to 3. For
Kernel LVQs, the popular RBF kernel function K(x, x′) = e−γ||x−x′||2 was used.
The parameter γ was searched in the grid {2k : k = 2l, l = −4,−2, 0, 2, 4}.
For KSVM, RBF kernel was applied, parameter γ varied in the grid {2k :
k = −15,−13, . . . , 3} and parameter C was searched in the grid {2k : k =
−15,−13, . . . , 5}.

Experimental results are displayed in Table 1. The results indicate that for
LVQs the classification accuracies of linear models and kernel models are not
significantly different. The reason is that the data distributions in these data
sets are not much complicated and some prototypes can be well-defined them.
We emphasise in bold and bold-italic the cases where the proposed method
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outperforms others in the feature and input space, respectively. The results show
that the proposed method outperforms others in both the input and feature
space. KSVM is comparable to MLVQ and KMLVQ. However LVQs are simple,
fast, intuitive and do not require running grid search over a massive range of
parameters like SVMs. It points out the prospective for applying the proposed
method to BCI data.

Table 1. Classification results (in %) on data set III (window size/ moving size) of
BCI competition II for 5 space models LSVM, LVQ, GLVQ, HMLVQ and MLVQ, and
5 kernel feature space models KSVM, KLVQ, KGLVQ, KHMLVQ and KMLVQ

Data set LSVM LVQ GLVQ HMLVQ MLVQ KSVM KLVQ KGLVQ KHMLVQ KMLVQ

512/128 68% 70% 69% 72% 77% 77% 72% 73% 72% 78%
512/256 65% 72% 70% 68% 74% 75% 71% 71% 71% 77%
512/384 66% 69% 69% 70% 75% 76% 70% 71% 70% 76%
768/192 65% 71% 71% 69% 73% 73% 70% 71% 71% 74%
768/384 65% 70% 70% 69% 72% 73% 70% 71% 70% 73%
768/576 64% 69% 70% 68% 73% 73% 69% 71% 69% 73%

4 Conclusion

In this paper, we have introduced a new maximal margin approach to Ker-
nel Generalised Learning Vector Quantisation which maximises the real margin
which is crucial for kernel method. The new maximal margin approach can be
applied to both the input space and feature space. The experiments performed
on the well-known data set III of BCI competition II showed the prospective for
applying this method to BCI data.
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Abstract. In this paper, we propose a particle swarm optimization(abbr.
PSO) based on chaotic spike oscillator dynamics(abbr. CSOPSO). Our
method has ability to search optima without stochastic elements. Since
the basic particle dynamics exhibits chaotic behavior on phase space
consisting of the velocity and position, particles on the search space
move with chaotic motion. Size of the chaotic attractor corresponding
to search range of position can be controlled by single parameter. We
focus on influence between size of the attractor and searching ability.
The effectivity of CSOPSO by comparing with a previous PSO by some
benchmark problems is considered.

Keywords: optimization problem, particle swarm optimization, chaos
spiking oscillator.

1 Introduction

Particle Swarm Optimization (abbr. PSO) is a heuristic method for finding op-
timal solution of solution space based on the simulation of social behavior. PSO
was developed by Kennedy and Eberhart in 1995[1],[2]. The algorithm searches
a space by a population of individuals called particle. The particles are drawn
toward the positions of previous best performance where is specified by its own
and its companions flying experiences. Due to the simple concept and quick con-
vergence, PSO is adapted to wide applications[5]. PSO shows efficient ability of
balance between exploration and convergence because of combined stochastic el-
ements. The elements effect the global search ability, however, it makes difficult
to analyze behavior, convergence and stability.

Clerc and Kennedy proposed a simple deterministic PSO without stochastic
elements[3]. Jin’no also proposed novel deterministic PSO with re-acceleration
velocity scheme[4]. In this paper, we propose another optimization method with-
out stochastic elements, PSO based on chaos spike oscillator dynamics(abbr.
CSOPSO). In this method, the basic particle dynamics exhibits chaotic behavior
on phase space consisting of particle velocity and position. Thereby particles on
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the search space move with chaotic motion. This method has a ability to search
optima even though this method doesn’t have any stochastic elements. Size of
the chaotic attractor corresponding to search range of position is controlled by
single parameter. We consider the influence between size of the attractor and its
performance in Sec. 5.3 by comparing with a previous PSO[1],[2], the ability of
searching solution is considered by some benchmark problems in Sec. 5.4.

2 Particle Swarm Optimization

The particle swarm optimization is an algorithm for finding an optimal solution
using particles. The particles share the information of the best position and
update their coordinates using personal and group experience. This algorithm
was motived by social interaction[1].

In N -dimensional search space, a population of particles is initialized with
random position x and velocity v. x and v is described as N -dimension vector.
Every particles have own evaluated value calculated by function f , using the
particle’s positional coordinates. Positions, velocities and evaluated value are
updated each time step. A particle keeps the own coordinate with the best
evaluated value so far. The coordinate is defined by pbest. Likewise, all particles
share the best coordinate as gbest.

The evaluated value of i-th particle which is located at xti is compared with
f(pbesti) and f(gbest) each time step t. pbesti and gbest is replaced by current
position xti, when xti has better evaluated value than f(pbesti) and f(gbest),
respectively. At time step t, i-th particle updates its position and velocity ac-
cording to follows [6]:

vt+1
i = ωvti + c1Rand1(pbesti − xt

i) + c2Rand2(gbest− xt
i), (1)

xt+1
i = xt

i + v
t+1
i , (2)

where ω is inertia, c1 and c2 are positive constant, Rand1 and Rand2 are inde-
pendently generated uniformed distribution with range [0 1].

3 PSO Based on Chaos Spike Oscillator Dynamics

This section describes about PSO based on Chaos Spike Oscillator Dynam-
ics(CSOPSO). This method doesn’t have any stochastic elements. The particles
on the search space consisting of the particle velocity and position move with
chaotic motion. The size of attractor is determined by single parameter and the
size isn’t depend on initial value.

In N dimensional search space, a population of particles is initialized with
random position x described N -dimension vector. The velocity of this particle
is v, N -dimension vector also. About ith particle, the position and velocity is
defined as follows:

xi =
{
x(i,1), x(i,2), .... , x(i,N)

}
, (3)

vi =
{
v(i,1), v(i,2), .... , v(i,N)

}
. (4)
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In this method, the positional coordinates of the particles are evaluated by ob-
ject function f . All particles update the best position as pbest if necessary.
Global best position, gbest, is selected from the best position of pbests among
population. The particles update their position and velocity according to Chaos
Spike Oscillator Dynamics(CSO). The unstable fixed point of this dynamics is
described by pbest and gbest. Positions and velocities are updated using expand-
ing and rotation on the fixed point. This method is described more details in
following paragraphs.

3.1 Updating Particle Position and Velocity

The particles are updated by 2 operation, 1) rotation and expansion, 2)jump-
ing toward an unstable fixed pint. In phase space consisting of particle velocity
and position, basically, the particles expand and rotate around an unstable fixed
point. The unstable fixed point is described in Sec. 3.3. Once a particle satisfies
a condition about position and velocity, the particle jumps toward the unsta-
ble fixed point. By these 2 operation, the trajectory of particle exhibit chaotic
behavior on the phase space.

Dynamics on Phase Space. First, we focus on the phase space consisting of
particle velocity and position. To be easy to describe, linear transformed position
y(i,j) of the i-th particle on j-th dimension is defined by

y(i,j) = x(i,j) − fp(i,j), (5)

where x(i,j) is a position of a particle in real-searching field. The fixed point,
fp(i,j), was described in Sec. 3.3. The fixed point is set to the origin on v − y
phase space. At time-step t, i-th particle position on j-th dimension is updated
by the following dynamics.

[
y(i,j,t+1)

v(i,j,t+1)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
2yth1(i,j) − y(i,j,t)

0

]
(6a)

for (y(i,j,t) < yth1(i,j)) and (v(i,j,t) ≥ 0) (6b)[
2yth2(i,j) − y(i,j,t)

0

]
(6c)

for (y(i,j,t) > yth2(i,j)) and (v(i,j,t) = 0) (6d)

R

[
cos θ sin θ
− sin θ cos θ

] [
y(i,j,t)
v(i,j,t)

]
otherwise, (6e)

where yth1(< 0) is a threshold parameter, yth2 is the intersection of limit cycle
and v = 0, R is a damping parameter and θ is a degree parameter.

We define yth2 such that located on the intersection of limit cycle and v = 0.
yth2 is given by

yth2(i,j) =
2yth1(i,j)

1−R
π
θ
. (7)
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Once particles satisfy the condition (6b) and (6d), the position of particle jumps
toward the fixed point by (6a) and (6c) respactively. By this dynamics, particles
exhibit chaotic motion in the range adjusted by yth1 not depending on initial
position and velocity.

Example. A particle trajectory is shown in Fig. 1.
First, a particle is initialized y = 5, v = 0.01 shown as P0. The particle is

moved to P1 following (6e). At P1, the particle satisfies (6b), then the particle
jumps to P2 by (6a). At P2, the particle satisfies (6d), then it re-jumpes to P3
following (6c). The particle is moved from P3 to P4, and jumps to P5. At P5,
the particle doesn’t satisfy (6d), then it begins to be moved following (6e). This
dynamics repeats this manner and exhibits chaotic attractor as shown in Fig. 2.
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Fig. 1. A particle trajectory on y-v phase
space. θ = 0.87 (50[deg]), R = 1.2, yth1 =
−2, initialize(y, v)=(5, 0.01), 10 iteration.
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Fig. 2. A particle trajectory on y-v phase
space. θ = 0.87 (50[deg]), R = 1.2, yth1 =
−2, initialize(y, v)=(5, 0.01), 4000 itera-
tion.

3.2 Evaluation of Particles

An object function f is defined. Each time step, current position of particles are
evaluated by f . All particles keep the best coordinate as pbest, and share the
best coordinate in all particles as gbest. When a particle finds better position
than pbest and gbest, these best position is updated by the new-best position,
respectively.

3.3 Dynamics of Fixed Point

In this paragraph, the fixed point fp is described. The fixed point is defined
independently. The number of fixed point of a particle is same amount of the
number of dimensions. In N dimensional searching space, the fixed point fpi of
i-th particle is described by

fpi =
{
fp(i,1), fp(i,2), .... , fp(i,N)

}
. (8)
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In the phase space consisting of particle position and velocity, fp is on v = 0.
The fp is updated by pbest and gbest each time step. At time step t, the next
fixed point of i-th particle, on j-th dimension is defined as follows:

fp(i,j,t+1) = fp(i,j,t) + c1(pbest(i,j,t) − fp(i,j,t)) + c2(gbest(j,t) − fp(i,j,t)), (9)

where c1 and c2 are positive constants.
Updating fixed point, each particle searches optimal position around pbest

and gbest with chaotic behavior.

3.4 Algorithm of CSOPSO

The basic algorithm of CSOPSO in pseudocode follows.

Initialize Population

Initialize pbest and gbest
Do

Evaluate all Populations

For i = 1 to Population Size

For j = 1 to Dimension

update fpij
yij = xij − fpij
if (vij ≥ 0) & (yij < yth1ij ) then

vij = 0
yij = 2yth1ij − yij

else if (vij = 0) & (yij > yth2ij ) then

yij = 2yth2ij − yij
else[
yij
vij

]
= R

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
yij
vij

]
end if

xij = yij + fpij
next j

next i
Until termination criterion is met

4 Reducing Size of chaotic attractor

It is well known that the balance between global and local search is effective for
optimizer[6]. In proposed method, the size of chaotic attractor is identified by
yth1. The size of attractor provides the searching regions. This feature has a pos-
sibility to change searching region each time step. We apply reducing searching
region by decreasing yth1 linearly.

In this article, two linear reducing yth1 models are proposed. Reducing yth1
by (10) and (11) is used by CSOPSO1 and CSOPSO2, respectively.

yth1 =
yth1final

− yth1initial

tmax
t+ yth1initial

, (10)
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yth1 = yth1initial
e−

a
tmax

t, (11)

where yth1initial
is initial value of yth1, ythfinal

is final value of yth1 at the last
iteration, a is a positive constant and tmax is a number of iteration.

For comparison, the basic algorithm of CSOPSO, without reducing yth1 model,
is represented by CSOPSObasic.

5 Experimental Results

In order to compare the performance, proposed models are applied to some
benchmark functions. In this section, we compare the influence of attractor size
in Sec. 5.3 through three models, CSOPSObasic, CSOPSO1 and CSOPSO2 for
Rastrigin function. We also compare the performance between proposed models
and PSO through four benchmark functions in Sec. 5.4.

5.1 Parameter Selection for CSOPSO models

For comparison, the parameters used in proposed models are selected experi-
mentally. For these models, we suppose c1 = c2 = c. The common parameters in
proposed models are set to θ = 0.367, R = 1.05 and c = 0.01 by simulating with
some patterns of parameters. The population size is set to 30 for all models.

5.2 Benchmark Functions

For comparison four non-linear benchmark functions are described in Table 1.
The initial positional range for these functions are set to [−10 10].

Table 1. Benchmark functions

f Function Domain Minimum Value

Sphere f0(x) =
∑N

i=1 x
2
i [−10 10]N f0(0) = 0

Rastrigin f1(x) =
∑N

i=1(x
2
i − 10 cos(2πxi) + 10) [−10 10]N f1(0) = 0

Rosenbrock f2(x) =
∑N−1

i=1 100
(
(x2

i+1 − x2
i )

2 + (1− xi)
2
)

[−10 10]N f2(1) = 0

Griewank f3(x) =
1

4000

∑N
i=1 x

2
i −

∏
cos( xi√

i
) [−10 10]N f3(0) = 0

5.3 The Influence of Attractor Size for Performance

We consider the influence on attractor size for performance. In this section, pro-
posed models are adapted to 30 dimensional Rastrigin function f1. Initialized
range of the particles position is set [−10 10] with uniform distribution. Initial-
ized velocity is set to 0.
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The average best function values of CSOPSObasic model under 30 indepen-
dent runs each max iteration with some yth1 are shown in Fig. 3. Figure 3 shows
that the performance is depending on the size of attractors.

The average best function values of CSOPSO1 and CSOPSO2 under 30 in-
dependent runs each max iteration are shown in Fig. 4 and Fig. 5, respectively.
In these simulations, both models reduce yth1 from −4.0 to different final yth1
values. Figure 4 shows that the performance of CSOPSO1 is worse than CSOP-
SObasic. In this simulation, the attractor size is bigger than CSOPSObasic in
Fig. 3 during almost time step. However, CSOPSO2 shows better performance
than CSOPSO1 even though initial yth is same value as CSOPSO1. It is seems
that CSOPSO2 has the better balances between local search ability and global
search ability.
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Fig. 3. Comparison of yth1 with
CSOPSObasic
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Fig. 4. Comparison of yth1 with
CSOPSO1

0 500 1000 1500 2000
0

50

100

150

200

250

300

max itaration

F
in

al
 E

va
lu

at
io

n 
V

al
ue

 

 

a=3,yth1(finial)=−0.20
a=5,yth1(final)=−0.027
a=7,yth1(final)=−0.0036
a=9,yth1(final)=−0.00049
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5.4 Comaprison CSOPSO with PSO

Figure 6 shows the average best function values of PSO, CSOPSObasic and
CSOPSO2 for 30 dimensional Rastrigin function under 30 independent runs
each max iteration. The parameters for PSO algorithm described by (1) and
(2) are followings, ω = 0.729 and c1 = c2 = 1.49445. These parameters were
introduced in [7]. The parameters for proposed models are same as described in
Sec. 5.1. Population size of 30 is used in PSO and proposed models.

In Fig. 6 it seems that proposed model, CSOPSObasic and CSOPSO2, per-
forms better than PSO over 1500 iteration.

Table 2 shows the average best function value and standard deviation with
bracket among PSO, CSOPSObasic and CSOPSO2 for the benchmark func-
tions: Sphere, Rastrigin, Rosenbrock and Griewank under 30 independent runs.
For PSO parameters, ω = 0.729 and c1 = c2 = 1.49445 [7], are adapted. For
CSOPSO models, the common parameters are set to θ = 0.367, R = 1.05 and
c1 = c2 = 0.01. For CSOPSObasic, yth1 is set to 0.01. For CSOPSO2, initial
yth1 = −4, a = 5 is adapted. The proposed model performs well for Rastrigin
function f1 at 2000 and 3000 iteration. It seems that CSOPSO2 model shows
better performance for Griewank function f3 at 2000 and 3000 iteration and al-
most equal performance for Rosenbrock function f2 at 2000 and 3000 iteration.

Table 2. Comparison with PSO and CSOPSO

f Dimension iteration PSO CSOPSObasic CSOPSO2

f0 30 1000 0.000 (0.0000) 3.961 (2.26) 0.1745 (0.22)
f0 30 2000 0.000 (0.0000) 0.5499 (1.13) 0.004975 (0.000901)
f0 30 3000 0.000 (0.0000) 0.03899 (0.0741) 0.004471 (0.000667)

f1 30 1000 88.15 (26.4) 93.05 (23.3) 92.03 (23.7)
f1 30 2000 88.42 (26.4) 76.13 (25.2) 49.62 (17.9)
f1 30 3000 78.57 (23.7) 70.92 (18.5) 48.57 (11.4)

f2 30 1000 35.74 (28.6) 650.0 (347) 111.3 (98.7)
f2 30 2000 41.12 (35.5) 104.0 (80.6) 34.47 (28.6)
f2 30 3000 26.67 (29.8) 37.97 (16.5) 32.03 (16.5)

f3 30 1000 0.009927 (0.0105) 0.2638 (0.130) 0.06420 (0.0440)
f3 30 2000 0.006566 (0.00926) 0.05045 (0.0586) 0.004468 (0.0593)
f3 30 3000 0.007468 (0.00868) 0.005834 (0.00671) 0.00558 (0.0957)

6 Conclusion

In this paperweproposedPSObasedonchaos spikeoscillatordynamics(CSOPSO).
Nevertheless our proposed method doesn’t have any stochastic elements and the
parameters are not tuned enough, it exhibited better performance for Rastrigin
and Griwank functions at 3000 iteration compared with PSO. These results sug-
gest that CSOPSO performance can be improved. In the future, we will consider
about providing other models to decrease size of attractor and studying about in-
fluence of performance depending on each parameters.
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for Concurrent Open Node Fault
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Abstract. This paper studies the performance of faulty RBF networks when
stuck-at-zero node fault and stuck-at-one node fault happen. An objective func-
tion for training fault tolerant RBF networks for node fault is first derived. A
training learning algorithm for faulty RBF networks is then presented. Finally,
a mean prediction error formula which can estimate the test set error of faulty
networks is derived. Simulation experiments are then performed to verify our
theoretical result.

Keywords: Fault tolerance, RBF networks, generalization ability.

1 Introduction

Regularization [1] is an effective technique to train a neural network with good gener-
alization. In this technique, the usual assumption is that trained neural networks can be
perfectly implemented. However, for electronic implementations, many network fault
situations [2], [3], such as component failure, sign bit change, and open circuit, could
happen. If special care is not taken, the performance of a neural network could degrade
drastically when network fault appears [4–6]. Hence, obtaining a fault tolerant neural
network is very important.

In the implementation of neural networks, node fault, such as stuck-at-zero and
stuck-at-one, happens unavoidably. The classical way to improve the fault tolerance
is to generate a number of faulty networks during training [4]. But the number of train-
ing iterations should be very large. Otherwise, the learning algorithm cannot capture the
statistical behavior of network fault. In [6], the fault tolerant problem was formulated as
an unconstrained optimization problem. Those formulation can improve the fault tol-
erance of faulty networks. However, they are computationally complicated when the
multi-node fault situation and multi-fault model are considered, because the number
of potential faulty networks for the multi-node fault situation and multi-fault model is
very large. Besides, although many fault tolerant training methods were developed in
the past three decades, most of them focused on one kind of node faults. For example,
in [5], [6], the algorithm was used to handle the stuck-at-zero only.

This paper investigates how the node fault situation affects the performance of RBF
networks when the stuck-at-zero and stuck-at-one concurrently happens. We then derive
an objective function for this concurrent situation. The corresponding training algorithm
is then developed.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 208–216, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Background

Consider that we are given a training set: Dt = {(xi, yi) : xi ∈ "K , yi ∈ ", i =
1, · · · , N}, where xi and yi are the input and output of the i-th sample, respectively,
andK is the input dimension. The output is generated by an unknown stochastic system,
given by yi = f(xi) + εi, where f(·) is a nonlinear function, and εi’s are the indepen-
dent zero-mean Gaussian random variables with variance σ2

ε . In the RBF approach, the
unknown system f(·) is approximated by

f(x) ≈ f̂(x,w) =

M∑
j=1

wjφj(x) = φ
T (x)w (1)

wherewj ’s are weights,φ(x) = [φ1(x), · · · , φM (x)]T , and φj(x) = exp
(
− ‖x−cj‖2

Δ

)
is the j-th basis function. cj’s are the RBF centers. Parameter Δ controls the width of
RBF kernels. The training set error E(Dt) is given by

E(Dt) =
1

N

N∑
i=1

(yi − φT (xi)w)2. (2)

Among different forms of node faults, stuck-at-zero and stuck-at-one are the most com-
mon fault models [5–8]. In stuck-at-zero, the output of a node is tied to zero. In stuck-
at-one, the output of a node is tied to one. We propose a general model to describe the
co-existing of stuck-at-zero and stuck-at-one, given by

φ̃j(x) = (1− β2
j )φj(x) +

1

2
βj(1 + βj), ∀ j = 1, · · · ,M. (3)

In our formulation, βj’s are fault factors which describe the fault situation of the RBF
nodes, given by

βj =

⎧⎨⎩
0 no fault
1 stuck-at-one
−1 stuck-at-zero

. (4)

If the jth node (βj = 0) is no fault, then φ̃j(x) = φj(x). If it is stuck-at-one (βj = 1),
then φ̃j(x) = 1. If it is stuck-at-zero (βj = 1), then φ̃j(x) = 0. The probability mass
function of the fault factor is given by Prob(βj = 1) = p1, Prob(βj = −1) = po, and
Prob(βj = 0) = 1− p1 − po.

3 Performance, Objective Function, and Training Algorithm

With the proposed fault model and fault statistics, we can study the performance of
faulty networks. Given the fault factors βj’s, from (3), the faulty training error is

E(Dt)β =
1

N

N∑
i=1

(yi − φ̃
T
(xi)w)2 (5)

=
1

N

N∑
i=1

⎧⎨⎩y2
i −2yi

M∑
j=1

wj φ̃j(xi)+

M∑
j=1

M∑
j′ �=j

wjwj′ φ̃j(xi)φ̃j′ (xi)+

M∑
j=1

w2
j φ̃

2
j(xi)

⎫⎬⎭ (6)
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where φ̃(xi) = [φ̃1(xi), · · · , φ̃M (xi)]
T . According to the definition of the node fault,

〈φ̃j(xi)〉 =(1− p1 − po)φj(xi) + p1 (7a)

〈φ̃2j (xi)〉 =(1− p1 − po)φ
2
j (xi) + p1 (7b)

〈φ̃j(xi)φ̃j′ (xi)〉 =[(1− p1 − po)φj(xi) + p1][(1 − p1 − po)φj′ (xi) + p1] (7c)

where 〈·〉 is the expectation operation over the fault factors. Based on (7), the training
error of a faulty network is given by

Ē(Dt)β =
1

N

N∑
i=1

⎧⎨⎩y2i − 2(1− p1 − po)yi

M∑
j=1

wjφj(xi)− 2p1yi

M∑
j=1

wj

+(1− p1 − po)
2

M∑
j=1

M∑
j′ �=j

wjwj′φj(xi)φj′ (xi)

+p1(1− p1 − po)

M∑
j=1

M∑
j′ �=j

wjwj′ [φj(xi) + φj′ (xi)] + p21

M∑
j=1

M∑
j′ �=j

wjwj′

+(1− p1 − po)

M∑
j=1

w2
jφ

2
j (xi) + p1

M∑
j=1

w2
j

⎫⎬⎭ . (8)

From the fact that
∑M

j=1

∑M
j′ �=j ajaj′ =

∑M
j=1

∑M
j′=1 ajaj′ −

∑M
j=1 a

2
j , (8) becomes

Ē(Dt)β =
p1 + po
N

N∑
i=1

y2i + (1− p1 − po)
1

N

N∑
i=1

(yi − φT (xi)w)2 − 2p1
N

N∑
i=1

yi1
Tw

+(1− p1 − po)(p1 + po)w
T (G −H)w − 2p1(1− p1 − po)w

TDw

+p1(1 − p1)w
Tw + p1(1 − p1 − po)w

TΘw + p21w
T1w (9)

whereH = 1
N

∑N
j=1 φ(xi)φ

T (xi), G = diag(H), 1 = [1, · · · , 1]T ,

Θ =
1

N

N∑
i=1

⎛⎜⎜⎜⎝
φ1(xi) φ2(xi) · · · φM (xi)

.

.

.
.
.
.

.

.

.
.
.
.

φ1(xi) φ2(xi) · · · φM (xi)
φ1(xi) φ2(xi) · · · φM (xi)

⎞⎟⎟⎟⎠ +

⎛⎜⎜⎜⎝
φ1(xi) · · · φ1(xi) φ1(xi)
φ2(xi) · · · φ2(xi) φ2(xi)

.

.

. · · ·
.
.
.

.

.

.
φM (xi) · · · φM (xi) φM (xi)

⎞⎟⎟⎟⎠ (10)

D =
1

N

N∑
i=1

⎛⎜⎜⎜⎝
φ1(xi) 0 · · · 0

0 φ2(xi) 0 · · ·
.
.
. · · · · · ·

.

.

.
0 · · · · · · φM (xi)

⎞⎟⎟⎟⎠ , and 1 =

⎛⎜⎜⎝
1 · · · 1

.

.

.
. . .

.

.

.
1 · · · 1

⎞⎟⎟⎠ . (11)

Equation (9) tells us the training error of faulty networks. Since the term p1+po

N

∑N
j=1 y

2
i

in (9) is independent ofw, minimizing the training error of faulty networks is equivalent
to minimizing the following objective function:
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L(w) = (1− p1 − po)
1

N

N∑
i=1

(yi −φT (xi)w)2 − 2p1
N

N∑
i=1

yi1
Tw

+(1− p1 − po)(p1 + po)w
T (G−H)w − 2p1(1− p1 − po)w

TDw

+p1(1− p1)w
Tw + p1(1− p1 − po)w

TΘw + p21w
T1w (12)

In (12), the first term corresponds to the training error of a fault-free network and other
terms are similar to the conventional penalty term.

The optimal weight vector for minimizing the objective function can be obtained by
considering the derivative of L(w) respect to w. It is given by

w = Γ−1 1

N

N∑
i=1

((1− p1 − po)φ(xi) + p11) · yi , (13)

Γ = {(1− p1 − po)(H + (p1 + po)(G−H)− 2p1D + p1Θ)

+p1(1− p1)I + p211
}
, (14)

and I is an identity matrix.

4 Estimation of Generalization Error

With (13), we know how to train a fault tolerant RBF network for concurrent node fault,
where stuck-at-zero and stuck-at-one appear at the same time. However, in many situa-
tions, we would like to know how well the network performs on unseen samples. This
section derives a mean prediction error (MPE) formula to estimate the generalization
ability for faulty networks trained with (13). The training error can also be expressed as

Ē(Dt)β = 〈y2〉Dt − 2(1 − p1 − po)〈yφT (x)w〉Dt+(1 − p1 − po)
2wTHw − 2p1〈y1Tw〉Dt

+(1 − p1 − po)(p1 + po)w
T
Gw − 2p1(1 − p1 − po)w

T
Dw

+p1(1 − p1)w
Tw + p1(1 − p1 − po)w

TΘw + p2
1w

T 1w. (15)

Similarly, for the test set Df = {(x′
i′ , y

′
i′)

N ′
i=1, the error of faulty networks is given by

Ē(Df )β = 〈y′2〉Df
−2(1−p1−po)〈y′φT (x′)w〉Df

+(1−p1−po)
2wTH′w−2p1〈y′1Tw〉Df

+(1−p1−po)(p1 + po)w
T
G

′
w−2p1(1−p1−po)w

T
D

′
w

+p1(1−p1)w
Tw+p1(1−p1−po)w

TΘ′w+p2
1w

T 1w. (16)

where

Θ
′
=

1

N ′

N′∑
i′=1

⎛⎜⎜⎜⎜⎝
φ1(x

′
i′ ) φ2(x

′
i′ ) · · · φM (x′

i′ )
.
.
.

.

.

.
.
.
.

.

.

.
φ1(x

′
i′ ) φ2(x

′
i′ ) · · · φM (x′

i′ )
φ1(x

′
i′ ) φ2(x

′
i′ ) · · · φM (x′

i′ )

⎞⎟⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
φ1(x

′
i′ ) · · · φ1(x

′
i′ ) φ1(x

′
i′)

φ2(x
′
i′ ) · · · φ2(x

′
i′ ) φ2(x

′
i′)

.

.

. · · ·
.
.
.

.

.

.
φM (x′

i′) · · · φM (x′
i′ ) φM (x′

i′ )

⎞⎟⎟⎟⎟⎠ , (17)

H ′ = 1
N ′

∑N ′

i′=1 φ(x
′
i′ )φ

T (x′
i′), G

′ = diag(H ′), andD′ = 1
2diag(Θ′).
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Denote the true weight vector aswo. Hence,

yi = φ
T (xi)wo + εi and y′i′ = φ

T (x′
i′)wo + ε′i′ , (18)

where εi’s and ε′i′ ’s are independent zero-mean Gaussian random variables with vari-
ance σ2

ε . From (13) and (18), the term 〈yφT (x)w〉Dt in (15) is given by

〈
[
1

N

N∑
i=1

(wT
o φ(wi)+εi)φ

T (xi)]Γ
−1[

1

N

N∑
i=1

((1−p1−po)φ(xi)+p11)(w
T
o φ(wi)+εi)]

〉
εi

. (19)

Since εi’s are independent,

〈yφT (x)〉Dt = w
T
oHΓ

−1[(1− p1 − po)H + p1Φ]wo

+
(1− p1 − po)σ

2
ε

N
Tr(Γ−1H) +

p1σ
2
ε

N
φ

T
Γ−11 , (20)

where φ = 1
N

∑N
i=1 φ(xi),

Φ = 1
N

∑N
i=1

⎛⎜⎜⎜⎝
φ1(xi) φ2(xi) · · · φM (xi)

.

.

.
.
.
.

.

.

.
.
.
.

φ1(xi) φ2(xi) · · · φM (xi)
φ1(xi) φ2(xi) · · · φM (xi)

⎞⎟⎟⎟⎠, and Tr{·} denotes the trace operation.

Using the similar method, the term 〈y1Tw〉Dt in (15) is given by

〈y1Tw〉Dt = w
T
o ΦΓ

−1[(1− p1 − po)H + p1Φ]wo

+
σ2
ε

N
1TΓ−1[(1− p1 − po)φ+ p11] , (21)

For the test set error expression (16), 〈y′φT (x′)w〉Df
and 〈y′1Tw〉Df

are given by

〈y′φT (x′)〉Df
= (1 − p1 − po)w

T
oH

′Γ−1Hwo + p1w
T
oH

′Γ−1Φwo (22)

〈y′1Tw〉Df
= (1 − p1 − po)w

T
o Φ

′Γ−1[(1− p1 − po)H + p1Φ]wo , (23)

where

Φ′ = 1
N

∑N
i=1

⎛⎜⎜⎜⎜⎝
φ1(x

′
i′) φ2(x

′
i′ ) · · · φM (x′

i′ )
.
.
.

.

.

.
.
.
.

.

.

.
φ1(x

′
i′) φ2(x

′
i′ ) · · · φM (x′

i′ )
φ1(x

′
i′) φ2(x

′
i′ ) · · · φM (x′

i′ )

⎞⎟⎟⎟⎟⎠. Following the common practice, for large

N and N ′, we can assume that H ′ ≈ H , G′ ≈ G, 〈y′2〉Df
≈ 〈y2〉Dt , Φ′ = Φ,

D′ = D, and Θ′ = Θ. The difference between the generalization error of faulty net-
works and the training error of faulty networks is given by

Ē(Df )β−Ē(Dt)β =
2(1−p1−po)2σ2

ε

N
Tr(Γ−1H)+

2p1(1−p1−po)σ2
ε

N
φ

T
Γ−11

+
2p1σ

2
ε

N
1TΓ−1[(1− p1 − po)φ+ p11] (24)
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From (20)–(24), the MPE formula for estimating the generalization error of faulty net-
works is given by

Ē(Df )β = (1 − p1 − po)E(Dt) +
p1 + po
N

N∑
i=1

y2i +
2(1−p1−po)2σ2

ε

N
Tr(Γ−1H)

+
4p1(1−p1−po)σ2

ε

N
φ

T
Γ−11+

2p21σ
2
ε

N
1TΓ−11− 2p1

N

N∑
i=1

yi1
Tw

+(1− p1 − po)(p1 + po)w
T (G−H)w − 2p1(1 − p1 − po)w

TDw

+p1(1− p1)w
Tw + p1(1− p1 − po)w

TΘw + p21w
T1w (25)

In (25), most of terms can be obtained form the training set. The only unknown is
the variance σ2

ε of the measurement noise. The variance can be estimated from the
Fedorov’s method, given by

σ2
ε ≈

1

N−M

N∑
i=1

(yi−φT (xi)H
−1 1

N

N∑
i′=1

φ(xi′)yi′ )
2. (26)

5 Simulations

We consider two data sets: (i) the sinc function and (ii) a nonlinear autoregressive time
series (NAR) [9]. In the sinc function example, the output is given by y = sinc(x) + ε,
where ε is a zero-mean Gaussian noise with standard deviation σε = 0.15. The input x
is randomly taken from−5 to 5. Both training set and test set contain 200 samples. The
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Fig. 1. Training set MSEs and test set MSEs of faulty networks for Sinc function example. Note
that the y-axis is in the logarithmic scale.
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network model has 37 RBF nodes whose centers are uniformly distributed in the range
[−5, 5]. The RBF width Δ is equal to to 0.1. For comparison, two other techniques
are also considered in the simulation. They are least square and Zhou’s method [6].
The least square is a reference which tests the performance of faulty networks when
special care is not considered. The average training and test MSEs, under various node
fault levels, are shown in Figure 1. The least square method has very poor performance.
This result confirms that without special care during the performance of faulty networks
could be very poor. The Zhou’s method and our approach can improve fault tolerance.
Compared with the Zhou’s method, our approach has a better performance. The reason
is that our approach aims at handling faulty network with the co-existing stuck-at-zero
and stuck-at-one faults.

The MPE formula help us not only to estimate the generalization ability of a trained
network but also to select some model parameters. For instance, we can use it select the
RBF widthΔ. Here we illustrate how our MPE results can help us to select an appropriate
value of Δ. The NAR example [9] is considered. The output is generated by

y(t+ 1) =
y(t)y(t− 1)y(t− 2)(y(t− 2)− 1)x(t− 1) + x(t)

1 + y2(t− 1) + y2(t− 2)
+ ε(t+ 1), (27)

where x(t) is the input, and the noise term ε(t) is a zero mean Gaussian variable
with standard deviation σ2

ε = 0.12. We generate 300 samples with y(0) = y(−1) =
y(−2) = 0. The input sequence x(t)’s are random signal generated in the range of
[−0.5,0.5]. The first 150 samples are used for training. The rest of samples is used as
test set. The network model has 50 RBF nodes whose centers are randomly selected
from the training set. The RBF width Δ is set to 0.6.

Following the conventional approaches in selecting parameters for fault–free net-
works, we try different values of Δ. Afterwards, we use the MPE formulae to estimate
the test error of faulty networks. The results are depicted in Figure 2.
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Fig. 2. Use MPE formula to select RBF width for the NAR example

From the figure, although there are small differences between the true test errors 1

and MPE values, our method can locate optimal Δ for minimizing the generalization

1 When we use the test set method, we need to have a test set and generate a number of faulty
networks to measure the performance of faulty networks under different weight noise and
weight fault levels.
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error of faulty networks. Besides, over a large range of RBF widths, the MPE and test
error values are close to the optimal values.

For example, for the NAR example with stuck-at-one fault rate p1 = 0.1 and stuck-
at-one fault rate p0 = 0.1, the searched Δ is 0.8710 and the corresponding test set
error is 0.04913. When we use the brute force way (test set method) to search Δ, the
searched Δ is 0.8912 and the corresponding test set error is 0.04912. When the stuck-
at-one fault rate p1 = 0.02 and the stuck-at-one fault rate p0 = 0.02, the searched Δ
is 1.2022 and the corresponding test set error is 0.03510. When we use the brute force
way (test set method) to search Δ, the searched Δ is 1.4125 and the corresponding test
set error is 0.03496. The MPE result confirms the applicability of the MPE formula
for the selecting RBF width. For other faulty levels and examples, we obtained similar
results (not shown here).

6 Conclusion

This paper addressed the fault tolerance of RBF networks when the stuck-at-zero and
stuck-at-one node faults happen at the same time. The performance of faulty networks
was investigated. Afterwards, we defined an objective function for minimizing the train-
ing error of faulty networks and then developed a learning algorithm. Finally, we de-
rived a MPE formula to predict the generalization performance of the faulty networks
trained from our algorithm. With our MPE formula, we can predict the generalization
ability of faulty RBF networks without generating a number of faulty networks and
without using the test set. Simulation results show that our learning algorithm is bet-
ter than existing methods tested. Besides, the MPE formula can help us to select an
appropriate RBF width value for minimizing the test error of faulty networks.
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Abstract. This paper presents a novel method for generally adapting
ordinal classification models. We essentially rely on the assumption that
the ordinal structure of the set of class labels is also reflected in the
topology of the instance space. Under this assumption, this paper pro-
poses an algorithm in two phases that takes advantage of the ordinal
structure of the dataset and tries to translate this ordinal structure in
the total ordered real line and then to rank the patterns of the dataset.
The first phase makes a projection of the ordinal structure of the feature
space. Next, an evolutionary algorithm tunes the first projection working
with the misclassified patterns near the border of their right class. The
results obtained in seven ordinal datasets are competitive in comparison
with state-of-the-art algorithms in ordinal regression, but with much less
computational time in datasets with many patterns.

Keywords: ordinal regression, ordinal classification, extreme learning
machine, support vector machine, neural networks.

1 Introduction

Ordinal Regression (OR) is a supervised learning problem of predicting cate-
gories that have an ordered arrangement. The samples are labeled by a set of
ranks with an ordering amongst different categories. In contrast to the nominal
classification, there is an ordinal relationship throughout the categories and it is
different from regression in that the number of ranks is finite and exact amounts
of difference between ranks are not defined. In this way, ordinal classification lies
somewhere between classification and regression.

OR problems are important, since they are common in our everyday life where
many problems require classification of items into naturally ordered classes. Se-
lecting the best route to work, where to stop, which product to buy, and where
to live, are examples of daily ordinal decision-making. In this way, ordinal clas-
sification is one of the most important components in many applications.

Compared with general classification problems, much less effort has been de-
voted to ordinal classification learning. However, in the last decade an increasing
number of publications report progress in the artificial learning of ordinal concepts
[1,2,3,4,7,9,10,11,15,16,18].

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 217–227, 2012.
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Ordinal Classification opens a door that was not readily accessible to us in
Nominal Classification: the possibility to somehow project the ordered classes
onto a 1D real array. This is made possible by a reasonable a priori assumption
[14]: the ordinal outputs to be classified must have a corresponding ordinality in
the topology of the instance (or attribute’s) space. Ordinal classes are generally
expected to overlap in challenging classification problems. Noise and bad quality
data are also expected. Yet in OR some degree of coherent gradual transition
within the attibutes space is expected. By coherent, we mean that there is a
correspondence with the a priori class labels provided by the dataset, and the
inheretly continuous regressor.

We propose a method that performs OR, including both questionable and
reliable patterns, with competitive results. This is basically done by helping the
classifier understand the questionable patterns in a way that damps the noise
made by them during the classification process.

The Evolutionary Ordinal Regression with Extreme Learning Machine (EOR-
ELM) algorithm presented here has two stages. On Phase 1, the aim is to project
each pattern on a one dimensional real interval in accordance with their classes.
The ELM regressor, known to be fast and with good results, is used for this
projection of patterns. ELM is used a number of times with different initial
weights, in order to keep the one with most accuracy.

The second stage takes on projected values of this better ELM, and begins
a sorting process where those patterns incorrectly classified, yet close to their
correct class are reallocated in the hopes that this will help that better ELM the
next time it performs a regression. An evolutionary criterion is used to reallocate
such patterns. The distance to the new location takes place according to random
additions or subtractions from the initial values of these patterns, as in random
mutation. The new set of mutated and non-mutated projections undergoes ELM
once more. Since the input weights for ELM were chosen in Phase 1, only the
output weights are affected by this reallocation of projected patterns. Robustness
is thus ensured, since the regressor remains not significantly altered.

Another important element to remark is how classes are assigned. Previously
fixed intervals are not used in this case. Instead the separation between classes
is obtained counting the number of patterns on each class. Thus, on this second
stage the projections evolve, and so do the boundaries between classes.

Once the second stage is finished, due to a lack of improvement after a number
of generations, the boundaries are fixed according to the best evolved classifier
(that comes from the best evolved mutated projection).

Although the initial regression is applied to projected patterns within the
interval [0, 1], the system is allowed to take on as wide an interval as needed as
it evolves in Phase 2. This allows for a greater flexibility in the classifier.

The EOR-ELM classifier turns out to be competitive against well-known ordi-
nal classification methods, but most importantly, it provides us with an intuitive
means to understand the data we are working with. It is a fast method, allowing
for quick convergences in the evolutionary process explained in later sections.
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Section 2 presents the nature of the problem, the regressor used (ELM), and
how it is used for this particular kind of problem. Section 3 details how the
experiments were carried out and their corresponding results. Section 4 ends the
document with conclusions.

2 Problem Setup

2.1 The Approach

The center of our proposal is to turn a classification problem into a regression
problem so that the class structures are reflected in the regression variable. Let
us consider an ordinal classification problem with Q classes that we presume
ordered by the class labels, i. e. C1 ≺ C2 ≺ . . . ≺ CQ, and the training set
D =

{
(xi, yi) : xi ∈ X ⊂ Rk, yi ∈ Y = {C1, . . . , CQ}

}
(i = 1, . . . .N) made by N

patterns, where x is a characteristic random k-vector and y is the class it belongs
to.

Our goal is to find a classifier that is capable of assigning, according to the best
fit possible, a pattern to its class depending on its characteristics. It should also
be designed to include the information related to the ordinality of the classes.
Thus, the ordered structure of Y should be used to determine the classifier. This
also implies that the order is somehow related to the distribution of patterns in
the space of attributes X , and also to the topological distribution of the classes.

We assume the existence of a one-dimensional latent variable z = ϕ (x) that
is a function of the characteristics observed and takes on the underlying order
mentioned in the previous paragraph.

While ordinality in classification datasets is allowing current researchers to
present the problem as a regression where the intervals for each class are cho-
sen one way or another (simple and intuitive), this procedure presents its own
drawbacks. First of all, little has been said about how big these intervals must
be. We do have the intuition that a given regressor with a given dataset should
have an optimal interval for ordinal regression. However it is commonplace to see
the interval (0,1) being chosen by default. This is not necessarily always conve-
nient, and it can often make regression harder for a certain method. The second
problem has to do with patterns falling close enough to their right interval.

As we can see in Figure 1, patterns may be preserving the ordinality that we
are looking for, yet we might be classifying them incorrectly for the sole fact of
being (close but) out of their correct interval. In other words, the regressor has
done quite a good job ordering the patterns, yet we chose to evaluate it most
negatively. In this manner, we are indeed presenting results that look clearly
worse than they really are. It is the order of the classes that matters after all,
and sticking to interval fitness might be making researchers lose touch with the
real challenge (ordering patterns).

We will not use the value for zj to see if it fits a certain interval. Instead, we
will order and rank all the zj . Then, knowing that class 1 in training had N1

patterns, we look at the N1 lowest values returned by the regressor for training.
These values we assign to class 1 although they might not belong to it. We do
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Fig. 1. The pattern projected as z belongs to class Cq. Still, a certain method has placed
the boundary L before z, rendering this pattern as incorrectly classified. However,
ordinality remains correct when z is immediate to L, since it is right next to its correct
class. EOR-ELM proposes a way to define a boundary L′ that solves this problem,
considering z as correctly classified.

the same for the N2 values after the lowest N1 ones, and assign them to class 2,
and so on with all the other classes.

2.2 Extreme Learning Machine (ELM)

Huang et al. [12], is the reference for the description of ELM. The regression prob-
lem can be formulated as an attempt to find solutions for wi = (wi1, . . . , win)
and βi using the following system of equations:

f(xj) = tj , j = 1, 2, . . . , N (1)

where

f(xj) =

m∑
i=1

βig(< wi,xj > +bi), j = 1, 2, . . . , N, (2)

where g is the activation function and the symbols <> indicate an ordinary
scalar product. This system can also be expressed more concisely as Hβ = T,
where H is the hidden layer’s output matrix of the neural network given by:

H(w1,w2, . . . ,wm, b1, b2, . . . , bm,x1,x2,xN ) =

=

⎛⎜⎝ g(< w1,x1 > +b1) . . . g(< wm,x1 > +bm)
...

. . .
...

g(< w1,xN > +b1) . . . g(< wm,xN > +bm)

⎞⎟⎠ (3)

with

β =

⎡⎢⎣ β1
...
βm

⎤⎥⎦ , T =

⎡⎢⎣ t1
...
tN

⎤⎥⎦ . (4)

Each column on matrix H is made of the values of the corresponding hidden
layer node, evaluated for each one of the patterns xi in the training set.
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The ELM algorithm randomly selects the values for wi = (wi1, . . . , win) and
bi, and then obtains corresponding values for β1, . . . , βm, from the generalized
linear model. This is done by calculating the minimum quadratic solution of the
linear system, given by:

β̂ = H†T (5)

where H† = (HTH)−1HT is the generalized Moore-Penrose inverse matrix.
In short, the corresponding algorithm for this method is as follows:

ELM Algorithm 1. Given a training set D = {(xi, ti) : xi ∈ Rn, ti ∈ R, i =
1, 2, . . . , N}, the activation function g(t), and m neurons in the hidden layer:
Step 1: Assign arbitrary input weights for w and bias b.
Step 2: Calculate the hidden layer output matrix H.
Step 3: Calculate the output weights β̂ = H†T.

The ELM algorithm has been shown to have a good generalisation capability
while it significantly reduces the time needed to train the neural network. For
more details on this method the reader can see: [12] and [13].

2.3 The EOR-ELM Algorithm

The EOR-ELM procedure is enumerated as follows:

1. Before the first phase, partition the dataset making sure all classes are almost
(at least) equally represented to be used as training and test subsets. Let N
be the total number of patterns in the training set. The first N1 patterns
belong to class 1, the next N2 belong to class 2, and so on until the last NQ

patterns that correspond to class Q. The following will refer to this set.
2. Phase 1: A real value is assigned to each one of the patterns. Although these

values must be coherent with the order of the classes, there is no a priori
information about the order within each class. In order to comply with both
interclass labelling and intraclass uncertainty, let us consider the accumu-
lated values S0 = 0, Sq =

∑q
1Ni and mq = 1

2N (Sq−1 + Sq) where zi = mq(i),
for q (i) = j if Sj−1 < i � Sj is assigned. The class that corresponds to each
pattern can still be identified according to the arrangement defined in step
1. Thus, the greater zi correspond to the highest labelled classes (interclass
ordinality), and all zi inside a class are the same (intraclass uncertainty).
Indeed, we intend to perform a regression.

3. Invoke a regressor (we use ELM) to be trained according to the new training
subset {(xi, zi) i = 1, . . . , N}. ELM will be used M times, each one with dif-
ferent random input weights w. Let ϕw be the regressor and let each pattern
be transformed according to ẑi = ϕw(xi). Once these outputs are sorted in
increasing order, let r (i) be the rank for ẑi. C (w) = 1

N

∑
δ (q (i) , q (r (i)) , 0)

where

δ (i, j, k) =

{
1 |i− j| � k

0 |i− j| > k



222 D. Becerra-Alonso et al.

is calculated. Thus C becomes the CCR of the classifier, based on regressor
ϕw, that assigns patterns according to the order of its output. Of all the M
regressors ran, the one with the highest C is chosen, and called ϕ.

4. Phase 2: An iterated process to improve the regression selected on step 3 is
started. Let k = 0.

5. Let zki = ẑi. From these values, the interclass boundaries are definde as

Lk
0 = zk(1), L

k
q =

zk

(Sq)
+zk

(Sq+1)
2 , Lk

Q = zk(N) y mk
q =

Lk
q+Lk

q−1

2 , where z(i) is the
i-th ranked pattern.

6. The values

zi = zki +
(
δ (q (i) , q (r (i)) , 1)−

−δ (q (i) , q (r (i)) , 0)
)
δ (i, r (i) , n)

(
mk

q(i) − zki

)
υi, υi ∈ U (0, 1)

are obtained. Here, incorrectly classified borderline (but only n or less units
away from the boundary of their class) patterns are randomly reallocated
towards the center of the interval of the class they belong to. Incorrectly
classified patterns beyond this point are not reallocated, nor are correctly
classified patterns. The aim here is to try and reallocate only those patterns
close to their correct classification, counting on the inherent continuity of
the regressor to not significantly alter those patterns correctly classified (see
Figure 2).

7. Accuracy for training is obtained from doing regression to this new zi class-
mutated dataset. The new ELM regressor retains the input weights w ob-
tained in step 3, only changing the output weights β.

8. The accuracies of the original and mutated regressor are compared. The best
one is kept, and the other discarded.

9. If the new regressor is chosen, we return to step 5 with k = k+1 y ẑi = ϕ(xi).
Otherwise we go back to step 6.

10. The stop condition is simply the lack of improvement in accuracy for more
than G generations of comparing regressors.

11. The final classifier is

φ (x) = q if Lq−1 < ϕ (x) � Lq

where ϕ and the boundaries L are the obtained for the regressor at the stop
condition, except for L1 = −∞ y LQ =∞.

12. The efficiency of the regressor is verified on the test subset, this time only
using the boundaries obtained to differentiate classes.

3 Experiments

3.1 Ordinal Classification Datasets and Experimental Design

Up to the author’s knowledge, there are no public specific datasets repositories
for ordinal classification. The most used dataset repository in the literature is
the ordinal regression benchmark datasets provided by Chu et. al [4]. However,
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Fig. 2. When and incorrectly classified z ranks among the first n patterns past Lq it
can be randomly mutated towards the center of the interval of the class it belongs to
(mq)

Table 1. Datasets used for the experiments

Dataset Size #Input #Classes Classes Distribution
automobile 205 71 6 (3,22,67,54,32,27)

balance-scale 625 4 3 (288,49,288)
ERA 1000 4 9 (92,142,181,172,158,118,88,31,18)
LEV 1000 4 5 (93,280,403,197,27)

newthyroid 215 5 3 (150,35,30)
SWD 1000 10 4 (32,352,399,217)
tae 151 54 3 (49,50,52)

the benchmark datasets provided by Chu et. al, are not real ordinal classification
datasets but regression problems. These datasets are turned from a regression
problem into a classification problem by discretizing the target variable into r
different bins, with equal frequency or equal width, so each bin is labeled as a
different ordinal class.

We have collected a set of real ordinal classification datasets which are publicly
available at the UCI repository [8] and at the mldata.org datasets repository [17]
(see Table 1 for datasets description).

For this method, we perform 10 times a holdout validation and 3 repetitions
for each holdout (obtaining a total of 10× 3 = 30 different results). Each hold-
out is a stratified random division of the data, where approximately 75% of the
instances are used for the training set and 25% of them for the test set (main-
taining the original distribution of classes for both sets). For the deterministic
methods (all of them except EOR-ELM), we perform 30 times a stratified hold-
out validation using 75% of the instances for the training set and 25% of them for
the generalization set, what implies a total of 30 different results. The partitions
are the same for all the deterministic methods.

In this way, a total of 30 error measures has been obtained for all the methods
compared, which guarantees a proper statistical significance of the results.

3.2 Machine Learning Methods Used for Comparison Purposes

For comparison purposes, different state-of-the-art methods have been included
in the experimentation. These methods are the following:
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– Gaussian Processes for Ordinal Regression (GPOR) by Chu et. al [4],
presents a probabilistic kernel approach to ordinal regression based on Gaus-
sian processes where a threshold model that generalizes the probit function
is used as the likelihood function for ordinal variables.

– Support Vector Ordinal Regression (SVOR) by Chu et. al [5][6], pro-
poses two new support vector approaches for ordinal regression.Here, multiple
thresholds are optimized in order to define parallel discriminant hyperplanes
for the ordinal scales.The first approachwith explicit inequality constraints on
the thresholds, derive the optimal conditions for the dual problem, and adapt
the SMO algorithm for the solution, and we will refer to it as SVOR-EX. In the
second approach, the samples in all the categories are allowed to contribute
errors for each threshold, therefore there is no need of including the inequal-
ity constraints in the problem. This approach is named a SVOR with implicit
constraints (SVOR-IM).

Regarding the algorithms’ hyper-parameters, the following procedure has been
applied. For the Support Vector algorithms, i.e. SVOR-EX and SVOR-IM, the
corresponding hyper-parameters (regularization parameter, C, and width of the
Gaussian functions, γ), were adjusted using a grid search with a 10-fold cross-
validation, considering the following ranges: C ∈ {103, 101, . . . , 10−3} and γ ∈
{103, 100, . . . , 10−3}. All the methods were configured to use the Gaussian kernel.

EOR-ELM was run under M = 300, n = 5, G = 500. Same order variations of
these parameters do not return significant differences in the output.

3.3 Ordinal Classification Evaluation Metrics

Two evaluation metrics have been considered which quantify the accuracy of N
predicted ordinal labels for a given dataset {ŷ1, ŷ2, . . . , ŷN}, with respect to the
true targets {y1, y2, . . . , yN}:

1. Mean Zero-one Error (MZE) is simply the fraction of incorrect predictions
on individual samples. Accuracy (CCR) measures the correct ones against
the entire dataset:

MZE =
1

N

N∑
i=1

I (ŷi �= yi) , (6)

CCR = 1−MZE, (7)

where I(·) is the zero-one loss function and N is the number of patterns of
the dataset.

2. Mean Absolute Error (MAE) is the average deviation of the prediction from
the true targets, i.e.:

MAE =
1

N

N∑
i=1

|O(ŷi)−O(yi)| , (8)

where O(Cq) = q, 1 ≤ q ≤ Q, i.e. O(yi) is the order of class label yi.
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These measures are aimed to evaluate two different aspects that can be taken into
account when an ordinal regression problem is considered: whether the patterns
are generally well classified (CCR) and whether the classifier tends to predict a
class as close to the real class as possible (MAE).

Table 2. CCR, MAE and computational time (in seconds), for each dataset and
method

Dataset Method CCR MAE time/s

automobile GPOR 0.4000±0.0633 1.0153±0.1060 26.55
SVOREX 0.6788±0.0608 0.3788±0.0821 3.88
SVORIM 0.6596±0.0573 0.4019±0.0776 3.77

EOR-ELM 0.6677±0.0674 0.3812±0.0789 11.12
balance-scale GPOR 0.9726±0.0095 0.0273±0.0095 978.88

SVOREX 0.9994±0.0020 0.0006±0.0020 111.33
SVORIM 0.9994±0.0020 0.0006±0.0020 38.55

EOR-ELM 0.9657±0.0197 0.0474±0.0242 18.89
ERA GPOR 0.2812±0.0253 1.2188±0.0732 1356.78

SVOREX 0.2856±0.0286 1.1804±0.0646 2223.56
SVORIM 0.2520±0.0184 1.2032±0.0504 3428.78

EOR-ELM 0.2965±0.0186 1.1535±0.0525 36.43
LEV GPOR 0.6080±0.0275 0.4172±0.0302 1643.78

SVOREX 0.6140±0.0293 0.4136±0.0308 1966.33
SVORIM 0.6124±0.0341 0.4168±0.0340 2137.00

EOR-ELM 0.6320±0.0292 0.4040±0.0363 28.22
newthyroid GPOR 0.9463±0.0320 0.0537±0.0320 54.67

SVOREX 0.9556±0.0199 0.0444±0.0199 2.89
SVORIM 0.9538±0.0200 0.0462±0.0200 1.56

EOR-ELM 0.9259±0.0437 0.0926±0.0350 15.07
SWD GPOR 0.5724±0.0279 0.4464±0.0347 701.56

SVOREX 0.5660±0.0254 0.4500±0.0301 1026.78
SVORIM 0.5708±0.0219 0.4448±0.0242 2270.22

EOR-ELM 0.5880±0.0117 0.4440±0.0263 31.40
tae GPOR 0.3132±0.0487 0.9736±0.1574 4.89

SVOREX 0.6079±0.0518 0.4421±0.0605 12.44
SVORIM 0.5974±0.0496 0.4552±0.0582 14.00

EOR-ELM 0.6271±0.0529 0.4291±0.0729 13.68

3.4 Results

The model presented in this paper (EOR-ELM), is compared with the ones in
Subsection 3.2.The experiments have been carried out by following the exper-
imental design described in Subsections 3.1 and 3.3. Results considering mean
and standard deviation in CCR and MAE are showed in Table 2. The best sta-
tistical result for each dataset is in bold face. EOR-ELM returns better results in
4 of the 7 datasets. It is particularly competitive in datasets where good classifi-
cation is hard to obtain. Although EOR-ELM spends most of its computational
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Table 3. CCR improvement from Phase 1 to Phase 2

Dataset Phase 1 Phase 2
automobile 0.6526 0.6677

balance-scale 0.9586 0.9657
ERA 0.2817 0.2965
LEV 0.6096 0.6320

newthyroid 0.9174 0.9259
SWD 0.5607 0.5880
tae 0.5824 0.6271

time on Phase 1, 3 out of 7 datasets were classified faster when EOR-ELM was
used.

The relevance of Phase 2 (steps 4 to 11 in section 2.3) becomes apparent
when the increase in accuracy with respect to Phase 1 is taken into account: a
2.32% increase for automobile, 0.74% for balance-scale, 5.26% for ERA, 3.67%
for LEV, 0.92% for newthyroid, 4.87% for SWD, and 7.67% for tae. ELM is a
good classifier on its own; EOR-ELM is good at refining the best results provided
by ELM (see Table 3). This also indicates the degree of usefulness this method
has for each one of the datasets: little use when accuracy is already too close to
perfect, and greater on particularly difficult datasets.

4 Conclusions

A novel method for supervised ordinal classification was presented. The approach
essentially relies on the assumption that the ordinal structure of the set of class
labels is also reflected in the topology of the instance space. A continuous func-
tion that projected the instance space onto a real 1D interval (while preserving
the ordinality of data) was approximated. This projection of data was carried
out in two phases: first, the instance space was projected. Second, the thresholds
that define the non-overlapping intervals were determined in an evolutionary
process where misclassified patterns near the boundary of their correct class are
mutated. The base regressor considered in the process was the Extreme Learn-
ing Machine algorithm. This algorithm was able to efficiently project the feature
space. The evolutionary tuning process later carried out allowed us to improve
the performance of the algorithm. The experimental results obtained show that
our algorithm is competitive in comparison with state-of-the-art algorithms in
ordinal regression, but with a significant improvement in computational time for
datasets with many patterns.
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Abstract. Financial models draw on the need to turn critical (econom-
ical) information into better decision making models. When it comes to
performance enhancement many advanced techniques have been used in
bankruptcy detection with good results, yet rarely biclustering has been
considered. In this paper, we propose a two-step approach based first on
biclustering and second on subspace learning with constant regulariza-
tion. The rationale behind biclustering is to discover patterns upholding
instances and features that are highly correlated. Moreover, we placed
great emphasis on building a weight affinity graph matrix and perform-
ing smooth subspace learning with regularization. In particular, the geo-
metric topology of biclusters is preserved during learning. Experimental
results demonstrate the success of the approach yielding excellent results
in a real French data set of healthy and distressed companies.

Keywords: Biclustering, Subspace Learning, Financial Risk Mining,
Weight Affinity Graph.

1 Introduction

The interplay between machine learning and knowledge extraction is one exam-
ple of today’s most important developments in computer science. In the midst of
the most severe world economic crisis the discovery of patterns in financial data
that can uncover firms statuses has a critical impact. The existing methodolo-
gies for financial mining apply standard clustering algorithms to group similar
patterns of companies. However, these algorithms generally take into account
only the global similarities between companies and assign each company to only
one cluster, limiting the amount of information that can be extracted. An alter-
native proposal capable of solving these drawbacks is the biclustering technique.
The biclustering algorithm is able to perform clustering of rows and columns
simultaneously, allowing for a more comprehensive analysis of financial patterns
for the detection of default companies.

There have been a vast number of approaches which apply successful biclus-
tering [1] in a broad range of areas such as text mining [3], biological gene
expression [10,4], foreign exchange rate [7] among others. Yet, in financial risk
analysis it has never been applied. In this paper we seek to find financial bi-
cluster patterns which simultaneously cluster patterns of attributes (financial
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ratios) with samples (companies) in a real world data set of French companies.
Then we exploit a subspace learning model on the basis of a proper constructed
graph weight matrix. Finally, taking advantage of the properties of the projected
data a classification model is built with Support Vector Machine (SVM). The
experimental results on a real world database of French companies show that
the properties of the projected data yield meaningful and appealing visualization
and clustering of data. Furthermore, by combining biclustering with subspace
learning in a supervised learning manner prior to classification yields desirable
results, demonstrating that this approach is very effective.

The paper is organized as follows. Section 2 introduces the biclustering method.
The subspace learning approach with smooth regularization (SSSL) will be re-
called in section 3. In section 4 the proposed approach is presented. In section 5
the experimental setup is briefly described followed by the results discussion.
Section 6 will conclude this paper and suggest further research topics.

2 Biclustering

Traditional clustering aims at finding global patterns by maximizing the simi-
larity within a class and minimizing the similarity between classes. Usually the
Euclidean distance function is used. In the case of high dimensional data the
curse of dimensionality is likely to occur. A broad-range survey on clustering
can be found in [11]. One limitation is that in most of the techniques one object
can only belong to one group. This limitation results from the direct selection
of attributes. However, one object can belong to the same group from different
subsets of attributes. Biclustering alleviates this drawback allowing an object to
belong to different groups. By arranging data in such a way that both the samples
and attributes are taken into account we come to a technique with proven perfor-
mance in various kind of problems. Biclustering is an approach that finds local
patterns on objects (samples) based on the similarity of attributes (features).
The goal of biclustering algorithm is to search highly correlated patterns based
on some homogeneity criteria [13]. It was first used in gene expression analysis by
Cheng and Church [5]. Algorithms of biclustering include several techniques such
as block clustering, coupled two-way clustering, Gibbs sampling, particle swarm
optimization among many other [1]. In [8] a survey on the biclustering taxonomy
distinguishes the algorithms according to (i) the type of biclusters they find, (ii)
the structure of the biclusters, and (iii) the way the biclusters are discovered.
The classical approach is to interpret biclustering as a bi-permutation problem
so that first rows and then columns are re-ordered to foster clusters in differ-
ent regions of the original matrix. In another perspective several sub-matrices
from the original matrix are created with the goal of maximizing some similarity
measures [3].

Suppose we are given a matrix X ∈ IRm×n, where each element is represented
by xij , i ∈ {1, · · · ,m} is the row index and j ∈ {1, · · · , n} is the column index.
We denote R = {1, · · · ,m} and C = {1, · · · , n} the sets of rows and columns,
respectively, of matrix X , i.e., X matrix can be described by X(R,C). If we
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have I ⊆ R and J ⊆ C, respectively, as subsets of rows and columns, we denote
X(I, J) as the sub-matrix of X containing only the elements xij with indexes
within the sets I and J . By definition, one cluster of rows (or objects) is a
sub-matrix of X which contains a certain similarity between their rows for all
the attributes. Moreover, a cluster of rows can be then described as X(I, C),
where I = {i1, · · · , ik} is a subset with k ≤ m rows, where ir ∈ R and r ∈
{1, · · · , k} and C is the set of all columns. In a similar way, a cluster of columns
(or attributes) is a sub-matrix of X defined by X(R, J), with J = {j1, · · · , js}
with s ≤ n and such that jc ∈ C and c ∈ {1, · · · , s}, and R is the set with all
rows where the elements of this sub-matrix show the similarity among them.

From the definitions above a bicluster can be defined as the sub-matrix of X
defined by X(I, J) with I = {i1, · · · , ik} and J = {j1, · · · , js}, where k ≤ m and
s ≤ n whose elements present some sort of similarity to the problem.

The biclustering problem can be formulated as: given the m × n matrix X
find a set of biclusters Br = (Ir , Jr) with r = 1, · · · , t where each bicluster Br

satisfies any condition of homogeneity. For the homogeneity aspect, mean square
residue score (MSRS) [5] and average value (ACV) [10] are computed as:

MSRS =
1

mn

∑
i∈R,j∈C

(xij − xiC − xRj + xRC)
2 (1)

xiC =
1

n

∑
j∈C

xij , xRj =
1

m

∑
i∈R

xij , xRC =
1

mn

∑
i∈R,j∈C

xij (2)

With a homogeneity threshold δ defining the maximum allowable dissimilarity,
a valid bicluster can be determined if MSRS ≤ δ.

ACV = max

{∑
i,j∈R |CorRij | −m

m2 −m
,

∑
k,l∈C |CorCkl | − n

n2 − n

}
(3)

where CorRij and CorCkl are, respectively, the correlation coefficients between
rows i and j and columns k and l. A bicluster with high homogeneity in the
attributes should have a low MSRS and a high ACV.

3 Spatially Smooth Subspace Learning (SSSL)

Suppose we have m companies described by n financial descriptors (attributes).
Let {xi}mi=1 ∈ IRn denote their representation and X = {x1, · · ·xm}. Given
a graph G with m nodes, each node representing a data point, let W be a
symmetric m × m matrix where Wij is the connection weight between node i
and j. Each node of the graph is represented as a low-dimensional vector and
the similarities between pairs of data (in the original high-dimensional space)
are preserved. The corresponding Laplacian matrix [6] is defined as:

L = D −W, Dii =
∑
j �=i

Wij ∀i (4)
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where D is a diagonal matrix whose entries are sums of columns (or rows)
of the matrix W . Let the low-dimensional embedding of the nodes be y =
[y1, y2, · · · , ym]T , where the column yi vector is the embedding for the vertex
xi. Direct graph embedding aims to maintain similarities among vertex pairs by
following the graph preserving criterion (6):

y∗ = arg min
yTDy=1

∑
i�=j

||yi − yj ||2Wij (5)

= arg min
yTDy=1

(yTLy) = arg min
yTLy

yTDy
(6)

The similarity preservation property of the graph G follows the idea that if
the similarity between samples xi and xj is high (low), then the distance be-
tween yi and yj should be small (large) to minimize equation (6). Hence, the
similarities and differences (among vertex pairs) in the graph are preserved in
the embedding [12]. The above optimization problem has the equivalent form
below given (4):

y∗ = argmax (yTWy) = argmax
yTWy

yTDy
(7)

Let u be the transformation vector and yi = uTxi. The optimal u∗ are the
eigenvectors corresponding to the maximum eigenvalues of the decomposition
problem:

XWXTu = λXDXTu (8)

Spatially Smooth Subspace Learning (SSSL) uses the graph structure W and
solves the following optimization problem:

u∗ = argmax
uTXWXTu

(1 − α)uTXDXTu+ αL (9)

where L is the discretized Laplacian regularization function and α is the param-
eter that controls the smoothness of the approximation.

4 Proposed Approach

As mentioned earlier biclustering consists in simultaneous partitioning of the set
of the companies samples (rows data matrix) and of the financial ratios (columns
data matrix) into subsets (classes). The biclustering phase results in finding sets
of financial ratios similarly expressed in subsets of corporate data. In our model,
it works as an extraction of patterns upholding the relevant information for the
next step of subspace learning. Following, we build the weight graph matrix
Wij where each node of the graph G is a low-dimensional vector found in the
biclustering stage, and the weight of edges is calculated upon the local features
discovered by the biclusters. Then we build the Lapalacian regularized matrix
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L and by direct graph embedding, ensuring the similarity preservation property
of the nodes of the graph G(W,L), we find a subspace learning model. Finally,
we use the projected data in the SVM classification stage. Figure 1 depicts our
approach which can be summarized in the following steps:

1. biclustering of companies and financial ratios
2. construct the weight affinity graph matrix based on discovered biclusters
3. subspace learning with regularization
4. binary classification (healthy, distressed) using SVM
5. track the companies traces in the span of years

Biclustering

Basis Vectors Projections

Source Data

Pattern Vi-
sualization

U ym

Classification

Class
Label

Input
Data

xm

Fig. 1. Biclustering and subspace learning approach

5 Experimental Results

We used Diane database which contains financial statements of French com-
panies. One of the problem goals is to find a model able to predict the class
(healthy, bankrupt) in a correct manner. Therefore, bankruptcy prediction is
handled as a binary class problem. The initial sample contained about 60000
financial statements from industrial French companies (during the years of 2002
to 2006) with at least 10 employees. From these companies, about 3000 were
declared bankrupted in 2007 (or presented a restructuring plan to the court for
approval by the creditors). After pre-processing the bankruptcy data set contains
1200 French companies, 600 examples distressed in 2007, and the remainder are
healthy. The 30 financial ratios produced by Coface1 are described in [9]. The
affinity graph matrix W is built by assuming that each i-th node corresponds
to a given firm xi. In the p-nearest neighbor graph we then put an edge be-
tween nodes i and j if xi and xj are nearby points, i.e., if xi is among the
p-nearest neighbors of xj and xj is among the p-nearest neighbors of xi. In the
experiments below we set p = 5 while the heat kernel width has been changed
accordingly. Once the affinity graph is constructed, the weight matrix W can be

1 Coface is one of largest financial groups in France providing Credit Insurance, the
Factoring Information & Ratings and Debt Recovery.
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specified by means of some weighting schemes such as binary, heat kernel and
dot-product [2].

In Figure 2(a) parallel coordinates (PC) plot multi-dimensional data as line seg-
ments among parallel axes2. Here, along with the axes lines we highlight compa-
nies with financial ratios according to the company status. The results were found
for a bicluster (599x5) with 599 rows and 5 columns. The threshold was set to 0.9.
The results attain ACV = 0.987 (98.7%) andMSRS = 0.0225 (2.25%) which are
good indicators of bicluster quality. The former can be interpreted as accuracy and
the latter as error. The financial ratios correspond to columns C16, C24, C28, C29
and C30 in this bicluster, i.e., Cashflow/Turnover (x16), Net Profit Margin (x24),
Return on Total Assets (x28), EBITMargin(x29) and EBITDAMargin (x30). The
PC plots show the difference matrix w.r.t. EBIT Margin (C29) where the red line
indicates one pattern (sample) in the healthy companies. In Figure 2(b) we plot
the results for the biclusters (B1→B19) with varying percentage of companies (%
rows) and with 6 financial ratios found by the algorithm. At this point, it is in-
teresting to notice that C23 is the added column, corresponding to the Operating
Profit Margin (x23). It shows that this financial indicator plays also an important
role in default discrimination. For the same set of experiments reported in Fig-
ure 2(b), in Figures 3(a) and (b) we plot, respectively, MSRS with varying noise
threshold, and ACV values against MRSV values. As expected it is observed that
in Figure 3(a) the error increases by increasing the noise threshold and in Fig-
ure 3(b) the higher the accuracy (ACV) the lower the error (MSRS) in the found
biclusters (shown points in the graph).
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Fig. 2. (a) Parallel Coordinate (PC) Plots. (b) Biclusters with % samples(rows).

A comparative study with and without the biclustering stage was pursued.
The results show significant improvement at both levels of performance and
visualization. Figure 4 shows the results for the two eigenvectors with highest
eigenvalues that result from the projection for (a) subspace learning and (b)
biclustering and subspace learning. Analyzing the accuracy results with an SVM,
after running the classification step 5 times with 10-fold cross validation, the first
method yields 95.6%± 0.6 and the second method 97.5%± 0.4. It demonstrates

2 See http://www.eie.polyu.edu.hk/~nflaw/Biclustering/

http://www.eie.polyu.edu.hk/~nflaw/Biclustering/
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Fig. 4. (a) Subspace with Rank = 6 and (b) Biclustering (6 financial ratios) and
Subspace for bankrupt and healthy firms

that the local patterns discovered by biclustering are beneficial to construct a
more compact affinity graph, thus enhancing the accuracy of the subsequent
classification.

We conducted several experiments varying the heat kernel parameter σ and
the regularization constant α for the subspace method by extending our earlier
work in [9]. The experimental results show the approach presented herein (by
combining biclustering with subspace learning) achieves better performance than
the competing approach without biclustering in terms of prediction accuracy.
Due to limitation of space they are not included here.

6 Conclusion and Future Work

In this paper, a biclustering model applied on collected financial data from a large
set of French companies is developed prior to a subspace learning stage where the
geometric properties of (found) biclusters are preserved. Biclustering upholds a
local model of clustering while more traditional techniques of clustering attain
a global model since they take into account all the attributes. The projected
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data is clamped into an SVM yielding 97.5% of accuracy while without the
biclustering stage there is a drop off to 95.6% of accuracy. Beyond the practical
aspect of accuracy improvement in the balanced data set, the visualization of
financial data shows evidence from a well-performed learning task. Contrarily
to traditional techniques unlikely to find a parsimonious solution, the proposed
approach seems quite appropriate in this financial setting. Future work will trace
the performance of this approach while spanning over the historic data. It is also
valuable to conduct similar studies using other subspace learning methods and
classification models in order to further investigate the potential of biclustering
in financial risk analysis.
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Abstract. In this paper, we propose an emotion recognition system for under-
standing the emotional state of human reflected from a movie clip. In order to 
analyze the human emotion, we consider the electroencephalogram (EEG)  
signals which are stimulated while watching movie clips to form the semantic 
emotional dynamic features. These features are then used to analyze the emo-
tional state of human mind stimulated by emotional scene in movie clips. 
Changes in alpha and gamma power have been interpreted to indicate differen-
tial valence patterns related to the frontal lobes. More active left frontal region 
indicates a positive reaction, and more active right anterior lobe indicates nega-
tive affection. So, the alpha and gamma power in the EEG signals are used to 
obtain EEG features that recognize the emotional states. In order to extract the 
emotional feature in a movie clip from EEG signals, both independent compo-
nent analysis (ICA) which rejects the artifact and Short Time Fourier Transform 
(STFT) are used. Then, we apply the 3-D fuzzy GIST to effectively describe the 
emotion related EEG signal. The 3-D fuzzy GIST is based on 3-D tensor data 
consisting of time dependent energy in a specific power band. The obtained 3-D 
EEG features are used as inputs to an adaptive neuro-fuzzy inference classifier. 
We use the mean opinion scores as the teaching signals. Experimental results 
show that the proposed 3-D EEG features can effectively discriminate the posi-
tive emotion from the negative ones. 

Keywords: EEG, Positive and Negative Emotion, ICA, STFT, Adaptive Neu-
ro-fuzzy Inference Classifier. 

1 Introduction 

With the growing interest in human computer interaction, intelligent machines are 
being developed to satisfy the user’s requirements and provide services to improve 
the quality of the user’s life. Nonetheless, a new technology is needed to develop a 
real human-like intelligent system that is able to provide suitable services to recognize 
and understand user’s emotion states. However, since emotion is a special dynamic 
form of cognition that is highly complicated, we need to develop a new approach to 
analyze the human emotions. 
                                                           
* Corresponding author. 
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An understanding of the underlying brain dynamics that generate emotional states 
remains a chaotic area of neuro-science. If one were able to identify emotional  
feelings and related cognitive processing of associated stimuli from direct cortical 
neural recordings, it would have broad implications including the potential to be  
applied for developing the new computer interface system and treating neuropsychia-
tric disorders with symptoms that include dysfunctional processing of emotional  
information [1]. If we could obtain knowledge about the specificity of Electroence-
phalogram (EEG) response patterns in the brain related to primary-processing of  
emotions, such information may serve as a standard for more accurately identifying  
typical brain activities. An amount of research into brain correlates of emotion con-
siders them as a generic, more inclusive type of mental function, such as positive 
versus negative affective groupings. Especially, this research has been further pro-
moted through the use a well-validated set of visual stimuli from the International 
Affective Pictures System [2]. While there are pictures that represent a number of 
different emotions, much of the research that uses the pictures for generating res-
ponses in EEG has focused on positive vs. negative [3-4]. However, there is a lack of 
research for analysis of emotional state by dynamic visual stimuli such as movie. 
Therefore, this paper uses the EEG signal to analyze the state of human emotion while 
watching a movie. 

This paper uses 3-D fuzzy-GIST to obtain the dynamic emotional features, which 
uses emotional EEG information to extract the emotional factors in EEG and con-
struct the feature space to conduct the human emotion recognition. In order to remove 
the artifacts from EEG signal, the Independent Component Analysis (ICA) method is 
used. And to effectively analyze the dynamic human emotions, Short-time Fourier 
Transform (STFT) is used to obtain a 3-D tensor data consisting of time dependent 
energy in a specific power band. Based on the human subject feedback feelings 
evoked by movie clips, the neuro-fuzzy inference system is adapted to learn the 3-D 
fuzzy GIST features and classify the two different emotions including positive and 
negative. 

The remainder of this paper is organized as follows. The emotion recognition  
system will be presented in the next section. In section 3, we will present the experi-
mental results and evaluate the performance of the system. Conclusion and discussion 
are presented in section 4. 

2 The Method 

2.1 Emotion Recognition System 

Fig. 1 describes the overall information flow in the proposed model. The proposed 
emotion recognition system includes EEG, 3-D fuzzy GIST and an adaptive neuro-
fuzzy inference system (ANFIS) in stimuli using movie clips. The system uses the 
Electroencephalogram (EEG) information obtained while watching the movie clip. 
ICA which has been widely used for separating non-brain signals such as artifact from 
the EEG signal [5], is used for preprocessing the EEG signal. Then, STFT is used to 
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independent components u using the EEGLAB developed in MATLAB. After applying 
ICA, the multi-channel EEG signal is separated in to several independent brain sources. 
The scalp topographies of the independent components provide information about the 
location of the sources (e.g., eye activity should project mainly to frontal sites, etc.). 
“Corrected” EEG signals can then be derived as x' = (W)-1u', where u' is the matrix of 
independent components, with rows representing artifactual components set to zero.  

After rejecting the artifact by ICA for each trial, we consider Short-Time Fourier 
Transform (STFT) to understand the positive and negative human emotions from 
EEG data. STFT, the simplest time-frequency representation, is a two-dimensional 
representation created by computing the Fourier Transform using a sliding temporal 
window. By using the STFT [8], we can observe how the frequency of the EEG sig-
nals changes with time. As such the details of the resulting short-time Fourier trans-
form are greatly influenced by the choice of windows. In this paper, the Hamming 
window is used as window function in STFT. 

Then, we analyzed EEG signal that indicates the valence state of subject about 
each blocks by STFT. For emotional valence, psycho-physiological research has 
shown the importance of the difference in activation between the two cortical hemis-
pheres [9]. Left frontal inactivation is often linked to a negative emotion while right 
frontal inactivation is a sign of a positive emotion [10]. Changes in alpha power have 
been interpreted as indicating differential valence patterns related to the frontal lobes 
[6]. Moreover a significant valence by hemisphere interaction emerged in the gamma 
band [11]. Therefore, we extracted the power difference between left and right hemis-
pheres in alpha and gamma band to monitor the valence state of test subjects.  

2.4 3-D Fuzzy GIST as the Emotional Feature Extraction 

We use the 3-D fuzzy GIST based on the fuzzy-GIST [12] to analyze the EEG dy-
namic emotional features. To effectively analyze the EEG information that have a 
dynamic characteristic, we need to bundle up the successive time-frequency blocks 
obtained by STFT and make up cubic type three dimensional tensor which consist of 
axis such as time, frequency and power. Due to uncertainty in the characteristics of 
EEG and emotion, we use the fuzzy sets such as Fuzzy C-means clustering (FCM) 
[13] which have processing of uncertainty. In the proposed system the EEG informa-
tion is clustered in to four (high positive/low positive/low negative/high negative) 
respectively using the FCM. By making use of the tensor data, each tensor data is 
assigned a membership grade using four membership functions in the FCM. Depend-
ing on the membership grade, the tensor is assigned to one of the two clusters. 

In this model, the obtained emotional dynamic EEG features are used as inputs to 
an adaptive neuro-fuzzy inference system (ANFIS) [13] to classify the human emo-
tional state. The human brain is also such a powerful system that it can interpret im-
precise and incomplete information. Fuzzy set theory provides a systematic approach 
to process such information linguistically and performs numerical computations using 
linguistic labels and fuzzy set degrees of membership, which can interpreted as the 
degrees of truth [13]. The classifier is provided with the mean opinion scores as the 
teaching signals. 
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3 Experimental Results 

3.1 Environments of Experiments 

The experimental visual stimuli employed in the present study consist of videos se-
lected from movies and documentaries. To classify the emotion as either positive or 
negative, we use 6 videos for the experiments, which are divided into two groups of 3 
positive and 3 negative emotional. The test data consists of 2 videos such as 1 positive 
movie clip and 1 negative one. The test data is randomly selected. 

To obtain the target data of the ANFIS network related with the emotional states, 
the human subjects are asked to answer the following questionnaire after each visual 
stimulus: ‘what was your emotion state after seeing the movie?, Negative or Positive? ’ 

3.2 EEG Experiment 

The 11-channel EEG with a sampling rate of 1,250Hz and a total recording time of 40 
seconds for each movie clip was used for observing the human brain activity while 
watching the movie clip. 6 subjects participated in the experiments. During the whole 
experiment, the subjects were instructed not to move their eyes, or any other part of 
body but try to stay relaxed and keep the eyes open during the play of movie clip. All 
the channels were preprocessed by ICA to remove the artifacts and STFT is used to 
obtain the time-frequency response of EEG to understand the human emotions while 
watching the movie clip. The width of window function in STFT is 2 seconds and it 
doesn’t have the overlap time among the windows. The power difference between left 
and right hemispheres in alpha and gamma band were used to indicate the valence 
state of test subjects. In order to do this, we computed the power spectrum for each 
channel to measure the power at various frequencies, and we used the average of left 
and right hemisphere power values at alpha band (8~13Hz) and gamma 
band(30~60Hz) to get the hemisphere power asymmetry. 

3.3 3-D Fuzzy GIST and Experiment Results 

The 3-D fuzzy GIST extracts emotional feature by clustering EEG information. First, 
we bundled up 3 successive time-frequency blocks obtained by STFT and construct 
the cubic type three dimensional tensors. Second, the FCM is used to partition the 
emotional EEG information into four clusters. And then, the ANFIS is used to classify 
the emotional state of human. The subject’s feedback is used to generate teaching 
signals to supervise the learning process of the ANFIS. The ANFIS network was in-
itialized with 4 Gaussian membership functions for each dimension of the input and it 
searched for the optimal parameters for membership functions and consequent models 
by parametric tuning, in which the best set of parameters were found by minimizing a 
sum-squares cost function.  

Fig. 3 shows the changes in alpha and gamma power based on the difference in the 
left and right frontal hemisphere in response to different stimuli such as negative and 
positive movie clips. It is obtained by computing the average of power values in alpha 
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and gamma power spectrum in each time-frequency response. When the subjects are 
stimulated by positive emotional movie clips, the alpha and gamma power in frontal 
lobe is higher than the other case which is stimulated by negative ones. These results 
indicate the fact that our approach is suitable for understanding the human emotional 
state while watching the movie clip and can therefore be used by the emotion recogni-
tion system. As shown in table 1, the proposed system successfully categorizes the 
emotional states of human as positive and negative while watching the movie clip. The 
average performance of the system on the test data is almost 64.75 %. These results 
show that the proposed system is appropriate to identify the emotional state of human. 

 

Fig. 3. Changes in alpha and gamma power based on difference between left and right frontal 
hemisphere in response to different stimuli such as negative and positive movie clips. The blue 
bars show the result of changes in alpha and gamma power while watching the positive movie 
clips. The red bars show the result of changes in alpha and gamma power while watching the 
negative movie clips. 

Table 1. The result of the proposed emotion recognition system towards the task of the 
recognizing the 2 emotional characteristics in the movie clips 

 Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 

Train (%) 90.38 91.03 92.31 88.46 98.46 99.04 

Test (%) 78.85 65.38 59.62 51.92 64.18 68.59 

4 Conclusion  

A novel developmental scheme for analyzing the human emotions reflected by movie 
clips was proposed, in which the emotional feature obtained from the subject’s brain 
signal using the 3-D fuzzy GIST. In order to remove the artifacts from the EEG  
signal, ICA method is adopted. To analyze the emotional state of human from EEG 
signal, we applied the STFT and the 3-D fuzzy GIST to obtain the 3-D EEG features 
that are used as inputs to an adaptive neuro-fuzzy inference classifier. In this result, 
the proposed method is more suitable to recognize the human’s emotion in time-
variant environment such as real life. 

As a future work, we would like to implement an emotion understanding system 
that can autonomously analyze the human’s environment effected by visual and  
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auditory information and immediately can analyze the human’s emotional state using 
EEG signal. So we would like to combine the visual feature using the 3-D fuzzy 
GIST, EEG feature and auditory feature. 
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Abstract. One of the substantial concerns of researchers in machine
learning area is designing an artificial agent with an autonomous be-
haviour in a complex environment. In this paper, we considered a learn-
ing problem with multiple critics. The importance of each critic for the
agent is different, and attention of agent to them is variable during its life.
Inspired from neurological studies, we proposed a distributed learning ap-
proach for this problem that is flexible against the variable attention. In
this approach, there is a distinct learner for each critic that an algorithm
is introduced for aggregating of their knowledge based on combination
of model-free and model-based learning methods. We showed that this
aggregation method could provide the optimal policy for this problem.

Keywords: Multiple critics, distributed Q-learning, model-based pa-
rameters, aggregation method.

1 Introduction

Designing an intelligent system with autonomous decision making ability is one of
the principal concerns in machine learning area. In this paper we focus on a learn-
ing problem similar to decision making process in human with receiving feedbacks
from different sources of reward. A system with multiple users or multiple goals
is an example of the application field of this type of problem. We can model this
problem as a Reinforcement Learning (RL) process with multiple critics. In RL
methods, the agent evaluates its behaviour based on the received reinforcement
signals from the environment [1]. In this problem, a set of weights is defined for the
importance of critics and the agent attends to each of them according to the cor-
responding weights. The main problem is that critic’s importance can be changed
during the agent’s life. This is necessary for the learning model to cope with this
variable attention without requiring the learning process being done again. While
the decision making process of human is flexible to these changes, existing RL
methods are not applicable for this purpose.

There is a wealth of research in the domain of human and animal decision mak-
ing. The neurological studies have revealed the existence of a key RL signal, the

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 244–251, 2012.
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temporal difference prediction error, in the brain [2], and some of the RL meth-
ods have been applied to these behavioural data [3]. On the other hand, a wide
range of neural data suggests that there is more than one system for behavioural
choice in the brain. In fact, beside the model-free learning for habitual control,
there is a model-based system for goal-directed decision making in the brain [4][5].
So, we can modify RL methods in order to apply them in the problem of variable
attention of agent to more than one critic. We consider a distributed approach
for resolving the multiple-critic learning problem. A sort of modular approaches
for the learning problem have been introduced. Some of them have been designed
for a task with multiple goals [6][7][8], while the others have been used for the
task decomposition and behaviour coordination of independent subtasks [9][10].
All of these methods assume that the subtasks are completely independent and
they do not need an aggregation of the different decisions. In our approach, there
is a distinct learner for each reward source and we need a function to aggregate
their decisions in each state. In [11], it is shown that in a modular RL, it is impos-
sible to construct an arbitration function that satisfies a few basic and desirable
properties for the social choice. Thus, we proposed an algorithm that uses the pa-
rameters of the model-based system to address this problem. By combining the
model-free and model-based learning methods, we use the advantages of both of
them together. Fig. 1 shows how our approach places in learning structure. In the
next section we introduce the details of our proposed approach and the correction
algorithm, for aggregation of decisions. In section 3, mathematical terms are used
to show that how the mentioned algorithm works optimally. Finally we conclude
our approach in section 4.
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Fig. 1. The position of our proposed approach in the learning process

2 Proposed Approach

In this multiple-critic problem, the received reward from each critic is scaled
based on the weight of the corresponding critic. These weights might be changed
during the learning life of the agent as the attention of agent to critics changes.
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We assume that all the received rewards are summed to form a total reward for
learning the action values. However the problem is that if the attention of agent
to critics changes, the learned values based on the weighted sum of the rewards
will not be valid any more, and the learning has to start from the very beginning.
To resolve this problem, a distributed architecture has been introduced that there
is a distinct learner for each reward source to learn the Q-value of each state-
action pair, independently. In order to apply a learning method to each learner,
we preferred an off-policy method over on-policy ones. The Q-values in SARSA,
as an on-policy method, rely on behaviour policy of the agent and the current
weighted sum of the rewards. The Q-Learning seems a proper method for our
purpose. The Q-tables are obtained independent of the behaviour policy and the
weights of critics.

2.1 Problem Formulation

In this problem we use the traditional RL framework in an environment with
Markov property. In this framework, S is the set of all the possible states and
A is all the possible actions. The agent in the state s ∈ S receives n feedbacks
from the n different reward sources, say r(1), r(2), ..., r(n) by taking an action
a ∈ A. For ith critic, there is R(i)(s, a) as a distribution function for generating
the reward sequence. The set of W = {w1, w2, ..., wn} indicates the weight of
the critics, where

∑n
i=1 wi = 1. In addition, P a

ss′ determines the transition prob-
ability between two states. Moreover, γ ∈ [0, 1] shows the discount factor for
the delayed reward. When the learning is accomplished, the Q-value for the ith

learner will be Q(i)(s, a) for each state-action pair. While Qopt(s, a) will be an
optimal Q-table obtained from the centralized learning system. By the central-
ized system we mean a learning process that tries to maximize E{

∑n
i=1 wir

(i)}.
Finally, the Q-tables of the learners are combined based on current weight
of the critics, and form Qdist as the Q-table of distributed learning system,
Qdist(s, a) = f(w1, ..., wn, Q

(1)(s, a), ..., Q(n)(s, a)). We proposed the approach
for a problem with one terminal state with different paths. The agent should
find the optimal path with the maximum weighted average reward.

2.2 Aggregation Method

The distributed system needs an aggregation function for combining the Q-
tables to find the optimal policy. We chose the weighted sum of the Q-tables as
Equation 1 Since we used this function in the centralized system for total reward
computing and it is simple enough to work with a linear function.

Qdist(s, a) =

n∑
i=1

wiQ
(i)(s, a) (1)

This aggregation function does not produce the optimal policy. So, we introduce
a correction approach to make (1) to be optimal. The problem of the off-policy
character of Q-learning is that the one-step value updates for each learner are
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computed under the assumption that all future actions will be chosen optimally.
While if there is an inconsistent state, the state that the optimal actions of the
learners are different, in the path of a state-action to the terminal state, this
assumption will not hold. We use the model of the environment to correct their
values. As mentioned earlier, there is model-based RL that uses the experiences
indirectly to build a model of the environment beside the habitual control. The
combination of model-free and model-based decision making trades off between
flexibility and computational complexity in one view, and two sources of un-
certainty: ignorance and computational noise, in another view [12][13]. As Fig.
1 shows, the model of environment is learned in the model-based system and
learned parameters are used in the aggregation phase to modify the Q-tables.

2.3 Correction Algorithm

Consider an agent in a stochastic environment with n learned Q-tables and it is
going to make an optimal decision in state s. For each action a, the Q(j)(s, a)
may need change for jth learner, if two conditions will be hold: First, there is a
non-zero probability in the learned model for reaching to an inconsistent state
s′ after taking a, say Pr(s, a, s′) > 0. Second, a1 will be the optimal aggregated
action in the s′, but a1 �= argmaxa′ Q(j)(s′, a′) = a2. We assumed that s′ has
been corrected already. The correction procedure is applied to this Q-value based
on the following equation.

Q(j)
new(s, a) = Q(j)(s, a) + Pr(s, a, s′) ∗ γk(−Q(j)(s′, a2) +Q(j)(s′, a1)), (2)

where k is the number of steps between s and s′ in the optimal path. Three sets
of parameters are required in the correction procedure that should be determined
in the learning phase: The set of all the inconsistent states, IS, the transition
probability from each state-action to each s′ ∈ IS and all the intermediate states,
Pr(s, a, s′), and the number of steps between them, step(s, a, s′). Algorithm 1
shows the correction procedure for each state s.

In this algorithm flag specifies the corrected states and θ is a threshold pa-
rameter that determines how much it is necessary to do correction procedure. In
fact, when the transition probability to an inconsistent state is low, we can ig-
nore this small change in order to have an affordable computation. In addition,
it is possible for a state to change from consistent to inconsistent. We ignore
this change for the first time but the affected states should be corrected in the
next passes. Eventually, these modified Q-tables will be valid until the weights
of critics change.

3 Analytical Justification

In this section, we are going to show the optimality of the distributed Q-learning
approach in two theorems. The estimation of Q-values in the Q-learning for this
problem is obtained based on (3) and (4) for the centralized system and ith

learner in the distributed system, respectively [14].
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Algorithm 1. Correct(s)

Require: IS, Pr, step
for all a ∈ A(s) and s′ ∈ IS do

if Pr(s, a, s′) > θ then
Correct(s′) if it is not corrected yet
a′ := argmaxa”Qdist(s

′, a”)
for all j ∈ {1, ..., n} where a′ �= aj : argmaxa”Q

(j)(s′, a”) do
Q

(j)
new(s, a) = Q(j)(s, a)+Pr(s,a, s′)∗γstep(s,a,s′)(−Q(j)(s′, aj) +Q(j)(s′, a′))

if inconsistent(s) = true then
add s to IS
for all s” ∈ S and a” ∈ A(s”) where Pr(s”, a”, s) > θ do
flag(s”) = 0
Pr(s”, a”, s′) = Pr(s”, a”, s′)− Pr(s”, a”, s)

end for
end if

end for
end if

end for
flag(s) = true

Qopt(s, a) =

n∑
i=1

wiR
(i)(s, a) + γ

∑
s′
P a
ss′ max

a′
Qopt(s

′, a′) (3)

Q(i)(s, a) = R(i)(s, a) + γ
∑
s′
P a
ss′ max

a′
Q(i)(s′, a′) (4)

It should be noted that the proofs for the uncertain conditions are straight
forward and they are omitted from our proofs because of the space limitation.
We illustrate that the following theorems are hold.

Theorem 1. In the distributed system for each state, s, and action, a, if there
is no inconsistent state on their path to the terminal state, (1) and (3) will be
equivalent.

Proof. Consider a consistent state, s, with a as an optimal action of all the
learners, say for i = 1, .., n : a = argmaxa′ Q(i)(s, a). Hence, a will be the
optimal action in the aggregated form as follows:

∀a′ ∈ A(s) : Q(i)(s, a′) < Q(i)(s, a) ⇒
n∑

i=1

wiQ
(i)(s, a′) <

n∑
i=1

wiQ
(i)(s, a)

The mathematical induction is used to show the equivalence of two formulas,
backward from the terminal state.

1. N = 1: Consider s1 as a state that exactly takes place before the terminal
state and a1 is the optimal action of the learners. For i = 1, ..., n:

Q(i)(s1, a1) = R(i)(s1, a1) + γ × 0 ⇒ Qdist(s1, a1) =

n∑
i=1

wiR
(i)(s1, a1)
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On the other hand, the Q-value of the centralized system will be as follows
where both of them are equal.

Qopt(s1, a1) =

n∑
i=1

wiR
(i)(s1, a1) + γ × 0

2. N = k: Assume for the consistent state sk in k steps before the terminal
state, (5) will be hold. Hence, ak will be the optimal action of two systems.

Qdist(sk, ak) = Qopt(sk, ak) (5)

3. N = k+1: Let ak+1 takes the agent from the state sk+1 to sk. The Q-value
for this state-action pair is obtained based on the following equations.

Q(i)(sk+1, ak+1) = R(i)(sk+1, ak+1) + γ ×Q(i)(sk, ak)

In the above equation, Q(i)(sk, ak) = maxa′Q(i)(sk, a
′) will be hold based on

the assumption of induction. So, for the distributed and centralized system
we have as follows that the result of two systems are equivalent.

⇒ Qdist(sk+1, ak+1) =

n∑
i=1

wiR
(i)(sk+1, ak+1) + γ

n∑
i=1

wiQ
(i)(sk, ak)︸ ︷︷ ︸

(1)⇒Qdist(sk,ak)

Qopt(sk+1, ak+1) =
n∑

i=1

wiR
(i)(sk+1, ak+1) + γQopt(sk, ak) ��

Theorem 2. If there is at least an inconsistent state between s and the terminal
state while the agent takes the action a, the correction procedure will make (1)
and (3) equivalent.

Proof. It is assumed that all the intermediate states corrected already. The cor-
rection for the current state-action will be taken by the closest inconsistent state,
sincns. Consider, in sincns the following is hold where a is the optimal action after
correction:

a = argmax
a”

Q(i)(sincns, a”) i �= j and a′ = argmax
a”

Q(j)(sincns, a”) i = j

First, we show the proof for the one step before the inconsistent state. Let s1 be
a consistent state and a1 is the optimal action of each learner to sincns. So, in
the distributed case there is

Q(i)(s1, a1) = R(i)(s1, a1) + γQ(i)(sincns, a) i �= j,

Q(j)(s1, a1) = R(j)(s1, a1) + γQ(j)(sincns, a
′) i = j,
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⇒ Qdist(s1, a1) =
n∑

i=1

wiR
(i)(s1, a1) + γ

n∑
i=1,i�=j

wiQ
(i)(sincns, a) + γwjQ

(j)(sincns, a
′),

and for the centralized one,

Qopt(s1, a1) =

n∑
i=1

wiR
(i)(s1, a1) + γ

n∑
i=1

wiQ
(i)(sincns, a).

Hence, the correction based on (2) will make two results equivalent as follows:

Q(j)
new(s1, a1) = Q(j)(s1, a1)− γQ(j)(sincns, a

′) + γQ(j)(sincns, a)

= R(j)(s1, a1) + γQ(j)(sincns, a).

In this situation, the optimal action may be changed for jth learner. This change
makes the state to be inconsistent.

If we propagate this effect to the sk and ak, while the intermediate states are
consistent, there will be the following equations for two systems. Clearly, using
(2) makes both results to be equivalent.

Qdist(sk, ak) =
n∑

i=1

wi[R
(i)(sk, ak) + ...+ γk−1R(i)(s1, a1)]

+γk
n∑

i=1,i�=j

wiQ
(i)(sincns, a) + γkwjQ

(j)(sincns, a
′)

Qopt(sk, ak) =

n∑
i=1

wi[R
(i)(sk, ak)+...+γ

k−1R(i)(s1, a1)]+γ
k

n∑
i=1

wiQ
(i)(sincns, a)

��

Therefore, the correction procedure modifies the Q-values of the state-action
pairs one by one if needed and the weighted sum of them gives the optimal policy.
But in our algorithm, the agent does not move backward and just the current
state-action will be corrected based on the inconsistent states, recursively. So, if
a state changes from consistent to inconsistent after the correction of the earlier
states, the agent may miss the optimal action for the first round.

4 Discussion

In this paper, we proposed a new learning method for a real problem with multi-
ple critics. We introduced a distributed approach inspired from decision making
process in the human brain that considers a distinct Q-learner for each critic.
Using the Q-learning as an off-policy method makes the Q-tables to be learned
independent of the current importance of critics and any behaviour policy. So,
the agent learns just based on the received rewards and its learning result will
remain usable when its attention to the critics changes. Then the Q-tables are
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modified for each set of weights based on the learned model without any re-
learning. Finally, the weighted sum of them determines the greedy policy of the
agent. The combination of model-free and model-based learning is helpful. Be-
cause model-free control is inflexible to change, while model-based choices are
computationally expensive. Hence, when the learned model is inaccurate the for-
mer will be used, while the later will be preferred when there are variations in
the environment. We will pursue the effect of inaccurate model in our approach
in the future works. In the future works, we will study how changing θ affects
the resulting policy. In addition, we will investigate the difference of performance
of our approach with the optimal system when each new inconsistent state is
ignored for the first time.
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5. Gläscher, J., Daw, N., Dayan, P., O’Doherty, J.P.: States versus rewards: dissociable
neural prediction error signals underlying model-based and model-free reinforce-
ment learning. Neuron 66, 585–595 (2010)

6. Shelton, C.R.: Balancing multiple sources of reward in reinforcement learning.
DTIC Document (2006)

7. Raicevic, P.: Parallel reinforcement learning using multiple reward signals. Neuro-
computing 69, 2171–2179 (2006)

8. Sprague, N., Ballard, D.: Multiple-goal reinforcement learning with modular
sarsa (0). In: International Joint Conference on Artificial Intelligence, vol. 18,
pp. 1445–1447 (2003)

9. Park, K.H., Kim, Y.J., Kim, J.H.: Modular Q-learning based multi-agent coopera-
tion for robot soccer. In: Robotics and Autonomous Systems, vol. 35, pp. 109–122
(2001)

10. Samejima, K., Doya, K., Kawato, M.: Inter-module credit assignment in modular
reinforcement learning. Neural Networks 16, 985–994 (2003)

11. Bhat, S., Isbell, C.L., Mateas, M.: On the difficulty of modular reinforcement learn-
ing for real-world partial programming. In: Proceedings of the National Conference
on Artificial Intelligence, vol. 21, p. 318. AAAI Press (2006)

12. Daw, N.D.: Model-based reinforcement learning as cognitive search: Neurocompu-
tational theories. Evolution, Algorithms and the Brain (2011)

13. Simon, D.A., Daw, N.D.: Environmental statistics and the trade-off between model-
based and TD learning in humans. In: Advances in Neural Information Processing
Systems, vol. 24, pp. 127–135 (2011)
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Abstract. This paper is intended to present a method to find an optimized route 
with intelligent devices for vehicles. Because the vehicles routing problem is 
one of the possible applications in which the demands of the driver are not spe-
cified, this proposed method will use learning automata and fuzzy logics in  
dynamic environment in order to learn user behavior to predict future behavior 
and propose an optimized route for the user. The results show that the proposed 
route is very close to the user desired one. 

Keywords: Fuzzy Logic, Learning Automata, Coloured Petri Net, Car  
Navigation. 

1 Introduction 

Since the development of cities and the complication of urban infrastructures, routing 
has become a more complex and time-consuming task. While individuals were for-
merly able to navigate a city without the aid of maps in order to get from their  
respective departure to their destination, they now rely much heavier on navigation 
systems that can often be found in newer model cars. Finding one’s position and al-
ternatively one’s destination has therefore benefitted greatly by the use of navigation 
systems. A car navigation system takes one criterion – such as the shortest time and/or 
distance – and provides the best possible route to be taken by its user.  

Route selection in car guidance systems is a process in which an optimized route is 
derived based on the departure and destination points, which is illustrated on a map. 
An optimized route can be defined as the shortest route between two points. Optimized 
routes usually follow standard algorithms that exist for graph research, although they 
cannot solely reproduce the knowledge of an experienced driver who is informed of 
traffic and transportation limitations in every part of a city. There are of course systems 
that carry out more complex tasks based on several criteria for routing [1]. 

This paper is intended to present a method for adoptive routing in car navigation 
systems in order to personalize the optimized route search process based on a driver’s 
interest and destination. The proposed method will aid drivers by incorporating their 
circumstances on the road in order to propose a path that is deemed more desirable. In 
addition to that, this paper will also suggest an idea for optimized routing to circum-
vent a number of problems faced by these systems.  
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In the considered methods, the learning ability of learning automata in dynamic 
environments are used to be able to predict the best route formerly regarding to  
dynamism of the traffic state and to propose the user. Also we took aid from fuzzy 
logic to involve driver's interests [2]. 

We simulate the proposed algorithm with a colored Petri net and compare the 
achieved information with other results of existing algorithms. 

1.1 Algorithm's Problems and Bonds and Present Routing Methods 

The majority of research performed in this field presented algorithms in the basis of 
the Dijkstra algorithm and the A* algorithm [3, 4]. Size and dimensions of a research 
graph is very important in saving time of the answer in algorithms and routing graphs 
have a considerable size (number of knots and their angles are so many) [5, 6]. There-
fore the majority of research was intended to optimize the response time. 

Considering the mobile car state and due to its aboard safety and also on-time send 
of essential given orders before passing from existing conjunction in Real Time route, 
the routing action should be performed immediately [7, 8]. 

Although some of the proposed algorithms are able to gain the answer to the  
problem in a Real Time manner, most of routes they compute have a low quality and 
even if we don't consider this problem, there exist some car guidance systems in 
routing action which cause the implication of these methods to be impossible. Some 
of these limitations are as follows [9, 10]: 

1.2 Disability of Presented Algorithms for Implementation of Adoptive 
Research 

In the presented algorithms until today, routing action cannot be performed based on 
different demands of drivers. In the real world, drivers usually consider parameters 
other than reaching their destination. For example they want to pass by specific points-
of-interest such as gas stations, banks, restaurants etc. and/or they want to passsome 
streets which may have long way but has the sufficient space for the driver and other 
different matters that implementation and consideration of these parameters is almost 
impossible in the present algorithms but in real world, if we do not interfere these pa-
rameters in our routing, these systems, in fact, won't have the proper efficiency. 

1.3 Problems of Interfering Information of Traffic Routes  

The algorithms presented for consideration of traffic routes has been considered until 
now, has more theoretical aspect and the practical implementation is usually impossi-
ble and some of those that are implemented do not have the sufficient capability and 
have some problems. One of their main problems is considering traffic conditions for 
all links in which traffic information id is sent, in practice, for some of the streets. The 
mentioned algorithms at alteration time of traffic conditions would forcefully search 
all links to find the target link. This matter will increase the research action time and 
this matter is of a high importance in these systems. 
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2 Learning Automata 

Learning automata is an abstract model which randomly selects one action out of  
its finite set of actions and evaluates it on a random environment, then again  
evaluates the same action and responds to the automata with a reinforcement signal. 
Based on this action, and received signal, the automata updates its internal state and 
selects its next action. Fig.1 illustrates the relationship between an automata and its 
environment. 

 
R a n d o m  E n v i r o n m e n t 

L e a r n i n g  A u t o m a t a 

α ( n )  

b (n )  

Fig. 1. Relationship between learning automata and its environment 

The environment can be defined by },,{ cbaE = where },...,,{ 21 raaaa =  

represents a finite input set, },...,,{ 21 rbbbb =  represents the output set, and 

},...,,{ 21 rcccc = is a set of penalty probabilities, and each element ci of c corres-

ponds to one input of action ai. An environment in which b can take only binary  
values 0 or 1 is called P-model environment. Also, by further generalization of the 
environment it is possible to have finite output sets with more than two elements  
that take values in the interval [0, 1]. Such an environment is called Q-model  
environment. Finally, when the output of the environment has continuous random 
variables, and assumes values in the interval [0, 1], then this environment is known as 
a S-model environment. Learning automata is classified into stochastic fixed-
structure, and stochastic variable-structure. In the following, we only consider varia-
ble-structure automata. 

A variable-structure automaton is defined by the quadruple },,,{ TpbaE = in 

which },,,{ 21 raaaa = is a set of actions (or outputs of the automaton). The out-

put or action of an automaton is an instant of n denoted by a(n), which is an element 
of the finite set },,,{ 21 raaaa = . },,,{ 21 rbbbb = represents the input set or 

response set, },,,{ 21 rpppp = represents the action probability set, and final-
ly ))(),(),(()1( npnbnaTnp =+  represents the learning algorithm. The following 
shows, the operation of the automaton based on the action probability set p. The  
automaton randomly selects an action ai, and performs it on the environment.  
After receiving the environment's reinforcement signal, the automaton updates its 
action probability set based on (1) for favorable responses, and (2) for unfavorable 
ones. 
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Where a and b are reward and penalty parameters, respectively. If a=b, the automaton 
is called LRP. If b=0 the automaton is called LRI and if 0<b<a<1, the automaton is 
called LRεP. More information about learning automata can be found in [11]. 

3 Coloured Petri Net 

Coloured Petri Nets were introduced by Kurt Jensenin 1987 as a developed model of 
Petri Nets [12]. Coloured Petri Nets are appropriate tools for mathematical and graph-
ical modeling. Coloured Petri Nets have numerous applications, and lots of research 
has taken place with respect to modeling, describing and analyzing systems, which 
have synchronized, asynchronized, distributed, parallel, non-deterministic or random 
natures. In fact, Petri Nets are models which could represent the performance and 
state of the system at the same time. There has been enormous research done in the 
following areas, (i) controlling and learning systems using coloured Petri Nets, (ii) 
optimizing Petri Net structures using genetic programming and (iii) learning and rea-
soning the ambiguous problems using fuzzy coloured Petri Nets. However, there are 
no records for adapting coloured Petri Nets and using learning automata in Petri Net. 

A formal definition of a FCPN is in [13]:  
The structure of Fuzzy Coloured Petri Nets depends on the fuzzy production rules.  

The composite fuzzy production rules could be distinguished into following three 
rule-types respectively [12], [13]. 

Type1: Simple fuzzy production rule [14,15]: 
IF dj THEN dk (CF=u) 

 

Fig. 2. The FCPN denotation of fuzzy Coloured rule of Type 1 

Type2: Compound joined fuzzy production rule: 
If d1 AND d2 AND ... AND dn THEN dk(CF = u) 
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Fig. 3. The FCPN denotation of fuzzy Coloured rule of Type 2 

Type3: Compound disjoined fuzzy production rule: 
If d1 OR d2 OR ... OR dn THEN dk(CF = u) 

 

Fig. 4. The FCPN denotation of fuzzy Coloured rule of Type 3 

4 The Proposed Algorithm 

In this section, a combined algorithm is proposed for routing. Here, Fuzzy logic and 
learner automats are used for optimized routing. In the proposed algorithms, the 
learner automats are used for arrangement of membership functions of input and out-
put parameters. A fuzzy variable and a membership function is considered for each of 
vocal amounts. Each membership function is equipped with a learner automat with a 
variable structure whose responsibility is to arrange the fuzzy function parameters. 
Fuzzy membership functions have the types of triangle and trapeze. The initial and 
final points of membership functions are constant and pre-defined. The responsibility 
of these learner automats is to arrange membership function center in such a way that 
it selects the most favorite route regarding to driver's interests. In the proposed algo-
rithm, 10 actions are defined for each of these automats. The selection possibilities of 
any action of these learner automats in moment of learner process start have the pos-
sibility of one tenth. 
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The proposed algorithm implements in beginning of each conjunction and presents 
the optimized proposed route based on the beneath specification. 

Regarding the presented problems in car routing specially in field of limitation n 
sending the traffic situation in all conjunctions, we solve this problem via other cars. 
For example suppose that a car series had stop being the red light or are passing it (the 
beneath figure), out target car is A, in this state car A reacts with other cars present in 
conjunction which can pass from a part of routes where the target car pass. If the 
reacted car has passed from the common route, we gave a coefficient between zero 
and one to the traffic state dependent on the time it has passed from that route. 

 

Fig. 5. Four- phase transition 

• In each conjunction, the state of traffic light of next conjunctions, which may exist 
on one of the proposed routes, are examined. 

• Considering the demanded route of drivers based on their prior and received in-
formation. (For example using the camera set on the forward glass, the driver  
condition can be processed and it can effect on selection of the proposed route. For 
example if the driver was angry, the empty route has the highest priority. Also we 
can ask the idea of the driver at the beginning so the driver can make the routing 
system informed of his interests and needs. As an example, if he needs gas station, 
he announces and the algorithm proposes the best route in which exists gas station 
based on the amount of present gas or if it id lunch or dinner time, it proposes the 
route in which exists a better one in favor of driver based on present information in 
internet.) 

• Considering the distance amount till the next conjunction 
• Considering the number of main conjunctions till destination 
• Considering route type from viewpoint of passage amount from main street, by-

street and freeways. 
• Considering the distance amount in basis of kilometer till destination 

To gain the optimized route, all the explained specifications should first turn into 
input parameters to fuzzy variable and system output is the measurement of favorabil-
ity in routes. Input and output parameters have their specific vocal parameters. 
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Table 1. features and their linguistic descriptions 

Variables linguistic descriptions 

Distance to Destination )DQD(  

 

Very 
Few Few Long Too 

Long 

Quantity of Crosses )CQ(  Few Moderate Many Too 
Many 

Highway passage )WP(  Few Moderate Many Too 
Many 

Traffic status according to traffic signal in-
formation )IFT(  Few Moderate Many 

Traffic status based on comparative vehicle 
information 

Best regards )CCIT(  
Few Moderate Many 

Fuzzy membership functions a re either triangular or trapezoidal in shape shown in 
Fig. 6. 

 

Fig. 6. .Membership functions of input variables 

Follows as are parameters output: 
 

Awful Very Bad Bad Good Very Good Perfect

 

Some of the fuzzy production rules are as follows: 
IF D is Very and QC is Too Many Then Route is Awful 
IF P is Too Many Then Route is Perfect 
IF TIF is Moderate and P is Many Then Route is Good 
IF TCCI is Moderate and QC is Many Then Route is Bad 
IF QC is Moderate and TIF is Few Then Route is Very Good 
IF D is Very and QC is Too Many And TCCI is Many Then Route is Very Bad 

4.1 Details of the Proposed Algorithm 

1. Repeat 10,000 times 
2. Each of learner parameters select one of their operation regarding to their probabil-

ity vector which eventually creates 3 to 4 membership function for each of input 
parameters. 
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3. Membership degree of any of the input parameters are computed by attention to the 
gained information via gained traffic state from conjunctions and the adapted cars 
and also the gained information from route state from view of number conjunctions 
and passage from freeway and the created membership functions in previous pace. 

4. Considering the amount of gained membership for input parameters and the acti-
vated fuzzy rules, the favorability amount of all existing routes for reaching to  
destination is determined and the route having the most favorability (most of the 
output amount from membership functions) is selected as the proposed route. 

5. Then penalty and reward is accounted in terms of criteria and driver's interests: 
(a) If the proposed route, has considered the driver's interest higher than 80%, a  

reward is accrued to the proposed route, otherwise penalty is accrued to the pro-
posed route based on the percentage amount of ignorance to driver's interests. 

Finally, a route having the most favorability is announced as the optimized route to 
the driver based on the amount of final favorability gained in 10.000 times of repeti-
tion in algorithm. 

It is noticeable that the algorithm of finding the ways to destination is not ex-
amined in the proposed algorithm and we supposed that the entire existing route from 
departure to destination points were present. 

5 Simulation 

In this simulation, the proposed method has been reviewed on several different paths 
leading to a specific destination. In this method each token represents learning auto-
mata for each membership function of a S-LRεP learning automata have been used 
with different parameters, the best result is given by a = 0.1 , b = 0.05 values . Each 
learning automata has 10 actions with initial probability of 0.1. In this simulation 
actions are selected based on probability vectors of each learning automata .If in the 
nth iteration, action αI is selected where environment response is βi(n), the probability 
vectors of automata are as follows: 

If the queue gets worse environment gives penalty: βi(n) =1 and if it gets better it 
gives rewards. 

 

Fig. 7. The Simulation 
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Table 2. The Result 

Penalty rate Reward rate Iteration Adaptively 
0.05 0.1 20 94% 

0.01 0.1 20 90% 

0.005 0.1 20 82% 

6 Conclusion 

In this paper, an adaptive fuzzy coloured Petri Net has been presented based on learn-
ing automata and the applied proposed adaptive model in adaptive routing were stud-
ied and evaluated. The proposed algorithm is based on combination of fuzzy logic and 
learning automata, which has used learning automata to adjust membership function 
in fuzzy system. 

Adaptive model is tried to predict the next optimum mode and update the current 
system status based on retrieved data from previous events and system responses. In 
order to evaluate, prior to any test, driver’s desired rout is determined, the results of 
the proposed algorithm shows that the selected rout by the algorithm is very close to 
driver’s desired rout. 
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Abstract. This paper presents a low complexity classification approach for sign 
language recognition using sensor-based gloves. Each glove includes 5 bend 
sensors and a 3D accelerometer.  The classification approach is based on a 
novel feature extraction method based on accumulated differences (ADs). The 
ADs approach projects the dynamics of the glove sensor readings into one 
feature vector. This vector is normally of high dimensionality as it is meant to 
capture the dynamics of a sign language gesture. As such, dimensionality 
reduction using stepwise regression is applied to feature vectors before 
classification. Thereafter, a simple minimum distance classifier is employed. 
The proposed system is applied to a dataset Arabic sign language gestures and it 
yielded a recognition rates 92.5% and 95.1% for user dependent and user 
independent models respectively. Moreover, the computational complexity of 
the proposed method is O(N) as compared to the classical approach of Dynamic 
Time Warping (DTW) which is of O(N2) complexity.  

Keywords: Arabic sign language recognition, Sensor gloves, Dynamic time 
warping, Accumulated differences.  

1 Introduction 

Human–computer interaction is a multidisciplinary research area with diverse 
applications in robotics control, psychological behavior studies, emotion analysis, 
sign language recognition, assistive e-learning technologies and virtual environments 
navigation. Human–computer interaction is constantly defining new modalities of 
communication, and new ways of interacting with machines. One important 
application of human-computer interaction is sign language recognition that allows 
for the communication between hearing and deaf parties.   

There are two major approaches to gesture recognition; vision-based and sensor-
based methods. There are a number of factors affecting the accuracy of the vision-
based approach such as lighting, position of the signer relative to the camera and the 
background movements. Moreover, the dimensionality of the extracted features in a 
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vision-based system is typically prohibitive, thus affecting the overall complexity of 
the systems [1]. 

In general, gesture recognition systems are not 100% accurate and require high 
computational complexity. In the literature, there have been several attempts towards 
developing gesture recognition systems using sensor-based methods. Most of which 
used a small number of features and there have been very few attempts to use sensor-
based methods for Arabic sign language recognition, which is the focus of this paper. 

In the work reported in [2], the authors presented an online construction algorithm 
for constructing fuzzy basis function classifiers that are capable of distinguishing 
different kinds of human daily activities. The activity recognition is based on the 
acceleration data gathered from a wireless tri-axial accelerometer module raised on 
users’ dominant wrists. To test their approach, eight common domestic activities were 
used, standing, sitting, walking, running, vacuuming, scrubbing, brushing teeth, and 
working at a computer. Acceleration readings were gathered from 7 subjects in the 
age range of 20-25 years old. The recognition accuracy of eight daily activities was 
found to be 93%. 

In [3], the authors presented uWave which is an efficient recognition algorithm, 
focusing on gestures whilst disregarding fingers movement. This is achieved through 
using only one tri-axial accelerometer. uWave only requires a single training sample 
for each gesture. uWave matches the accelerometer readings for an unknown gesture 
with those for a vocabulary of known gestures, or templates, based on dynamic time 
warping (DTW). The core of uWave includes dynamic time warping (DTW) to 
measure similarities between two time series of accelerometer readings; quantization 
for reducing computation load and suppressing noise and non-intrinsic variations in 
gesture performance; and template adaptation for coping with gesture variation over 
the time. The results showed a high accuracy of 98.4%. Two main applications were 
proposed in their paper, gesture-based 3D mobile user interface and gesture-based 
user authentication. 

The work in [4] introduces an approach for constructing neural classifiers that are 
able to classify human activities using a tri-axial accelerometer. The acceleration data 
was collected using a wireless sensing tri-axial accelerometer module mounted on the 
dominant wrist. In general, it is hard to recognize activities using only one 
accelerometer, but this difficulty is tackled by using an effective design procedure  
that consists of data pre-processing, feature extraction, efficient feature subset 
selection, and neural classifier construction. The new idea in this paper is to divide the 
dynamic activities and the static activities at the first early stages. This idea is called 
divide-and-conquer strategy. This approach recognizes these two different types of 
activities separately. They used multilayer neural networks in the process of activity 
recognition. 

The work in [5] obtained a 3D data about the position of finger tips and used it to 
train a neural network to predict the fingers posture. In other words, neural networks 
are proposed to learn the inverse kinematics mapping between the fingertip 3D 
position and the corresponding joint angles.  Using a data glove, training data is 
obtained. The maximal mean error between fingertip measured position and fingertip 
position obtained from simulated joint angles and forward kinematics is 0.99±0.76 
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mm for the training set and 1.49±1.62 mm for the test set. Also, the maximal RMS 
error of joint angles prediction is 2.85° and 5.10° for the training and test sets 
respectively, while the maximal mean joint angles prediction error is −0.11±4.34° and 
−2.52±6.71° for the training and test sets, respectively. It is clear that relatively high 
gesture recognition rates are applicable using sensor-based methods. However, there 
still exist problems such as the computation complexity and the ease of use. 
Moreover, these advances still fall short in helping Arabic sign language.  In order to 
translate the sign language, hand gestures need to be accurately captured in order to 
ultimately process them.  

In this paper, we introduce a sensor-based system for recognizing Arabic sign 
language. The solution is based on eliminating the time dependency of the data and 
projecting the captured gesture sequence into one or two static vectors. We have 
considered both user independent and user dependent modes. This paper is organized 
as follows. Section 2 describes the database used in this paper. In section 3, we 
describe the proposed methodology. The experimental results are presented and 
discussed in section 4. Finally the paper is concluded in section 5. 

2 Database Description 

We have used the DG5-VHand data glove which is a complete and innovative  
sensor based system [6]. It has five embedded bend sensors that facilitate  
accurate measurement of finger movements. It also contains an embedded 3 axes 
accelerometer which allows sensing both the hand movements and the hand 
orientation (roll and pitch). The glove communicates with external devices wirelessly 
via Bluetooth. It has been developed for wireless and autonomous operations and it 
can be powered with a battery, guaranteeing a long operative period.  

A database comprising 10 isolated Arabic sign language gestures performed by 10 
different users, repeated 10 times with users wearing the gloves.  Hence, a total of 
1000 gestures are collected. The sensor readings were acquired at a rate of 30 
readings per second. No restrictions on gesture performing speed are imposed. 

3 Proposed Methodology 

3.1 Feature Extraction 

The data acquisition system yields a sequence of 16th dimensional vectors. Each 
vector comprises 5 bend sensor readings and 3-3D acceleration readings per hand. As 
we mentioned above, the sampling rate is 30 readings per second per sensor. A 
nominal length of a gesture is about 5 seconds (i.e. 150 vectors). For example, a 
sequence of N feature vectors representing a certain gesture i is represented by the 
matrix , such as  

     T                                                 (1) 
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The process of extracting the representing feature vector from the above matrix starts 
by splitting the matrix into 3 equal sub-matrices such that      T                                             (2) 

This is followed by computing the accumulated differences (ADs) and statistical 
parameters (means and standard deviations) for each sub-matrix. The ADs and the 
statistical parameters are then concatenated together to form the final feature vector. 
The ADs of the three sub-matrices are computed as follows ∑ | |                                                   (3) 

∑ | |                                               (4) 

∑ | |                                             (5) 

Additionally, the statistical parameters of the three sub-matrices are computed as 
follows 

;  1,2,3                                                        (6) ;    1,2,3                                          (7) 

Accordingly, the final feature vector for gesture i is                                                    (8) 

Consequently, the final feature vector is comprised of 144 elements. It is worthwhile 
to mention that some of these elements might not offer discriminating information 
which may negatively impact the classification process. As such, we propose the use 
of stepwise regression to retain the discriminating elements in the feature vector.  

3.2 Stepwise Regression 

Stepwise regression is a wildly used regressor variable selection procedure. To 
illustrate the procedure (as described in [7]), assume that we have K candidate 
variables x1,x2,…,xk and a single response variable y. In classification the candidate 
variables correspond to the elements of the feature vector and the response variable 
corresponds to the class label. Note that with the intercept term β0, we end up with 
K+1 variables. 

In the procedure, the polynomial weights (or the regression model) are iteratively 
found by adding or removing variables at each step. The procedure starts by building 
a one variable regression model using the variable that has the highest correlation 
with the response variable y. This variable will also generate the largest partial F-
statistic. In the second step, the remaining K-1 variables are examined. The variable 
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that generates the maximum partial F-statistic is added to the model provided that the 
partial F-statistic is larger than the value of the F-random variable for adding a 
variable to the model, such an F-random variable is referred to as fin. Formally the 
partial F-statistic for the second variable is computed by | ,,                                                (9) 

where MSE(x2, x1) denotes the mean square error for the model containing both x1 and 
x2. SSR(β2|β1,β0) is the regression sum of squares due to β2 given that β1,β0 are already 
in the model.  

In general the partial F-statistic for variable j is computed by | , ,,…, , ,…,
                                         (10) 

If variable x2 is added to the model then the procedure determines whether the 
variable x1 should be removed. This is determined by computing the F-statistic  | ,                                         (11) 

If f1 is less than the value of the F-random variable for removing variables from the 
model, such an F-random variable is referred to as fout. 

The procedure examines the remaining variables and stops when no other variable 
can be added or removed from the model. More information on stepwise regression 
can be found in classical statistics and probability texts such as [7].  

It is also worth mentioning that one cannot arrive to the conclusion that all of the 
regressors that are important for predicting the response variable have been retained 
in the stepwise procedure. This is because such a procedure retains regressors based 
on the use of sample estimates of the true model weights. It is understood that there is 
a probability of making errors in retaining regressors. 

3.3 Classification 

In this paper we have used K-Nearest-Neighbor KNN classifier with Manhattan 
distance measure. For the user dependent mode, half the repetitions (i.e. 5 per gesture) 
were used as references while the remaining 5 were used for testing. This was done in 
round robin fashion such that all possible combinations for training and testing were 
considered (i.e.  10C5 = 252 different combinations). On the other hand, for user 
independent recognition, we have used all the gesture repetitions of 5 users for 
training and the remaining gestures for the other 5 users for testing. Similar to the user 
dependent mode, all possible combinations of training and testing data were 
considered resulting in 252 different combinations.  

It is worthwhile to mention that this classification technique is compared to the 
classical Dynamic Time Warping (DTW) [8] as applied to the sensor readings (i.e. 
without a feature extraction module). 
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4 Experimental Results 

The following results are obtained using round robin on both the user independent and 
dependent modes. Using ADs and the Manhattan distance as a metric in a minimum 
distance classifier, we achieved recognition rates of 92.5% and 95.3% in the user 
independent and dependent modes respectively. Table 1 shows the confusion matrix 
for the recognition rates (%) of the 10 gestures.  

Table 1. Resultant Confusion matrix using ADs and Manhattan distance 

 G1 G2 G4 G7 G8 G9 G10 G12 G13 G14 

G1 97.7 0.30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 2.00 

G2 0.00 89.3 0.00 3.00 4.70 0.00 0.00 3.00 0.00 0.00 

G4 2.00 0.00 96.3 1.70 0.00 0.00 0.00 0.00 0.00 0.00 

G7 0.00 0.00 1.40 92.6 0.00 0.00 0.00 6.00 0.00 0.00 

G8 0.00 3.00 0.00 0.00 95.1 0.00 0.01 0.00 1.80 0.00 

G9 4.00 4.00 0.00 1.90 0.00 90.1 0.00 0.00 0.00 0.00 

G10 0.00 0.00 0.10 6.00 0.00 0.00 93.9 0.00 0.00 0.00 

G12 3.00 0.00 3.00 0.00 0.00 4.00 0.00 88.1 0.00 1.90 

G13 5.80 0.00 0.80 0.00 0.00 0.00 0.00 0.00 93.2 0.20 

G14 0.00 3.00 5.00 0.00 0.00 3.30 0.00 0.00 0.00 88.7 

Table 2 shows the recognition results for the proposed scheme versus the classical 
DTW approach. Although the recognition results of the DTW are slightly higher, the 
proposed ADs solution is computationally less expensive. Namely, using the 
proposed scheme, classifying one gesture requires an average of 0.27 seconds. On  
the other hand, using DTW classical solution, the average time required to recognize a 
gesture is 4.9 seconds. Both times are measured on a dual core CPU running at  
2.4 GHz. 

Table 2. Recognition results 

 User independent User dependent 

DTW 95.1% 97.5% 

Ads 92.5% 95.3% 
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5 Conclusion 

In this paper, we propose a low complexity Arabic sign language recognition system 
using sensor-based gloves. The solution is based on eliminating the time dependency 
of the data. The captured gesture sequence is projected into one or more static vectors. 
The dimensionality of the vectors is then reduced using stepwise regression. 
Classification rates of 92.5% and 95.3% for user independent and user dependent 
modes were achieved. As such, more elaborate classifiers for sequential data such as 
DTW are not needed for the classification task. Moreover, considering the complexity 
of the system, the proposed solution is simpler and faster. Hence, a real-time system 
can be implemented. The classification rates can be improved further on by extracting 
more features and giving different weights to different features. 
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Abstract. Cartoon characters retrieval frequently suffers from the dis-
tance estimation problem. In this paper, a multiple hypergraph fusion
based approach is presented to solve this problem. We build multiple hy-
pergraphs on cartoon characters based on their features. In these hyper-
graphs, each vertex is a character, and an edge links to multiple vertices.
In this way, the distance estimation between characters is avoided and
the high-order relationship among characters can be explored. The ex-
periments of retrieval are conducted on cartoon datasets, and the results
demonstrate that the proposed approach can achieve better performance
than state-of-the-arts methods.

Keywords: Retrieval, distance estimation, multiple, hypergraph fusion.

1 Introduction

Although cartoon is a popular and successful media in our life, its creation is usu-
ally of high-cost and labor-intensive, especially for the conventional 2D cartoon
production. On the other hand, given the relatively long history of animation,
there is a large-scale ’cartoon library’ that consists of various animation materi-
als. It is useful for animators to effectively create new animations by reusing.

Facing this opportunity and challenge, many attempts have been conducted in
computer assisted animation, cartoon retrieval and synthesis [1][2] [12] [13] [15].
Juan et al. [1] offered a graph based cartoon synthesis approach that combines
similar cartoon characters into a user directed sequence. Based on dissimilarity
measure on cartoon characters’ edges, this approach builds a graph [3] and gen-
erates a new cartoon sequence by finding the shortest path. It performs well for
simple cartoon characters. But for characters with complex colors and motion
patterns, it fails to generate smooth clips because edges can encode neither the
color information nor the motion pattern. Yu et al. [2] proposed the simple-graph
based transductive learning method for cartoon synthesis. The final cartoon syn-
thesize is conducted as an iteration process where a group of similar cartoon

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 269–276, 2012.
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characters is retrieved to form new sequences. However, this method also de-
pends on edge feature. Thus, it cannot be used for complicated animations. To
effectively and efficiently retrieve cartoons, it is essential to choose proper fea-
tures for character representation. Inspired by [4] which indicates that cartoon
characters are commonly represented by several features of different views, e.g.,
color, shape and motion, we introduce three visual features: color histogram [5],
Hausdorff edge feature [6] and skeleton feature [7], to generate a complete and
concise description of a cartoon character. These three kinds of features reveal
different characteristics from distinct aspects and, at the same time, they are
complementary to each other for a comprehensive representation.

Besides finding features to effectively represent cartoon characters, another
critical issue is how to combine features of different views properly [14] in order to
accurately measure the dissimilarity between characters. Though we can simply
concatenate multiple features from different views together as a long vector, this
solution is improper. That is because these features describe different aspects of
a cartoon character’s properties. Traditional learning methods [8][9] assume that
the data are represented by a single feature. Thus, they cannot deal with data
represented by multiple features. In [10], a multiview spectral embedding (MSE)
algorithm is proposed to encode different features in different ways. Therefore, a
physically meaningful embedding is achieved. MSE explores the complementary
property of different views smoothly. However, in each view, MSE adopt the
simple graph to estimate the data distribution. In this paper, we propose a
novel cartoon character retrieval and recognition approach that explores the
high-order relationship of cartoon character via hypergraphs. First, it adopts
hypergraph to encode the representation for each feature. Here, each character
is defined as a vertex and its several nearest neighbors form a specified edge.
Thus, an edge can connect to multiple vertices for hypergraph. Besides, since
each hyperedge connects to multiple characters, high-order information, such as
whether three or more characters share close feature, can be explored.

2 Multiple Hypergraph Fusion Based Transductive
Learning

In this section, we present the framework of the Multiple Hypergraph Fusion
based Transductive Learning (MHF-TL) for cartoon retrieval. Fig. 1 presents the
workflow of MHF-TL. First, a set of cartoon characters extracted from videos are
imported as input. Then, multiple features of these characters including color
histogram (CH), Hausdorff edge feature (HEF) and skeleton feature (SF) are
imported as input. Subsequently, the hypergraph model is adopted to construct
the hypergraph Laplacian which can estimate the distribution of the characters
efficiently. Afterward, these hypergraph Laplacian can be fused linearly by using
a group of weights. Meanwhile, the user can add the label information into
this framework. Thus, a group of optimal weights can be obtained by using the
Multi-Hypergraph Fusion based Transductive Learning. Finally, the obtained
value matrix can be used in cartoon retrieval.
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Fig. 1. Workflow of Multiple Hypergraph Fusion based Transductive Learning (MHF-
TL) for Cartoon Retrieval (a) Input of data; (b) multiple features extraction for
character representation; (c) hypergraph construction for each feature (d) Multiple-
Hypergraph Fusion based Transductive Learning

2.1 Hypergraph Construction

Now we introduce the approach of hypergraph construction in cartoon retrieval.
We regard each character in the database as a vertex in the hypergraph G =
(V,E,w). Let V = v1, v2, . . . , vn represent n vertices, and E = e1, e2, . . . , em
represent m hyperedges. For each hyperedge, there is an associated positive
number w(e), named the value of hyperedge e. In our approach, a hyperedge is
constructed from a centroid vertex and its related k neighbors. Thus, for each
feature, we can construct a series of hypergraph by coordinating the k neighbors
in a specified range. To calculate the weight for each hyperedge w(e), we first
calculate a |V | × |V | affinity matrix A over V .

A(i, j) = exp(−‖vi − vj‖
D

), (1)

where D is the average distance among the vertices and A(i, j) ∈ [0, 1]. Then,
the incidence matrix H of the hypergraph can be calculated as:

h(vi, ej) = {A(j, i) if vi ∈ ej
0, otherwise.

(2)

In accordance with this formulation, the vertex vi is assigned into ej , in which
vj is the centroid of ej . In this way, the correlation information among vertices
can be accurately described. Hence, the hyperedge weight can be calculated as:

w(ei) =
∑
vj∈ei

A(i, j). (3)

Based on the definition of weights, the degree d(v) of a vertex v ∈ V and the
degree δ(e) of the hyperedge e ∈ E can be calculated as:

d(v) =
∑
e∈E

w(e)h(v, e), (4)
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and

δ(e) =
∑
v∈V

h(v, e). (5)

In our approach, the hypergraph model with variable k-nearest neighbors is
efficient in describing the data distribution. When the distribution of data is
dense, the parameter of k-nearest neighbor tends toward a small value. When
the distribution of data is sparse, the parameter k inclines toward the small
value.

2.2 Multiple Hypergraph Fusion Based Cartoon Retrieval

As mentioned in [11], different machine learning tasks can be conducted on
hypergraphs. Thus, the transductive learning framework can be formulated as:

argmin
f
{Ω(f) + λRemp(f)}, (6)

where f is the classification function to be learned, Ω(f) is a regularizer on
the hypergraph, Remp(f) is empirical loss, and λ > 0 is a tuning parameter.
According to [11], the regularizer on the hypergraph is defined as:

Ω(f) =
1

2
Σe∈EΣu,v∈V

w(e)h(u, e)h(v, e)

δ(e)
(
f(u)√
d(u)

− f(v)√
d(v)

)2. (7)

Let Θ = D
− 1

2
v HWD−1

e HTD
− 1

2
v , and L = I − Θ, the normalized cost function

can be written as:

Ω(f) = fTLf, (8)

where L is a positive semi-definite matrix, and it is called hypergraph Laplacian.
Besides, the loss term can be defined as follows:

‖f − y‖2 = Σu∈V (f(u)− y(u))2, (9)

where y is a label vector. It can be assumed that the number of character in
cartoon database is n, and the ith character is chosen as the query sample.
Thus, y is denoted by an n × 1 vector, where each element of y is 0 except its
ith value is 1. Thus, the learning task is to minimize the sum of two terms

argmin
f

(fTLf + λ‖f − y‖2. (10)

As mentioned in Section 2.1, the construction of the hypergraph laplacian in-
volves setting the k-neighbor. Besides, varied hypergraph laplacian matrix can
be constructed for each feature. In order to automatically, effectively and effi-
ciently approximate the optimal hypergraph Laplacian, we adopt the alternative
approach to learn the optimal Laplacian implicitly. Since the optimal hypergraph
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Laplacian is the discrete approximation to the manifold[16], the above assump-
tion is equivalent to constraining the search space of possible graph Laplacians,
i.e.,

L = ΣN
i=1μiLi

s.t.ΣN
i=1μi = 1, μi > 0, i = 1, . . . , N

, (11)

where N represents all possible hypergraph Laplacian.
Under this constraint, the optimal hypergraph Laplacian estimation is turned

to the problem of learning the optimal linear combination of some pre-given
candidates. Then, the multiple hypergraph fusion based transductive learning
can be formulated as

fT (
∑N

i=1 μiLi)f + λ‖f − y‖2 + β‖μ‖2
s.t.ΣN

i=1μi = 1, μi > 0, i = 1, . . . , N
, (12)

where the regularization term ‖μ‖2 is adopted to avoid the overfitting to one
manifold, and β is the trade-off parameter to control the contribution of the
regularization term ‖μ‖2. For a fixed μ, Eq. (12) degenerates to Eq. (10) with

L =
∑N

i=1 μiLi. On the other hand, for a fixed f , Eq. (12) can be simplified to

minμ∈RN

∑N
i=1 μipi + β‖μ‖2,

s.t.
∑N

i=1 μi = 1, μi > 0, i = 1, . . . , N
, (13)

where pi = fTLif . Theoretically, the hypergraph Laplacian matrix of each graph
satisfies the semidefinite positive property. Thus, their linear combination is
also semidefinite positive. To obtain the solution of Eq. (13), the alternating
optimization is implemented with a fixed μ, as well as the solution μ with a
fixed f .

To fix μ, we get the partial derivative with respect to f , and we can obtain:

∂
∂f [f

T (I −
∑N

i=1 μi(D
i
v)

− 1
2U iW i(Hi)T (Di

v)
− 1

2 )f + λ‖f − y‖2] = 0

⇒ f = λ
1+λ(I −

ΣN
i=1μiS

i

1+λ )−1y
(14)

where Si = (Di
v)

− 1
2U iW i(Hi)(Di

v)
− 1

2 . U i represents hyperedges’ degree (Di
e)

−1

with the elements in diagonal (U i
1, (U

i
2, ..., (U

i
m). On the other side, to learn μ

with a fixed f , we obtain Eq. (13). In this case, the coordinate descend algo-
rithm can be adopted. In each iteration, two elements μi and μj are selected

for updating while the others are fixed. Due to the constraint
∑N

i=1 μi = 1, the
summation of μi and μj will not change after this iteration. Hence, the solution
can be obtained as:

μ∗
i = 0, μ∗

j = μi + μj , if 2β(μi + μj) + (pj − pi) ≤ 0
μ∗
i = μi + μj , μ

∗
j = 0, if 2β(μi + μj) + (pi − pj) ≤ 0

μ∗
i =

2r(μi+μj)+(pj−pi)
4β , μ∗

j = μi + μj − μ∗
i , else

(15)

The coordinate descend method is adopted to iteratively traverse over all pairs of
elements in μ and the solution in Eq. (14) is adopted until the objective function
in Eq. (13) does not decrease.
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3 Experiments

3.1 Datasets

To evaluate the performance of the proposed method, we collected cartoon char-
acters of TOM and JERRY from cartoon videos. The data are classified into two
character groups. In order to annotate cartoon characters, cartoonists in our lab
classified the characters with similar color, shape and motion into one category.
For each cartoon group, we obtained 50 categories of characters. The number of
characters in each category is 10. In this case, 1,000 cartoon characters for this
experiment are collected. Fig. 2 shows some samples in this database.

Fig. 2. Cartoon character samples for TOM and JERRY in the datasets

3.2 Experimental Configurations

In this experiment, each class has 10 characters. Here, each character is used
as query character. For retrieval, the most similar m characters (retrieved char-
acters) are obtained, among which the number of characters from the same
class (relevant characters) as the query character is recorded. Thus, we adopt
the Precision Curve to evaluate the performance. We compare the proposed
multiple hypergraph fusion based transductive learning (MHF-TL) with Mul-
tiview Spectral Embedding (MSE) [10], Regular Hypergraph based Transduc-
tive Learning (RH-TL) and simple-graph based transductive learning (SG-TL).
Specifically, in MHF-TL, the range of k neighbors for each centroid vertex is fixed
as [3,5,10,15,20]. Both RH-TL and SG-TL can be conducted with the features of
CH, HEF and SF. Thus, we can obtain the average results of RH-TL-Aver and
SG-TL-Aver. In addition, we can conduct RH-TL and SG-TL by concatenating
the three features into a long vector as RH-TL-Con and SG-TL-Con.

3.3 Experimental Results

Fig. 3 records the precision curves on the datasets of TOM and JERRY. The
results show that the proposed Multiple Hypergraph Fusion based Transductive
Learning (MHF-TL) achieves better retrieval results than all other methods.

We then observe the retrieval performance of using different individual hyper-
graphs. Figure 4 illustrates that the performance comparison of using individual
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Fig. 3. The precision curve comparison of MHF-TL, MSE, RH-TL-Aver, RH-TL-Con,
SG-TL-Aver and SG-TL-Con. (a) results on the TOM dataset; (b) results on the
JERRY dataset; (c) results on the Squatters dataset.
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Fig. 4. Retrieval comparison of using RH-TL-Con with different K and using MHF-
TL. (a) results on the TOM dataset; (b) results on the JERRY dataset.

hypergraphs generated with different k (varied in the range [3,5,10,15,20]) and
using fused hypergraph. We can see that the performance curves mainly exhibit
a ’’ or ’’ shape when k varies. This can be explained that the discriminative
ability of hypergraph will be weak when k is too small and many characters
will not be connected when k is too large. This makes our method robust and
feasible as we do not need to tune the parameter k.

4 Conclusions

In this paper, we propose a novel cartoon character retrieval using constructive
hypergraph analysis. Multiple hypergraphs at different granularities are con-
structed based on the features of cartoon characters. These hypergraphs com-
prehensively capture the high-order relationship among cartoon characters and
the scheme avoids the pairwise distance estimation. Experimental results have
clearly demonstrated the superiority of the hypergraph-based approach.
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Abstract. Projective Nonnegative Matrix Factorization (PNMF) is able
to extract sparse features and provide good approximation for discrete
problems such as clustering. However, the original PNMF optimization
algorithm can not guarantee theoretical convergence during the itera-
tive learning. We propose here an adaptive multiplicative algorithm for
PNMF which is not only theoretically convergent but also significantly
faster than the previous implementation. An adaptive exponent scheme
has been adopted for our method instead of the old unitary one, which en-
sures the theoretical convergence and accelerates the convergence speed
thanks to the adaptive exponent. We provide new multiplicative update
rules for PNMF based on the squared Euclidean distance and the I-
divergence. For the empirical contributions, we first provide a counter
example on the monotonicity using the original PNMF algorithm, and
then verify our proposed method by experiments on a variety of real-
world data sets.

Keywords: Adaptive, multiplicative updates, PNMF, NMF.

1 Introduction

Recently Nonnegative Matrix Factorization (NMF) has been attracting much
research effort and applied to many different fields such as face recognition,
document clustering, gene expression studies, music analysis [7,1,3]. The research
stream originates from the work by Lee and Seung [6], in which they showed
that the nonnegativity constraint and the related multiplicative update rules
can generate part-based representations of the data. However, the sparseness
achieved by NMF is only mediocre. Many NMF variants (e.g. [4,5]) addressed
this problem but their solutions often require extra user-specified parameters to
achieve sparser results, which is inconvenient in practice.

Projective Nonnegative Matrix Factorization (PNMF) [10,9] as a new variant
of NMF has shown advantages over NMF in learning a sparse or orthogonal
factorizing matrix, which is desired in both feature extraction and clustering.
Typically PNMF follows the NMF optimization approach by using multiplicative

� Supported by the Academy of Finland in the project Finnish Center of Excellence
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updates. However, the original PNMF algorithm does not guarantee monotonic
decrease of the dissimilarity between the input matrix and its approximate after
each learning iteration.

We propose new multiplicative algorithms for PNMF in this paper. The con-
vergence problem of the original PNMF update rules is caused by the restrict
that the exponent in the update rule must be unitary (i.e., one). Dropping the
restrict, we can obtain theoretically convergent update rules without extra nor-
malization steps. The multiplicative updates are further relaxed by allowing
variable exponents in different iterations, which turns out to be an effective
strategy for accelerating the optimization. The failure of the original PNMF al-
gorithm is demonstrated by an counter example, where the monotonicity of the
objective evolution is violated. By contrast, our new method steadily minimizes
the objective and converges significantly faster than the old algorithms.

In the remaining, Section 2 recapitulates the essence of the PNMF objectives
and their previous optimization methods. Section 3 presents the new convergent
multiplicative update rules and the fast PNMF algorithm by using adaptive
exponents. In Section 4, we empirically compared the proposed methods using
a variety of data sets, and Section 5 concludes the paper.

2 Projective Nonnegative Matrix Factorization

Given a nonnegative data matrix X ∈ Rm×n
+ , Projective Nonnegative Matrix

Factorization (PNMF) seeks a decomposition of X that is of the form: X ≈
WWTX, where W ∈ Rm×r

+ with the rank r < min(m,n). Compared with
the NMF approximating scheme X ≈WH, PNMF replaces H with WTX. This
replacement has shown to have positive consequence in sparseness of the approx-
imation, orthogonality of the factorizing matrix, close equivalence to clustering,
generalization of the approximation to new data without heavy re-computations,
and easy extension to a nonlinear kernel method [9].

Let X̂ = WWTX denote the approximating matrix. The approximation can
be achieved by minimizing two widely used objectives: (i) the Squared Euclidean

distance (Frobenius norm) defined as DEU

(
X||X̂

)
=

∑
ij

(
Xij − X̂ij

)2

, and

(ii) the Non-normalized Kullback-Leibler divergence (I-divergence) defined as

DI

(
X||X̂

)
=

∑
ij

(
Xij log

Xij

X̂ij
−Xij + X̂ij

)
. Note that PNMF is also called

Clustering NMF which was later proposed by Ding et al. in [2].

Denote Zij = Xij/X̂ij and 1m a column vector of length m filled with 1. To
minimize the above objectives, the authors in [10,9] have employed the following
multiplicative update algorithms:

W ′
ik =Wik

(AW)ik
(BW)ik

, (1)

where for the Euclidean case

A = 2XXT and B = WWXXT +XXTWWT , (2)
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and for the I-divergence case

A = ZXT +XZT and B = 1m1T
nX

T +X1n1
T
m. (3)

Note that the update rule (1) itself does not necessarily decrease the objective
in each iteration and must therefore be accompanied with a normalization or
stabilization step, i.e.,

Wnew = W′/‖W′‖, (4)

where ‖W′‖ equals the square root of maximal eigenvalue of W′TW′. Though
the algorithms using the update rules (1) and (4) usually work in practice, the
theoretical proof of their convergence is still lacking. In Section 4.1 we can even
provide a counter example of these rules for the I-divergence.

3 Adaptive PNMF

The derivation of the update rule (1) follows a heuristic principle that puts the
unsigned negative terms in the gradient to the numerator and the rest to the
denominator of the multiplying factor to W. Update rules obtained by this prin-
ciple may not decrease the objective at each iteration [9] because the exponent of
the multiplying factor is restricted to one. Discarding the restrict, we can obtain
theoretically convergent multiplicative update rules in the relaxed form

W new
ik =Wik

[
(AW)ik
(BW)ik

]η
(5)

where η ∈ R+ and the convergence is guaranteed by the following theorem.

Theorem 1. The multiplicative update (5) monotonically decrease DEU

(
X||X̂

)
with η = 1/3, and decrease DI

(
X||X̂

)
with η = 1/2.

The proof is special cases of Majorization-Minimization development procedure
in [8]. For self-contained purpose, we include the proof sketch in the Appendix.

The multiplicative algorithm using the update rule (5) avoids unwanted rises
and thus assures theoretical convergence of the iterative learning. However, the
exponent η that remains constant throughout the iterations is often conservative
in practice. Here we propose to accelerate the learning by using more aggressive
choice of the exponent, which adaptively changes during the iterations.

A simple strategy is to increase the exponent steadily if the new objective is
smaller than the old one and otherwise shrink back to the safe choice, η. The
pseudo-codes for such implementation is given in Algorithm 1, where D(X||X̂),
A,B and η are defined according to the type of cost function (Euclidean distance
or I-divergence). We have empirically used μ = 0.1 in all related experiments
in this work. Although more comprehensive adaptation approaches could be
applied, we find that such a simple strategy can already significantly speed up
the convergence while still maintaining the monotonicity of updates.
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Algorithm 1. Multiplicative Updates with Adaptive Exponent for PNMF

Usage: W ← FastPNMF(X, η, μ).
Initialize W; ρ← η.
repeat

Uik ←Wik

[
(AW)ik
(BW)ik

]ρ
if D(X||UUTX) < D(X||WWTX) then

W ← U
ρ← ρ+ μ

else
ρ← η

end if
until convergent conditions are satisfied

4 Experiments

We have selected a variety of data sets that are commonly used in machine learn-
ing for our experiments. These data sets were obtained from the UCI repository1,
the University of Florida Sparse Matrix Collection2, and the LSI text corpora3,
as well as other publicly available websites. The statistics of the data sets are
summarized in Table 1.

Table 1. The data sets used in the experiments (m = Dimensions, n = # of samples)

GD95 b wine sonar mfeat orl feret worldcities swimmer cisi cran med

m 40 13 60 292 400 1024 313 256 1460 1398 1033

n 69 178 208 2000 10304 2409 100 1024 5609 4612 5831

For the empirical comparisons, we consider three methods: (i) PNMFn, i.e,
the original PNMF algorithm using the multiplicative update rule (1) and the
normalization step (4), (ii) PNMFc, i.e., the convergent multiplicative PNMF
algorithm (5) using constant exponent according to Theorem 1, and (iii) PNMFa,
i.e., the fast adaptive PNMF algorithm using adaptive exponents (Algorithm 1).

4.1 A Counter-Example of Using Extra Normalization

Figure 1 shows a counter-example of the original PNMF algorithm for I-
divergence using Eqs. (1), (3), and (4). We have used the GD95 b data set
in the experiment. It can be seen that the monotonicity of objective evolution
is violated in every other loop since the 19th iteration and the optimization is
then stuck in an endless fluctuation without a decreasing trend.

1 http://archive.ics.uci.edu/ml/
2 http://www.cise.ufl.edu/research/sparse/matrices/index.html
3 http://www.cs.utk.edu/~lsi/corpa.html

http://archive.ics.uci.edu/ml/
http://www.cise.ufl.edu/research/sparse/matrices/index.html
http://www.cs.utk.edu/~lsi/corpa.html
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Fig. 1. A counter example showing that the original PNMF algorithm with normal-
ization does not monotonically decrease the I-divergence for the GD95 b data set

4.2 Training Time Comparison

Figure 2 shows the objective evolution curves using the compared methods.
One can see that the objectives of the proposed methods, PNMFc and PNMFa,
monotonically decrease for the whole iterative learning process without any un-
expected rises. Furthermore, PNMFa generally converges the fastest as its curves
are below the other two in all plots.

In addition to qualitative analysis, we have also compared the benchmark on
converged time of the three methods. Table 2 summarizes the means and stan-
dard deviations of the resulting converged time. The converged time is calculated
as follows. We first find the earliest iteration of PNMFn where the objective Dn

is sufficiently close to its minimum D∗: |Dn−D∗|/D∗ < 0.001. The correspond-
ing time is recorded as the converged time of the PNMFn. For the PNMFc
evolution, the converged time is that of the first iteration where the objective
Dc fulfills |Dc −D∗|/D∗ < 0.001. If no such iteration exists, the converged time
of PNMFc is set to the largest learning time of the three methods. The same
procedure of PNMFc is applied to PNMFa. Each algorithm on each dataset has
been repeated 100 times with different random seeds for initialization. These
quantitative results confirm that PNMFa is the fastest algorithm among the

Table 2. The mean (μ) and standard deviation (σ) of the converged time (seconds)

(a) Criterion: the squared Euclidean distance

method wine sonar mfeat orl feret

PNMFn 0.97±0.03 0.97±0.01 26.14±1.54 40.37±1.03 30.80±7.34

PNMFc 0.22±0.11 0.22±0.11 68.57±1.75 117.26±1.74 107.58±24.43

PNMFa 0.06±0.03 0.06±0.03 19.10±0.70 29.89±1.48 19.97±5.60

(b) Criterion: the I-divergence

method worldcities swimmer cisi cran med

PNMFn 8.35±3.71 309.78±8.78 478.43±43.51 438.98±41.71 321.94±34.90

PNMFc 14.07±2.98 613.04±20.63 863.89±69.23 809.61±62.64 566.99±64.44

PNMFa 4.68±1.44 193.47±5.43 193.23±18.70 189.41±18.50 132.67±13.86
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Fig. 2. Evolutions of objectives using the compared methods based on (left) squared
Euclidean distance and (right) I-divergence

three compared: it is 1.5 to 2 times faster than PNMFn and 3 to 5 times faster
than PNMFc. The advantage over PNMFn is more significant for the two small
data sets wine and sonar.

5 Conclusions

We have proposed a fast multiplicative algorithm for Projective Nonnegative
Matrix Factorization. Our method gets rid of two restricts in the conventional
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multiplicative update rules. Firstly, relaxing the exponent of the multiplying
factor to any positive number can lead to theoretically convergent update rules
without extra normalization. Secondly, further relaxation by allowing variable
exponent can accelerate the iterative learning. Empirical results show that the
proposed algorithm not only monotonically decreases the dissimilarity objective
but also converges significantly faster than the previous implementation.

The accelerated algorithms facilitate application of the PNMF method. More
large-scale datasets will be tested in the future. Moreover, the proposed adaptive
exponent technique is readily extended to other fixed-point algorithms that use
multiplicative updates.

A Appendix: Proof of Theorem 1

A.1 The Euclidean Distance Case

We rewrite the squared Euclidean distance as

DEU(X||W̃W̃TX) = −2Tr
(
W̃TXXTW̃

)
+
∑
ij

(
W̃W̃TX

)2

ij
+ constant. (6)

The first term on the right is upper-bounded by its linear expansion at the
current estimate W:

−2Tr
(
W̃TXXTW̃

)
≤ −4

∑
ik

W̃ik

(
XXTW

)
ik
+ constant (7)

because it is concave with respect to W̃. Next, let λijak =
WikWakXaj

(WWTX)ij
. The

second term can be upper-bounded by using Jensen’s inequality as follows:∑
ij

(
W̃W̃TX

)2

ij
≤ W̃ 4

ik

2W 3
ik

(
WWTXXTW +XXTWWTW

)
ik
. (8)

We can then construct the auxiliary function

G(W̃,W) = −2Tr
(
W̃TAW

)
+
∑
ik

W̃ 4
ik

2W 3
ik

(BW)ik + constant (9)

which upper bounds DEU(X||W̃W̃TX) with A and B defined in Eq. (2). Min-

imizing G(W̃,W) is implemented by setting its gradient with respect to W̃ to
zero, which yields the update rule Eq. (5) with η = 1/3.

A.2 The I-Divergence Case

We rewrite the I-divergence as

DI(X||W̃W̃TX) = −
∑
ij

Xij log
(
W̃W̃TX

)
ij
+
∑
ij

(
W̃W̃TX

)
ij
+ constant.

(10)
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The first term is upper-bounded using the Jensen’s inequality:

−
∑
ij

Xij log
(
W̃W̃TX

)
ij
≤ −

∑
aik

AaiWikWak log
(
W̃ikW̃ak

)
+ constant,

(11)

where A is defined in Eq. (3). For the second term, we can rewrite it with B

defined in Eq. (3) and obtain its upper bound with Ũik = W̃ik and Uik =Wik.∑
ij

(
W̃W̃TX

)
ij
=

1

2
Tr

(
W̃TBW̃

)
≤
∑
ik

W̃ 2
ik

2Wik
(BW)ik (12)

We can then construct the auxiliary function

G(W̃,W) = −
∑
aik

AaiWikWak log
(
W̃ikW̃ak

)
+
∑
ik

W̃ 2
ik

2Wik
(BW)ik + constant,

(13)

which upper bounds DI(X||W̃W̃TX). Setting the gradient of G(W̃,W) with

respect to W̃ to zero, we obtain the update rule (5) with η = 1/2.
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Abstract. Projective Nonnegative Matrix Factorization (PNMF) is one
of the recent methods for computing low-rank approximations to data
matrices. It is advantageous in many practical application domains such
as clustering, graph partitioning, and sparse feature extraction. However,
up to now a scalable implementation of PNMF for large-scale machine
learning problems has been lacking. Here we provide an online algorithm
for fast PNMF learning with low memory cost. The new algorithm sim-
ply applies multiplicative update rules iteratively on small subsets of the
data, with historical data naturally accumulated. Consequently users do
not need extra efforts to tune any optimization parameters such as learn-
ing rates or the history weight. In addition to scalability and convenience,
empirical studies on synthetic and real-world datasets indicate that our
online algorithm runs much faster than the existing batch version.

Keywords: Online learning, PNMF, NMF, large-scale datasets.

1 Introduction

Nonnegative Matrix Factorization (NMF) has attracted a lot of research atten-
tion since the initial work by Lee and Seung [6]. It is a method for efficiently
and accurately generating low-rank approximations to large non-negative data
matrices, which often occurs in practical applications. A multitude of NMF vari-
ants have been proposed later (see e.g. [2,3]). NMF and its variants have been
applied to a variety of machine learning problems such as source separation [3],
clustering [2], estimation in hidden Markov model [5], etc. See [1] for a survey.

To handle large-scale problems, a couple of scalable implementations of NMF
have lately been introduced. Liu et al. presented a distributed NMF algorithm
by carefully partitioning the data and arranging the computations to maximize
data locality and parallelism [8]. Marial et al. proposed a framework for online
matrix factorization based on the Euclidean distance, with NMF as its special
case [9].

Recently, Projective Nonnegative Matrix Factorization (PNMF) as a new vari-
ant has achieved significant improvements over NMF. PNMF is able to produce a

� Supported by the Academy of Finland in the project Finnish Center of Excellence
in Computational Inference Research (COIN).
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highly orthogonal or sparse factorizing matrix, which is desired in problems such
as part-based feature extraction, clustering, and graph partitioning. Moreover,
it has close relation to positive principal component analysis and K-means, with
easy extension to nonlinear versions via kernels. The PNMF approximations of
new data items, not included in the training set, can be computed efficiently
without iterations. However, scaling up PNMF to large data matrices is more
challenging because the approximate as a function is quadratic with respect to
the factorizing matrix. Consequently the learning usually involves higher-order
optimization problems. Previously there were only solutions to the cases where
either dimension of the input matrix is small (see e.g. [12]).

In this paper we present an online algorithm for PNMF which is scalable to
problems where both dimensions of input matrix are large. Given a small set
of matrix columns, our algorithm applies a multiplicative update rule followed
by a normalization step. Only one small matrix in addition to the factorizing
matrix needs to be stored during the iterations. The accumulation of historical
data is parameter-free in our approach. As a result, the new algorithm does
not require extra efforts to tune any learning parameters, which facilitates its
applications. The proposed method is not only scalable and convenient, but runs
faster than the previously existing PNMF algorithm, as shown by experiments
on both synthetic and real-world data.

2 Projective Nonnegative Matrix Factorization

Given a nonnegative input matrix X ∈ Rm×n
+ , whose columns are typically

m-dimensional data vectors, one tries to find a nonnegative projection matrix
P ∈ Rm×m

+ of rank r such that

X ≈ X̂ ≡ PX. (1)

In particular, Projective Nonnegative Matrix Factorization (PNMF) calculates
the factorization

P = WWT , (2)

whereW ∈ Rm×r
+ . Compared with the Non-negative Matrix Factorization (NMF)

[6] where X ≈ WH, PNMF replaces the second factorizing matrix H with
WTX. This brings PNMF close to non-negative Principal Component Analysis.
A trivial solution W = I appears when r = m, which will produce zero error
but is practically useless. Useful PNMF results usually appear when r � m for
real-world applications.

The term “projective” refers to the fact that WWT would indeed be a pro-
jection matrix if W were an orthogonal matrix: WTW = I. It turns out that in
PNMF learning, W becomes approximately, although not exactly, orthogonal.
This has positive consequences in sparseness of the approximation, orthogonal-
ity of the factorizing matrix, decreased computational complexity in learning,
close equivalence to clustering, generalization of the approximation to new data
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without heavy re-computations, and easy extension to a nonlinear kernel method
with wide applications for optimization problems [12].

The approximation error in PNMF can be measured by the squared Euclidean
distance:

DEU

(
X||WWTX

)
=
∑
ij

[
Xij −

(
WWTX

)
ij

]2
. (3)

The original or batch PNMF algorithm that minimizes the above objective iter-
atively applies the update rule

Wik ←Wik

(
XXTW

)
ik

(WWTXXTW +XXTWWTW)ik
(4)

followed by the normalization

W ←W/‖W‖, (5)

where ‖ · ‖ takes the maximal singular value. Recently, Yang and Oja [13] gave
a theoretically convergent batch algorithm for PNMF with a smaller exponent
in the multiplicative update rule, which is however slower than the original
algorithm in practice. Both the original and modified batch algorithms are not
scalable to problems where both dimensions of input matrix are large.

3 Online Learning

Online optimization techniques such as stochastic gradient descent are commonly
used for scaling-up machine learning algorithms. However, most of them are not
suitable for PNMF because the objective function Eq. (3) is quartic with respect
to W. The additive updating methods require a parameter of learning step
size, which is particularly difficult to choose in such a fourth-order optimization.
Due to more costly gradients and Hessian, the automatic selection methods
such as line search requires prohibative computation. Conventional principles
for specifying learning rates such as the Robbins-Monroe rule [4] often lead to
poor convergence speed. Though comprehensive parametric rules might work
better, they require tedious work to tune the hyper-parameters.

Another drawback of additive updates is that they cannot guarantee the non-
negativity and an extra projection step is thus needed. Such projection can nev-
ertheless be inconsistent with the gradient descent learning. In our practice, the
projected gradient algorithms (e.g. [7]) that is popularly used in NMF behaves
very unstably for PNMF and often has slow convergence.

Here we present an online multiplicative algorithm for PNMF. Though the
PNMF gradient has a more comprehensive form, there is only one costly part
which appears in all its terms:

Q = XXTW (6)
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Algorithm 1. Online multiplicative algorithm for PNMF

Usage: W ← OnlinePNMF(X, r, p), where p� n.

Initialize W ∈ Rm×r
+ ; calculate Q̃ = XXTW.

repeat
Form X̃ by sampling p columns of X.
Q̃ ← Q̃+ X̃X̃TW.

Wik ←Wik
Q̃ik(

WWT Q̃+ Q̃WTW
)
ik

.

W ← W/‖W‖.
until stop conditions are satisfied

The expenses of other computations are negligible compared to it. We therefore
apply online approximation of Q by taking a small subset of X columns, de-
noted by X̃, and replacing Q with Q̃ = X̃X̃TW in each iteration. In this work,
the subset is randomly sampled by uniform distribution. Following the merits
of the multiplicative algorithm, we do not impose any learning step sizes in the
update rule.

The above naive extension itself is not enough because Q̃ is calculated from
scratch in each iteration. This totally discards the history in approximating Q
and consequently the learning always proceeds with “cold starts” and zigzags
a lot. Instead, we hope that the algorithm becomes more stable after certain
warm-up stage where the learning history is accumulated. We implement this
by a warm start technique [9] which adds the new quantity to the old one:

Q̃← Q̃+ X̃X̃TW. (7)

Though one may further apply some weighting between the old and new quanti-
ties, we have not observed significant improvement when using such weighting.

The resulting online PNMF algorithm is given in Algorithm 1. Compared
with the old PNMF update rule in Eq. (4) which requires O(m × min(m,n))

memory to store X or XXT , the new method only requires to store W and Q̃,
both of size O(m× r). The computation time for each batch update is O(mnr)
or O(m2r), while for each online update is O(mpr). Note that we can apply the
same update rules for newly coming data to achieve incremental learning.

4 Experiments

Though online learning requires more iterations, as a whole it usually decreases
the objective faster than batch updates. We verify this by comparing the online
PNMF algorithm against the batch implementation on four datasets. The first
two are generated from a Gaussian mixture with 16 components. The third and
fourth consist of face images taken from the FERET [10] and the UND [11]
databases. The dimensions of the input matrices are 1129×1000, 11235×10000,
1024× 2409, and 10304× 33247, respectively. For face images, PNMF produces
a sparse feature basis.
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Fig. 1. Evolutions of PNMF objectives using the compared implementations

The objective evolution curves are shown in Figure 1. It can be clearly seen
that the online algorithm defeats the batch version for all datasets. The speedup
is even clearer in the two larger datasets synthetic (large) and UND, where the
objectives using the new algorithm converge tens of times faster than those using
the old implementation.

5 Conclusions

We have presented a convenient online algorithm for Projective Nonnegative
Matrix Factorization. With low-memory cost, the proposed algorithm is scal-
able to large PNMF problems. The new method also demonstrated substantial
advantage in fast PNMF training.

Subsampling methods could also be used to further reduce the computational
cost in initialization. For offline training, one may also sparsely sample some
entries of X, not necessarily the columns, still with memory saving and speedup
introduced by the stochastic gradients.
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Abstract. This paper proposes a group-based evolutionary algorithm (GEA) for 
the fuzzy system (FS) optimization. Initially, we adopt an entropy measure me-
thod to determine the number of rules. Fuzzy rules are automatically generated 
from training data by entropy measure. Subsequently, the GEA is performed to 
optimize all the free parameters for the FS design. In the evolution process, a 
FS is coded as an individual. All individuals based on their performance are 
partitioned into a superior group and an inferior group. The superior group, 
which is composed of individuals with better performance, uses a global evolu-
tion operation to search potential individuals. In the inferior group, individuals 
with a worse performance employ the local evolution operation to search better 
individuals near the current best individual. Finally, the proposed FS with  
GEA model (FS-GEA) is applied to time series forecasting problem. Results 
show that the proposed FS-GEA model obtains better performance than other 
algorithm. 

Keywords: fuzzy system (FS), differential evolution (DE), group-based evolu-
tionary algorithm (GEA), optimization. 

1 Introduction 

The fuzzy system (FS) [1-3] has become a popular research topic since its invention. 
Such system which has the high-level reasoning as the human thinking process is an 
efficient tool for solving complex problems. For the FS design, many papers have 
employed the backpropagation (BP) algorithm to train parameters. The BP algorithm 
is a powerful training technique that quickly minimises the error function of the FS. 
However, the BP algorithm may trap into a local minimum solution. To overcome this 
disadvantage, many researchers have applied the evolutionary algorithms (EA) to 
design a FS [4-10]. 

In EAs, the differential evolution (DE) algorithm has sparked the interest of  
researchers in recent years [11-17]. The DE algorithm, proposed by Storn and  
Price [11], is an efficient global optimizer in the continuous search domain. It has 
been shown to perform better than GA and PSO with respect to several numerical 
                                                           
* Corresponding author. 
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benchmarks [11-13]. However, the DE algorithm may favor the exploitation ability or 
the exploration ability [11]. An imbalance of evolution ability easily obtains lower 
performance for solving practical problems. To deal with this problem, previous stu-
dies have improved the mutation operation model. In [14-17], the researchers have 
proposed a modified differential evolution (MODE) algorithm for an adaptive neural 
fuzzy network design. This MODE algorithm provides a convex type mutation model 
and cluster-based scheme to increase the diversity of the population. In addition, the 
MODE algorithm has been applied to design the recurrent FS [17]. The concept of the 
tradeoff between the exploration ability and exploitation ability was proposed by  
Das et al.[11]. They designed a novel mutation model, called neighborhood-based  
mutation operation, to handle stagnation problem. In their paper, they utilized new 
mutation strategy and ring topology of neighborhood to find potential individuals in 
population. The neighborhood-based mutation operation also applied to the FS  
optimization [12]. However, a single evolution model may be limitative to deal with  
various problems [9,14].  

This paper proposes a group-based evolutionary algorithm (GEA) to design the FS. 
The idea of the GEA is implemented on the DE algorithm. The proposed GEA em-
ploys the global evolution operation and the local evolution operation instead of  
single evolution model to effectively enhance the search ability. In the process of FS 
design, we adopt an entropy measure method to determine the number of rules for the 
NSF and identify suitable initial parameters. Subsequently, the GEA is performed to 
optimize all the free parameters for the FS design. In the simulation, the Mackey-
Glass chaotic time series is conducted to evaluate the performance of the proposed FS 
with GEA (FS-GEA) model. Comparisons with other EAs demonstrate the superiority 
of the performance of the FS-GEA model.  

This paper is organized as follows. Section 2 describes the basic structure and 
function for the FS. Section 3 introduces the rule generation and parameter optimiza-
tion algorithm in the GEA. Section 4 presents the results of FS-GEA model and its 
performance comparisons with other paper. Finally, Section 5 draws conclusions. 

2 The Architecture of the FS 

The architecture of the FS is described in this section. The proposed FS realizes a 
nonlinear combination of input variables in consequent part. Each fuzzy rule corres-
ponds to an output of functional link neural network (FLNN) [3,15,17], comprising a 
functional link. The proposed FS is five-layered network architecture which includes 
the input layer, membership function layer, rule layer, functional link layer and output 
layer. The operation functions of each layer are described as follows. In the following 
description,

 
( )pO denotes the output of a node in the thp layer. 

Layer 1—Input layer: No computation is done in this layer. Each node in this layer, 
which corresponds to one input variable, only transmits input values to the next layer 
directly. That is 

(1)          =1,2,...,iO x i n=                          (1) 

where n are the input variables of the FS. 
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Layer 2—Membership function layer: Each node in this layer is a membership func-
tion that corresponds one linguistic label of one of the input variables in Layer 1. In 
other words, the membership value which specifies the degree to which an input value 
belongs to a fuzzy set is calculated in Layer 2 

 

2
(2)

2

( )
exp

ij

i ij
ij

x m
O μ σ

 − −= =  
                                

(2)
 

where 1,2...,j M= , M is number of rules in the FS, and ijijm σ are the center and the 

width of the Gaussian membership function of input variable, respectively. 

Layer 3—Rule layer: This layer receives 1-D membership degrees of the associated 
rule from the nodes of a set in layer 2. Here, the product operator described before is 
adopted to perform the precondition part of the fuzzy rules. As a result, the output 
function of each inference node is 

(3)

1

n

j ij
i

O R μ
=

= = ∏
.                                  

(3)
 

The output of a layer 3 node represents the firing strength of the corresponding fuzzy 
rule. 

Layer 4—Functional link layer: The input to a node in layer 4 is the output from layer 
3, and the other inputs are calculated from a functional link neural network that has 
not used the function ( )⋅tanh . For such a node, 

(4)

1

( )
l

j kj k
k

O R w ϕ
=

=  ,                                 (4) 

where wkj is the corresponding link weight of functional link neural network and 
kφ  is 

the functional expansion of input variables. The functional expansion uses a trigonome-
tric polynomial basis function, given by [ ]) ( ) (  ) (  ) ( 222111 xcosxsinxxcosxsinx ππππ  

for two-dimensional input variables. Therefore, l is the number of basis functions, 
nl ×= 3 , where n is the number of input variables. Moreover, the output nodes of func-

tional link neural network depend on the number of fuzzy rules of the FS. 

Layer 5—Output layer: Each node in this layer corresponds to one output variable. 
The node integrates all of the actions recommended by layer 3 and layer 4, which acts 
as a defuzzifier with 

1 1(5)

1

( )
M l

j kj k
j k

M

j
j

R w

O y
R

ϕ
= =

=

= =
 



,                              
(5)

 

where M is the number of fuzzy rules, and y is the output of the FS. 
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3 Learning Process for the FS Design 

This section describes structure learning and parameter learning for the FS design. A 
rule generation method based on entropy measure for structure learning is to automat-
ically determine the number of clusters. After rule generation, all free parameters in 
the FS are learned by the GEA for parameter learning. Finally, a fuzzy system can be 
designed by our method. 

3.1 Rule Generation Using Adaptive Entropy Measure Algorithm 

In this paper, an adaptive entropy measure algorithm is proposed for rule generation. 
For each incoming pattern xi, the rule firing strength can be regarded as the degree to 
which the incoming pattern belongs to the corresponding cluster. Entropy measure 
between each data point and each membership function is calculated based on a simi-
larity measure. A data point of closed mean has lower entropy. Therefore, the entropy 
values between data points and current membership functions are calculated to deter-
mine whether or not to add a new rule. For computational efficiency, the entropy 
measure can be calculated using the firing strength from 

ijμ  as follows 

2
1

1 1exp( ) log (exp( ))
n

j
ij iji

EM μ μ
=

= − ⋅ ,                          
(6)

 

where ]1,0[∈jEM . According to Eq. (6), the measure is used to generate a new fuzzy 

rule for new incoming data is described as follows. The maximum entropy measure 

( )
max

1
max

t
j

j M
EM EM

≤ ≤
=                                 (7) 

is determined, where M(t) is the number of existing rules at time t. If EMEM ≤max
, 

then a new rule is generated, where ]1,0[∈EM  is a prespecified threshold that decays 

during the learning process. Once a new rule has been generated, the next step is to 
assign the initial mean and variance as follows; 

i
M

ij xm t =+ )( )1(                                     (8) 

init
M

ij
t σσ =+ )( )1(                                   (9) 

where xi is the new input and 
initσ  is a prespecified constant. 

Until all entropy value satisfies a prespecified threshold, the process of rule genera-
tion is terminated. In this paper, the EM  is defined as 0.26-0.3 times of the number 
of input variables [3]. 

3.2 The Learning Process of the GEA 

For the effective parameter learning in the FS optimization, evolutionary algorithm is 
usually used [14-17]. In this paper, we propose a GEA to tune all free parameters for 
the FS optimization. The proposed GEA consists of six major steps：the coding step, 
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population step, evaluation step, mutation step, crossover step, and selection step. The 
whole learning process is described as follows： 

(1) Coding：The foremost step in the GEA algorithm is the coding of the FS into 
an individual. In this paper, an individual consists of the mean ijm  and width ijσ of a 

Gaussian membership function, and kjw weight of the consequent part, where i and j 

represent the ith input variable and the jth rule, respectively. 
(2) Population：Before the GEA is performed, the individuals that will constitute 

an initial population must be created. The following formulations show the generation 
of the initial population. 

1 2

* *
1 1 1 1 1

* *

* *

   [ | | ... | ]

             [ , , | ...

                   | , , | ...

                   | , ,  ]

q q q
q M

q q q
i i i i k

q q q
ij ij ij ij kj

q q q
iM iM iM iM kM

FS rule rule rule

m m w

m m w

m m w

σ σ
σ σ

σ σ

=

= + Δ + Δ

+ Δ + Δ

+ Δ + Δ

                          (10)

 

where *
ijm  and *

ijσ are results of structure learning for the mean and width of the 

Gaussian membership function of the jth rule of the ith input variable, q
ijmΔ  and q

ijσΔ

are small random deviations that are uniformly generated from the interval [−0.1, 
0.1],

 kjw  are randomly and uniformly generated from an interval whose range is 

identical to the FS output y range. 
(3) Evaluation：In this paper, we adopt a fitness function to evaluate the perfor-

mance of each individual. The fitness function used in this paper is the root  
mean-squared error (RMSE) between the desired and actual outputs.  

(4) Mutation : Before the mutation operator, a sorting process arranges all individ-
uals based on their fitness value as follows for minimum-objective problems:

1 2 1... NP NPfitness fitness fitness fitness−< < < < . According to fitness value, all indi-
viduals are partitioned into an inferior group and a superior group. The inferior group, 
with includes the NP/2 worst individuals, performs a global search to increase the 
diversity of the population and find a wide range of potential solutions. The other 
NP/2 individuals in the superior group perform a local search to actively detect better 
solutions near the current best solution. The following represents a complete mutation 
operation for the inferior group and the superior group. 

, , 1, 2,Inferior group : ( )i gen i gen i r gen r genF= + −V X X X
                 

(11) 

, , 3, 4,Superior group: ( )i gen gbest gen i r gen r genF= + −V X X X                  
(12) 

 

where Fi is scaling factors;
1,r genX ,

2,r genX ,
3,r genX  and 

4,r genX  are randomly selected 

from the population; 1 2 3 4i r r r r≠ ≠ ≠ ≠ ; and the 
,gbest genX  is the best-so-far indi-

vidual in the population. Next, the inferior group and the superior group are combined 
as a new population for the crossover operation and the selection operation. 

(5) Crossover and Selection：After mutation operation, The GEA algorithm uses the 
crossover and selection operations to produce offsprings for the next generation. The cros-
sover and selection operations follow the traditional operation in the DE algorithm [11]. 
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4 Simulation 

This section discusses a simulation which is considered to evaluate the proposed FS-
GEA. The proposed FS-GEA model is applied to predict the Mackey-Glass chaotic 
time series. In this simulation, we set the population size NP =50, Initial CR=0.8, 
Initial F=0.5 and the number of generations = 2000. All results are obtained based on 
20 independent runs. For a fair comparison, the DE, jDE and MODE are performed 
with the same parameters in this simulation.  

The Mackey-Glass chaotic time series x(t) was generated using the following de-
lay differential equation: 

)(1.0
)(1

)(2.0)(
10

tx
tx

tx

dt

tdx
−

−+
−

=
τ

τ .                              

where τ > 17. As in previous studies [3], the parameter τ = 30, and x(0) = 1.2 in this 
simulation. Four past values are used to predict x(t), and the input–output pattern 
format is given by[ ( 24), ( 18), ( 12), ( 6) | ( )]x t x t x t x t x t− − − − . 

Table 1. The best performance of the FS-GEA model and other methods 

Method Testing RMSE Method Testing RMSE 
FS-GEA 0.0075 SEFC [23] 0.032 

FLNFN-CCPSO[7] 0.0082 Back-propagation NN 0.02 
RBF-AFS[18] 0.0128 Six-order polynomial 0.04 

HyFIS[19] 0.01 Cascaded-correlation 0.06 
NEFPROX[20] 0.053 Auto regressive model 0.19 

D-FNN[21] 0.008 Linear predictive 0.55 
GA-FLC [22] 0.26  

A total of 1000 patterns are generated from t = 124 to 1123, where the first 500 pat-
terns [form (1)x to (500)x ] are used to train, and the last 500 patterns [form (501)x

to (1000)x ] are used to test. After adaptive entropy measure algorithm, three fuzzy 
rules are generated. Fig. 1(a) shows the learning curves of the DE, jDE, MODE and 
GEA models. The learning curve of the DE and jDE models presented a stagnation 
situation after 150 generations. They trapped at local minimum solutions at training 
RMSE = 0.066 and 0.062. The MODE model slightly kept convergence results during 
evolution process. The proposed GEA model showed better learning curves than the 
other models. Fig.1(b) shows the prediction result of the proposed GEA model for the 
desired output and the actual output. The simulation result demonstrates the perfect 
predictive capability of the FS-GEA model. 

A further comparison with other algorithms is shown in Table 1. Compared algo-
rithms include Linear predictive, Auto regressive model, Cascaded-correlation,  
Six-order polynomial, Back-propagation NN, SEFC [23], GA-FLC [22], D-FNN[21], 
NEFPROX[20], HyFIS[19], RBF-AFS[18] and FLNFN-CCPSO[15]. The result pre-
dicted by the FS-GEA model is better than those predicting by other algorithms. 
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                (a)                                                (b)                      

Fig. 1. (a) learning curves of the DE, jDE, MODE and GEA models. (b)The prediction output 
of the FS-GEA model. 

5 Conclusion 

This study has proposed a GEA for the FS design. The adaptive entropy measure 
algorithm for rule generation helps to determine the number of rules and locate good 
initial parameters. All free parameters are learned by the GEA. The simulation result 
demonstrates that the FS-GEA model obtain a smaller RMSE than other evolutionary 
algorithms. Advanced topic on the proposed FS-GEA model should be addressed in 
the future research. The proposed FS-GEA model will be used to solve many practical 
problems, including brain signal based EEG prediction and cognitive state prediction 
problems in our laboratory. 
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Abstract. This paper introduces several novel Gabor-based local, shape
and color features for image classification. First, a new Gabor-HOG
(GHOG) descriptor is proposed for image feature extraction by con-
catenating the Histograms of Oriented Gradients (HOG) of all the local
Gabor filtered images. The GHOG descriptor is then further assessed
in six different color spaces to measure classification performance. Fi-
nally, a novel Fused Color GHOG (FC-GHOG) feature is presented by
integrating the PCA features of the six color GHOG descriptors that per-
forms well on different object and scene image categories. The Enhanced
Fisher Model (EFM) is applied for discriminatory feature extraction and
the nearest neighbor classification rule is used for image classification.
The robustness of the proposed GHOG and FC-GHOG feature vectors
is evaluated using two grand challenge datasets, namely the Caltech 256
dataset and the MIT Scene dataset.

Keywords: The Gabor-HOG (GHOG) descriptor, Fused Color GHOG
(FC-GHOG) descriptor, Histograms of Oriented Gradients (HOG), Ga-
bor filters, Principal Component Analysis (PCA), Enhanced Fisher Model
(EFM), Color spaces, Image search.

1 Introduction

Color contains more discriminating information than grayscale images [1], and
color based image search can be very effective for image classification tasks [2],
[3], [4]. Some desirable properties of descriptors defined in different color spaces
include relative stability over changes in photographic conditions such as varying
illumination. Global color features such as the color histogram and local invari-
ant features provide varying degrees of success against image variations such as
rotation, viewpoint and lighting changes, clutter and occlusions [5], [6]. Shape
and local features also provide important cues for content based image classifi-
cation and retrieval. Local object appearance and shape within an image can be
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described by the Histograms of Oriented Gradients (HOG) that stores distribu-
tion of edge orientations within an image [7]. Several researchers have described
the biological relevance and computational properties of Gabor wavelets for im-
age analysis [8], [9]. Lades et al. [10] used Gabor wavelets for face recognition
using the Dynamic Link Architecture (DLA) framework. Lately, Donato et al.
[11] showed experimentally that the Gabor wavelet representation is optimal for
classifying facial actions.

The motivation behind this work lies in the concept of how people under-
stand and recognize images. We subject the image to a series of Gabor wavelet
transformations, whose kernels are similar to the 2D receptive field profiles of
the mammalian cortical simple cells [8]. The novelty of this paper is in the
construction of several feature vectors based on Gabor filters. Specifically, we
first present a novel Gabor-HOG (GHOG) descriptor by concatenating the His-
tograms of Oriented Gradients (HOG) of the components of the images produced
by the result of applying Gabor filters in different scales and orientations. We
then assess our GHOG feature vector in six different color spaces and propose
several new color GHOG feature representations. We further extend this con-
cept by integrating the six color GHOG features using a fusion technique that
implements feature extraction by means of PCA to produce the novel Fused
Color GHOG (FC-GHOG) descriptor. Discriminatory feature extraction applies
the Enhanced Fisher Model (EFM) [12], and image classification is based on the
nearest neighbor classification rule. Finally, the effectiveness of the proposed de-
scriptors and classification method is evaluated using two datasets: the Caltech
256 grand challenge image dataset and the MIT Scene dataset.

2 Gabor-Based Novel Local, Shape and Color Features
for Image Classification

This section discusses the proposed novel descriptors and classification method-
ology for image classification.

2.1 The Gabor-HOG (GHOG) and Fused Color GHOG
(FC-GHOG) Descriptors

A Gabor filter is obtained by modulating a sinusoid with a Gaussian distribution.
In a 2D scenario such as images, a Gabor filter is defined as:

gν,θ,φ,σ,γ(x
′, y′) = exp(−x

′2 + γ2y′2

2σ2
) exp(i(2πνx′ + φ)) (1)

where x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ, and ν, θ, φ, σ, γ denote the
spatial frequency of the sinusoidal factor, orientation of the normal to the parallel
stripes of a Gabor function, phase offset, standard deviation of the Gaussian
kernel and the spatial aspect ratio specifying the ellipticity of the support of the
Gabor function respectively.
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Fig. 1. The generation of the proposed GHOG descriptor

For a grayscale image f(x, y), the Gabor filtered image is produced by convolv-
ing the input image with the real and imaginary components of a Gabor filter.
Considering that the Gabor wavelet representation captures the local structure
corresponding to spatial frequency (scale), spatial localization, and orientation
selectivity [13], [14] we used multi-resolution and multi-orientation Gabor filter-
ing for subsequent extraction of feature vectors. We subject each of the three
color components of the image to ten combinations of Gabor filters with two
scales (spatial frequencies) and five orientations. For our experiments, we choose
φ = 0, σ = 2, γ = 0.5, θ = [0, π/6, π/3, π/2, 3π/4], and ν = [8, 16].

We concatenate the HOG of the color components of the resultant filtered
images and normalize to zero mean and unit standard deviation to produce a
new Gabor-HOG (GHOG) image descriptor. Figure 1 illustrates the creation of
the GHOG feature, the performance of which is measured on six different color
spaces, namely RGB, HSV, oRGB [15], YCbCr, YIQ and DCS [16] as well as on
grayscale. Figure 2 shows the grayscale and the color components of a sample

Fig. 2. A sample image from the MIT Scene dataset (labeled RGB) is shown split up
into various color components of the RGB, HSV, YCbCr, YIQ, oRGB and DCS
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Fig. 3. An overview of multiple features fusion methodology, the EFM feature extrac-
tion method, and the classification stages

image in the six color spaces used by us in this paper. For fusion, we first use
PCA for the optimal representation of our color GHOG vectors with respect
to minimum mean square error. We then integrate the PCA features of the six
normalized color GHOG descriptors to form the novel Fused Color GHOG (FC-
GHOG) descriptor which outperforms the classification results of the individual
color GHOG features.

2.2 The EFM-NN Classifier

We perform learning using Enhanced Fisher Linear Discriminant Model (EFM)
[12] and classification is implemented using the nearest neighbor rule. The EFM
method first applies Principal Component Analysis (PCA) to reduce the di-
mensionality of the input pattern vector. A popular classification method that
achieves high separability among the different pattern classes is the Fisher Linear
Discriminant (FLD) method. The FLD method, if implemented in an inappro-
priate PCA space, may lead to overfitting. The EFM method, which applies an
eigenvalue spectrum analysis criterion to choose the number of principal compo-
nents to avoid overfitting, improves the generalization performance of the FLD.
The EFM method thus derives an appropriate low dimensional representation
from the GHOG descriptor and further extracts the EFM features for pattern
classification. We compute similarity score between a training feature vector
and a test feature vector using the cosine similarity measure and classification

Table 1. Comparison of the classification performance (%) with other methods on
Caltech 256 dataset. Note that [17] used 250 of the 256 classes with 30 training samples
per class.

#train #test GHOG [4] [17]

YCbCr 30.2 oRGB-SIFT 23.9
12800 6400 YIQ 30.7 CSF 30.1

FC 33.6 CGSF 35.6 SPM-MSVM 34.1
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Fig. 4. Some sample images from the Caltech 256 dataset

is performed using the nearest neighbor rule. Figure 3 gives an overview of mul-
tiple feature fusion methodology, the EFM feature extraction method, and the
classification stages.

3 Experimental Results

3.1 Caltech 256 Dataset

The Caltech 256 dataset [17] holds 30,607 images divided into 256 object cate-
gories and a clutter class. The images have high intra-class variability and high
object location variability. Each category contains at least 80, and at most 827
images. The mean number of images per category is 119. The images represent
a diverse set of lighting conditions, poses, backgrounds, and sizes. Images are in
color, in JPEG format with only a small percentage in grayscale. The average

Fig. 5. The mean average classification performance of the proposed GHOG descriptor
in individual color spaces as well as after fusing them on the Caltech 256 dataset
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Fig. 6. Some sample images from the MIT Scene dataset

size of each image is 351× 351 pixels. Figure 4 shows some sample images from
this dataset.

For each class, we use 50 images for training and 25 images for testing. The
data splits are the ones that are provided on the Caltech website [17]. In this
dataset, YIQ-GHOG performs the best among single-color descriptors giving
30.7% success followed by YCbCr-GHOG with 30.2% classification rate. Figure 5
shows the success rates of the GHOG descriptors for this dataset. The FC-GHOG
descriptor here achieves a success rate of 33.6%. Table 1 compares our results
with those of SIFT-based methods.

3.2 MIT Scene Dataset

The MIT Scene dataset [18] has 2,688 images classified as eight categories:
coast, forest, mountain, open country, highway, inside of cities, tall buildings,
and streets. See figure 6 for some sample images from this dataset. All of the
images are in color, in JPEG format, and of size 256 × 256 pixels. There is a
large variation in light and angles along with a high intra-class variation.

Fig. 7. The mean average classification performance of the proposed GHOG descriptor
in individual color spaces as well as after fusing them on the MIT Scene dataset
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Table 2. Category wise descriptor (GHOG) performance (%) on the MIT Scene
dataset. Note that the categories are sorted on the FC-GHOG results.

Category FC YIQ DCS RGB oRGB YCbCr HSV Grayscale

forest 98 98 96 97 96 96 97 97
coast 94 91 88 90 90 90 88 87
inside city 91 92 93 91 93 92 90 91
street 90 89 91 90 88 88 84 88
tall building 90 89 86 87 88 88 87 84
mountain 90 86 86 88 87 87 85 79
highway 88 86 88 88 86 82 88 84
open country 81 77 78 76 77 78 79 73

Mean 90.3 88.6 88.4 88.3 87.9 87.6 87.3 85.3

Table 3. Comparison of the classification performance (%) with other methods on the
MIT Scene dataset

#train #test GHOG [2] [18]

DCS 88.4 CLF 86.4 -
2000 688 YIQ 88.6 CGLF 86.6

FC 90.3 CGLF+PHOG 89.5

YIQ 84.7 CLF 79.3
800 1888 RGB 84.9 CGLF 80.0

FC 86.9 CGLF+PHOG 84.3 83.7

From each class, we use 250 images for training and the rest of the images for
testing the performance, and we do a five-fold cross validation. Here too, YIQ-
GHOG is the best single-color descriptor at 88.6%. DCS-GHOG also performs
well to achieve 88.4% success rate. The combined descriptor FC-GHOG gives a
mean average performance of 90.3%. See Figure 7 for details. Table 3 compares
our result with that of other methods. Table 2 shows the class wise classification
rates for the proposed GHOG descriptors on this dataset.

4 Conclusion

We have presented new Gabor-based local, shape and color feature extraction
methods inspired by HOG for color images which exceed or achieve compara-
ble performance to some of the best classification performances reported in the
literature. Experimental results carried out using two grand challenge datasets
show that the fusion of multiple color GHOG descriptors (FC-GHOG) achieves
significant increase in the classification performance over individual color GHOG
descriptors, which indicates that various color GHOG descriptors are not fully
redundant for image classification tasks.
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Abstract. The condensing KNN is the application of the K-Nearest Neighbors 
classifier with a condensed training set, which is a consistent subset calculated 
from the initial training set. In this work we present a novel algorithm, Ant-KNN, 
which allows improving the performance of the standard KNN classifier by a 
method based on ant colonies optimization. The results obtained through tests 
conducted on five benchmarks from UCI Machine Learning Repository 
demonstrate the improvement obtained by our algorithm in comparison with other 
condensing KNN algorithms. 

Keywords: KNN, Ant colonies, Condensing, Prototype reduction, Prototype 
selection, Noise filtering. 

1 Introduction 

The K-nearest neighbor classification rule (KNN) is a powerful classification method 
allowing the classification of an unknown prototype using a set of training prototypes. 
The calculation of a consistent training subset with a minimal cardinality for the KNN 
rule [3] turns out to be hard [7]. Researchers have proposed the Prototypes Selection to 
address this problem. 

One of the proposed selection methods was the "condensing" [6]. A condensing 
algorithm tries to determine a significantly reduced set of prototypes such that the 
classification accuracy of the 1-NN rule using this set as a training set must be close 
to the one reached on the complete training set. In this paper we will only 
consider condensing approaches. Below is a brief overview of some existing 
algorithms for the condensing approaches [13]. 

Hart in 1968 [14] was the first to propose a method for reducing the size of stored 
data for the nearest neighbor decision rule. The novelty of this method, "The 
Condensed Nearest Neighbor Rule" (CNN, compared to the conventional KNN) is the 
process of reducing the initial training set. The rule minimizes the number of 
prototypes by eliminating very similar training prototypes, and those that do not add 
additional information for classification. 
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The “Reduced Nearest Neighbor rule” (RNN) introduced by Gates [8], is an 
extension of the CNN rule. The RNN algorithm considers the consistency of 
classification in the original set rather than in the final set as proposed in the CNN. 

Angiulli introduced the “Fast Condensed Nearest Neighbor rule” (FCNN) [1] 
which is a scalable algorithm on large multidimensional data sets, used to create 
subsets serving as consistent training sets based on the nearest neighbor decision rule. 
This algorithm allows selecting points very close to the decision boundaries (border 
between two classes), it is independent of the order, and has low quadratic 
complexity. 

Wilson and Martinez suggested [15] a set of six algorithms for sets reduction based 
on the KNN algorithm. The first reduction technique presented was the DROP1 which 
represents an improvement of the RNN rule, and verifies the accuracy of the resulting 
set S instead of the initial set T. DROP2 sorts S in an attempt to remove the central 
points before the border points (points which are near from the decision boundaries). 
DROP3 uses a noise filtering before sorting the prototypes of S.  DROP4 improves 
DROP3 rule and provides that a prototype is removed only if it is misclassified by its 
k nearest neighbors, and its removal does not affect the classification of other 
prototypes DROP5 upgrades DROP2 by proposing that the prototypes are considered 
beginning from the ones closest to the nearest enemy (an enemy is the nearest 
neighbor of a prototype from a different class) and proceeding to outside. The latest 
algorithm proposed by Wilson and Martinez [15] was the DEL which is similar to 
DROP3, except that  it uses the length coding heuristic for deciding whether a 
prototype can be removed or not. 

Wu, Ianakiev and Govindraju proposed the “Improved K-Nearest Neighbor 
Classification” [16] solution to increase the speed of traditional KNN classification 
while maintaining its level of accuracy by proposing two building techniques. The 
suggested IKNN algorithm is based on iterative elimination of prototypes with high 
attraction capacity.    

Fayed and Atia [6] proposed the TRKNN which is a way to alleviate the reduction 
problem through a condensation approach. The aim of their approach was to eliminate 
the reasons that makes load the calculation and does not contribute to improve the 
classification. 

Wu, Nikolaidis and Goulermas [12] introduced a new approach, "The Class 
Boundary Preserving Algorithm" (CBP), a multi-step method for pruning the training 
set. The proposed method aims to preserve prototypes that are close to the borders of 
classes.  

In this paper, we introduce a new condensing algorithm called Ant-KNN. The 
basic idea is to define a shorter chain between the elements of a class using an Ant 
colonies optimization method, and eliminate, from this chain, the elements that do not 
add additional information to the classification. The rest of the paper is organized as 
follows. In Section 2, the proposed method is described and its main properties are 
stated. In Section 3, experimental results are presented together with a thorough 
comparison with existing methods. In Section 4, conclusions and future works are 
drawn. 
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Deposit pheromone 
An ant deposits an amount of pheromone on each edge τk

ij of its route: 

 τk
ij

 ∆ τ  t QL       , ∈    (2) 

Where Tk(t) is the tour done by the ant k at the iteration t, Lk(t) is the path length and 
Q a setting parameter.  

Update pheromone 
At the end of each iteration of the algorithm, pheromones deposited by ants in 
previous iterations evaporate following a hint: ρ*τij(t), where ρ [0,1]. 

At the end of the iteration the sum of pheromones that have not evaporated and 
those which have been deposited is calculated:  

 τij(t+1)= (1- ρ) τij(t)+∑ ∆τ t  (3) 

The main steps used to create an associate’s chain are: 
For each class of the training set: create a chain linking all the elements along the 

shortest path: 

1. For each element, calculate the distances to all other elements 
2. Initialize the tour by designating the root (the center of the class) 
3. Create as many ants as elements 
4. Each ant chooses its destination element according to formula (1). 
5. Each ant calculates the value Lk(t). 
6. The values τk

ij(t) are calculated according to formula (2). 
7. The values of pheromone τij(t) are updated according to the formula (3). In other 

words, the ant turns again in the opposite direction while depositing pheromones.  
8. We look for the better tour than the best tour until now, and we store it (ie we look 

for an ant k such that k = minm
k=1L

k(t)). 
9. The memories of ants (list of visited elements) are cleared. 

2.2 Condensing Algorithm 

The basic idea of the proposed condensing approach is as follows: For each class wi in 
the training set, we construct the corresponding associate’s chain Ci. An element xij of 
a chain is ignored if it does not add additional information to the classification of the 
elements of the initial training set. 

For this, the k neighbors of each element of a chain are evaluated starting with 
those of the root element xi0. 

The final set Fi is created incrementally. It is initialized to xi0. The set of covered 
neighbors (k neighbors of the elements of Fi) Ni will contain a single occurrence of 
neighbors covered by the elements of the final condensed set Fi. It is initialized to the 
k neighbors of the element xi0.  The chain is scanned element by element, and an 
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element xij is added to Fi if it covers at least one non-existent neighbor in Ni, if so, 
non-existent neighbors in Ni are added to it. Otherwise the element is ignored.  

We do so until the end of the chain Ci. 
The main steps of this algorithm are: 

1. For each class wi we construct an associate’s chain Ci.  
2. For each element xi  Ci we evaluate its k nearest neighbors 
3. Then we create Fi the reduced Ci 
4. Finally we create F the final condensed set by combining all the reduced 

associate’s chains of all classes. 

Stopping Criterion 
The algorithm is iterated until one of two criteria is met: 

The class size falls below a threshold = k (the number of neighbors evaluated when 
condensing). 

Or the accuracy reaches a threshold = 80% 

2.3 Noise Filter 

The last step of the proposed approach is the noise filtering. After the condensing step 
the resulting set is filtered. Prototypes that cause misclassification of the prototypes of 
the original training set are removed. 

All the prototypes in the original training set O are re-classified using the new 
condensed set F as the 1-NN training set. When a prototype misclassifies another 
prototype (or more) this prototype is removed temporary. A reclassification of the 
prototypes in O is done using the condensed set but this prototype. If the classification 
rate reached using the filtered set is greater or equal to the classification rate reached 
using the condensed set before filtering, the prototype is definitely removed, and it is 
maintained otherwise. 

The main steps of the noise filtering algorithm can be described as follows: 

1. Classify prototypes in O using 1-NN and F 
2. Calculate class_rate 
3. For all prototypes j that misclassify a prototype in O do 
4. re-classify O using 1-NN and F-{j} 
5. calculate class_rateN 
6.  If class_rateN is greater or equal to class_rate then F=F-{j}  

3 Experimental Results 

The performances of the proposed condensing approach were tested on five different 
benchmarks downloaded from the UCI machine learning data repository. These 
datasets are: Ecoli, Glass, Heart (Cleveland), Heberman’s Survival, and Iris. Table 1 
presents the details of these seven datasets. 
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Table 1. Details of the 5 datasets used in the experiments, including the total number of 
prototypes, the dimensionality and the number of classes 

Dataset Number of 
prototypes 

Dimensional
ity 

Number of 
classes 

Ecoli 336 9 8 
Glass 214 11 6 
Heart (C) 303 14 5 
Heberman 306 4 2 
Iris 150 4 3 

3.1 Description of the Experimental Plan 

The experimental plan was designed to help verify the accuracy and the efficiency of 
the proposed method. 

The plan stipulates that the training set is divided into ten equal parts. Nine parts 
together form the training set to reduce and the tenth part is used for validation.  

To create the associate’s chain the number of neighbors evaluated has been defined 
experimentally for Ecoli, Glass, Heart (Cleveland) and Iris to k = 16, and for 
Heberman's survival to k = 9. We have used a 1-NN classifier for classification. 

3.2 Results 

To validate our work, we compared the obtained test results to those found in the 
literature, from the same procedure as ours of the standard KNN and two algorithms 
presented in Section 1 that are TRKNN, and DROP3. The condensing rate (Cond) and 
the classification accuracy (Class) of each algorithm are reported in Table 2.  

Table 2. Average accuracy and condensation percentages of the proposed Ant-KNN and two 
other compared algorithms over the five datasets 

 

Table 2 shows that Ant-KNN presents the best accuracy and condensing means.  
For the five benchmarks Ant-KNN presents the best classification rates (81.18%, 

100%, 93.33%, 93.33% and 100%) compared to TRKNN and DROP3. 
Compared to the standard KNN, the Ant-KNN presents the best accuracy for four 

datasets: Glass, Heart (C), Heberman and Iris. 

Dataset 
KNN Ant-KNN TRKNN  DROP3 

Cond Class Cond Class Cond Class Cond Class 
Ecoli 100          100.00 07.59           81.18 44.26          72.66 07.84       79.55 
Glass 100            73.83 10.41           100 60.72          81.42 23.88       65.02 
Heart (C) 100            81.19 2.19             93.33 73.54          58.67 12.76       80.84 
Heberman 100            86.66 11.95           93.33 55.62          64.31 19.10       66.60 
Iris 100            94.00 18.36           100 54.79          93.33 14.81       95.33 
Mean 100            87.13 10.10           93.56 57.78          74.07 15,67       77,46 
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The standard KNN presents an accuracy rate greater of 18.82% then the rate 
presented by the Ant-KNN for Ecoli. 

The Ant-KNN presents the best condensing rates for four datasets: Ecoli, Glass, 
Heart (C) and Heberman compared to the two other condensing algorithms.  

The Ant KNN follows DROP3 for Iris’s condensing rate by an average difference   
of 3.55%, which represents a very low difference. 

3.3 Analysis of Results 

The algorithm was iterated between one and four times for the various datasets in 
order to improve the results.  

Classification Analysis. The results showed that the algorithm presents high rates of 
classification accuracy averaging the 93.56% exceeding the average rates of the 
algorithms used for comparison.  

Condensing Analysis. The proposed algorithm provides a very high reduction 
capacity averaging 10.10%. This is due to the creation of the associate’s chain that 
can eliminate only the non-active elements for classification. 

The negative point of this algorithm is its high complexity, which is an obstacle to 
its use on large datasets. This method is designed for applications in noisy data 
classification and for medium or small datasets classification. 

4 Conclusions and Future Work 

In this paper we presented a new approach for condensing kNN eliminating the 
elements that do not provide additional information for the kNN classification, 
involving ant colonies optimization. Experiments have shown that the proposed 
method effectively reduces the training set, without sacrificing the performance of 
classification. Our future studies will focus on solving the problem of complexity of 
the Ant-KNN algorithm to allow its use on larger datasets and its application to 
intrusion detection to reduce false alarms, especially false positive ones. 
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Abstract. Server consolidation using virtualization technology has be-
come an important technology to improve the energy efficiency of data
centers. Virtual machine placement is the key in the server consolidation.
In the past few years, many approaches to the virtual machine place-
ment have been proposed. However, existing virtual machine placement
approaches to the virtual machine placement problem consider the en-
ergy consumption by physical machines in a data center only, but do not
consider the energy consumption in communication network in the data
center. However, the energy consumption in the communication network
in a data center is not trivial, and therefore should be considered in the
virtual machine placement in order to make the data center more energy-
efficient. In this paper, we propose a genetic algorithm for a new virtual
machine placement problem that considers the energy consumption in
both the servers and the communication network in the data center. Ex-
perimental results show that the genetic algorithm performs well when
tackling test problems of different kinds, and scales up well when the
problem size increases.

Keywords: Virtual machine placement, Server consolidation, Data cen-
ter, Cloud computing, Genetic algorithm.

1 Introduction

The ever increasing cloud computing has been resulting in ever increasing en-
ergy consumption and therefore overwhelming electricity bills for data centers.
According to Amazon’s estimations, the energy-related costs at its data centers
account for 42% of the total operating cost. In addition, the ever increasing en-
ergy consumption may lead to dramatically increase in carbon dioxide emissions.
So, it is desirable to make every possible effect to reduce the energy consumption
in cloud computing.

Server consolidation using visualization technology has become an important
technology to improve the energy efficiency of data centers [1]. Virtual machine
(VM) placement is the key in the server consolidation. In the past few years,
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many approaches to various VM placement problems have been proposed. How-
ever, existing VM placement approaches do not consider the energy consumption
in communication network in the data center. However, the energy consumption
in the communication network in a data center is not trivial, and therefore
should be considered in VM placement in order to make the data center more
energy-efficient.

In this paper, we propose a genetic algorithm (GA) [2] for a new VM placement
problem that considers the energy consumption in both the physical servers
(PMs) and the communication network in the data center. Experimental results
show that the genetic algorithm performs well with various test problems, and
scales well when the problem size increases.

The remaining paper is organized as follows: Section 2 formulates the new
VM placement problem; Section 3 presents the GA; Section 4 evaluates the
performance and scalability of the GA; and finally Section 5 concludes this work.

2 Problem Formulation

Let’s define
V a set of virtual machines
P a set of physical machines
vi a virtual machine in V
vcpui the CPU requirement of vi
vmem
i the memory requirement of vi
pj a physical machine in P
pcpuj the CPU capacity of pj
pmem
j the memory capacity of pj
p
wcpu

j the total CPU workload on pj
pwmem

j the total memory workload on pj
Vpj the set of virtual machines assigned to physical machine pj
The utilization rate of the CPU in physical server pj is

μj = p
wcpu

j /pcpuj (1)

Thus, according to the server energy consumption model defined in [3], the
energy consumption of physical server pj when its CPU usage is μj is

E(pj) = kj · emax
j + (1 − kj) · emax

j · μj (2)

where kj is the fraction of energy consumed when pj is idle; emax
j is the energy

consumption of physical server pj when it is fully utilized; and μj is the CPU
utilization of pj .

It is assumed that the communication network topology of the data center
is a typical three-tier one as shown in Fig. 1 [4]. The VMs in the data center
may communicate with each other through the communication devices, such as
switches, which also consume a non-trivial amount of energy and it has been
shown that this energy consumption is largely independent of the load through
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Fig. 1. The communication network of a data center

the communication devices [5]. Thus, we use the following method to approxi-
mate the energy consumption in the communication network in the data center.

We categorize the communication between a pair of VMs into four types: The
first type is that the pair of VMs are on the same PM. The communication
between vm1 and vm2 in Fig. 1 is an instance of the first type. The second type
is that the pair of VMs are placed on two different PMs, but under the same
edge. The communication between vm1 and vm3 in Fig. 1 is an example of the
second type. The third type is that the pair of VMs are placed on two different
PMs under different edges, but under the same aggregation. The communication
between vm3 and vm4 in Fig. 1 is an example of the third type. The fourth is
that the pair of VMs are placed on two different PMs under different edges and
different aggregations. The communication between vm4 and vm5 in Fig. 1 is
an example of the fourth type.

The first type of communication does not use any network communication de-
vice; the second type of communication uses one network communication device;
the third communication involves in three network communication devices; and
the fourth type of communication is done through five network communication
devices. Therefore, the energy consumptions incurred by the four types of com-
munication are different. In fact, the first type of communication does not incur
any energy consumption in the communication network; the energy consumption
of the second type communication is less than that of the third type, which is
in turn less than that of the fourth type as the more network communication
devices are used, the more energy is consumed in the communication network.

Let C1, C2, C3 and C4 be the sets of VM pairs between which there exists
communication and the type communication belong to the first, second, third
and fourth, respectively; and

C = C1 ∪ C2 ∪ C3 ∪ C4 (3)

For each communication c ∈ C, the energy consumption for transferring a unit
of data is
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e(c) =

⎧⎪⎪⎨⎪⎪⎩
0, if c ∈ C1;
e2, if c ∈ C2;
e3, if c ∈ C3;
e4, if c ∈ C4;

(4)

Let l(c) be the amount of data that need to be transferred on the communication
c. Then, the network energy consumption for transferring l(c) units of data is

E(c) = e(c) ∗ l(c) (5)

the virtual machine placement problem is to assign each virtual machine in V
onto a physical machine in P , such that∑

pj∈P

E(pj) +
∑
c∈C

E(c) (6)

is minimized subject to ⋃
pj∈P

Vpj = V (7)

Vpi

⋂
pi �=pj

Vpj = ∅ (8)

p
wcpu

j =
∑

vi∈Vpj

vcpui ≤ pcpuj (9)

pwmem

j =
∑

vi∈Vpj

vmem
i ≤ pmem

j (10)

Constraints (7) and (8) make sure that each virtual machine will be assigned
to one and only one physical machine; constraints (9) and (10) guarantee that
the total CPU workload and the total memory on physical machine pj will not
exceed the CPU capacity and the memory capacity, respectively.

3 Genetic Algorithm

This section entails the GA for the VM placement problem. It discusses in detail
the encoding scheme, genetic operators and fitness function of the GA as well
as the description of the GA.

3.1 Encoding Scheme

A chromosome in this GA consists of |V | genes, each of which stands for a
virtual machine. The value of a gene is a positive integer between 1 and |P |,
representing the physical machine where the virtual machine is allocated. Fig. 2
shows a example VM placement and its corresponding chromosome.
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v1 v2 v5 v7v3 v4v8 v9v6

p1 p2 p3
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Fig. 2. An example of VM placement and its corresponding chromosome

3.2 Crossover

Since the length of chromosome is potentially long, linkage is a potential problem
that should be considered. Because of this consideration, the GA adopts a biased
uniform crossover operator, which is described in Algorithm 1.

Algorithm 1: Biased Uniform Crossover
Input : two parent chromosomes, Ci = xi

1x
i
2 · · ·xi

n and Cj = xj
1x

j
2 · · ·xj

n

Output: one child chromosome, Ck = xk
1x

k
2 · · ·xk

n

1 f i ← fitness(Ci);
2 f j ← fitness(Cj);
3 for q = 1 to n do
4 randomly generate a real value between 0 and 1, r;
5 if r < f i/(f i + f j) then
6 xk

q ← xi
q;

7 end
8 else
9 xk

q ← xj
q;

10 end
11 end
12 output Ck.

3.3 Mutation

The mutation operator simply randomly picks up a gene in the chromosome
and inverts the value of the chosen gene. Algorithm 2 shows how the mutation
operator works.

3.4 Fitness Function

The fitness of an individual x in the population of the GA is defined in Eq. 11
below:

fitness(x) =

{
Emin/E(x), if x is feasible;
Emin/(E(x) + Emax), otherwise. (11)
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Algorithm 2: Mutation
Input : a chromosome, C = x1x2 · · ·xn

Output: a mutated chromosome, C′ = x′
1x

′
2 · · ·x′

n

1 C′ ← C;
2 randomly generate a virtual machine i, where 1 ≤ i ≤ |V |;
3 randomly generate a physical machine p, where 1 ≤ p ≤ |P |;
4 replace x′

i ← p;
5 output C′.

where Emin is a lower boundary of the total energy consumption, Emax is an
upper boundary of the total energy consumption, and E(x) is the total energy
consumption when VM placement x is adopted.

The fitness function penalizes a solution that violates any of those constraints,
and make sure that the fitness value of any infeasible solution is less than that
of any feasible solution and that the less energy consumption and the greater
the fitness value is.

3.5 The Description of the GA

Algorithm 3 is a high-level description of the GA.

Algorithm 3: The GA
1 generate a population of PopSize individuals, Pop;
2 find the best individual in Pop;
3 while the termination condition is not true do
4 for each individual x in Pop do
5 calculate its fitness value f(x);
6 end
7 for each individual in Pop do
8 use the roulette selection to select another individual to pair up;
9 end

10 for each pair of parents do
11 probabilistically use the biased uniform crossover operator to produce

an offspring;
12 end
13 for each individual in P do
14 probabilistically apply the mutation operator the individual;
15 end
16 find the best individual in Pop;
17 if the best individual in Pop is better than the current best individual then
18 replace the current best individual with the new best individual;
19 end
20 end
21 decode the best individual and output it.
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4 Evaluation

The GA has been implemented in Java. Since there are no benchmarks available
for the new VM placement problem, we have to randomly generate test problems
to test the GA. We use a set of experiments to evaluate the proposed GA with
respect to performance and scalability. Table 1 shows the characteristics of those
randomly generated test problems:

Table 1. Characteristics of test problems

Test problem VM (#) PM(#)
1 100 20
2 200 40
3 300 60
4 400 80
5 500 100

In all the experiments, the population size of the GA was 200, the probabilities
for crossover and mutation were 0.5 and 0.1, respectively, and the termination
condition was “no improvement in the best solution for 20 generations".

In these randomly generated test problems, the VMs’ CPU and memory re-
quirements were randomly generated and the values were both in [300, 3000],
and the PMs’ CPU and memory capacities were both randomly picked up
from {1000, 1500, · · · , 55000}. The parameters about the communication network
were: e2 = 1; e3 = 3; and e4 = 5. The amount of data need to be transferred
between each pair of VMs in C was randomly generated and the value was a
whole number between 1 and 9 (units). The parameters about the servers in the
data center were: k1 = k2 = · · · = k|P | = 0.7.

For each of the randomly generated test problems, we used the GA to solve
it. Considering the stochastic nature of the GA, we repeated the experiments 10
times, and recorded the solutions and computation times. Since it was difficult
or impossible to know the optimal solutions to those test problems and therefore
to know the quality of the solutions generated by the GA, we implemented an
First Fit Decreasing (FFD) algorithm in Java, and used it to solve those test
problems. The FFD algorithm is one the most popular heuristic algorithms for
bin packing problems. Since VM placement problems can be easily transformed
into a bin packing problem, the FFD algorithm is often used to tackle VM
placement problems [6]. Since the FFD algorithm is a deterministic one, we only
ran it once for each of the test problems. We evaluated the performance of the
GA by comparing the quality of the solutions generated by the GA with the
quality of the solutions produced by the FFD-based heuristic algorithm. Table 2
shows the experimental results.

It can be seen from the experimental results in Table 2 that the solutions
produced by the GA are significantly better than those produced by the FFD.
On average the solutions produced by the GA are 3.5%-23.5% better than those
produced by the FFD.
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Table 2. Comparison of the performance of the GA and the performance of the FFD

Test FFD GA
Problem Energy (watts) Energy (watts) SD Time (seconds) SD

100 12746.46 10317.73 763.16 51.63 19.40
200 24862.72 22525.48 1322.34 357.58 75.28
300 42035.96 37555.60 1849.23 1011.44 286.42
400 56223.20 51796.05 1620.96 2139.52 507.66
500 70320.00 67912.29 1645.19 3256.46 518.43

In terms of computation time, the FFD took less than 1 millisecond to solve
any of the five test problems. The computation time of the GA increased with
the number f VMs and the number of PMs. It was observed that the computation
time of the GA increased linearly with the product of the number of VMs and
the number of PMs. Fig. 3 visualizes the observation. Given that this virtual
machine placement problem is a static optimization problem, the computation
time and the scalability of the GA are acceptable.
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Fig. 3. The scalability of our GA

5 Conclusion

In this paper we have identified and formulated a new VM placement problem.
The new VM placement problem considers not only the energy consumption in
those physical servers in a data center, but also the energy consumption in the
communication network of the data center. In addition, this paper has proposed
a GA for the new VM placement problem. The GA has been implemented and
evaluated by experiments. Experimental results have shown that the GA always
generates a significantly better solution than the FFD-based algorithm for the
VM placement problem.
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In this work we used simple energy consumption models to calculate the
energy consumptions in the physical servers and the communication network of
a data center. However, our GA is independent from those energy consumption
models. Thus, in the future we will use more accurate energy consumption models
when they are available.
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Abstract. Most existing approaches in Mobile Context-Aware Recommender 
Systems focus on recommending relevant items to users taking into account 
contextual information, such as time, location, or social aspects. However, none 
of them has considered the problem of user’s content evolution. We introduce 
in this paper an algorithm that tackles this dynamicity. It is based on dynamic 
exploration/exploitation and can adaptively balance the two aspects by deciding 
which user’s situation is most relevant for exploration or exploitation. Within a 
deliberately designed offline simulation framework we conduct evaluations 
with real online event log data. The experimental results demonstrate that our 
algorithm outperforms surveyed algorithms. 

Keywords: Recommender system, Machine learning, Exploration/exploitation 
dilemma, Artificial intelligence. 

1 Introduction 

Mobile technologies have made access to a huge collection of information, anywhere 
and anytime. In particular, most professional mobile users acquire and maintain a 
large amount of content in their repository. Moreover, the content of such repository 
changes dynamically, undergoes frequent insertions and deletions. In this sense, 
recommender systems must promptly identify the importance of new documents, 
while adapting to the fading value of old documents. In such a setting, it is crucial to 
identify interesting content for users. This problem has been addressed in recent 
research in the Mobile Context-Aware Recommender Systems (MCRS) area [2, 4, 5, 
14]. Most of these approaches are based on the user computational behavior and his 
surrounding environment. Nevertheless, they do not tackle the dynamicity of the 
user’s content problem. The bandit algorithm is a well-known solution that addresses 
this problem as a need for balancing exploration/exploitation (exr/exp) tradeoff. A 
bandit algorithm B exploits its past experience to select documents that appear more 
frequently. Besides, these seemingly optimal documents may in fact be suboptimal, 
because of the imprecision in B’s knowledge. In order to avoid this undesired case, B 
has to explore documents by choosing seemingly suboptimal documents so as to 
gather more information about them. Exploitation can decrease short-term user’s 
satisfaction since some suboptimal documents may be chosen. However, obtaining 
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information about the documents’ average rewards (i.e., exploration) can refine B’s 
estimate of the documents’ rewards and in turn increases long-term user’s 
satisfaction. Clearly, neither a purely exploring nor a purely exploiting algorithm 
works well, and a good tradeoff is needed. One classical solution to the multi-armed 
bandit problem is the ε-greedy strategy [12]. With the probability 1-ε, this algorithm 
chooses the best documents based on current knowledge; and with the probability ε, it 
uniformly chooses any other documents uniformly. The ε parameter controls 
essentially the exp/exr tradeoff between exploitation and exploration. One drawback 
of this algorithm is that it is difficult to decide in advance the optimal value. Instead, 
we introduce an algorithm named Contextual-ε-greedy that achieves this goal by 
balancing adaptively the exp/exr tradeoff according to the user’s situation. This 
algorithm extends the ε-greedy strategy with an update of the exr/exp-tradeoff by 
selecting suitable user’s situations for either exploration or exploitation.  

The rest of the paper is organized as follows. Section 2 gives the key notions used 
throughout this paper. Section 3 reviews some related works. Section 4 presents our 
MCRS model and describes the algorithms involved in the proposed approach. The 
experimental evaluation is illustrated in Section 5. The last section concludes the 
paper and points out possible directions for future work. 

2 Key Notions 

In this section, we briefly sketch the key notions that will be of use in this paper.  

The User’s Model: The user’s model is structured as a case based, which is composed of 
a set of situations with their corresponding user’s preferences, denoted U = {(Si; UPi)}, 
where Si is the user’s situation and UPi its corresponding user’s preferences. 

The User’s Preferences: The user’s preferences are deduced during the user’s 
navigation activities, for example the number of clicks on the visited documents or 
the time spent on a document. Let UP be the preferences submitted by a specific user 
in the system at a given situation. Each document in UP is represented as a single 
vector d=(c1,...,cn), where ci (i=1, .., n) is the value of a component characterizing the 
preferences of d. We consider the following components: the total number of clicks 
on d, the total time spent reading d and the number of times d was recommended. 

Context: A user’s context C is a multi-ontology representation where each ontology 
corresponds to a context dimension C=(OLocation, OTime, OSocial). Each dimension 
models and manages a context information type. We focus on these three dimensions 
since they cover all needed information. These ontologies are described in [1]. 

Situation: A situation is an instantiation of the user’s context. We consider a situation 
as a triple S = (OLocation.xi, OTime.xj, OSocial.xk) where xi, xj and xk are ontology concepts 
or instances. Suppose the following data are sensed from the user’s mobile phone: the 
GPS shows the latitude and longitude of a point "48.89, 2.23"; the local time is 
"Oct_3_12:10_2012" and the calendar states "meeting with Paul Gerard". The 
corresponding situation is: S=("48.89,2.23","Oct_3_12:10_2012","Paul_Gerard"). To 
build a more abstracted situation, we interpret the user’s behavior from this low-level 
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multimodal sensor data using ontologies reasoning means. For example, from S, we 
obtain the following situation: Meeting=(Restaurant, Work_day,  Financial_client).  
Among the set of captured situations, some of them are characterized as High-Level 
Critical Situations.  

High-Level Critical Situations (HLCS): A HLCS is a class of situations where the 
user needs the best information that can be recommended by the system, for instance, 
during a professional meeting. In such a situation, the system must exclusively perform 
exploitation rather than exploration-oriented learning. In the other case, where the user 
is for instance using his/her information system at home, on vacation with friends, the 
system can make some exploration by recommending some information ignoring 
his/her interest. The HLCS are predefined by the domain expert. In our case we 
conduct the study with professional mobile users, which is described in detail in 
Section 5. As examples of HLCS, we can find S1 = (restaurant, midday, client) or S2= 
(company, morning, manager).  

3 Related Work 

We refer, in the following, recent recommendation techniques that tackle the problem 
of making dynamic exr/exp (bandit algorithms). Existing works considering the user’s 
situation in recommendation are not considered in this section, refer to [1] for further 
information. 

Very frequently used in reinforcement learning to study the exr/exp tradeoff, the 
multi-armed bandit problem was originally described by Robbins [11]. The ε-greedy 
is one of the most used strategy to solve the bandit problem and was first described in 
[10]. The ε-greedy strategy chooses a random document with epsilon-frequency (ε), 
and chooses the document with the highest estimated mean otherwise. The estimation 
is based on the rewards observed thus far. ε must be in the interval [0, 1] and its 
choice is left to the user. The first variant of the ε-greedy strategy is what [6, 10] refer 
to as the ε-beginning strategy. This strategy makes exploration all at once at the 
beginning. For a given number I of iterations, documents are randomly pulled during 
the εI first iterations; during the remaining (1−ε)I iterations, the document of highest 
estimated mean is pulled. Another variant of the ε-greedy strategy is what [10] calls 
the ε-decreasing. In this strategy, the document with the highest estimated mean is 
always pulled except when a random document is pulled instead with εi frequency, 
where εi = {ε0/ i}, ε0 ∈]0,1] and i is the index of the current round. Besides ε-
decreasing, four other strategies presented [3]. Those strategies are not described here 
because the experiments done by [3] seem to show that ε-decreasing is always as 
good as the other strategies. Compared to the standard multi-armed bandit problem 
with a fixed set of possible actions, in MCRS, old documents may expire and new 
documents may frequently emerge. Therefore it may not be desirable to perform the 
exploration all at once at the beginning as in [6] or to decrease monotonically the 
effort on exploration as the decreasing strategy in [10]. 

As far as we know, no existing works address the problem of exr/exp tradeoff in 
MCRS. However few research works are dedicated to study the contextual bandit 
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problem on recommender systems, where they consider the user’s behavior as the 
context of the bandit problem. In [13], the authors extend the ε-greedy strategy by 
dynamically updating the ε exploration value. At each iteration, they run a sampling 
procedure to select a new ε from a finite set of candidates. The probabilities 
associated to the candidates are uniformly initialized and updated with the 
Exponentiated Gradient (EG) [7]. This updating rule increases the probability of a 
candidate ε if it leads to a user’s click. Compared to both ε-beginning and ε-
decreasing, this technique gives better results. In [9], authors model the 
recommendation as a contextual bandit problem. They propose an approach in which 
a learning algorithm sequentially selects documents to serve users based on their 
behavior. To maximize the total number of user’s clicks, this work proposes LINUCB 
algorithm that is computationally efficient.  

As shown above, none of the mentioned works tackles both problems of exr/exp 
dynamicity and user’s situation consideration in the exr/exp strategy. This is precisely 
what we intend to do with our approach. Our intuition is that, considering the 
criticality of the situation when managing the exr/exp-tradeoff, improves the result of 
the MCRS. This strategy achieves high exploration when the current user’s situation 
is not critical and achieves high exploitation in the inverse case. 

4 MCRS Model 

In our recommender system, the recommendation of documents is modeled as a 
contextual bandit problem including user’s situation information [8].  Formally, a 
bandit algorithm proceeds in discrete trials t = 1…T. For each trial t, the algorithm 
performs the following tasks: 

Task 1: Let St be the current user’s situation, and PS the set of past situations. 
The system compares St with the situations in PS in order to choose the most 
similar one, Sp:   

 ( )),(maxarg
 cS

ctp SSsim=S

PS∈

 (1) 

The semantic similarity metric is computed by: 

 ( ) ⋅
j

c
j

t
jjj

ct ,xxsim) =,Ssim(S α  (2) 

where simj is the similarity metric related to dimension j between two concepts 
xj

t and xj
c; αj is the weight associated to dimension j (during the experimental 

phase, αj has a value of 1 for all dimensions). This similarity depends on how 
closely xj

c and xj
c are related in the corresponding ontology. We use the same 

similarity measure as [15] defined by: 

 
( )

))()((

)(
2,

t
j

c
j

c
j

t
jj

xdephxdeph

LCSdeph
xxsim

+
∗=  (3) 



328 D. Bouneffouf, A. Bouzeghoub, and A.L. Gançarski 

 

where LCS is the Least Common Subsumer of xj
t and xj

c, and deph is the number 
of nodes in the path from the node to the ontology root.  

Task 2: Let D be the document collection and Dp ∈ D the set of documents 
recommended in situation Sp. After retrieving Sp

, the system observes the user’s 
behavior when reading each document dp ∈Dp. Based on observed rewards, the 
algorithm chooses document dp with the greater reward rp.   

Task 3: After receiving the user’s reward, the algorithm improves its document-
selection strategy with the new observation: in situation St, document dp obtains 
a reward rt.  

When a document is presented to the user and this one selects it by a click, a 
reward of 1 is incurred; otherwise, the reward is 0. The reward of a document is 
precisely its Click Through Rate (CTR). The CTR is the average number of 
clicks on a document by recommendation.  

4.1 The ε-Greedy Algorithm 

The ε-greedy algorithm recommends a predefined number of documents N selected 
using the following equation: 

 

{ )())((argmax
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ε>
=
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otherwiseUCRandom
d
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where i∈{1,…N}, UC={d1,…,dP} is the set of documents corresponding to the user’s 
preferences; getCTR() computes the CTR of a given document; Random() returns a 
random element from a given set, allowing to perform exploration; q is a random 
value uniformly distributed over [0, 1] which defines the exr/exp tradeoff; ε is the 
probability of recommending a random exploratory document.  

4.2 The  Contextual-ε-Greedy Algorithm 

To improve the adaptation of the ε-greedy algorithm to HLCS situations, the 
contextual-ε-greedy algorithm compares the current user’s situation St with the HLCS 
class of situations. Depending on the similarity between the St and its most similar 
situation Sm ∈ HLCS, being B the similarity threshold (this metric is discussed below), 
two scenarios are possible:   

(1) If sim(St, Sm) ≥ B, the current situation is critical; the ε-greedy algorithm is used 
with ε=0 (exploitation) and St is inserted in the HLCS class of situations.  
(2) If sim(St, Sm) < B, the current situation is not critical; the ε-greedy algorithm is 
used with ε>0 (exploration) computed as indicated in Eq.5.  
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To summarize, the system does not make exploration when the current user’s situation is 
critical; otherwise, the system performs exploration. In this case, the degree of 
exploration decreases when the similarity between St and Sm increases.   

5 Experimental Evaluation 

In order to empirically evaluate the performance of our approach, and in the absence 
of a standard evaluation framework, we propose an evaluation framework based on a 
diary set of study entries. The main objectives of the experimental evaluation are: (1) 
to find the optimal threshold B value described in Section 4.2 and (2) to evaluate the 
performance of the proposed algorithm (contextual-ε-greedy). In the following, we 
describe our experimental datasets and then present and discuss the obtained results. 

We have conducted a diary study with the collaboration of the French software 
company Nomalys1. This company provides a history application, which records the 
time, current location, social and navigation information of its users during their 
application use. The diary study has taken 18 months and has generated 178 369 diary 
situation entries.  Each diary situation entry represents the capture, of contextual 
time, location and social information. For each entry, the captured data are replaced 
with more abstracted information using time, spatial and social ontologies [1]. From 
the diary study, we have obtained a total of 2 759 283 entries concerning the user’s 
navigation, expressed with an average of 15.47 entries per situation. 

In order to set out the threshold similarity value, we use a manual classification as 
a baseline and compare it with the results obtained by our technique. So, we take a 
random sampling of 10% of the situation entries, and we manually group similar 
situations; then we compare the constructed groups with the results obtained by our 
similarity algorithm, with different threshold values. 

 

Fig. 1. Effect of B threshold value on the similarity precision 

Fig. 1 shows the effect of varying the threshold situation similarity parameter B in 
the interval [0, 3] on the overall precision. Results show that the best performance is 
obtained when B has the value 2.4 achieving a precision of 0.849. Consequently, we 
use the optimal threshold value B = 2.4 for testing our MCRS.  

                                                           
1 Nomalys is a company that provides a graphical application on Smartphones allowing users 

to access their company’s data. 
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To test the proposed contextual-ε-greedy algorithm, we firstly have collected 3000 
situations with an occurrence greater than 100 to be statistically meaningful. Then, we 
have sampled 10000 documents that have been shown on any of these situations. The 
testing step consists of evaluating the algorithms for each testing situation using the 
average CTR.  The average CTR for a particular iteration is the ratio between the total 
number of clicks and the total number of displays. Then, we calculate the average CTR 
over every 1000 iterations. The number of documents (N) returned by the recommender 
system for each situation is 10 and we have run the simulation until the number of 
iterations reaches 10000, which is the number of iterations where all algorithms have 
converged. In the first experiment, in addition to a pure exploitation baseline, we have 
compared our algorithm to the algorithms described in the related work (Section 3): ε-
greedy; ε-beginning, ε-decreasing and EG. In Fig. 2, the horizontal axis is the number of 
iterations and the vertical axis is the performance metric. 

 

Fig. 2. Average CTR for exr/exp algorithms 

We have parameterized the different algorithms as follows: ε-greedy was tested 
with two parameter values: 0.5 and 0.9; ε-decreasing and EG use the same set {εi = 1- 
0.01 * i, i = 1,...,100}; ε-decreasing starts using the highest value and reduces it by 
0.01 every 100 iterations, until it reaches the smallest value.  Overall tested 
algorithms have better performance than the baseline. However, for the first 2000 
iterations, with pure exploitation, the exploitation baseline achieves a faster increase 
convergence. But in the long run, all exr/exp algorithms improve the average CTR at 
convergence. We have several observations regarding the different exr/exp 
algorithms.  For the ε-decreasing algorithm, the converged average CTR increases as 
the ε decreases (exploitation augments). For the ε-greedy(0.9) and ε-greedy(0.5), even 
after convergence, the algorithms still give respectively 90% and 50% of the 
opportunities to documents having low average CTR, which decreases significantly 
their results. While the EG algorithm converges to a higher average CTR, its overall 
performance is not as good as ε-decreasing. Its average CTR is low at the early step 
because of more exploration, but does not converge faster.  The contextual-ε-greedy 
algorithm effectively learns the optimal ε; it has the best convergence rate, increases 
the average CTR by a factor of 2 over the baseline and outperforms all other exr/exp 
algorithms. The improvement comes from a dynamic tradeoff between exr/exp, 
controlled by the critical situation (HLCS) estimation. At the early stage, this 
algorithm takes full advantage of exploration without wasting opportunities to 
establish good results. 
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6 Conclusion 

In this paper, we study the problem of exploitation and exploration in mobile context-
aware recommender systems and propose a novel approach that balances adaptively 
exr/exp regarding the user’s situation. In order to evaluate the performance of the 
proposed algorithm, we compare it with other standard exr/exp strategies. The 
experimental results demonstrate that our algorithm performs better on average CTR 
in various configurations. In the future, we plan to evaluate the scalability of the 
algorithm on-board a mobile device and investigate other public benchmarks.  
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Abstract. Transfer learning, which is one of the most important re-
search directions in machine learning, has been studied in various fields
in recent years. In this paper, we combine the theories of multi-source
and multi-view learning into transfer learning and propose a new algo-
rithm named Multi-source Transfer Learning with Multi-view Adaboost
(MsTL-MvAdaboost). Different from many previous works on transfer
learning, in this algorithm, we not only use the labeled data from sev-
eral source tasks to help learn one target task, but also consider how to
transfer them in different views synchronously. We regard all the source
and target tasks as a collection of several constituent views and each
of these tasks can be learned from different views. Experimental results
also validate the effectiveness of our proposed approach.

Keywords: Transfer learning, Multi-source learning, Multi-view learn-
ing, Adaboost, Supervised learning.

1 Introduction

Traditional machine learning depends on the availability of a large number of
data from a single task to train an effective model. However, researchers often
confront the situations that there are not enough data available and they have
to resort to data from other tasks (source tasks) to aid the learning of the target
task. Due to the above reasons, transfer learning [1,2] begins to catch more
attention in recent years. In this paper, in order to promote the effectiveness
of transfer learning, we incorporate the adaboost algorithm [3] into it, together
with multi-view learning [4]. In addition, because of the different distributions
between the target task and source tasks, not all of the knowledge from source
tasks can be reused in the target task and some of them may lead to negative
transfer [5]. For the purpose of avoiding this problem, we can make use of multi-
source learning [6] simultaneously.

Sometimes, although some data in source tasks are unsuitable for the target
task, there still may exist some other data that can be useful and helpful for the
target task. To find out this kind of data, we employ the adaboost algorithm by
voting on every datum. In addition, different feature sets of data can exhibit a
common underlying structure. Therefore, through learning the same task from
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diverse views, we can get various kinds of knowledge which can take different
effects on the model.

In this paper, on the basis of the algorithm Multi-view Transfer Learning
with Adaboost (MV-TLAdaboost, MV-TLAda for short) [7], we present a new
algorithm, Multi-source Transfer Learning with Multi-view Adaboost (MsTL-
MvAdaboost, MsTL-MvAda for short) by combining the advantages of multi-
source learning into multi-view transfer learning algorithm. The function of it can
be understood from the following two points. Firstly, depending on the algorithm
MV-TLAdaboost, we can judge whether one datum from the source task can be
reused in the target task effectively. Secondly, with the help of multi-source
learning, we can prevent the negative transfer and promote the effectiveness of
transfer learning.

2 Adaboost

Adaboost is a supervised learning technique for incrementally building linear
combinations of weak learners to generate a strong predicative model. In this
algorithm, we regard the input data set as X = {(x1, y1), · · · , (xn, yn)} where
xi belongs to a domain D and yi belongs to the class label set Y = {0, 1}.
Then, we supply a weight set W = {w1, w2, · · · , wn} for all the samples, and
initialize them by 1/n, where n is the size of X . Next, we start the iteration for
T times with the distribution P of samples. Following this, in every iteration,
the algorithm comes to one weaker learner ht for the training step. Moreover,
the weight set W needs to be updated by the parameter βt which is composed
by the error rate εt of the weaker learner ht. Finally, the set of weaker learners
H = {h1, h2, · · · , hT } are combined by weighted majority voting into the final
learner. Details can be seen in the table named Algorithm Adaboost below.

Algorithm Adaboost
Input:
I. Sequence of n labeled examples X = (x1, y1), · · · , (xn, yn).
II. Distribution D over the n examples.
III. Integer T specifying number of iterations.

Initialize the weight vector: wi
1 = D(i) for i = 1, · · · , n.

For t = 1, 2, · · · , T
1. Set P t= W t∑n

i=1 wn
i

2. Call WeakLearn with distribution P t, get back a hypothesis ht : X → {0, 1}
3. Calculate the error of ht : εt =

∑n
i=1 p

t
i|ht(xi)− yi|

4. Set βt =
εt

(1−εt)

5. Set the new weights vector to be: wt+1
i = wt

iβ
1−|ht(xi)−yi|
t

End of For
Output the hypothesis:

hf (x) =

{
1 if

∑T
t=1 (log 1/βt)ht(x) ≥ 1

2

∑T
t=1 log 1/βt

0 otherwise
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3 The Proposed Method

Preliminary knowledge on adaboost and transfer learning can be found in [4,7].
Here, we give our proposed algorithm, MsTL-MvAdaboost.

3.1 Overview

As far as we know, there are no previous works focusing on the study of com-
bining multi-source and multi-view learning into transfer learning as a whole.
As a result, we design a new algorithm, MsTL-MvAdaboost, to integrate them.
Details can be seen in the table named Algorithm MsTL-MvAdaboost below.

3.2 MsTL-MvAdaboost

MV-TLAdaboost is one kind of transfer learning algorithm with only one source
task, which means it is intrinsically vulnerable to negative transfer. However,
in our proposed algorithm, MsTL-MvAdaboost, for the purpose of avoiding the
problem caused by negative transfer and improving the performance of transfer
learning, we assume that multiple source tasks can be obtained simultaneously.

Generally speaking, not all the source tasks will be similar enough to the target
task. As a result, in order to judge which source task is the most suitable one to
help learn the target task, the inner loop computes m pairs of weaker learners
{hkV 1

t , hkV 2
t } from m different combined data sets X ∪ Sk in every iteration and

calculates their error rates εkt about the target data set X at the same time.
These actions can be seen from step 2 to step 4. Then, in step 5, with the help
of these error rates, we regard the source data set Sk and its weaker learners
{hkV 1

t , hkV 2
t } which come to the minimum error rate εkt as the final choice in this

iteration. Details can be seen in (1).⎧⎨⎩ {hV 1
t , hV 2

t } = {hkV 1
t , hkV 2

t }
εt = εkt
St = Sk

(1)

Moreover, the same as MV-TLAdaboost, it needs to notice that every source
data set in our algorithm will generate two weaker learners, hkV 1

t and hkV 2
t from

two views V1 and V2, which are formed at the beginning of the whole algorithm.
In addition, in step 4, our algorithm assumes that one sample will contribute
to the error rate as long as it is predicted incorrectly in either of the weaker
learners {hkV 1

t , hkV 2
t } got in step 3.

According to step 6, in every iteration, we calculate the percentage of the
samples predicted same by two final weaker learners {hV 1

t , hV 2
t } over the com-

bined data set X ∪ St, where St is the source data set finally chosen by us and
{hV 1

t , hV 2
t } are its weaker learners. Next, in order to indicate the characteristics

of multi-view transfer learning in adaboost more deeply, we design step 7 to step
13 which are similar to the MV-TLAdaboost.
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Algorithm MsTL-MvAdaboost
Input:
I. Source data sets: S1, · · · , Sm, where nSk indicates the size of the source data set
Sk and nS =

∑m
k=1 nSk .

II. Target data set: X = (xX
1 , y

X
1 ), · · · , (xX

nX
, yXnX

), where nX indicates the size of
the target data set X.

III. Initialize the weight vector (wS1 , · · · ,wSm ,wX), where wSk = (w
Sk
1 , · · · , wSk

nSk
)

and wX = (wX
1 , · · · , wX

nX
) to the desired distribution.

IV. Integer T specifying number of iterations.

Divide all of the features into two views: V 1 and V 2
For t = 1, 2, · · · , T
1. Normalize to 1 the weight vector: (wS1 , · · · ,wSm ,wX)
2. For k = 1, 2, · · · ,m
3. Get back two weaker learners from two views: {hkV 1

t , hkV 2
t } : X,Sk → {0, 1}

over the combined data set X ∪ Sk, weighted according to (wX ,wSk)

4. Calculate the error rate about the target data set X by {hkV 1
t , hkV 2

t } :

εkt =
∑nX

i=1 w
X
i {max{|hkV 1

t (xX
i )− yXi |, |hkV 2

t (xX
i )− yXi |}}

Note that, εkt is required to be less than 1/2
End of For

5. Find the source data set Sk and its weaker learners {hkV 1
t , hkV 2

t } which contains
the minimum error rate εkt and define:⎧⎨
⎩

{hV 1
t , hV 2

t } = {hkV 1
t , hkV 2

t }
εt = εkt
St = Sk

6. Calculate the percentage of the samples predicted same by two final weaker
learners {hV 1

t , hV 2
t } over X ∪ St :

agreet = 1−
∑nX

i=1 |hV 1
t (xX

i )−hV 2
t (xX

i )|+∑nSt
i=1 |hV 1

t (x
St
i )−hV 2

t (x
St
i )|

nX+nSt

7. Set εt = εt agreet
8. Set βt =

εt
(1−εt)

9. Set β = 1/(1 +
√

2 ln nS
T
)

10. Calculate the distribution of Xonly : Rt =
wX

i∑nX
j=1 wX

j

for i = 1, · · · , nX

11. Calculate the accuracy rate of X with {hV 1
t , hV 2

t } under the distribution
Rt = {rt1, · · · , rtnX

} :
AccXt = σt =

∑nX
i=1 r

t
i{1−max{|hV 1

t (xX
i )− yXi |, |hV 2

t (xX
i )− yXi |}}

12. Calculate the overall accuracy rate of X with {hV 1
t , hV 2

t } under the general

distribution wX :
AccOt = 1− εt

13. Set ηt =
AccOt
AccXt

14. Set

ξ = max{|hV 1
t (x

Sk
i )− y

Sk
i |, |hV 2

t (x
Sk
i )− y

Sk
i |}

δ = max{|hkV 1
t (x

Sk
i )− y

Sk
i |, |hkV 2

t (x
Sk
i )− y

Sk
i |}

Update the weight vector:{
wX

i = wX
i (βtηt)

−max{|hV 1
t (xX

i )−yX
i |,|hV 2

t (xX
i )−yX

i |}

w
Sk
i = w

Sk
i βmin{ξ,δ}

End of For
Output the hypothesis:

hf (x) =

{
1, if

∑T
t=1

∑2
i=1 h

V i
t (x) ≥ T

0, otherwise
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Following this, in step 14, we use two different formulas to update the weight
of samples from the target data set X and the source data set Sk. Details can
be seen in (2). {

wX
i =wX

i (βtηt)
−max{|hV 1

t (xX
i )−yXi |,|hV 2

t (xX
i )−yXi |}

w
Sk
i =w

Sk
i βmin{ξ,δ}

(2)

Two important points need to be illustrated here. On one hand, the target data
set X is the core of our research and it is more representative than every source
data set Sk. Thus, we want to make it prominent so that we increase the weight
of the wrongly classified samples and keep the weight of the correctly ones.

On the other hand, not all the samples of source data sets are suitable for the
target data set, so (2) provides a framework for automatically discovering which
part of samples are specific for the source data sets only, which part may be more
common between the target data set and the source data sets, and provides a
way to distinguish these samples. At present, let us illustrate the effect of two
parameters ξ and δ at first. We can see from step 2 to step 4 that, in every
iteration, we will come to m pairs of weaker learners {hkV 1

t , hkV 2
t } under their

corresponding combined data sets X ∪ Sk and regard the one containing the
minimum error rate as the final weaker learners {hV 1

t , hV 2
t }. However, different

source data sets may contain different knowledge which means that {hV 1
t , hV 2

t }
may not be suitable to make a classification for all the source data sets. Therefore,
for every sample in the source data set Sk, we design ξ to judge whether it
is classified correctly by the final weaker learners {hV 1

t , hV 2
t } and δ to judge

whether it is classified correctly by its own weaker learners {hkV 1
t , hkV 2

t }. We
regard the examples misclassified by both pairs of weaker learners {hV 1

t , hV 2
t }

and {hkV 1
t , hkV 2

t } as the one which is not suitable to be transferred to the target
data set and decrease its weight. On the contrary, if one sample can be classified
correctly by either {hV 1

t , hV 2
t } or {hkV 1

t , hkV 2
t }, we regard it as the one which is

suitable for the target data set and keep its weight.
Finally, in the output step, we use the approach which is the same as MV-

TLAdaboost to generate the final learner hf .

4 Experiments and Results

In this part, in order to evaluate MsTL-MvAdaboost, we supply two source tasks
simultaneously to help learn the target task. In all the experiments, we set the
parameter View=2, which illustrates the number of views to be divided in the
target task and source tasks.

Now we conduct experiments on several real data sets from the UCI repository.
Above all, it is essential for us to illustrate that all the data sets used here
are transformed into binary-classes problems of classification. Then, due to the
characteristics of different data sets, we will use diverse ways to generate the
target task and source tasks with different distributions to reach four sets of
experiments on three real data sets.
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On one hand, data sets
Segmentation
path:cement

and
Digit
5:8 are multi-classes problems

of classification. As a result, we divide them into several binary-classes sub data
sets by their labels to form the target task and source tasks. Details can be seen
in Table 1.

Table 1. Summary of real data sets

Real data set
Segmentation
path:cement

Digit
5:8

Number of examples 1980 3361
Target training set 550

path:cement
556
5:8

Target testing set 110

path:cement
556
5:8

Size of the source task A 660

sky:window
1115
6:2

Size of the source task B 660

grass:foliage
1134
3:9

Dimensions 19 64
Number of classes 6 6

On the other hand, data sets
Digit
3:8 and Landsat Satellite are binary-classes

problems of classification. As a result, we divide them into several sub data sets
by one special feature respectively to form the target task and source tasks.
Details can be seen in Table 2.

Table 2. Summary of real data sets

Real data set
Digit
3:8

Landsat satellite

Number of examples 1126 2866
Target training set 154 504
Target testing set 154 504
Size of the source task A 330 815
Size of the source task B 488 1043
Dimensions 64 36
Number of classes 2 2

For every data set above, we set one special rule to divide it into the target
task and source tasks with different distributions.

Segmentation is one seven-classes data set. We make use of all the data
with label path and cement to generate the target task, the data with label sky
and window to generate the source task A and the data with label grass and
foliage to generate the source task B.

Handwritten Digit is one ten-classes data set and we will use two different
ways of generating the target task and source tasks to run the experiments.

Firstly, according to the data set
Digit
5:8 in Table 1, we make use of all the data



338 Z. Xu and S. Sun

with label 5 and 8 to generate the target task, the data with label 6 and 2
to generate the source task A, the data with label 3 and 9 to generate the
source task B. Then, in Table 2, we get all the data with label 3 and 8 to come

into one binary-classes data set to run another set of experiments,
Digit
3:8 . Now

we divide it into the target task and source tasks on the basis of the value of
dimension six. All the data according with the rule dimension six ≥ 10 belong
to the target task, 5 ≤ dimension six < 10 belong to the source task A and
dimension six < 5 for the source task B.

In Landsat satellite data set, because the data of different classes are not
balanced, we select all the samples with label grey soil and very damp grey soil
to create one binary-classes data set. Furthermore, to divide this data set into the
target task and source tasks, we set them by the spectral value of dimension two.
The target task consists of all the data following the rule dimension two >
100 while the source task A consists of all the data following the rule 80 ≤
dimension two ≤ 100 and dimension two < 80 for the source task B.

Finally, it needs to notice that, in the experiments about MsTL-MvAdaboost
and MV-TLAdaboost, due to the reason that we divide the dimensions about
every data set into two views in half randomly, we run the experiments for ten
times and get the mean of them as the final scores. Certainly, standard deviation
(Std) will be calculated synchronously. Table 3 gives the classification error rates
(Mean±Std).

Table 3. Classification error rates

Segmentation
path:cement

Digit
5:8

Digit
3:8

Landsat Satellite

Adaboost 0.0273 0.0162 0.0260 0.0258

MV-TLAda
Source task A

0.0218±0.0047 0.0137±0.0021 0.0143±0.0060 0.0214±0.0023

MV-TLAda
Source task B

0.0227±0.0048 0.0153±0.0019 0.0176±0.0081 0.0226±0.0028

MsTL-MvAda 0.0164±0.0038 0.0104±0.0027 0.0078±0.0080 0.0185±0.0021

Table 3 indicates clearly that our proposed algorithm, MsTL-MvAdaboost,
comes to the best outcome in every data set.

5 Conclusion and Future Work

In this paper, we propose the algorithm, Multi-source Transfer Learning with
Multi-view Adaboost (MsTL-MvAdaboost) to improve the effectiveness of trans-
fer learning and prevent the influence of negative transfer by combining the
characteristics of multi-source learning and the multi-view adaboost algorithm.
After the detailed description of our algorithm, we run multiple experiments on
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real data sets to show its usefulness and effectiveness. In the future, we believe
it can be an interesting challenge to extend the proposed MsTL-MvAdaboost
algorithm to coping with more than two views and even with view learning
simultaneously [8].

Acknowledgment. This work is supported by the Fundamental Research Funds
for the Central Universities.
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Abstract. Maximum entropy discrimination (MED) is already shown
to be effective for discriminative classification and regression, and can
be applied to multitask learning (MTL) with some further assumptions.
Self-training is a commonly used technique for semi-supervised learning.
In order to integrate the merits offered by semi-supervised learning and
MTL, this paper presents semi-supervised MTL via self-training and
MED. We select the suitable measure metric and identify how to use
unlabeled data. Experimental results on two UCI data sets demonstrate
that our method yields better performance than semi-supervised single-
task learning (STL) and supervised MTL.

Keywords: Semi-supervised learning, Multitask learning, Self-training,
Maximum Entropy Discrimination.

1 Introduction

Multitask learning (MTL) has been proven to be an effective machine learning
method to take advantage of the information contained in related tasks to im-
prove the generalization performance. In general we consider many real-world
problems in the single-task learning (STL) framework, but unavoidably ignore
the useful information between these related tasks. Undoubtedly, MTL makes
full use of these information by using them as an inductive bias, and utilizes
a shared representation in implementation. Maximum entropy discrimination
(MED), which was first presented in [1], can be conveniently used for MTL with
some assumptions [2].

Supervised learning is a comparatively mature technique for classification with
large number of labeled data to represent a sufficient sample from the true la-
beling function. However, in many real-world scenarios, acquiring labeled data is
difficult owning to expensive human power and time consuming. Conversely, un-
labeled data is easy to obtain, and much research indicates that unlabeled data
plays a positive role in improving classification performance. Semi-supervised
learning can learn a better classifier with both labeled data and unlabeled
data, and self-training is one of the most commonly used techniques for semi-
supervised learning.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 340–347, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, the motivation to present semi-supervised MTL via self-training
and MED is to integrate the benefits provided by MTL and semi-supervised
learning to make full use of the useful information from related tasks and the data
distribution information from unlabeled data. There have been large amount of
research on MTL such as [3,4], and semi-supervised learning also attracts a lot of
attentions, including [5,6]. But to the best of our knowledge, there is few research
on combination of the two techniques, except that Liu et al. [7] did similar work
in this area.

The rest of the paper is organized as follows. Section 2 briefly reviews some re-
lated work on self-training and MTL via MED. Section 3 describes our proposed
method semi-supervised MTL via self-training and MED. Section 4 demonstrates
the experiments on two UCI data sets. Finally, we come to the conclusions and
point out future work in Section 5.

2 Related Work

Self-training is classified to be a semi-supervised learning technique. The learning
procedure is as follows: firstly, train a classifier with the small amount of labeled
data; secondly, predict the labels of the large amount of unlabeled data, and add
the most confident unlabeled data with the predicted labels to the training set;
at last, train a new classifier with the new training set. The above three steps
are repeated until prefixed iterations or certain stop conditions are satisfied.

The most significant characteristic of self-training is using its own predictions
to teach itself. Therefore, this technique is easy to use for semi-supervised learn-
ing without complicated additional conditions. There have been large number of
related work including [8,9], all of which obtain high performance improvements.

2.1 Multitask Learning via MED

This section refers from [1,2]. MTL via MED is mainly working as follows: MED
firstly constructs a posterior that is as close as possible to the prior in terms
of Kullback-Leibler Divergence, and then introduce a shared variable s in the
likelihood function for MTL.

Given a collection of data sets D = {D1, ..., DM} including m = 1...M tasks.
Each task has its training set Dm of t = 1...Tm input output pairs (xm,t, ym,t),
xm,t ∈ RD and ym,t = {±1}, task-specific model parameter Θm is corresponding
to its data set Dm for m = 1...M . MED can be formulated as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minp(Θ|D)KL(p(Θ|D) ‖ p(Θ)

s.t.

∫
log

(p(ym,t|xm,t, Θm)

p(y|xm,t, Θm)

)
p(Θ|D)dΘ � γ

∀y �= ym,t,m, t.

(1)
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The following posterior can be obtained according to the theorem in [1].

p(Θ|D) =
1

Z(λ)
P (Θ)

M∏
m=1

Tm∏
t=1

∏
y �=ym,t

(p(ym,t|xm,t, Θm)

p(y|xm,t, Θm)

)λm,t

exp(−γλm,t). (2)

The corresponding dual form is

maxλ�0 − log

∫
p(Θ)

M∏
m=1

Tm∏
t=1

∏
y �=ym,t(p(ym,t|xm,t, Θm)

p(y|xm,t, Θm)

)λm,t

exp(−γλm,t)dΘ.

(3)

Now, a shared variable s is introduced for MTL, making the likelihood function
changes into:

p(y|x,Θm, s) ∝ exp
(y
2
(

D∑
d=1

s(d)x(d)θm(d) + bm)
)
. (4)

Here, s is a binary vector to choose corresponding entry of x uniformly for all
tasks, and its prior is assumed as follows:

p(s) =

D∏
d=1

ρs(d)(1− ρ)1−s(d). (5)

Finally, formula (3) transforms to the following form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

maxλ
∑M

m=1

∑Tm

t=1
γλm,t −

∑D

d=1
log(α+ e

1
2

∑M
m=1(

∑Tm
t=1 λm,tym,txm,t(d))

2

)

+Dlog(α+ 1)

s.t. 0 ≤ λm,t ≤ C ∀m, t∑Tm

t=1
ym,tλm,t = 0 ∀m.

(6)
When the λ setting is obtained, the following formula is used to predict the label
of a new query.

ŷ = argmax
y

Ep(Θ|D)[logp(y|x,Θm, s)] (7)

The algorithm presented in [2] is shown in Table 1.

3 Semi-supervised MTL via Self-training and MED

Semi-supervised MTL via self-training and MED introduces self-training into
MTL via MED. For self-training, there are two problems to be solved in Section
3.1. One is selecting what metric to measure the confidence of the predicted label
of the unlabeled data, the other is how to add two classes of unlabeled data into
the training set. Section 3.2 illustrates the algorithm of the new semi-supervised
MTL method.
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Table 1. Algorithm 1: Multitask MED learning

0 Input data set D,C > 0, α ≥ 0, 0 < � < 1 and kernels kd for d = 1, ..., D.

1 Initialize Lagrange multipliers to zero λ = 0.

2 Store λ̃ = λ.

3 For m = 1, ...,M do:

3a Set gd = αexp
(
− 1

2

∑M
m=1

∑Tm
t=1 λm,tλm,τym,tym,τkd(xm,txm,τ)

)
for all d.

Set Gd =
tanh( 1

2
log(gd))

2log(gd)
for all d.

Set ŝ(d) = 1
1+gd

for all d.

Set ŷm,t(d) =
∑Tm

t=1 λm,τym,τkd(xm,t, xm,τ ).
for all t and d.

3b Update each of the λm vectors with the
SVM QP:

maxλm

∑Tm
t=1 λm,t −∑Tm

t=1 λm,tym,t

∑D
d=1

ŝ(d)ŷm,t(d) +
∑Tm

t=1

∑Tm
τ=1 λm,tλ̃m,τym,tym,τ∑D

d=1

(
Gdŷm,t(d)ŷm,τ (d) + kd(xm,t, xm,τ )

)
− 1

2

∑Tm
t=1

∑Tm
τ=1 λm,tλm,τym,tym,τ

∑D
d=1(

Gdŷm,t(d)ŷm,τ (d) + kd(xm,t, xm,τ )
)

s.t. 0 ≤ λm,t ≤ C ∀t = 1, ..., Tm

and
∑Tm

t=1 ym,tλm,t = 0.

4 If
∥∥∥λ− λ̃

∥∥∥ > � ‖λ‖ go to 2.

5 Output: ŝ and λ.

3.1 Selected Metric and How to Add Unlabeled Data

We choose the predicted real number y as selected metric, since if the y predicted
by MTL via MED is larger, its label is more possible to be positive, and otherwise
its label tends to be negative, which nicely meets the requirements of the selected
metric.

As to the latter problem, we make the following processing: calculate the ratio
of the two class data in training set; and then use the ratio to be that of predicted
two class data which need to be added into training set. It’s necessary to make
such a treatment, because the distribution of two class data is not balanced.
Assume that there are 95 positive data and 5 negative data in the training set,
and there are 1000 unlabeled data. In general, the distribution of the training
set and testing set are similar. Therefore, there should be about 950 positive
data and 50 negative data for unlabeled data. If we add the same number of
two classes data into the training set, for instance, 50, perhaps we cannot get
any performance gain. But obviously, we don’t make full use of the unlabeled
data. If following our proposed way, choose 95 positive data and 5 negative data
to be added each iteration, and maybe we can repeat near to 10 iterations with
performance increase.
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3.2 Algorithm

In order to implement the semi-supervised MTL via self-training and MED, we
introduce self-training to Algorithm 1 to obtain Algorithm 2. The new algorithm
is shown in Table 2.

Table 2. Algorithm 2: Semi-supervised MTL via self-training and MED

0 Given:
L: labeled data set;
U: unlabeled set (for predicting to add);
T: unlabeled set (for validation and testing).

1 Utilize algorithm 1 to train on L and predict
on U to choose the most confident unlabeled data
to add into L (Noted that the way to choose
confident unlabeled data is according to the
way we mentioned former).

2 Repeat step1 for some iterations to stop.

3 Output the accuracy of classification.

4 Experiments

In this section, we compare semi-supervised MTL via self-training and MED
against: (1) supervised MTL, (2) semi-supervised STL. MTL refers to learning
the classifiers with MTL via MED, but STL means learning all classifiers inde-
pendently. We don’t compare with supervised STL, that’s because large amount
of research have verified that supervised MTL and semi-supervised STL perform
better than supervised STL.

To show their performance, we utilize the accuracy of classification to be the
performance measure. In addition, we will determine the value of C for STL and
the values of C and α by cross-validation on held out data and then test on an
unseen testing set. The following part will illustrate the experiments on two UCI
data sets.1

Dermatology. The dermatology data set is one task of 6 classes which can
be converted into 6 binary classification tasks. There are totally 366 instances
and each instance has 34-dimensional feature. For two semi-supervised learning
methods, we will train on various numbers of examples (from 5 to 150) for each
task, and employ the following 100 examples as unlabeled data, and the remain-
ing examples are split in half for cross-validation and testing. Correspondingly,
supervised MTL will be done the same processing except using the unlabeled
examples, the experiment result is shown in Fig. 1.

1 Data available at http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Fig. 1. The performance comparison of three learning methods on Dermatology data
set

Glass. The glass data set consists of 6 classes task which will also be converted
into 6 binary classification tasks, which has 214 instances whose feature is 10-
dimensional. We will do similar processing with dermatology. The number of
training set will be from 10 to 80 for each task, and the unlabeled data will be
the following (from 150 to 80) examples. The remaining examples will be split
in half for cross-validation and testing. The experiment result is illustrated in
Fig. 2.

From Fig. 1 and Fig. 2, we can clearly find that the performance of semi-
supervised MTL via self-training and MED is higher than that of two other
methods when the labeled data points are less than 50 and 30 respectively. After
that, semi-supervised STL catches up, but our method still outperforms super-
vised MTL. When the labeled data amounts to certain number, semi-supervised
STL shows the same performance with semi-supervised MTL via self-training
and MED, that may be attributed to the doubly enhanced information offered by
related tasks and unlabeled data, which significantly augment the information
in the labeled data.

The experimental results shows the new method is superior, that’s because we
make full use of the information from related works and unlabeled data sets. But
it cannot guarantee its superior in any case. We argue that the predicted label
of unlabeled data must be highly confident and right, and the shared structure
exists in multiple tasks. In fact, we will further study the underlying cause in
future work.



346 G. Chao and S. Sun

0 20 40 60 80 100
0.5

0.6

0.7

0.8

0.9

1

Labeled Data Set Size per Task

A
cc

ur
ac

y 
on

 T
es

t D
at

a 
(%

)

Semi−supervised MTL
Semi−supervised STL
Supervised MTL

Fig. 2. The performance comparison of three learning methods on Glass data set

5 Conclusion and Future Work

This paper applies self-training to MTL via MED to obtain one semi-supervised
MTL method. We make necessary modification for this extension. And the ex-
perimental results on two UCI data sets illustrate that this method is superior
to other two ones.

Concerning future work, we can consider combining other semi-supervised
learning method with other MTL technique to get another new semi-supervised
MTL method. Moreover, it may be interesting to integrate active learning
[10,11]with MTL via MED if the label of the selected informative data can be
available. Analyzing in which cases the self-training will benefit the MED and
in which cases it is not still promising is also meaningful.
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Abstract. In this paper, the landscape framework is used to analysis
the tracking performance of univariate marginal distribution algorithm
(UMDA) in dynamic environment. A set of stochastic differential equa-
tions (SDEs) is used to describe the evolutionary dynamics of the algo-
rithm. The corresponding potential function is constructed from these
SDEs. Dynamic mean first passage time, which is a new concept, is de-
fined as the time it takes from an optimum to another in a dynamic
environment. This concept can be used to measure the tracking prop-
erty of the algorithm.

Keywords: UMDA, Dynamic environment, Potential function, Dynamic
mean first passage time.

1 Introduction

Now Evolutionary Algorithms(EAs) have been a popular means for solving opti-
mization problems in dynamic environment [1]. All the solutions could be mainly
separated into four categories: changing the EA strategy with the variation of
environment [2], maintaining diversity throughout the run [3], importing some
memory-based approaches [4] and multi-population approaching [5, 6].

However, there is not much work coming from a theoretical point of view. In
the very recent past, much more researchers started to investigate in a theoretical
way. First, through some investigation of a (1+1) EA on the changing environ-
ment, the transition probabilities were given for the first time [7]. And then,
Droste gave three papers [8–10], in which the first passage time was proposed.

In this paper, we apply the adaptive landscape framework to UMDA in a
dynamic environment. Adaptive landscape was first raised by Wright [11]. It
has prevailed well in population genetics in particular and biology. In 2002, the
idea of using this framework to study EAs was applied by [12], which showed
the evolution occurred by gradient ascent in a landscape. [11] showed that the
population could transverse across a saddle configuration from a stable point to
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another one with better fitness. This phenomenon would never happen in gradi-
ent ascent environment. Only noise can help the system hop from one optimum
to another.

In Section 2, the UMDA is modeled by a set of stochastic differential equations
(SDEs). The corresponding potential function is constructed from the SDEs. The
function gives a global prospect of the algorithm, which helps us recognize the
evolutionary behavior clearly. In Section 3, we calculate the dynamic mean first
passage time by an approximation method. This new concept is used to describe
how long it will take from an optimum to another in average. It is a new way to
measure the tracking property of UMDA in dynamic environment.

2 Methodology – The Landscape framework

2.1 SDE Model of UMDA

Algorithm.1 shows the pseudo code for a general UMDA algorithm.

Algorithm 1. Pseudo code for a general UMDA algorithm

INITIALIZE probability vector p(x, 0)
repeat

GENERATE N individuals according to p(x, t)
EVALUATE them with respect to f(x)
SELECT M ≤ N best individuals to calculate the frequencies ps(xi, t)
UPDATE p(x, t): p(x, t+ 1) =

∏n
i=1 p

s(xi, t)
t = t+ 1

until TERMINATION CONDITION is satisfied
VARIABLE: p(x, t) is the probability vector at the tth step.

According to [12], the updating rule of UMDA can be described by the fol-
lowing ordinary differential equations (ODEs) under the assumption of infinite
population and proportional selection:

ṗi =
pi(1− pi)

W
× ∂W

∂pi
(1)

where W =
∑
p(x, t)f(x). ṗi = dpi/dt, i = 1, 2, ..., n, pi = p(xi = 1, t). The

evolution of pi is deterministic in the probability space although UMDA itself is
stochastic. The system approaches the optima/attractor with a gradient descent,
which is determined by its initial condition [13, 12].

In [12], it is said, ”For difficult optimization problems, there exists a huge
number of attractors, each with a corresponding attractor region. If the iteration
starts at a point within the attractor region, it will converge to the corresponding
attractor at the boundary. But if the iteration starts at points which lie at the
boundary of two or more attractors, i.e. on the separatrix, the iteration will be
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confined to the separatrix. The deterministic system cannot decide for one of
the attractors.”

UMDA with a finite population does not have a sharp boundary between
attractor regions. We model this behavior by introducing randomness:

ṗi =
pi(1− pi)

W
× ∂W

∂pi
+ ζi(p, t) (2)

where ζi is a Gaussian and white noise added in the algorithm, satisfies:

< ζi >= 0 (3)

< ζi(p, t), ζj(p, t
′) >= 2dij(p)δ(t− t′) (4)

Here δ() is the dirac delta function, matrix D = (dij) indicates the diffusion
matrix. If we assume the diffusion does not have interactions in different dimen-
sions, we could set the diffusion matrix as a diagonal matrix. In this paper, we
set all the diagonal elements to be the same for simplicity:

D = diag{d, d, . . . , d} (5)

The stochasticity added in the algorithm is also analogous to mutation in EAs.
In [12], the authors add mutation into their algorithm. The algorithm is still be
described by a set of ODEs, and that kind of mutation moves the stable points
from the boundary into the interior. Similar results can be found in [17, 18].
But in our work, the stable points remain at the boundary of the search space
whatever the level of the noise.

2.2 Potential Function

The potential function can be used to get a global description about the evolu-
tionary behavior of the dynamical system. Let us consider the dynamical system
described by a set of SDEs, as the component equation [19]:

ẋj = fj(x) + ζj(x, t) (6)

The state variable forms an n dimensional vector xT = (x1, x2, . . . , xn). fj(x) is
the deterministic factor on the jth component, which includes both the effects
from other components and itself. ζj(x, t) is the random factor. For simplicity
we assume that fj is a smooth function explicitly independent of time t.

In [14, 15] the above equation is rewritten in the following form

[S(x) +A(x)]ẋ = −∇Φ(x) + ξ(x, t) (7)

Here ∇ is the gradient operator in the state variable space. The single-valued
scalar function, Φ(x), plays a role as a potential energy in physical sciences. The
semi-positive definite symmetric matrix S(x) is dissipative and its dynamic effect
is to decrease the potential Φ(x). It implies the system’s ability to find the point
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with smallest potential value. The anti-symmetric matrix A(x) is non-dissipative
and it leads no change in potential. ξ is the stochastic force, by which the system
can hop from one potential valley to another.

Based on the equivalence of equation (6) and (7), we can get[14, 15]

Φ(x) = −
∫
C

dx′ ·
[
G−1(x′)f(x′)

]
(8)

G(x) = [S(x) +A(x)]−1 (9)

The end and initial points of the integration contour C are xt and x0.

3 Tracking Performance of UMDA in Dynamic
Environment: A Case Study

3.1 Dynamic Wright’s Fitness Function

The example we use is based on Wright’s fitness function [11, 12].

maxh(x, t) =
13

2
(x1 + x2) +

14

2
(x3 + x4) + (x1 + x2 − x3 − x4)cosωt

−4(x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4) (10)

where x = (x1, x2, x3, x4)
T ,xi ∈ {0, 1}. ω is angular velocity which controls the

rate of function changing. Sometimes we consider the phase ωt directly.
The reasons we use this function are:

– There are at least two peaks (one local and one global).
– The peaks do not change the position, but the height changes with the time.

The local optimum may become global, and vice versa. The global optimum
moves from (1,1,0,0) to (0,0,1,1) when ωt changes from 0 to π.

Then, the average fitness function W is:

W (p, t) =
13

2
(p1 + p2) +

14

2
(p3 + p4) + (p1 + p2 − p3 − p4)cosωt

−4(p1p2 + p1p3 + p1p4 + p2p3 + p2p4 + p3p4) (11)

In order to visualize the potential landscape, we make a simplification. Those
equations are symmetric in p1,p2 and p3,p4, so we set p1 = p2 and p3 = p4. The
new average fitness function will be written as:

W (p, t) = 13p1 + 14p3 + 2(p1 − p3)cosωt− 4(p21 + 4p1p3 + p23) (12)

3.2 Potential Function

Fig. 1 shows the contour of potential function at different phase. From these
pictures, we can see the stable points remain at the boundary of the search
space. (1,0) is the global optimum when ωt = 0 while (0,1) is the global when
ωt = π. But the saddle point changs with the time.
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(a) ωt = 0 (b) ωt = π/2 (c) ωt = π

Fig. 1. The Potential Function(red is more adaptive)

Fig. 2. Definition of Mean First Passage Time (Local optimum a, saddle point b, global
optimum c)

3.3 Dynamic Mean First Passage Time

In the static environment, mean first passage time is used to show how long the
system will take from an optimum to another in average [16]. In Fig. 2, a is local
optimum and c is global optimum. With the help of noise, the system can hop
from one optimum through saddle point b to another. The mean first passage
time from a to b obeys the following relation:

Tab ∝ exp(−(Φa − Φb)) (13)

This passage time is a quantitative measure of robustness of the system. With
long passage time, the system stays at a certain optimum with a large probability.
With short passage time, the system is unstable because it can hop from one
optimum to another easily.

For a static problem, the passage time is a constant. But in the dynamic envi-
ronment, things are different because the difference between the potential value
will change with time. We define γ(ω), which satisfies the following equation, as
dynamic mean first passage time:∫ γ(ω)

0

dt

M(ωt)
= 1 (14)
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Table 1. The value of C

d 0.01 0.02 0.03 0.04 0.05

C 15.533 10.463 7.760 6.535 5.734

Fig. 3. The Dynamic Mean First Passage Time(T = 2π/ω)

Where M(ωt) is the stationary mean first passage time. It is obviously that the
algorithm can not track the optima when γ(ω) > 2π

ω .
In order to get γ(ω), we first give the following 1-order approximation of M :

M = Cexp(−(Φa − Φb)) (15)

By numerical experiment, we get the value of C which is related with d (see
Table 1). Then we can get γ(ω) for different d.

Another experiment is made for checking whether the 1-order approximation
is suitable. In the Fig 3, the red one is got from UMDA directly and the blue
one is obtained by the approximation method.
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Table 2. The Dynamic Convergence Ratio

d \ω 2e-1 1e-1 5e-1 2e-2 1e-2 5e-3 2e-3 1e-3 5e-4 2e-4 1e-4

0.02 1.5475 1.7638 2.0236 3.3421 4.9984 8.2449 8.6491 8.8264

0.03 1.4559 1.6079 1.6394 2.3138 5.4471 7.4231 9.1487 9.2341

0.04 1.2992 1.2925 1.4198 1.6651 3.4195 5.7035 7.4067 6.7602

0.05 1.0150 1.1825 1.3062 1.2430 1.8636 3.0636 4.7764 4.7738

We also calculate the dynamic convergence ratio dr:

dr =
the number that the system is at the current global optimum

the number that the system is at the current local optimum
(16)

The simulation of SDEs are simulated for 50 periods (T = 2π/ω) and the results
are shown in Table 2.

According to the results of Fig. 3 and Table. 2, we get the following facts:

- The convergence ratio is larger than 1 all the time.
- If the objective function changes slowly, small ω or great T , the dynamic
mean first passage time is long and the convergence ratio is high.

- The relation between diffusion coefficient d and convergence ratio is complex.
If d is small, the dynamic mean first passage time is long. The tracking speed
is low and the convergence ratio is low. If d is large, the dynamic mean first
passage time is short. The system can hop from local to global easily. But it
also can hop from global to local easily. The convergence ratio is still low.

4 Conclusion

In this paper, we present the landscape framework to study the behavior of
UMDA in dynamic environment. SDEs are used to model the algorithm, and
the potential function is constructed to help revealing the entire search space.
Dynamic mean first passage time is defined to describe the tracking property in
the dynamic environment. This framework cannot handle all the cases now. Like
[20], we can only analysis the situation that the original problem is polynomial.
Further exploration is need for the visualization of landscape when dimensions
are higher than 2. Our future work also focus on the theory analysis of other
scenario, such as multi-population and multi-objective.
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Abstract. In the paper, we prove that any finite set of rank-one ma-
trices has the finiteness property by making use of (invariant) extremal
norm. An explicit formula for the computation of joint/generalized spec-
tral radius of such type of matrix sets is derived. Several numerical ex-
amples from current literature are provided to illustrate our theoretical
conclusion.

Keywords: joint/generalized spectral radius, finiteness property, irre-
ducible, extremal norm, Barabanov norm.

1 Backgrounds

The joint spectral radius of a finite set of matrices plays an important role in
many applications, such as wavelet theory [5, 9–11, 26], stability of switched
linear systems [7, 8, 17, 29], and their references therein. Hence, its computation
or approximation is of great interest in reality.

We consider the following network model governed by switched linear systems

x�+1 = Aω�
x�, � ≥ 0 (1)

where x� ∈ Rn with n ≥ 2 be fixed, Aω�
∈ Rn×n with ω� taking values in a finite

set A = {1, . . . ,m} with m ≥ 2. Let Σκ be the set of all possible mappings

ω : Z+ → A,

where Z+ = {0, 1, 2, . . .} denotes the nonnegative integer set. Each element in
Σκ is called a switching sequence of system (1). It is well-known that growth
rate of the network dynamics is determined by the joint spectral radius of the
matrix set {Ai : i ∈ A}. Hence the computation of joint spectral radius becomes
critical in order to identify the stability of the network dynamics.

Let ‖ · ‖ be any sub-multiplicative matrix norm and ρ(A) be the spectral
radius of a matrix A. Given a finite set F = {A1, A2, · · · , Am} ⊂ Cn×n of

� This work was supported by NSF 1021203 of the United States.
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complex n× n matrices. We define the set Fk of all possible products of length
k ≥ 1 with factors from F , i.e.,

Fk = {Ai1Ai2 · · ·Aik : 1 ≤ ij ≤ m, j = 1, . . . , k} .

The joint spectral radius of F is defined by [28]

ρ̂(F) = lim
k→∞

max
A∈Fk

‖A‖1/k,

and its generalized spectral radius by [9]

ρ̄(F) = lim sup
k→∞

max
A∈Fk

ρ(A)1/k.

Since the equality ρ̂(F) = ρ̄(F) has been established for any finite set of matrices
[1, 12], we designate an unified notation ρ(F)(= ρ̂(F) = ρ̄(F)) in the following.
Another equivalent variational way of characterizing joint spectral radius is [28]

ρ(F) = inf
‖·‖

max
A∈F

‖A‖, (2)

where the infimum is taken over the set of all sub-multiplicative matrix norms.
Whenever the infimum in (2) is attained (thus a minimum), the corresponding
norm ‖ · ‖∗ will be called an extremal norm [30]. The definition (2) is somehow
attractive in the sense that its estimation of ρ(F) avoids the computation of
long matrix products as long as ‖ · ‖∗ is efficiently computable. Straightforward
algorithms [13, 21] for computing or approximating ρ(F) mostly make use of the
following three important inequalities

max
A∈Fk

ρ(A)1/k ≤ ρ(F) ≤ max
A∈Fk

‖A‖1/k (3)

for any k ≥ 1. In general, however, such a brute-force approach is far from
satisfactory and the highly slow convergence renders this estimation impractical
to many problems, in particular, for those large-scale ones. In order to obtain
better approximations within current computational capacity, many numerical
methods were proposed during last decade as we categorize in the following.

The first approach is to try to construct the extremal norm ‖ · ‖∗ or at least
approximate it when it exists. One necessary and sufficient condition for the
existence of an extremal norm is the non-defectiveness of the corresponding nor-
malized matrix family [14], which is generally not algorithmically decidable [4].
In [3], the minimization was restricted to the set of ellipsoid norms, which can
be efficiently approximated by current convex optimization algorithms. This ap-
proach provides a theoretical precision estimation of ρ(F) in limited applicable
cases. In [14, 16, 15], the minimization was confined to the set of complex poly-
tope norms. The successful construction of such a polytope norm is not always
guaranteed, and it is more suitable to be used to verify the occurrence of the
finiteness property of F [20], that is, to check the case when there is a positive
integer t such that

ρ(F) = ρ(Ai1Ai2 · · ·Ait)
1/t
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for some finite product Ai1Ai2 · · ·Ait ∈ Ft, and the corresponding product se-
quence is called an optimal sequence. Within this framework, other special ex-
tremal norms, such as Barabanov norm [30], Optimal norm [22], etc., are also
considered. Kozyakin in [19] considered an iterative algorithm which approxi-
mates ρ(F) through constructing a sequence of approximated Barabanov norms
by assuming irreducibility, however, the computational cost is very high and the
issue of estimating the convergence rate remains unsolved. The sum of squares
method investigated in [23] was intended to approximate the extremal norm
by a multivariate polynomial with norm-like quality under which the action of
matrices becomes contractive. However, to obtain an analytic extremal norm
expression is quite challenging and there seem no satisfactory solutions so far.

The second approach makes use of the cone invariance of a given matrix set
F for computing its joint spectral radius when such a property exists [24]. In
[24, 25], an iterative algorithm building an approximated invariant set was de-
veloped, which for a fixed dimension demonstrates polynomial time complexity
with respect to 1/ε, where ε is a given accuracy. In [2], Blondel and Nesterov
introduced a Kronecker lifting based approximation to the joint spectral radius
with arbitrary accuracy under the assumption of the existence of an invariant
proper cone, which can always be assured via one step of semi-definite lifting
with the cost of squaring the matrix dimension. The exact nature of this cone
is irrelevant to the derived accuracy of estimation. Following this methodology,
a new conic programming method was offered in [27], which gives an improved
accuracy estimation by taking the nature of cone invariance into the considera-
tion. In general, the existence of an invariant cone is restrictive and may exclude
many interesting cases in real applications.

The main contribution of our paper is to prove that any finite set of rank-one
matrices satisfies the finiteness property by making use of Barabanov norm and
rank-one property. As we know, rank-one matrices are the simplest class of ma-
trices not only in theoretic analysis but also in algorithmic approximations for
matrix computation since any matrix can be expressed in terms of the sum of a
set of rank-onematrices, for example, by singular value decomposition. Among all
those illustrative examples appeared in existing literature related to joint spectral
radius, we observed that all rank-one cases satisfy the finiteness conjecture.

The paper is organized as follows. In section 2, we give some properties of
rank-one matrices and prove that a finite set of rank-one matrices possesses the
finiteness property by utilizing the well-known reduction lemma [1, 12] and Bara-
banov norm. In section 3, several numerical examples are presented to demon-
strate our theoretical result. Concluding remarks are summarized in section 4.

2 Joint Spectral Radius of Rank-One Matrix Set

In this section, we will show that any finite set F of rank-one matrices possesses
the finiteness property. Given a matrix A ∈ Cn×n, let rank(A) be its rank. We
know from linear algebra that rank(A) = 1 if and only if there exist two nonzero
vectors x, y ∈ Cn such that A = xy∗. Obviously, any rank-one matrix A has at
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most one nonzero eigenvalue, denoted by λ(A) = y∗x. In particular, the spectral
radius of a rank-one matrix A is ρ(A) = |λ(A)|. For any two rank-one matrices
A1 = x1y

∗
1 ∈ Cn×n and A2 = x2y

∗
2 ∈ Cn×n, the product

A1A2 = x1y
∗
1x2y

∗
2 = (y∗1x2)x1y

∗
2

is at most rank-one. By a simple induction, arbitrary finite products of rank-one
matrices remain at most rank-one.

If ρ(F) = 0, then by (3) it holds ρ(Ai) = 0 = ρ(F) for all 1 ≤ i ≤ m and so the
finiteness property is already proved. Thus we will only consider the case with
ρ(F) > 0. Recall that a general matrix family F is said to be irreducible provided
all the matrices in F have no common non-trivial invariant linear subspaces of
Cn. The following reduction lemma allows us to assume that F is irreducible
in the following; for otherwise, we could first reduce F into several irreducible
matrix families with smaller dimensions, and then carry out the same proof with
each irreducible matrix family to draw the same conclusion.

Lemma 1 ([1]). For any finite matrix family F = {A1, A2, · · · , Am} ⊂
Cn×n, there exist a nonsingular matrix P ∈ Cn×n and r positive integers
{n1, n2, · · · , nr} with n1 + n2 + · · ·+ nr = n such that

PAiP
−1 =

⎡⎢⎢⎢⎢⎣
A

(1)
i 0 · · · 0

∗ A
(2)
i · · · 0

...
...

. . .
...

∗ ∗ · · · A(r)
i

⎤⎥⎥⎥⎥⎦ for i = 1, 2, · · · ,m,

where F (j) := {A(j)
1 , A

(j)
2 , · · · , A(j)

m } ⊂ Cnj×nj is irreducible for j = 1, 2, · · · , r,
satisfying

ρ(F) = max
1≤j≤r

ρ(F (j)).

In particular, without lose of generality, we may always assume the matrix family
F being irreducible. This leads to an important connection between the joint
spectral radius and a special induced matrix norm, called extremal norm [18].
Due to the irreducibility of F , we can assume ρ(F) = 1 by normalizing the
matrix family F by 1/ρ(F), and thus it guarantees that normalized F is non-
defective, i.e., the semi-group of matrices generated by F is bounded, and hence
there exists an (invariant) extremal norm for F as described in the next lemma.

Lemma 2 ([30]). For any finite irreducible matrix family F , there exists a
vector (Barabanov) norm ‖ · ‖B such that:

(1) For all v ∈ Cn and all A ∈ F it holds that ‖Av‖B ≤ ρ(F)‖v‖B,
(2) For all v ∈ Cn, there exists an A ∈ F such that ‖Av‖B = ρ(F)‖v‖B.

In particular, the induced matrix norm ‖ · ‖B is an extremal norm satisfying

max
A∈F

‖A‖B = ρ(F).
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We are ready to prove the finiteness property for the irreducible case.

Theorem 3. Let F = {Ai = xiy
∗
i : i = 1, 2, · · · ,m} ⊂ Cn×n be an irreducible

rank-one matrix family. Then F has the finiteness property and the corresponding
optimal product sequence of minimal length has distinct factors.

Proof. We first normalize F such that ρ(F) = 1. By Lemma 2, choose v ∈ Cn

with ‖v‖B = 1, then for any k ≥ 1 there exists a multi-index (i1, i2, · · · , ik) such
that

1 = ‖v‖B = ‖Ai1v‖B = ‖Ai2Ai1v‖B = · · · = ‖Aik · · ·Ai2Ai1v‖B. (4)

By the pigeonhole principle, if k ≥ (m+ 1), then the multi-index (i1, i2, · · · , ik)
has at least one repeated index. We define s to be the maximum of those k’s
such that the corresponding multi-index (i1, i2, · · · , ik) satisfying (4) has no rep-
etition. It’s obvious that s ≤ m. Then, choosing k = s+ 1 in (4) gives is+1 = ij
for some unique 1 ≤ j ≤ s, that is,

1 = ‖v‖B = · · · = ‖Aij · · ·Ai1v‖B = · · · = ‖Ais+1Ais · · ·Aij · · ·Ai1v‖B.

Since Ais+1 = Aij is rank-one matrix, its range is one-dimensional and hence

Aij · · ·Ai1v = αz and Ais+1Ais · · ·Aij · · ·Ai1v = βz

for some 0 �= α ∈ C, 0 �= β ∈ C, and 0 �= z ∈ Cn (we may choose z = xij here).
Then

‖αz‖B = ‖Aij · · ·Ai1v‖B = 1 = ‖Ais+1Ais · · ·Aij · · ·Ai1v‖B = ‖βz‖B,

which gives |α| = |β|. Finally, we obtain

βz = Ais+1Ais · · ·Aij+1 (Aij · · ·Ai1v) = Ais+1Ais · · ·Aij+1 (αz)

and hence

Ais+1Ais · · ·Aij+1z =
β

α
z,

where β
α is an eigenvalue of Ais+1Ais · · ·Aij+1 . Therefore, by Lemma 2,

1 ≥ ‖Ais+1Ais · · ·Aij+1‖B ≥ ρ(Ais+1Ais · · ·Aij+1 ) ≥ |β
α
| = 1,

which proves that F has the finiteness property with

ρ(F) = 1 = ρ(Ais+1Ais · · ·Aij+1 )
1/(s−j+1),

where 1 ≤ (s− j + 1) ≤ m and is+1 �= is �= · · · �= ij+1 by the choice of s. ��

We remark here that Theorem 3 provides us a critical structure of an optimal
sequence, which will greatly improve the efficiency of specially designed search
algorithms. In particular, non-repeated index indicates that the lengths of all
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minimal optimal sequences will not be longer than m, which is independent of
the dimension of matrices. In fact, the possible minimal optimal sequence with
longest length is A1A2 · · ·Am. In another way, an explicit formula for the joint
spectral radius of any rank-one matrix family F = {A1, A2, · · · , Am} ⊂ Cn×n is

ρ(F) = max
1≤k≤m

(
max

A∈F(∗)
k

ρ(A)1/k

)
, (5)

where F (∗)
k = {Ai1Ai2 · · ·Aik ∈ Fk : is �= it when s �= t} denotes all possible

products in Fk with distinct factors.

3 Examples

In this section, we verify our formula (5) by two examples. The formula (5) pro-
vides a straightforward way to calculate the joint spectral radius for a rank-one
matrix family. The search of all possible products with distinct factors of length
not exceeding m is sufficient to obtain the exact value of ρ(F), however, most
of current numerical approximation methods can only provide lower and upper
bounds for joint spectral radius with no indication whether the joint spectral
radius has been achieved. Moreover, our formula (5) is fully validated by the
reported optimal sequences for any pair of rank-one 2× 2 sign-matrices in [6].

Example 1 ([6]). Consider the rank-one matrix pair

F =

{
A1 =

[
1 1
−1 −1

]
, A2 =

[
0 1
0 1

]}
.

Applying the formula (5) to obtain

ρ(F) = max
1≤k≤2

max
A∈F(∗)

k

ρ(A)1/k = max{ρ(A1), ρ(A2), ρ(A1A2)
1/2} =

√
2.

While in [6] this was solved by constructing an extremal real polytope norm.

Example 2 ([14]). Consider the rank-one matrix family

F =

{
A1 =

[
1 1
0 0

]
, A2 =

[
0 0
1 1

]
, A3 =

[
1
2

1
2

1
2

1
2

]
, A4 =

[
2
3 0
−2
3 0

]}
.

Using the formula (5) to get

ρ(F) = max
1≤k≤4

max
A∈F(∗)

k

ρ(A)1/k = 1.

The same conclusion was derived in [14] by observing relations among all matri-
ces, whose approach is difficult to be applied to general cases.
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4 Concluding Remarks

In this paper, we show that any family of rank-one matrices possesses the finite-
ness property and an explicit formula of its joint/generalized spectral radius is
obtained. Our next research target is to approximate the joint/generalized spec-
tral of general matrix family by exploiting the rank-one approximation based on
singular value decomposition.

Acknowledgment. The authors would like to thank Ahmadi and Parrilo
for pointing out an error in section 2.1 of our earlier version posted on
arXiv:1109.1356.
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Abstract. We present in this paper a new measure named GOF (Group Outlier
Factor) for cluster outliers and novelty detection. The main difference between
GOF and existing methods is that being an outlier is not associated to a single
pattern but to a cluster. GOF is based on relative density of each group of data
and provides a quantitative indicator of outlier-ness which enables to detect auto-
matically ”cluster outliers”. To learn GOF measure, we integrate it in a clustering
process using Self-organizing Map. Experimental results and comparison studies
show that the use of GOF sensibly improves the results in term of cluster-outlier
detection and novelty detection.

Keywords: novelty detection, group outliers, outliers, clustering, SOM.

1 Introduction

Outlier detection has attracted increasing attention in machine learning and data mining
field due to the numerous applications, including credit card fraud detection, network
intrusion and the discovery of criminal activities in electronic commerce. Outlier detec-
tion is a data mining task whose purpose is to isolate the patterns which are dissimilar
from the remaining data. There is a strong synergy between outlier detection and nov-
elty detection that becomes important in machine learning. It has been confirmed in
several studies that novelty detection is an extremely challenging task [1]. Recently,
many studies have been conducted on outlier detection for large datasets [3,2]. Most of
them consider being an outlier pattern as a binary property. For many applications, the
situation is more complex and it becomes useful to assign to a cluster a degree of being
an outlier.

In this paper, we introduce a new method for cluster outliers detection in multidi-
mensional dataset that assigns a Group Outlier Factor (GOF) score to each cluster in
the aim to measure a degree of outlier-ness. This is, to the best of our knowledge, the
first concept which quantifies how outlying a cluster is. The main difference between
our approach and existing methods is that being an outlier is not associated to a single
pattern but to a cluster. Our approach must not be confused with Local Outlier Fac-
tor (LOF) method [4][5]. LOF indicates the degree of outlier-ness for each pattern by
comparing the local density of an observation with the average density of its k-nearest
neighbors (k-NN ) “without learning”.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 364–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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To learn the particularity of each group in the data distribution, we incorporate GOF
parameter into a training process of clustering algorithm. For this purpose, we use Self-
Organizing Maps (SOM) algorithm. SOM is a useful tool to visualize and cluster high-
dimensional data in low-dimensional views [6]. Our method is an hybrid approach,
which combines clustering and density based approaches.

In this work, we are also interested to novelty detection problem. Understanding
when new data are novel can be extremely important in order to automatically detect
outlier clusters and novel patterns. In this paper, we detail the use of GOF measure
for novelty detection. Thus, we propose two algorithms named GOF-SOM, and GOF-
Novelty that offer respectively a detection of outlier cluster and novelty detection.

The remaining of this paper is organized as follows : we briefly review the related
works in section 2. In section 3, we present the model and algorithms. Section 4 is
devoted to the methodology and experimental results. Finally, section 5 concludes this
work and proposes some perspectives.

2 Related Works

In this section, we discuss previous works on outlier and novelty detection problems.
Different methods for novelty detection are reviewed in [1,7]. Among them, we cite
statistical based approaches that are mostly based on modeling data by there statistical
properties, as density to estimate whether a samples comes from the same distribution or
not [1]. In statistical based approaches, two methods to estimate the probability density
function exist : the parametric and non-parametric approaches. Parametric approaches
make an assumption that data distributions are Gaussian [8]. However, non-parametric
approaches do not make any assumption on the statistical properties of data. To esti-
mate the density of multidimensional data, one way is to use nearest neighbour based
on density estimation or parzen density estimation [9].

In [10], author introduces a kernel PCA for novelty detection. The main idea of this
approach is to assign training data into a high dimensional feature space where kernel
PCA extracts the principal components of the data distribution. The squared distance
to the corresponding principal subspace is used to measure novelty. Support Vector
Machines (SVM) are also used for novelty detection [11,12]. Indeed, a support vector
algorithm was used to characterize the support of a high dimensional distribution. With
this algorithm, one can compute a set of contours which encloses the data. These con-
tours can be considered as normal data boundaries. The data outside the boundaries are
interpreted as novelties. Other works propose self-organizing map approach for spatial
outlier detection [13,14]. In [15], authors transfer the unsupervised learning of outlier
detection to the non-parameter regression learning and propose a multi-scale local ker-
nel regression method by combining informations of the multiple scale neighborhoods
to compute the outlier factors.

There are several machine learning algorithms in the literature that define outlier as
observation. However, they do not consider that a cluster can being outlier. Therefore,
in this work, we provide a new formal definition of group outliers, which avoids the
shortcomings present in traditional approaches. A group outliers is a set of patterns
forming a cluster considerably isolated from the rest of clusters.
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The motivation of this paper is to describe a new concept of ”cluster outlier-ness”.
In order to quantify it, we propose a relative measure of isolation called Group Outlier
Factor (GOF). GOF is a score, wich is computed during a clustering process using
self-organizing maps. Thus, an outlier factor with respect to each cluster is computed
for each new sample and compared to the GOF parameter associated for each cluster.
If the outlier factor of pattern is much greater than GOF of the corresponding cluster,
the sample is classified as novel. This approach allows to identify meaningful outlier-
clusters and detects a novel data that previous approaches could not find.

3 Proposed Algorithm

In this section, we present a new approach for cluster-outlier detection and its applica-
tion for novelty detection. Given a set of training data D = {xi; i = 1, . . . , N}, where
each observation xi = (x1i , x

2
i , ..., x

d
i ) is a vector in "d. The main idea of our cluster-

outlier technique is to simultaneously cluster data and learn a new parameter of cluster
oulier-ness. In many applications, it is reasonable to assume that some patterns are not
outliers alone but placed together with others can be considered as outlier-cluster.

3.1 GOF-SOM: Group Outlier Factor and Self-Organizing Map

In GOF-SOM, we use self-organizing maps (SOM) as clustering algorithm [6], which
is increasingly used as tools for clustering and visualization. SOM consists of a discrete
set of cells called map with size C. This map has a discrete topology defined as an
undirected graph, it is usually a regular grid in 2 dimensions. For each pair of cells (c,r)
on the map, the distance δ(c, r) is defined as the length of the shortest chain linking
cells r and c on the grid. For each cell c this distance defines a neighbor cell.

In GOF-SOM, each cell c of the grid C is associated with two parameters : a prototype
vector wc = (w1

c , w
2
c ..., w

j
c , ..., w

d
c ) and a new parameter GOFc ∈ " (Group Outlier

Factor). For each pattern xi, a local density fc(xi) is computed, which is defined as
follows :

fc(xi) = exp−
‖wc−xi‖2

2σ2

where σ is the deviation of data.
After computing a density fc(xi) of pattern xi, we estimate a Group Outlier Factor

(GOF), for each cluster denoted by Pc associated to a cell c. The larger is the value of
GOF, the more probably the cluster is outlier. Thus, using topological maps, we propose
to minimize the new following cost function :

R(W , φ,GOF ) =

N∑
i=1

C∑
c=1

K(δ(φ(xi), c))‖wc − xi‖2

+

N∑
i=1

C∑
c=1

K(δ(φ(xi), c))

⎛⎜⎝GOFc −

∑
xj∈Pc

1
fc(xj )

|Pc|
1

fc(xi)

⎞⎟⎠
2

(1)

where φ assigns each observation xi to a single cell of the map. We denote by W =
{wc,wc ∈ "d}Cc=1 the set of prototypes and GOF = {GOF1, ..., GOFC} the set of
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outlier-ness indicators.
The first term of the cost function (1) depends on the parametersW and φ, which en-

ables to estimate the prototypes. The second term depends on the cluster outlier factor
(GOF ) associated to each cell. The minimization of R(W , φ,GOF ) is run by itera-
tively performing three steps presented in algorithm 1.

3.2 GOF-Novelty: Group Outlier Factor for Novelty Detection

Based on the new definition of group outlier, the method that we propose for novelty
detection works in two steps as follows :

Algorithm 1. GOF-SOM Algorithm
1: Inputs : The data D = {xi}i=1..N . A map with C cells. Initialized prototypes W =

{wc, c = 1..C}, and GOF values for each cell c. tmax : the maximum number of itera-
tions.

2: Outputs : A partition P = {Pc}c=1..C . The GOF values = {GOFc, c = 1..C}.
3: Competition phase : Assign data xi by using the function

φ(xi) = arg min
1≤c≤C

‖ xi −wc ‖2

4: Adaptation phase (for each cell c) :

– Update prototypes wc : wc(t) = wc(t− 1)− ε(t)K(δ(φ(xi), c))) (wc(t− 1) − xi)
– Update the values of GOFc :

GOFc(t) = GOFc(t−1)− ε(t)K(δ(φ(xi, c)))

⎛⎜⎝GOFc(t− 1)−

∑
xj∈Pc

1
fc(xj)

|Pc|
1

fc(xi)

⎞⎟⎠
where ε(t) is the step of learning.

5: Repeat phases 3 and 4 up to t = tmax.

– GOF-SOM learning : In the first step, we train GOF-SOM map, which provides
a new parameter by computing an outlier-ness value for each cluster c denoted by
GOFc. If patterns assigned to the same cluster are dense and isolated, it would have
a high degree of being outlier group. The advantage of GOF-SOM algorithm is to
provide a clustering and a topological structure for outlier visualization task.

– Novelty detection : In the second step, we build a classifier for novelty detection
using the GOF parameter provided by GOF-SOM. We define algorithm 2 called
GOF-Novelty where the main function consists on assigning the new patterns xi

using GOF parameter. Thus, for each observation, we compute an Outlier Factor
(OFc(xi)) associated to cluster c as follows :
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Algorithm 2. GOF-Novelty Algorithm
1: Inputs : A partition P = {Pc}c=1..C . GOF values’s = {GOFc, c = 1..C}. The new dataset

D′
= {xi}i=1..M .

2: Outputs : Novelty label : vector contains a binary value which indicates the novelty.
3: for i=1 : M do

4: OFφ(xi)(xi) =

∑
xj∈Pφ(xi)

1
fc(xj )

|Pφ(xi)
|

1
fc(xi)

5: Dif = abs
(
OFφ(xi)(xi)−GOFφ(xi)

)
6: if | Dif < threshold | then
7: Novelty label(xi) = 0;
8: else
9: Novelty label(xi) = 1;

10: end if
11: end for

# The threshold is defined by the deviation of the output GOF, but it can vary for each dataset.

OFc(xi) =

∑
xj∈Pc

1
fc(xj)

|Pc|
1

fc(xi)

If the value of OFc(xi) is largely higher than the Outlier Factor of cluster (GOFc),
the data are necessarily novel.

4 Experimentation

This section details experiments carried out to assess the performance of GOF measure
and GOF-Novelty. Synthetical, public and One-class classification datasets are used

Table 1. Characteristics of the synthetical, public and One-class classification datasets

Public and synthetical datasets One-class classifier datasets
Datasets Size #

Fea-
tures

# No
outlier

#
Out-
liers

Datasets Size #
Fea-
tures

# No
outlier

#
Out-
liers

Ring 1072 2 943 129 Iris Setosa 150 4 50 100
Circle 638 3 586 52 Sonar Mines 108 60 11 97
Hepta 212 2 136 76 Biomed Healthy 194 5 127 67
Lsun 400 2 300 100 Hepatitis Normal 155 19 123 32
Target 951 2 787 164 Diabetes Present 768 8 500 268
Golf Ball 4343 3 3941 402 Ecoli Periplasm 336 7 52 284
Synthetical dataset 1 160 4 143 17 Spectf 1 349 44 254 95
Synthetical dataset 2 234 4 208 26 Balance-Scale 625 4 288 337
Synthetical dataset 3 569 4 357 212 Glass Building 214 9 70 144
Synthetical dataset 4 402 4 292 110 Waveform 2 900 21 300 600
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in the experimentaions (Table 1) [16]. For synthetical datasets, we generate a small
clusters isolated from the rest of the data. All the datasets used for this task are in 2-
dimensional and presented in table 1. One-class classification (occ) datasets [17] are
extracted from : http://homepage.tudelft.nl/n9d04/occ/index.html.

4.1 Analysis of GOF Measure

To learn the behavior of GOF measure, we visualize the mapping and the GOF parame-
ter learned by GOF-SOM. This is a key factor in supporting the analysts in the analysis
task. Thus, they can spot cluster-outliers, which might be errors in the manual labeling,
or a characteristic of dataset structure. Figure 1, displays the dataset and the learned
map. The GOF score is indicated with color degree, which reflects the outlier-ness of
each cluster (cell of the map). The cluster outliers can be identified by dark red color
(the more the prototype’s color is red, the more the cluster is outlier). It is clear for the
presented dataset that red color corresponds to the isolated cluster with high value of
GOF (the group outlier is indicated with an arrow).

(a) Circle dataset (b) Hepta dataset (c) Golf Ball dataset

(d) Ring dataset (e) Synthetical dataset 1 (f) Synthetical dataset 3

Fig. 1. GOF-SOM map and dataset

4.2 GOF-Novelty: Comparative Study

The datasets used in this experimentaion have two classes : no outlier labled 0 and
outlier labled 1. In the case of synthetical and public datasets, the outlier class is repre-
sented by the minority class in the datasets. For occ datasets, the classification (outlier,
no outlier) is already defined by the author of datasets [17]. In this experimentation,
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a training dataset contains only data labeled 0 (no outlier). Test dataset contains data
labeled 1 (outlier) and 20% of data have label 0. The criteria Recall, Precision and AUC
are used for evaluation [18]. The Recall or True Positive Rate is the proportion of posi-
tive cases correctly identified. Precision is the proportion of the predicted positive cases
that are correct. AUC is the Area Under the ROC curve. It is equal to the probability
that a classifier will rank a randomly chosen positive instance higher than a randomly
chosen negative one. We compare SOM-Novelty with One-SVM and PCA approaches.
The experimental results are shown in table 2.

Table 2. Results obtained with GOF-Novelty PCA, and One-SVM on Recall, Precision and AUC

Datasets Recall index Precision index AUC index
GOF-
Novelty

PCA One-
SVM

GOF-
Novelty

PCA One-
SVM

GOF-
Novelty

PCA One-
SVM

Synthetical dataset 1 1 0.35 0.85 1 1 0.86 1 0.68 0.43
Synthetical dataset 2 1 0.33 0.84 1 1 1 0.95 0.66 0.92
Synthetical dataset 3 0.53 0.5 0.52 1 1 1 0.76 0.75 0.76
Synthetical dataset 4 0.59 0.24 0.52 1 1 1 0.8 0.62 0.76
Circle 0.53 0.21 0.27 1 1 1 0.83 0.6 0.63
Ring 0.83 0.8 0.07 1 0.91 0.31 0.91 0.4 0.03
Lsun 0.86 0.66 0.3 1 0.72 1 0.68 0.44 0.65
Hepta 0.76 0.55 0.24 1 1.00 1 0.88 0.78 0.62
GolfBall 0.89 0.67 0.01 1 0.89 1 0.94 0.34 0.5
Iris Setosa 1 0.52 0.92 0.81 1 1 0.95 0.76 0.96
Sonar Mines 0.71 0.67 0.35 0.56 0.56 0.35 0.54 0.53 0.49
Biomed Healthy 0.94 0.35 0.85 0.97 0.94 0.61 0.67 0.65 0.66
Hepatitis Normal 0.69 0.46 0.87 0.8 0.86 0.66 0.52 0.59 0.51
Diabetes Present 0.99 0.53 0.71 0.73 0.65 0.65 0.52 0.5 0.5
Ecoli Periplasm 0.85 0.33 0.88 0.4 0.14 0.42 0.8 0.48 0.89
Spectf 1 0.85 0.45 0.73 0.71 0.69 0.72 0.52 0.46 0.49
Balance-Scale Left 0.86 0.44 0.56 0.44 0.45 0.43 0.51 0.49 0.47
Glass Building Float 0.9 0.13 0.66 0.31 0.29 0.27 0.75 0.49 0.61
Waveform 2 0.63 0.53 0.45 0.45 0.31 0.35 0.53 0.47 0.62

Table 2 present experimental results of Recall, Precision and AUC indexes. The main
criteria for evaluating novelty detection is the maximization of detecting true novel pat-
terns (Recall) [19]. GOF-Novelty provides the highest Recall values for all datasets,
except for Hepatitis Normal and Ecoli Periplasm datasets. We observe a slight decrease
of Recall if we compare our approach with the best one (PCA or One-SVM). Concern-
ing Precision index, GOF-Novelty provides the best values for the most datasets. For
Iris Setosa and Hepatitis Normal datasets GOF-Novelty is slightly less efficient. Despite
a low decrease of both criteria in some datasets, GOF-Novelty provides a stable results
for most datasets. Thus, in Ring database, One-SVM provides precision 0.31 where
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GOF-Novelty provides 1. For Ecoli Periplasm, GOF-Novelty provides 0.40 and PCA
provides the lowest value 0.14. Observing AUC index, GOF-Novelty gives the high-
est AUC values in the majority except for Ecoli Periplasm and Waveform 2 where our
approach is better than PCA. Despite a low decrease of AUC index in some datasets,
GOF-Novelty provides a stable results. For example in Circle, GOF-Novelty obtains
0.91, but PCA obtains 0.4, One-SVM decreases and provides 0.03. Comparing to other
methods, we clearly see that GOF-Novelty is a good way to detect a novelty and pro-
vides a measure of outlier-ness for each cluster.

5 Conclusion and Perspectives

This paper studies the problem of cluster-outlier detection and its application to novelty
detection. To our knowledge, this paper is the first work that gives a new definition of
Group Outlier Factor (GOF), which measures the degree of being cluster outlier. We
have used GOF parameter more tightly with clustering in order to use it for novelty de-
tection. A series of experiments were conducted to validate the proposed method which
uses GOF parameter on Self-Organizing Map and compute many criteria to show the
behavior of GOF in novelty detection. These results demonstrate that our method is
promising and identify meaningful outlier-clusters and detect a novel data that previ-
ous approaches could not find. There are many perspectives to study after this results.
The first one consists on further improving the performance of the GOF computation.
Secondly, we will improve the usefulness of GOF by integrating it to time series and
conducting more extensive tests with external indexes.

Acknowledgment. This research was supported by Anticipeo company.

References

1. Markou, M., Singh, S.: Novelty detection: a review part 1: statistical approaches. Signal
Process. 83, 2481–2497 (2003)

2. Angiulli, F., Ben-Eliyahu-Zohary, R., Palopoli, L.: Tractable strong outlier identification.
CoRR abs/1109.4623 (2011)

3. Su, X., Tsai, C.L.: Outlier detection. Wiley Interdisc. Rew.: Data Mining and Knowledge
Discovery 1(3), 261–268 (2011)

4. Breunig, M., Kriege, H., Ng, R., Sander, J.: Lof: Identifying density-based local outliers. In:
ACM SIGMOD 2000 International Congerence on Management of Data (2000)

5. Hasan, M.A., Chaoji, V., Salem, S., Zaki, M.J.: Robust partitional clustering by outlier and
density insensitive seeding. Pattern Recogn. Lett. 30, 994–1002 (2009)

6. Kohonen, T., Schroeder, M.R., Huang, T.S. (eds.): Self-Organizing Maps, 3rd edn. Springer-
Verlag New York, Inc., Secaucus (2001)

7. Markou, M., Singh, S.: Novelty detection: a review part 2: neural network based approaches.
Signal Process. 83, 2499–2521 (2003)

8. Hansen, L.K., Liisberg, C., Salamon, P.: The error-reject tradeoff. Open Systems and Infor-
mation Dynamics 4, 159–184 (1995)

9. Duda, R., Hart, P., Stork, D.: Pattern Classification. Wiley (2001)
10. Hoffmann, H.: Kernel pca for novelty detection. Pattern Recognition 40 (2007)



372 A. Chaibi, M. Lebbah, and H. Azzag

11. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)
12. Schölkopf, B., Platt, J.C., Shawe-Taylor, J.C., Smola, A.J., Williamson, R.C.: Estimating the

support of a high-dimensional distribution. Neural Comput. 13(7), 1443–1471 (2001)
13. Cai, Q., He, H., Man, H.: Somso: A self-organizing map appoach for spacial outlier detection

with multiple attributes. In: Proccedings of IJCNN 2009, pp. 425–431 (2009)
14. Cai, Q., He, H., Man, H., Qiu, J.: Iterativesomso: An iterative self-organizing map for spatial

outlier detection. In: Proccedings of IJCNN 2010, pp. 325–330 (2010)
15. Gao, J., Hu, W., Li, W., Zhang, Z.: Local outlier detection based on kernel regression. In:

International Conference on Pattern Recognition (2010)
16. Frank, A., Asuncion, A.: Uci machine learning repository. Technical report, University of

California, Irvine, School of Information and Computer Sciences (2010)
17. Moya, M.M., Hush, D.R.: Network constraints and multi-objective optimization for one-class

classification. Neural Netw. 9, 463–474 (1996)
18. Fawcett, T.: An introduction to roc analysis. Pattern Recognition Letters 27(8), 861–874

(2006)
19. Yeung, D.Y., Chow, C.: Parzen-window network intrusion detectors. In: Proceedings of the

Sixteenth International Conference on Pattern Recognition, pp. 385–388 (2002)



Hierarchical K-Means Algorithm

for Modeling Visual Area V2 Neurons

Xiaolin Hu, Peng Qi, and Bo Zhang

State Key Laboratory of Intelligent Technology and Systems, Tsinghua National
Laboratory for Information Science and Technology (TNList), and Department of
Computer Science and Technology, Tsinghua University, Beijing 100084, China
xiaolin.hu@gmail.com, pengrobertqi@163.com, dcszb@tsinghua.edu.cn

Abstract. Computational studies about the properties of the receptive
fields of neurons in the cortical visual pathway of mammals are abundant
in the literature but most addressed neurons in the primary visual area
(V1). Recently, the sparse deep belief network (DBN) was proposed to
model the response properties of neurons in the V2 area. By investigating
the factors that contribute to the success of the model, we find that a
simple algorithm for data clustering, K-means algorithm can be stacked
into a hierarchy to reproduce these properties of V2 neurons, too. In
addition, it is computationally much more efficient than the sparse DBN.

Keywords: Neural network, Deep learning, Visual area, V1, V2.

1 Introduction

Since Hubel and Wiesel [1] found that the receptive fields of many neurons in
the primary visual cortex (V1) are edge detectors, a wealth of researches have
attempted to interpret this ground breaking discovery. Two well-known propos-
als refer to sparse coding [2, 3] and independent component analysis (ICA) [4].
Both approaches can be understood as a single layer network where the inputs
are image pixels and the outputs correspond to the responses of V1 simple cells,
which are assumed to be sparse, i.e., the output units should keep silence or near
silence most of the time and fire only occasionally. Sparsity is closely related to
high-order statistics of natural images, which plays a significant role in repro-
ducing the edge-like structure of the receptive fields of V1 simple cells. In fact,
with sparsity constraint many other models such as the restricted Boltzmann
machine (RBM) [5], auto-encoder [6] and K-means algorithm [7, 8] have been
found to be able to learn the edge-like structure of the receptive fields of V1
neurons on natural images.

Hierarchical models [9,10] have been proposed for modeling the response prop-
erties of V1 complex cells, another important type of neurons in V1 area. How-
ever, there have been few attempts to quantitatively model the properties of
neurons beyond V1 along the cortical visual pathway such as V2 or V4. The fa-
mous hierarchical model HMAX [11] was tested against V4 neurons and achieved
remarkable results [12]. But the properties of its low level units are handcrafted
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and what is more interesting to the computational neuroscience community is
learning each layer in a similar way. The deep belief network [13] is such a model.
It consists of multiple layers of RBMs, and learning starts from the bottom layer
to the top layer in the sequel. It was found that a two-layer DBN is able to
replicate some properties of the receptive fields of both V1 and V2 neurons by
imposing a sparse firing constraint on each layer [5]. This model owes its success
largely to its nonlinearity on the the first layer output. In the present paper, we
will show that the difference between the sparsity degrees on the two layers are
also critical for producing these results. To be more specifically, the second layer
firing should not be as sparse as the first layer. If one seeks alternative models
for doing similar task, neither of the two factors should be ignored.

In the paper, we will show that the K-means algorithm, a simple data cluster-
ing algorithm, can be stacked into a hierarchy to model V2 neurons. However,
as the standard K-means algorithm is an extremely sparse model (for each input
data only one hidden unit fires), to control its sparsity degree, some modifications
are needed.

2 Sparse Deep Belief Network

A restricted Boltzmann machine (RBM) consists of a layer of visible units v, a
layer of hidden units h and a symmetric connections weights between the two
layers represented by a matrixW . The visible units and hidden units have biases,
denoted by ci and bj, respectively [14]. The sparse RBM imposes a sparse firing
constraint on the hidden units [5]. With a set of training data v1, . . . ,vN where
vn ∈ RD, the sparse RBM minimizes the following function

−N〈log
∑
h

P (v,h)〉 + λ
K∑
j=1

‖p− 〈E(hj |v)〉‖2

over wij , ci and bj , where

− logP (v,h) =
1

2σ2

∑
i

v2i −
1

σ2

⎛⎝∑
i

civi +
∑
j

bjhj +
∑
i,j

viwijhj

⎞⎠
and λ, σ > 0. In above equations, 〈·〉 denotes average over samples and E(·) de-
notes the conditional expectation given the data. The parameter p is the desired
firing probability of the hidden units, which controls the sparsity degree of firing.

With a modified contrastive divergence learning rule [5], the sparse RBM can
learn the gabor-like receptive fields of V1 simple cells on natural images. Fig. 1
visualizes 200 weights associated with the hidden units. They were learned on
a large set of randomly selected 14-by-14 patches from ten 512-by-512 natural
images [2], which were preprocessed by 1/f whitening and low pass filtering in
the frequency domain. The sparsity parameter is set as p = 0.02.

We stacked another sparse RBM with 200 hidden units on top of the first
layer, and trained the second layer weights and biases by freezing the first layer
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Fig. 1. Visualization of 200 first layer weight vectors of the sparse DBN. Each 14× 14
patch corresponds to a weight vector.

(a)

(b)

Fig. 2. Visualization of 200 second layer weight vectors of the sparse DBN. (a) p = 0.02,
(b) p = 0.04.
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weights and biases. The resulting model is called sparse deep belief network or
sparse DBN [5]. The receptive fields of the second layer units are visualized
in Fig. 2 as weighted sum of the receptive fields of first layer units. It is seen
that with p = 0.02 the receptive fields are visually similar to the receptive
fields of the first layer; while with p = 0.04 the receptive fields are like edge
conjunctions or corners, in agreement with the V2 neuron properties. In fact,
with increasing p (greater than 0.02), our experiments showed that the structure
of the receptive fields became more and more complex (data not shown). This
observation suggests that the nonlinearity of the sparse RBM is not the only
factor that contributes to the emergence of V2 neuron receptive fields, and the
higher firing rate on the second layer than on the first layer is another critical
factor. If one seeks alternative models for reproducing the V2 neuron properties,
both factors should be considered.

3 Hierarchical K-Means Algorithms

3.1 K-Means Algorithms

The goal of K-means algorithm is to partition the data set v1, . . . ,vN into K
clusters. If we introduce a latent variable wj , the mean or centroid of cluster j,
where j = 1, . . . ,K, then the goal is to identify wj. The algorithm consists of
two iterative steps:

– For each input vn determine which cluster it belongs to. Mathematically,
this amounts to determine j∗ = argminj ‖vn −wj‖.

– Update wj for j = 1, . . . ,K by taking the mean (centroid) of data assigned
to cluster j.

Each data point vn is assigned a binary indicator vector h where hj = 1 if
this point belongs to cluster j and hj = 0 otherwise. If the latent variables hj
are viewed as “neurons”, then the firing pattern of these neurons is extremely
sparse—for each input only one neuron fires.

3.2 Multiple Firing K-Means Algorithms

Now we relax the algorithm by allowing multiple hidden units fire together for an
input in the first step. Specifically, for each input vn we determine L clusters it
belongs to. Mathematically, this amounts to determine a setΩ ⊂ V = {1, . . . ,K}
such that |Ω| = L and ‖vn −ws‖ ≤ ‖vn −wj‖ for s ∈ Ω and j ∈ V \Ω.

For each input vn set

hj(vn) =

{
1, if vn belongs to cluster j;
0, otherwise.

(1)

Then there are always L hidden units firing. For this reason this algorithm is
called multiple firing K-means algorithm. Its convergence results are stated in
the following theorem.
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Theorem 1. Each step of the multiple firing K-means algorithm lowers the
value of the function

J = 〈
K∑
j=1

hj‖v−wj‖2〉 (2)

until convergence.

Proof. In step 1, wj is fixed. It is easy to see that setting hj = 1 for j ∈ Ω and
hj = 0 for j ∈ V \Ω corresponds to the minimum of J over the binary vector h
subject to the constraint that for each input there are always L elements equal
to 1. In step 2, h is fixed. Notice that ∂J

∂wj
= −2〈hj(v − wj)〉. Then step 2 is

equivalent to taking ∂J
∂wj

= 0, which corresponds to minimization of J over wj .

Therefore, each step results in a decrease of J until convergence.

3.3 Hierarchical Model

Similar to the sparse DBN, we can stack another multiple firing K-means algo-
rithm on top of the first layer. It takes the output of the first layer as input and
learns the centroids of the inputs by freezing the first layer centroids.

4 Experiments

It has been shown that the standard K-means algorithm can reproduce the
gabor-like receptive fields of V1 cells [7,8]. Here we show that the multiple firing
K-means algorithm has the same capability. A large number of 14-by-14 patches
were randomly extracted from ten natural images, which were preprocessed in
the same way as in Section 2. At every iteration 50,000 patches were input to
the network and the centroids got updated once. After about 100 iterations the
algorithm converged. The 200 centroids are plotted in Fig. 3 with L = 3. For
other small values of L the results were visually similar to this figure (we tested
L = 5, 7, 10).

We stacked a second layer multiple firing K-means algorithm to the output
of the first layer. The second layer had 200 units and L was set to 10. After 100
iterations, the algorithm converged. It was found that only a few elements in
the learned second layer centroids were significantly larger than zero (data not
shown). The second layer centroids are visualized in Fig. 4 in the same manner
as Fig. 2. It is seen that the shape of many second layer centroids are like corners
or conjunctions of edges, in agreement with some V2 neurons properties [5].

To test the properties of the second layer units, we generated a set of an-
gle stimuli as shown in Fig. 5 [15]. Each stimulus was a 14-by-14 image patch

representing an angle in { 2π
M , 4πM , . . . , 2(M−1)π

M } in different orientations, which
resulted in M(M − 1) different stimuli. See [15] for details. In addition, each
stimulus was normalized to zero mean and unit variance. To identify the “cen-
ter” of each second layer unit’s receptive field, we translated all stimuli densely
over the 14 × 14 input image patch, and identified the position at which the
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Fig. 3. Visualization of 200 first layer centroids of the hierarchical K-means

Fig. 4. Visualization of 200 second layer centroids of the hierarchical K-means.

maximum response was elicited. All measures were then taken with all angle
stimuli centered at this position.

For each angle stimulus, we calculated the responses of the first layer units and
second layer units sequentially. Fig. 5 shows the stimuli set withM = 24 together
with responses of three representative second layer units. Note the similarity to
Fig. 5 in [5]. And we emphasize that these units are typical in our model.

To make quantitative comparison between the simulation results and phys-
iological results in [15], we then generated a stimuli set with M = 12. Five
quantities about the statistics of the response profiles of the model neurons on
the stimuli set were calculated and presented in Fig. 6. The physiological results
and the model neurons by the sparse DBN are also presented in the figure. It is
seen that the hierarchical K-means algorithm has produced similar results.

As the hierarchical K-means algorithm and the sparse DBN can produce simi-
lar results, then how about their computational efficiency? This is not a question
in the computational neuroscience community but is important in engineering
applications. One difficulty for such a comparison is that a common termination
condition is lacked for the algorithms (notice that their final results are not the
same, though qualitatively similar). Fortunately, our experiments showed that
the computing time of the two algorithms differed much for producing visually
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Fig. 5. Response profile of three example model V2 neurons on a set of angle stimuli.
Top: the left most patch shows a model V2 neuron by taking the weighted sum of V1
simple cell receptive fields. The next five patches show the receptive fields of the model
V1 simple cells that have strongest connections to this V2 neuron. Bottom: darkened
patches represent stimuli to which the model V2 neuron responded strongly. A small
black square indicates the overall peak response.
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Fig. 6. Distribution of the response statistics over the angle stimuli. The five figures
show respectively the distribution over (i) peak angle response, (ii) tolerance to primary
line component, (iii) tolerance to secondary line component, (iv) tolerance to angle
width, (v) tolerance to angle orientation. See [5,15] for details. Best viewed in color.
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similar results. Table 1 shows the computing time of the two algorithms on a
computer (Intel Core i5-2320 3GHz × 4, RAM 8GB), averaged over 10 trials,
for producing visually similar results to Figs. 1, 2(b), 3 and 4, respectively. For
sparse DBN, p=0.02 in layer 1 and p=0.04 in layer 2. Moreover, in each layer
σ decayed by a factor of 0.99 after every iteration with initial value 0.4, as sug-
gested in [16]. Other parameters were tuned to achieve high efficiency. Learning
terminated after 800 iterations for each layer and in every iteration 100,000
patches were input to the model in batches of 200. For hierarchical K-means,
learning terminated after 100 iterations for each layer and in every iteration
50,000 patches were input to the model together. It is seen that learning in each
layer of the hierarchical K-means algorithm is more than ten times faster than
the sparse DBN.

Table 1. Comparison of the computing time in seconds

V1 V2

sparse DBN 2536.7±21.0 2693.1±37.3

hierarchical K-means 164.3± 4.9 206.3±2.7

5 Conclusions

There are many models capable of reproducing edge-like structure of the recep-
tive fields of V1 neurons, but few have shown to be capable of reproducing edge
conjunction structure of the receptive fields of V2 neurons, except the sparse
DBN. In the paper a hierarchial K-means algorithm is proposed as an alter-
native model for the visual area V2. The simulation results on natural images
qualitatively matched physiological data recorded in monkeys. It was shown to
be much more computationally efficient than the sparse DBN. A promising fu-
ture direction of this research is to extend the hierarchical K-means algorithm to
deep models for learning object parts for computer vision, like the convolutional
DBN [17].
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Abstract. In this paper, we present a methodology for identifying best
features from a large feature space. In high dimensional feature space
nearest neighbor search is meaningless. In this feature space we see qual-
ity and performance issue with nearest neighbor search. Many data min-
ing algorithms use nearest neighbor search. So instead of doing nearest
neighbor search using all the features we need to select relevant fea-
tures. We propose feature selection using Non-negative Matrix Factor-
ization(NMF) and its application to nearest neighbor search.

Recent clustering algorithm based on Locally Consistent Con-
cept Factorization(LCCF) shows better quality of document clustering
by using local geometrical and discriminating structure of the data. By
using our feature selection method we have shown further improvement
of performance in the clustering.

Keywords: Feature selection, Non-negative matrix factorization(NMF),
Locally consistent concept factorization(LCCF).

1 Introduction

The necessity to extract useful and relevant information from large datasets has
led to an important need to develop computationally efficient text mining algo-
rithms. Feature selection and dimensionality reduction techniques have become
a real prerequisite for data mining applications. In both the approaches, the goal
is to select a low dimensional subset of the feature space that covers most of the
information of the original data.

Nearest neighbor search in high dimensional space is an interesting and im-
portant, but difficult problem. Finding the closest matching object is important
for many applications. Based on that observation it has been shown in [1] that
in high dimensional space, all pairs of points are almost equidistant from one
another for a wide range of data distributions and distance functions. In such
cases, a nearest neighbor search is unstable. So we need to reduce the dimen-
sionality of original feature space to a reduced feature space using some feature
selection approach so that in that new feature space nearest neighbor search can
be meaningful.

SVM and decision tree classifiers do not use nearest neighbor search. We can
select some relevant features so that we get better computational performance
without significant information loss. In our work we focus on some context,
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such as the relationship between feature selection techniques and the resulting
classification accuracy and clustering purity.

2 Background

2.1 Feature Selection

In text categorization, feature selection (FS) [9] is typically performed by sorting
features according to some weighting measure and then setting up a threshold
on the weights or simply specifying a number or percentage of highly scored
features to be retained. Features with lower weights are discarded as having less
significance. We use Embedded Feature Selection using Support vector machine
(SVM) [2] and k-nearest-neighbor classifier [5]. We compare the effect of feature
selection based on an SVM [4] where class labels are known with feature selection
using NMF where class label information is not available.

2.2 Clustering

Non-Negative Matrix Factorization. Non-negative Matrix Factorization
(NMF) [6] is a matrix factorization algorithm that focuses on the analysis of
data matrices whose elements are nonnegative. The NMF consists of reduced
rank non-negative factors W ∈ Rt×k and H ∈ Rk×d, with k � min{t, d}, that
approximates a given non-negative data matrix A ∈ Rt×d as A ≈ WH . The k
basis vectors {Wi}ki=1 can be thought of as the “building blocks” of the data,
and the (d-dimensional) coefficient vector Hi describes how strongly each build-
ing block is present in the measurement vector Ai. The non-linear optimization
problem underlying NMF can generally be stated as

min
W,H≥0

f(W,H) =
1

2
‖A−WH‖2F (1)

Concept Factorization. The optimization problem underlying Concept Fac-
torization(CF) [7] can generally be stated as

min
W,V≥0

f(W,V ) =
1

2
‖X −XWV T ‖2 (2)

Each column of W corresponds to one concept represented by a weighted com-
bination of the documents in the dataset. Each row of V is a new representation
of the original document vector whose each element corresponds to one clus-
ter/concept defined by W.

LocallyConsistentConceptFactorization. NMFandCFperform the factor-
ization in the euclidean space. Locally Consistent Concept Factorization(LCCF)
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[3] is a document clustering model which adds local geometry feature with CF. Us-
ing local geometry the new objective function is

min
W,V ≥0

f(W,V ) =
1

2
‖X −XWV T ‖2 + λTr(V TLV ) (3)

where λ ≥ 0 is the regularization parameter, S is defined in Eq. 6, Dii =
∑

j Sij ,
L = D− S. For non-negative data the multiplicative updating rules minimizing
the above objective function are given as

wij ← wij
(KV )ij

(KWV TV )ij
(4)

vij ← vij
(KW + λSV )ij

(VWTKW + λDV )ij
(5)

where K is the kernel matrix. Standard kernel matrix is XTX . In addition to
standard kernel matrix, the normalized-cut weighted form (NCW) suggested by
[8] can be used. The NCW weighting can automatically re-weight the samples
which automatically balance the effect of clustering algorithms to achieve better
result when dealing with unbalanced data.

3 Our Approach

3.1 Feature Selection Methods

Nearest neighbor search in high dimensional spaces affects performance and qual-
ity of text categorization. In such cases, a nearest neighbor is said to be unstable.
So we need some method to reduce the dimensionality. For that purpose we use
feature selection as dimensionality reduction. We use Non-negative matrix fac-
torization for feature selection and compare it with feature selection using SVM.

SVM Feature Selection. We can use feature selection based on SVM [4] when
class labels are known. So we need some feature selection method which gives
selected features without class information. So we use NMF to manually get class
label by clustering training samples into c clusters. Using these cluster labels ci
we can use SVM feature selection method.

SVM feature selection method selects features only from support vectors.
These features are discriminative in nature because support vectors only sep-
arates classes. It ignores features which are not present in support vectors. So
we need some method of feature selection which selects features from the entire
feature space. We use NMF feature selection approach.

NMF Feature Selection. Feature selection using NMF uses all features and
gives those features which are actually responsible for classification. NMF feature
selection is given in Algorithm 1.
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Algorithm 1. Feature Selection using NMF

Require: Given Training set A ∈ Rt×d, target number of features p
Ensure: Selected features
1: Apply NMF on A to get W,H
2: k= number of t-dimensional basis vectors W
3: Select p/k features from each wi having highest weight

We can further filter features using both NMF feature selection and SVM
feature selection to get features having both discriminative and descriptive in
nature.

3.2 Locally Consistent Concept Factorization with Selected
Features

LCCF creates a weight matrix by using local geometric structure effectively
modeled through a nearest neighbor graph on a scatter of data points. The edge
weight matrix S is defined as follows:

Sij =

⎧⎨⎩
xTi xj

‖xi‖‖xj‖
if xi ∈ Np(xj)

0 otherwise.

(6)

where Np(xj) denotes the set of p-nearest neighbors of xj . Constructing a graph
with N vertices where each vertex corresponds to a document using k-nearest
neighbors in the t-dimensional corpus may not give actual weights. So by select-
ing features from t-dimensional feature space and then Defining the edge weight
matrix S using k-nearest neighbors in selected features will give required weight
matrix. In summary, our data clustering algorithm is described in Algorithm 2.

4 Experimental Results

4.1 Data Set

Four data sets are used in our experiments. We remove features having doc-
uments frequency less than two and stop words like ’the’, ’and’ etc. We use
the term-frequency vector to represent each document. Let W = {f1, f2, ..., ft}
be the complete vocabulary set of the document corpus. We use tf-idf weight-
ing method for global frequency of each term. The term-frequency vector Ai of
document di is defined as

Ai = [a1i, a2i, ..., ati]
T

aji = tfji.log

(
n

idfj

)
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where tji, idfj, n denote the term frequency of word fi ∈W in document di, the
number of documents containing word fi and the total number of documents.
For classification we partition the datasets into 75% training samples and 25%
of testing samples.

Algorithm 2. Locally Consistent Concept Factorization with selected features

1: Given a data set, construct the data matrix X in which column i represents the
feature vector of data point i.

2: Using Algorithm 1 select relevant features and using these features construct S and
D as given in Eq.(6)

3: Fixing V , update matrix W to decrease the quadratic form of Eq.(3) using Eq.(4).
4: Fixing W , update matrix V to decrease the quadratic form of Eq.(3) using Eq.(5).
5: Normalize W .
6: Repeat Step 3, 4 and 5 until the result converges.
7: Use matrix V to determine the cluster label of each data point. More precisely,

examine each row i of matrix V . Assign data point i to cluster x if

x = argmax
c

(vic) (7)

Table 1. Datasets

Classic4 20NG TDT2 Reuters

No of documents 7094 18745 9394 8067

No of classes 4 20 30 30

No of features 5896 16333 12353 18832

We use the normalized mutual information(NMI) and purity(accuracy) of
clustering as our evaluation matrix [8]. The algorithms that we evaluated are
Gradient Descent with Constrained Least Squares(GNMF), Concept Factoriza-
tion(CF), Locally Consistent Concept Factorization(LCCF).

4.2 Results

Feature Selection. From Fig. 1 we can see that with increase in dimensionality
performance of kNN classifier decreases. In Fig. 1 we compare three feature
selection schemes. Feature selection using NMF always gives better performance
as compared to feature selection using SVM. Because SVM feature selection
method selects features only from support vectors which are discriminative in
nature. It ignores features which are not present in support vectors. But NMF
feature selection method selects highest weighting features from entire feature
space which are descriptive in nature. By combining both SVM, NMF feature
selection method we will get features with both descriptive and discriminating
property.
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Fig. 1. Comparison of Feature selection schemes on Classic4 dataset

Classification

– kNN classifier

From Fig. 2 and 3 we can observe that nearest neighbor search is meaningful in
the range of 100-200 dimensions for Classic4 dataset and 500-600 dimensions for
20Newsgroup dataset. Horizontal line in the Fig. 2 and 3 shows the accuracy of
classifier in full feature space.
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Fig. 2. kNN Classifier on Classic4
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Fig. 3. kNN Classifier on 20NG

– SVM classifier

From Fig. 4 and Fig. 5 we can see an increase in accuracy with increase in
number of features, but after a certain number of features it remains a constant.
Horizontal lines in the Fig. 4 and 5 shows the accuracy of classifier in full feature
space. We observe that after 10− 20% features, accuracy remains constant. So
we need to select those useful features using feature selection approaches.
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Fig. 4. SVM Classifier on Classic4
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Fig. 5. SVM Classifier on 20NG

Clustering. We show performance of our proposed method Locally Consistent
Concept Factorization with selected features(redLCCF) and compare it with
other clustering algorithms. Tables 2 and 3 shows purity and NMI for full feature

Table 2. Purity of clustering

Reuters TDT2

LCCF 0.3463 0.8416

redLCCF 0.3874 0.8610

CF 0.2944 0.7312

GNMF 0.2173 0.6992

Table 3. NMI of clustering

Reuters TDT2

LCCF 0.3796 0.8667

redLCCF 0.4024 0.8951

CF 0.3885 0.6763

GNMF 0.3049 0.5971

space. We observe that for less than four clusters GNMF performs well, but with
increase in number of clusters our redLCCF approach gives better performance.
Fig. 6 and 7 shows the purity and normalized mutual information versus the
number of clusters for different algorithms on the TDT2 dataset. As can be seen,
our proposed redLCCF algorithm consistently performs better than all the other
algorithms.
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5 Conclusion

By effective and efficient feature selection methods we can get almost same qual-
ity of performance with lesser computational time. From our experimental results
we observe that only 10 − 20% of the original features actually are responsible
for the quality of performance. We use redLCCF, which is applicable to both
positive and negative data values unlike NMF which works with positive data
value only. Due to unconstrained nature of input data we can use kernel meth-
ods. Many tasks that use k-nearest neighbor search can be combined with our
efficient feature selection approach to get better performance.
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Abstract. Recursive Similarity-Based Learning algorithm (RSBL) follows the
deep learning idea, exploiting similarity-based methodology to recursively gen-
erate new features. Each transformation layer is generated separately, using as
inputs information from all previous layers, and as new features similarity to the
k nearest neighbors scaled using Gaussian kernels. In the feature space created in
this way results of various types of classifiers, including linear discrimination and
distance-based methods, are significantly improved. As an illustrative example a
few non-trivial benchmark datasets from the UCI Machine Learning Repository
are analyzed.

Keywords: similarity-based learning, deep networks, machine learning, k near-
est neighbors.

1 Introduction

Classification is one of the most important area of machine learning. Similarity-based
methods (SBL, [1,2]), including many variants of the k-nearest neighbor algorithms,
belong to the most popular and simplest methods used for this purpose. Although such
methods have many advantages, including an easy handling of unlimited number of
classes and stability of solutions against small perturbations of data, their applications
are limited, because their computation time scales like O(n2) with the number of ref-
erence samples n. For large databases, especially in problems requiring real-time de-
cisions, such “lazy approaches” relaying more on calculations performed at the time
of actual classification rather than at the time of training are too slow. Training of all
similarity-based methods, including kernel-based SVM approaches, also suffers from
the same quadratic scaling problem. Fast methods for finding approximate neighbors
can reduce this time to roughly O(log n) [3].

After decades of development simple predictive machine learning methods seem to
have reached their limits. The future belongs to techniques that automatically com-
pose many transformations, as it is done in meta-learning based on search in the model
space [4,5,6], learning based on generation of novel features [7,8], and deep learning
[9] approaches. The recursive SBL (RSBL) approach presented here is inspired by re-
cent successes of the deep learning techniques. Kernel-based approaches make only
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one step, replacing original features with similarity-based features and performing lin-
ear discrimination in this space. Deep learning in neural networks is based on learning
in new feature spaces created by adding many network layers, in essence performing
recursive transformations. Instead of sequentially performing input/output transforma-
tions, RSBL version considered here systematically expands the feature space using
information from all previous stages of data transformation. In this paper only trans-
formations based on similarities to the nearest k-samples scaled by Gaussian kernel
features are explored, but any other similarity measures may be used in the same way
[7,8]. In essence this connects similarity-based methodology with deep learning tech-
niques, creating higher-order k-nearest neighbors method with kernel features.

In the next two sections a distance-based and deep learning approaches are intro-
duced. Short description of classification algorithms used here is given in the fourth
section. RSBL algorithm is introduced in section 5. Illustrative examples for several
datasets that require non-trivial analysis [10] are presented in section 6. Conclusions
are given in the final section.

2 Similarity-Based Learning

Categorization of new points based on their distance to points in a reference (training)
dataset is a simple and effective way of classification. There are many parameters and
procedures that can be included in the data modelsM based on similarity. Such models
are optimized to calculate posterior probability p(Ci|x;M) that a vector x belongs to
class Ci [1,2]. Optimization includes the type of distance functions, or the type of ker-
nel D(x,y) that should be designed depending on the problem, selection of reference
instances, weighting of their influence, and other elements. The most common distance
functions include:

– Minkowski’s metric D(x,y)α =
∑d

i=1 |xi − yi|α, becoming Euclidean metric for
α = 2, the city block metric for α = 1 and the Chebychev metric for α =∞.

– Mahalanobis distance D(x,y) =
√
(x− y)′C−1(x− y) where C is the covari-

ance matrix, taking into account scaling and rotation of data clusters.
– Cosine distance, equal to the normalized dot product D(x,y) = x · y/||x||||y||.
– Hamming distance is used for binary features D(x,y) = #(xi �= yi)/d.
– Correlation distance is also often used:

D(x,y) =

∑d
i=1(xi − x)(yi − y)√∑d

i=1(xi − x)2
∑d

i=1(yi − y)2
(1)

Heterogenous metric functions suitable for nominal data may be defined using condi-
tional probabilities [1,2], but will not be used in this paper.

3 Deep Learning

Learning proceeds by reduction of information, starting from rich information at the in-
put side and after a series of transformations creating an output sufficient for high-level
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decision, such as an assignment to a specific category. This information compression
process can be presented as a network, a flow graph in which each node represents el-
ementary data transformation. Flow graphs have different depth, i.e. the length of the
longest path from an input to an output. Popular classification algorithms have low
depth indices. For example, SVM algorithms, Radial Basis Function (RBF) networks,
or the k-NN algorithms all have depth equal to two: one for the kernel/distance calcu-
lation, and one for the linear models producing outputs, or for selection of the nearest
neighbors. Kernel SVM algorithms are basically linear discrimination algorithms in the
space of kernel features [8], selected using the wide-margin principle. The depth of the
Multilayer Perceptron (MLP) neural networks depends on the number of hidden layers
and in most cases is rather small, but in deep learning it tends to be large [9].

Despite their low depth most classifiers are universal approximators, i.e. they can
represent arbitrary function to a given target accuracy. In his book Bengio [9] shows
examples of functions that can be represented in a simple way with deep architecture,
but a shallow one may require exponentially large number of nodes in the flow graph,
and may be hopelessly difficult to optimize. The most important motivation to introduce
deep learning comes from signal processing by the brain. For example, the image pro-
cessing by the retina, lateral geniculate nuclei and visual cortex is done in many areas,
each of which extracts some features from the input, and communicates results to the
next level. Each level of this feature hierarchy represents the input at a different level
of abstraction, with more abstract features further up in the hierarchy, defined in terms
of the lower-level ones. One may argue that this processing is in fact best approximated
by a sequence of layers estimating similarity based on the lower-level similarity estima-
tions. People organize ideas and concepts hierarchically, learning first simpler concepts
and then composing them to represent more abstract ones. Engineers break-up solu-
tions into multiple levels of abstraction and processing, using the divide-and-conquer
approach at many levels. RSBL is inspired by such observations.

4 Classification Algorithms

In this section short description of classification algorithms used in our tests is pre-
sented. All of them are well known and their detailed description may be found in
classic textbooks [11].

4.1 Support Vector Machines (SVM)

Support Vector Machines (SVMs) are currently the most popular method of classifica-
tion and regression [12]. They require two transformations: first is based on kernels that
estimate similarity K(x;xi) comparing the current vector x to the reference vectors
xi selected from the training set. The second transformation is based on linear dis-
crimination, selecting from the training vectors only those reference vectors (support
vectors) that are close to the decision border, with regularization term added to ensure
wide-margin solutions. Depending on the choice and optimization of kernel parameters
SVM is capable of creating flexible nonlinear data models that, thanks to the optimiza-
tion of classification margin, offer good generalization. The best solution maximizes
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the minimum distance between the training vectors xi and the points x on the decision
hyperplanew:

max
w,b

min ‖xi − x‖ : w · x+ b = 0, i = 1, . . . , n (2)

Thew weight vector and the bias b are rescaled in such a way that points closest to the
hyperplane w · x + b = 0 lie on one of the parallel hyperplanes defining the margin
w · x+ b = ±1. This leads to the requirement that:

∀xi yi[w · xi + b] ≥ 1 (3)

The width of the margin is then equal to 2/‖w‖. The SVM algorithm is usually for-
mulated for two classes, labeled by yi = ±1, and presented as quadratic optimization,
leading to the discriminant function of the form:

g(x) = sgn

(
m∑
i=1

αiyix · xi + b

)
(4)

where linear combination coefficients αi are multiplied by the yi. The dot product x ·
xi is replaced by a kernel function K(x,x′) = φ(x) · φ(x′) where φ(x) represents
an implicit transformation of the original vectors to the new feature space. For any
φ(x) vector the part orthogonal to the space spanned by φ(xi) does not contribute to
φ(x) · φ(x′) product, so it is sufficient to express φ(x) and w as a combination of
φ(xi) vectors. The dimensionality d of the input vectors is frequently lower than the
number of training patterns d < n, therefore φ(x) usually represents mapping into a
high-dimensional space. Cover theorem [11] is frequently invoked to show advantages
of increasing the dimension of the feature space. In some problems – for example the
microarray data – dimensionality d may be much higher than the number of training
patterns n, which is usually very small. In such cases dimensionality reduction helps to
decrease noise inherent in some features. The discriminant function in the φ() space is:

g(x) = sgn

(
n∑

i=1

αiyiK(x,xi) + b

)
(5)

If the kernel function is linear the φ() space is simply the original space and the linear
SVM discriminant function is based on cosine distances to the reference vectorsxi from
the yi class. The original features xj , j = 1..d are replaced by new features zi(x) =
K(x,xi), i = 1..n that evaluate how close (or how similar) the vector is from the
reference vectors using cosine metric. Incorporating signs in the coefficient vectorAi =
αiyi the binary discriminant functions is:

g(x) = sgn

(
m∑
i=1

αiyizi(x) + b

)
= sgn (A · z(x)) + b) (6)

With the proper choice of non-zero α coefficients this function projects vectors in
the kernel space on a line defined by A direction, with b defining the class bound-
ary. In non-separable case instead of using cosine distance measures it is better to use
localized similarity measures, for example scaling the distance with Gaussian kernel
KG(x,x

′) = exp(−β‖x− x′‖2), contributing to the stability of the SVM solutions.
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4.2 k-Nearest Neighbours (kNN)

This is a one of the simplest classification algorithms used in patter recognition. The k-
nearest neighbors algorithms classify new objects assigning them to the most common
class among the k nearest neighbors (k is typically a small positive integer). If k=1, then
the object is simply assigned to the class of its nearest neighbor. Such version of kNN
are often called 1NN (one nearest neighbor). The accuracy of k-nearest neighbor clas-
sification depends significantly both on the k value (which can be easy optimized using
crossvalidation), and the metric used to compute distances between different examples.
For continuous variables Euclidean or cosine distance is usually taken as the metric.
For nominal features other measures, such as the Hamming distance or probability-
dependent metrics may be used.

5 Recursive Similarity-Based Learning (RSBL)

Deep learning methodology combined with distance-based learning and Gaussian ker-
nel features can be seen as recursive supervised algorithm to create new features, and
hence used to provide optimal feature space for any classification method. Implementa-
tion of RSBL used in this paper is based on Euclidean distance and Gaussian kernel fea-
tures with fixed σ=0.1, providing new feature spaces at each depth level. Classification
is done either by linear SVM with fixed C=25, or the 1NN algorithm. The Algorithm
sketched below presents steps of the RSBL; in each case parameters kmax = 20 and
α = 5 were used.

Algorithm 1. Recursive similarity-based learning
Require: Fix the values of internal parameters: kmax, maximum depth α, and σ (dispersion).

1: Standardize the dataset, n vectors, d features.
2: Set the initial space H(0) using input features xij , i = 1..n vectors and j = 1..d features.
3: Set the current number of features d(0) = d.
4: for m = 1 to α do
5: for k = 1 to kmax do
6: For every training vector xi find k nearest neighbors xj,i in the H(m−1) space.
7: Create nk new kernel features zj,i(x) = K(x,xj,i), j = 1..k; i = 1..n for all vectors

using kernel functions as new features.
8: Add new nk features to the H(m−1) space, creating temporary H(m,k) space.
9: Estimate error E(m,k) in the H(m,k) space on the training or validation set.

10: end for
11: Choose k′ that minimizes E(m, k′) error and retain H(m,k′) space as the new H(m)

space.
12: end for
13: Build the final model in the enhanced feature space H(α).
14: Classify test data mapped into the enhanced space.

In essence the RSBL algorithm at each level of depth transforms the actual feature
space into the extended feature space H(m), discovering useful information by creating
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new redundant features. Note that the initial space covers d original features xj that are
available at each depth, preserving useful information that kernel SVM may discard.
The final analysis in the H(α) space (and optimization of parameters at each level of
RSBL algorithm, including feature selection) may be done by various machine learning
methods. Once useful information is extracted many classification methods may benefit
from it. The emphasis is on generation of new features using deep-learning methodol-
ogy rather than optimization of learning.

In this paper only the simplest models, 1NN and linear SVM with fixed C=25, are
used for illustration. RSBL may be presented as a constructive algorithm, with new layers
representing transformations and procedures to extract and add to the overall pool more
features, and a final layer analyzing the image of data in the enhanced feature space.

Fig. 1. RSBL method presented in graphical form for depth equal three

6 Illustrative Examples

Many sophisticated machine learning methods are introduced every year and tested
on relatively trivial benchmark problems from the UCI Machine Learning Repository
[13]. Most of these problems are relatively easy: simple and fast algorithms with O(nd)
complexity give results that are not statistically significantly worse than those obtained
by the best known algorithms. Some benchmark problems are not trivial, they require
complicated decision borders and may only be handled using sophisticated techniques.
To distinguish dataset that should be regarded as trivial from more difficult cases sim-
ple methods with O(nd) complexity have been compared with the optimized Gaussian
SVM results [10].

New methods should improve results of simple low-complexity machine learning
methods in non-trivial cases. Below RSBL results for a few non-trivial dataset are pre-
sented, i.e. data for which result obtained with low complexity methods are significantly
worse than those obtained by kernel SVM. These datasets obtained from the UCI repos-
itory [13], are summarized in Tab. 1. In experiments 10-fold crossvalidation tests have
been repeated 10 times, and the average results are collected in Tables 2-3, with accu-
racies and standard deviations given for each dataset.

The ORG column gives results of SVM or 1NN algorithm using the original data.
RSBL(1) – RSBL(5) columns presents results in enhanced spaces at depth 1 to 5. In
all cases RSBL combined with linear SVM (fixed parameters) gives results that are
comparable to SVM with optimized Gaussian kernels. Additionally, increasing levels of
depth provides an increase of classification accuracy (except for the parkinsons dataset).

The linear SVM results obtained in the RSBL enhanced feature space are almost
always improved, although for this data improvement over RSBL(2) are not significant.
Results of the 1NN do not improve in the enhanced space.
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Table 1. Summary of datasets used in experiments

Dataset #Vectors #Features #Classes
ionosphere 351 34 2

monks-problems-1 556 6 2
monks-problems-2 601 6 2

parkinsons 195 22 2
sonar 208 60 2

Table 2. 10 x 10 crossvalidation accuracy and standard deviation for RSBL combined with SVM.
Additionally SVM with optimized Gaussian kernels (SVMG) results are presented for compari-
son.

Dataset Method
ORG RSBL(1) RSBL(2) RSBL(3) RSBL(4) RSBL(5) SVMG

ionosphere 88.2±6.4 92.3±3.8 94.0±3.9 94.0±3.9 94.0±3.9 94.0±3.9 94.6±3.7
monks-problems-1 74.6±4.6 100±0.0 100±0.0 100±0.0 100±0.0 100±0.0 99.8±0.6
monks-problems-2 65.7±0.6 79.6±3.1 84.9±4.1 85.7±4.2 85.7±4.2 85.7±4.2 84.9±4.9

parkinsons 88.7±7.8 89.3±5.4 93.3±4.9 91.3±6.0 89.2±5.1 87.7±5.4 93.2±5.6
sonar 74.9±9.5 82.2±7.9 85.1±4.6 86.6±7.0 87.4±7.7 87.9±7.3 86.4±7.6

Table 3. 10 x 10 crossvalidation accuracy and standard deviation for RSBL combined with 1NN

Dataset Method
ORG RSBL(1) RSBL(2) RSBL(3) RSBL(4) RSBL(5)

ionosphere 87.1±5.2 87.4±4.8 87.8±4.9 87.8±4.9 87.8±4.9 87.8±4.9
monks-problems-1 100±0.0 99.9±0.1 99.4±1.2 99.3±1.2 99.4±1.1 99.4±1.0
monks-problems-2 68.8±6.2 69.2±8.7 71.6±6.2 71.6±6.2 71.6±6.2 71.8±6.2

parkinsons 93.8±5.4 92.8±6.6 91.7±6.1 91.7±6.1 91.7±6.1 91.7±6.1
sonar 85.0±5.8 85.5±6.8 86.0±6.6 87.9±6.5 87.9±6.5 87.9±6.5

7 Conclusions

The most important goal of computational intelligence is to create methods that can
automatically discover the best models for a given data. There is no hope that a single
method will always be the best [11], therefore such techniques like deep learning, meta-
learning or feature construction methodology should be used.

RSBL algorithm introduced in this paper is focused on hierarchical generation of
new distance-based and kernel-based features rather than improvement in optimization
and classification algorithms. Finding interesting views on the data by systematic addi-
tion of novel features is very important because combination of such transformation-
based systems should bring us significantly closer to the practical applications that
automatically create the best data models for any data. Expanded feature space may
benefit not only from random projections, but also from the nearest neighbor methods.

Results on several non-trivial benchmark problems shows that RSBL creates explic-
itly feature spaces in which linear methods reach results that are at least as good as
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optimized SVM with Gaussian kernels. Further improvements to the RSBL algorithm
will include the use of different distance measures, fast approximate neighbors, fea-
ture selection and global optimization of the whole procedure. Applications to more
challenging datasets and to the on-line learning of non-stationary data will also be con-
sidered.
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Abstract. Image interpolation is a method of obtaining a high resolution image 
from a low resolution image, which is applied to many image processing 
procedures. In order to make the interpolated image having smooth edges and 
make the interpolation processing fast, we propose a fast edge-directed 
interpolation algorithm in this paper. The proposed method consists of three 
steps, the determination of nonedge pixels and edge pixels, the bilinear 
interpolation for nonedge pixels, and the edge-adaptive interpolation for edge 
pixels. The experimental results show that it outperforms some existing 
interpolation algorithms in terms of image quality and processing speed. 

Keywords: Image Interpolation, Resolution Enhancement, Edge, Image 
Quality. 

1 Introduction 

Image interpolation is a method of producing a high resolution (HR) image from the 
corresponding low resolution (LR) image. The method is often applied in many areas, 
such as image processing softwares, media players, digital cameras, high-definition 
TV. Some traditional interpolation algorithms, including the nearest neighbor 
interpolation, the bilinear interpolation and the bicubic interpolation [1], are 
implemented in consumer appliances. But these algorithms accordingly produce 
blurring or aliasing [2] around the edge area, when enlarge images.  

In order to reduce the burring or aliasing and improve the visual quality, several 
interpolation algorithms [3]-[12], have been proposed. Allebach et al. [6] presented an 
edge-directed interpolation method. It generates an HR edge map from the LR image, 
and utilizes the linear interpolation and the correction processing to get modified pixel 
values. The entire process is repeated iteratively. Zhang et al. [7] proposed an edge-
guided interpolation algorithm based on directional filtering and data fusion. For each 
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unknown pixel, its neighbors are divided into two subsets. Using the subsets, two 
estimate pixel values are generated. Then a more robust estimate pixel value is 
obtained by a data fusion method. Cha et al. [8] proposed an error-amended  
sharp edge algorithm, which uses the bilinear interpolation firstly and corrects  
the interpolation error by employing the classical interpolation error theorem in an 
edge-adaptive way.  

The method of New Edge-Direct Interpolation (NEDI) [9] is to first estimate local 
covariance coefficients from a LR image and then use the covariance to adapt the 
interpolation at an HR image based on the geometric duality between the LR 
covariance and the HR covariance. The NEDI method performs good visual quality of 
the interpolated images, but it has a very high computational complexity. In order to 
reduce the computational complexity, some improved NEDI algorithms have been 
proposed [10], [11]. However, these algorithms still have a high computational 
complexity compared with traditionary linear interpolations, and are not able to 
achieve real time image processing. To significantly reduce the computational 
complexity, Chen et al. [12] proposed a fast edge-oriented algorithm. The method is 
to first partition an image into homogeneous areas and edge areas, and then use 
individual interpolation algorithm respectively. In Chen's method, the detection of 
homogeneous area only uses two pixels around the unknown pixel and the edge-
oriented adaptive interpolation for edge pixels is processing only one time, neglecting 
the structure of the pixels. These may accumulate the interpolation errors.  

In this paper, we propose a fast edge-directed interpolation algorithm which is an 
improvement on the NEDI method and Chen's method. The proposed algorithm 
avoids the high computational complexity, and the image visual quality is better than 
some existing interpolation algorithms.  

The rest of this paper is organized as follows. Section 2 presents a detailed 
description of the proposed interpolation algorithm including three steps. In section 3, 
the experimental results are given, in terms of image visual quality and computational 
complexity. Finally, Section 4 concludes the paper. 

2 The Proposed Algorithm 

In this section, a detail description of the proposed algorithm is given. The conceptual 
procedure of the proposed algorithm is presented in Fig. 1. 

2.1 Determination of Nonedge Pixels and Edge Pixels 

As described by Li et al. [9], an unknown pixel is declared to be an edge pixel if the 
local variance is above a preset threshold value. So the proposed algorithm uses the 
local variance estimated from the nearest neighbors to determine unknown pixels to 
be either nonedge pixels or edge pixels.  
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Fig. 1. The conceptual procedure of the proposed algorithm 

Without the loss of generality, it assumes that the LR image X with size m×n 
directly comes from the HR image Y with size 2m×2n, i.e., Y(2i-1, 2j-1)=X(i, j). 
Considering the different structure of the unknown pixels, we process the pixels Y(2i, 
2j), Y(2i-1, 2j), and Y(2i, 2j-1), respectively. 

The unknown pixels Y(2i, 2j) and the nearest neighbors are shown in Fig. 2(a). The 
procedure of determining nonedge pixels or edge pixels is described as follows: The 
letters a, b, c, and d are used to denote the luminance value of pixels Y(2i-1, 2j-1), 
Y(2i-1, 2j+1), Y(2i+1, 2j-1), and Y(2i+1,2j+1), respectively. For the pixel Y(2i, 2j), 
the local variance is equal to the variance of a, b, c, and d. If the local variance is 
smaller than the preset threshold, the pixel Y(2i, 2j) is determined to a nonedge pixel. 
Otherwise, the pixel Y(2i, 2j) is determined to an edge pixel.  

The unknown pixels Y(2i-1, 2j), Y(2i, 2j-1) and their nearest neighbors are shown 
in Fig. 2(b) and Fig. 2(c). The procedure of determining nonedge pixels or edge pixels 
is similar as processing Y(2i, 2j) in Fig. 2(a). 

 

Fig. 2. The relationship between the interpolated pixels and original pixels 
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2.2 Bilinear Interpolation for Nonedge Pixels 

The same as described in section 2.1, the nonedge pixels Y(2i, 2j), Y(2i-1, 2j), and 
Y(2i, 2j-1) are processed respectively. The luminance value of the pixel is equal to the 
average of a, b, c, and d, when the unknown nonedge pixel is Y(2i, 2j). And the 
luminance value of the pixel is equal to the value of (a+b+6c+6d+e+f)/16, when  
the unknown nonedge pixel is Y(2i-1, 2j) or Y(2i, 2j-1), which a, b, c, d, e, and f are 
luminance values of the corresponding nearest neighbor pixels.  

2.3 Edge-Adaptive Interpolation for Edge Pixels 

After the above process, all nonedge pixels have been defined and the edge pixels are 
left unknown. These edge pixels will be interpolated using an adaptive method. In this 
part, the algorithm scans line-by-line the image Y, looking for the edge pixels. The 
edge pixels can be classified to two types, as shown in Fig. 3 and Fig. 4. Firstly, the 
edge pixels Y(2i, 2j) are interpolated, then the edge pixels Y(2i-1, 2j) or Y(2i, 2j-1) are 
interpolated.  

(1). In this step, the edge pixels Y(2i, 2j) are interpolated. As shown in Fig. 3, the 
values of black circle dots have been known. And the values of white square dots 
may, or may not, have been interpolated by the method described in section 2.2. The 
procedure of this step is described as follows: (a). The values of white square dots 
have all been interpolated by the method described in section 2.2. In this case, the 
algorithm computes the difference among four directions, 0°, 45°, 90°, 135°, as 
shown in Fig. 3. The difference values among 0°, 45°, 90°, 135°, are represented by 
d1, d2, d3, and d4, respectively. Then, the minimum value among d1, d2, d3, and d4 
is computed. The direction of the minimum value indicates that the edge pixel is 
interpolated with the known pixel on this direction. (b). The values of white square 
dots have not all been interpolated by the method described in section 2.2. In this 
case, the algorithm computes the minimum value among d1, d2, and d4, when Y(2i-1, 
2j) or Y(2i+1,2j) is unknown. Or computing the minimum value among d2, d3, and 
d4, when Y(2i, 2j-1) or Y(2i, 2j+1) is unknown. If Y(2i-1, 2j) or Y(2i+1,2j) is an edge 
pixel, as well as Y(2i, 2j-1) or Y(2i, 2j+1), the algorithm computes the minimum value 
between d2 and d4.  

 

Fig. 3. The interpolation for edge pixels Y(2i, 2j) 



402 Q. Tian et al. 

(2). After the above step, the algorithm starts to process the edge pixels Y(2i-1, 2j) 
and Y(2i, 2j-1). As shown in Fig. 4, the values of black circle dots and black square 
dots have been known. And the values of white square dots may, or may not, have 
been interpolated by the method described in section 2.2. The procedure of this step is 
similarly as the process described in the previous step.  

 

Fig. 4. The interpolation for edge pixels Y(2i-1, 2j) and Y(2i, 2j-1) 

3 Experimental Results 

In this section, the proposed algorithm as well as the bilinear interpolation, Chen's 
method [12], and the NEDI method [9] are tested. The proposed algorithm and Chen's 
method are implemented in Matlab by us. The NEDI Matlab code is kindly provided 
by its original author. While for the bilinear interpolation, the basic image processing 
Matlab function is used.  

For the experimental needs, some synthetic and natural images representing 
various conditions are used, such as Letters(Gray scale), Plane(Gray scale), 
Watch(Gray scale), Butterfly(Color), Lena(Color), and Peppers(Color). The original 
test images with size 512×512 are downsampled by a factor of two along each 
dimension to get downsampled images with size 256×256. Then the downsampled LR 
images are interpolated to HR images by different interpolation methods.  

3.1 Image Quality Comparison 

It is generally agreed that the objective image quality assessments, such as the Peak 
Signal to Noise Ratio (PSNR), can not consider the visual masking effect around the 
arbitrarily-oriented edge and do not always provide an accurate visual quality 
assessment for interpolated images [7], [9]. So the subjective comparison is used to 
assess the visual quality of the interpolated images in this paper. For subjective 
comparison of different algorithms, the portions of interpolated images and original 
images are presented, as shown in Fig. 5. The proposed algorithm shows the most 
outstanding performance in preserving the smoothness of the edges, and shows the 
best visual quality among these interpolation methods. 
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        (a)                (b)                  (c)               (d)                 (e)  

Fig. 5. Visual comparison of different interpolation algorithms:  
(a) Original HR images, (b) Bilinear, (c) Chen's, (d) NEDI, (e) Proposed.  
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3.2 Computational Complexity Comparison  

All the simulation are performed on the same platform, namely, a PC with AMD 
Athlon(tm) II X4 640 (3 GHz) CPU and 4GB DDR3 RAM. And all the algorithms are 
implemented in Matlab R2008a. So the computational time can assess the 
computational complexity of different methods, as shown in Table 1 and Table 2. It 
can draw a conclusion that the proposed algorithm has a lower computational 
complexity than Chen's method and the NEDI method. The low computational 
complexity of the proposed algorithm can make the image interpolation processing 
more faster.  

Table 1. The computational time of gray scale images (seconds) 

Images Bilinear Chen's NEDI Proposed 
Letters 0.0913 0.8552 25.0636 0.2749 
Plane 0.1643 1.1488 36.5660 0.5466 

Watch 0.0819 0.9274 29.7018 0.5716 

Average 0.1125 0.9771 30.4438 0.4644 

Table 2. The computational time of color images (seconds) 

Images Bilinear Chen's NEDI Proposed 
Butterfly 0.2559 2.8976 110.6003 1.7239 
Lena 0.2839 2.7030 102.7653 1.6144 

Peppers 0.2113 2.9668 97.2152 1.6867 

Average 0.2504 2.8558 103.5269 1.6750 

4 Conclusion 

For some applications requiring a fast image processing, such as real-time improving 
the resolution of videos, the visual quality and computational complexity are very 
important. So we propose a fast edge-directed image interpolation algorithm, which 
has better visual quality and lower computational complexity compared with some 
existing methods. The experimental results show that the proposed algorithm has 
good performance in the process of obtaining the HR image from the corresponding 
LR image. Much further work can be done on improving the image quality by using 
some learning algorithms or some multi-frame super-resolution algorithms. 
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Abstract. Intelligent constraint handling evolutionary algorithm (ICHEA) is a 
recently proposed variation of evolutionary algorithm (EA) that solves real-
valued constraint satisfaction problems (CSPs) efficiently [20]. ICHEA has 
ability to extract and exploit information from constraints that guides its 
evolutionary search operators in contrast to traditional EAs that are ‘blind’ to 
constraints. Even its efficacy to solve CSPs it was not implemented to handle 
constraint optimization problems (COPs). This paper proposes an enhancement 
to ICHEA to solve real-valued COPs. The presented approach demonstrates 
very competitive results with other state-of-the-art approaches in terms of 
quality of solutions on well-known benchmark test problems. 

Keywords: Intelligent constraint handling evolutionary algorithm (ICHEA), 
evolutionary algorithm (EA), constraint satisfaction problem (CSP), constraint 
optimization problem (COP). 

1 Introduction 

Evolutionary algorithm (EA) has been successful in solving many difficult NP class 
problems; however, it suffers from some of its inherent approaches to solve constraint 
problems as it does not make use of information from constraints and blindly search 
in the solution space using various heuristic search operators [3, 5, 16]. 
Characteristically, constraint problems solved by EAs use penalty based functions. A 
penalty function updates the fitness of chromosomes in EA. A penalty term is used in 
general for reward and punishment for satisfying and/or violating the constraints [4]. 
Use of penalty functions has been commonly reported in literature for use in 
constrained optimization. Two basic types of penalty functions exist; exterior penalty 
functions, which penalize infeasible solutions, and interior penalty functions, which 
penalize feasible solutions [2]. The most popular method adopted to handle 
constraints in EAs was taken from the mathematical programming literature – penalty 
functions (mostly exterior penalty functions) – where the aim is to decrease (punish) 
the fitness of infeasible solutions as to favor those feasible individuals in the selection 
and replacement processes. The main advantage of the use of penalty functions is 
their simplicity; however, their main shortcoming is that penalty factors, which 
determine the severity of the punishment, must be set by the user and their values are 
problem dependent that requires a careful fine-tuning of parameter to obtain 



 Real-Valued Constraint Optimization with ICHEA 407 

competitive results [12, 13]. A self-adaptive penalty function based genetic algorithm 
(SAPF) is proposed in [21] that penalizes individuals based on ratio of total feasible 
and infeasible individuals present in the population. There are various forms of 
penalties reported in the literature, like static penalty, dynamic penalty, annealing 
penalty and death penalty [4]. 

Some other constraint handling approaches include expensive repair algorithms 
that promote the local search to transform infeasible solutions to feasible solutions 
because the feasible parents not necessarily produce feasible progenies [4]. In multi-
objective optimization (MOO) constraints are transformed into multiple objectives. 
There are many established MOO algorithms like MOGA [9], VEGA [19], NSGA 
and NSGAII [6]. Paredis in [17] has used co-evolution strategies that utilizes 
predator-prey model to keep two populations – one population represents solutions 
that satisfies many constraints while other population represents those individuals 
whose constraint(s) is violated by lots of individuals in the first population. This 
strategy requires extra computational effort to find the intersection of a line with the 
boundary of the feasible region. 

The use of domain knowledge within an EA can also be utilized to improve its 
performance as EAs are ‘blind’ to constraints. Recently, there have been few 
algorithms developed that move away from penalty based fitness functions to generic 
distance function given in Eq. (8). ICHEA [20] uses its intermarriage crossover 
operator to look for overlapping feasible regions through differentiating the 
boundaries of feasible regions for each constraint. This reduces the search space to 
obtain the solution efficiently. Cultural algorithms are also used to extract domain 
knowledge for its evolutionary search by using two subpopulations – population space 
and the belief space. Ricardo and Carlos in [18] proposed cultured differential 
evolution (CDE) that uses differential evolution (DE) as the population space and 
belief space as the information repository to store experiences of individuals for other 
individuals to learn. Amirjanov in [1] proposed changing domain range based genetic 
algorithm (CRGA) that adaptively shifts and shrinks the size of search space of the 
feasible region by employing feasible and infeasible solution in the population to 
reach the global optimum. Mezura-Montes et. al. in [14] proposed simple multi-
membered evolution strategy (SMES) that uses a simple diversity mechanism by 
allowing infeasible solutions to remain in the population. A simple feasibility-based 
comparison mechanism is used to guide the process toward the feasible region of the 
search space. The idea is to allow the individual with the lowest amount of constraint 
violation and the best value of the objective function to be selected for the next 
population. PSO-DE proposed by [12] is another algorithm that integrates particle 
swarm optimization (PSO) and DE to solve real-valued COPs. 

This paper is organized as follows: Section 2 describes formalization of CSPs and 
COPs. Section 3 revisits ICHEA introduced in [20]. Section 4 describes enhanced 
ICHEA that can solve COPs. Section 5 shows experimental results of ICHEA with 
other state-of-the-art algorithm to solve number of benchmark COPs. Section 6 
discusses the outcomes of the experiments performed and section 7 concludes the 
paper by summarizing the results and proposing some further extensions to the 
research. 
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2 Formalization of CSPs and COPs  

Constraint problems can be divided into two classes: Constrained Optimizing 
Problems (COPs) and constraint satisfaction problems (CSPs).The difference between 
these classes is that in the first an optimal solution that satisfies all the constraints 
should be found, while in the second class any solution as long as all the constraints 
are satisfied is acceptable [8]. It has been shown in [20] that ICHEA is very effective 
in solving real-valued CSPs, however, its ability to solve COPs was not investigated. 
This current work is an enhancement of ICHEA to solve real-valued COPs. 

A solution to real-valued COP has two folds – search for an optimum solution that 
also must satisfy all the constraints. Real-valued COP can be formulated as: optimize  (1)

where COP’s objective function  has an -dimensional input vector  , , …  that is defined in a search space . More specifically, ∈  , 
where    being the feasible region on the search space   . Usually, the 
search space  is defined as a -dimensional rectangle in . The domain of 
variables is defined by their lower bounds  and upper bounds : , 1  (2)

The feasible region  with bounds on each dimension is further restricted by a set of 
 additional constraints that can be given in two relational forms – equality and 

inequality [6, 12, 21]. 0      1, … ,  (3)0 1, … ,   (4)

The equality constraints  cannot be solved directly using EAs so it is converted 
into inequality constraints by introducing a positive tolerance value . 0 (5)

A set of individual feasible regions , , . .  for each constraint can also be 
defined as:  ∈  | 0, 1 , ∈  (6)

where  is the set of integers. Many EAs uses a distance function as their fitness 
function to rank individuals. The distance function indicates how far a chromosome is 
from the feasible regions [15]. This fitness function tries to bring the chromosomes 
closer to the feasible region using the following function for 1 :  , 00, 0 (7)

  ∑ | | (8) 
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The fitness function fitness  is a measurement of euclidean distance of a vector x 
from a feasible region . The error function  is the summation of all the fitness 
functions. Minimizing the error value   leads toward a CSP solution where the 
objective function  is not needed. A solution to CSP is found when 0. To 
get a COP solution, CSP solutions are further processed to get optimum value of x 
that optimizes the objective function .  

ICHEA has been demonstrated to outperform many well-known EAs to solve 
CSPs in [20] as it utilizes the information from constraints to guide its evolutionary 
search operators. The motivation behind this paper is to propose an enhancement of 
ICHEA to show its efficacy in solving real-valued COPs based on the test results of 
some benchmark problems. 

3 Intelligent Constraint Handling Evolutionary Algorithm 

ICHEA uses its novel search operator intermarriage crossover that uses information 
from constraints rather than blindly searching for the solution. In this crossover both 
parents belong to different feasible regions  and where . It is also possible that 
a parent does not belong to any of the feasible regions . The generated offspring 
contains genes from both parents. The purpose is to make a “generic” offspring that tries 
to satisfy more than one constraint because its parents are from two different feasible 
regions. The algorithm favors those offspring which satisfy more constraints by utilizing 
Deb’s ranking scheme based on feasibility [6] to rank the population where the 
population is first sorted according to number of satisfied constraints in decreasing order 
then by fitness value given in Eq. (8) in increasing order. 

3.1 Intermarriage Crossover for Real-Valued CSPs 

In intermarriage crossover, two parents generate two offspring. This is a dual process 
where both parents move closer to each other one at a time and their new positions are 
considered as two new offspring. An offspring from two parents through 
intermarriage is defined in a search space as a constant multiple of difference of two 
parent vectors as shown in Eq. (9). Initially offspring  is placed at position /  where  is a coefficient in the range within 0,1  which is 0.75 if both 
parents satisfy at least one different constraint and  is 0.1 if both parents satisfy all 
same constraints. Then  moves iteratively closer to parent  until it also satisfies 
the constraint(s) that  satisfies and similarly offspring   is designated. The 
iterative move can be captured as:  

 (9)

Variable  gets incremented from 1 to a threshold value in the sequence 1,2, . . . , . 
We have used  = 5 for our experiments. So using the Eq. (9) the  value is 
incremented by 1 until the offspring finds an acceptable place or a threshold value  is 
reached. This causes two selected vectors (parents) of different constraint satisfaction 
sets to come closer (offspring) towards constraint boundary because the solution space 
lies in the overlapping boundary region. Favoring points for intermarriage that satisfy 
more constraints, results in finding solution space quickly [20]. 
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   1 00 1 0 00 00    00    0 1 00 1
∆ ,   ∆ ,∆ ,   

This intermarriage crossover tends to converge quickly resulting in low diversity 
of the population. To avoid this early convergence, the concept of multi-parent 
crossover has been incorporated where rather than picking most desirable parents 
from the population, new parents are generate on the vertices of a hyper rectangle that 
encloses a parent. This hyper rectangle is dynamically created from the locations of 
two chosen parents  and  for crossover. To make a hyper rectangle around each 
parent the following steps are being followed: 
• Determine the distance from  to  ∆ ,  which is then multiplied by 

.  is a square diagonal matrix of size  which is the total 
dimensions of the search space. The diagonal entries are only 1 as shown below. 

 produces 2  possible combinations of matrices that are used to 
generate set of all 2  vertices  of the hyper rectangle where only 
maximum of up to 2 vertices are chosen randomly. An instance  of  
namely  is chosen to create a parent  which represents the 

 vertex of the hyper rectangle. Matrix multiplication of  and ∆ ,  gives the distance from new parent  to  denoted 
by ∆ , .   

• Add vector  to the distance vector ∆ ,  to get parent : ∆ ,  (10)

Parent  goes through intermarriage crossover with each of these parents and then 
only the best offspring is selected to go into the offspring pool. This same process is 
repeated for other parent . 

3.2 ICHEA Algorithm 

ICHEA is a variation of EA introduced in that adds constraint handling features to the 
standard GAs. The pseudocode can be given as: 
  chromosomes  = initializeChromosomes(); 
  for each generation 
  parents = NoveltyTournamentSelection(); 
  offspring = interMarriageCrossover(parents); 
  Mutation(offspring); 
  chromosomes = chromosomes + offspring; 
  SortAndReplace();                 
  CheckTerminationCriteria(); 
  End for loop; 
The detailed description of the algorithm can be found in [20]: 
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4 ICHEA for Constraint Optimization Problems 

ICHEA introduced in [20] is limited to works for CSPs only. We have enhanced the 
algorithm as below to improve the solutions of the COPs as well. 

4.1 Parallel Processing for CSP and COP 

The foundation of ICHEA lies in acknowledging the information from the set of 
feasible regions  that guides its evolutionary search to solve CSPs effectively. To 
enhance its capability in solving COPs a formative approach is taken where ICHEA 
runs two processes in parallel – one to solve CSP and another to optimize CSP 
solutions. The parallel process starts by dividing the whole population  into 2 
parts. First part  keeps the CSP solutions that are required for optimization 
and the second part  keeps the good infeasible solutions that are processed to 
get CSP solutions. The ratio of :  is fine-tuned to 1:4 for our 
experiments. 

 is divided into equal sized  slots where slot  is allocated for 
individuals that violate  constraints. If there are no individuals with  violations 
then its allocated space is evenly distributed to other slots. This is done to keep 
diverse population of partially feasible solutions as [12] have observed that only 
keeping individuals with lower degree of constraint violations might cause the 
population to be trapped in a local optimum. Let  indicate the population of 
individuals that violate  constraints so the total population  is: 

 ∑  

Then  is sorted according to the fitness and the best | |⁄  is selected 
for subpopulation . max | |⁄  

If after allocation,  slots have  < | |⁄ , then unallocated 
population of individuals  is: | |⁄ ,       | |⁄  0                               ,                            

This unallocated population  needs to be allocated evenly in the slots that 
have  > | |⁄ . 

4.2 Search Focus towards Best So Far Individual 

Intermarriage crossover guides the evolutionary search to focus on feasible regions. 
In addition to normal intermarriage crossover the same parents undergo intermarriage 
crossover with a neighbor of current best solution to guide the search focus towards 
best so far individual. This is similar to PSO approach [7] where all swarm particles 
tend to move towards better positions nearby the best position that leads to optimum 
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solution [7, 10]. This helps in exploring promising solution in a nearby region of the 
current best solution. If the intermarriage crossover operator is denoted by  then 
the intermarriage crossover initiated by parents  and  involves the following 
steps:  

1.  
2.  

3.   where ∈ 0.0,1.0    

4.  

The step (1) is just a normal intermarriage crossover between  and  followed by 
step (2) that is an intermarriage crossover between a parent  and aforementioned 
newly created parents on the vertices of the hyper-rectangle  (see 
Section 3.1) so that exploration is not limited to the selected population only. Step (3) 
determines the common neighbor of parent  and the current best 
chromosome  using a randomly generated coefficient  in the range of (0.0, 
1.0). Finally intermarriage crossover happens between  and  in step (4) 
which is inspired from PSO to search near by the current best solution. These four 
steps are specifically used to find the COP solution. 

5 Experiment 

To validate the efficacy of ICHEA, 11 
benchmark problems from COP domain 
[11, 12, 15] have been selected. All test 
problems are mathematical functions of 
various types like quadratic, linear, 
nonlinear and trigonometric. ICHEA has 
been compared against five state-of-the-art 
approaches briefly mentioned in the section 
1: CRGA [1], SAPF [21], PSO-DE [12], 
CDE [18] and SMES [14]. No parallel processing or distributed environment is used 
for the experiments.  

An average of 10 successive runs for ICHEA is taken into account to demonstrate 
its solution quality against published results of other algorithms mentioned above. 
Table 1 shows the parameter settings used for all test problems. Generally, ICHEA is 
able to find a solution close to optimal solution in a few generations but it is allowed 
to run full 1.0E3 generations to try to obtain best possible solutions. For example best 
solutions for problem G12, G08, G11 and G01 are obtained in 10, 12, 28, 234 
generations with 9.1E3, 1.1E4, 2.4E4, 2.4E5 evaluations respectively. The positive 
tolerance value  for problem G03 and G11 is 1.0E-3 and 1.0E-5 respectively.  

Table 2 shows the statistical summary of the results for all the tested problems 
showing best, median, mean and worst solutions obtained with their corresponding 
standard deviations (SD). Table 3 – Table 5 show the same results compared with  
 

Table 1. Parameter Settings 

Parameters ICHEA 
Population size 100 

Maximum generations 1.0E3  
Maximum evaluations 1.0E6 
Mutation rate 0.1 
Crossover rate 1.0 
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Table 2. Experimental results of ICHEA on 11 benchmark functions 

Functions Best Median Mean Worst SD 

G01 -15.00000 -15.00000 -15.00000 -15.00000 5.4E-07 

G02 -0.803036 -0.784636 -0.768525 -0.743884 2.3E-02 

G03 -1.00497 -1.00483 -1.00476 -1.00483 1.1E-04 

G04 -30665.539 -30665.539 -30665.537 -30665.530 3.2E-03 

G06 -6961.814 -6961.813 -6961.814 -6961.814 1.85E-05 

G07 24.6149 24.9502 25.7139 27.2705 1.0E+00 

G08 -0.095825 -0.095825 -0.095825 -0.095825 2.3E-07 

G09 680.645 680.742 680.774 680.995 1.1E-01 

G10 7128.097 7165.736 7196.508 7297.964 5.8E+01 

G11 0.7500 0.7500 0.7500 0.7500 3.2E-05 

G12 -1.00000 -1.00000 -1.00000 -1.00000 1.2E-06 

Table 3. Comparison of best solutions of ICHEA with five other state-of-the-art algorithms  

Functions ICHEA CRGA SAPF PSO-DE CDE SMES 

G01 -15.00000 -14.9977 -15.000 -15.000000 -15.000000 -15.000 

G02 -0.803036 -0.802959 -0.803202 -0.8036145 -0.803619 -0.803601 

G03 -1.00497 -0.9997 -1.000 -1.0050100 -0.995413 -1.000 

G04 -30665.539 -30665.520 -30665.401 -30665.539 -30665.539 -30665.539 

G06 -6961.814 -6956.251 -6961.046 -6961.8139 -6961.8139 -6961.814 

G07 24.6149 24.882 24.838 24.30621 24.30621 24.327 

G08 -0.095825 -0.095825 -0.095825 -0.095826 -0.095825 -0.095825 

G09 680.645 680.726 680.773 680.6301 680.6301 680.632 

G10 7128.097 7114.743 7069.981 7049.248 7049.248 7051.903 

G11 0.7500 0.750 0.749 0.749999 0.7499 0.75 

G12 -1.00000 -1.000000 -1.000000 -1.000000 -1.000000 -1.000 

Top ranked 7/11 3/11 4/11 11/11 9/11 11/11 

 
other algorithms based on best, mean and worst solutions respectively. The results in 
bold indicate the optimum solutions or one of the best amongst all the algorithms. 
ICHEA is able to reach global optimum for problems G01, G04, G06, G08, G11 and 
G12 while problems solutions for G02, G03, G09 is very close to optimum solutions. 
For problems G10 very good solutions are not observed within the limited 
generations. This demonstrates the competitiveness of ICHEA with other algorithms. 

We have also taken the count of final results that are ranked in top half, achieved 
by all the algorithms. The last rows of Table 3 – Table 5 shows the count of top 
ranked final results where PSO-DE, SMES and ICHEA are found to be best 3 out of 6 
algorithms for getting good mean and worst solutions and PSO-DE, SMES, CDE and 
ICHEA are best 4 out of 6 algorithms for reaching towards optimum solution; 
however, according to “no-free-lunch” theorem no algorithm is the best for all classes 
of problems [22]. PSO-DE is able to demonstrate very impressive results for 
benchmark COPs but it is not able to perform well for CSPs as demonstrated in [20] 
where ICHEA outperforms it in terms of success rate and efficiency.  
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Table 4. Comparison of mean solutions of ICHEA with five other state-of-the-art algorithms 

Functions ICHEA CRGA SAPF PSO-DE CDE SMES 

G01 -15.00000 -14.9850 -14.552 -15.000000 -14.999996 -15.000 

G02 -0.768525 -0.764494 -0.755798 -0.756678 -0.724886 -0.785238 

G03 -1.00476 -0.9972 -0.964 -1.0050100 -0.788635 -1.000 

G04 -30665.537 -30664.398 -30665.922 -30665.539 -30665.539 -30665.539 

G06 -6961.814 -6740.288 -6953.061 -6961.8139 -6961.8139 -6961.284 

G07 25.7139 25.746 27.328 24.30621 24.30621 24.475 

G08 -0.095825 -0.095819 -0.095635 -0.0958259 -0.095825 -0.095825 

G09 680.774 681.347 681.246 680.6301 680.6301 680.643 

G10 7196.508 8785.149 7238.964 7049.248 7049.248 7253.047 

G11 0.7500 0.752 0.751 0.749999 0.757995 0.75 

G12 -1.00000 -1.000000 -0.99994 -1.000000 -1.000000 -1.000 

Top ranked  8/11 2/11 1/11 10/11 6/11 9/11 

Table 5. Comparison of worst solutions of ICHEA with five other state-of-the-art algorithms  

Functions ICHEA CRGA SAPF PSO-DE CDE SMES 

G01 -15.00000 -14.9467 -13.097 -15.000000 -14.999993 -15.000 

G02 -0.743884 -0.722109 -0.745712 -0.6367995 -0.590908 -0.751322 

G03 -1.00483 -0.9931 -0.887 -1.0050100 -0.639920 -1.000 

G04 -30665.530 -30660.313 -30656.471 -30665.539 -30665.539 -30665.539 

G06 -6961.814 -6077.123 -6943.304 -6961.8139 -6961.8139 -6952.482 

G07 27.2705 27.381 33.095 24.3062 24.3062 24.843 

G08 -0.095825 -0.095808 -0.092697 -0.0958259 -0.095825 -0.095825 

G09 680.995 682.965 682.081 680.6301 680.6301 680.719 

G10 7297.964 10826.09 7489.406 7049.248 7049.249 7638.366 

G11 0.7500 0.757 0.757 0.750001 0.796455 0.75 

G12 -1.00000 -1.000000 -0.999548 -1.000000 -1.000000 -1.000 

Top ranked 8/11 1/11 1/11 10/11 7/11 9/11 

6 Discussion 

ICHEA was initially introduced to solve real-valued CSP solutions only where it was 
able to outperform many other EAs in terms of success rate and efficiency [20]. In 
this paper ICHEA has been enhanced to solve COPs as well. The comparative test 
results on benchmark COPs are very promising and competitive with other state-of-
the-art algorithms. ICHEA is a problem independent formulation where consistent 
results have been observed for all the test problems using common parameters.  

Introduction of ICHEA in [20] demonstrated that extracting information from 
constraints can produce very good solutions efficiently. Hence the basic structure of 
ICHEA has been kept intact while enhancing it to employ constraint optimization 
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tasks. The current form of ICHEA is still problem independent where addition of 
parallel processing simultaneously deals with constraint satisfaction and optimization 
tasks. Intermarriage crossover has been adjusted to search for an optimum solution 
that still utilizes information from the constraints.  

7 Conclusion 

ICHEA introduced in [20] has been demonstrated to outperform many well-known 
EAs including PSO-DE to solve benchmark CSPs. ICHEA has been enhanced in this 
paper without losing its integrity to solve real-valued COPs which has shown very 
competitive results. This new ICHEA runs in two parallel processes – one for CSP 
and another for COP. The CSP process searches feasible regions to make a population 
of feasible solutions while COP process tries to optimize the solutions using the 
whole population. The main idea remains the information extraction from constraints 
that reduces the search space to promising regions only. Currently ICHEA is 
restricted to solve only real-valued CSP and COP but it has all the potential to be 
extended to work for discrete constraints problems as it relies on extracting 
information from constraints. The future work also involves applying ICHEA for 
dynamic CSPs and COPs.  
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Abstract. The cerebellum has two distinct memory sites. A single ses-
sion of behavioral training forms short-term memory in the cerebellar
cortex, and by repeating the training, long-term memory is formed in
the cerebellar or vestibular nuclei, as if the memory is transferred from
the cortex to the nuclei. We propose a simple network model of the cere-
bellum for the formation and transfer of motor memory. We assume a
Hebbian rule with a postsynaptic gating mechanism for synaptic plastic-
ity in the nuclei. We carry out computer simulation of gain adaptation of
vestibulo-ocular reflex (VOR) and demonstrate robust memory transfer:
the synaptic weight in the nuclei does not diverge to infinity. We suggest
that memory transfer occurs mainly after training, not during training,
and that spontaneous activity of Purkinje cells after training is necessary
for memory transfer.

Keywords: Cerebellum, Motor learning, Memory consolidation, Post-
training period.

1 Introduction

There is a long-lasting debate on the location of motor memory in the cere-
bellum: the cerebellar cortex versus the cerebellar/vestibular nuclei in the brain
stem [1–4]. Accumulating experimental evidence indicates that short-term mem-
ory, which is acquired by a single session of behavioral training and disappears
within 24 hours, is formed at parallel fiber (PF)-Purkinje cell synapses in the
cerebellar cortex, whereas long-term memory, which is acquired by repeating the
session and persists for days and weeks, is formed at mossy fiber (MF)-nuclear
cell synapses [5–8]. The long-term memory is formed not during training but
after training, during which short-term memory decays spontaneously, as if the
short-term memory in the cerebellar cortex is transferred to the nuclei and con-
solidated as long-term memory [9–11]. The neural mechanism of this transsynap-
tic memory formation, or called “memory transfer”, during post-training periods
remains unknown.
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We propose a theoretical model of post-training memory transfer in the cere-
bellum. We assume that PF-Purkinje cell synapses are modified by conventional
long-term depression (LTD) and long-term potentiation (LTP), in which plastic
change is induced by the instruction signal fed by climbing fibers (CFs). On the
other hand, we assume that MF-nuclear cell synapses are updated by a Hebbian
rule with a postsynaptic gating factor. By carrying out computer simulations
of gain adaptation of vestibulo-ocular reflex (VOR), we demonstrate that the
model exhibits memory transfer during post-training periods. We also demon-
strate that spontaneous activity of Purkinje cells after training is necessary for
memory transfer.

2 Model of Cerebellar Motor Learning

Figure 2 illustrates our simple network model of the cerebellum for VOR gain
adaptation. Mossy fibers transmit information on head rotation to the vestibular
nucleus and granule cells. Granule cells send axons called PFs to Purkinje cells,
which in turn inhibit the vestibular nucleus. Granule cells also excite molecu-
lar layer interneurons such as basket and stellate cells, which in turn inhibit
Purkinje cells. Climbing fibers send retinal slip information to Purkinje cells as
an instruction signal to induce plastic change at PF-Purkinje cell synapses. We
omit Golgi cells for the sake of simplicity.

mf vn

gr

in

v

w

excitatory
inhibitory

pkj cf

Fig. 1. Our simple network model of the cerebellum. Mossy fibers and climbing fibers
provide inputs, whereas the vestibular nucleus issues the final output. Mossy fibers
excite granule cells and the vestibular nucleus. Granule cells excite Purkinje cells and
inhibitory interneurons that inhibit Purkinje cells. Purkinje cells inhibit the vestibular
nucleus. Climbing fibers provide teacher or error signals to Purkinje cells, which induce
learning of synaptic weights between granule cells and Purkinje cells. w and v are
synaptic weights between granule cells and Purkinje cells, and between mossy fibers
and vestibular nucleus, respectively. Abbreviations: cf, climbing fibers; gr, granule cells;
in, inhibitory interneurons; mf, mossy fibers; pkj, Purkinje cells; vn, vestibular nucleus.
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We calculate the activity of the neurons in our model as follows:

gr = mf (1)

pkj = w · gr (2)

in = gr (3)

vn = v ·mf− (pkj− in) , (4)

where mf, gr, pkj, in, and vn denote the activity of MFs, granule cells, Purkinje
cells, molecular-layer interneurons, and vestibular nucleus, respectively, and w
and v represent synaptic weights between a PF and a Purkinje cell and between
an MF and a vestibular nucleus, respectively.

The value of w is initialized to w(0) and updated by two different rules either
during training or after training:

Training: τwinduction
ẇ = − (w − w(0)) + cf (5)

Post-training: τwrecovery ẇ = − (w − w(0)) (6)

where the dot notation of a variable (e.g., ẇ) denotes the time derivative of
the variable (i.e., dw/dt). cf is the activity of CFs as the instruction signal for
learning. We do not model the process of plasticity [12] explicitly. Rather, we
consider simply that w depends on the value of cf. τwinduction

and τwrecovery are time
constants. We assume that the induced change is maintained for much longer
time than the time necessary for the induction, so that τwinduction

� τwrecovery .
The value of v is initialized to v(0) and updated by a Hebbian rule with a

postsynaptic gating mechanism [13] as follows:

τv v̇ = mf · (vn− θ) (7)

τθ θ̇ = −θ + vn, (8)

where θ calculates the running average of vn. Owing to this parameter, the
plasticity rule updates the value of v towards either potentiation or depression,
depending on the history of the activity of vn. Thus, θ provides a gating mech-
anism. τθ and τv are time constants and assumed to be τθ � τv.

Inputs to this network are given by mf and cf. We assume that mf represents
the average activity of MFs, and that the value in resting state is almost the
same with that during training. Eventually, we regard mf as constant. We discuss
on the soundness of this assumption in Discussion. Other variables are functions
of time t.

3 Results

Computer Simulation of VOR Gain Adaptation

We carried out computer simulations of VOR gain adaptation. Initially, we per-
formed a freerun for 10,000 steps to set parameters to their equilibrium states
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(data not shown). Then, we carried out a course of 4 sessions of training, where
the first 2 sessions are for gain up training and the others for gain down training.
Each session is composed of a training period for 100 steps and a post-training
period for 1,900 steps. Parameters were set as follows: mf = 1, cf = −1 for gain
up training and +1 for gain down training, w(0) = 1, v(0) = 1, τwinduction

= 10,
τwrecovery = 500, τθ = 500, and τv = 2, 000.

Figure 2 plots the change of the values of w, v and vn throughout the 4
sessions. The value of w repeats twice to decrease quickly during training and
recover slowly after the training, and then repeats twice to increase quickly dur-
ing training and recover slowly after the training, suggesting that w is short-term
memory. The value of v gradually increases during the first 2 sessions and then
gradually decreases during the latter 2 sessions, as if v accumulates the change
of w throughout the 4 sessions. In other words, the value of w is transferred to
as that of v during post-training periods, suggesting memory transfer from the
cortex to the nuclei and consolidation of v as long-term memory. The value of vn
increases quickly during training and decays slowly after the training. Owing to
the memory transfer, the baseline value of vn changes throughout the 4 sessions.

Figure 3 plots the value of θ and vn across the 4 sessions. For each session, the
value of vn increases quickly and then decreases slowly. The value of θ increases
gradually and exceeds that of vn at some point during post-training periods.
Thereafter, (vn− θ) in Eq. (7) becomes negative and converges to zero in time.
Therefore, the value of v does not diverge to infinity. This result suggests that the
postsynaptic factor θ acts as a constraint for robust long-term memory formation
to prevent v from diverging.

w/w

v/v

vn/vn

time step

Fig. 2. Plots of w (top), v (middle) and vn (bottom) in a course of 4 sessions of training.
They are divided by w̄, v̄ and v̄n, the values at their equilibrium state, respectively,
and normalized.
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θ/θ

time step

Fig. 3. Plots of θ (black) and vn (gray) in the course of 4 sessions of training. Both θ
and vn are normalized as in Fig. 2.

Disruption of Memory Transfer by Blocking Purkinje Cells’ Activity
During Post-training Periods

In the cerebellar cortex, molecular interneurons such as stellate and basket
cells exert GABAergic inhibition to Purkinje cells. Injection of a GABA agonist
muscimol into the cerebellar cortex may enhance GABA receptors on Purkinje
cells, and thereby blocking Purkinje cells’ activity. Pharmacological studies have
shown that muscimol injection into the cerebellar cortex after training disrupts
memory transfer [9, 11], suggesting that spontaneous activity of Purkinje cells
after training is necessary for memory transfer.

We carried out simulation of this post-training blockade of Purkinje cells’
activity. For each post-training period, we replaced Eq. (4) with

vn = v ·mf, (9)

by omitting the inhibition term.
Figure. 4 shows the result. By blocking Purkinje cells’ activity after each

training, the value of vn immediately goes to the almost initial level, because
the short-term memory stored in the cerebellar cortex is shut down. On the
other hand, because the value of θ is still high, the term (vn − θ) in Eq. (7)
becomes large negative, resulting in the decrease of v to the almost initial level.
Therefore, the value of vn does not exhibit accumulative change across the 4
sessions, indicating that long-term memory formation is disrupted.

4 Discussion

We proposed a model on post-training memory transfer in cerebellar motor learn-
ing. In our model, synaptic weights of MF-nuclear cell synapses are updated by
a Hebbian rule with a postsynaptic gating mechanism, which is controlled by
the running average of the postsynaptic neuron activity. We demonstrated that
memory transfer occurs mainly after training, not during training, and sponta-
neous activity of Purkinje cells after training is necessary for memory transfer.
These results are consistent with experimental results [9–11].

Previous theoretical studies have demonstrated that the conventional Heb-
bian rule adopted for MF-nuclear cell synapses, in which the synaptic weight is
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w/w

v/v

vn/vn

time step

Fig. 4. Plots of w (top), v (middle) and vn (bottom) in a course of 4 sessions of training
under the blockade of Purkinje cells’ activity during post-training periods. Gray lines
are identical to those in Fig. 2 for comparison. Conventions as in Fig. 2.

updated by the correlated activity of MFs and the nuclei, allows the weight value
to diverge to infinity, indicating the failure of memory transfer [14, 15]. Instead,
these studies have proposed Purkinje cell-dependent rule, in which the synaptic
weight is updated by the correlated activity of MFs and Purkinje cells inner-
vating to the nuclei. Purkinje cell-dependent rule is demonstrated to prevent
the synaptic weight from divergence. A problem, however, is that the biological
mechanism to update the synaptic weight between a pre- and a post-synaptic
neurons with the help of a third neuron is unclear. On the other hand, our model
based on a Hebbian rule does not need a third neuron, which allows to update
the synaptic weight using local information only. This is an advantage of our
model over the previous studies. Another problem of the previous studies is that
their models show memory transfer during training, not after training. This is
another advantage of the present model.

In addition to the Hebbian rule with a postsynaptic gating mechanism em-
ployed for MF-nuclear cell synapses, two more assumptions are made in our
model. First assumption is that the average activity of MFs is almost the same
with that during training. Semicircular canal neurons that provide MF inputs in
VOR elicit spikes about 60 spikes/s spontaneously and increase or decrease their
firing rates equally depending on the direction of head rotation [16]. This ob-
servation implies that the average firing rate is always equal to the spontaneous
firing rate, which could justify our assumption. Second assumption is that in-
duced plastic change at PF-Purkinje cell synapses is maintained for much longer
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time than the time necessary for the induction. In slice experiments, LTD at PF-
Purkinje cell synapses is induced by paired stimulation of PFs at 4 Hz and CFs
at 1 Hz for 5 minutes. The LTD persists more than 1 hour [12]. This observation
could justify the second assumption as well. To maintain induced LTD, protein
synthesis on Purkinje cells is necessary [17]. Application of anisomycin, a pro-
tein synthesis inhibitor, to the cerebellar cortex after training disrupts memory
transfer [10]. Our model is consistent with this experimental result.

In sum, our model provides a clue from a theoretical viewpoint to settle the
controversy on the location of motor memory in the cerebellum [1].
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Abstract. Recent physiological studies have reported that neurons in the cortic-
al area V4 are selective to curvature along object contour. The neurons are ca-
pable of discriminating convexity and concavity, and indicating the direction of 
the curvature with respect to the contour projected onto their cRF. We propose 
that surface representation plays a crucial role in constructing the selectivity for 
curvature because convexity/concavity cannot be determined without the con-
struction of object surface. To test the proposal, we developed a computational-
model of V1-V4 networks that computes spatiotemporal activities of single 
cells, and carried out the simulations with the stimuli used by the physiological 
studies. The model neurons reproduced the selectivity for specific curvature and 
direction. Population of the model cells showed a bias toward convex curvature 
as consistent with V4 population in vivo. These results support that the repre-
sentation of surface is crucial for the construction of the selectivity in V4. 

Keywords: shape representation, surface, curvature selectivity. 

1 Introduction 

Accumulated evidence of physiology has suggested that representation of object 
shape is gradually constructed through multiple visual cortices in the ventral stream 
[1-4]. In the early-stage of the stream, a retinal image is decomposed by Gabor filters 
into local features such as oriented line-segment, and these features are gradually 
integrated in order by intermediate-stages (V2-V4) of the stream. Recent physiologi-
cal studies have suggested that neurons in V4 bind oriented line-segments and con-
struct the representation of curvature along object contour [3, 4]. A precise analysis of 
the dynamics of the curvature-selective neurons has revealed that the driving feature 
(of stimulus) gradually changes from local orientation to a combination of the orienta-
tions [5].  Specifically, early-phase responses correspond to orientation fragment and 
late-phase responses correspond to a combination of the orientations. It is of great 
interest what neural mechanisms bind the local features to construct a higher repre-
sentation of shape. 

We propose a hypothesis that higher shape representation is constructed from the 
integration of local features based on the surface represented by V2. Specifically, the 
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present study addresses how the selectivity for curvature in V4 emerges from orienta-
tions represented in V1. There are two advantages to utilize surface for the integra-
tion: (i) it preserves the convexity/concavity even if other cues (e.g., local contrast & 
color) are identical (see Fig. 1a), and (ii) temporal dynamics (early- and late-phases) 
of V4 neurons agrees with the latency of orientation extraction in V1 and that of  
surface representation in V2 [6, 7].  

To test our proposal, we developed a computational model of V1-V2-V4 networks, 
with all possible combinations of local orientations (in V1) and its locations (for de-
tails, see the next section). This thorough combination enabled us to exclude any  
explicit mechanism for reproducing physiological results. We carried out the simula-
tions of the model with the stimuli defined by curvature and its direction, the same set 
as that used in the physiological study [3]. The results showed that the model single 
cells reproduced the selectivity for curvature and its direction, and that population 
activity was biased toward acute curvature, showing a good agreement with physiolo-
gy. These results support that the representation of surface in early visual areas plays 
a crucial role for the construction of the curvature selectivity in V4. 

2 The Model 

The activity of a model V4 neuron is determined by two distinct terms of early- and 
late-phases: (i) summation of V1 cells’ activity (early-phase), (ii) binding the V1 ac-
tivity with a specific combination of orientations with respect to the surface (late-
phase). Fig. 2 shows a schematic illustration of the spatial correspondence between 

 

Fig. 1. The role of surface in producing the selectivity for curvature. (a) Convexity/concavity of 
a contour cannot be determined without the representation of surface. Psychophysics shows that 
observers often see a white region as a figure (surface) in the left panel while black region in 
the right panel. Such assignment of surface is necessary to signal convexity/concavity, because 
local structures (indicated by dashed circles) are identical between the two panels.  (b) An 
example of the response distribution of a single V4 neuron as a function of curvature and its 
direction with respect to the cRF [replotted from 4]. This cell responded strongly to convex 
curvature (positive in ordinate) at the left of the cRF (180o). Therefore, this cell will respond to 
a stimulus similar to the left panel in (a)(the corresponding range is denoted by a dashed circle 
at the top of (b)) but not to the right panel (denoted by a dashed circle at the bottom of (b)). 

(a) (b)
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2.2 V4 Layer 

The activity of a single V4 cell is computed in two phases. The early-phase response 
is a spatial summation of V1 cells’ activity and the late-phase response is determined 
by a combination of orientations at specific positions with respect to object surface. It 
is expected that tuning for curvature is obtained by the late-phase response. 

Early-Phase Response: During the early-phase, the model computes a linear summa-
tion of the activities of specific V1 cells. We defined the response during the early 
phase as: 

 ∑ , ∈ , (4) 

 Θ 0°, 22.5°, ,337.5°  , (5) 

where Gauss represents a Gaussian defined by the center position of RF  
( , ; equivalent to the center of a stimulus) and standard deviation (SD;  = 
20pixels, approximately 1 degree in visual angle). Θ is a set of 16 orientations. pref 
represents preferred two orientations out of 16 orientations, which is inherent in each 
cell. The early-phase response passes through a sigmoidal function to realize  
compressive nonlinearity observed in early vision. We described the output of this 
phase ( ) as: 

 , (6) 

 1 , (7) 

where shift, gain and asym are constants that determine origin, slope and asymptote of 
the sigmoid, respectively. We set these constants empirically as shift = 0.35, gain = 
10, and asym = 1 so as to realize the compressive nonlinearity and limit the output 
within a range (from 0 to 1).   

Late-Phase Response: The tuning for curvature is obtained by the late-phase where 
activities of V1 cells are bound (Fig. 3). The bind is based on the direction of surface 
and the combination of orientations (both of which are given as preference of a model 
V4 cell). For example, a cell whose preference is denoted in Fig. 3a shows a strong 
response to a protrusion (defined by the orientations) projected onto the right (defined 
by the surface direction; Fig. 3c). We define the late-phase response as:  

  ∑ ,∈   (8) 

where w indicates the weight that represents the preference for the position of surface 
center with respect to the cRF center. We set constants of sigmoidal function as shift 
= 0.125, gain = 100, and asym = 0.5.    represents the summation of   
weighted by the preference for angular positions and orientations 
( , , ) described as: 
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Fig. 3. Predicted late-phase response of the model. (a) Example preference for a combination of 
orientations. The center of the cRF is located at the origin. (b) The preferred combination de-
noted in (a) is shown as a function of orientation and its angular position. (c) The predicted 
activities of the model cell denoted in (a). 

 , , ∑ ,, , (9) 

 , , ∑  , (10) 

where ORI and ANG represent preferred combinations of orientation and its angular 
position with respect to the cRF center, respectively.  and   indicate ith 
preference of a cell for the orientation and its angular position. We used N = 2 and  
= 5°. An example of Comb is shown in Fig. 3b. There are two distinct tunings that are 
defined by the angular position and the orientation (eq.10). All possible combinations 
of two orientations (from 16 orientations) and two angular positions (from 8 posi-
tions) were used in the simulations, leading to 9,216 (16×16×8×9/2; same combina-
tion of angular positions are excluded from the simulations) distinct combinations 
(model cells).  is the angular position of  with respect to the center of cRF and 
is calculated by: 

  , (11) 

where ,  represent the position of centroid of . ,  represent the 
center position of cRF (equivalent to the center of a stimulus). We define the late-
phase response ( ) as:  

  , (12) 

where we set shift = 0.7, gain = 10, and asym  = 1. 
 
 
 

(a) (b) (c))(c)
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Response of Single V4 Neurons: The activity of a model V4 cell ( ) is given by 
the summation of the early-phase response and the late-phase response as: 

  . (13) 

3 Results 

To examine whether the representation of surface is crucial for the construction of the 
curvature selectivity from local orientations, we carried out the simulations of the 
model with the stimuli (Fig. 4) defined by curvature (squashed within 0-1) and its 
direction (0°-357.5°).  Stimulus size was 108×108 pixels, and we defined 21 pixels 
as 1 degree in visual angle. These stimuli were comparable to those used in physio-
logical studies so that we can compare the results of simulations and physiological 
experiments in single-cell and population behavior. 

3.1 Single Cell Behavior 

We compared the tuning for curvature and direction between the model single-cells 
and V4 neurons in vivo reported by Carlson et al [4].  Fig. 5 shows the activity of 
model single-cells (Fig. 5a-c) and that of V4 neuron (Fig. 5d; [4]). A model single-
cell (Fig. 5a) shows the strongest response to the stimulus of which curvature is 1 
(sharp convex) and its direction is 70°, yielding a clear tuning for acute curvature on 
the upper right of the object.  Other model neurons (Fig.5b & 5c) show a distinct 
tuning for curvature and its direction with similar tuning widths. For example, a mod-
el cell in Fig. 5c is selective to obtuse curvature. The tuning of single V4 neurons 
reported by Carlson et al. showed (1) the bias for acute curvature, and (2) the aniso-
tropy in the direction of curvature (Fig. 5d; [4]). The model cells showed the similar 
characteristics, as observed in Fig. 5a to 5c. These results indicate that the model re-
produces the behavior of V4 neurons at single-cell level. 

3.2 Population Behavior 

We demonstrated that behavior of model single cells agrees with that of real V4 neu-
rons. Here, we examined whether population behavior agrees with physiological data. 
Specifically, Carlson et al. have reported that a population activity of V4 neurons 
(obtained from a summation of single neurons’ activity) showed the bias toward acute 
curvature (cells respond more frequently to the stimuli of which curvature is above 
0.3) with isotropy in its direction (no bias in the direction of curvature), as shown in 
Fig. 6b ([4]; n = 165). A summed activity of all model cells is shown in Fig. 6a (n = 
9,216). The population activity of model cells shows a bias toward acute curvature, 
with the isotropy in its direction, as similar to the physiological data. Note that we 
prepared the model with all possible combinations of the preferences in local orienta-
tions and positions. It is natural to expect no bias in the preference. Therefore, our 
results are surprising and provide a strong constrain on the understanding of the  
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underlying neural mechanisms. Our further analysis suggests that the activity of a 
majority of model cells were rather weak and their preference was biased toward 
acute curvature, while the model cells with stronger responses do not. We expect that  
further analysis will lead to the further understanding of population behavior. 

 

Fig. 4. Stimuli used in the simulations. These are defined by curvature (ranges from 0 to 1) and 
its direction (0° - 357.5°; 0° indicates protrusion toward right). 

 

Fig. 5. Example responses of model cells (a-c) and a V4 neuron in vivo (d) reported by Carlson 
et al [4] are plotted along the curvature (vertical axis) and its direction (horizontal axis). Re-
sponse to stimulus is denoted by grey (whiter represents stronger activity). 

 
 

(a) (b)

(c) (d)

(b)

(d)



432 Y. Hatori and K. Sakai 

 

Fig. 6.  Population activity of model cells (a) and V4 neurons reported by Carlson et al [4] (b). 
The conventions are the same as Fig. 5. The activities are obtained from the summation of 
single neurons’ activity. 

4 Conclusions and Discussions 

We proposed that the curvature selectivity is constructed by combining local orienta-
tions based on surface representation. To test the proposal, we developed a computa-
tional model that computes the activities of single V4 cells, and carried out the simu-
lations of the model with the stimuli defined by curvature and its direction. Simula-
tion results revealed that the model single-cells reproduced the selectivity for curva-
ture and its direction, and that population activity was biased toward acute curvature, 
indicating good agreements with physiological data [3, 4]. 

Lack of the explicit implementation of V2 layer does not affect the validity of the 
model. Although the V2 layer potentially influences the activities of the early- and 
late-phase, we considered only the early-phase in the present model. We assumed that 
V2 layer is included in the process of emergence of surface representation during the 
late-phase. If V2 layer were explicitly implemented in the computation of the early-
phase, the activity of a V2 cell was given by a spatial pooling of V1 cells’ activities. 
In the present model, a similar pooling is performed in V1-V4 connections with a 
pooling area larger than V1-V2. The larger pooling in V1-V4 should be equivalent to 
a cascade of smaller pooling in V1-V2 and V2-V4. Although BO-selective cells in V2 
might have non-uniform pooling, a V4 cell would pool all of them to yield uncondi-
tional pooling. Therefore, the implementation of V2 layer have no (or a small) effect 
to the computation of early-phase activity unless pooling includes strong nonlinearity. 

Our model accounts for crucial, physiological characteristics of V4 neurons. First, 
the model differentiates its activities to convexity from concavity as same as real neu-
rons [4]. Cadieu et al. have proposed a computational model for shape selectivity in 
V4 [9]. Their model was based on a weighted sum of local orientations with various 
spatial positions, spatial frequencies and sizes. Although their model can predict the 
selectivity of V4 neurons, the model did not capture the crucial characteristic of the 
neurons: their model cannot distinguish convex from concave. Our model is capable 
of distinguishing convexity and concavity because surface defines the direction of 

(a) (b)(a) (b)
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figure so that either convexity or concavity is uniquely determined. Second, time 
course of the model V4 neuron is consistent with a physiological study of Yau et al 
[5]. They demonstrated that the activity of V4 cells was characterized by two distinct 
phases. The two phases of the model (early- and late-phase) agree with those of the 
actual neurons. The distinct phases are not reproduced by a weighted summation of 
orientations without surface representation [9], spectral receptive field model [10], 
and filter-rectify-filter pathway model [11], because these models lack multiple com-
putational pathways of which time courses are different. Note that our model is not 
designed to reproduce the tuning of V4 cells for color [12] and disparity [13] so that 
other mechanisms are needed for explaining these characteristics. These results sup-
port that the representation of surface in early visual areas is crucial for the construc-
tion of curvature selectivity that leads to the representation of shape. 
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Abstract. Many real-world constrained problems have a set of predefined static 
constraints that can be solved by evolutionary algorithms (EAs) whereas some 
problems have dynamic constraints that may change over time or may be 
received by the problem solver at run time. Recently there has been some 
interest in academic research for solving continuous dynamic constraint 
optimization problems (DCOPs) where some new benchmark problems have 
been proposed. Intelligent constraint handling evolutionary algorithm (ICHEA) 
is demonstrated to be a versatile constraints guided EA for continuous 
constrained problems which efficiently solves constraint satisfaction problems 
(CSPs) in [22], constraint optimization problems (COPs) in [23] and dynamic 
constraint satisfaction problems (DCSPs) in [24]. We investigate efficiency of 
ICHEA in solving benchmark DCOPs and compare and contrast its 
performance with other well-known EAs. 

Keywords: evolutionary algorithm (EA), constraint satisfaction problem (CSP), 
dynamic constraint satisfaction problems (DCSP), constraint optimization 
problem (COP), dynamic constraint optimization problem (DCOP), Intelligent 
constraint handling evolutionary algorithm (ICHEA). 

1 Introduction 

Many engineering problems ranging from resource allocation and scheduling to fault 
diagnosis and design involve constraints that must be satisfied to have an acceptable 
solution. Some of these constraints and/or objective function can change over time 
which makes the problem more complex like ship scheduling, vehicle routing, 
dynamic obstacle avoidance, the adaptive farming strategies and 
aerodynamic/structural wing design problems [5, 16, 21]. The constraint problems can 
be divided into four classes: static constraint satisfaction problems (CSPs), dynamic 
constraint satisfaction problems (DCSPs), static constraint optimization problems 
(COPs) and dynamic constraint optimization problems (DCOPs). The difference 
between static/dynamic constraint optimization and constraint satisfaction is that in 
first an optimal solution that satisfies all the constraints available at that particular 
time should be found, while in second any solution as long as all the constraints 
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available at the given time are satisfied is acceptable [7]. This paper concentrates only 
on DCOPs. 

EAs have been successful in solving many static COPs where objective function of 
non-contained optimization problem is generally bundled with problem dependent 
penalty functions. A penalty term is used in general for reward and punishment for 
satisfying and/or violating the constraints [4] where the aim is to decrease (punish) the 
fitness of infeasible solutions as to favor those feasible individuals in the selection and 
replacement processes. The main advantage of the use of penalty functions is their 
simplicity; however, their main shortcoming is that penalty factors, which determine 
the severity of the punishment, must be set by the user and their values are problem 
dependent that requires a careful fine-tuning of parameter to obtain competitive 
results [12, 13]. There are some other novel approaches in the literature to handle 
static constraints effectively. Some of the important relevant approaches applied in 
constraint handling for EAs are summarized below from [4, 10]. 

Some other constraint handling approaches include expensive repair algorithms 
that promote the local search to transform infeasible solutions to feasible solutions 
because the feasible parents not necessarily produce feasible progenies [4]. In multi-
objective optimization (MOO) constraints are transformed into multiple objectives. 
There are many established MOO algorithms like MOGA [8], VEGA [20], NSGA 
and NSGAII [6]. Paredis in [17] has used co-evolution strategies that utilizes 
predator-prey model to keep two populations – one population represents solutions 
that satisfies many constraints while other population represents those individuals 
whose constraint(s) is violated by lots of individuals in the first population. This 
strategy requires extra computational effort to find the intersection of a line with the 
boundary of the feasible region. 

The use of domain knowledge within an EA can also be utilized to improve its 
performance as EAs are ‘blind’ to constraints. Recently, there have been few 
algorithms developed that move away from penalty based fitness functions to generic 
distance function given in Eq. (8). ICHEA [22] uses its intermarriage crossover 
operator to look for overlapping feasible regions through differentiating the 
boundaries of feasible regions for each constraint. This reduces the search space to 
obtain the solution efficiently. Cultural algorithms are also used to extract domain 
knowledge for its evolutionary search by using two subpopulations – population space 
and the belief space. Ricardo and Carlos in [18] proposed cultured differential 
evolution (CDE) that uses differential evolution (DE) as the population space and 
belief space as the information repository to store experiences of individuals for other 
individuals to learn. Amirjanov in [1] proposed changing domain range based genetic 
algorithm (CRGA) that adaptively shifts and shrinks the size of search space of the 
feasible region by employing feasible and infeasible solution in the population to 
reach the global optimum. Mezura-Montes et. al. in [14] proposed simple multi-
membered evolution strategy (SMES) that uses a simple diversity mechanism by 
allowing infeasible solutions to remain in the population. A simple feasibility-based 
comparison mechanism is used to guide the process toward the feasible region of the 
search space. The idea is to allow the individual with the lowest amount of constraint 
violation and the best value of the objective function to be selected for the next 
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population. PSO-DE proposed by [12] is another algorithm that integrates particle 
swarm optimization (PSO) and DE to solve real-valued COPs. 

A DCOP is a sequence of static constraints added, removed or updated in the 
search space of the problem. It is indeed easy to see that all the possible changes 
(constraint or domain modifications, variable additions or removals) can be expressed 
in terms of constraint additions or removals [26]. To solve such a sequence of 
constraints, it is always possible to solve each one from scratch as it has been done for 
the first one but this naive method, which remembers nothing from the previous 
reasoning, has two important drawbacks [26]: 

─ Inefficiency: which may be unacceptable in the framework of real time 
applications (planning, scheduling etc), where the time allowed for re-planning is 
limited. 

─ Instability: of the successive solutions, which may be unpleasant in the framework 
of an interactive design or a planning activity, if some work has been started on the 
basis of the previous solution 

A major question raises here is whether all the constraint handling approaches for 
static COPs are applicable for DCOPs as well [16]. This question has not been 
addressed extensively in the literature especially for real-valued DCOPs where 
benchmark problems were also unavailable unit Nguyen and Yao has introduced 
some problems in [15, 16] together with a penalty function based novel algorithm 
repair genetic algorithm (RepairGA) to solve these problems efficiently. Richter in 
[19] proposed memory design to solve DCOPs. Memory design is traditionally used 
to solve unconstrained dynamic optimization problems where the usual practice is to 
set aside a memory space to hold some promising individuals from the population that 
replaces other poor performing individuals when the change in environment is 
detected [19]. There are also two canonical EAs namely hyper-mutation genetic 
algorithm (hyperM) and random-immigrant genetic algorithm (RIGA) that are based 
on “introduce diversity” and “maintain diversity” strategies respectively to solve 
DCOPs. We have used the same benchmark problems to test the performance of 
ICHEA against RepairGA, hyperM, RIGA and canonical genetic algorithm (GA). 
There are some benchmark problems for dynamic optimization problems in [11] and 
[9] that are without constraints where some recently developed EAs have performed 
well on these benchmark problems like self-adaptive differential evolution algorithm 
(jDE) [3], dynamic hybrid particle swarm optimization (DHPSO) [9] and triggered 
memory based PSO (TMPSO) [27].  

This paper is organized as follows: Section 2 describes the mathematical 
formalization of real valued DCOPs. Section 3 briefly revisits ICHEA from [22–24] 
with addition to its applicability in handling DCOPs. Section 4 shows experimental 
results of ICHEA with other state-of-the-art EAs to solve benchmark DCOPs with 
analysis about the results in Section 5. Section 6 concludes the paper by summarizing 
the results and proposing some further extensions to the research.  
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2 Formalization of Real-Valued DCOPs 

A solution to real-valued static COP has two folds – search for an optimum solution 
that also must satisfy all the constraints. Real-valued COP can be formulated as: 

 optimize  (1) 

where COP’s objective function  has an -dimensional input vector  , , …  that is defined in a search space . More specifically, ∈  , 
where    being the feasible region on the search space   . Usually, the 
search space  is defined as a -dimensional rectangle in . The domain of 
variables are defined by their lower bounds  and upper bounds : , 1  (2)

The feasible region  with bounds on each dimension is further restricted by a set of 
 additional constraints that can be given in two relational forms – equality and 

inequality [6, 12, 25].  0      1, … ,  (3)

 
 0      1, … ,     (4) 

The equality constraints  cannot be solved directly using EAs so it is converted 
into inequality constraints by introducing a positive tolerance value . 

  0 (5) 

A set of individual feasible regions , , . .  for each constraint can also be 
defined as: 

  ∈  |  0, 1 , ∈  (6) 

where  is the set of integers. Many EAs uses a distance function as their fitness 
function to rank individuals. The distance function indicates how far a chromosome is 
from the feasible regions [6]. This fitness function tries to bring the chromosomes 
closer to the feasible region using the following function for 1 : 

  ,             00,                     0 (7) 

  ∑ | | (8) 

The fitness function fitness  is a measurement of euclidean distance of a vector x 
from a feasible region . The error function  is the summation of all the fitness 
functions. Minimizing the error value   leads toward a CSP solution where the 
objective function  is not needed. A solution to CSP is found when 0. To 
get a COP solution, CSP solutions are further processed to get optimum value of x 
that optimizes the objective function . For DCOPs the total number of 
constraints  is not know a priori and the solution has to be produced based on  
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constraints that come to hand where the constraints and objective functions can 
change over time. Hence the fitness functions for static COP given in Eq. (7) and Eq. 
(8) has to be transformed into dynamic COP by making it time dependent by 
introducing a parameter for time t. 
 

 ,  ,  ,             , 00,                         , 0 (9) 

  ∑ | , | (10) 

where ,  is inequality constraint function at time  that delivers fitness , . Its dynamic CSP solution with total number of constraints  at 
time  is given by .  

To determine the performance of an algorithm at time  is usually measured by an 
offline performance measure described in [2, 27] which is an average fitness error 
between the optimal fitness of the current environment and the best-of-generation 
fitness at each generation. The average fitness error ( ) at time  can be 
calculated as: 

 ∑  (11) 

where  is the known optimal fitness and  is the fitness of the best 
solution achieved at generation . Nguyen and Yao in [15] has modified this offline 
performance that demonstrates the performance based on “good feasible solution” 
rather than any good solution that may be infeasible. This measure is always greater 
than or equal to zero. If in any generation there is no feasible solution, the worst 
possible value that a feasible solution can have is taken for ; however, this 
can be incomputable for some hard problems (for example problems discussed in 
[22]) where any feasible solution may not be found for the entire generations. 
Fortunately, all of these benchmark problems in [15] are able to find at least one 
feasible solution easily before the change in environment. We used both of these 
offline errors for our experiments and to differentiate these measurements the first one 
is called traditional performance measure and later one is called feasibility 
performance measure. Feasibility performance measure is more applicable for 
constrained problems as it takes feasibility into account because infeasible solutions 
are not acceptable for constrained problems.   

3 ICHEA for DCOPs 

ICHEA is a variation of EA that is an effective and versatile constraint handling tool 
that has been demonstrated to outperform other EAs to solve hard benchmark CSPs in 
[22] and DCSPs in [24]. It has also shown very competitive results for benchmark 
COPs in [23]. ICHEA uses its novel search operator intermarriage crossover that uses 
knowledge from constraints rather than blindly searching for the solution. In this 
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crossover both parents belong to different feasible regions  and  where . It 
is also possible that a parent does not belong to any of the feasible regions . 
These parents are made to come closer towards the boundary of their corresponding 
feasible regions to locate the overlapping regions where more constraints are satisfied.  
Please refer to [22–24] for details about this operator. The generated offspring from 
intermarriage crossover contains genes from both parents. The purpose is to make a 
“generic” offspring that tries to satisfy more than one constraint because its parents 
are from two different feasible regions. The algorithm favours those offspring which 
satisfy more constraints by utilizing Deb’s ranking scheme based on feasibility [6] to 
rank the population where the population is first sorted according to number of 
satisfied constraints in decreasing order then by fitness value given in Eq. (10) in 
increasing order. The pseudocode of ICHEA can be given as: 

  chromosomes  = initializeChromosomes(); 
  for each generation 
  parents = NoveltyTournamentSelection(); 
  offspring = interMarriageCrossover(parents); 
  Mutation(offspring); 
  chromosomes = chromosomes + offspring; 
  SortAndReplace();  
  ResolveLocalOptimalSolutions();                
  CheckTerminationCriteria(); 
  End for loop; 

The description of algorithm and subroutines can be found in [22–24].  

4 Experiments 

As mentioned in Section 1, Nguyen and Yao have proposed some new benchmark 
problems in [16] which we will be using to compare the performance of ICHEA with 
aforementioned dynamic constraint handling algorithms RepairGA, RIGA, hyperM 
and GA. The description of test problems is given in Table 1 where some problems 
have been omitted because of their common properties with the listed ones and 
unavailability of published results. Please note that the problem G24_3 has a 
typographical error for variable  which should be 2 . 
The paramter settings for RepairGA, RIGA, hyperM and GA have been kept same as 
in the published results in [16]. ICHEA is a problem independent tool and it does not 
require any penalty function. The parameters settings to solve all the benchark 
problems are: Population = 100, crossover rate = 1.0, muation rate = 0.1, | | = 2. 

An average of 10 successive runs for ICHEA is taken into account to demonstrate 
its solution quality against published results of above mentioned algorithms in [16]. 
The problem environment changes after every 1000 evaluations as in [16] which is 
approximately 40 generations. To compare the performance of ICHEA with other 
algorithms we used both performance measures given in Eq. (11). The experimental  
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Fig. 1. Plots of current best solution on each generation for repairGA, RIGA, hyperM and 
ICHEA 
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Table 1. Properties of Benchmark Problems [21] 

Problem objFunc Constr DFR SwGO GIB NAO 

G24_0 Cyclic No - - Yes No 
G24_1 Cyclic Fixed 2 Yes Yes No 
G24_3 Fixed Linear 1-3 Yes Yes Yes 
G24_4 Cyclic Linear 1-3 Yes Yes No 
DFR Number of disconnected feasible regions 
SwGO Global opt. switches among disconnected regions 
NAO Newly appearing optima without changing existing optima 
GIB Global optimum is in the boundary of feasible area 

Table 2. Traditional Performance Measure 

Algorithms Error StDev vsGA Error StDev vsGA 

 G24_0 (dynF + noC) G24_1 (dynF + fixC) 

ICHEA 0.0051 0.004 88.44 0.0333 0.005 24.35 
RepairGA 0.2531 0.026 1.77 0.0448 0.009 18.13 
RIGA 0.2854 0.043 1.57 0.5734 0.076 1.42 
HyperM 0.2660 0.012 1.69 0.6472 0.271 1.25 
GA 0.4488 0.049 - 0.8117 0.077 - 
 G24_3 (fixF + dynC) G24_4 (dynF+dynC) 
ICHEA 0.0187 0.003 52.24 0.0799 0.006 11.07 
RepairGA 0.0148 0.002 66.11 0.0695 0.009 12.72 
RIGA 0.6664 0.063 1.46 0.5937 0.054 1.49 
HyperM 1.1079 0.482 0.88 2.3370 1.942 0.38 
GA 0.9760 0.127 - 0.8842 0.081 - 

Table 3. Feasibility Performance Measure 

Algorithms Error StDev Error StDev 

 G24_0 (dynF + noC) G24_1 (dynF + fixC) 
ICHEA 0.005 0.004 0.033 0.005 

RepairGA 0.468 0.059 0.226 0.024 
RIGA 0.131 0.034 0.401 0.046 
HyperM 0.173 0.042 0.450 0.094 
GA 0.214 0.037 0.587 0.085 
 G24_3 (fixF + dynC) G24_4 (dynF+dynC) 
ICHEA 0.019 0.003 0.066 0.009 
RepairGA 0.116 0.008 0.211 0.015 
RIGA 0.340 0.045 0.492 0.071 
HyperM 0.461 0.104 0.494 0.039 
GA 0.384 0.092 0.627 0.045 

result of the traditional performance measure is given in Table 2 and feasibility 
performance measure is given in Table 3. Both tables show the error value as their 
performance value with standard deviation (StDev) and comparison measurement 
with GA (vsGA) that indicates how many times the tested algorithms is better than 
GA. Table 2 shows ICHEA has outperformed other algorithms on test problem G24_0 
and G24_1, and showed similar performance with RepairGA for G24_3 and G24_4  
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based on traditional performance measurements while Table 3 shows the feasibility 
performance measure which is more applicable measurement in the context of 
constrained problems as infeasible solutions are not taken into account where ICHEA 
has completely outperformed all other algorithms on all the tested problems. Plots of 
the current best individuals for every generation for all the algorithms are shown in 
Fig. 1.  

5 Discussion 

All the tested benchmark problems are unique in nature in the context of DCOPs. 
G24_0 objective function changes over time that does not have any constraint, G24_1 
also has dynamic objective function but fixed constraints. The constraints of G24_3 
and G24_4 change over time but G24_3’s objective function is fixed while G24_4’s 
objective function is dynamic. The performance comparison based on traditional 
performance measure shows ICHEA has outperformed all other algorithms where 
problems have no constraints or constraints are fixed. For dynamic constraints 
ICHEA has produced similar performance as of RepairGA; however, this traditional 
measurement does not reflect the quality of solutions in terms of their feasibility. 
Hence feasibility performance measure is more applicable when there are constraints 
in the problem. The test results based on feasibility performance measure shows that 
ICHEA has clearly outperformed all other algorithms because ICHEA’s main strength 
is that it makes use of knowledge from constraints rather than blindly search in the 
solution space as traditional EAs do [22–24]. Fig. 1 and Table 3 show ICHEA is not 
only able to immediately recover from change in environment but also produces good 
quality feasible solutions. ICHEA runs two parallel processes internally – one to keep 
looking for feasible solutions and another to optimize the existing feasible solutions 
[23]. Any disruption in the search space invokes ICHEA to prioritize search for 
feasible solutions through its intermarriage crossover that results in high quality 
feasible solutions. Another advantage of ICHEA is that it does not use problem 
dependent or problem class dependent penalty functions as RepairGA uses penalty 
value of 2.5 for these benchmark problems.  

6 Conclusion 

ICHEA is a versatile EA to solve various types of real-valued constraint problems. It 
has already been demonstrated to perform well for benchmark CSPs, DCSPs and 
COPs [22–24]. The aim of this paper is to evaluate the performance of ICHEA on 
newly proposed benchmark DCOPs where it has outperformed other state-of-the-art 
EAs on the scale of feasibility performance measurement; however, there is need to 
diversify the benchmark problems with high dimensional problems as current 
problems are limited to two dimensional only. An advantage of ICHEA over other 
EAs is that it is a problem independent constraint handling EA that utilizes knowledge 
from constraints without using any repair or penalty functions. It extracts and exploits 
knowledge from constraints for its evolutionary search and is independent of the 
characteristics of the problems. For future work ICHEA still needs to be tested on 
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discrete constraint problems as it has all the potential to perform well. The 
enhancement will also include incrementailty in search through changing constraints 
and addition/retraction of constraints. 
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Abstract. Constraint satisfaction problems (CSPs) underpin many science and 
engineering applications. Recently introduced intelligent constraint handling 
evolutionary algorithm (ICHEA) in [14] has demonstrated strong potential in 
solving them through evolutionary algorithms (EAs). ICHEA outperforms 
many other evolutionary algorithms to solve CSPs with respect to success rate 
(SR) and efficiency. This paper is an enhancement of ICHEA to improve its ef-
ficiency and SR further by an enhancement of the algorithm to deal with local 
optima obstacles. The enhancement also includes a capability to handle dy-
namically introduced constraints without restarting the whole algorithm that 
uses the knowledge from already solved constraints using an incremental ap-
proach. Experiments on benchmark CSPs adapted as dynamic CSPs has shown 
very promising results. 

Keywords: Constraint satisfaction problem (CSP), intelligent constraint han-
dling evolutionary algorithm (ICHEA), evolutionary algorithm (EA), local op-
tima, dynamic constraints, incremental approach. 

1 Introduction 

CSPs are at the core of many real-world applications, including control, and diagnosis 
of physical systems such as car, planes, and factories. It is also used in modern robotic 
systems such as control of modular, hyper-redundant robots, which are robots with 
many more degrees of freedom than required for typical tasks. Sometimes the envi-
ronment of the CSPs changes along with time as in obstacle avoidance, vehicle 
routing and reusing previously generated university timetable. Even though CSPs are 
an important area of research in part of computer science, little has been reported on 
the development of efficient and effective constraint-handling techniques – relative to 
the development of new methods for unconstrained optimization using EAs [7]. Re-
cently introduced ICHEA [14] is able to solve real-valued CSPs efficiently with rela-
tively higher success rate (SR) than other tested well known EAs. The strength of 
ICHEA is that it makes use of knowledge from constraints rather than blindly search 
in the solution space as done by traditional EAs [2]. ICHEA has been demonstrated to 
outperform other well regarded EAs like NSGA II [3] and PSO-DE [10]. However  
it also exhibited drawbacks in solving hard CSPs where it was computationally  
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expensive as its median solutions to benchmark CSPs generally required more than 
200.0 seconds of CPU time to solve on a common standalone machine [14]. Its SR 
was also very low in the range of 0.0-0.6 for hard problems. Hence we have intro-
duced some new strategies to improve ICHEA to address these drawbacks. 

Moreover, ICHEA is only able to handle static CSPs in its current state so we pro-
pose an enhancement to the ICHEA to realize incrementality in constraint solving. 
Using this approach the dynamic behavior of CSPs can be handled efficiently as it is 
quintessential for real-time dynamic CSPs (DCSP) where only little research has been 
reported using EAs. Furthermore, there are not any established benchmark problems 
for them. Some benchmark problems are compiled in [12] and [6] but they are used 
for dynamic COPs and dynamic optimization problems respectively. The difference 
between COPs and CSPs is that in first an optimal solution that satisfies all the con-
straints should be found, while in second any solution as long as all the constraints are 
satisfied is acceptable [4]. Because of the unavailability of benchmark DCSPs we 
have transformed some existing benchmarks CSPs from [15] to DCSPs.  

The main contribution of this paper is to enhance the performance of existing 
ICHEA (called ICHEA+) to solve CSPs and introduce an incremental approach to 
solve real-valued DCSPs using ICHEA. The paper is organized as follows: Section 2 
describes the formalization of CSPs and DCSPs. Section 3 briefly discusses EA tech-
niques used to handle dynamic behavior of CSPs (called I-ICHEA) and the available 
benchmark problems. Section 4 describes the enhancement of ICHEA with some new 
strategies to overcome getting local optimal solutions. Section 5 shows experimental 
results with discussions in Section 6 about the outcome. Section 7 concludes the paper 
by summarizing the results and proposing some further possible extensions to the 
research. 

2 Formalization of CSPs and DCSPs  

A CSP is defined by an  dimensional input vector  , , …  in a finite 
space S where each variable  has a finite domain  . A set of  constraints , , …  are defined in the form of functions: 

 , , …   1,          0,           (1) 

Constraint satisfaction sets , , . .  can also be defined where: 

  ∈  | 1, 1 , ∈  (2) 

where  is the set of integers. The solution of a CSP is ∈  when all the constraints  are satisfied, which can be given as: 

 ∑   (3) 

For real-valued CSPs numerical constraints can be given in two forms – equality and 
inequality functions [3, 10, 16]: 

 0                  1, … ,  (4) 

 0         1, … ,   (5) 
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The equality constraints cannot be solved directly using EAs so they are converted to 
inequality constraints by introducing a positive tolerance value .  

 0 (6) 

Generally violation count is used as a fitness function for any CSPs. Depending on the 
strengths of constraints, individual weights is assigned to constraints in a penalty 
function to calculate the fitness value. To avoid using problem dependent penalty 
functions and utilizing some knowledge from constraints to guide the evolutionary 
search many EAs do not use violation count but use a distance function to indicate 
how far an individual is from the feasible regions [11]. It transforms the inequality 
constraint functions to a fitness function to rank individual members in the population 
generated by ICHEA. This fitness function tries to bring the individuals closer to the 
feasible space using the following functions for 1 : 

  g ,     00,             0 (7) 

  ∑  (8) 

The fitness function  is a measurement of euclidean distance of vector  
from the nearest point of the feasible region where constraint  is satisfied. The error 
function  is the summation of all the fitness functions. The objective is to minimize 
the error value  where the solution to a CSP is found when 0. 

For DCSPs the total number of constraints  is not know a priori and the solution 
has to be produced based on constraints that come to hand. A DCSP can be defined as 
a sequence of static CSPs where each one differs from the previous one by the addi-
tion or removal of some constraints. It is indeed easy to see that all the possible 
changes to a CSP (constraint or domain modifications, variable additions or removals) 
can be expressed in terms of constraint additions or removals [17]. The same fitness 
function given in Eq. (7) and Eq. (8) are used for DCSPs. To solve such a sequence of 
CSPs, it is always possible to solve each constraint from scratch as it has been done 
for the first one but this naive method, which remembers nothing from the previous 
reasoning, has two significant drawbacks [17]: 

─ Inefficiency: which may be unacceptable in the framework of real time applica-
tions (planning, scheduling etc), where the time allowed for re-planning is limited. 

─ Instability: of the successive solutions, which may be unpleasant in the framework 
of an interactive design or a planning activity, if some work has been started on the 
basis of the previous solution. 

A DCSP is a sequence of static CSPs that are formed by constraint changes. The no-
tion of DCSP has been introduced to represent such situations by [13]. Some attempt 
has been made to solve DCSP using EA as [5] uses Multi-objective optimization 
(MOO) to transform changes in constraints as a new objective function with changes 
in so called disruption function. This function is used to estimate the effect of chang-
ing an initial constraint to a new one. The changes are reflected in pareto set and pro-
gram runs again to get the new pareto optimal set guided by previous pareto front. In 
a typical MOO problem there exists a set of solutions which are superior to the rest of 
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the solution in the search space when all objectives are considered but are inferior to 
other solutions in the space in one or more objectives. A local search is another ap-
proach to reuse previous solutions for DCSP. The previous solution can simply be 
used as a starting assignment for the new local search repair-based algorithm. DCSP 
features employing the previous related CSP to find a minimal change solution to the 
current CSP but it can be computationally challenging [9, 17].  

3 Benchmark Problems  

As mentioned above there is little research reported on real-valued DCSPs nor there is 
any benchmark problems available for it. There are some benchmark problems for 
dynamic optimization problems in [8] and [6] that are without constraints. Some re-
cently developed EAs have performed well on these benchmark problems like self-
adaptive differential evolution algorithm (jDE) [1], dynamic hybrid particle swarm 
optimization (DHPSO) [6] and triggered memory based PSO (TMPSO) [18]. Nguen 
and Yao in [12] has introduced some benchmark problems for real-valued dynamic 
COPs and a novel algorithm repair genetic algorithm (RepairGA) to solve these prob-
lems efficiently; however, none of benchmarks are for DCSPs. We took some bench-
mark CSPs from coconut benchmark [15] and converted them to DCSP by taking one 
constraint at a time that is solved as a sequence of static constraints. In this paper only 
addition of constraints are considered to make a dynamic environment. Update of 
constraints or redefinition of feasible regions has not been considered. A new con-
straint is added into the environment in every 100 generations or else if all the current 
constraints are satisfied – whichever is earlier. 

4 Enhancement to ICHEA 

ICHEA is a variation of EA that uses its own crossover operator namely intermar-
riage crossover that selects two parents from different constraint satisfaction sets  
to make them come closer iteratively towards their corresponding feasible boundary 
because the CSP solutions lie in the overlapping boundary region of feasible regions 
that satisfy different constraints. Favoring individuals that satisfy higher number of 
constraints and the use of feasible regions for intermarriage crossover guide the evo-
lutionary search in finding the solution space quickly [14]. This guiding process has 
helped ICHEA to outperform other well-known EAs to solve CSPs where constraint 
strengths are very high i.e. the feasible regions are very small compared to the whole 
search space. Calculation for constraint strengths has been shown in Section 5.  

As mentioned in Section 1, even after ICHEA’s success in outperforming other 
well-known EAs to solve CSP, it is still computationally expensive as its median 
solutions for some benchmark problems generally require more than 200.0 seconds of 
a CPU time on a common machine to produce a solution [14]. Its SR is also very low 
in the range of 0.0-0.6 for some hard benchmark problems. Hence we propose the 
following enhancement that improves its performance in terms of efficiency and SR. 
The enhanced ICHEA is called ICHEA+ (ICHEA-plus) where the improvement  
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observed has been as high as 68 times over the previous ICHEA on benchmark prob-
lems. ICHEA+ is even able to produce efficient solutions with high SR of up to 1.00 
on low positive tolerance value  10  on hard CSP problems where previous 
ICHEA had low success with SR = 0.00. 

4.1 Diversity Management 

According to [10] the lower the individuals’ degree of constraint violation, the higher 
the probability that it clusters together around the current best solution and individuals 
with lower degrees of constraint violations are very difficult to jump out of current 
best individual’s adjacent region. This may cause the current best individual to stay 
on the same position for a long time leading to loss of diversity in the population. To 
avoid this scenario the ICHEA+ keeps the fair share of all degrees of constraint vio-
lating individuals in the population. If the population  of size | | has  con-
straints in the problem then the whole population is divided into equal sized  slots 
where slot  is allocated to individuals that violate  constraints. If there are no indi-
viduals with  violations then its allocated space is evenly distributed to other slots. 
Let  indicate the population of individuals that violate  constraints so the total 
population is: 

 ∑  

Then  is sorted according to the fitness and the best | |⁄  is selected for 
subpopulation . max | | | |⁄  

If after allocation,  slots have | | < | |⁄ , then unallocated population of 
individuals  is: | |⁄ | |,     | |   | |⁄  0                               ,                            
This unallocated population  needs to be allocated evenly in the slots that 
have | | > | |⁄ .  

4.2 Stalled Local Optimal Solutions Management 

The above diversity management is not sufficient to avoid the population getting 
stuck into local optimal solution for hard CSPs. This is a common problem for EAs 
when the whole population gets stuck around local optimal solution and lose its diver-
sity. We introduce the concept of forced constraint violations to tackle this issue. This 
works like tabu search algorithm where the individuals try to move away from the 
forcibly introduced new infeasible regions (tabu regions). If the population is stagnant 
for certain number of generations then the current best solution is considered as local 
optimal solution where some region around it is marked as a new infeasible region to 
move the population away from it. This region is defined as a hyper-sphere whose 
centre is the location of the current best (local optimal) solution with the radius  
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Table 1. Benchmark Quadratic Problem Chem 

  ICHEA+ I-ICHEA ICHEA imp

10  

SR 1.00 1.00 1.00 0.0 

Best 
11 gens at 

1.8s 

19 gens at 

2.7s 

54 gens at 

0.83s 0.5 

Median 
26 gens at 

4.03s 

25 gens at 

3.5s  

238 gens 

at 4.66s 1.2 

Worst 
37 gens at 

6.7s 

33 gens at 

4.8s  

559 gens 

at 11.1s 1.7 

10  

SR 1.00 1.00 0.30 0.7 

Best 
75 gens at 

7.3s 

34 gens at 

5.4s 

5900 gens 

at 196.4s 26.9

Median 
621 gens 

at 108.3s 

267 gens 

at 45.7s  
- 

3.1 

Worst 
740 gens 

at 122.9s 
291 gens 

at 49.6s  
- 

2.7 

 

Fig. 1. Making hyper-sphere around stalled 
local optimal solution 

Table 2. COP Benchmark problem G05 

  
ICHEA+ I-

CHEA 
ICHEA 

imp 

10
SR 1.00 1.00 1.00 0.0 

Best 
26 gens 
at 0.52s 

29 gens 
at 0.53s

18 gens 
0.40s 0.77 

Median
30 gens 
at 0.57s 

34 gens 
at 0.62s

19 gens 
0.41s 0.72 

Worst 
39 gens 
at 0.72s 

36 gens 
at 0.64s

21 gens 
at 0.46s 0.64 

defined as distance from the location of current best individual with the location of 
the worst individual that has the same degree of violations as the current best individ-
ual. If the current best individual belongs to a subpopulation  which is sorted 
according to the fitness from best to worst where an individual can be described as ∈ |1 | |  has best individual  and worst individual | |. The 

radius  of the hyper-sphere can be computed as: | |  and hence the 
new forced dynamic constraint is: ∑  where ∈  
and ∈ X. Fig. 1 demonstrates the movement of the current best individual that 
starts from high violation regions towards low violation regions until it is trapped in a 
stagnant region which is then referred as stalled local optimal solution. 

5 Experiments 

ICHEA is a problem independent tool to solve any given  dimensional CSP so we 
use the following parameters to solve all the problems: 
Stall threshold = 12 generations, crossover rate = 1.0, mutation rate = 0.1, maximum 

generation = 1000 and  | | 25,              n 6100,   1 n 6  

 
As one constraint is considered at a time for DCSP, we would also like to see if the 

constraint strengths of individual constraint matters in finding an efficient solution. 
Hence two different sequences of static CSPs are used where each constraint is added 
into the environment – from lowest to highest strength and vice versa. As described in 
[10] constraint strength  are computed offline by using the formula  |Ω| | |⁄ , where | | is the number of solutions randomly generated from , 
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Table 3. Benchmark Trigonometric Problem HS109 Table 4. Benchmark Polynomial
Problem Broyden10 

  ICHEA+ 
I-ICHEA 

 

I-ICHEA 

 
ICHEA 

imp

10  

SR 0.70 0.70 0.70 0.70 0.0

Best 
54 gens 

at 81.1s 

57 gens at 

87.7s 

59 gens at 

79.8s 

53 gens 

at 71.0s 0.9

Median 
131 gens 

at 205.0s 

113 gens at 

183.0s  

66 gens at 

92.1s 

70 gens 

at 239s 1.2

Worst 
192 gens 

at 361.3s 

186 gens at 

283.6s  

150 gens at 

208.6s 
- 

2.8

10  

SR 0.10 0.80 0.80 0.0 0.8

Best 
133 gens 

at 204.7s 

100 gens at 

155.0s  

89 gens at 

128.4s 
- 

4.9

Median - 
122 gens at 

186.0s  

125 gens at 

183.2s 
- 

0.0

Worst - 
156 gens at 

250.5s 

151 gens at 

230.6s 
- 

0.0

 

  
ICHEA+ I-

ICHEA 
ICHEA 

imp 

10
SR 1.00 1.00 0.80 0.2 

Best 
22 gens 

at 39.6s 

31 gens 

at 45.0s 

116 gens 

at 189.1s 4.8 

Median
29 gens 

at 55.8s 

49 gens 

at 81.7  

248 gens 

at 235.1s 4.2 

Worst 
53 gens 

at 182.1s 

158 gens 

at 300.0s 
- 

5.5 

10
SR 1.00 1.00 -  1.0 

Best 
28 gens 

at 51.8s 

36 gens 

at 59.4s 
- 

19.3 

Median
42 gens 

at 85.3s 

38 gens 

at 74.0s  
- 

11.7 

Worst 
79 gens 

at 269.3s 

174 gens 

at 385.3s 
- 

3.7 
 

 

Fig. 2. I-ICHEA and ICHEA+ 
comparison for H77 (10 ) 

  Fig. 3. I-ICHEA and 
ICHEA+ comparison for
Broyden ( 10 ) 

  Fig. 4. I-ICHEA and ICHEA+ 
comparison for Chem 
(δ 10 ) |Ω| is the number of feasible solutions out of these | | solutions. In the experimental 

setup, | |=10,000 and  value is computed as the average of five successive runs.  
It has been demonstrated in [14] that ICHEA outperforms all other tested EAs 

where other tested EAs have very low SR. Hence we are only providing the results of 
ICHEA+ with previously introduced ICHEA. ICHEA has been developed in Java 
language and the tests have been carried out on the same Windows XP machine with 
Pentium (R) i5 CPU 2.52 GHz and 3.24 GB RAM. No parallel processing or distri-
buted environment is used for the experiment. An average of 10 successive runs is 
taken into account to test the algorithms based on SR and generation count to reach to 
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Table 5. Benchmark trigonometry problem H77 

  
ICHEA+ I-ICHEA 

 

I-ICHEA 

 
ICHEA 

imp 

10  

SR 1.00 1.00 1.00 1.00 0.0 

Best 
5 gens at 

0.6s 

6 gens at 

0.7s 

9 gens at 

1.1s 

8 gens at 

0.3s 0.5 

Median 
8 gens at 

1.2s 

6 gens at 

0.7s  

11 gens at 

1.5s 

22 gens at 

0.64s 0.5 

Worst 
13 gens 

at 2.0s 

8 gens at 

0.9s  

13 gens at 

2.0s 

48 gens at 

1.53s 0.8 

10  

SR 1.00 1.00 1.00 1.00 0.0 

Best 
7 gens at 

0.91s 

8 gens at 

1.0s 

20 gens at 

3.4s 

447 gens 

at 19.0s 20.9

Median 
16 gens 

at 2.3s 

28 gens 

at 4.4s  

41 gens at 

6.8s 

3250 gens 

at 113.7s 49.4

Worst 
21 gens 

at 3.1s 

37 gens 

at 5.8s  

66 gens at 

11.3s 

6297 gens 

at 211.4s 68.2

 

 

Table 6. Constraint Strengths for H77 

Constraints  

1 6.33E-01 

2 6.14E-01 

3 6.33E-04 

the solution. SR is the rate of successful trials for each problem i.e.    /  . 
Nine test cases have been created using the benchmark problems from CSP domain 

[15] and COP domain [10, 11]. Tables 1, 3, 4, 5 show CSP test results for problems 
Chem, HS109, Broyden10 and H77, and Table 2 shows test results for a COP – G05. 
Each benchmark problem has been tested on two different  values 10 , 10   

 
except for problem G05 which only uses  10 . Table 6 and Table 7 show con-
straint strengths for problems H77 and HS109 respectively. Other problems have 
same constraint strengths for all the constraints with 0. The  values are sorted 
in both ascending and descending order for separate tests where constraints are in-
crementally added to the search space in that order. As described earlier DCSPs are 
basically sequence of static constraints that are incrementally added to the search 
space. Table 1 – Table 5 show test results of ICHEA+ with previous ICHEA to com-
pare their performances on different benchmark problems. The results of I-ICHEA 
(both ascending  and descending  order of ) have also been shown on the same 
tables to compare the results of ICHEA solving both static CSPs and dynamic CSPs 
as it is important to show whether knowledge from already solved constraints has 
been utilized or not. The test results are shown with best, median and worst solutions 
for each problem in terms of SR and efficiency. Columns are left blank with “-” if 
either it is not applicable or no good results have been obtained. The last column 

 

Fig. 5. I-ICHEA and ICHEA+ compari-
son for HS109 ( 10 ) 

Table 7. Constraint Strengths for HS109 

Constraints 1 2 3 4 5 6 7 8 9 10 11 

 0 0.87536 0.87662 0 0 0 0.00004 0.9241 0.44 0.41442 0.41874 
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named imp shows the improvement of the ICHEA+ over ICHEA where the values for 
best, median and worst indicate how many times the ICHEA+ is better than ICHEA 
and the values for SR indicate the increase in SRs from ICHEA to ICHEA+.  

Fig.2 – Fig. 5 depict the average of all test runs to compare performances of 
ICHEA+ and I-ICHEA. The y- axis shows the error value given in Eq. (8) and x-axis 
shows the number of generations. The graphical image shows the progress of ICHEA 
in solving CSP and DC SP. The spikes in the graphs for I-ICHEA indicate that a new 
constraint has been introduced into the search space and spikes for ICHEA+ indicate 
the current best individual at that generation has been improved by solving some addi-
tional constraints. This causes the fitness value of current best individual to increase 
as ICHEA+ favors individuals with less constraint violations which results in new 
individual (generally with high error value) to be added into the population [14].  

6 Discussion 

The experimental setup in Section 5 has dual objectives. Firstly, it demonstrates the 
comparative study of previously published ICHEA in [14] with an upgraded ICHEA 
that applies some new strategies proposed in Section 4.1 and Section 4.2 and second-
ly, whether ICHEA is able to handle dynamic constraints in an incremental manner by 
reusing knowledge from previous increments. The experimental results show that the 
addition of diversity management and stalled local optimal solutions management has 
improved the performance of ICHEA to solve CSPs. Previously introduced ICHEA 
has very low SR for many benchmark problems when  is 10  because of local 
optimal solutions that makes the whole population become stagnant that has been 
massively improved for problems – HS109, Broyden10 and Chem. ICHEA’s efficien-
cy has also been improved massively at different rates for all the hard problems ex-
cept G05 which is a simple problem in the perspective of CSPs. The second objective 
of the experiment is to show if I-ICHEA can perform similar to ICHEA+ where the 
experimental results show that I-ICHEA has not only performed similar to ICHEA+ 
but has outperformed it for problems – HS109 and Chem. This demonstrates that 
ICHEA makes full use of constraints solved in previous increments that are transpired 
to new increments and it is capable of handling dynamic constraints. Constraints can 
be added dynamically to ICHEA and it can still give the solution with same efficiency 
and success as of solving all the constraints concurrently. The experimental results on 
the order of constraint strength did not produce any conclusive results about the per-
formance of ICHEA as shown in problems – H77 and HS109 where results with 
mixed success have been observed. 

7 Conclusion 

This paper has proposed an improvement on ICHEA to solve CSPs together with an 
enhancement of its capacity to handle DCSPs effectively. It has been shown  
through benchmarks problems that the new strategies applied to ICHEA helps in 
maintaining the diversity of the populations and dealing with local optimal solutions 
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by dynamically creating new constraints. This has helped massively in getting higher 
SR for most of the test problems. ICHEA has also been tested to handle DCSPs on 
benchmark CSPs that have been transformed to DCSPs. It has been shown that con-
straints can be added dynamically to ICHEA without restarting the algorithm and it 
can still give the solution with similar efficiency and SR as of solving all the con-
straints concurrently because ICHEA utilizes the knowledge from constraints of pre-
vious increments. The experimental results on the order of constraint strengths have 
been inconclusive in finding a CSP solution in an incremental approach. For future 
work efficiency of ICHEA can be tested on dynamic constraints where previous con-
straints can be removed or updated that distort the previous feasible regions. ICHEA 
has been able to solve CSPs and DCSPs. It has potential to be extended to work for 
discrete data as well because it extracts knowledge from constraints for its evolutio-
nary search. ICHEA+ and I-ICHEA are currently further developed to solve real va-
lued COPs and dynamic COPs respectively. 
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Abstract. The possibility to get a set of Pareto optimal solutions in a single run 
is one of the attracting and motivating features of using population based 
algorithms to solve optimization problems with multiple objectives. In this 
paper, constrained multi-objective problems are tackled using an extended 
quantum behaved particle swarm optimization. Two strategies to handle 
constraints are investigated. The first one is a death penalty strategy which 
discards infeasible solutions that are generated through iterations forcing the 
search process to explore only the feasible region. The second approach takes 
into account the infeasible solutions when computing the local attractors of 
particles and adopts a policy that achieves a balance between searching in 
infeasible and feasible regions. Several benchmark test problems have been 
used for assessment and validation. Experimental results show the ability of 
QPSO to handle constraints effectively in multi-objective context. However, 
none of the two investigated strategies has been found to be the best in all cases. 
The first strategy achieved the best results in terms of convergence and 
diversity for some test problems whereas the second strategy did the same for 
the others. 

Keywords: Swarm Computing, Quantum behaved Particle Swarm 
Optimization, Constraint Handling, Multiobjective Optimization, Function 
Optimization. 

1 Introduction 

Quantum behaved Particle swarm optimization (QPSO) algorithm is a recent variant 
of PSO algorithm, proposed by Sun et al. [1] as a consequence of combining  
quantum mechanics principles and trajectory analysis of particle swarm optimization 
(PSO) algorithm. QPSO is characterized by its simplicity and easy implementation. 
Besides, it has better search ability and fewer parameters to set when compared 
against PSO [2].  Because of the quantum behavior, QPSO could perform well in 
finding the optimal solutions as it can improve the convergence capability of the 
global optimization [3]. Quantum behaved PSO has been proved efficient when 
compared with PSO [1, 3] and has been successfully applied to many optimization 
problems [4].  
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Most real world multi-objective optimization problems involve linear and/or non 
linear constraints that can be of equality or inequality type. Generally, constrained 
optimization problems are difficult to solve. This is because finding a solution that 
satisfies all constraints is not an easy task. The constraints split the search space into 
two regions depending on the feasibility of solutions. The feasible region 
encompasses all solutions satisfying all constraints. Hence, it contains all solutions of 
the problem. In our work, we are interested in Pareto optimal solutions [5].The 
infeasible region contains solutions that violate at least one of the constraints. 
Constraints can be categorized as hard in which case they must be satisfied and soft 
where they may be satisfied to some extent [5]. 

There is a considerable number of methodologies found in the literature to solve 
constrained optimization problems with multiple objectives. One of these 
methodologies is to completely ignore infeasible solutions. Although it is simple, this 
approach may face difficulties in finding feasible solutions [5]. Penalty function 
methods are the most popular constraint handling techniques. In this method, penalty 
values are added to individuals violating the constraints [5]. Deb et al. [6] suggested a 
new idea to modify the definition of domination by turning it into constrained 
dominance of solutions by incorporating infeasible solutions during the search 
process. 
Most of constraints handling methods for MOPs (CMOPs) proposed in the literature 
are used within evolutionary algorithms [7]. However, no in-depth study for handling 
constraints  using swarm based algorithms like particle swarm optimization is 
available. In [8], Coello et al. proposed a simple scheme that has been used without a 
thorough investigation of how this impacts the search.  

The aim of this work is twofold. First, we study the appropriateness of QPSO to 
deal with CMOPs and second we study the impact of discarding or taking into 
account infeasible solutions during the search process. The level at which constraint 
handling can be considered when extending QPSO is when the local attractor of each 
particle has to be computed.  Therefore, two strategies to integrate constraint 
handling mechanism within a multiobjective QPSO are investigated. The first strategy 
discards infeasible solutions. According to this approach, only feasible solutions are 
generated through iterations and the search space is restricted only to the feasible 
region. The second strategy adopts a policy that balances the search between the 
feasible region and infeasible region. The previous two strategies have been chosen to 
study the effect of dealing with infeasible solutions in QPSO multiobjective 
constrained optimization problems. 

The remainder of the paper is organized as follows: In section 2, we provide a 
description of QPSO algorithm. Section 3 provides a formal description of the tackled 
problem.  Section 4 is devoted to the framework we propose to handle constrained 
multi-objective optimization. Section 5 reports on conducted experiments and 
obtained results. Finally, conclusions and perspectives are provided in section 6. 

2 Description of QPSO 

QPSO, a recent PSO like algorithm, is a probabilistic PSO algorithm proposed by Sun 
et al. [1]. It is inspired by the classical PSO method and quantum mechanics theories. 
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The traditional PSO uses the concept of classical mechanics in which a particle is 
depicted by its position and velocity. In the quantum mechanics, the particles are 
considered to lie in a potential field. The position of each particle is depicted by using 
a wave function Ψ x, t  instead of position and velocity.  By using Monte Carlo 
simulation method, it has been found that the position xi of a particle for dimension j 
is updated by the following equation [1][9] :    .    . ln 1/        1. .              (1) 

Where,  u  is a random number within the range [0,1] β is the Contraction expansion 
coefficient (CE). It is the only tunable parameter of QPSO and has a    significant 
impact on controlling the convergence speed of the algorithm [2]. D is the problem 
dimension.  p    is the local attractor of particle i and is evaluated by :                    .    1   .      1. .  (2) 

 is a random number within the range (0,1). Finally, mbest is called the 
Mainstream Thought Point or the mean best position. It is the mean of self best 
positions of all particles and is evaluated by :                                      ∑   1. .  (3) 

where, N is the population size. 

3 Problem Definition 

A constrained multi-objective optimization problem can be formulated as follows 
[10]:  Find the decision vector: 

 , , … , ∈  
 

that optimizes (minimizes or maximizes) the set of M objectives     ,  , …        
 

Where F is the feasible region that is delimited by the following inequality and 
equality constraints:   0,                1,2, … ,    0,               1,2, … ,  

 
And S is the search space that is the part of the n-dimensional space  delimited by 
the lower and upper bounds of variables        ,       1,2, … ,  

 



 Constrained Multi-objective O

   are the low

When Pareto dominance [8
achieves the best comprom
the set of Pareto-optimal 
dominate vector v = ( , …
minimization case) :  
  
 
Therefore, the best solution
optimal set which is the set
Pareto optimal set in the obj

4 The Proposed F

One of the key issues wh
implicate the infeasible so
equation (1), the computat
which is a function of the s
recorded within the whole 
attractor is the level through
be conducted. This fact is b
work [12], we suggested a f
extension, a global best arch
are generated during the 
strategy that uses sigma va
the suitable guide for each
particle using sigma values 
to attain a uniformly sprea
framework to constrained
infeasible solutions generat

4.1 First Strategy 

The first strategy consists s
feasible ones throughout the
move within the feasible 
update local attractors of pa

4.2 Second Strategy 

In the second strategy, we
using a selection rule of glo

Optimization Using a Quantum Behaved Particle Swarm 

wer bound and the upper bound of decision variable 

8] is used, finding the vector  , , … ,  t
mise among the multiple objectives consists in determin

solutions.  A vector    u = ( , ....  , )  is said… . ,  ) denoted by (u v)     if and only if   (in 

∈ 1,2, . . , ,          ∈ 1,2, …        
ns in the sense of Pareto dominance constitute the Par
t of nondominated solutions [5]. The representation of 
jective space defines the Pareto optimal front [8, 11]. 

Framework for CMOPs Using QPSO 

hen solving constrained optimization problems is how
olutions in the search process. In QPSO, as shown
ion of a particle position requires calculating its attrac
elf best position of the particle and the global best posit
swarm as described by equation (2). Therefore, the lo

h which searching in the feasible and infeasible regions 
behind the idea we propose in this work.  In our previ
framework to extend QPSO to unconstrained MOP. In 
hive has been created to keep non-dominated solutions t
search process and we proposed a two level select

alues and crowding distance information in order to se
h particle. Our objective was to help convergence of e

while favoring less crowded regions in the objective sp
ad out Pareto front. In this work, we further extend 
d MOPs by investigating two strategies to deal w
ted during the search process.  

simply in discarding infeasible solutions and using only 
e search process. In this way, the whole swarm is forced
region F. Therefore, only feasible solutions are used

articles. 

e suggest to explore both feasible and infeasible regi
obal best position and self best position. 

459 

.  

that 
ning 
d to 

the 

reto 
the 

w to 
n in 
ctor 
tion 
ocal 
can 

ious 
this 
that 
tion 

elect 
each 
pace 
this 

with 

the 
d to 
d to 

ions 



460 H. Al-Baity, S. Meshoul, and A. Kaban 

Global Best Position Selection Rule: Best infeasible solutions encountered during 
the search process are kept within an archive that we denote by Global Best Infeasible 
Archive (GBIA). The best infeasible solution is the one with lowest constraints 
violation and/or better objective values in terms of dominance relation. Given a 
particle for which a new position has to be computed, the global best solution for this 
particle is selected either from the Global best feasible archive (GBFA) or the 
infeasible archive (GBIA) according to a probabilistic rule as follows: 

 rand  ; 
       select Globalbest position from GBIA     select Globalbest position from GBFA ;  

 
PG is the selection probability and can be set according to the importance we wish to 
devote to infeasible solutions. Selecting from  is straightforward. It consists in 
choosing the global leader randomly as all infeasible solutions in the GBIA have the 
same quality measure in terms of number of constraint violation. Selecting from 
GBFA follows the same principle we described in [12]. The decision about which 
GBFA member to select as a leader for a given particle is made based on the 
closeness of each GBFA member to the current particle in terms of sigma values  and 
the extent to which the local area around the member is crowded. The aim is to help 
convergence to the Pareto optimal front while ensuring a uniformly spread out front. 
The selection mechanism starts by identifying the k nearest GBFA members to the 
current particle using their sigma values. Then the less crowded member among these 
k neighbors is chosen as the global best solution used to compute the attractor of the 
current particle.  More formally, the proposed selection method can be described as 
follows: 
 
Selection_Method (GBFA, Current-Particle) 
 
 Compute_Sigma_value (Current-Particle ); 

  Foreach (M ∈ GBFA ) 

 Compute_Sigma_value (M ); 
  End foreach 

Record_ k _nearest _neighbors; 
Choose_less_crowded_solution; 

 
End. 
 

As described in [13, 12], a sigma value of a particle Pi characterizes the line joining 
the corresponding point in the objective space to the center point (0,0,…,0). The 
closeness of two sigma values is in fact an indication that the two corresponding 
particles lie on two lines that are close to each other. This fact is used to guide the 
particle by the suitable leader.  That is why the k nearest neighbors are selected  
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according to the ascending order of the distance between the particle sigma value and 
each of the GBFA member sigma value.  Crowding distance computation is done in a 
similar way as in [6]. Solutions in the GBFA are first sorted in the objective space 
then the overall crowding distance is calculated as the sum of individual distance 
values corresponding to each objective. 

Both archives, GBFA and GBIA need to be updated after computing all particles' 
new positions. For a current particle, if a new infeasible solution is derived, its 
insertion in GBIA is considered. This new infeasible position enters the GBIA archive 
only if it has less constraint violation than any infeasible solution in GBIA. In this 
case, all GBIA contents with higher constraint violation have to be deleted from the 
archive. The new infeasible position is also included in case it is equal with all GBIA 
solutions in terms of number of constraint violation and dominance criteria. By 
another side, if a new feasible solution is derived, it has to be checked against GBFA 
contents. The comparison here is based on the usual dominance concept. The new 
feasible position is entered into GBFA in a way that keeps GBFA domination free. 

Self Best Position Selection Rule: Basically, the strategy we followed in our previous 
work [12] was to keep only one solution as a self best feasible (SBF) point for each 
particle. In this work, we keep track of the self best infeasible solution (SBI) for each 
particle as well. This self best infeasible solution has to be updated whenever another 
better infeasible individual is encountered. The SBI solution is the one with lowest 
constraint violation. When a new position has to be computed for a particle, the self best 
solution for this particle is selected either as the self best feasible (SBF) solution or the 
self best infeasible (SBI) solution according to a probabilistic rule as follows: 

 rand  ; 
       select   as the self best position   
         select   as the self best position  

   is the selection probability and can be set according to the importance we wish to 
devote to infeasible solutions. Finally, once self best and global best positions are 
determined for a particular particle, the local attractor can be computed as given in 
equation (3). 

5 Experimental Results  

Several experiments have been conducted to assess the performance of the QPSO for 
CMOPs using the two constraint handling strategies described above. The test 
problems used for this purpose can be found in [6, 8, 10]. In order to evaluate the 
performance of both strategies in terms of convergence and diversity of the obtained 
fronts, two metrics have been used namely the Generational Distance (GD) and the 
Spacing metric (SP) described in [8]. In all experiments, the contraction expansion 
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(a) (b) 

Fig. 1. Optimal front and obtained front for the four test functions (a) first strategy (b) second 
strategy 

parameter  has been decreased linearly within the range [1.2-0.5]. The number k of 
neighbors in the selection of the global feasible leader has been set to 10 and selection 
probabilities PG and PS to 0.5. The maximum number of iterations has been set to 700 
for KITA function and 500 for the other functions. Figure 1 shows the obtained fronts 
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along with the optimal fronts using strategy 1 and strategy 2 respectively for SRN, 
MOBES, KITA and CONSTR test functions. At a first glance, we can see that very 
good convergence and diversity have been achieved in both cases. To corroborate this 
fact, quantitatively speaking, ten runs in each strategy for each function have been 
conducted. Statistics have been gathered in Table 1. The values of the standard 
deviation show the robustness and the high quality of the found solutions. Regarding 
the two investigated strategies, it is apparent that discarding infeasible solutions 
during the search process has led to the best results from both convergence and 
diversity points of view in case of SRN and MOBES functions whereas the second 
strategy is more efficient in case of KITA and CONSTR functions. 

Table 1. Metrics' values for first and second strategy 

 

Statistics 

First Strategy Second 
Strategy 

Test problem GD SP GD SP 

SRN function[6] 

Best 0.0217 0.00009 0.0269 0.0007 
Worst 0.0223 0.0010  0.0280 0.0135 

Average 0.0220 0.0007 0.0277 0.0042 

Median 0.0219 0.0010 0.0279 0.0013 

Std. Deviation 0.0002 0.0004 0.0005 0.0062

CONSTR function[6] 

Best 0.0063 0.0038 0.0049 0.0004 

Worst 0.0089 0.0124 0.0052 0.0010 

Average 0.0075 0.0060 0.0051 0.0007 

Median 0.0074 0.0039 0.0051 0.0007 

Std. Deviation 0.0009 0.0037 0.0002 0.0004

KITA function[8] 

Best 0.0217 0.0425 0.0143 0.0008 

Worst 0.4205 1.6729 0.1720 0.0247 

Average 0.2175 0.4566 0.0716 0.0096 

Median 0.1969 0.0634 0.0668 0.0084 

Std. Deviation 0.1500 0.7013 0.0543 0.0077

MOBES function[10] 

Best 0.0194 0.0017 0.0296 0.0021 

Worst 0.0201 0.0860 0.0338 0.0106 

Average 0.0197 0.0312 0.0310 0.0057 

Median 0.0197 0.0030 0.0299 0.0045 

Std. Deviation 0.0002 0.0404 0.0019 0.0036
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6 Conclusion 

In this paper we investigated the use of QPSO to handle CMOPs. Two strategies to 
deal with infeasible solutions have been studied that consist in discarding versus 
taking into account infeasible solutions. In both cases, the extended QPSO has been 
successfully applied to CMOPs. However, none of the two strategies has been found 
to achieve the best results in terms of convergence and diversity in all cases.  
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Abstract. Learning from Positive and Unlabelled examples (LPU) has
emerged as an important problem in data mining and information re-
trieval applications. Existing techniques are not ideally suited for real
world scenarios where the datasets are linearly inseparable, as they ei-
ther build linear classifiers or the non-linear classifiers fail to achieve
the desired performance. In this work, we propose to extend maximum
margin clustering ideas and present an iterative procedure to design a
non-linear classifier for LPU. In particular, we build a least squares sup-
port vector classifier, suitable for handling this problem due to symmetry
of its loss function. Further, we present techniques for appropriately ini-
tializing the labels of unlabelled examples and for enforcing the ratio of
positive to negative examples while obtaining these labels. Experiments
on real-world datasets demonstrate that the non-linear classifier designed
using the proposed approach gives significantly better generalization per-
formance than the existing relevant approaches for LPU.

Keywords: Learning from Positive and Unlabelled Examples, Maxi-
mum Margin Clustering, Least Squares Support Vector Classifier.

1 Introduction

Many applications of information retrieval and data mining face binary classi-
fication problems which typically involve datasets consisting of a small set of
positive examples and a large number of unlabelled examples. This problem
of Learning from Positive and Unlabelled examples (LPU) occurs in situations
where either characterizing negative examples is difficult or their annotation is
expensive. Consider the real world application of Junk Mail Filtering [1]. Here,
the junk messages serve as positive examples as they can be distinguished from
legitimate mails in terms of style and vocabulary; they are independent of indi-
vidual users and, hence, easier to characterize and annotate. Consequently, the
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aim is to learn to filter junk mails automatically to improve the usability of an
e-mail client.

Motivation and Related Work: Many of the existing approaches for han-
dling the problem of LPU [2], [3] construct a linear classifier. These approaches
do not achieve the desired performance for some real world scenarios, as linear
classifiers are not sufficient where the datasets are linearly inseparable. To rem-
edy this, Support Vector Machines (SVM) based approaches have been proposed
which can obtain a non-linear classifier by employing a kernel function. How-
ever, as observed in [4], SVM based approaches suffer from the risk of premature
convergence due to the asymmetry of the hinge loss function of SVMs. Further,
existing techniques do not enforce the class balance ratio, i.e., ratio of positive
to negative examples in the unlabelled data, which is useful for avoiding trivial
solutions and obtaining better generalization performance.

For example, consider a one-class SVM proposed in [5] which uses only positive
examples for learning, resulting in poor performance. Further, iterative SVM
based approaches have been proposed where the final classifier is either the
last classifier obtained after convergence [6], or a selected classifier from the set
of classifiers built [7]. However, for training the SVM, these methods obtain
the labels of unlabelled examples using different techniques. A cost asymmetric
SVM formulation, called Biased-SVM (BSVM) is proposed in [3]. BSVM uses
two parameters to assign a higher weight to positive errors in comparison to
negative errors. Further, it uses the Naive Bayes (NB) classifier for initializing
the labels of unlabelled examples. One more approach based on similar ideas of
BSVM method is given in [8], where a probabilistic approach is followed to assign
the weights to positive and unlabeled examples. Another interesting approach is
presented in [9], where a Positive Naive Bayes (PNB) classifier is constructed by
adapting the NB classifier to handle the problem of LPU. Recently, a practical
approach for Maximum Margin Clustering (MMC) has been proposed in [4].
MMC performs clustering by finding a decision surface passing through low
density region in the data. The optimization problem in MMC is non-convex
and an iterative procedure is adopted in [4], using Support Vector Regression
with Laplacian loss to avoid premature convergence.

Contributions: In this work, we extend the idea of iterative learning adopted in
[4] to the problem of LPU and design a non-linear classifier. The classifier is de-
signed using Least Squares SVM (LS-SVM) [10] method. It effectively handles
the non-convexity of the optimization problem involved, by virtue of a sym-
metric loss function. Positive examples and the class balance ratio are used to
determine the bias term in the classification model. This helps to avoid trivial
solutions and improve the performance on unseen data. As the class balance ra-
tio is not exactly known in practice, we experimentally show that the proposed
approach is useful even if the value is approximately known. Further, appropri-
ate initialization of the labels of unlabelled examples is crucial in this problem
set-up and we propose a simple technique for this purpose, which is effective in
improving the performance. Though maximum margin classification ideas have
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been used in past for semi-supervised learning, to the best of our knowledge,
Maximum Margin Clustering has not been explored before to handle the prob-
lem of LPU. Experimental results on real-world datasets demonstrate that the
proposed approach is useful for designing a non linear classifier with significantly
improved generalization performance than existing techniques such as Iterative
SVM (ISVM), BSVM and PNB.

2 Proposed Approach: Maximum Margin Clustering with
Least Squares SVM (MCLS)

The problem of learning from positive and unlabelled training examples is to
obtain a binary classifier, given a training set consisting ofN examples, where the
first L examples, {xi,+1}Li=1 are positive and the remaining U = N−L examples,
{xi}Ni=L+1, are unlabelled. In this work, we design a non-linear support vector

classifier of the form f(x) = w	ϕ(x) + b, where ϕ(x) is a non-linear function.
The underlying optimization problem is given in (1).

minw,b,{yi}N
i=L+1

1

2
‖w‖2 + C

L∑
i=1

l(wTϕ(xi) + b) +
N∑

i=L+1

l(yi(w
Tϕ(xi) + b))

s.t. yi ∈ {+1,−1} ∀i = L+ 1 −→ N

1

U

N∑
i=L+1

max(0, sign(wTϕ(xi) + b)) = r (1)

where, C is a positive hyper-parameter which controls the trade-off between
smoothness and fitness and l(t) is a loss function; for example, the hinge loss
function in SVMs is l(t) =max(0, 1−t). As we can see, this optimization problem
is a variant of Transductive SVM formulation [11], which introduces separate
terms in the objective function for positive and unlabelled examples. Also, notice
that it is important to add the second constraint, which specifies that a fraction r
of unlabelled data is to be labelled positive. This user defined parameter ensures
that the class balance ratio is maintained in the set of unlabelled examples.

This non-convex optimization problem (1) is hard to solve. Hence, we employ
a practical approach to obtain a solution to LPU. The proposed approach adopts
an iterative procedure that learns a non-linear LS-SVM classifier. In each iter-
ation, we first fix the labels of unlabelled examples and optimize with respect
to w and consequently, fix w and find new labels of unlabelled data. Precisely,
the proposed approach consists of the following main steps : (i) We initialize the
labels of unlabelled data using the algorithm explained in Subsection 2.1. (ii) To
optimize with respect to w, we train LS-SVM classifier using a labelled train-
ing set obtained in (i). We make use of LS-SVM as a classification algorithm
as it avoids poor local minima due to a symmetric loss function. We explain
this in detail in Subsection 2.2. (iii) We determine the new labels of unlabelled
data using the decision function of the LS-SVM classifier. However, these labels
are computed such that the second constraint in (1) is satisfied. The proposed
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approach maintains r by appropriately determining the bias parameter, b. The
procedure is described in Subsection 2.3. Finally, these steps are repeated un-
til the labels of unlabelled examples remain constant in successive iterations or
maximum nunber of iterations is reached. This procedure is given succinctly in
Algorithm 1. Now we discuss each aspect of the method in detail in the following
subsections.

2.1 Initialization of Labels of Unlabelled Data (ILU)

The initialization of labels of unlabelled examples (step 1 in Algorithm 1) is
very crucial as they are used to train the LS-SVM. We propose a method for
obtaining these labels which is effective in improving the accuracy. Initially, k-
means clustering is performed on the training data. Each cluster is determined
as positive or negative, according to the number of positive examples present
in that cluster. To obtain negative examples, some examples are chosen from
each of the negative clusters which are farthest from the centroid of positive
examples. The intuition is to select those examples from the unlabelled data,
which have higher probability of belonging to the negative class. The number
of examples to be selected depends on the value r of the dataset. Now, any
supervised classification technique can be used for training where the input is
the set of positive examples and the selected negative examples; we use SVM
in our algorithm. Finally, the labels of all the unlabelled examples are obtained
using the decision function of the classifier.

2.2 Non-linear LS-SVM Classifier

The LS-SVM formulation for a completely labelled dataset {xi, yi}Ni=1 can be
given as follows:

min
w,b,ξi

1

2
‖w‖2 + C

N∑
i=1

ξ2i

s.t. yi − (w	ϕ(xi) + b) = ξi ∀i (2)

The main benefit of LS-SVM classifier is that it is well suited for solving this
problem due to symmetry of its loss function [4]. The loss remains the same, if
the label of an unlabelled example is changed during training. This encourages
necessary flipping of labels and classifier improves over the initial labels. This in
turn helps to avoid many poor local minima and obtain a better solution.

2.3 Maintaining Class Balance Ratio

Maintaining the class balance ratio, r in the labels of unlabelled data (step 4 in
Algorithm 1) is necessary to avoid trivial solutions such as assigning all examples
to one class to obtain an unbounded margin hyperplane. The proposed algorithm
performs a simple, efficient and easy to implement computation of the bias value
(b) of LS-SVM to maintain this ratio. At the same time, the algorithm also tries
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to set b such that the labels of positive examples remain constant while finding
the labels of unlabelled examples, a critical necessity for applications of LPU. The
algorithm uses r and a tolerance parameter which decides the trade-off between
maintaining the class balance and correctly classifying the positive examples.
The algorithm sorts wTϕ(x) values and sets the bias value to the wTϕ(x) value
satisfying r. The algorithm now checks if all the positive examples are correctly
classified. Otherwise, the bias is changed in the range of the tolerance parameter
such that maximum number of positive examples are correctly classified.

Algorithm 1 MCLS

Input: Training set {xi,+1}Li=1 ∪ {xi}Ni=L+1, where yi ∈ {+1,−1}, ∀i = L+ 1 −→ N
Output: Classifier : f(x) = w
ϕ(x) + b

1: Find labels of unlabelled examples ({ȳi}Ni=L+1) using algorithm described in 2.1
2: while TRUE do
3: Perform LS-SVM training using {xi,+1}Li=1 ∪ {xi, ȳi}Ni=L+1 and compute w

4: Compute the bias value (b̂) using the method described in 2.3
5: Obtain new labels: ŷi using w and bias value b̂

i.e. ŷi = sign(w
ϕ(xi) + b̂) ∀i = 1 −→ N
6: if ȳi == ŷi ∀i = 1 −→ N then
7: Break
8: else
9: ȳi = ŷi ∀i = 1 −→ N
10: end if
11: end while
12: b = b̂

3 Experimental Evaluation

The experimental study was conducted on seven real world datasets, as given
in Table 1. The six datasets in Table 1 except ionosphere are available at
http://theoval.cmp.uea.ac.uk/∼ gcc/matlab/default.html#benchmarks. The
ionosphere dataset has been taken from the UCI machine learning repository
[12]. MCLS, Naive Bayes (NB), Iterative SVM (ISVM) and Positive Naive Bayes
(PNB) were implemented in Matlab (version R2010a). For all the experiments,

we used RBF kernel function defined as : K(xi, xj) = exp(− ‖xi−xj‖2

2σ2 ). Also, the
generalization performance of the classifiers designed using different techniques
was studied as we increased the number of positive examples (L). In particular,
we chose 5, 10, 15, 20 and 25% of actual positive class examples in the training
set.

Demonstration of MCLS on a Toy Dataset: We consider a two dimen-
sional toy dataset to demonstrate the decision boundaries obtained by MCLS.
The dataset consists of 400 examples with r = 0.5. Figure 1(a) shows the deci-
sion boundary obtained using a completely labelled training set. The rest of the



470 S. Chaudhari and S. Shevade

Table 1. Details of Datasets. N: Total number of examples, TR: Number of training
examples, TS: Number of test set examples, r: Class balance ratio, ATS: Accuracy on
test set

Dataset N TR TS r ATS(%)
banana 5300 3533 1767 0.4483 90.26
thyroid 215 143 72 0.3 97.22
heart 270 180 90 0.4444 83.22
pima 768 512 256 0.349 74.6
waveform 5000 3333 1667 0.3294 90.53
ringnorm 7400 4934 2466 0.495 98.78
ionosphere 351 234 117 0.641 96.583

plots, Figures 1(b)-1(f), show the decision boundaries given by MCLS for differ-
ent values of L. The plots clearly show the efficacy of the proposed algorithm. In
particular, for L = 15% (Figure 1(d)), the decision boundary is very close to the
one obtained using the completely labelled data. We also show decision bound-
aries given by MCLS and other techniques in Figure 2 with L=15%. Note that
MCLS obtains a reasonable decision boundary than other existing techniques,
when only 15% positively labelled examples are used.

Fig. 1. Decision boundary obtained by MCLS algorithm as L increases. Positive and
Unlabelled examples are shown by red stars and blue dots respectively. (a) Shows the
decision boundary obtained using labelled training set.

Fig. 2. Decision boundary obtained by MCLS and existing techniques with L=15%
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Generalization Performance of MCLS: In Table 2, we report the test set
accuracies of MCLS as a function of the number of positive examples, compared
with following methods (1) ILU (Subsection 2.1) + ISVM [6]. Here, after ini-
tialization using ILU, SVM is trained iteratively and the last classifier obtained
after convergence is selected. (2) NB + BSVM [3] and (3) PNB [9]. MCLS shows
significantly better accuracies for all datasets when compared to the rest of the
three algorithms. The iterative SVM does not perform well as it faces the prob-
lem of getting stuck in poor local minima. The BSVM method, though assigns
different weights to positive and unlabelled examples, does not focus on main-
taining the r fraction in the labels of unlabelled data. The PNB method does
not show comparable performance. Further, the difference in the accuracies is
prominent for small values of L. This demonstrates the applicability of MCLS
for datasets with small number of positive examples. For the datasets heart,
pima, ionosphere and banana, the performance using L = 25% is comparable
with that obtained using a completely labelled training set.

Performance Evaluation of ILU: To evaluate the algorithm described in
Subsection 2.1, we compared the accuracies obtained over unlabelled data with
one popular approach proposed in [3] for initialization of labels. The authors
construct a NB Classifier by treating all unlabelled examples as negative. The
results are given in Table 3. ILU outperforms NB on almost all the datasets.
Also, ILU shows greater increase in the accuracy as we increase L compared to
NB. The reason is that NB is constructed by treating all unlabelled examples as
negative whereas ILU algorithm constructs SVM classifier by extracting negative
examples from unlabelled examples.

Table 2. Comparison of Test set Accuracies of MCLS, Iterative SVM (ISVM), Biased
SVM (BSVM), Positive Naive Bayes (PNB) Algorithms

L 10% 15% 20% 25%

Dataset MCLS ILU
+
ISVM

NB +
BSVM

PNB MCLS ILU
+
ISVM

NB +
BSVM

PNB MCLS ILU
+
ISVM

NB +
BSVM

PNB MCLS ILU
+
ISVM

NB +
BSVM

PNB

banana 80.9 72 70 63.7 81.8 73.1 75.3 67.6 84.6 77.5 81.4 68.9 87.4 82.1 85.7 70.5

thyroid 81.9 84.2 80.5 74.4 86.6 87.3 86.1 76.3 90.7 90.3 87.5 79.2 93 91.6 91 80.9

pima 67.9 64.8 64.4 60.9 68.3 66.7 67.5 65.1 71.4 67.8 68.1 66.4 73 68.7 69.9 69.9

ionosphere 82.3 75.2 78.6 71.8 88 76.3 77.7 76.1 90.5 80.3 85.4 79.4 94 81.2 90.4 83.7

heart 72.1 67.7 67.9 63.2 73.3 68.8 69.9 66.5 78.1 74.1 73.6 70.7 81.4 77.8 78 72.2

waveform 78.3 75.1 70.4 70.8 79.4 75.9 70.8 72.6 82.4 77.3 70.9 74.2 82.7 78.3 71.1 74.9

ringnorm 92.5 87.7 88.6 87 92.6 89.6 89.5 88.2 94.4 90.9 91.4 89.7 94.8 91.1 92 90.2

Table 3. Comparison of Accuracies over unlabelled data of ILU and NB

L 5% 10% 15% 20% 25%
Dataset ILU NB ILU NB ILU NB ILU NB ILU NB
banana 72.3 54.5 73.8 59.3 74 62.5 77.1 64.8 77.6 64.2
pima 66.1 58.3 66 59.3 66.9 58.9 67.7 60.4 66.9 60.7
heart 68.3 51.3 69.5 60.4 70.6 58.3 73.9 62 77.6 67.7
ionosphere 67.3 55.6 72.3 65.3 74.2 65.6 75.8 63.9 76.4 69.5
ringnorm 90 86 90.5 85 90.4 87.1 91 87.4 91.1 87.6
thyroid 78.6 58.6 79.7 73.2 83.4 82.3 88.2 86 89.1 86.7
waveform 76.3 74.6 78.2 76.1 78.8 77.4 79.8 78.5 77.3 79.7
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Variation of r Fraction: The parameter r (fraction of positive examples in un-
labeled data) is typically not exactly known in practice. We therefore conducted
an experiment to study the generalization performance of the classifier designed
using the proposed method, when r is varied in a small interval around its true
value. The results are reported in Table 4 for four datasets. It is evident from
this table that is no significant degradation in the generalization performance in
small neighborhood of r. Thus, the proposed approach is useful even if the value
of parameter r is approximately known.

Table 4. Test set Accuracy of MCLS as a function of parameter r

Dataset r r-0.15 r-0.1 r-0.05 r+0.05 r+0.1 r+0.15
banana 84.6 79.7 81 82.5 81.8 80.7 78.4
pima 71.4 69.2 70.7 71 69.1 68.7 67.5
heart 78.1 71.1 73.3 75.5 75.5 72.2 68.8
thyroid 90.7 86.1 86.8 87.5 88.8 87.5 83.3

4 Conclusion

In this work, we consider the problem of learning from positive and unlabelled
examples by proposing a new approach to build a Least Squares support vector
classifier, based on Maximum Margin Clustering. The proposed approach is par-
ticularly useful for real world applications where there is necessity of non-linear
classifiers with good generalization performance. The proposed method gives sig-
nificantly better accuracy than exiting techniques, especially with small number
of positive examples. We also performed experiments with different values of r
in the range of r±0.15. The proposed approach showed minor degradation in the
performance as r was varied in the specified range. Thus, the proposed approach
is an useful alternative for learning from positive and unlabelled examples.
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Abstract. In this paper, stochastic Hopfield neural networks with time-
varying delays are investigated based on Lyapunov-krasovskii functional
approach and linear matrix inequality(LMI) technique. The proposed
criterion is expressed in terms of linear matrix inequality(LMI)and is
less conservative than some existing ones and can be effectively solved by
Matlab LMI toolbox. A numerical example that confirms the theoretical
result is also presented.

Keywords: neural network, LMI, Lyapunov-krasovskii functional.

1 Introduction

In the past few decades, neural network have been studied and developed ex-
tensively. In many areas such as combinatorial optimization, signal processing,
pattern recognition and many other fields neural networks have been successfully
applied. However, successful applications are greatly dependent on the dynamic
behavior of neural network, we know that stability is one of the main properties
of neural network. So study on the stability of neural network is important[1-4].

In real nervous system, the synaptic transmission is a noisy process brought
on by random fluctuation from the release of neurotransmitters and other proba-
bilistic causes. It has also been know that a neural network could be stabilized or
destabilized by certain stochastic inputs[5]. Hence, the stability analysis problem
for stochastic neural networks becomes increasingly significant. [6] is the original
work on the stochastic neural networks and some algebraic criterion of almost
sure exponential stability and instability are obtained. Some results related to
this problem have been got[7-11]. On the other hand, the connection weights of
the neurons depend on certain resistance and capacitance values that include un-
certainties. When modeling neural networks, the parameter uncertain should be
taken into account, and therefore the problem of robust stability analysis for neu-
ral networks becomes very important[12-15]. It should be pointed out that, the
robust stability analysis problem for DNSNNs(neural stochastic neural networks
with delay)has not been investigated, and remains important and challenging.

This paper studies the global robust stability of stochastic Hopfield neural
networks with varying delay, based on Lyapunov-krasovskii functional approach

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 474–479, 2012.
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and linear matrix inequality technique. A novel result expressed in terms of
linear matrix inequality is proposed, which have the advantage of considering
the difference between the neuronal excitatory and the inhibitory effects, and
so are less conservative than some earlier ones. Moreover, the proposed result
is easy to check and apply, because it can be effectively solved by Matlab LMI
toolbox.

2 Model Description and Preliminaries

We consider a delayed stochastic Hopfield neural network described by the fol-
lowing:

ẋ(t) = [−Dx(t)+Af(x(t))+Bf(x(t−τ(t)))]dt+σ(t, x(t), x(t−τ(t)))dW (t) (1)

where x(t) = (x1(t), x2(t), ..., xn(t))
T , are the state vectors at time t,D =

diag{d1, d2, ..., dn}, is self feedback, di ≥ 0, i = 1, 2, ...n. f(x(t)) = (f1(x1(t)),
f2(x2(t)), ..., fn(xn(t)))

T , are the vectors of outputs, fj(xj(t)), j = 1, 2, ...n, is
activation function of the j-neuron. A = (aij)n×n is state feedback matrix,
B = (bij)n×n is state delay feedback matrix. τ(t) = (τ1(t), τ2(t), ..., τn(t))

T , is
transmission delay. It meets the condition: τi ≤ τ, τ ′i(t) ≤ μ < 1,
i = 1, 2, ..., n. σ(t, x(t), x(t − τ(t)))dW (t) is random disturbance,
W (t) = (W1(t),W2(t), ...,Wn(t)) is an m-dimensional Brownian motion de-
fined on a complete probability space (Ω,F, P ) with a filtration {Ft}t>0, σ :
R+×Rn×Rn → Rn×n, meets the local Lipschitz continuous and linear growth
condition. The activation function and σ(t, x, x(t − τ(t))) satisfy the following
assumptions:

(H1): There exist positive numbers Lj such that 0 ≤ fj(xj(t))
xj

≤ Lj , fj(0) =

0, j = 1, 2, ..., n.
(H2): There are real matrices C1 ≥ 0, C2 ≥ 0, and P > 0 such that

trace[σT (t, x(t), x(t − τ(t)))Pσ(t, x(t), x(t − τ(t)))]

≤ xT (t)C1x(t) + xT (t− τ(t))C2x(t − τ(t)).

The quantities D,A,B may be intervalized as follows:

DI = {D = diag(di), D ≤ D ≤ D, i.e, di ≤ di ≤ di, i = 1, 2, ..., n}
AI = {A = (aij)n×n, A ≤ A ≤ A, i.e, aij ≤ aij ≤ aij , i = 1, 2, ..., n}
BI = {B = (bij)n×n, B ≤ B ≤ B, i.e, bij ≤ bij ≤ bij , i = 1, 2, ..., n}

(2)

Definition: The system (1) with the parameter ranges defined by (2) is globally
robust stable if the system is globally asymptotically stable for all D ∈ DI , A ∈
AI , B ∈ BI .

Lemma 1[15]: For any x = [x1, x2, ..., xn]
T , y = [y1, y2, ..., yn]

T , A = (aij)n×n,
B = (bij)n×n with |aij | ≤ bij , we have:

xTAy ≤ |x|TB|y| (3)
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3 Main Result

Theorem 1: Under the assumptions (H1) and (H2), the trivial solution of
system (1) is globally robustly stable if there exist positive diagonal matrix
P,Q,Q1, S, positive definite matrix Q2, and scalar μ > 0, satisfying the follow-
ing LMIs:

Π1 =

⎡⎢⎢⎣
Λ 0 A∗TP B∗TP
0 −(1− μ)Q1 + C2 0 0

PA∗ 0 Q2 − S 0
PB∗ 0 0 −(1− μ)Q2

⎤⎥⎥⎦ < 0 (4)

Π2 =

⎡⎢⎢⎣
−Q+Q1 + LTSL 0 AT

∗ P BT
∗ P

0 −(1− μ)Q1 + C2 0 0
PA∗ 0 Q2 − S 0
PB∗ 0 0 −(1− μ)Q2

⎤⎥⎥⎦ < 0 (5)

where A∗ = 1
2 (A+A),B∗ = 1

2 (B +B),A∗ = 1
2 (A−A),B∗ = 1

2 (B −B)
Λ = −2PD +Q+Q1 + C1 + LTSL.

Proof: Consider the following Lyapunov functional:

V (x, t) = xT (t)Px(t) + 2
∫ t

t−τ(t)
xT (s)Q1x(s)ds

+2
∫ t

t−τ(t) f
T (x(s))Q2f(x(s))ds

(6)

Applying Itô’s formula to V (x, t), we get

LV (x, t) = −2xT (t)PDx(t) + 2xT (t)PAf(x(t)) + 2xT (t)PBf(x(t − τ(t)))
+2xT (t)Q1x(t)
−2(1− τ ′(t))xT (t− τ(t))Q1x(t− τ(t))
+2fT (x(t))Q2f(x(t))
−2(1− τ ′(t))fT (x(t− τ(t)))Q2f(x(t− τ(t)))
+σT (t, x(t), x(t − τ(t)))Pσ(t, x(t), x(t − τ(t)))

(7)

From:τi ≤ τ, τ ′i(t) ≤ μ < 1, i = 1, 2, ..., n, we have

LV (x, t) ≤ −2x(t)PDxT (t)
+2xT (t)PAf(x(t))
+2xT (t)PBf(x(t − τ(t)))
+2xT (t)Q1x(t)
−2(1− μ)xT (t− τ(t))Q1x(t− τ(t))
+2fT (x(t))Q2f(x(t))
−2(1− μ)fT (x(t− τ(t)))Q2f(x(t− τ(t)))
+xT (t)C1x(t)
+xT (t− τ(t))C2x(t − τ(t))

(8)

Since pi, di, i = 1, 2, ...n are positive constants, we can get that:

−2xi(t)pidixi ≤ −2xi(t)pidixi, i = 1, 2, ...n (9)
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i.e
−2xT (t)PDx(t) ≤ −2xT (t)PDx(t) (10)

According to (H1): f(x(t)) ≤ Lx(t) there is a matrix S, such that:

2xT (t)LTSLx(t) ≥ 2fT (x(t))Sf(x(t)) (11)

Then rewrite 2xT (t)PAf(x(t)) as:

2xT (t)PAf(x(t)) = 2xT (t)PA∗f(x(t)) + 2xT (t)PA0f(x(t)) (12)

where A = A∗ + A0, according to (4). we get |a0ij | ≤ a∗ij , since pi ≥ 0, i =
1, 2, ..., n, we get that |pia0ij | ≤ pia∗ij , from lemma 1, we can get that:

2xT (t)PA0f(x(t)) ≤ 2|x(t)|TPA∗|f(x(t))| (13)

substituting inequality (13) into (12), we get

2xT (t)PAf(x(t)) ≤ 2xT (t)PA∗f(x(t)) + 2|x(t)|TPA∗|f(x(t))| (14)

Similarly:

2xT (t)PBf(x(t− τ(t))) ≤
2xT (t)PB∗f(x(t − τ(t))) + 2|x(t)|TPB∗|f(x(t− τ(t)))| (15)

It is easy to see that:

xT (t)Q1x(t) = |x(t)|TQ1|x(t)|
fT (x(t))Q2f(x(t)) = |f(x(t))|TQ2|f(x(t))|
xTQx(t) = |x(t)|TQ|x(t)|
(1− μ)xT (t− τ(t))Q1x(t − τ(t)) = (1− μ)|x(t − τ(t))|TQ1|x(t − τ(t))|
(1− μ)fT (x(t − τ(t)))Q2f(x(t− τ(t)))

= (1− μ)|f(x(t− τ(t)))|TQ2|f(x(t− τ(t)))|

(16)

Using(H2), (8)-(16), we can get that:

LV (x, t) ≤ xT (−2PD +Q)x(t) + 2xT (t)PA∗f(x(t))
+ 2|x(t)|TPA∗|f(x(t))| + 2xTPB∗f(x(t− τ(t)))
+ 2|x(t)|TPB∗|f(x(t− τ(t)))| + xT (t)Q1x(t)
− (1− μ)xT (t− τ(t))Q1x(t− τ(t))
+ |x(t)|TQ1|x(t)|
− (1− μ)|x(t− τ(t))|TQ1|x(t− τ(t))|
+ fT (x(t))Q2f(x(t))
− (1− μ)fT (x(t− τ(t)))Q2f(x(t− τ(t)))
+ |f(x(t))|TQ2|f(x(t))|
− (1− μ)|f(x(t− τ(t)))|TQ2|f(x(t− τ(t)))|
+ xT (t)C1x(t) + xT (t− τ(t))C2x(t− τ(t))
− |x(t)|TQ|x(t)|+ xT (t)LTSLx(t)− fT (x(t))Sf(x(t))
+ |x(t)|TLTSL|x(t)| − |f(x(t))|TS|f(x(t))|
= θT (t)Π1θ(t) + |θ(t)|TΠ2|θ(t)| < 0

(17)

where θ(t) = [xT (t), xT (t− τ(t)), fT (x(t)), fT (x(t− τ(t)))]
So, system (1) is globally robustly stable.
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4 Example

In this section, we give an example to illustrate the effectiveness of our result.
Considering a delayed stochastic neural network with the following parameters:

D =

[
1 0
0 1

]
D =

[
1.02 0
0 1.01

]
A =

[
0.01 −0.035
0.03 0.01

]
A =

[
0.03 −0.025
0.03 0.03

]
B =

[
−0.025 −0.015
−0.016 −0.025

]
B =

[
0.075 0.085
−0.014 0.075

]
fj(xj) = tanh(xj), j = 1, 2.

So, we can get that:

A∗ =

[
0.02 −0.03
0.06 0.02

]
A∗ =

[
0.01 0.005
0 0.01

]
B∗ =

[
0.025 0.035
−0.015 0.025

]
B∗ =

[
0.05 0.05
0.001 0.05

]
L =

[
1 0
0 1

]
C1 = 0.06, C2 = 0.06, μ = 0.3.

By the LMI toolbox in Matlab, we can get a feasible solution of LMIs (4) (5):

P =

[
65.2089 0

0 65.3225

]
Q =

[
61.7629 0

0 62.5716

]
Q1 =

[
18.6049 0

0 18.6580

]
Q2 =

[
17.4050 −0.1109
−0.1109 17.1270

]
S =

[
30.6516 0

0 30.7814

]
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Abstract. The Dendritic Cell Algorithm (DCA) is an immune-inspired
classification algorithm based on the behavior of dendritic cells. The
DCA performance depends on its data pre-processing phase including
feature selection and their categorization to specific signal types. For
feature selection, DCA applies the principal component analysis (PCA).
Nevertheless, PCA does not guarantee that the selected first principal
components will be the most adequate for classification. Furthermore,
the categorization of features to their specific signal types is based on
the PCA attributes’ ranking in terms on variability which does not make
“sense”. Thus, the aim of this paper is to develop a new DCA data pre-
processing method based on Rough Set Theory (RST). In this newly-
proposed hybrid DCA model, the selection and the categorization of
attributes are based on the RST CORE and REDUCT concepts. Results
show that using RST instead of PCA for the DCA data pre-processing
phase yields much better performance in terms of classification accuracy.

Keywords: Artificial immune systems, Dendritic Cells, Rough Sets,
Core, Reduct.

1 Introduction

Artificial Immune Systems (AIS) are a class of computationally intelligent sys-
tems inspired by the principles of the vertebrate immune system. As AIS is
being developed significantly, novel algorithms termed “2nd Generation AISs”
have been created. One such 2nd Generation AIS is the Dendritic Cell Algorithm
(DCA) [5] which is based on the behavior of the natural “dendritic cells” (DCs).
DCA has been successfully applied to various applications. In fact, its perfor-
mance depends on its data pre-processing phase which is divided into two main
steps: feature selection and signal categorization. More precisely, DCA uses the
principal component analysis (PCA) to automatically select features and to cat-
egorize them to their specific signal types; as danger signals (DS), as safe signals
(SS) or as pathogen-associated molecular patterns (PAMP)[6]. DCA combines
these signals with location markers in the form of antigen to process his classi-
fication task. For signal selection, PCA transforms a finite number of possibly
correlated vectors into a smaller number of uncorrelated vectors, termed “princi-
pal components” which reveals the internal structure of the given data with the
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focus on data variance [6]. However, using PCA for feature selection presents a
drawback as it is not necessarily true that the first selected components will be
the adequate features to retain [7]. Thus, the choice of these components for the
DCA can influence its classification task by producing unreliable results. As for
feature categorization, DCA uses the generated PCA ordered list of standard
deviation values to assign for each selected attribute its signal type (SS, DS or
PAMP). However, this categorization process which is based on high and low
values of the calculated standard deviations does not make “sense” as a coher-
ent process which can influence negatively the DCA functioning. Thus, in this
paper, we develop a novel AIS hybrid model based on a new automatic data
pre-processing phase for the DCA. As DCA was hybridized with various tech-
niques to improve its classification performance such as with fuzzy set theory
[2], a fuzzy clustering technique [3] and a maintenance policy [4], in this paper,
our new hybrid model named “RST-DCA” is grounded on the behavior of DCs
within the framework of Rough Set Theory (RST). Our RST-DCA model uses
the RST REDUCT and CORE concepts to select the right features to retain
and to categorize them into their right signal types. This paper is structured as
follows: Section 2 of this paper introduces the DCA. Section 3 presents the RST
concepts. Section 4 details our hybrid RST-DCA AIS system. The experiments
and the results are outlined in Section 5 and 6.

2 The Dendritic Cell Algorithm

The first DCA step is data pre-processing which includes feature selection and
signal categorization. For signal selection, DCA applies the PCA that reduces
data dimension, by accumulating the vectors that can be linearly represented by
each other [6]. Once features are selected, PCA is applied to assign each attribute
to its specific signal type. More precisely, DCA uses the PCA calculated standard
deviations and selects the highest values. As both PAMP and SS are positive
indicators of an anomalous and normal signal [5], one attribute is used to form
both PAMP and SS. Thus, the attribute having the lowest standard deviation
out of the selected attribute set is used to form both PAMP and SS. Using
one attribute for these two signals requires a threshold level to be set: values
greater than this can be classed as SS otherwise as PAMP [5]. As for the DS
attribute assignment and since the DS is “less than certain to be anomalous”, the
combination of the rest of the selected attributes are chosen to represent it [5].
After calculating the values of SS, PAMP and DS [5], DCA adheres these signals
and antigen to fix the context of each DC. DCA processes its input signals to
decide whether the collected DC goes to the semi-mature context, implying that
the antigen data is normal, or if the DC goes to the mature context, signifying an
anomalous data item. The nature of the response is determined by measuring the
number of fully mature DCs and is represented by the Mature Context Antigen
Value (MCAV). MCAV is used to assess the degree of anomaly of a given
antigen. By applying thresholds at various levels, analysis can be performed to
assess the anomaly detection capabilities of the algorithm. Those antigens whose
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MCAV are greater than the anomalous threshold are classified as anomalous
else as normal. More DCA details and its pseudocode can be found in [5].

3 Rough Set Theory

In RST [8], an information table is defined as a tuple T = (U,A) where U and A
are two finite, non-empty sets, U the universe of primitive objects and A the set
of attributes. A may be partitioned into C and D, called condition and decision
attributes, respectively. Let P ⊂ A be a subset of attributes. The indiscernibility
relation, IND(P ), is an equivalence relation defined as: IND(P ) = {(x, y) ∈
U×U : ∀a ∈ P, a(x) = a(y)}, where a(x) denotes the value of feature a of object
x. The family of all equivalence classes of IND(P ) is denoted by U/IND(P ).
Equivalence classes U/IND(C) and U/IND(D) are respectively called condition
and decision classes. For any concept X ⊆ U and attribute subset R ⊆ A,
X could be approximated by the R-lower and R-upper approximations using
the knowledge of R. The X lower approximation is the set of objects U that
are surely in X , defined as: R(X) =

⋃
{E ∈ U/IND(R) : E ⊆ X}. The X

upper approximation is the set of U objects that are possibly in X , defined as:
R(X) =

⋃
{E ∈ U/IND(R) : E ∩ X �= ∅}. The boundary region is defined

as: BNDR(X) = R(X) − R(X). If BNDR(X) is empty, R(X) = R(X), X
is said to be R-definable. Otherwise X is a rough set with respect to R. The
positive region of U/IND(D) with respect to C is denoted by POSc(D) where:
POSc(D) =

⋃
R(X). POSc(D) is a set of objects of U that can be classified

with certainty to classes U/IND(D) employing attributes of C. For feature
selection, RST defines two main concepts; the CORE and the REDUCT. The
CORE is equivalent to the set of strong relevant features which are indispensable
attributes in the sense that they cannot be removed without loss of prediction
accuracy of the original database. The REDUCT is a combination of all strong
relevant features and some weak relevant features that can sometimes contribute
to prediction accuracy. These concepts provide a good foundation upon which
we can define our basics for defining the importance of each attribute. In RST,
a subset R ⊆ C is said to be a D-reduct of C if POSR(D) = POSC(D) and
there is no R′ ⊂ R such that POSR′ (D) = POSC(D). In other words, the
REDUCT is the minimal set of attributes preserving the positive region. There
may exist many reducts (a family of reducts), REDF

D(C), in T . The CORE is
the set of attributes that are contained by all reducts, defined as: CORED(C) =⋂
REDD(C) where REDD(C) is the D-reduct of C. In other words, the CORE

is the set of attributes that cannot be removed without changing the positive
region. This means that all attributes present in the CORE are indispensable.

4 RST-DCA: The Solution Approach

4.1 RST-DCA Feature Selection Process

Our learning problem is to select high discriminating features for antigen classi-
fication from the original input data set which corresponds to the antigen infor-
mation database. We may formalize this problem as an information table, where
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universe U = {x1, x2, . . . , xN} is a set of antigen identifiers, the conditional at-
tribute set C = {c1, c2, . . . , cN} contains each feature of the information table to
select and the decision attribute D of our learning problem corresponds to the
class label of each sample. As DCA is applied to binary classification problems,
the input database has a single binary decision attribute. Hence, the decision
attribute D, which corresponds to the class label, has binary values d: either
the antigen is collected under safe circumstances reflecting a normal behavior
(classified as normal) or the antigen is collected under dangerous circumstances
reflecting an anomalous behavior (classified as anomalous). The condition at-
tribute feature D is defined as follows: D = {normal, anomalous}. For that,
RST-DCA computes, first of all, the positive region for the whole attribute set
C for both label classes of D: POSC({d}). Based on the RST computations
(seen previously in Section 3), RST-DCA computes the positive region of each
feature c and the positive region of all the composed features C−{c} (when dis-
carding each time one feature c from C) defined respectively as POSc({d}) and
POSC−{c}({d}), until finding the minimal subset of attributes R from C that
preserves the positive region as the whole attribute set C does. In fact, RST-
DCA removes in each computation level the unnecessary features that may affect
negatively the accuracy of the RST-DCA. The result of these computations is ei-
ther one reduct R = REDD(C) or a family of reducts REDF

D(C). Any reduct of
REDF

D(C) can be used to replace the original antigen information table. Conse-
quently, if the RST-DCA generates only one reduct R = REDD(C) then for the
feature selection process, RST-DCA chooses this specific R which represents the
most informative features that preserve nearly the same classification power of
the original data set. If the RST-DCA generates a family of reducts REDF

D(C)
then RST-DCA chooses randomly one reduct R among REDF

D(C) to represent
the original input antigen information table. This random choice is argued by
the same priority of all the reducts in REDF

D(C). In other words, any reduct R
of the reducts REDF

D(C) can be used to replace the original information table.
These attributes which constitute the reduct will describe all concepts in the
original training data set. By using the REDUCT, our method can guarantee
that the selected attributes will be the most relevant for its classification task.

4.2 RST-DCA Feature Categorization Process

RST-DCA has to assign, now, for each selected attribute, produced by the pre-
vious step, its specific signal type; either as PAMP, as DS or SS. As previously
stated, both PAMP and SS have a certain final context (either an anomalous
or a normal behavior) while the DS cannot specify exactly the final context to
assign to the collected antigen as the DS may or may not indicate an anomalous
situation. This problem can be formulated as follows: Both PAMP and SS are
more informative than DS which means that both of these signals can be seen
as indispensable attributes. To define this level of importance, our method uses
the CORE RST concept. As for DS, it is less informative than PAMP and SS.
Therefore, RST-DCA uses the rest of the REDUCT attributes (discarding the
attributes of the CORE chosen to represent both SS and PAMP) to represent
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the DS. As stated in the previous step, our method may either produce only one
reduct R or a family of reducts REDF

D(C). The process of signal categorization
for both cases are described in what follows: In case where our RST-DCA gener-
ates only one reduct; it means that CORED(C) = REDD(C). In other words,
all the features of the reduct are indispensable. In this case, RST-DCA selects
randomly one attribute c from CORED(C) and assigns it to both PAMP and
SS as they are the most informative signals. Using one attribute for these two
signals requires a threshold level to be set: values greater than this can be classed
as SS, otherwise as a PAMP signal. The rest of the attributes CORED(C)−{c}
are combined and the resulting value is assigned to the DS as it is less than cer-
tain to be anomalous. In case where our RST-DCA produces a family of reducts
REDF

D(C), the RST-DCA presents both concepts: the core CORED(C) and
the reduct REDF

D(C). Let us remind that CORED(C) =
⋂
REDD(C); which

means that on one hand we have the minimal set of attributes preserving the
positive region (reducts) and on the other hand we have the set of attributes that
are contained in all reducts (core) which cannot be removed without changing
the positive region. This means that all the attributes present in the CORE are
indispensable. For signal categorization, PAMP and SS are assigned, randomly,
one attribute c among the features in CORED(C). As for the DS signal as-
signment, RST-DCA chooses, randomly, a reduct REDD(C) among REDF

D(C).
Then, RST-DCA combines all the REDD(C) features except that c attribute
already chosen and assigns the resulting value to the DS. Once signal catego-
rization is achieved, RST-DCA processes its next steps as the DCA does [5].

5 Experimental Setup

To test the validity of our RST-DCA hybrid model, our experiments are per-
formed using binary databases from [1] described in Table 1.

For data pre-processing, DCA and RST-DCA uses PCA and RST, respec-
tively. Each data item is mapped as an antigen, with the value of the antigen
equal to the data ID of the item. To perform anomaly detection, a threshold
which is automatically generated from the data is applied to the MCAVs. The
MCAV threshold is derived from the proportion of anomalous data instances of

Table 1. Description of Databases

Database Ref � Instances � Attributes

Spambase SP 4601 58
SPECTF Heart SPECTF 267 45
Cylinder Bands CylB 540 40
Chess Ch 3196 37
Ionosphere IONO 351 35
Mushroom Mash 8124 23
Congressional Voting Records CVT 435 17
Tic-Tac-Toe Endgame TicTac 958 10
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the whole data set. Items below the threshold are classified as class 1 and above
as class 2. The resulting classified antigens are compared to the labels given in the
original data sets. The results presented are based on mean MCAV values gener-
ated across 10 runs. We evaluate the performance of RST-DCA in terms of num-
ber of extracted features, sensitivity, specificity and accuracy which are defined
as: Sensitivity = TP/(TP + FN);Specificity = TN/(TN + FP );Accuracy =
(TP + TN)/(TP + TN + FN + FP ); where TP, FP, TN, and FN refer re-
spectively to: true positive, false positive, true negative and false negative. We
will also compare the classification performance of our RST-DCA method to
well known classifiers which are the Support Vector Machine (SVM), Artificial
Neural Network (ANN) and to the Decision Tree (DT).

6 Results and Discussion

In this Section, we show that using RST instead of PCA is much convenient for the
DCA data pre-processing phase as it improves its classification performance which
is confirmed by the results given in Table 2. Let us remind that for signal selec-
tion, DCA applies PCA where it selects the highest standard deviation values. As
the highest values have to be selected, this needs either to keep only the eigenval-
ues larger than 1 [7] or involving the user to decide which features to keep for the
algorithm. However, the fact of using eigenvalues can either lead to overestimate
the number of factors to keep or to underestimate it leading to ignore important
information. In addition, involving users to determine a priori the number of at-
tributes to retain may result to preserve more or less features than necessary. In
this Section, we will show that these problems are solved by our RST-DCA.

From Table 2, it is clearly seen that the number of features selected by our
RST-DCA is less than the one generated by DCA when applying PCA (PCA-
DCA). This can be explained by the appropriate use of RST for feature selection.
In fact, RST-DCA keeps only the most informative features which constitute the
REDUCT. For instance, by applying our RST-DCA method to the CylB data
set, the number of selected features is only 7 attributes. However, when applying

Table 2. DCA and RST-DCA Comparison Results

Sensitivity (%) Specificity (%) Accuracy (%) � Attributes
Database DCA DCA DCA DCA

PCA RST PCA RST PCA RST PCA RST

SP 86.76 94.53 87.58 94.47 87.26 94.5 14 8

SPECTF 72.16 84.43 67.27 74.54 71.16 82.4 11 4

CylB 91.50 96.50 92.94 96.79 92.38 96.67 16 7

Ch 94.06 97.84 93.64 98.23 93.86 98.02 14 11

IONO 93.65 95.23 94.22 96.88 94.58 96.29 24 19

Mash 99.41 99.82 99.28 99.73 99.34 99.77 7 6

CVT 91.07 95.83 92.13 97 91.72 96.55 14 8

TicTac 91.37 93.45 89.15 93.67 90.6 93.52 7 6
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the PCA-DCA to the same database (CylB), the number of the retained features
is 16. We can notice that PCA preserves additional features which are the result
of the PCA overestimation of the number of factors to retain. This overestimation
affects the DCA classification task by producing unreliable results. On the other
hand, RST-DCA based on the REDUCT concept, selects the minimal set of
features from the original database and can guarantee that the reduct attributes
will be the most relevant for its classification task. In fact, by reducing more
the number of features while preserving the classification power of the original
data set, our RST-DCA has the advantages to decrease the cost of acquiring
data and to make the classification model easier to understand unlike when
applying the PCA. In addition, RST-DCA has sufficient advantages over the
PCA-DCA, as it does not require any additional information about data a priori
such as thresholds or expert knowledge on a particular domain. Thus, RST-
DCA results will not be influenced by any external information. As for the
classification accuracy, from Table 2, we can easily remark that the RST-DCA
accuracy is notably better than the one given by the PCA-DCA. For example,
when applying the RST-DCA to the CylB database, the RST-DCA accuracy is
set to 96.67%. Nevertheless, when applying the PCA-DCA to the same database,
the accuracy is 92.38%. Same remark is noticed for both the sensitivity and
the specificity criteria. These encouraging RST-DCA results are explained by
the appropriate set of features selected and their categorization to their right
and specific signal types. As stated previously, the classification results of the
DCA depends on its data pre-processing phase which is crucial to obtain reliable
results. RST-DCA uses the REDUCT RST fundamental concept to select only
the essential part of the original database. This pertinent set of minimal features
can guarantee a solid base for the signal categorization step. The RST-DCA good
classification results are also explained by the appropriate categorization of each
selected signal to its right signal type by using both the REDUCT and the
CORE concepts. As for DCA, by applying the PCA, it produces less accuracy in
comparison to our RST-DCA method which is explained by the inappropriate
use of the PCA for data pre-processing. In fact, the first components selected are
not necessarily the right set of features to retain since this set still contains extra
features that do not add anything new to the target concept while increasing the
cost of acquiring data. The set may also contain misleading features which have a
negative effect on classification accuracy. Furthermore, the DCA categorization
step does not make “sense” as a coherent categorization procedure.

The performance of our RST-DCA is, also, compared to SVM, ANN and to DT
in terms of the average of accuracies on the 8 data sets. The parameters of SVM,
ANN and DT are set to the most adequate parameters to these algorithms using
the Weka software. Figure 1 shows that PCA-DCA has nearly the same classifica-
tion performance as SVM and ANN and a better one than DT. It also shows that
our RST-DCA outperforms all the mentioned classifiers including the PCA-DCA
in terms of overall accuracy.These encouragingRST-DCA results are explained by
the appropriate application of RST to the DCA data pre-processing phase making
the DCA a better classifier by generating pertinent and more reliable results.
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Fig. 1. Comparison of Classifiers’ Average Accuracies on the 8 Binary Datasets

7 Conclusion and Further Works

In this paper, we have introduced a new hybrid computational biological model
for the DCA based on RST. Our model aims to select the convenient set of
features from the initial database and to perform their signal categorization
using the REDUCT and the CORE RST concepts. The experimentation results
show that our RST-DCA is capable of performing better its classification task
than DCA and other classifiers. Future works will include the use of fuzzy rough
set theory for the DCA and the application of RST-DCA to real world problems.
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Abstract. Different meta-heuristics (MHs) may find the best solutions
for different traveling salesman problem (TSP) instances. The a priori
selection of the best MH for a given instance is a difficult task. We
address this task by using a meta-learning based approach, which ranks
different MHs according to their expected performance. Our approach
uses Multilayer Perceptrons (MLPs) for label ranking. It is tested on
two different TSP scenarios, namely: re-visiting customers and visiting
prospects. The experimental results show that: 1) MLPs can accurately
predict MH rankings for TSP, 2) better TSP solutions can be obtained
from a label ranking compared to multilabel classification approach, and
3) it is important to consider different TSP application scenarios when
using meta-learning for MH selection.

Keywords: meta-learning, label ranking, multilayer perceptron, travel-
ing salesman problem.

1 Introduction

The Traveling Salesman Problem (TSP) is a classic optimization problem, which
is formally defined by means of a weighted graph G = (V,E), in which V = {v1,
v2, ..., vn} is a set of vertices and E = {〈vi, vj〉: vi,vj ∈ V } is a set of edges. Each
vertex vi ∈ V represents a city and each edge 〈vi, vj〉 ∈ E connects the vertices
vi and vj . The cost of travel from vi to vj is given by the weight value of the
edge 〈vi, vj〉. The best solution for a TSP instance involves finding the minimal
cost tour visiting each of n cities only once and returning to the starting city [1].

It is difficult to find the best solution for several TSP instances, since this
problem belongs to the class of problems known as NP-complete [16]. The TSP
complexity is factorial with the number of cities, thus exhaustive search methods
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present a high computational cost even for small TSP instances. For example,
there are approximately 1.22× 1017 feasible solutions for a TSP with 20 cities.

Good solutions for TSP can be quickly found by different meta-heuristics
(MHs) — e.g., Genetic Algorithms [13], and Ant Colony [5]. MHs are search
methods that try to escape from local optima through of interaction between
local improvement procedures and higher level strategies [8]. Each MH has its
own bias which makes it more suitable for a particular class of instances [25].
Thus, given the large number of available MHs, there can be a MH that is the
best for a new TSP instance.

Recently, a meta-learning approach addressed the problem of recommending
MHs for new TSP instances as a multilabel classification task [14]. However,
when multiple MHs are recommended, no guidance is provided concerning the
order in which they should be executed. In this work, we address this problem
by using a label ranking approach [4] to predict a ranking of MHs, according
to their expected performance. Additionally, previous approaches do not distin-
guish between different TSP scenarios. Here we separately investigate two im-
portant scenarios: when the salesperson (re-)visits current customers and when
the prospects are visited for the first time.

The remainder of this paper is organized as follows. Section 2 provides a brief
background on meta-learning for algorithm selection and on label ranking. The
adaptation of MLPs to learn label rankings is discussed in Section 3. Practi-
cal application scenarios of interest are described in Section 4. Based on such
scenarios, the experimental setting is detailed in Section 5, and the results are
reported in Section 6. Finally, the conclusions are presented in Section 7.

2 Meta-Learning and Label Ranking

The selection of the best algorithm for a given problem has been dealt with
in Machine Learning (ML) with meta-learning [2]. Meta-learning studies how
learning systems can increase in efficiency through experience and how learning
itself can become flexible according to the domain or task under study [24].

Studies that relate ML and optimization problems are recent [20]. Concern-
ing the TSP, a meta-learning approach to recommend MHs [14] classifies TSP
instances according to the solutions obtained by a set of MHs. As the best solu-
tion for a given TSP instance may be achieved by more than one MH, multilabel
classification techniques are applied. In [19], MLP-based models are induced to
predict the search effort that each algorithm will need to find the best solution.

The induction of a meta-learning model to select MHs for the TSP is illus-
trated in Figure 1. TSP properties (meta-features) are calculated to a set of TSP
instances. Each instance corresponds to one meta-example in the meta-data. A
meta-example is labeled by the performance of different MHs when applied to
TSP instance. The meta-data is used by a ML technique to induce a meta-model.

In this work, meta-learning is addressed as a label ranking task [7]. In label
ranking, the learning problem is to map the instances x from a dataset X to
rankings 'x (total strict orders) over a finite set of labels L = {λ1, ..., λm},
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Fig. 1. Meta-learning approach to select meta-heuristics for the TSP

where λi 'x λj means that, for instance x, label λi is preferred to λj . A ranking
over L can be represented by a permutation as there exists a unique permutation
τ such that λi 'x λj iff τ(λi) < τ(λj), where τ(λi) denotes the position of the
label λi in the ranking. A survey on label ranking is presented in [23].

3 Training MLPs for Label Ranking

Since MLPs presented a good performance on a similar problem [19], we use
them to rank MHs in this study. In a meta-learning context to rank labels,
the input values of the MLP [18] are meta-feature values for a TSP instance.
The output layer of the MLP produces a ranking of MHs for this TSP instance.
The MH identified in the top position (i.e., rank 1) is the most promising one
for this instance.

It is worth noting that the back-propagation algorithm is guided by a regres-
sion error measure (e.g., mean squared error) rather than a ranking accuracy
measure (e.g., Spearman’s correlation coefficient). However, by using a single
network to learn the ranks of all labels, the weights to the output layer represent
patterns that are specific to the corresponding label. On the other hand, given
that there is a single set of weights to the hidden layer, they represent patterns
in the data that are common to all the labels and act as latent features.

4 Recommendation Scenarios

Previous approaches [19,14] have considered a single scenario: the recommenda-
tion of MHs for instances in which the salesperson revisits current customers.
We consider an additional scenario in which the meta-learning approach is used
to recommend MHs for instances that contain new customers. To illustrate these
scenarios, consider that a company visits clients in different cities and, for sim-
plicity, that there exists only one client in each city. Thus, the recommendation
scenarios investigated in our experiments are as follows:

Revisiting customers scenario. The clients in the new instance are a subset
of the ones that have been previously visited. Given instances concerning dif-
ferent subsets of the set of cities (e.g., {New York, Washington DC, Boston,
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Philadelphia}), we would like to know the most promising MH in order to
define a route to visit another subset of those cities (e.g., {New York, Boston,
Philadelphia}). The intersection between the cities in different instances is
non-empty.

Prospect visits scenario. All clients on the new route have never been visited
in previous routes. Given instances concerning different subsets of the set of
cities (e.g., {New York, Washington DC, Boston, Philadelphia}), we would
like to know the most promising MH in order to define a route to visit a
different set of cities (e.g., {Edinburgh, London, Liverpool, Bristol}). The
intersection between the sets of cities in new and old instances is empty.

5 Experimental Setup

A predictive ability of a learning model depends on the significant amount of
instances used to train it [22]. We generated several TSP subproblems from
benchmark instances extracted from the TSPLIB library [17].

Let P = {p1, ..., pk} be the set of real TSP instances extracted from the
TSPLIB library. A set of subproblems Si = {si,1, ..., si,z} can be generated
from pi ∈ P . Thus, the meta-data is a set of meta-examples XP = {x1,1, ...,
x1,z, ..., xk,1, ..., xk,z}, where each xi,j corresponds to si,j that represents the
j-th subproblem generated from the i-th instance of the real TSP, pi. For each
scenario, the TSP subproblems were generated as follows.

Revisiting customers scenario: 1000 TSP instances were generated from 10
TSP files, P = {d1655, fl1400, fnl4461, nrw1379, pcb3038, pr2392, rat783,
rl1889, u1817, vm1748}. From each pi ∈ P , 10 subproblems were generated for
each of ten different quantities of cities (10, 20, ..., 100), resulting in Si = {si,1,
..., si,100}.

Prospect visits scenario: 300 TSP instances were generated from 30 TSP files,
P = {a280, berlin52, bier127, ch130, d1655, d15112, eil101, fl417, fl3795,
fnl4461, kroA200, kroB100, kroC100, kroD100, kroE100, linhp318, lin318,
nrw1379, p654, pcb3038, pr2392, rat783, rd400, rl1889, rl11849, ts225, tsp225,
u1817, usa13509, vm1748}. The cities of each pi ∈ P were randomly distributed
into 10 equal-sized sets. Each set of cities was used to generate a subproblem
si,j that belongs to Si = {si,1, ..., si,10}.

Five MHs have been used in our experiments: Tabu Search (TS) [9], GRASP
(GR) [6], Simulated Annealing (SA) [15], Genetic Algorithms (GA) [13], and
Ant Colony (AC) [5]. The following parameter settings were used: TS: tabu list
size = 2; number of iterations with no improvement of the current solution = 2;
GR: number of iterations = 10; level of randomness and greedy search = 0.5; SA:
initial temperature = 1; acceptance rate of neighbor solution = 0.9; cooling rate
= 0.01; GA: PMX [10] as the crossover operator; population size = 20; mutation
rate = 5%; elitism selection; AC: number of ants = 5; pheromone evaporation
rate = 0.5; pheromone influence = 1; heuristic information influence = 1.

These parameter values were chosen after performing some preliminary exper-
iments — just to ensure that every MH could find a reasonable solution for the
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TSP instances in hand. Our goal was not to optimize the performance of each
MH or promote any particular MH. Instead, we focus on the prediction of the
ranking of MHs, with particular emphasis on how the user can take advantage
of that ranking to get better solutions for TSP instances.

As these MHs are stochastic, every MH was run 30 times (with same process-
ing time and different initial seeds) for each TSP instance. The average cost of
the route of the 30 solutions was used as performance of each MH to compose
the ranking of MHs.

Our MLP-based meta-learning models were trained with the standard back-
propagation algorithm 1 and ten-fold cross-validation methodology [12]. We used
14 neurons in the input layer which correspond to 14 meta-features based on the
measurements of edges and vertices proposed in [14]. The output layer has five
neurons that identify the ranks of the five MHs for the TSP instance provided in
the MLP input. The best configuration of the hidden layer is problem-dependent
[12]. Therefore, we used the default number of hidden neurons proposed in [11].
For the multilabel classification, we use the binary classification method that
has also been successfully applied to classify instances of TSP [14].

6 Experimental Evaluation

We compute the Spearman coefficient (rS) [21] for every pair of 〈predicted, ideal〉
(vectors of) ranking and then we average the results. These results are compared
to a baseline (the average ranking over the whole dataset [3]). In order to analyze
if the performance difference between the proposed approach and baseline is
significant, results of the statistical t-test are presented.

Top-N strategy [3] was used to compare the results of our ranking-based ap-
proach with the multilabel approach. This strategy evaluates the ranking of MHs
by assessing the compromise between the quality of the solutions (cost of the
routes) and the cost to obtain them (run time). The quality of the solutions
provided by the top-N MHs is given by the best solution among those generated
by all MHs. The cost is computed as the sum of the run times of those MHs.
As the multilabel classification model does not suggest a ranking of MHs, its
average performance is identified by a single point in figures 2a and 2b.

6.1 Experimental Results

Considering rS as measure to evaluate the predictive models performance, our
meta-learning based approach provided good ranking predictions. In particular,
average scores r̄S = 0.96 and r̄S = 0.93 were obtained for the scenarios: revisiting
customers and prospect visits, respectively, whereas the baseline model obtained
r̄S = 0.89 and r̄S = 0.83, respectively. By applying the t-test to compare the r̄S
values, p-values of 7.15×10−42 and 2.61×10−12 were obtained for the respective
scenarios. These results show that at the 95% confidence level, the performance
of the proposed model is significantly better than the baseline model.

1 Using the default values of the nnet package (R programming language).
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Fig. 2. Normalized average cost of the route versus normalized average runtime for the
strategy of running the Top-N MHs for two real-world scenarios

It is hard for the meta-learning approach to achieve significantly higher ac-
curacy than the baseline when predicting the most frequent rankings of MHs.
These rankings are usually the most similar to the average ranking. The gain
of meta-learning becomes clear in the least frequent rankings. In the revisiting
customers scenario, the label ranking approach was better than the baseline on
six of the seven rankings that were observed only once. For all the different rank-
ings of MHs observed in the prospect visits scenario, the label ranking approach
presented r̄S > 0.6, while the baseline model achieved this performance in 43%
of those rankings.

Figure 2 shows the results for the Top-N strategy. In both scenarios, the Top-1
MH recommended by label ranking model provided a better solution than the
Top-1 MH suggested by baseline model. The results for the revisiting customers
scenario (Figure 2a) show that it is necessary run the Top-2 MHs indicated by
the baseline to obtain a solution as good as those provided only by the Top-1 MH
of the label ranking. The main advantage of using meta-learning model is the
time required to obtain the solution. The time to run the MH, which is in the top
position recommended by the meta-learning model, is 50% lower than the time
to run the MHs in the first two positions of the baseline ranking. The average
solution of the MHs recommended by the multilabel classification is worse than
the solution generated by the Top-1 MH of our model. This is due to the fact
that the MHs classified for some instances are not the best ones.

For the prospect visits scenario, the strategy of running the Top-1 MH sug-
gested by the proposed approach provided a better solution compared to that
obtained after processing the four most promising (Top-4) MHs from the base-
line ranking — see Figure 2b. The average solution of the MHs ranked by
the baseline model is worst for this scenario, in relation to the previous sce-
nario, due to the increase in the number of different rankings observed in the
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meta-data. The multilabel classification model recommends MHs whose solutions
are as good as those provided by Top-1 MH suggested by the label ranking.
However, every MH recommended by multilabel classification must be performed
to indicate the solution for a given instance, requiring a longer processing time.

The model based on label ranking allows the user to obtain a good solution by
running only the Top-1 MH. In practical situations where the user has enough
time to run the other recommended MHs, even better solutions can be obtained.

7 Final Remarks

In this study, we addressed the problem of choosing the best MH for a given
instance of the TSP. We use a meta-learning approach, which consists of learning
a model that relates the properties of the TSP instances with the performance
of MHs. We use an adaptation of the MLP for label ranking. Our results show
that it is possible to predict the ranking of MHs and that, by following the
recommendations in the rankings, it is possible to obtain good quality solutions
when compared to simpler selection strategies. In particular, the comparison with
a multilabel classification approach to the same problem additionally shows the
advantage of addressing the problem as a label ranking task.

We consider two different scenarios: re-visiting customers, in which the new
instances which we want to select the algorithms for share cities with the in-
stances in the training meta-data; and prospect customers, in which the cities in
new instances are new. Our results indicate that the latter type of scenario is
harder to learn. This is expected because, in the re-visiting customers scenario,
we cannot really say that the test instances are independent from the training
instances because they share parts of their structure. However, since both sce-
narios may be true in practice, our work shows that it is important to investigate
them separately. As future work, we will investigate new meta-features, following
different approaches, such as adapting subsampling landmarkers [2].
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23. Vembu, S., Gärtner, T.: Label ranking algorithms: A survey. In: Fürnkranz, J.,
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Abstract. Data clustering is a common technique for statistical data analysis,
which is used in many fields, including machine learning and data mining. Clus-
tering is grouping of a data set or more precisely, the partitioning of a data set
into subsets (clusters), so that the data in each subset (ideally) share some com-
mon trait according to some defined distance measure. In this paper we present
the genetically improved version of particle swarm optimization algorithm which
is a population based heuristic search technique derived from the analysis of the
particle swarm intelligence and the concepts of genetic algorithms (GA). The al-
gorithm combines the concepts of PSO such as velocity and position update rules
together with the concepts of GA such as selection, crossover and mutation. The
performance of the above proposed algorithm is evaluated using some benchmark
datasets from Machine Learning Repository. The performance of our method is
better than k-means and PSO algorithm.

Keywords: Data Clustering, Particle Swarm Optimization, Fitness Function, Ge-
netic Algorithms.

1 Introduction

Clustering has emerged as one of the most extensively studied research topics due to its
numerous important applications in machine learning, image segmentation, data min-
ing and pattern recognition. Recently many clustering algorithms have been proposed.
Among them k-means algorithm is the most popular and widely used algorithm because
of its easy implementation and efficiency. Although the k-means algorithm was found to
produce good clustering quality in many practical problems, the k-means algorithm has
some drawbacks [1] such as the selection of initial cluster centers. Another approach to
clustering is the agglomerative and divisive hierarchical clustering techniques. Recently,
many evolutionary-based clustering algorithms such as Genetic Algorithms (GA) [6],
Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and Simulated
Annealing (SA) have been introduced. Furthermore, several combinations of these al-
gorithms were used to generate more powerful optimization capabilities. Though the
algorithms were superior in their own way, they were slow in finding the optimal
solution.
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In this paper we present the genetically improved PSO algorithm, using genetic oper-
ators such as selection, crossover and mutation together with the velocity and position
updating functions of the basic PSO to search for the optimal results for clusters. A
hybrid PSO has been used by Abdel-Kader [5] where, in every iteration, the data is
divided into two halves, one being fed to the PSO and the other to the GA. This is
the paper closest to our approach but there are also many differences in the two meth-
ods. The best combination of PSO+GA has been determined experimentally by us on
benchmark datasets and is compared with the basic PSO.

The remaining part of the paper is organised as follows: Section 2 presents the basic
principles of PSO and genetic algorithms and the PSO algorithm for the data clustering
problem, Section 3 presents the proposed combination of PSO and GA algorithms, Sec-
tion 4 reports the experimental results and the performance of the proposed algorithm.
Finally, conclusions are discussed in Section 5.

2 PSO and GA

2.1 Standard PSO Algorithm

Particle Swarm Optimization (PSO) was originally designed and introduced by Eber-
hart and Kennedy [4]. PSO originally intends to graphically simulate the graceful and
unpredictable choreography of a bird flock. A swarm of computational elements, called
particles, is used to explore the solution space for an optimum solution. Each individual
within the swarm represents a candidate solution in multidimensional search space and
is represented by a vector. The velocity vector is used to determine the next position of
the candidate solution. The PSO determines how to update the velocity of a particle [3].
Each particle updates its velocity based on current velocity and the best position it has
explored so far and also based on the global best position explored by the swarm.

Each particle i maintains the information, xi is the current position of the particle. vi
is the current velocity of the particle. yi is the personal best position of the particle. The
particles evolve by updating their velocities and positions according to the following
equations:

vi(t+ 1) = ωvi(t) + c1r1(t)(yi(t)− xi(t)) + c2r2(t)(ŷ(t)− xi(t)) (1)

xi(t+ 1) = xi(t) + vi(t+ 1) (2)

Here i =(1, 2,. . . , N) where N is the size of the swarm, ω is the inertia weight, which pro-
vides the necessary diversity to the swarm by changing the momentum of the particles to
avoid the stagnation of particles at the local optima. c1 and c2 are social parameters that
are bounded between 0 and 2 and are generally known as the acceleration co-efficients
for the particles to move about in the solution space and to pull towards the pbest and
gbest positions. r1 and r2 are two random numbers, with uniform distribution U [0, 1].
ŷ is the global best position. The velocity is thus calculated based on previous veloc-
ity,the cognitive component which is a function of the distance of the particle from its
personal best position and the social component which is a function of the distance of
the particle from the best particle found thus far (i.e. the best of the personal bests). The
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personal best position (pbest) of any particle i, can be viewed as the particle’s memory
and is the best fitness value achieved so far by the particle i. The personal best position
of particle i is calculated as

yi(t+ 1) =

{
yi(t) if F (yi(t)) is better than F (xi(t+ 1))

xi(t+ 1) if F (xi(t+ 1)) is better than F (yi(t))

The global best position is the best position for the entire swarm, and is inferred from
all the neighbours in the swarm. The aim of the PSO is to find the particle position that
results in the best evaluation of a given fitness (objective) function.

2.2 Standard Genetic Algorithm

Genetic algorithms have been developed by John Holland at the University of Michigan.
Genetic algorithms are computing algorithms constructed in analogy with the process of
evolution. They seem to be useful for searching very general spaces. Based on the sur-
vival and reproduction of the fittest, GA continually exploits new and better solutions.
GAs have been applied successfully to problems in any fields such as fuzzy logic con-
trol, neural networks, expert systems, and scheduling [2] and have showed their merits
over traditional optimization methods. For each problem GA codes the solution as a
string where each string is known as a chromosome. At the initial stage the set of chro-
mosomes are taken and are subjected to the genetic search operators such as selection,
crossover and mutation one after the other in order to generate a new set of chromo-
somes (particles) such that the quality would be better when compared to the previous
generation, here the quality refers to the fitness measured by a specific function. This
process is repeated until the termination criterion is met, and the best chromosome of
the last generation is reported as the final solution.

2.3 PSO for Data Clustering Problem

Each particle in the PSO has as many elements as the number of data points. Each
element maps to one data point and the value of the element gives the cluster to which
the element belongs to. If we have data points X = (x1, x2,. . . , xN ) then the ith particle
Si is represented as Si = (y1, y2,. . . , yn) where yj refers to the cluster to which the jth

data point xj belongs to. If we have k clusters, then yj is a value between 1 and k. A
swarm represents a number of candidate solutions(clusterings). The centroid of particle
si which represents a clustering of the data is given as follows: A clustering which has
a lower value of F is a better clustering of the points.

mj =

∑
y∈Cj

y

| Cj |
j = 1, . . . , k (3)

The fitness function is evaluated for each particle and is compared with its own best
previous fitness value and to the best fitness of all the particles in the swarm, the fitness
value calculation is as follows:
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Fig. 1. Flowchart of GA+PSO Algorithm

F =

∑k
j=1[

∑
∀y∈Cj

d(y,mj)

|Cj| ]∑k
j=1 d(mj ,m)

(4)

and

m =

∑
y y

n
(5)

Where d(mj ,m) gives the distance between the centroid of jth cluster and the centroid
of all the points.

3 GA Combined with PSO

GA is known for its randomized search of natural evolution. In the method proposed
by us as shown in Fig(1), in every iteration either the entire set of particles are updated
using a PSO or the entire set is passed to the GA and the next generation of particles
are generated. The population size of the GA-PSO algorithm is set to N. The initial N
particles are randomly generated and their fitness function is calculated, these N parti-
cles are then fed into the PSO search algorithm. In each iteration, the particle adjusts
the vector position in the vector space according to its own experience and those of its
neighbours, the fitness function is recalculated, the particles created by PSO are used as
the new population. When the particles go into the GA loop, selection, crossover and
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mutation is carried out to get the new population of particles. When selection is car-
ried out, only the best particle is taken and reproduced in the next generation and there
by removing the weak particles, also the local best of each particle is also maintained.
When crossover is carried out between two particles, both these particles will keep track
of the local best as the better of the two local best positions of the two particles. The
fitness function is recalculated again and the process is repeated for maximum number
of iterations or until certain convergence criteria are met.

The combined algorithm is as follows:

1. Initialize each particle to contain elements, each set randomly to cluster number.
2. For t = 1 to tmax do

/* tmax is the maximum number of iterations */
Run step a or step b
(a) PSO

i. For each particle S do
A. Calculate the fitness using (4)
B. Update local best position

ii. Update the global best position
iii. Update the particles using (1) and (2)

(b) GA
i. Generate the new generation of particles using selection, crossover and

mutation keeping track of local best for each new particle generated.

4 Experimental Results

The proposed algorithm has been implemented using MATLAB 7.1 and executed on
Intel core i3 processor, 2.27 GHz computer. the results are generated and compared
on various standard data sets obtained from [7]. In our algorithm called the PSO+GA
algorithm, the parameters were set as follows: From the literature done we found that
inertia weight ω is set to 0.79 to get a better result [8],The two constant c1 and c2 are set
to 2 [9]. Deterministic selection procedure is used as the selection function for the GA.
Random one-point crossover and mutation are used as the genetic operators where the
mutation probability is 0.01 and crossover probability 0.95. k is the number of classes
in the data set that is already predefined in the benchmark datasets[7]. The results are
compared with the basic Kmeans algorithm and among different combinations where
PSO refers to only basic PSO, Hybrid PSO refers to the method proposed by Rehab F.
Abdel-Kader [5]. In 1PSO+1GA after every iteration of PSO we do one GA and so on
until maximum number of iterations are reached, in 3PSO+1GA, after 3 iterations of
PSO we do one GA and so on. For the test problem, the factors such as Mean squared
error(MSE), Entropy(E), Purity(P) and the average CPU time are calculated. The four
datasets have been used as shown in Table 1. The results have been given for different
combinations of PSO and GA in Table 2, 3, 4 and 5. It can be seen that in most cases,
the fitness value, MSE and Entropy of our method is lower then that of Kmeans, PSO
and Hybrid PSO. Purity is also generally higher in our method. The right combination of
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PSO and GA needs to be chosen. This depends on the dataset. We can use a validation
dataset to decide which combination of PSO+GA to use.

Here is the summarization of the datasets used as shown in following table:

Table 1. DataSets Used

DataSets No of Instances No of Attributes No of Classes
Iris 150 4 3

Wine 178 13 3
CMC 1473 10 3

Optical 5620 64 10

Table 2. Iris Data with t = 10, N = 10

Methods Fitness Value MSE Entropy Purity Avg CPU Time
Kmeans 1.125 1.023 1.234 0.66 0.20s

± 0.05 ± 0.11 ± 0.16
PSO 0.190 0.189 1.169 0.64 1.24s

± 0.21 ± 0.08 ± 0.63
Hybrid PSO 1.003 0.89 1.091 0.68 1.82s

± 0.66 ± 0.90 ± 0.30
1PSO + 1GA 0.176 0.181 1.172 0.80 2.28s

± 0.14 ± 0.35 ± 0.69
3PSO + 1GA 0.189 0.251 1.172 0.76 2.53s

± 0.80 ± 0.78 ± 0.80
5PSO + 1 GA 0.266 0.258 1.210 0.74 2.73s

± 0.10 ± 0.25 ± 0.15

Table 3. Wine Data with t = 10, N = 10

Methods Fitness Value MSE Entropy Purity Avg CPU Time
Kmeans 1.102 1.025 1.365 0.65 0.65s

± 0.05 ± 0.11 ± 0.16
PSO 0.282 0.263 1.321 0.58 1.82s

± 0.21 ± 0.08 ± 0.63
Hybrid PSO 0.235 0.172 1.356 0.56 2.82s

± 0.66 ± 0.90 ± 0.30
1PSO + 1GA 0.163 0.150 1.299 0.73 3.01s

± 0.14 ± 0.35 ± 0.69
3PSO + 1GA 0.170 0.158 1.315 0.63 3.53s

± 0.80 ± 0.78 ± 0.80
5PSO + 1 GA 0.181 0.162 1.320 0.61 3.73s

± 0.10 ± 0.25 ± 0.15
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Table 4. CMC Data with t = 10, N = 10

Methods Fitness Value MSE Entropy Purity Avg CPU Time
Kmeans 1.125 1.023 1.234 0.66 0.20s

± 0.05 ± 0.11 ± 0.16
PSO 0.190 0.189 1.169 0.64 1.24s

± 0.21 ± 0.08 ± 0.63
Hybrid PSO 1.003 0.89 1.091 0.68 1.82s

± 0.66 ± 0.90 ± 0.30
1PSO + 1GA 0.176 0.281 1.063 0.80 2.28s

± 0.14 ± 0.35 ± 0.69
3PSO + 1GA 0.489 0.512 1.172 0.76 2.53s

± 0.80 ± 0.78 ± 0.80
5PSO + 1 GA 0.566 0.580 1.210 0.74 2.73s

± 0.10 ± 0.25 ± 0.15

Table 5. Optical Recognition Data with t = 15, N = 20

Methods Fitness Value MSE Entropy Purity Avg CPU Time
Kmeans 3.003 2.270 2.641 0.70 612.77s

± 0.05 ± 0.11 ± 0.16
PSO 2.001 2.188 2.300 0.68 758.23s

± 0.21 ± 0.08 ± 0.63
Hybrid PSO 2.121 2.150 2.210 0.70 957.2s

± 0.66 ± 0.90 ± 0.30
1PSO + 1GA 1.882 1.771 1.856 0.81 950.23s

± 0.14 ± 0.35 ± 0.69
3PSO + 1GA 2.004 1.993 1.953 0.72 959.58s

± 0.80 ± 0.78 ± 0.80
5PSO + 1 GA 2.158 2.005 2.100 0.70 1005.4s

± 0.10 ± 0.25 ± 0.15

5 Conclusions

In this paper, we have proposed a genetically improved PSO where genetic operators are
introduced after some of the PSO iterations. The results show that our proposed method
gives consistently better results. Though the time taken is more,it is only slightly higher
and worth using since better clustering is obtained.
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Abstract. Symbolic Data Analysis deals with complex data types, ca-
pable of modeling internal data variability and imprecise data. This pa-
per introduces a Learning Vector Quantization algorithm for symbolic
data that uses a weighted interval Euclidean distance to try and achieve
a better performance of classification when the dataset is composed of
classes of varying structures. This algorithm is compared to a Learning
Vector Quantization algorithm that uses traditional interval Euclidean
distance. The algorithms are evaluated and compared for their perfor-
mances with synthetic and real datasets. This paper aims at contributing
to the area of Supervised Learning within Symbolic Data Analysis.

Keywords: Symbolic Data Analysis, Interval Data, Supervised Learn-
ing, Learning Vector Quantization, Weighted Distance.

1 Introduction

The interest in interval data has grown with the recent advances in database
and computational intelligence technologies. This type of data has been mainly
studied in Symbolic Data Analysis (SDA) [1], which is a domain in the area
of knowledge discovery and data management, related to multivariate analysis,
pattern recognition and artificial intelligence.

Several supervised classification tools have been extended to handle interval
data. Rossi and Conan-Guez [2] have generalized Multi-layer Perceptrons to
work with interval data. Appice et al. [3] introduced a lazy-learning approach
that extends a k-Nearest Neighbor with weighted distance to interval and modal
data. Silva and Brito [4] proposed three approaches to the multivariate analysis
of interval data, focusing on linear discriminant analysis.

One algorithm that shows great potential for being extended to handle in-
terval data, due to its simplicity and efficiency, is Learning Vector Quantization
(LVQ). LVQ is a prototype-based algorithm proposed by Kohonen [5]. The algo-
rithm starts by randomly assigning a subset of prototypes for each pattern class
of the dataset. Then, the prototypes are iteratively updated such that the near-
est neighbor rule minimizes the average expected misclassification probability.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 504–511, 2012.
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When the iterations stop, the updated prototypes should be close to the training
patterns in their classes.

Several modifications of the basic LVQ procedure have been proposed. Paredes
and Vidal [6] proposed an LVQ algorithm with prototype reduction which had
local weights for its prototypes. Silva Filho and Souza [7] introduced an LVQ
algorithm which used a prototype-based Euclidean distance to better model
classes composed of subregions of different shapes.

The main contribution of this paper is to introduce an LVQ classifier for
interval data which uses an interval adaptation of the prototype-based Euclidean
distance introduced by Silva Filho e Souza. The prototype-based distance allows
for better modeling of classes which have subregions with different shapes in
their structures.

The paper is organized as follows: Section 2 further explains interval symbolic
data and its characteristics, introducing the synthetic and real datasets used
in this paper. Section 3 introduces the LVQ with a prototype-based interval
Euclidean distance. Section 4 presents a performance analysis –comparing the
algorithm presented at Section 3 and an LVQ which uses non-weighted interval
Euclidean distance– considering the datasets presented at Section 2. And lastly
Section 5 gives the final remarks.

2 Symbolic Data

Classic data patterns are usually defined as vectors of quantitative or qualitative
variables. Due to this fact, classic data analysis does not naturally comprehend
variability or uncertainty for the representation of complex data. Symbolic Data
Analysis introduces a number of data types that better represent data variability,
e.g. intervals, histograms, lists of values, and others [8].

This paper focuses on interval data. This data type comes naturally from
the description of ranges of values, e.g. daily temperature variation, daily stock
prices, high and low water values in a tide table, etc. Interval data can also help
dealing with imprecise data.

Suppose there areK classes labeled 1, . . . ,K. Let ( = {(xi, yi)} (i = 1, . . . , N)
be a symbolic learning dataset. Each item i is described by a vector of p symbolic
variables xi = (X1

i , . . . , X
p
i ) and a discrete quantitative variable Y that takes

values in discrete set G = {1, . . . ,K}. A symbolic variable Xj
i (j = 1, . . . , p)

is an interval-valued variable when, given an item i of (, Xj
i = [Lj

i , U
j
i ] ⊆ Aj

where Aj = [L,U ] is an interval. Both datasets used in this paper are composed
of interval-valued variables.

2.1 Synthetic Interval Dataset

In order to generate a synthetic interval dataset, we must first generate a quanti-
tative dataset. Each subregion in this quantitative dataset was drawn according
to a bi-variate Gaussian distribution with non-correlated components. Each data
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point (z1, z2) of this synthetic quantitative dataset is a seed of a vector of inter-
vals (a hypercube of p dimensions, where p is the number of variables) defined
as: [([z1 − φ1/2, z1 + φ1/2], [z2 − φ2/2, z2 + φ2/2])]. These parameters φ1, φ2 are
randomly selected from the same predefined generating interval. The generating
intervals considered in this paper are: [1, 30] and [1, 50].

The generated interval dataset has 200 rectangles scattered among two classes
with 100 rectangles for each class. The figure below shows that each class has
2 differently shaped subregions and the classes show some overlapping. The
parameters for the dataset are:

1. Class 1:
– Subregion 1: μ1 = 165, μ2 = 185, σ2

1 = 196, σ2
2 = 1521 and n = 50.

– Subregion 2: μ1 = 227, μ2 = 263, σ2
1 = 324, σ2

2 = 324 and n = 50.
2. Class 2:

– Subregion 1: μ1 = 195, μ2 = 187, σ2
1 = 196, σ2

2 = 1521 and n = 50.
– Subregion 2: μ1 = 120, μ2 = 122, σ2

1 = 324, σ2
2 = 324 and n = 50.

The following figure shows the generated interval datasets.

Fig. 1. Dataset considering intervals [1,30] and [1,50]. Classes are represented as groups
of rectangles of different colors.

2.2 Dry Climates Dataset

A climate dataset was extracted from a global web site [9] which presents
official weather observations, weather forecasts and climatological information
for selected cities supplied by National Meteorological & Hydrological Services
(NMHSs) worldwide. The NMHSs make official weather observations in their
respective countries.

This dataset has 522 cities with 17 variables of which 16 are interval-valued
variables (minimum and maximum temperature in each month and minimum
and maximum precipitation in each season) and one is a quantitative variable
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defining the city’s Köppen climate classification [10]. To avoid confusion with the
season inversion between northern and southern hemispheres, the first month of
summer is considered the first month of the year. The classes are: desert (148
cities), savanna (199 cities) and semi-arid (175 cities). All variables were rescaled
by normalization between 0 and 1. This dataset is available online [11].

3 The Learning Vector Quantization with an Interval
Prototype-Based Euclidean Distance

The LVQ version extended in this paper is the Optimized Learning Vector Quan-
tization (an online LVQ with distinct learning rates for each prototype) [5]. The
fact that Optimized Learning Vector Quantization (OLVQ) is a prototype based
algorithm makes adapting it from quantitative to interval data a simple task. It
is a matter of changing the distance used to find the winner prototype from a
classic distance to an interval distance, e.g. an interval Euclidean distance.

The formula for interval Euclidean distance is

dint(xi,wm) = dLE(xi,wm) + dUE(xi,wm) (1)

where dLE(xi,wm) and dUE(xi,wm) are, respectively, the classic Euclidean dis-
tance between the lower and upper values of the interval-valued variables of
pattern i and prototype m. The OLVQ applied to interval data, using the inter-
val Euclidean distance is called Interval Learning Vector Quantization (ILVQ).

ILVQ and other prototype-based methods which use Euclidean distance to
find the nearest prototype tend to work better with spherical clusters and/or
classes. This is because, when using Euclidean distance, points that are equally
distant to a prototype are positioned in a radius around it.

To allow ILVQ to model classes composed of subregions of varying shapes,
we extend the prototype-based Euclidean distance proposed by Silva Filho and
Souza to interval data.

3.1 Interval Prototype-Based Euclidean Distance

Suppose there are M prototypes, such that each prototype m ∈ (1, . . . ,M), is
described by a vector of p interval-valued variables wm = (W 1

m, . . . ,W
p
m) and a

discrete quantitative variable Y that takes values in discrete set G = {1, . . . ,K}.
When using the interval prototype-based Euclidean distance, each prototype m
must have a weight vector λm, such that each of its interval valued variablesW j

m

has a different weight λjm.
The weighted interval Euclidean distance of prototype m at instant t (dpm(t))

is calculated as follows:

dpm(t)(xi,wm) = dLm(t)(xi,wm) + dUm(t)(xi,wm) (2)
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where dLm(t)(xi,wm) and dUm(t)(xi,wm) are, respectively, the classic prototype-
based Euclidean distance between the lower and upper values of the interval-
valued variables of pattern i and prototype m. This classic prototype-based
Euclidean distance is calculated as follows:

dm(t)(xi,wm(t)) =

√√√√ p∑
j=1

λjm(xji − wj
m(t))2 (3)

The weight vector λm models the dispersion of the class subregion represented
by prototype m. From the Lagrange Multiplier method, the weight vectors
λm = (λ1m, . . . , λ

p
m) (m = 1, . . . ,M), which follow two restrictions (λjm > 0

and
∏p

j=1 λ
j
m = 1), are updated according to the following expression:

λjm =
{
∏p

h=1(Δ
h
m)}

1
p

Δj
m

(4)

where h = 1, . . . , p is the set of indexes of the variables and Δj
m is the sum of the

quadratic differences between the lower and upper values of prototype m and
the patterns correctly affected by it and is calculated as follows:

Δj
m =

∑
i∈m

[(xjL
i −wjL

m )2 + (xjU
i −wjU

m )2]δmi (5)

where δmi = 1 if i belongs to the same class as m, otherwise δmi = 0. If Δj
m = 0

at any iteration of the algorithm, then no updates are made at this iteration.

3.2 The Weighted Interval Learning Vector Quantization Algorithm

Using the interval prototype-based Euclidean distance, we have a Weighted In-
terval Learning Vector Quantization (WILVQ). Since this is an online algorithm,
the sum Δj

m defined at equation (5) must be updated every time a prototype m
affects a training pattern i of the same class. Then, the weight vector λm must
be recalculated.

To address the problem of information outdating on the Δj
c sum (where c

is the index of the winning prototype), the update of Δj
c is a weighted sum of

the new sum of the quadratic differences between the lower and upper values
of the new training pattern i and its winning prototype c(t) and the previous
Δj

c(t− 1), using the learning rate αc(t) of the winning prototype c(t) as weight,
which gives:

Δj
c = [(1 − αc(t))Δ

j
c(t− 1)] + {αc(t)[(x

jL
i −wjL

c )2 + (xjU
i −wjU

c )2]} (6)

The index c of the nearest prototype to a pattern i is found as follows:

c = arg min{dpm(xi,wm)∀m ∈ (1, . . . ,M)} (7)

The steps for WILVQ are presented below.
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1. Initialization

1.1 At instant t = 0Choose theM prototypes {(w1(t), y1), . . . , (wM (t), yM )}.
1.2 From m = 1 to M , do αm(t) = 0.3 and, from j = 1 to p, do λjm = 1.

2. Prototype update step: choose a pattern i of the training dataset (
randomly.
2.1 Define the winning prototype c using Equation (7)

2.2 If class(i) = class(c) do
2.2.1 Update Δj

c, j ∈ (1, . . . , p) using Equation (6).

2.2.2 Update the weight vector λc using Equation (4).

2.2.3 From j = 1 to p, do W j
c (t+ 1) = W j

c (t) + αc(t)[X
j
i −W j

c (t)], where

the subtraction of intervals Xj
i and W j

c (t) is intuitively calculated

as Xj
i −W j

c (t) = [Lj
i − Lj

c, U
j
i − U j

c ], which means it is the interval
formed by the subtraction of the boundaries of the original intervals.

2.3 If class(i) �= class(c), then, from j = 1 to p, do W j
c (t + 1) = W j

c (t) −
αc(t)[X

j
i −W j

c (t)].

2.4 Update αc(t) according to the following equation:

αc(t) =
αc(t− 1)

1 + s(t)αc(t− 1)
(8)

where s(t) = +1 if i and c belong to the same class, and s(t) = −1 if i
and c belong to different classes.

3. Convergence criterion: If every αm(t) ≤ 0.00005 (m = 1, . . . ,M), STOP.
If not, if step 2 has been repeated a number of times equal to the length of
the prototype set multiplied by the length of the training set then go to step
4, otherwise go to step 2.

4. Validation
4.1 Compute validation error.
4.2 If the validation error has grown for three consecutive times, STOP, if

not go to step 2.

A validation step is used because the algorithmmay pass too many times through
step 2 without meeting the convergence criterion for the learning rate. Evaluating
the validation error allows the algorithm to take as many turns as it needs on
step 2 to converge, before the validation error grows three consecutive times.

4 Experiments

To compare the performances of the WILVQ and the ILVQ, experiments were
conducted with the synthetic and real datasets presented in Section 2.
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4.1 Synthetic Dataset

For this dataset, the methods are evaluated based on the accuracy prediction
measured by the error rate of classification. 100 replications of the dataset with
identical statistical properties are obtained and, for each one, training (50% of
the original dataset), validation and test (both with 25% of the original dataset)
sets are randomly generated. The estimated error rate of classification corre-
sponds to the average of the error rates obtained among the 100 replicates of
the test set.

In these experiments, 4 prototypes were used for each of the two classes.
The table below presents the results of the average and standard deviation of
the error rate of classification (in %) for both generating intervals ([1, 30] and
[1, 50]). To confirm these results, a two-sampled, two-tailed hypothesis test was
made for each generating interval, with a significance level α = 0.05. For each
test the hypothesis were: H0 : μWILVQ = μILV Q and H1 : μWILVQ �= μILV Q.
The number of degrees of freedom used was:min{nWILVQ−1, nILVQ−1}. Since
for every sample n = 100, the number of degrees of freedom (df) is always 99.

With α = 0.05 and df = 99, the critical values for the tests are t0 > t0.025;99 ≈
1.98 and t0 < t0.025;99 ≈ −1.98.

Table 1. Error Rate of the Classifiers for the Synthetic Dataset and Statistics for the
Hypothesis Tests

Interval ILVQ WILVQ Statistics

[1,30]
18.12 15.2 -2.99
(7.55) (6.20)

[1,50]
16.9 14.88 -2.35
(6.16) (5.96)

Since this synthetic interval dataset was made to show some overlapping and
subregions of different shapes within classes, it was expected that WILVQ per-
formed better than ILVQ. This is confirmed by all the hypothesis tests for the
error rate (the statistics give evidence that the null hypothesis should be rejected
and that μWILV Q < μILV Q)

4.2 Dry Climates Dataset

WILVQ and ILVQ were evaluated with the dry climates dataset presented at
Section 2 for their performances of error rate of classification. The methods were
evaluated using a Monte Carlo simulation with 10 repetitions, and within each
of these repetitions, a 10-fold cross validation was made, yielding a total of 100
error rate results. 5 prototypes were used for each one of the three classes.

The results of the average and standard deviation of the error rate of clas-
sification were: 17.51% with a standard deviation of 5.22% for the ILVQ and
15.67% with a standard deviation of 4.88% for the WILVQ.
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In the same way that it was done with the synthetic dataset, a two-sampled,
two-tailed hypothesis test was made, with a significance level α = 0.05. The
hypothesis were: H0 : μWILVQ = μILV Q and H1 : μWILV Q �= μILV Q. The
resulting statistics was t0 = −2.58 < −1.98. The result of the hypothesis test
shows that WILVQ performs better than ILVQ.

5 Conclusion

An interval weighted LVQ approach for interval data has been introduced in
this paper: the WILVQ. It uses an interval adaptation of the prototype-based
Euclidean distance proposed by Silva Filho and Souza to try and achieve a bet-
ter performance than the ILVQ, which uses the traditional non-weighted interval
Euclidean distance. Since ILVQ uses an interval non-weighted Euclidean distance
to find the nearest prototype, it tends to model classes –and their subregions
represented by their prototypes– of spherical shape. Using a prototype-based Eu-
clidean distance, WILVQ is able to describe classes with complex intrastructure
defined by subregions.

Experiments with synthetic and real datasets have confirmed that WILVQ
tends to outperform ILVQ when classes overlap and have subregions that are
not well described by non-weighted interval Euclidean distance.
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Abstract. The Base Station (BS) sleeping strategy has become a well-known
technique to achieve energy savings in cellular networks by switching off re-
dundant BSs mainly for lightly loaded networks. Besides, the exploitation of
renewable energies, as additional power sources in smart grids, becomes a real
challenge to network operators to reduce power costs. In this paper, we propose
a method based on genetic algorithms that decreases the energy consumption of
a Long-Term Evolution (LTE) cellular network by not only shutting down un-
derutilized BSs but also by optimizing the amounts of energy procured from the
smart grid without affecting the desired Quality of Service.

Keywords: Green Network, Genetic Algorithm, Sleeping Strategy, Smart Grid.

1 Introduction

Mobile networks represent already around 10% of the total carbon emitted by Infor-
mation and Communication Technology (ICT) and this is expected to increase every
year [1]. Several works focus on strategies to achieve energy savings in the recent 4G
LTE by switching off base stations (BSs), mainly during peak-off hours, as they con-
sume more than 50% of the energy due to circuit processing, air conditioning and other
factors [2]. Many heuristic algorithms have been proposed to reduce the number of
active BSs depending on different criteria based on a certain quality of service (QoS)
metric, e.g. [3].

A complementary work is to study the impact of introducing the smart grid which
contains different energy sources (e.g., electricity generated from fossil fuels or from
renewable energy sources) to power cellular networks [4]. A recent research focuses on
the dynamic operation of cellular BSs that depends on the the traffic, real-time pricing
provided by the smart grid and the pollutant level associated with the generation of the
electricity [5]. However, this work does not consider a particular technology (e.g. LTE)
and does not take intercell interference into account.

In this paper, we investigate the performance of a BS sleeping strategy based on a
proposed optimization problem by implementing it within a green Genetic Algorithm
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(GA). In fact, GA is a strong optimization tool used in several applications for LTE
networks such as resource allocation [6], and for smart grids as in [7]. In our case, we
implement it with the sleeping strategy in order to minimize the energy consumption of
the LTE cellular network, reduce the CO2 emissions in the green LTE cellular network,
maximize the profit of the network operator, and maintain a target QoS level.

This is performed given the nature and the cost of the provided energies in the smart
grid in addition to the unitary prices of the mobile network operator services. In addi-
tion, we take into account both the Uplink (UL) and Downlink (DL) directions, LTE
resource allocation, and intercell interference.

The rest of this paper is organized as follows. Section 2 presents the system model.
Section 3 describes the problem formulation. The strategy and the proposed green ge-
netic algorithm are detailed in Section 4. Simulation results are presented and analyzed
in Section 5. Finally, the conclusions are drawn in Section 6.

2 System Model

We consider a uniform geographical area where an LTE network is deployed and where
users are uniformly distributed. The area is divided into cells of equal size where a BS is
placed in the center of each cell. In LTE, the available spectrum is divided into Resource
Blocks (RB) that contain a fixed number of consecutive subcarriers. RBs are assigned
to users according to the resource allocation procedure described in [8] and summarized
as follows: each user communicates with a selected BS. Due to the low transmit power
of a Mobile Station (MS) compared to the BS transmit power, we associate each user
to the BS that offers the best available UL channel gain and from this assigned BS, we
allocate the RB that provides the best available DL channel gain to that user.

2.1 Energy Consumption Model for Base Stations

We consider that each BS is equipped with a single omni-directional antenna. The con-
sumed power PBS

j of the jth active BS can be computed as follows [9]:

PBS
j = aP tx

j + b, (1)

where P tx
j denotes the radiated power of the jth BS. The coefficient a corresponds to

the power consumption that scales with the radiated power due to amplifier and feeder
losses. The term b models an offset of site power which is consumed independently of
the average transmit power and is due to signal processing, battery backup, and cooling.

2.2 Operator Services

In our framework, the network operator offers M different services characterized by
their data rate thresholds R(UL)

m,th and R(DL)
m,th for UL and DL, respectively, and their uni-

tary prices p(m) with m = 1 · · ·M . We suppose that each user in the network benefits
from one of the M offered services.



514 H. Ghazzai et al.

2.3 Retailers and Pollutant Levels

In our study, we assume that the cellular network is powered by a smart grid where
N retailers exist to provide energy with different prices and pollutant levels depending
on the nature of the energy source. The amount of energy q(n)j procured by the jth BS
from each retailer n (n = 1 · · ·N ) is a function of its cost (i.e. the unitary price of
the provided energy) π(n) and a penalty term corresponding to pollutant emissions and
modeled as follows [10]:

F (q
(n)
j ) = αn(q

(n)
j )

2
+ βnq

(n)
j , (2)

where αn and βn are the emission coefficient cost of retailer n. In addition, we suppose
that each retailer has a maximum available amount of energy. For instance, the network
can not procure from the renewable energy retailer more than a certain amount Q(n)

max.
Based on this system model and these parameters, we formulate an optimization

problem where the mobile network operator is able to optimally procure energy for its
BSs in order to maximize an objective function that depends on its attitude towards the
environment. More details about the channel model and the data rate expressions for
LTE can be found in [8].

3 Problem Formulation

In this section, we formulate the optimization problem that will be solved in section 4
using the GA.

We consider that NBS BSs are deployed and NU users are randomly distributed
in the area of interest. We denote by Nout the number of users in outage (Nout �
NU ). A user i using the mth service communicates successfully with a BS, if its UL
and DL data rates, denoted R(UL)

i and R(DL)
i respectively, are higher than the service

data rate thresholds: R(UL)
m,th and R(DL)

m,th respectively. We associate a binary parameter
γi, i = 1 · · ·NU to each user. If the user i is served successfully then γi = 1 else
γi = 0. If we denote γ = [γ1 · · · γNU ], then the number of ones and the number of
zeros in γ correspond to the number of served users and the number of users in outage,
respectively. Therefore, the network operator revenue R(γ) =

∑NU

i=1 γip
(m)
i , where

p
(m)
i is the cost of the service m used by the ith user, depends only on the spending of

the served users.
On the other hand, in order to include the BS sleeping strategy in the problem formu-

lation, we introduce a binary variable εj with j = 1 · · ·NBS to denote the BS state: εj =
1 means that BS j is switched on while εj = 0 indicates that BS j is switched off. Let
ε = [ε1 · · · εNBS]. The number of ones and the number of zeros in this vector indicate
the number of active and inactive BSs, respectively. Assume that each BS is able to pro-
cure energy from different retailers at the same time. Then, the total cost of the energy
consumption of the network is expressed as:

∑NBS

j=1

∑N
n=1 εjπ

(n)q
(n)
j . In addition, the

total CO2 emission of the network is given by:
∑NBS

j=1

∑N
n=1 εj

(
αn(q

(n)
j )

2
+ βnq

(n)
j

)
,

where π(n) is the cost of one unit of energy provided by the nth retailer and q
(n)
j is
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the amount of energy procured by BS j from the nth retailer, with j = 1 · · ·NBS and
n = 1 · · ·N . In our work, the mobile network operator has to solve the following opti-
mization problem in order to maximize the utility function U :

Maximize
γ,ε,q

U = (1− ω) P(γ, ε, q)− ω I(ε, q), (3)

Subject to:
NBS∑
j=1

εjq
(n)
j ≤ Q(n)

max ∀n = 1 · · ·N, (4)

N∑
n=1

q
(n)
j = PBS

j ∀j = 1 · · ·NBS, (5)

Nout

NU
≤ Pout, (6)

q
(n)
j ≥ 0 ∀j = 1 · · ·NBS, ∀n = 1 · · ·N, (7)

where ω is a weighting parameter. In (3), P(γ, ε, q) is a function that corresponds to
the mobile operator’s profit. It is given by:

P(γ, ε, q) =
NU∑
i=1

γip
(m)
i −

NBS∑
j=1

N∑
n=1

εjπ
(n)q

(n)
j · (8)

The function I(ε, q) in (3) reflects the friendliness to the environment of the mobile net-
work operator and corresponds to the CO2 emissions caused by the energy consumption
of the mobile operator’s network. It is given by:

I(ε, q) =
NBS∑
j=1

N∑
n=1

εj

(
αn(q

(n)
j )

2
+ βnq

(n)
j

)
· (9)

Thus, the objective is to solve a multi-objective optimization (or Pareto optimization)
problem by constructing a single aggregate objective function [11] which corresponds
to a weighted linear sum of the objective functions (8) and (9). These functions are
weighted by a parameter ω called the Pareto weight (0 < ω < 1). The elements of

the vector q = [q
(1)
1 · · · q(N)

1 q
(1)
2 · · · · · · q(N)

NBS
]
T

, and the binary vectors γ and ε are the
decision variables of the problem.

When ω → 0, we are dealing with a selfish network operator that aims to maximize
its own profit P regardless of its impact on the environment. When ω → 1, we deal
with an environmentally friendly network operator that aims to reduce CO2 emissions
regardless of its own profit. Other values of ω constitute a tradeoff between these two
extremes.

The constraint (4) indicates that the power consumed by all BSs in the cellular net-
work from power retailer n cannot exceed the total power provided by that retailer.
While (5) indicates that the amount of power drawn by a BS from all retailers should
be equal to the power needed for its operation, (6) forces the number of users in outage
to be less than the tolerated outage threshold Pout and (7) is a trivial constraint express-
ing the fact that the energy drawn is a positive amount. It should be noted that, when a
certain retailer can provide to the network enough electricity to power all its BSs, we
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can set Q(n)
max = +∞ to relax the constraint (4) for that retailer, although in practice the

amount of energy produced is naturally finite.

4 Green Genetic Algorithm

The formulated optimization problem in section 3 is considered as a combinatorial
problem due to the existence of binary variables (γi and εj) as decision variables which
makes the optimal and exact solution of this nonlinear optimization problem difficult or
even impossible to find [11]. Therefore, we employ the heuristic GA.

The idea of the GA is to find the optimal binary string ε that maximizes the utility
function expressed in (3). Initially, the GA generates L binary strings of length NBS

forming a set called initial population S0. For each element of S0, ε(l), l = 1 · · ·L
which corresponds to a random combination of εj , j = 1 · · ·NBS , the algorithm com-
putes the data rates of all users and compares them to the data rate thresholds after
applying the resource allocation algorithm described in [8]. By this way, it identifies
the users in outage and consequently the value of the vector γ(l). Then, for fixed ε(l)

and γ(l), the problem in (3) depends only on one decision variable, the vector q(l), and
hence becomes a quadratic concave optimization problem that has a unique solution.
Finding that solution determines the power to be procured from the available retailers,
and hence the utility function can be computed.

After computing L utilities Ul corresponding to each ε(l), we select the Lb highest
utility strings (Lb < L) on which we apply crossovers and mutations to generate a
new population S1. This procedure is repeated until reaching convergence or until a
maximum number of populations is used. Details of the proposed method using the GA
are given in the following:

– Step 0: Compute the utility function U0 for ε = ε(0) = [1 · · · 1]) and set Um = U0

and εmax = ε(0).
– Step 1: Generate an initial population S composed of L random ε(l), l = 1 · · ·L.
– Step 2: while (Not converged) and (maximum number of populations not reached)

• for l = 1 · · ·L
∗ Allocate resources (select serving BS and UL and DL RBs) to all users and

compute γ(l) and N (l)
out corresponding to the string ε(l) ∈ S.

∗ if N
(l)
out

NU
≤ Pout, find q̃(l) by solving the quadratic optimization problem in

(3) that results from fixing ε(l) and γ(l), then compute the corresponding
utility Ul.

∗ else ε(l) is not a suitable solution (we set Ul = −∞). end if
end for

• Set Umax = max
l
Ul and εmax = εlm where lm indicates the index of the string

∈ S that results in the highest utility.
• Maintain the best Lb strings ∈ S to the next population and from them, gen-

erate L − Lb new strings by applying crossovers and mutations to form a new
population S.
end while

Convergence is reached when Umax remains constant for several successive iterations.
At the end, the optimal BS combination is εmax.
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5 Results and Discussion

In this section, we analyze the performance of the sleeping strategy used with the GA
presented in Section 4 versus two parameters: the network operator attitude ω and the
number of subscribers NU .

We consider a 5× 5 (Km2) LTE coverage area with uniform user distribution where
NBS BSs are placed uniformly according to the cell radius, selected to be 0.5 km.
The LTE and channel parameters are selected as in [8]. All BSs and all MSs have the
same power model and the same maximal transmit power, respectively. The outage
probability Pout is fixed to 2%. These parameters are detailed in Table 1.

In addition, we suppose that the network operator offers M = 4 different services.
Each one is characterized by its cost (unitary price) p(m) expressed in Monetary Units
(MU), DL and UL data rate thresholds, and the occurrence probability of the service
as shown in Table 2. The occurrence probability of a given service corresponds to the
percentage of subscribers in the network using that service.

Concerning the energy providers, we assume that N = 3 retailers produce energy
from different sources. Each type of energy source n is characterized by its unitary
price π(n) MU, total available energy Q(n)

max and two pollutant coefficients αn and βn
as shows Table 2. We suppose that the second energy provider has a limited amount of
power Q(2)

max to be provided to the mobile network: for instance, it can correspond to a
renewable energy provider producing electricity from wind or solar energy. The third
retailer, in this scenario, produces energy with a very cheap price but it causes a harmful
impact on the environment. The Q(2)

max is kept as a variable to investigate its effect on
the system performance.

The GA is applied under the following settings: from a population of size L =
32, we run the algorithm at most 35 times. From each population, we select Lb =
0.5L strings to the next population while the remaining 0.5L strings are obtained by
randomly crossing over the Lb strings. The crossover point is, also, chosen randomly
between the 0.2L and 0.8L positions. The mutation probability is set to 0.01.

The performance of the green GA is studied versus the Pareto parameter ω and the
number of subscribers NU . We run the GA by starting from different populations, and
we consider the averaged results over several channel realizations and user locations.
Numerical results are obtained for three values of ω: the lowest one corresponds to
a selfish network operator while the highest ω refers to an environmentally friendly
operator as displays Table 3. In addition, we compare the traditional case where 25
BSs are deployed in the area of interest to the proposed algorithm (sleeping strategy
with GA). When ω increases, we notice that we are able to reduce the CO2 emissions
by more than 95% thanks to the exploitation of the renewable energy after switching

Table 1. Power and Bandwidth Parameters

Parameter Value Parameter Value Parameter Value

(B(DL), B(UL)) (MHz) (10, 10) (N
(DL)
RB , N

(UL)
RB ) (50, 50) MS Tx power (W) 0.125

BS Tx power (W) 10 a 7.84 b (W) 71.5
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Table 2. Service and Energy Provider Parameters

Services Ser. 1 Ser. 2 Ser. 3 Ser. 4

p(m)(MU) 10 5 3 1

R
(DL)
m,th (kbps) 1000 384 256 64

R
(UL)
m,th (kbps) 384 384 56 64

Occurrence (%) 10 10 30 50

Retailers Ret. 1 Ret. 2 Ret. 3

π(n)(MU) 0.05 0.5 0.01

Q
(n)
max (W) +∞ 300 +∞
αn 0.02 0 0.5

βn 0.2 0 0.5

Table 3. Numerical Results

NU = 50 NU = 200

ω 0 0.1 0.5 0 0.1 0.5

Profit (MU) 92.62 53.29 -83.34 548.09 471.81 340.51

CO2 emissions (tonne/year) 22266 3076 2216 89562 3850 2875

Traditional Consumed power (W) 1866 1866 1866 2100 2100 2100

Scenario Power from Retailer 1 (%) 0 96 81 0 96 82.72

Power from Retailer 2 (%) 0 0 16 0 0 14.28

Power from Retailer 3 (%) 100 4 3 100 4 3

Profit (MU) 139.72 133.49 63.71 564.12 537.44 405.41

CO2 emissions (tonne/year) 2864 265 47 27340 608 112

Genetic Algorithm Consumed power (W) 186.45 166.81 166.36 622.92 381.38 368.56

+ Power from Retailer 1 (%) 0 96 8.7 0 95 18.6

Sleeping Strategy Power from Retailer 2 (%) 0 0 91.3 0 1 81

Power from Retailer 3 (%) 100 4 0 100 4 0.4

Active BSs 4 3 3 8 5 5

off redundant BSs. Indeed, the percentage of the procured renewable energy from the
smart grid reaches more than 81% of the total consumed power which is exactly equal
to the available renewable energy Q(2)

max = 300 W. This is due to the reduced number
of active BSs comparing to the traditional case: it goes from 25 to 5 for NU = 200.
In addition, for all values of ω, the proposed method can significantly decrease the
total energy consumption of the network and thus maximizes the mobile operator’s
profit by optimally allocating power from the smart grid to the active BSs. However,
an environmentally friendly attitude leads to a loss in terms of profit because of the
high unitary price of renewable energy provided by the second retailer. That’s why, the
network operator may use a tradeoff attitude where it can find an acceptable profit with
reduced CO2 emissions; this point can correspond to ω = 0.1, for this scenario. Finally,
numerical results show that, after applying the proposed method, a lower ω corresponds
to a higher number of active BSs. This is explained by the fact that the network operator
needs to activate some additional BSs to serve more subscribers and hence maximize its
profit. In the other cases, the network operator prefers to shut down some BSs instead of
serving users if the constraint (6) is still satisfied, since the utility would be increasingly
affected by the penalty term I(ε, q) in (3).
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6 Conclusions

In this paper, we formulated an optimization problem to allocate the energy procured
from the smart grid where renewable energy sources are available in order to reduce
CO2 emissions and/or maximize the profit of an LTE mobile operator depending on its
attitude towards the environment. The BS sleeping strategy was implemented through
a proposed green genetic algorithm that achieved significant energy savings for the
investigated LTE network without affecting the required QoS.
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the Qatar National Research Fund (a member of The Qatar Foundation). The statements
made herein are solely the responsibility of the authors.

References

1. Fettweis, G.P., Zimmermann, E.: ICT energy consumption - Trends and challenges. In: 11th
International Symposium on Wireless Personal Multimedia Communications (2008)

2. Louhi, J.: Energy efficiency of modern cellular base stations. In: 29th International Telecom-
munications Energy Conference (INTELEC), pp. 475–476 (2007)

3. Xiang, L., Pantisano, F., Verdone, R., Ge, X., Chen, M.: Adaptive traffic load-balancing for
green cellular networks. In: IEEE PIMRC (2011)

4. Samadi, P., Mohsenian-Rad, A., Schober, R., Wong, V., Jatskevich, J.: Optimal real-time
pricing algorithm based on utility maximization for smart grid. In: IEEE SmartGridComm,
pp. 415–420 (2010)

5. Bu, S., Yu, F.R., Cai, Y., Liu, P.: When the smart grid meets energy-efficient communica-
tions: Green wireless cellular networks powered by the smart grid. IEEE Trans. on Wireless
Communications (published online, 2012), doi:10.1109/TWC.2012.052512.111766

6. Yang, X., Wang, Y., Zhang, D., Cuthbert, L.: Resource allocation in LTE OFDMA systems
using genetic algorithm and semi-smart antennas. In: IEEE WCNC (2010)

7. Ramaswamy, P., Deconinck, G.: Relevance of voltage control, grid reconfiguration and adap-
tive protection in smart grids and genetic algorithm as an optimization tool in achieving their
control objectives. In: IEEE International Conference on Networking, Sensing and Control,
ICNSC (2011)

8. Yaacoub, E.: Performance study of the implementation of green communications in LTE
networks. In: International Conference on Telecommunications, ICT (2012)

9. Richter, F., Fehske, A., Fettweis, G.: Energy efficiency aspects of base station deployment
strategies for cellular networks. In: IEEE VTC-Fall (2009)

10. Senthil, K., Manikandan, K.: Improved tabu search algorithm to economic emission dispatch
with transmission line constraint. Int’l J. of Computer Science and Comm. 1, 145–149 (2010)

11. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press (2004)



Robust Hypersurface Fitting Based

on Random Sampling Approximations

Jun Fujiki1, Shotaro Akaho2, Hideitsu Hino3, and Noboru Murata3

1 Fukuoka University
2 National Institute of Advanced Industrial Science and Technology

3 Waseda University
fujiki@fukuoka-u.ac.jp, s.akaho@aist.go.jp

hideitsu.hino@toki.waseda.jp, noboru.murata@eb.waseda.ac.jp

Abstract. This paper considers N − 1-dimensional hypersurface fitting
based on L2 distance in N-dimensional input space. The problem is usu-
ally reduced to hyperplane fitting in higher dimension. However, because
feature mapping is generally a nonlinear mapping, it does not preserve
the order of lengthes, and this derives an unacceptable fitting result. To
avoid it, JNLPCA is introduced. JNLPCA defines the L2 distance in the
feature space as a weighted L2 distance to reflect the metric in the input
space. In the fitting, random sampling approximation of least k-th power
deviation, and least α-percentile of squares are introduced to make es-
timation robust. The proposed hypersurface fitting method is evaluated
by quadratic curve fitting and quadratic curve segments extraction from
artificial data and a real image.

Keywords: LαPS, LkPD, JNLPCA, RANSAC, fitting.

1 Introduction

Understanding of the structure of data by dimensionality reduction is a funda-
mental and important task in data processing. One of the geometrical meanings
of dimensionality reduction is fitting hyperplane and/or hypersurface to observed
data. To extract linear structure of the data, a hyperplane is fit to the data and
principal component analysis (PCA) is commonly used. To extract nonlinear
structure, the PCA is extended to many kinds of nonlinear PCA (NLPCA) and
this means many kinds of hypersurface fitting methods are proposed. The basic
idea of NLPCA is that the data which have nonlinear structure is mapped to
a high-dimensional space, called feature space, so as to have linear structure in
the feature space. Then, original PCA is applied to extract linear structure of
the data in the feature space. In the framework of NLPCA, type of extractable
nonlinear structure strongly depends on this nonlinear mapping, which is called
feature mapping. Hence, the feature mapping determines the class of fitting hy-
persurface and selecting an appropriate feature mapping is very important. In
many applications in computer vision, the type of structure, that is, the class of
hypersurface is known such as quadratic curve segment extraction as discussed
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in the paper. In such an application, the class of hypersurface is parameterized
linearly, and NLPCA works very well. But unfortunatelly, NLPCA sometimes
derives an unacceptable estimation. The main reason for this is that errors of
data are measured by the metric in the feature space, not in the input spafce (the
space of observed data) in NLPCA. Since nonlinear mapping does not preserve
distances, small error in the input space sometimes becomes large error in the
feature space and vice versa. Then measuring errors in the feature space is not the
best strategy in extracting structure of data. From this point of view, many meth-
ods considering the metric in the input space have been proposed [1,2,6,7,10,11].
These methods approximate feature mapping as affine mapping around each of
the data by using Jacobian matrix, and then compute the relation between the
metric in input space and that in feature space. By this approximation, the L2

distance in the input space can be approximated as weighted L2 distance by the
quantities in the feature space and then it can be treated in the feature space.
Then hypersurface fitting with the L2 distance in the input space can be ap-
proximated by hyperplane fitting with the weighted L2 distance in the feature
space. The method is called Jacobian NLPCA (JNLPCA) [6].

On the other hand, detecting lines and quadratic curves in a two-dimensional
image is an important and one of the most fundamental problems in image
processing. To detect them, the Hough transformation (HT ) [3], the randomized
Hough transformation (RHT ) [12], and random sampling consensus (RANSAC )
[4] are frequently used. Since the HT and RHT estimates the parameters of lines
or curves by voting on the cells in the parameter space, they have disadvantage
that the accuracy of detected lines depends on the resolution of cells in the
parameter space. The RANSAC estimates the parameters of lines or curves by
counting the number of inliers, from which the distance to the lines or curves is
less than the given threshold. Hence then the accuracy of detected lines depends
on this threshold.

In this paper, two hypersurface fitting methods based on random sampling
like RANSAC, are proposed. These methods use the L2 distance in input space,
not the distance in the feature space. The one method is least α-percentile of
squares [5] (LαPS), which is an extension of least median of squares (LMedS )
estimation [9]. The other is least k-th power deviation [5] (LkPD), which is
an extension of LS estimation. Briefly speaking, LαPS uses the α-percentile
instead of the median in LMedS, and LkPD minimizes the sum of the k-th
power deviations of errors instead of the sum of squares of errors. A remarkable
property holds in one-dimensonal reduction by LkPD for 0 < k ≤ 1, which is
called optimal sampling property. The property is that there exists at least one
global optimum which passes through N data points when an N−1 dimensional
hyperplane is fitted to the N -dimensional data. By usig the property, finding
optimum is reduced to combinatorial optimization of polynomial order, and it
can be approximated by random sampling. The proposed methods are applied
for fitting quadratic curve in an image, and detecting quadratic curve and/or
ellipse segments.
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2 Optimal Sampling Property and Jacobian NLPCA

For hyperplane fitting based on LkPD, the following theorem holds:

Theorem 1.(Fujiki et al.[5]) Let N − 1-dimensional affine space fitting for
N -dimensional data points so as to minimize the (weighted) sum of k-th power
Lp distance. When 0 < p ≤ ∞ and 0 < k ≤ 1, there exists a global optimum
which passes at least N data points. (In the case of linear space fitting, a global
optimum passes the origin andN−1 data points.) This property is called optimal
sampling property.

When considering hypersurface fitting for the data in M -dimensional input
space, the data are mapped into N -dimensional Hilbert space, which is called
feature space, so as to have linear structure. By this mapping, hypersurface
fitting is reduced to N − 1-dimensional linear subspace fitting in the feature
space. In usual NLPCA, the linear subspace is estimated by minimizing the
sum of squared Euclidean distance between data and linear space in the feature
space. Therefore, the approximation of the LS estimator in the input space is
proposed [1,2,6,7,10,11].

The input space is assumed to be an M -dimensional Riemannian space, and
its metric at observed data point x[d] (d = 1, . . . , D) is denoted by G[d]. In hy-
persurface fitting, each data x[d] is mapped to the N -dimensional Hilbert space,
called feature space, by the feature mapping φ : x )→ φ(x). By using J[d],
which is the Jacobian matrix at x[d], the metric in the feature space around
φ[d] = φ(x[d]) is linearly approximated by the metric in the input space as

G[d] = (J+
[d])

	G[d]J[d] where X
+ is the Moore-Penrose inverse matrix of X . This

paper considers that the set of fitting hypersurfaces is represented by a linear pa-
rameter a as f(x;a) = a	φ(x) = 0. For quadratic curve fitting in xy-plane, it is
represented as a	(x2, xy, y2, x, y, 1)	 = 0. When the mapping x )→ φ is consid-
ered as a feature mapping, the M − 1-dimensional hypersurface fitting problem
is reduced to N−1-dimensional linear subspace fitting on feature space. In usual
NLPCA, the distance between two points in the feature space is measured by
L2 distance in the feature space, but in JNLPCA, the distance between a point
and a hypersurface in the feature space is measured by an approximation of the
L2 distance in the input space, and its representation is

R[d] =

√√√√√a	
[
φ[d]φ

	
[d]

]
a

a	G+
[d]a

as shown in Fujiki et al. [6]. Compared with this, the distance between the data
and fitting hypersurface without considering the metric of input space is

r[d] =

√√√√a	
[
φ[d]φ

	
[d]

]
a

a	a
.
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Then, the distance considering the metric of input space is represented by the
weighted distance as

R[d] = w[d]r[d], where w[d] =

√
a	a

a	G+
[d]a

.

3 Random Sampling Approximation

Because hypersurface fitting is approximated by weighted hyperplane fitting in
the feature space as discussed in the previous section, hyperplane fitting methods
can be applied to hypersurface fitting. Then, in this paper, two hyperplane fittng
methods, which are combinatorial optimization of polynomial order, are consid-
ered. The one is random sampling approximation of LkPD(0 < k ≤ 1), which has
the optimal sampling property, and the other is LαPS , which is an extension of
LMedS. Since these methods are combinatorial optimization of polynomial order,
finding the optimum takes high computational costs, even for quadratic curve
fitting in R2 (For 100 data points, there are about 1012 combination to find the
optimum.). To reduce the computational costs, the random sampling technique
can be adopted. There exists a very famous random sampling method, which
is known as RANSAC [4]. Roughly speaking, the difference among RANSAC,
LαPS , and LkPD are how to detect outliers. RANSAC classifies a data point
into inlier when the approximated distance between the data point and the hy-
persurface is less than the given threshold e, and classifies the point into outlier
otherwise, then finds the hypersurface which has the maximum number of inliers.
LαPS defines the percentage of inliers by given α, and find the hypersurface so
as to minimize the largest distance between inlier point and hypersurface (min-
imax criterion). LkPD(0 < k ≤ 1) does not classify data as inlier or outlier,
but effect of error of each data is rapidly decreasing when the error gets large.
Note that when e, α, and k are getting smaller, these methods are getting more
robust.

4 Experiments

Though fitting based on L1 distance is more robust than that based on L2

distance, the estimation by L1 distance sometimes derives unacceptable result
because of leverage point [9]. Generally, fitting based on Lp distance is getting
more robust when p is getting small. Then, to reduce leverage point effect, 0.5-
LkPD is applied, for example. Figure 1 is a quadratic curve fitting results for
artificial data. Data points are generated from an arc of parabola y = x2(x ∈
[−3, 3]) with uniform distribution and each point is contaminated by noise to
normal direction of the parabola. The noise follows a Laplace distribution with
0-mean and 0.18-variance. The generated points are classified as inlier when
the approximated distance between point and parabola is less than 0.3, and
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classified as outlier otherwise. 200 inliers and 50 outliers are generated. The
fitting quadratic curve is

a1x
2 + 2a2xy + a3y

2 + 2a4x+ 2a5y + a6 = 0 .

In Fig.1, the red solid curve shows fitting result, the green dotted curve shows the
result by LS estimation in the feature space, and the blue dotted curve shows the
result by LS estimation in the input space (2-LkPD). From the top row of Fig.1,
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Fig. 1. Quadratic curve fittng: 1-LkPD (top left), 0.5-LkPD (top right), 0.25-
LαPS (bottom left), RANSAC(bottom right)

0.5-LkPD reduces the effect by leverage point more than 1-LkPD. From this
experiment, it is shown that making k smaller is effective for robust estimation.
These results are compared with the results by 0.25-LαPS and RANSAC. From
Fig.1, each of 0.5-LkPD, 0.25-LαPS and RANSAC gives almost the same result
when only one quadratic curve is fitted.
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Fig. 2. Quadratic curve segments extractions: RANSAC (left), 20-LαPS (middle) and
0.05-LkPD (right)

The proposed methods and RANSAC are applied to real-image data. The
original 640 × 480 image is converted to an edge image by Canny filter with
Gaussian convolution function of σ = 2.0, and 2918 points having the peak
value in the edge image are chosen. Quadratic curve segment is assumed to con-
sist of at least 20 points. When one curve segment is estimated, the points from
estimated curve within 2

√
5-pixel in approximated distance are regarded as in-

lier and removed. Then the same procedure is applied to the rest of the observed
points till no curve segment is estimated. In the procedure, the number of ran-
dom trials is determined as follows: When there are n points, the number of
random trials such that at least one curve is passing through five inliers among
20 inliers in probability 1 − 10−4. Figure 2 shows the curves consist of more
than 180 inliers. The top of Fig.2 shows the results of extracting quadratic curve
segments by RANSAC, 20-LαPS and 0.05-LkPD. The middle row of Fig.2 shows
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the results of extracting ellipses. In the extraction of ellipses, fitting quadratic
curve is regarded as ellipse and accepted when a1a3 − a22 > 0, and rejected
otherwise. The bottom row of Fig.2 shows the extracted ellipse segments. To
extract each segment, the density function of data on the segment is estimated
by using function “density” in statisical soft R [8], and thresholding. As argued
in previous section, RANSAC, LkPD, and LαPS are similar in that they are
developed to reduce the effect of outliers. From an experimental result with a
real-image, most of curve segments in the picture are detected by either meth-
ods. As seen from Fig.2 (middle), LαPS is suitable for line segments estimation
and it can be used instead of RANSAC or HT. It is noted that, in this experi-
ment, LkPD does not give the best performance. The reason why the result of
LkPD is slightly inferior to others is that LkPD considers the effect of all points,
while RANSAC and LαPS only consider the effect of the points around line
segments.

5 Conclusion

This paper proposed hypersurface fitting methods based on random sampling.
The methods use the relation between the metric in the input space and that
in the feature space. The proposed methods are evaluated by quadratic curve
fitting. From the experiments, LαPS is competitive with RANSAC in extraction
of hypersurfaces. But LkPD is not competitive with RANSAC in extraction
multiple hypersurfaces. The reason why the result of LkPD is slightly inferior to
others is that LkPD considers the effect of all points, while RANSAC and LαPS
only consider the effect of the points around curve segments. This consideration
derives that LkPD is suitable for extracting only one structure embedding in
data. In quadratic curve extraction, the phenomena which does not occur in
line segments extraction. This is that some hyperbola fits to a common tangent
of two quadratic curves as you can see in Fig. 2. To avoid the phenomena, the
density of observed data point should be investigated.
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Abstract. Multi-task learning (MTL) has drawn a lot of attentions in
machine learning. By training multiple tasks simultaneously, information
can be better shared across tasks. This leads to significant performance
improvement in many problems. However, most existing methods assume
that all tasks are related or their relationship follows a simple and spec-
ified structure. In this paper, we propose a novel manifold regularized
framework for multi-task learning. Instead of assuming simple relation-
ship among tasks, we propose to learn task decision functions as well
as a manifold structure from data simultaneously. As manifold could be
arbitrarily complex, we show that our proposed framework can contain
many recent MTL models, e.g. RegMTL and cCMTL, as special cases.
The framework can be solved by alternatively learning all tasks and the
manifold structure. In particular, learning all tasks with the manifold
regularization can be solved as a single-task learning problem, while the
manifold structure can be obtained by successive Bregman projection on
a convex feasible set. On both synthetic and real datasets, we show that
our method can outperform the other competitive methods.

Keywords: Multi-task Learning, Manifold Learning, Laplacian.

1 Introduction

In many machine learning problems, we usually have multiple corrected learning
problems or tasks. Traditionally we can train each task from its training samples
individually. However, if the number of training samples in each task is small,
they tend to be overfitting, meaning that the performance is very likely to be bad
for future samples. To handle this problem, multi-task learning (MTL) manages
to learn all tasks simultaneously. By sharing information across related tasks,
MTL can usually lead to better performance than the traditional single task
learning.

However, in order to share information appropriately, MTL often needs to
assume how the tasks are correlated. Given that a linear decision function is to
be learned for each task, the relationship among tasks can be specified directly
via the weight vectors associated with the decision function. For example, [7]
proposed the Regularized Multi-task Learning (RegMTL) which assumes that the
weight vector of each task is composed with a common part and an individual

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 528–536, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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part. The common part contains the shared information of all the tasks and
the propagation of information is enforced by minimizing the individual part
for each task. It equivalently implies that the weight vectors of different tasks
belong to a ball of an unknown center determined by the common part.

Unfortunately, such an assumption may be too strict in practice, since it is
unnecessary for each task to be related with all other tasks. To solve this problem,
[9] generalized this assumption to the case that these tasks can gather into several
clusters and proposed the convex Clustered Multi-task Learning (cCMTL) [10]
method. Within each cluster, it is a traditional MTL problem, i.e., the weight
vectors of different tasks in a certain cluster are in a ball of an unknown center
determined by the common part. cCMTL can learn the weight vectors of all
tasks and the cluster structure simultaneously.

Although cCMTL provides a tool to capture the topological structure of the
relationship among tasks, its assumption is still too strong and may be too simple
to explore the actual task relationship. On one hand, tasks may be unable to be
partitioned into several groups. On the other hand, even if several tasks belongs
to a cluster, it never means each task within this cluster is correlated with each
other at the same level.

Hence, the structure of the relationship between tasks could be more complex,
and a general manifold structure should be considered. Take an example for illus-
tration. Consider the problem that there are 20 related regression tasks. To show
the relationship between tasks, we plot the weight vectors in Fig. 1 using hollow
points in a 3-dimensional space. From this figure, the weight vectors gather into
2 clusters and each of them forms a 1-dimensional manifold. To the extent of our
knowledge, there has not been a method designed to deal with this case.

Since manifold has the ability to describe not only the topological structure of
data, but also the local metric structure, we propose Manifold Regularized Multi-
task Learning (MRMTL) which engages manifold to capture the relationship
among the tasks. All tasks and the manifold structure of their relationship are
learned simultaneously, and both of them are improved with the help of each
other. As manifold could be arbitrarily complex, we show that our proposed
framework can contain many recent MTL models, e.g. RegMTL and cCMTL,
as special cases. Moreover, the proposed framework can be solved by learning
all tasks and the manifold structure alternatively. In particular, learning all
tasks with the manifold regularization can be solved as a single-task learning
problem, while the manifold structure can be obtained by successive Bregman
projection on a convex feasible set. It is noticeable that [8] has studied the multi-
task learning problem with manifold regularization. However, it supposed that
the manifold structure is given preliminarily. As a key difference, our proposed
approach can learn the manifold from the training samples automatically.

The rest part of this paper is organized as follows. In Section 2, we first present
the problem definition and then introduce the basic framework of our method. In
Section 3, the optimization algorithm is given in detail. In Section 4, we evaluate
our method on a synthetic dataset and a real dataset, both of which show the
effectiveness of our method. At last, we set out the final remarks in Section 5.
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Fig. 1. Learned weight vectors W using different methods. The hollow points are
ground truth while the star points are learned results.

2 Problem Definition and Main Framework

In this section, we first present the notation and problem definition. We then
introduce the framework of Manifold Regularized Multi-task Learning in detail.

2.1 Notation and Problem Definition

In this paper, we consider the problem where a linear decision function is learned
and thus the aim of each task is to learn a weight vector. Suppose there are n
tasks. For the t-th task, we have a training data set Xt containing mt data points
xtk ∈ Rd whose dimension is d and a corresponding output set Yt containing
the target output ytk. For binary classification problem, Yt = {−1,+1}, while
for regression problem, Yt = R.

We use l (y, f(x)) to quantify the loss of predicting f(x) for the input x
when the expected output is y, which depends on the problem. For example,
in binary classification, the hinge loss l (y, f(x)) = max(0, 1 − y · f(x)) is often
used, while in regression, the squared error l (y, f(x)) = (y − f(x))2 is often
chosen. If the linear prediction function f(x) = w	

t x is used and we denote
W = [w1 w2 . . . wn], the empirical loss of all tasks can be then formulated as
�(W ) =

∑n
t=1

∑mt

j=1 l(ytj,w
	
t xtj).

2.2 Coupling Multiple Tasks with Regularization

In order to learn all the tasks simultaneously, we follow the well-established
method that embeds the relationship among tasks into a regularization item and
use a graph to describe the relationship among tasks. Specifically, each vertex
of the graph represents a task, and each edge linking two vertices indicates the
relationship between the two tasks. A greater weight of edge represents a closer
relationship. Define S as the weight matrix of this graph where Sij is the weight
of the edge connecting the i-th and j-th vertices and D is a diagonal weight
matrix whose entries are column sums of S, then L = D − S is the Laplacian
matrix [5] of this graph.

In Laplacian regularization [2], we have tr(WLW	) =
∑

i,j
1
2‖wi −wj‖2Sij ,

which can be then used as the regularization to enforce the linked pairs to be
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more similar. If the i-th and j-th tasks are closely correlated, the corresponding
edge weight Sij is large, which encourages ‖wi −wj‖2 to be less and thus the
learned weight vectors wi and wj are more liable to be similar.

However, in MTL, such task similarity Sij is unavailable beforehand and
should be learned from data. It is obvious that if we directly optimize on L
and W simultaneously, we will simply obtain the Laplacian matrix L with all
elements zero regardless of W . Therefore, in order to discover the relationship
among tasks, we should add some additional constraints on L. Without more
prior knowledge, a Laplacian matrix of a graph whose vertices are all connected
may be a reasonable prior of L. Therefore, we get the following optimization
formula of MRMTL

min
W,L

R(W,L) =

n∑
t=1

(
C

mt∑
j=1

l(ytj ,w


t xtj) +w


t wt

)
+ γ

(
tr(WLW
) +

γ0
2
‖L− L0‖2F

)
s.t. L1n = 0; L = L
; Lij ≤ 0,∀i �= j

where L0 is the Laplacian matrix for a graph with all nodes connected (Sij =
1, ∀i, j), i.e., L0 = n(In − 1

n1n1
	
n ), where W = [w1 w2 . . . wn], and 1n is an

n-dimensional vector with all elements 1. In this formulation, l is the loss from
training samples and w	

t wt is the regularization. Both of them are determined by
the original learning problem. tr(WLW	) is the manifold regularization which
enforces the weight vectors of similar tasks to be similar. The last term provides a
prior for L and prevents the trivial solution for L. The constraints guarantee that
L is a Laplacian matrix, which is therefore also symmetric positive semi-definite.

2.3 Relationship with Other Methods

It is noticeable that our method includes RegMTL as a special case. Indeed, if
we choose γ0 to be large enough, we will get L = L0 and the regularization item
becomes tr(WL0W

	) = n ·
∥∥W − w̄1	

n

∥∥2
F
= n

∑n
t=1 ‖wt − w̄‖2.

By Lemma 2.2 of [7], this problem is an alternative formulation of RegMTL
and thus it is just a special case of MRMTL. We can also regard MRMTL as a
generalized of RegMTL in which the relationship among tasks is learned using
L0 as prior, rather than to use L0 directly.

When the tasks gather into several clusters, [9] uses the m×r binary matrix E
to denote the cluster assignment where Eij = 1 if task-i belongs to cluster-j and
Eij = 0 otherwise. Define M = E(E	E)−1E	, U = 1m1	

m/m, then M is the
edge weight matrix of the graph of tasks where Mij = 1/mc if task-i and task-j
belong to the same cluster-c and Mij = 0 otherwise, where mc is the number of
tasks in cluster-c. The regularization with respect to the task clustering is

tr(WKW	) = tr
(
W (εB(M − U) + εW (I−M))W	) .

It is easy to verify that K is a Laplacian matrix if εW ≥ εB, which is satisfied
in cCMTL [9]. Therefore, our method indeed also includes clustered multi-task
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learning as a special case in the sense that any cluster structure of the tasks can
be formulated using our model. However, the solution may be different since our
model is more flexible to fit the data.

3 Optimization

In this section, we first present how to solve the problem using alternative opti-
mization, and then show how each step of the optimization is solved.

3.1 Alternative Optimization

This problem can be solved by alternative optimization. Specifically, we solve for
an optimal W (1) with L = L(0) fixed as an initial value first, and then solve for
an optimal L(1) with W = W (1) fixed. Such procedure is then repeated so that
both L and W are optimized alternatively until convergence. Since l is usually
chosen to have a lower bound and L is constrained to be positive semi-definite,
there exists a lower bound for R(W,L). In another respect, the value of objective
function decreases in each iteration, and thus it is guaranteed to converge to a
local minimal value after certain iterations.

Note that the optimization is not convex and the global optimal solution
is not guaranteed. Nevertheless, we found that given a proper initial solution,
the local optimal solution is often good enough. Since W is solved firstly, we
should specify an initial point for L. An appropriate choice is L(0) = L0. With
this choice, W (1) is indeed the solution of RegMTL. After several iterations,
the incorrect connections in the graph are removed and the manifold can be
eventually learned.

In the following of this section, we will give the algorithm to solve W and L
respectively in detail.

3.2 Fix L and Optimize on W

The part of R with respect to W is

R(W ) =
∑
t,j

C · l(ytj,w	
t xtj)+J(W ), where J(W ) = tr

(
W (In + γL)W	) (1)

Denote w = vec(W ) =
[
w	

1 w	
2 . . . w	

n

]	 as the vector concatenated by {wt},
then by Proposition 31 of [3], we have vec(Y )	(A⊗B)vec(X) = tr(A	Y 	BX)
and thus

J(W ) = tr((In + γL)W	IdW ) = w	Ew = J(w), where E = (In + γL)	 ⊗ Id.

Suppose B	B = E−1 = ((In + γL)	 ⊗ Id)
−1 = (In + γL)−1 ⊗ Id and consider

the problem

min
u
S(u) =

∑
t

∑
j

C · l(ytj ,u	Btxtj) + u	u, where B = [B1 B2 . . . Bn] . (2)
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By Proposition 1 of [8], we have S(u) = R(B	u). Thus the optimal solution of
(1) can be obtained by solving the single-task problem (2) and wt = B	

t u.

3.3 Fix W and Optimize on L

When W is fixed, the optimization problem on L becomes

min
L
R(L) = γ

(γ0
2
‖L− L∗‖2F +Rconst

)
s.t. L1n = 0; L = L	; Lij ≤ 0, ∀i �= j

(3)

where L∗ = L0 − 1
γ0
W	W and Rconst is a constant independent of L. This is a

Bregman projection problem [6] whose optimal solution is the projection of L∗
on the convex set C1 ∩ C2 where C1 = {L ∈ Rn×n | L1n = 0;L = L	} and
C2 = {L ∈ Rn×n | Lij ≤ 0, ∀i �= j}. The optimal solution of L can be obtained
by Successive Projection-Correction Algorithm (Algorithm B of [6]) on these two
convex sets.

Projection onto C1. The Lagrangian formulation1 of the projection on C1 is

min
L,μ1,μ2

‖L− L∗‖2F − μ	
1 L1n − μ	

2 L
	1n

where from the condition L = L	 we have μ1 = μ2 = μ. Setting the derivative
with respect to L to zero yields L = L∗+ 1

γ0
μ1	

n + 1
γ0
1nμ

	. Multiplying with 1n

on the right of both sides of the equation, then using Sherman-Morrison inverse
formula [1] and L∗ = L	

∗ , we have

μ = −γ0
(
nIn + 1n1

	
n

)−1
L∗1n =

γ0
n

(
1

2n
1n1

	
n − In

)
L∗1n

Then substituting it into the formula of L, we get

L = L∗ +
1

n2

(
1	
nL∗1n

)
1n1

	
n −

1

n

(
L∗1n1

	
n + 1n1

	
nL∗

)
Projection onto C2. The projection onto C2 can be obtained by simply setting
the positive non-diagonal elements to zero following a correction step [6].

4 Experiments

In this section, we empirically evaluate our method on both artificial data and
real data. We apply our method on regression problems, and the normalized
mean square error (nMSE) [4] is used as the performance measure. Specifically,
it is defined as the mean squared error (MSE) divided by the variance of the
target vector.
1 The coefficient γγ0

2
is simply omitted.
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We compare our method MRMTL with cCMTL [9], RegMTL [7], and single-
task (STL) method as baseline. For each method, we use 5-fold cross validation
to determine the regularization parameters.

4.1 Synthetic Data

We first evaluate on synthetic data set to give a visualized comparison of the re-
sults learned by these methods. We generate 20 related regression tasks using 20
weight vectors and then generate a certain number of training samples and 500
testing samples. The weight vectors are learned with the training samples using
different methods and tested with the testing samples. We show the learned task
relationship in Fig. 2 which is a 20 × 20 grid. The color of the grid on row-i and
column-j represents the squared Euclidean distance of wi and wj . From the re-
sults, we see that MRMTL can learn the task relationship surprisingly well, which
coincides with the ground truth perfectly when the training samples is equal to 30,
40, and 50. It always gives the best performance compared with the other methods.
Particularly, it demonstrates a significantly better performance than the other
methods when the training samples are fewer. For the case where the number of
training samples per task is 30, we also show the learned weight vectors in the 3-
dimensional principal component subspace in Fig. 1. The hollow points represents
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Fig. 2. Comparison of the weight vectors learned by different methods. The five
columns of this figure correspond to the (1)Ground Truth (GT); (2)Single-task Learn-
ing (STL); (3)Manifold Regularization Multi-task Learning (MRMTL); (4)convex Clus-
tered Multi-task Learning (cCMTL); (5)Regularized Multi-task Learning (RegMTL).
The number in the title indicates how many percent of training samples are used.
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the ground truth while star points represent the learned results. We see again that
MRMTL gives the best result and the manifold is learned exactly.

4.2 Real Data

We also evaluate these methods on Sarcos data2 [10], which relates to an inverse
dynamics prediction problem for a seven degrees-of-freedom anthropomorphic
robot arm. It consists of 48933 observations corresponding to 7 joint torques;
each of the observations is described by 21 features including 7 joint positions,
7 joint velocities, and 7 joint accelerations. The prediction of each joint torque
corresponds to one task. We randomly select 10, 20, 50, 100 samples from each
task for training and the remaining for test. The experiment is repeated 5 times
and the averaged nMSE (the less the better) are shown in Table. 1. From the
results, we can observe that MRMTL performs the best, regardless of the number
of samples used for training.

Table 1. Performance comparison on Sarcos Dataset using nMSE

Sample STL MRMTL cMTL RegMTL
10 2.8788 1.7843 2.7532 2.8867
20 0.8383 0.5487 0.7953 0.5766
50 0.2615 0.1709 0.4377 0.2066
100 0.1664 0.1188 0.3378 0.1202

5 Conclusion

In this paper, we propose a novel manifold regularized framework for multi-task
learning. Different from recent work that usually assumes simple relationship
among tasks, we propose to learn task decision functions as well as a mani-
fold structure from data simultaneously. We show that our proposed framework
can subsume many recent MTL models, e.g. RegMTL and cCMTL, as special
cases. Moreover, the framework can be solved by alternatively learning all tasks
and the manifold structure. A series of experiments on both synthetic and real
data show that our method can significantly outperform the other competitive
methods.
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Abstract. In a multi-agent system, it becomes possible to solve a complicated
problem by cooperative behavior with others. When people act in a group, as they
are predicting the others’ action, estimating the others’ intention, and also making
eye contact with others, they are realizing cooperative behavior efficiently. In
the present paper, we try to introduce the concept of eye contact into a multi-
agent system. In order to realize eye contact, we firstly define attention degrees
both from self to the other and from the other to self. After that, we propose an
action decision method that self agent makes easy to choose a target agent and
to choose actions approaching to the agent using the attention degrees. Through
computer simulation using a pursuit problem, we show that the agents making
eye contact each other pursue preys by approaching each other. Simultaneously,
we compare the proposed system with the standard Q-learning system and verify
the usefulness of the proposed system.

Keywords: Multi-agent system, Cooperative behavior, Eye contact, Attention
degree, Reinforcement learning, Pursuit problem.

1 Introduction

In multi-agent systems (MASs), intellectual behavior such as cooperative behavior can
emerge toward a goal of agent group through mutual interaction among individual
agents. In general, multi-agent systems have three major advantages over single-agent
systems (SASs): robustness, flexibility, and load sharing [1]. As giving agents a rein-
forcement learning function, MASs can maximize its potential abilities such as problem
solving and adaptation abilities [2,3].

To realize cooperative behavior in MASs, if agents are able to communicate with oth-
ers using a highly accurate communication tool, agents can accurately obtain the other’s
action or intention [4]. Agents however has to predict the other’s action or estimate the
other’s intention if agents are unable to communicate with others by restrictions of robot
hardware and external environments.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 537–544, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.ist.aichi-pu.ac.jp/~koba/


538 K. Kobayashi et al.

Nagayuki et al. presented a policy estimation method which can estimate the other’s
action to be taken based on the observed information about the other’s action sequence
[5,6]. They successfully applied it to the reinforcement Q-learning method [7] and
showed to get effective the other’s policy. Meanwhile, Yokoyama et al. proposed an
approach to model action decision based on the other’s intention according to atypi-
cal situation such as human-machine interaction [8,9]. They presented three estimation
levels of the other’s intention and presented a computational model of action decision
process to solve cooperative tasks through a psychological approach. In this context,
Kobayashi et al. successfully presented an adaptive approach for automatically switch-
ing the above three estimation levels depending on the situation [10].

In the present paper, in order to realize cooperative behavior, we introduce a concept
of eye contact, which is motivated by a method for detecting focusing intention of the
learner in the collaborative learning environment [11]. Firstly, we formulate eye contact
by a Q-value in reinforcement Q-learning method [7] and a P-value in the policy estima-
tion method [5,6]. Secondly, we propose two kinds of attention degrees both from self
to the other and from the other to self. Thirdly, we propose an action decision method
that self agent makes easy to choose a target agent and to choose actions approaching
to the agent using the attention degrees. Finally, through computer simulations using a
pursuit problem, we show that the agents making eye contact each other pursue preys
by approaching each other. Simultaneously, we compare the proposed system with the
standard Q-learning system and verify the usefulness of the proposed system.

2 Reinforcement Learning

Reinforcement learning is a machine learning technique that a decision-making agent
takes actions and then receives rewards in an environment, and finally acquires the
optimum policy by trial and error [2,3].

The Q-learning method by Watkins et al. is a representative reinforcement learning
technique and guarantees that a value function will converge to the optimal solution by
appropriately adjusting a learning rate in Markov decision process environments [7]. A
state-action value functionQ(s, a) (Q-value) is updated by (1) so as to take the optimal
action by exploring it in a learning space.

Q(s, a)← Q(s, a) + αδ, (1)

where α is a learning rate (0 < α < 1) and δ is a temporal difference error (TD error)
denoted by (2).

δ = r + γmax
b∈A

Q(s′, b)−Q(s, a), (2)

where r is a reward at the state s′, s′ is the next state after an agent takes action a, γ is
a discount rate (0 ≤ γ ≤ 1), and A is a set of all possible actions.

Probabilistically, an agent selects action a at state s according to policy π(s, a).
Throughout the present paper, we employ the Boltzmann distribution defined by (3) as
the policy.
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π(s, a) =
exp (βQ(s, a))∑

b∈A

exp (βQ(s, b))
, (3)

where β is a parameter to control randomness of action selection called as inverse
temperature parameter. The policy π(s, a) refers to a probability to select action a at
state s.

3 Multi-Agent Systems

MASs have three major advantages over SASs: robustness, flexibility, and load sharing
[1]. In higher dimensional space, however, MASs have so-called state-space explosion
problem. The tile coding to be describe in Section 3.1 is well-known for solving the
above problem. On the other hand, to realize cooperative behavior, we focus on predict-
ing other’s action to be described in Section 3.2 and attention degree to be proposed in
Section 4.

3.1 Tile Coding

First of all, in the present paper, we consider a grid world as an external environment. To
overcome state-space explosion problem in MASs, we firstly consider a generalization
of state-space by random tile-coding [3]. As shown in Fig.1, the state-space is randomly
covered by some square tiles in order to reduce the number of states.

By apply this random tile-coding to Q-learning, we get the following Q-value.

Q(s, a) =

n∑
i=1

q(i, a)φ(i), (4)

A

tile 1

tile 2

tile 3

tile n

Fig. 1. Random tile coding (circle: agent, solid line: state space, dashed line: tiles)
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where n denotes the number of tiles, q(i, a) is the value function with respect to tile i
and action a, and φ(i) is a binary function whether the agent exists in tile i or not as
defined by:

φ(i) =

{
1 if the agent exists in tile i,

0 otherwise.
(5)

The q-value is updated by (6), which is similar with the update rule of Q-value in (1):

q(s, a)← q(s, a) + αδ/n. (6)

3.2 Policy Estimation

The policy estimation method can estimate the other’s action to be taken based on the
observed information about the other’s action sequence [5,6]. The method predicts an
other’s action using a policy estimation function P (s, ao) (P-value). The P-value is
updated by (7) for all the other’s actions to be taken ao ∈ A

P (s, ao)← (1− ρ)P (s, ao) +

{
ρ if ao = a∗o,
0 otherwise,

(7)

where a∗o is the actual other’s action and ρ is a positive parameter (0 ≤ ρ ≤ 1). As
updating P-value by (7), P-value with a∗o increases and the other P-values decrease.
Repeatedly updating P-values, an agent can predict other’s actions. It should be noted
that the following relation holds at any time:∑

ao∈A

P (s, ao) = 1. (8)

4 Intelligent Learning System Using Attention Degree

In order to emerge cooperative behavior, we introduce a concept of eye contact. It is
motivated by a method for detecting focusing intention of the learner in the collaborative
learning environment [11]. In the present paper, an intelligent learning system using
attention degree is proposed. At first, we realize eye contact by attention degree (Section
4.1). Then, we propose an action decision method using attention degree (Section 4.2).

4.1 Attention Degree

First of all, we treat two kinds of attentions: attention from self to the other and attention
from the other to self. Then, these two kinds of attentions are quantified by a Q-value
in (1) and a P-value in (7). The attention degrees both from self to the other and from
the other to self are illustrated in Fig.2. Note that both self agentHs and the other agent
Ho are placed on a grid world.

In Fig.2(a), we consider four Q-values at state s, i.e. Q(s, au), Q(s, ad), Q(s, al),
and Q(s, ar). Here, au, ad, al, and ar refer to actions of moving up, down, left, and
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(a) A resultant vector
−→
Qs for Hs and

a positional vector
−→
L s for Ho.

(b) A resultant vector
−→
P o for Ho and

a positional vector
−→
L o for Hs.

Fig. 2. Illustration of resultant and positional vectors

right, respectively. Then, we calculate a resultant vector
−→
Q and an angle θs between

−→
Q

and a positional vector
−→
L s for Ho. Finally, an attention degree from self to the other

AD(Hs, Ho) is defined by:

AD(Hs, Ho) = (cos θs + 1)/2. (9)

It is clear that AD(Hs, Ho) has value between 0 and 1, i.e. AD(Hs, Ho) ∈ [0, 1].
AD(Hs, Ho) approaches to 1 as Ho pays attention to Hs.

Similarly, we consider four P-values at state s, i.e. P (s, au), P (s, ad), P (s, al), and

P (s, ar) as shown in Fig.2(b). Then, we calculate a resultant vector
−→
P and an angle θo

between
−→
P and a positional vector

−→
L o for Hs. After that, an attention degree from self

to the other AD(Ho, Hs) is defined by:

AD(Ho, Hs) = (cos θo + 1)/2, (10)

where AD(Ho, Hs) ∈ [0, 1] holds.

4.2 Action Decision Using Attention Degree

To promote cooperative behavior, it is desired that the self agent approaches to the other
agent having eye contact.

Using two attention degrees, i.e. AD(Hs, Ho) in (9) and AD(Ho, Hs) in (10), we
choose a target agent ta by

ta = argmax
i∈Ta

AD(Hi, Hs)×AD(Hs, Hi)

d(Hs, Hi)
, (11)

where Ta refers to a set of subscript of other agents and d(Hs, Hi) is a normalized
distance between self Hs and other agent Hi (i ∈ Ta), i.e. d(Hs, Hi) ∈ [0, 1].

In order to approach the self agent to the other agent having a higher attention value,
Q-values should be recalculated by

Q′(s, ak) = Q(s, ak)× (cos θk + 1)/2, (12)
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Fig. 3. Angeles between a positional vector
−→
L s and directional vectors of action ak

where ak represents one of four possible actions in a grid world: au, ad, al, or ar and
θk is an angle between a positional vector

−→
L s and a directional vector of action ak. θk

is illustrated in Fig.3.
After that, agents select their actions based on the Boltzmann distribution (3).
Using the above action decision method, we expect to emerge cooperative behavior

because agents try to cooperate with the other agent having eye contact.

5 Computer Simulation

In this section, through computer simulations using a pursuit problem, we verify the
performance of the proposed intelligent learning system. At first, we describe a problem
setting of the pursuit problem in Section 5.1. Secondly, we present a simulation setting
in Section 5.2. Finally, we show simulation results in Section 5.3.

5.1 Problem Setting

A pursuit problem is a well-known multi-agent problem which plural hunters pursuit
preys (or a prey) and catch them in a grid field. The followings are assumed in the
present paper.

– Two dimensional 15× 15 grid field with a torus structure.
– Six hunters Hi (i ∈ {1, 2, · · · , 6}) and three preys Pj (j ∈ {1, 2, 3}) in the field.

Initially, they are located randomly in the field.
– All the hunters can observe all the cells (complete observation) and act according

to their own policy. The hunters can synchronously move up, down, left, or right by
one cell, or stay on the same cell.

– All the preys can synchronously act according to a predefined policy.
– A goal state is assumed that each prey is occupied by any two hunters in two of

four adjacent cells (up, down, left, and right). The two hunters can get a reward and
the captured prey is removed from the field.
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5.2 Simulation Setting

The hunters get a positive reward r = 100 if a goal state is reached. The number of
steps is limited to 5,000 and we start a next trial if it reaches the limit.

The parameters were selected as learning rate α = 0.01, discount rate γ = 0.8, the
number of tiles n = 1, 500, and positive parameter ρ = 0.6. The inverse temperature
parameter was calculated by β = 5.0 × 10−4e−t/100. Initial Q-values and P-values
were set to 0.1 and 0.2, respectively. These parameters were selected so as to get the
best performance through preliminary computer simulations.

5.3 Simulation Results

The learning curves is shown in Fig.4. In the figure, the horizontal axis represents the
number of episodes and the vertical axis is the averaged number of steps. In the simula-
tion, the number of steps is averaged for 5 trials. In this figure, red and green lines show
learning curves for the proposed and the conventional systems, respectively. Here, the
conventional system refers to a standard Q-learning system with random tile-coding.
Note that a standard Q-learning system without random tile-coding could not tackle the
given pursuit problem. As seen in Fig.4, the proposed method converges adequately
but the conventional method does not converge at all. We conducted many computer
simulations changing parameters and situations. It is verified that the proposed atten-
tion system works well in any cases. We observed that the proposed system promotes
cooperative behavior.
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6 Summary

In the present paper, we have proposed the proposed intelligent learning system using
attention degree to emerge cooperative behavior in MASs. Firstly, we have introduced
a concept of eye contact and formulated eye contact by a Q-value in reinforcement
Q-learning method and a P-value in the policy estimation method. Secondly, we have
proposed attention degrees both from self to the other and from the other to self. Thirdly,
we have proposed an action decision method using the attention degrees that self agent
approaches the other agent having eye contact. Finally, we have shown that the agents
making eye contact each other pursue preys by approaching each other. Through com-
puter simulations using a pursuit problem, we have verified that the proposed system
has superior performance with the standard Q-learning system.
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Abstract. In this work, we consider Particle Swarm Optimization (abbr.
PSO) with hierarchical structures in order to solve some constrained opti-
mization problems. The PSO with hierarchical structures has two layers.
The lower layer is used to satisfy the constraint conditions and the up-
per layer is used to optimize the objective function. Due to these layers
and the mutual function, the proposed method can be applied to con-
strained optimization problems which problems cannot be solved by the
basic PSO. In this paper, we apply this procedure to some constrained
optimization problems and evaluate its performance.

Keywords: Particle swarm optimization, constrained optimization prob-
lems, searching ability.

1 Introduction

In recent years, Particle Swarm Optimization (abbr. PSO) has attracted many
researchers due to its ability to solve optimization problems. PSO is a swarm
based stochastic optimization technique developed by Kennedy and Eberhart
in 1995 with an idea taken from social behaviors of birds or fishes [1–3]. PSO
optimizes many problems by some particles moving in the search-space. Each
particle knows a position with the best value of the objective function which
has found so far, and a position with the best value which tracked by whole
swarm. These positions are called pbest and gbest, respectively. PSO searches an
optimal solution of objective function based on the information of pbest and
gbest.

PSO aims to optimize the single-objective function basically. Thereby, in or-
der to solve constrained optimization problems, the objective function must be
reformed to include constraint conditions such as a penalty method. The penalty
method is well-known as an effective technique for solving constrained optimiza-
tion problems. The penalty method transforms the objective function to an aug-
mented objective function as including constraint terms and weight parameters.

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 545–551, 2012.
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In order to find an optimal solution which is satisfied the constraint conditions,
weight parameters must be required tuning. However, the tuning is often pretty
hard and needs heuristic procedure.

This paper proposes a novel PSO with hierarchical structures without use
of augmented objective functions. This algorithm solves constrained optimiza-
tion problems by using two layers. The lower layer ensures to satisfy constraint
conditions. The upper layer operates to optimize the objective function. We ap-
ply this technique to some constrained optimization problems and evaluate its
performance.

2 Constrained Optimization Problems

The optimization is to select the best from some alternatives. The optimization
problem is reduced to find a decision variable x such that the objective func-
tion f(x) makes the minimum or maximum. Many optimization problems entail
constraint conditions in the real world. The constrained optimization problem is
reduced to satisfy the constraint conditions and find a decision variable x that
the objective function f(x) makes the minimum.

minimize f(x) , x = [x1, x2, . . . , xn], (1)

subject to gk(x) ≤ 0, k = 1, . . . , q, (2)

hk(x) = 0, k = q + 1, . . . ,m, (3)

xLj ≤ xj ≤ xUj , j = 1, . . . , n, (4)

where n is the dimensionality of an objective function f(x), gk(x) is inequal-
ity constraints, hk(x) is equality constraints, xLj is lower bound of xj and xUj
is upper bound of xj . The feasible region of search satisfies all constraint
conditions.

The penalty method can come down a constrained optimization problem to
a basic optimization problem. The penalty method transforms the objective
function to an augmented objective function including constraint terms and
weight parameters.

F (x) = f(x) + λ

⎧⎨⎩
q∑

k=1

max(0, gk(x))
2 +

m∑
k=q+1

hk(x)
2

⎫⎬⎭ , (5)

where λ is penalty factor. This penalty factor must be required tuning. However,
the tuning is often pretty hard and needs heuristic procedure.

On next section, we propose a novel PSO without use of the augmented ob-
jective functions such as the penalty method.
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3 Particle Swarm Optimization with Hierarchical
Structures

In PSO, each particle knows a position with the best value of the objective
function which has found so far, and a position with the best value of the objec-
tive function which tracked by whole swarm. These positions are called pbesti
and gbest, respectively. PSO searches an optimal solution of objective function
based on the information of pbesti and gbest. The particle’s current position
xi can be considered as a set of coordinates describing a point in search-space
of the objective function. The particle’s position and velocity are updated by
using the information of pbesti and gbest. The velocity and position at time t
are updated by according to the following two equations respectively:

vt+1
i = ωvti + c1rand1(pbest

t
i − xt

i) + c2rand2(gbest
t − xt

i), (6)

xt+1
i = xt

i + v
t+1
i . (7)

All particles share the gbest and are affected by the gbest.
The basic PSO algorithm involves the following steps:

(Step1) The initial particle’s positions xi are assigned by uniform random num-
bers at t = 0. The particle’s velocities vi are initialized by zero.
(Step2) Each Particle’s current position is evaluated by the objective function.
If f(xi) < f(pbesti), the current position has the best value of the objective
function which has found so far that is, pbesti is update to the particle’s posi-
tion xi.
(Step3) gbest is updated to pbesti that is best position with the best value of
the objective function in a set of pbesti.
(Setp4) The particle’s position and velocity are updated according to equations
(6) and (7).
(Step5) If iteration count t is less than Tmax, return to (Step2).

The proposed method, PSO with hierarchical structures has two layers. The
lower layer is used to satisfy the constraint conditions and the upper layer is used
to optimize the objective function. Due to these layers and the mutual function,
the proposed method can be applied to constrained optimization problems which
problems cannot be solved by the basic PSO. Here, transforming inequality
constraint into equality constraint to following.

gk(x) = |hk(x)| − ε ≤ 0, k = q + 1, . . . ,m, (8)

where, ε is sufficiently small. A combined evaluation function which has all con-
straint conditions (1)-(4) is presented by following:

G(x) =
m∑

k=1

max(0, gk(x)) +
n∑

j=1

max(0, xLj − xj) +
n∑

m=1

max(0, xm − xUm). (9)
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If G(x) > 0, x isn’t satisfying the constraint conditions and if G(x) = 0, x is
satisfying the constraint conditions. In order to satisfy the constraint conditions,
PSO of the lower layer use the evaluation function (9).

Each particle knows a position with the best value of the evaluation function
which found so far, and a position with best value which tracked by swarm of PSO
of lower layer. These values are defined by pCbesti and sCbestl, respectively.
Also, each particle knows a position with the best value of the objective function
under the condition of G(x) = 0, and a position with best position which tracked
by whole swarm of PSO of upper layer. These values are defined by sObestl
and gObest, respectively. The particle’s position and velocity are updated by
according to the information of pCbesti, sCbestl, sObestl and gObest.

vt+1
i = ωvti + c1rand1(pCbest

t
i − xt

i) + c2rand2(sCbest
t
l − xt

i)

+c3rand3(sObest
t
l − xt

i) + c4rand4(gObest
t − xt

i), (10)

xt+1
i = xt

i + v
t+1
i , (11)

where xt
i and v

t
i are position and velocity vector respectively. ω is an attenuation

factor. c1, c2, c3 and c4 are the weight of each term. rand1, rand2, rand3 and
rand4 are random numbers generated uniformly between [0,1].

The proposed algorithm involves the following steps:

(Step1) The initial particle’s positions xi are assigned by uniform random num-
bers at t = 0. The particle’s velocities vi are initialized by zero.
(Step2) To generate swarms. The number of swarms is C. All particles belong
to the swarms. A set of these swarms makes PSO of the lower layer.
(Step3) Each particle’s current position is evaluated by the evaluation function
G(xi). If G(xi) ≤ G(pCbesti), the current position has the best value of the
evaluated function which has found so far that is, pCbesti is updated to the
particle’s position xi.
(Step4) To compare sCbestl and pCbesti by the value of the evaluation func-
tion. If G(pCbest) ≤ G(sCbest), a sCbest is updated to pCbest. However,
if there are two or more pCbesti which satisfies G(pCbesti) = 0, sCbestl is
updated to randomly selected pCbesti with the condition G(pCbesti) = 0.
(Step5) If sCbestl which satisfies G(sCbestl) = 0 exists, sCbestl is evaluated
by the objective function. And to compare sCbestl and sObestl by the value
of the objective function. If f(sCbestl) < f(sObestl), sObestl is updated to
sCbestl. gObest is updated to sObestl that is best position with the best
value of the objective function in a set of sObestl.
(Step6) The particle’s position and velocity are updated according to equations
(10) and (11), where, if G(sCbestl) �= 0, the c3 and c4 is to be zero.
(Step7) If all sCbestl satisfy G(sCbestl) = 0, let each sObestl compare by the
value of the objective function. And remove M swarms which have worst evalu-
ation value. And to regenerate M swarms by using same procedure of (Step1).
(Step8) If iteration count t is less than Tmax, return to (Step3).
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4 Experimental Results

The proposed particle swarm optimization with hierarchical structures is tested
by using 13 benchmark problems on the literature [4]. Table 1 presents the
characteristic of 13 benchmark problems. Type of f shows the characteristic of
the objective function. ρ is percentage of feasible region of search on whole search-
space. LI is the number of linear inequality constraints. NI is the number of
nonlinear inequality constraints. LE is the number of linear equality constraints.
NE is the number of nonlinear equality constraints.

Table 1. Characteristic of the 13 benchmark problems

Prob. n Type of f ρ LI NI LE NE

g01 13 quadratic 0.0111% 9 0 0 0
g02 20 nonlinear 99.9971% 0 2 0 0
g03 10 polynomial 0.0000% 0 0 0 1
g04 5 quadratic 52.1230% 0 6 0 0
g05 4 cubic 0.0000% 2 0 0 3
g06 2 cubic 0.0066% 0 2 0 0
g07 10 quadratic 0.0003% 3 5 0 0
g08 2 nonlinear 0.8560% 0 2 0 0
g09 7 polynomial 0.5121% 0 4 0 0
g10 8 linear 0.0010% 3 3 0 0
g11 2 quadratic 0.000% 0 0 0 1
g12 3 quadratic 4.7713% 0 1 0 0
g13 5 nonlinear 0.0000% 0 0 0 3

g02, g03, g08 and g12 are maximization problems and others are minimization
problems.

The parameters are set of ω = 0.729 and c1 = c2 = c3 = c4 = 0.9. The number
of particle i is equal to 300. The number of swarm of lower layer C is 30. The
number of removing swarm M is 3. The allowable range of transformed inequal-
ity constraints from equality constraint, ε, is 0.0001. The maximum iteration
count Tmax is 1750. Table 2 presents experimental results of 30 trials. Optimal
shows optimal solution. Table 3 presents experimental results using g Stochas-
tic Ranking for Constrained Evolutionary Optimization h (abbr. SR) [4]. SR is
based on penalty method.

SR can almost found optimal solution of benchmark problems. SR is superior
to our proposed method on g03, g07, g09 and g13. However our proposed PSO
has good performance similar to SR on otherwise problems. Note that SR doesn’t
have guaranteed to satisfy the constraint except problems finding the optimal
solution, because SR is based on the penalty method. The solutions founded
by our PSO with hierarchical structures are ensured to satisfy the constraint
conditions for all problems.
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Table 2. Experimental results on 13 benchmark functions using particle swarm opti-
mization with a hierarchical structures

fcn optimal best median mean st. dev. worst

g01 -15.000 -15.000 -14.998 -14.654 7.9E-01 -12.436
g02 0.803619 0.785191 0.598371 0.591977 1.1E-01 0.386117
g03 1.000 0.945 0.871 0.859 5.3E-02 0.722
g04 -30665.539 -30665.539 -30665.539 -30665.539 4.8E-09 -30665.539
g05 5126.498 5126.501 5127.027 5128.178 3.5E+00 5145.376
g06 -6961.814 -6961.814 -6961.794 -6961.769 5.2E-02 -6961.599
g07 24.306 24.333 24.829 24.894 3.7E-01 26.003
g08 0.095825 0.095825 0.095825 0.095825 1.8E-17 0.095825
g09 680.630 680.632 680.672 680.676 3.6E-02 680.801
g10 7049.331 7054.112 7190.209 7247.643 2.0E+02 7909.672
g11 0.750 0.750 0.750 0.750 2.9E-06 0.750
g12 1.000000 1.000000 1.000000 1.000000 0.0E+00 1.000000
g13 0.053950 0.055302 0.199021 0.203331 1.1E-01 0.505264

Table 3. Experimental results on 13 benchmark functions using SR[4]

fcn optimal best median mean st. dev. worst

g01 -15.000 -15.000 -15.000 -15.000 0.0E+00 -15.000
g02 0.803619 0.803515 0.785800 0.781975 2.0E-02 0.726288
g03 1.000 1.000 1.000 1.000 1.9E-04 1.000
g04 -30665.539 -30665.539 -30665.539 -30665.539 2.0E-05 -30665.539
g05 5126.498 5126.497 5127.372 5128.881 3.5E+00 5142.472
g06 -6961.814 -6961.814 -6961.814 -6875.940 1.6E+02 -6350.262
g07 24.306 24.307 24.357 24.374 6.6E-02 24.642
g08 0.095825 0.095825 0.095825 0.095825 2.6E-17 0.095825
g09 680.630 680.630 680.641 680.656 3.4E-02 680.763
g10 7049.331 7054.316 7372.613 7559.192 5.3E+02 8835.655
g11 0.750 0.750 0.750 0.750 8.0E-05 0.750
g12 1.000000 1.000000 1.000000 1.000000 0.0E+00 1.000000
g13 0.053950 0.053957 0.057006 0.067543 3.1E-02 0.216915

5 Conclusions

In this paper, we proposed a novel procedure to solve some constrained opti-
mization problems without the use of the augmented objective functions. The
PSO method with hierarchical structures has two layers to satisfy the constraint
conditions and to optimize the objective function respectively. The proposed
method could be applied to constrained optimization problems. We confirmed
the good performance of the proposed PSO by using some benchmark problems
and by comparing to SR method based on penalty method.

In future, we will consider to extend our PSO in order to apply Multi-objective
optimization problems.
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Abstract. Recently, elements of probabilistic model that are suitable for model-
ing of learning algorithms in biologically plausible artificial neural networks 
framework, have been introduced. Model was based on two of the main con-
cepts in quantum physics – a density matrix and the Born rule. In this paper we 
will show that proposed probabilistic interpretation is suitable for modeling of 
on-line learning algorithms for Independent Component Analysis (ICA), which 
could be realized on parallel hardware based on very simple computational 
units. Proposed concept (model) can be used in the context of improving algo-
rithm convergence speed, learning factor choice, input signal scale robustness, 
and can be easily deployed on parallel hardware. 

Keywords: Probabilistic Independent Component Analysis, Born Rule, Tsallis 
Entropy, Local Learning Rules. 

1 Introduction 

Independent component analysis (ICA) is a statistical and computational technique 
for revealing hidden factors that underlie sets of random variables, measurements or 
signals. ICA defines model in which data variables are assumed to be linear or nonli-
near mixtures of some unknown latent variables and the mixing system is also un-
known. The latent variables are assumed mutually independent and nongaussian, and 
are referred to as the independent components of the observed data. These indepen-
dent components can be found by ICA [1]. 

In this paper, we will propose a sort of  “quantum” probabilistic model which 
relies on a very small number of assumptions and that is suitable, as we are going to 
demonstrate, for on-line learning algorithms. This probabilistic approach to PCA was 
recently proposed and analyzed in [2,4]. Here, we give definitions of probabilistic 
model for ICA calculation, which can be used to generate a number of different  
algorithms. The proposed concept (model) can be useful in the context of algorithm  
convergence speed, learning factor choice, or input signal scale robustness.  

Why are we interested in a standard linear neural networks approach? Due to their 
low complexity, such algorithms and their implementation in neural networks are 
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potentially useful for tracking of slow changes of correlations in the input data or for 
updating eigenvectors with new samples. Linear neural networks could also be  
implemented on highly parallel platforms like graphics processing units (GPU). Fur-
thermore, these kind of networks can be used for calculations of general component 
analysis for the higher dimensional systems in comparison with solutions that require 
the storage of the whole covariance matrix. Finally, neural network approaches based 
on biologically plausible learning rules are still useful for research in which the goal 
is to make computational models that emulate some of the brain circuitry.  

In this paper, we will define elements of probabilistic model that could be useful 
for general approach to on-line learning algorithms applied in neural networks 
context. From the aspect of artificial neural networks, the choice of different 
realization concepts has direct impact on the algorithm’s convergence speed, 
preciseness, complexity of plausible hardware realization and biological plausibility. 
In Section 2, the Born rule is introduced. The Born rule in the artificial neural 
networks framework is introduced in Section 3. In section 4 we introduce new 
definitions for probabilistic ICA. Some small scale experimental results are presented 
in Section 5. Section 6 provides concluding remarks.  

2 Quantum Probability Model and Born Rule 

In this section, we give a short recapitulation of the quantum probability model and 
the Born rule, based on a similar section in [6, 2].  

The quantum probability model takes place in a Hilbert space H of finite or infinite 
dimension. A state is represented by a positive semidefinite linear mapping (a matrix 
ρ) from this space to itself, with a trace of 1, i.e. ∀Ψ ∈ H ΨTρΨ≥0, Tr(ρ) =1.  Such 
ρ is self adjoint and is called a density matrix. 

Since ρ is self adjoint, its eigenvectors Φi are orthonormal, and since it is positive 
semidefinite, its eigenvalues pi are real and nonnegative pi ≥ 0. The trace of a matrix 
is equal to the sum of its eigenvalues, therefore ipi =1. 

The equation ρ=i pi Φi  Φi
T  is interpreted as “the system is in state Φi with 

probability pi”. The state ρ is called the pure state if ∃i s.t. pi =1. In this case, ρ=ΨΨT 
for some normalized state vector Ψ, and the system is said to be in state Ψ. So, the 
most general density operator is in the form ρ=k pk Ψk Ψk

T  where the coefficients 
pk are nonnegative and add up to one, and Ψk represent pure states. We can see that 
this decomposition is not unique. 

A measurement M with an outcome z in some set Z is represented by a collection 
of positive definite matrices {mz}z∈Z such that z∈Z mz = 1(1 is being the identity  
matrix in H). Applying measurement M to state ρ produces the outcome z with  
probability 

 pz(ρ)=trace(ρmz). (1) 

This is the Born rule. Most quantum models deal with a more restrictive type of  
measurement called the von Neumann measurement, which involves a set of projec-
tion operators ma=aaT, for which aTa’=δaa’. In a modern language, von Neumann’s 
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measurement is a conditional expectation onto a maximal Abelian subalgebra of the 
algebra of all bounded operators acting on the given Hilbert space. As before, a∈M a 
aT =1. For this type of measurement, the Born rule takes a simpler form: pa(ρ)=aTρa. 
Assuming ρ is a pure state this can be simplified further to 

 pa(ρ) = (aTΨ)2. (2) 

So, we can see that, if the state is ρ, the probability of the outcome of the measure-
ment will be a, which is actually defined by the cosine square of the angle between 
vectors a and Ψ, or pa(ρ)=cos2(a,Ψ).  

3 Quantum Probability Model in Neural Networks Context  

In this section, we recapitulate some quantum probabilistic concepts that can be used 
in a neural network framework. We show how neural networks can be used in a prob-
abilistic framework that is basically based on the Born rule.  

The basic single layer feedforward artificial neural network is depicted in Fig. 2. 
The output of the n-th output unit yn (n=1, 2,…, N) of a layer of parallel linear artifi-
cial neurons is given as 

 ( ) ( ) ( ),T iiiy nn xw=  

with x(i) denoting a K-dimensional zero-mean input vector of the network and wn(i) 
denoting a weight vector of the n-th output unit, and i represents sampling instances 
iT, where T is a sampling period. The output vector y is defined as  

 ( ) ( ) ( ).T iii xWy =  
(3) 

In the usual interpretation, based on specific requirements, e.g. minimization of some 
cost function, matrix W is changed (trained) in the process of learning, according to 
some adopted learning rule.  

Here we will give a slightly different interpretation. We will consider a Hilbert 
space H of a finite dimension. “State vectors” are defined by the input data vector xk 
and we can imagine that every vector xk is available in a big enough number of copies 
(clones), so that we can perform as many simultaneous measurements as we want. A 
measurement M with an outcome wn in some set W is represented by a collection of 
positive definite matrices {mwn}wn∈W such that mwn=wnwn

T, so wn∈W =WWT, which is 
not necessarily equal to the identity matrix on H. This means that the sum of the  
probabilities of the particular outcomes does not have to be equal to one – in other 
words, sometimes we will work with improper discrete distributions. Also, measures 
like entropy and divergence will be applied to improper probability distributions,  
or to a mixture of proper and improper probability distributions. In the following  
sections, we will point out that in the adopted framework, this will not affect the final 
result. 
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Fig. 1. A layer of parallel linear artificial neurons 

Applying measurement M to state xk produces outcome wn with the probability (the 
Born rule) 

 ( ) ( )kn

def

knp xwxw ,cos| = , 

regardless of the norm of the vectors wn and xk. In the following text, we will consider 
only vectors wn that have unit norms. This means 

( ) ( )
2

2T

,
k

kn
knp

x

xw
xw = .

 

(4) 

Also, if we apply N simultaneous measurements MN to the state xk we obtain outcome 
W with the probability 

( ) ( )
=

=
N

n
kn

def

k pp
1

|| xwxW . (5) 

Here, it is assumed that the outcome of each measurement is different. We define the 
joint probability of the state xk and outcome W obtained by simultaneous multiple 
measurement MN on state xk, p(W, xk) as 

( ) ( ) ( )kk

def

k ppp xxWxW |, = . (6) 

Now, without loss of generality, let’s assume that we are dealing with a random vari-
able x that takes realizations from a set of observed K-dimensional zero-mean data 
vectors {xk}, k ∈{1, …, Nsample}, which are sampled from some distribution in time 
instants t = kT where k is already defined and T represents the sampling period. Then, 
we can define p(x=xk | t=kT) as 

Input vector x 

Output vector y   

y2 yN
y1 

wN w1 
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( )


=

=
sampleN

i
i

k
def

kp

1

2

2

x

x
x , (7) 

where Nsample represents the overall number of samples that are going to be analyzed. 
It is interesting to note that the only thing that we can conclude about the p(xk) is that 
it is proportional to ||xk||

2. The sum in the denominator represents the energy of sam-
ples that are going to be analyzed – we actually do not know the value of that sum at 
any, but the final moment. However, we know that it represents some constant. We 
can easily see that the adopted probability measure fulfils the two conditions that are 
required for the probability function f(z) (in our case p(z)) to be considered as a mod-
ified generalized probability measure [5]: 

1. For each z, 0  ≤ f(z) ≤ 1 , 
2. i f(zi) = 1.   

In this definition, orthonormallity is not explicitly required in order that the coeffi-
cients f(zi) sum up to one. However, from the JSPS introduction [4], we can see that it 
is always implicitly present.  

Here, we will consider all vectors as “oriented energies” or 

kk
k

k
kk 'xx

x

x
xx == , 

where the norm of the vector ||xk||, represents the square root of the energy contained 
in the vector xk, and the orientation represents some unit norm vector x’k, which 
represents some pure state. In that case, we can see that the statistical description of 
our system is represented by the density matrix   ρ   

=
k kkkp T'' xxρ  , 

as a statistical mixture of pure states x’k, and pk=p(xk) are defined by (7). We have to 
stress that the density matrix ρ that is created here, does not fulfill the requirements of 
quantum mechanical postulates, since it connects the pure states from different time 
instants. However, we used this term here to stress the conceptual analogy with  
original definition of density matrix (although we could create a new term – e.g.  
normalized covariance matrix). We can see that 

C

x

ρ


=

=
sampleN

i
i

sampleN

1

2

, 

where C is input signal covariance matrix. Obviously, the matrix ρ and the matrix C 
have the same eigenvectors.  
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In the proposed context, the learning algorithm applied to the neural network has a 
basic task - to find the measurement system in which input data is “best explained”, or 
have the features that are specified. As an example, principal component analysis will 
search for the measurement (or we can say coordinate) system in which the input data 
covariance matrix is diagonal.  

4 Probabilistic Independent Component Analysis 

In this section, we are going to give a definition of the probabilistic ICA that can be 
used for creation of symmetric ICA algorithms. There is also another possibility to 
create asymmetric algorithms as done in [3]. 

Definition 1: ICA can be defined as a problem of minimization and (or) maximiza-
tion of the entropy (like Tsallis or Shannon entropy) of the joint probability distribu-
tion p(W, x) of the input signal x and outcome W, obtained by the simultaneous  
multiple measurement MN on state (input signal) x, under the constraint that the  
matrix W is orthonormal and x represents prewhitened signal. So, we have to solve 
following constrained problem (in the case of Tsallis entropy of q-th degree) 

( )





















−

−
=

1

,1

Emax/min 1

q

xp

orand

K

k

q
kW

W
, (8) 

under constraint that W is orthonormal matrix. We can see that the proposed 
probabilistic definition of ICA, requires maximization and (or) minimization of the 
entropy. This means that final algorithm depends on the type of the signals that are 
going to be retrieved. Also, we can notice that quadratic nonlinearity cannot be used 
for signal separation. In the case (when q→0) Tsallis entropy will become Shannon 
entropy and that function can be used for signal separation. 

5 Simulation Results 

Now we will examine the small scale numerical simulations results. The number of 
inputs was K = 4 and the number of output neurons was N = 4. Artificial zero-mean 
vectors with uncorrelated elements were generated by the following equations: 

;15)/13).^5-,31)((rem( .15=)(4,

 /37);.45sin(2=)(3,

 11)/9).^5;-,23)((rem( .15=)(2,

/5);sin(2 .45 = )(1,
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Input signal is constructed as z = mix*s, where mixing matrix mix is defined as 

),rand(   .5-  K+=mix  

and after prewhitening signals were introduced as inputs (x) to neural network. In 
Fig.2 we can see results of extraction of independent components after we minimized 
Tsallis entropy for q=0.5. We can see expected results, that some signals (in this case 
supergaussians) are satisfactorily extracted, while we were not able to separate sub-
gaussian signals.  

Fig. 3 represents results of independent components extraction after we minimized 
Tsallis entropy for q=2. Again, we had successful extraction of supergaussians and we 
were not able to separate subgaussian signals.  

If we performed maximaization of Tsallis entropy for q=2 and q=0.5 we would, in 
both cases, successfully extract subgaussian signals and not be able to separate super-
gaussians. 
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Fig. 2. Blind signal extraction of deterministic components (Tsallis entropy minimization, q=.5) 
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Fig. 3. Blind signal extraction of deterministic components (Tsallis entropy minimization, q=2) 
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By selecting any other q, or by selecting different entropy function we can have 
signal separation, but speed convergence and preciseness will be different, as well as 
possibility for successful implementation on parallel hardware, which is of great  
interest in high dimensional cases.  

6 Conclusion 

In this paper, we proposed a new, “quantum”, probabilistic ICA model that could  
be useful for implementation in on-line learning neural networks context. Model is 
based on the Born rule. Here we only considered derivation of symmetric algorithms. 
By selecting different entropy functions, it is possible to create a large number of  
ICA algorithms. This makes it possible to create algorithms that could be optimal 
from the point of view of convergence speed, preciseness, complexity of hardware 
implementation, locality of calculations, etc. With proposed probabilistic definition, 
ICA can be used in semi-supervised context and can be successfully implemented in 
parallel computation machines.  
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Abstract. Bitmap join indexes are designed to prejoin the facts and di-
mension tables in data warehouses modeled by a star schema. They are
defined on the fact table using attributes which belong to one or many
dimension tables. The index selection process has become an important
issue regarding the complexity of the search space to explore. Thus, the
indexes can be defined on several attributes from several dimension ta-
bles (that may contain hundreds of attributes). However, only a few
selection algorithms were proposed. In this article, we present a bitmap
join indexes selection approach based on artificial immune algorithm. An
experimental study was conducted on the dataset generated from APB-
1 benchmark in order to compare the artificial immune algorithm with
other algorithms.

Keywords: Artificial Immune System, Bitmap Join Indexes, DataWare-
houses.

1 Introduction

The data warehouses (DW) are generally modeled by a star schema which con-
tains a central and large fact table, and dimension tables describing the facts [1].
Data warehouses are used in an online analysis processing (OLAP) to perform
complex decision queries. These queries require the execution of a multitude of
joins between the fact and dimension tables, therefore making the execution more
costly. The cost becomes more prohibitive when huge data are accessed by those
queries. So, in order to reduce the execution time of queries, the Data Warehouse
Administrator (DWA) has to optimize them. The query optimization is obtained
by selecting optimization structures during the physical design phase. Indexes
have already shown their performance in the traditional databases. We can men-
tion B-trees and their variants [2], and join indexes [3]. However, the indexing
techniques used in databases are not adapted to data warehouse environments
[4]. Therefore, many indexation techniques dedicated to data warehouses have
emerged like bitmap indexes [5], star join indexes [6] and the bitmap join in-
dexes (BJI) [7] which best fit the DW because they optimize the star joins and
selection operations defined on dimension tables. When selecting a BJI, many
configurations are possible. We can create as much indexes as existing attributes
in the dimension tables. However, indexes require enough space storage, so not
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all attributes can be indexed. Thus, only indexes that improve significantly the
queries performance must be chosen. We propose in this article to use complex
algorithms, more specifically, artificial immune algorithms, which have been ap-
plied in a wide range of computing fields. This paper is organized as follows:
section 2 explains the BJI selection problem and its principle. Then, in section
3, we manage to offer glimpses of how the AIS’ algorithms work and their appli-
cations. Section 4 presents our BJI selection approach with specific details for
each complex algorithm. Following that, in section 5, we describe our experi-
mental study to compare the results obtained by the algorithms. We conclude
the paper in the section 6.

2 Bitmap Join Indexes

BJI are defined on the fact table using attributes that reference one or many
dimension tables in order to make the join operations more efficient in the star
schema. A bitmap representing the fact table’s rows is created for each distinct
value of the attribute that belongs to the dimension table on which the index
is defined. The bit I of the bitmap equals 1 if the row that corresponds to the
value of the indexed attribute can be joined with the row I of the fact table.
Otherwise, the bit equals 0.

The binary nature of BJI improves query performance by allowing to apply
logical operations AND, OR, NOT, etc. BJI are also very helpful for count(*)
queries since only BJI have to be interrogated to answer those queries. We can
illustrate this property in the example below: figure 1 represents a star schema
with the fact table sales and the dimension table customer. Let’s have the
query Q1:

SELECT count(*)FROM Sales S,Customer C WHERE S.SID=C.SID AND C.GENDER=’F’

To improve execution time of this query, the DWA creates a BJI on the attribute
gender with the following SQL command:

CREATE BITMAP INDEX BJI_Gender

ON Sales (Customer.Gender) FROM Sales S, Customer C WHERE S.SID=C.SID

When executing the query Q1, the optimizer reads the bit vectors associated to
the value ’F’ and computes the number of ’1’ in the result vector.

The BJI Selection Problem (BJISP) is known NP-complete [8][9]. We can
formalize the problem as follows: given a DW with d dimension tables D =
{D1, D2, ..., Dd} and a fact table F, a workload Q = {Q1, Q2, ..., Qm} where
each query has a frequency Fj , a set of indexable candidates attributes AS =
{A1, A2, ..., An} and a storage space S. The BJISP intends to select a BJI con-
figuration CI that reduces the execution cost of Q and does not exceed the
storage bound. If the DWA wishes to select one index amongst n indexable at-
tributes, he must evaluate 2n−1 possible configurations [10]. To select several BJI

defined on one or more attributes, he must evaluate 22
n−1 − 1 possible configu-

rations [10].
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CUSTMER DIMENSION

RID SID NAME AGE GENDER TOWN

1 103 BILLEL 23 M ALGER

2 105 FATEH 25 M BLIDA

3 109 SOUAD 32 F ALGER

4 110 MEJDA 18 F ALGER

SALES FACT

RID SID PID TID AMOUNT

3 103 204 402 6500

4 101 204 404 1200

22 110 206 404 1100

23 109 207 404 18000

BJI

RID M F

3 1 0

4 0 1

22 0 1

23 0 1

Fig. 1. An example of bitmap join index

Many BJI are eligible, so the Data Warehouse Administrator (DWA) has to
choose one configuration, which is a complex task.There is a multitude of work
that aim to automate the selection of BJI, they consist of two phases: (1)pruning
search space to reduce the selection problem’s complexity by using data mining
algorithms [8][11], or algorithms based on other optimization structures such as
horizontal partitioning [4][12] and (2)Execution of algorithms to determine a final
configuration of indexes [8][10][4][13]. The algorithms used to determine a final
configuration of indexes can be divided into two categories: greedy algorithms
and complex algorithms such as heuristics, genetic algorithms, and data mining
algorithms. The cost-based greedy algorithms used to select a configuration of
BJI were the subject of many works [8][10][4]. The selection of a BJI using a
genetic algorithm was mentioned in [13]. Our analysis of the literature leads us
to conclude only a few works focus on complex algorithms to determine a BJI
configuration.

3 Artificial Immune System (AIS)

The Artificial Immune System (AIS) is a meta-heuristic that combines features
of natural immune systems such as memorization, learning and adaptations. The
immunity is also a learning process through its ability to recognize threats, to
memorize past attackers and its faculty of adaptation. The AIS had been first
introduced in 1986 by [14]. The authors aim to observe the immune system’s
behavior by a simulation on a computer in order to gain a better understanding
of immunity in real organisms. However, they notice major similarities between
the AIS and the classifier system which leads them to believe that the immune
system model can be used to perform artificial intelligence tasks, in particular
learning tasks. Afterwards, many authors contributed significantly to enhance
the knowledge about the AIS.

Unlike some other bio-inspired techniques, such as genetic algorithms and
neural networks, the field of AIS encompasses a spectrum of algorithms because
different algorithms implement different properties of different cells. All AIS
algorithms mimic the behavior and properties of immunological cells, specifically
B-cells, T-cells and dendritic cells (DCs), and the resultant algorithms exhibit
differing levels of complexity and can perform a range of tasks [15]. The oft-cited
AIS models are : Negative Selection Algorithms [16], Clonal Selection Algorithm
[17], Immune Network Models [18]. The AIS was used to resolve many problems
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Fig. 2. Our Selection Approach Architecture

related to a wide variety of fields: Computer Security [16], Anomaly Detection
[19], Fault Diagnosis [20], Data Mining and Retrieval [21], Adaptive Control [22],
Web Mining [23].

As we have seen it above, many complex algorithms and meta-heuristics have
been used to perform an efficient physical design of data warehouses. Neverthe-
less, no author has ever applied the AIS in that field. So we believe that the use
of AIS to perform physical design tasks relating to BJI has been the subject of
academic work for the first time in this article.

4 A New Approach of Selection Based on Artificial
Immune System

The immune learning algorithm requires the use of antigens as learning data,
the system has to produce antibodies. In the context of our work, we have
considered BJI as antibodies, and the queries as antigens. The general schema
of the selection by AIS is illustrated in the figure 2. The selection consists of
two phases: initialization and antigen presentation. In the first phase, an initial
BJI configuration is generated randomly. In the second phase, a succession of
immune operators is applied iteratively to sharpen the configuration.

Initialization. Each BJI is coded as a series of numbers where each number
represents an attribute with a size that cannot exceed the number of indexable
attributes. Suppose the set of indexable attributes consists of 9 attributes: A0
: Retailer, A1 : Line, A2 : Year, A3 :Quarter, A4 : Week, A5 : Class, A6 :
Division, A7 : Day, A8 : All, A9 :Group. For example, we have an BJI coded as
(4,9,1), which means the index is defined on Week, Group and Line. Let POP
be the list of BJI to create.
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Antigen Presentation. For each query Qi, do:

– Clonal selection and expansion : computes the affinity of each BJI of the
POP list with the query R by building a query-attribute matrix MUA. If
the affinity overtakes a threshold defined at the beginning, the BJI will be
elected and duplicated following the affinity value. Thus, BJI that appears
most in the maximum of queries will be the most duplicated index. Let CLN
be the list of chosen and cloned BJI.

– Maturation affinity : each clone in CLN is muted inversely to its affinity.
The number of mutations to do equals the size of BJI - its affinity. In the
previous example, the size of BJI (4,9,1) equals 3 and the affinity is 1. Hence,
the number of mutation is 3 - 1= 2.

– Clonal interactions : represents in our problem the network interaction or
affinities between BJI. The affinity between two BJI is computed by summing
the affinities between all their attributes, after building an attributes affinity
matrix AAM.

– Clonal deletion : removes BJI that have all their affinities with other BJI
inferior to predefined threshold (computed experimentally) and store the
rest of indexes in a MEM list. To define the affinity between a BJI and other
BJI, we sum the affinities of the BJI with others indexes that belong to
MEM.

– Meta-dynamic : eliminates the BJI that have their affinity with antigen Qi
inferior to predefined threshold from MEM (the affinity of BJIi with Qi is
already defined in the point a).

– Network Construction: incorporates the remaining BJI of MEM with the BJI
of the network, this new list is RES, and it was initially empty.

– Network Interactions : determines the similarity between each pair of BJI of
the network from the matrix AAM by computing the affinity between two
BJI as seen in point c.

Cycle. These steps until the end.
MEM contains the BJI selected according to a query Qi. RES contains the

best elements of MEM, and then, every MEM query will be initialized at null
value, in contrast with RES which will be initialized at the launch of the process.

5 Experiments

We conduct an experimental study to compare our algorithm based on AIS with
other well-known approaches that have already been tested in previous works:
genetic algorithms and K-mean by using the mathematical cost model defined in
[8]. Hence, we have tested these algorithms on an Intel machine Core I3 with 3
GB of memory and storage disks of 500 GB. On this machine we have installed
an APB1 [24] benchmark with Oracle DBMS 11g. The APB benchmark contains
a star schema with a fact table Actvars (24 786 000 rows), Prodlevel (9000 rows),
Custlevel (900 rows), Timelevel (24 rows) and Chanlevel (9 rows). We decide to
run the five most frequent queries.
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In our experiment, we execute each selection algorithm: GA, AIS, K-means
under a constraint on the storage space = 3 GB (parameters of GA are: crossover
rate = 1, Mutation Rate = 0.3, size of population = 50, number of generations =
50). Each algorithm generates a set of 5 BJI. In the first test, for each query and
each selection algorithm, we measure the execution cost of each query using BJI
selected by each algorithm (figure 3) and the storage cost of generated BJI costs
(figure 4). From the figure 3, we observe that the genetic algorithm generates
a configuration that makes it possible for every query to run faster. But the
storage rate (figure 4) of indexes created by GA is dramatically higher than
storage rates of indexes obtained with other algorithms (AIS and K-means).

So the GA generates large BJI which reduce the execution cost of queries.
Consequently, a compromise has to be made between both execution and stor-
age cost. To achieve that, we have defined a variable that combines these two
parameters by multiplying the execution and storage costs. The results are pre-
sented in figure 5. K-means and AIS algorithms give better results than GA. To
test the efficiency of the algorithms when the constraint on the storage space
is relaxed, we set a value of 5 GB to the storage space. The execution of every
algorithm has induced to the creation of 10 BJI. The figures 6 and 7 show respec-
tively the execution cost of queries in the presence of 10 BJI produced by each
algorithm and the ratio of execution cost to the storage cost of BJI. We notice
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that the immune algorithm AIS has generated a configuration that reduces the
execution cost of all queries while optimizing the required storage space. This
algorithm provides better results than GA and K-means. Thus, the DWA can
use it in the case he has enough storage space available to implement indexes.

6 Conclusion

In this paper, we focus on the optimization of complex queries defined on star
schema DWs and propose a new approach based on immune algorithms to select
BJI. Then, we have compared our approach with other classical algorithms:
genetic algorithms and datamining algorithm (K-means). All the algorithms aim
to reduce the time needed to execute the queries load without any violation of
the condition on storage space by using mathematical cost model. The results
clearly show that the AIS offers the better ratio execution cost* storage cost. We
suggest as a continuation of this work (1) configure empirically the parameters
of the algorithms to achieve better results, (2) introduce an intelligent agent
that prunes automatically the attributes and the queries, (3) integrate these
approaches with others optimization techniques such as horizontal and vertical
partitioning and (4)consider a large workload of queries to scaling.
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Abstract. We present an evolutionary algorithm(EA) based system
identification technique from measurement data. The nonlinear optimiza-
tion task of estimating the premise parameters of a Takagi-Sugeno-Kang
fuzzy system is achieved by a EA, the consequent parameters are esti-
mated by least squares. This reduces the search space dimension leading
to greatly reduced load on the EA. The significant contribution of this
work is in formulating the fitness function that judiciously applies selec-
tion pressure by 1) penalizing low firing strengths of rules, and, 2) by
penalizing low rank design matrix at the rule consequents. The proposed
method is tested on the identification of non-linear systems.

Keywords: System Identification, Takagi-Sugeno-Kang Fuzzy Systems,
Evolutionary Algorithms, Nonlinear Optimization, Data Driven.

1 Introduction

Takagi-Sugeno-Kang fuzzy models are currently the most popular, model based
approach in modeling uncertainty and non-linearity in controller design problems
[2]. Their universal function approximation capability and the local model inter-
pretability of the rules make them attractive as design tools for data driven con-
trol of non-linear systems [3]. Stability analysis of TSK models is more amenable
to mathematical techniques than Mamdani type systems specially if the rule con-
sequents are linear dynamical models. In this paper we concern ourselves with
the modeling aspects of the full control problem. In this paper we use TSK model
with fixed number of rules and linear dynamic consequents to model a non-linear
system. The parametric optimization of the rule base is achieved by a genetic
algorithm(GA) with some interesting fitness function choices. This stochastic
search based approach is fundamentally different from clustering-based rule ex-
traction schemes [4]. The flexibility of GAs allows for easy incorporation of con-
straints and prior knowledge that guide the search towards favorable regions of
the search space. The designed fitness function allows for system identification
with preservation of local character of the fuzzy rules and improved numerical
stability for estimation of consequent terms.
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2 Takagi-Sugeno Model

We assume that the system can be described well by n-dimensional state space
model driven by m-dimensional control input. Let there be R rules in the fuzzy
rule base and each input’s universe of discourse is partitioned in to R fuzzy sets.
The rth rule of the rule base is described below:

Rule r : IF x1 is Xr1 AND x2 is · · · AND xn is Xrn AND

u1 is Ur1 AND u2 is · · ·AND um is Urm

THEN ẋ = or +Arx+Bru

where x ∈ Rn, u ∈ Rm, or ∈ Rn, Ar ∈ Rn×n and Br ∈ Rn×m. Here Xri is the
fuzzy set corresponding to the rth partition of the ith state variable. Urj is the
fuzzy set corresponding to the rth partition of the jth control input.

The truth value (τ) or the firing strength of the rth rule is defined as follows:

τr =

n∏
i=1

μXri(xi)

m∏
j=1

μUri(uj) (1)

where we have chosen the product t-norm to infer the truth value of the rule. In
the present paper we have used gaussian membership functions defined as:

μXri(xi) = exp

(
− (xi − cXri)

2

2s2Xri

)
μUrj (uj) = exp(−

(uj − cUrj )
2

2s2Urj

) (2)

Normalized truth values (w) are defined wr =
τr∑R
r=1 τr

and are known as fuzzy

basis functions [1] in the literature. The final inferred fuzzy model output is:

ẋfuzzy =
R∑

r=1

wr(or +Arx+Bru) =
R∑

r=1

wr

[
or Ar Br

] [
1 xT uT

]T
(3)

3 System Identification

Parameter estimation involves estimating the values of the parameters of the
fuzzy system such that the input-output behavior of the fuzzy system approxi-
mates as closely as possible the input-output behavior of the plant. The number
of parameters of this fuzzy system is given by 2(n+m)R+(n+n2+nm)R where
the first addend corresponds to the premise parameters and the second to the
consequent parameters. However the consequent parameters can be estimated
using least squares method given the antecedent parameters. Thus a two step
process can be utilized to estimate all the system parameters. First estimate
the antecedent parameters then estimate the consequent parameters and repeat
this process until convergence. Assuming that antecedent parameters have been
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estimated, notice that (3) can be expressed in matrix-vector product form that
is linear in the consequent parameters :

ẋT = (
[
w1 w2 . . . wR

]
⊗
[
1 xT uT

]
)
[
e1 A1 B1 e2 A2 B2 · · · eR AR BR

]T
= (wT ⊗

[
1 xT uT

]
)V = dTV

where ⊗ is the Kronecker product, w ∈ RR is the vector of normalized truth
values and d ∈ R(1+n+m)R is the design vector and V ∈ R(1+n+m)R×n is the
matrix of consequent parameters that needs to be estimated. By stacking as rows
the fuzzy model outputs corresponding to each input pattern in the training data
one obtains the following system of linear equations in matrix variables:⎡⎢⎢⎣

...

ẋk
T

...

⎤⎥⎥⎦ =

⎡⎢⎢⎣
...

(wk
T ⊗

[
1 xk

T uk
T
]
)

...

⎤⎥⎥⎦V =

⎡⎢⎢⎣
...

dk
T

...

⎤⎥⎥⎦V

ẊN×n = DN×(1+n+m)RV(1+n+m)R×n

We term the matrix D the design matrix, based on the similarity of role of
this matrix with the use of design matrices in statistical regression theory. The
following Frobenius norm minimization problem is now posed:

min
V

‖X−DV‖2F (4)

We operate on the assumption that the number of data samples(N) is greater
than the number of unknown parameters (nR + n2R + nRm). The first order
optimality condition corresponding to (4) yields the normal equation given by:

d

dV
Tr((X−DV)T (X−DV)) = 0 =⇒ DTDV = DTX (5)

However if the condition number of D is large, the condition number of DTD
will be worse and the estimate of V will be inaccurate due to numerical in-
stability. Therefore a least squares solution to the optimization problem (4) is
obtained by the use of QR-decomposition method. The consequent parameters
are thus estimated by least squares method which reduces the number of un-
known parameters from 2(n+m)R+(n+n2 +nm)R to 2(n+m)R, which may
be estimated using a GA or derivative based methods.

4 Design of Fitness Function

The fitness function assigns to each genome a fitness value that determines it’s
reproductive ability. Designing the right fitness function generates a selection
pressure towards favorable region of the search space. The primary objective of
the fitness function is to improve the approximation of input-output mapping of
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the plant and the fuzzy model. The input-output mismatch between the two is
modeled by the following penalty:

1

2

N∑
k=1

n∑
i=1

(ẋfuzzyki − ẋactualki )2 (6)

which measures the approximation error for all the N training patterns. However
secondary objectives in learning the TSK model is also to allow for a local
model based interpretation of the fuzzy rules and improve the numerical stability
properties for consequent terms estimation.

4.1 Penalizing Weakly Firing Rules

The use of this penalty serves to preserve the local character of the fuzzy rules.
The firing strength of the rules depends on the following two factors:

1. distance between data samples {xk,uk}Nk=1 and the centers {cXri , cUrj}
2. how localized or diffused the membership functions are i.e. the largeness or

smallness of {sXri , sUrj}

If the centers are far removed from the data samples and the membership func-
tions are localized i.e. the spread is small then the overall firing strength(φ) will
be small. This indicates that the fuzzy rule base is not able to capture the essence
of the data set. We use the following metric to measure the firing strength of the
entire fuzzy rule base with respect to the k-th data sample:

φk =

Rp∑
r=1

τrk and φ =

N∑
k=1

φk =

N∑
k=1

Rp∑
r=1

τrk (7)

φ represents the firing strength of the fuzzy rule base with respect to the overall
data set. If a large number of φks are small then this implies that membership
functions do not accurately represent the spread and distribution of the data
samples and adjustment in the location and spread of membership functions is
required. Thus one of the objectives of the evolutionary optimizer is to ensure
adequate firing of the rule base with respect to the overall data set. Based on
this idea we propose the use of the following penalty on weak firing:

P1 =

N∑
k=1

1(φk < ε1)×N1 where, 1(φk < const) =

{
1, if φk < const,

0, otherwise.

where ε1 ∈ R is a small real number that lower bounds the firing strength.
N1 ∈ R is a very large number that penalizes the low firing strength of the
fuzzy rules. Since the summation over the indicator function serves to count the
number of cases which result in low firing of the overall rule base, the penalty
P1 is just an integral multiple of N1.
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4.2 Penalizing Low Rank Design Matrix

Since the consequent parameters are estimated by least squares the condition
number and rank of design matrix is very important for this procedure. Thus
those genomes which result in higher condition number of the design matrix
(cond(D)) are penalized. The overall scheme detailing the fitness evaluation of
genomes in the GA is given in Algorithm 1. In this paper we used the following
values of the parameters ε0 = 10−15, N0 = 1015, ε1 = 10−3, N1 = 109, N2 = 106

arrived at by some initial simulation runs but these are in general problem
dependent though not critically dependent.

Algorithm 1. Fitness Evaluation Scheme of TSK Fuzzy System for use in GA

if any φk < ε0 then
P0 ←−∑N

k=1 1(φk < ε0)×N0 {Penalize Extremely Low Firing}
return P0

else
P1 ←−∑N

k=1 1(φk < ε1)×N1 {Penalize Low Firing}
if rank(D) �= (1 + n+m)R then

P2 ←− ((1+ n+m)R− rank(D))×N2 {Penalize Low Rank Design Matrices}
return P1 + P2

else
P3 ←− 1

2

∑N
k=1

∑n
i=1(ẋ

fuzzy
ki − ẋactual

ki )2 {Penalize Mismatch Error}
return P1 + P3 + cond(D)

end if
end if

5 Results

System identification using the proposed method is demonstrated on two non-
linear problems.

5.1 Example 1

The non-linear plant is given by ẋ1 = x1 + 2x2 + u1 and ẋ2 = x1 − 2x32 + u2 for
which the universe of discourses are x1, x2, u1, u2 ∈ [−10, 10] chosen. MATLAB
GA toolbox is used to evolve a population of 100 individuals for 500 generations.
Two independent data sets for training and testing each containing 500 randomly
generated data points were used. 3 independent runs of the GA were performed
and the training and testing error tabulated in Table 1. Run number 2 resulted
in the best results. The error in ẋ1 is practically zero while the error in ẋ2 is
dominant. Note however that the range of ẋ2 is [−2000, 2000] which is much
large compared to the obtained error. Number of rules was fixed to be 3.

Obtained antecedent parameters are tabulated in Table 2 and the consequent
parameters are tabulated in Table 3. On examining the results of all the runs
we found that the fuzzy sets for linear states or inputs(x1, u1, u2) tend to bunch
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Table 1. Training and testing data error for 3 independent runs

Runs
Training Error Testing Error

min mean max min mean max
1 0.010461 12.804713 66.237515 0.011640 13.915571 76.176899
2 0.003482 8.623033 40.098902 0.023402 9.175422 52.323599
3 0.027388 9.399573 53.174078 0.006941 10.238333 132.642506

Table 2. Antecedent Parameters centers(c) and spread(s) from Run 2

rule
centers spread

x1 x2 u1 u2 x1 x2 u1 u2

1 0.5780 1.7710 3.6593 1.3415 5.7390 5.5089 7.0706 16.2645
2 0.6454 -8.9958 6.2439 -0.1445 5.6781 18.7368 8.9920 11.9889
3 0.7112 2.0586 12.1428 -0.6766 5.6535 6.3080 12.3604 10.2680

Table 3. Consequent Parameters for 3 rule TSK Fuzzy System from Run 2

rule o A B

1
-1.3731e-17 1.0000e+00 2.0000e+00 1.0000e+00 5.7063e-16
1.1696e+03 3.4124e+00 1.1673e+02 5.2191e+00 -6.5183e+00

2
-1.7130e-15 1.0000e+00 2.0000e+00 1.0000e+00 -5.0014e-16
-2.7756e+03 8.9434e-01 -5.2287e+02 -1.9365e-01 -2.8086e-01

3
2.4170e-15 1.0000e+00 2.0000e+00 1.0000e+00 1.1678e-16
1.6792e+03 -2.1046e+00 1.8351e+02 -4.2989e+00 1.2763e+01
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0
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40

60
absolute error for output 2

0 50 100 150 200 250 300 350 400 450 500
−2000

−1000

0

1000

2000
test data(o) and prediction data(+) for output 2

pattern number

Fig. 1. Absolute error and Predicted Output for ẋ2 from Run 2

up together while those of the nonlinear(x2) do not. As expected the linear
optimization method estimates perfectly the consequent term coefficients for the
linear inputs. Figure 1 shows the plots of absolute error and prediction accuracy
for all the test patterns.
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5.2 Example 2

Inverted Pendulum dynamics is given by:

ẋ1 = x2, ẋ2 =
m g sinx3 cosx3 +mlx24 sinx3 + fmx4 cosx3 + u

M + (1 cos2 x3)m

ẋ3 = x4, ẋ4 =
(M +m)(g sinx3 fx4) (lmx

2
4 sinx3 + u) cosx3

M + (1 cos2 x3)m

where M = 0.5, m = 0.2, f = 0.1, g = 9.8 and l = 0.3. 3 independent GA runs
were performed the results of which are shown in Table 4. Number of rules was
fixed at 5. Parameters obtained from run 1 are used. The test error plots for x2
and x4 are given in Figure 2. The error plots for x1 and x3 are not shown as
they are the linear terms. The antecedent parameters obtained are tabulated in
Table 5.

Table 4. Training and testing data error for 3 independent runs

Runs
Training Error Testing Error

min mean max min mean max
1 0.000069 0.237540 1.276169 0.000039 0.248134 1.488931
2 0.000126 0.242093 0.995847 0.000454 0.259999 1.568845
3 0.002206 0.260516 1.371579 0.001426 0.280484 1.649449
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absolute error for output 2
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Fig. 2. Absolute error and Predicted Output for ẋ2 and ẋ4 from Run 1
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Table 5. Antecedent Parameters centers(c) and spread(s) from Run 1

rule
centers spread

x1 x2 x3 x4 u x1 x2 x3 x4 u
1 0.7819 1.7048 0.5682 -0.6043 3.1074 0.4819 1.1280 0.7904 2.3669 2.3323
2 0.9549 0.1908 -0.3318 0.8844 3.6432 2.0521 0.4574 0.4847 1.2355 2.1534
3 1.3234 -0.6255 -0.0914 -0.2824 -0.6607 1.7584 1.9120 0.2304 0.3518 2.9835
4 -0.4607 1.4251 -0.4100 0.1244 -3.2593 0.7264 1.3279 -0.5287 0.2590 2.6550
5 -0.2996 -1.7736 0.2699 -0.0415 -2.4419 -0.2333 0.7281 1.1124 2.6875 6.0236

Table 6. Consequent Parameters for 5 rule TSK Fuzzy System from Run 1

rule e A B

1

1.3748e-17 -6.9736e-17 1.0000e+00 1.1238e-16 6.0545e-17 3.0829e-17
-2.1423e-01 9.3393e-02 1.1134e-01 -2.4186e+00 -4.3801e-02 1.8205e+00
2.5664e-16 -7.4564e-17 -1.8405e-16 -4.6830e-17 1.0000e+00 -2.3266e-17
1.6630e+00 -8.7641e-01 -9.1497e-01 3.6490e+01 1.1947e-01 -5.2651e+00

2

2.2482e-16 7 1.2316e-16 1.0000e+00 -2.4221e-17 -1.5832e-17 -9.7632e-17
-9.2831e-03 2.1943e-01 1.3224e-01 -2.2616e+00 1.6911e-01 1.8797e+00
9.1552e-17 -7.8456e-17 7.1698e-17 4.9123e-17 1.0000e+00 -4.2189e-17
3.5770e-01 -1.6846e+00 -9.4497e-01 3.4802e+01 -1.5542e+00 -5.8036e+00

3

-6.9363e-17 1.1350e-16 1.0000e+00 9.8210e-17 2.0358e-18 7.4152e-17
5.8044e-02 -1.9465e-03 3.7657e-02 -3.5562e+00 9.4262e-03 2.0214e+00
3.6450e-16 -6.1043e-17 5.6617e-17 1.4731e-16 1.0000e+00 3.5752e-17
-3.5190e-01 -2.5650e-02 -2.8366e-01 4.3684e+01 7.1944e-02 -6.8461e+00

4

-1.3109e-16 2.4861e-17 1.0000e+00 1.0098e-16 9.1885e-18 -3.6733e-16
3.8369e-02 -9.3594e-03 -1.1431e-01 -2.5887e+00 -2.1398e-01 1.7867e+00
-2.1180e-16 5.6893e-17 -1.6697e-16 5.8451e-17 1.0000e+00 -1.2743e-16
-8.8824e-01 -1.2741e-01 1.1241e+00 3.7611e+01 1.6525e+00 -5.0281e+00

5

-7.7895e-19 1.2846e-16 1.0000e+00 -3.3661e-17 1.2603e-16 5.4574e-17
9.6398e-02 1.8131e-01 -5.0105e-03 -2.7170e+00 8.5807e-02 1.8661e+00
9.8415e-17 8.0176e-18 1.3917e-16 3.0206e-17 1.0000e+00 4.3594e-18
-6.7620e-01 -1.2756e+00 5.3871e-02 3.8480e+01 -7.6091e-01 -5.6068e+00

6 Conclusion

The obtained results demonstrate that effective learning of the system dynam-
ics can be achieved with only a few rules. The absolute error values are small
compared to the range of the desired values. Obtained parameters are within
the respective universe of discourse reinforcing the local character of the
fuzzy rules. While the mean error is acceptable in all of our runs few outliers
were also observed. The error for these outliers does not decrease with any in-
crease in number of generations. This happens due to loss of diversity in GA
when the entire population converges to a small near optimal region. Hybrid
approaches that combine our proposed method and local search techniques
for improving the errors due to the outliers is a possible direction for future
work.
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Abstract. Apart from the interesting problem of finding arbitrary shaped clus-
ters of different densities, some applications further introduce the challenge of 
finding overlapping clusters in the presence of outliers. Fuzzy and possibilistic 
clustering approaches have therefore been developed to handle such problem, 
where possibilistic clustering is able to handle the presence of outliers com-
pared to its fuzzy counterpart. However, current known fuzzy and possibilistic 
algorithms are still inefficient to use for finding the natural cluster structure. In 
this work, a novel possibilistic density based clustering approach is introduced, 
to identify the degrees of typicality of patterns to clusters of arbitrary shapes 
and densities. Experimental results illustrate the efficiency of the proposed ap-
proach compared to related algorithms. 

Keywords: Arbitrary Shapes, Arbitrary densities, Possibilistic Clustering. 

1 Introduction 

Hard or crisp clustering assigns hard memberships to patterns, i.e. a membership is 
either 0 or 1. This hides a lot of information about the overlapping of clusters, and con-
sequently the correct interpretation of a pattern’s belongingness. Fuzzy clustering has 
overcome this drawback by defining degrees of memberships for patterns with respect 
to more than one cluster, rather than defining one hard membership for one cluster. This 
is important in revealing the overlap between different clusters. In biological data, for 
example, the overlap can reveal the existence of relations between different diseases, 
and the data patterns that exhibit multi-membership degrees should be investigated for 
better understanding of such diseases. In medical image analysis, this is also important 
to reveal the overlap of different tissues in an MRI or an X-ray image. Fuzzy clustering, 
however is unable to interpret the real relations between patterns and clusters in the 
presence of noise and outliers.  It faces a problem in this case, where each pattern’s 
sum of memberships to all clusters is restricted to 1. Thus, a pattern’s membership to 
one cluster determines its relation to the other clusters. In the presence of outliers and 
noise, some patterns may not belong to any of the clusters, and the possibility that a 
pattern belongs to one cluster other than being an outlier is unknown. 
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Possibilistic C-Means was introduced in [1] as a new direction to overcome the re-
stricted interpretation of fuzzy clustering. The possibility theory was introduced by 
Zadeh to deal with another level of uncertainty in the given knowledge. When dealing 
with clustering, one level of uncertainty is that a pattern might belong to more than 
one cluster, and that introduced the fuzzy clustering. Another higher level of uncer-
tainty is that a pattern might belong to more than one cluster and might not belong to 
any. While the possibilistic C-Means [1], solves the above challenge within the 
framework of the original C-Means, it does not solve the more general clustering 
problem, where arbitrary shapes and arbitrary density clusters are present in data that 
contains noise and outliers. Thus it remains a challenge to find an appropriate solution 
in the domain of non-traditional clustering approaches as density based clustering and 
others. 

This work introduces using a density based measure of relatedness to measure the 
typicality of a pattern to a cluster. The pattern can show degrees of typicality to  
different clusters, as well as to being an outlier/noise. It depends on previous density 
definitions used for known hard density based clustering, as well as new definitions 
that enable the integration of “possibility” into the main flow of clustering. 

2 Related Work 

Although Fuzzy C means [2] have been there for ages, the literature on clustering 
algorithms that tackle the problems of connectedness and arbitrary shaped clusters in 
a fuzzy approach is still in its infancy. Among the recent approaches that tackled such 
a problem are: DFC (Density based Fuzzy clustering) presented in [3], F-DBScan 
(Fuzzy DBScan) of [4] and FLAME (Fuzzy Local Approximation) presented in [5]. 
FLAME introduces the idea of propagating memberships by linearly combining the 
fuzzy memberships of neighbour patterns to calculate the membership of a pattern. 
The drawback of the algorithm is the huge number of different cluster cores that can 
be initially found, which present the number of initial clusters. This increases the time 
complexity, and dealing with clusters of arbitrary shapes is also not clear. The work 
presented here is independent from the above mentioned algorithms, defining novel 
measures for possibilistic clustering, which is able to give a wider interpretation of the 
relations between patterns and clusters. 

3 Proposed Approach 

A Local Intra-cluster Density/Distance Attraction (LIDA) membership is introduced. 
This measure brings forward a deeper analytic approach that can reveal the relation of 
a pattern’s neighbourhood density characteristics to the inner most dense parts of a 
cluster, thus measuring a degree of typicality to the cluster. Using this approach, one 
can easily explore the patterns at various levels of cluster memberships in a single 
cluster. Based on this measure, a clustering algorithm is proposed that is able to  
find out the genuine clusters of arbitrary shapes, and to discover clusters of different 
densities in the same dataset. 
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Density Relatedness: The concept of density relatedness between patterns can be used 
to avoid static models of density based clustering, where users define a static density 
threshold. The static model may lead to undesired results if clusters’ densities widely 
vary. On the other hand, presenting a threshold that guides the choice of relatively 
denser patterns is more appropriate. In that case, different clusters in the same dataset 
can have different or arbitrary densities. This overcomes the drawbacks of currently 
known density based approaches, and presents a solution to a wider range of data sets, 
which is more important to high dimensional data applications. 

LIDA Approach  

The importance of the LIDA approach is depicted in discriminating between  
more dense and less dense patterns in the same cluster. It gives possibilistic degrees 
based on the relative density of patterns to their neighbouring patterns’ densities’ 
characteristics.  

The cluster’s inner structure is reflected by the Intra-Cluster Density Attraction 
membership (LIDA) defined as follows: 

Definition: Local Intra-cluster Density Attraction LIDA: Let p a pattern in dataset P, 
and )( pNN ε the ε -neighborhood of p, defined as (see [6]):    

}),(|{)( εε ≤∈= qpdPqpNN                           (1) 

then the LIDA membership of pattern p to a cluster c is measured as: 
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 to a pattern id. 

The value of the LIDA membership determines how related a pattern is to the 
densest parts of a cluster. A pattern’s eligibility to join a cluster c is defined by S1 
above, which examines the neighbours of p that belong to that cluster, i.e. 

cpNNq ∩∈ )(ε  , and at the same time such neighbors should have denser neighbour-

hoods than p, i.e. )()( pNNqNN εε > . Given those two conditions, pattern p joins 

the cluster if, given a value for thresh, the following condition is satisfied: 
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This condition imposes the relatedness of pattern p to pattern q with respect to  
density, and weighed by the membership of q to its cluster, to decide whether q can 
transfer the cluster membership to p (or in other words : p can join the cluster through 
q). Thus, it is a recursive relationship that propagates the density of the inner most 
dense patterns to the outer less dense patterns.  

A pattern can join a number of clusters in its neighbourhood, thus merging up 
those clusters into one cluster. The final membership for pattern p to its cluster is then 
determined as stated in (2).  

A clustering algorithm (see figure 1) is based on this measure that joins patterns 
according to the degree of their LIDA membership. A threshold thresh is used to de-
termine if a membership allows a pattern to join the cluster. To be able to calculate 
the memberships appropriately, the most dense patterns are visited first. Thus sorting  

 
Algorithm: LIDA Possibilistic Clustering 

Input: data set P, ε , thresh 

Output: Set of Clusters C, Patterns possibilistic memberships 

 Begin 

TConstruct a metric tree for P 

For each pattern p in P 
       { )( pNNε

Retrieve neighbours in range ε from p, using T} 

 LSort patterns ascendingly on neighborhood size 

For each pattern p in L 
       For each q in )( pNN ε  

               thresh
qNN

pNN
qNNpNNIf >> c(q)q,.

 
 and   μ

ε

ε
εε )(

)(
)()(              

                         If p is singleton {c(q)=c(q) ∪ p}  //merge it to q’s cluster 

                            Else {Merge (c(q), c(p))}  //merge two clusters 

                         End If 

              End If 

        End For  

        If |c(p)|>1     {Calculate )(, pcpμ   }  //pattern joined a cluster 

           Else {Create a new cluster c(p)={p},  )(, pcpμ =1} //p singelton 

         End If 

End For 

C={}      //remove outlier clusters and get set of genuine clusters  

For all clusters c {if Pc .01.0>   { cCC ∪= }} 

End 

Fig. 1. LIDA possibilistic clustering 
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the patterns on their density is an initial requirement, followed by scanning the pat-
terns in order of their density. Patterns having denser neighbourhoods compared to 
their neighbours’ neighborhoods are the first patterns in their clusters, taking a  
membership value of 1. The final set of clusters is determined by all clusters of a sig-
nificant size, where a constant threshold on the size (more than 1% of the total dataset 
size) is used in all experiments. 

As shown in figure 1, the algorithm takes two parameters ε , and thresh as input. 
The first determines the size of neighbourhood, and the second determines the degree 
of acceptance of a pattern into a cluster according to their density relation. As the 
value of thresh decreases, more patterns can be accepted into the cluster, and more 
clusters can be merged together Whereas increasing this value constrains the addition 
of patterns of less dense neighborhoods to much denser clusters. At the same time, 
increasing this value can result in switching some patterns from merging with denser 
clusters, with other patterns that are more related to them, even if they have loose 
neighborhoods, which is an expected outcome of a density relatedness concept. The 
algorithm’s complexity reaches an average of O(n.d.log(n))- where n is the number of 
patterns and d is the dimensionality- when considering a binary metric tree structure. 
For building a binary metric tree, it takes the same time complexity. 

Parameter tuning can be done using a validity measure as proposed in [9], after thre-
sholding the membership values. However, for dealing with possibilistic memberships, 
a suitable validity should be developed in the future and used to tune the parameters.   

4 Experimental Results  

To illustrate the efficiency of the proposed approach, a 2-D data set is used for visual-
izing the results, and another two high dimensional sets are used to examine the  
competence of the proposed approaches to FCM and the recent algorithm of [5], 
available online as the Gedas software (simple Flame was used, with tuning only the k 
parameter, and leaving other parameters as default). Both the efficiency of LIDA as a 
clustering algorithm and as a possibilistic clustering approach are examined. A 2-D 
dataset (DS5 -8000 patterns) that is used by [7] and [8] to illustrate their efficiency is 
used. The data set is used as an example of a set having arbitrary shaped clusters with 
arbitrary densities. Only efficient algorithms such as Chameleon and Mitosis can 
obtain such a clustering. Other algorithms as DBScan [6] fail to find the genuine clus-
ters in such a data set. Thus it is used to illustrate the efficiency of using the density 
relatedness model of LIDA to find clusters of arbitrary densities. Figure 2.a shows the 
results of LIDA, using ε =10 and thresh=0.35, which corresponds to the clustering 
obtained by Chameleon and Mitosis. Note different symbols (and colors) used for 
clusters determine their uniqueness. The results for FCM (at C=8) are illustrated in 
figure 2.b, and that for Flame/Gedas (at k=350, the only parameter which gave 8 clus-
ters among other surrounding values explored, and Euclidean distance selected) is 
shown in figure 2.c. It is shown how FCM results in finding globular clusters  
rather than finding the natural cluster shapes. That would also be expected from the 
possibilistic C-means which depends on the means being centers of clusters, restrict-
ing cluster finding to globular shaped ones.  Similarly the results obtained by 
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Flame/Gedas show a globular shaped clusters, rather than finding the true clusters. It 
is also important to note that it was shown before - in [7],[8]- that algorithms as 
DBScan and SNN are unable to get clusters of arbitrary densities because of their 
dependency on a relatively static density based model (with DBScan more strict than  

 

 
(a)                                                       (b) 

 
(c) 

Fig. 2. (a) Results of LIDA on Chameleon’s data DS5, at ε =10, thresh=0.35, (b) Results for 
FCM, at C=8, (c) Results for simple Flame (Gedas software), at k=350 (8 clusters). Each color 
represents a cluster. 

Memberships >80%

 
(a) 

Memberships >60%

 
(b) 

Fig. 3. Results of LIDA at ε =10, thresh=0.35, showing patterns of (a) possibilistic member-
ships > 0.8 and (b) possibilistic memberships>0.6 
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SNN). Results in figures 3.a and 3.b show patterns which are associated with higher 
possibilistic LIDA memberships. 

The comparison is also done for the Synthetic Control Charts set –SCC - (see UCI 
repository) of 600 patterns and 60 dimensions and 6 clusters. This data is labeled, and 
thus external validity indexes (Jaccard, Rand, and Adjusted Rand) are used for com-
parison. Figure 4 shows that LIDA results for SCC at ε =0.75 and thresh=0.25 are 
more valid compared to those obtained by FCM (at C=6, which is the original number 
of classes) and those obtained by Flame/Gedas (at k=40, which gave the best validity 
index measure among other explored values :10,15,30,50,60, with Pearson Correla-
tion selected). Higher results for the used validity indexes indicate better clustering 
results. There is no trimming of patterns at a selected membership, however around 
100 patterns are left as singletons (belong to no clusters) in the LIDA results, and 
patterns are allocated to 3 main clusters (compared to Mitosis [8] that obtained 4 clus-
ters). Whereas, as known for the FCM, all patterns are clustered to one of the possible 
6 clusters. For the Flame/gedas, k=40 obtained 3 clusters and 6 outliers, indicating 
that even with the higher number of outliers obtained by LIDA, LIDA results show 
higher validity values. It is thus shown how LIDA outperforms both algorithms. 
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Fig. 4. Comparing LIDA to Flame/Gedas (Simple Flame) and FCM on Synthetic Control 
Charts set using external validity Indexes 

Another high dimensional dataset, the leukemia dataset (999 genes and 38 samples 
(dimensions) with two clusters, was used to compare LIDA to FCM. An internal va-
lidity is used [9] to evaluate clusters in this case, for absence of class labels. Results 
obtained by LIDA are more valid than those obtained by FCM when the number of 
genes that pass a certain fuzzy or possibilistic memberships are around 400. At 
ε =0.5 and thresh=0.25, LIDA obtains a validity of 0.0015 (after trimming genes at 
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possibilistic memberships higher than 15% or 25%, resulting in clusters of 375 and 
429 genes). Whereas FCM obtains a validity of 0.0026 (after trimming at fuzzy mem-
bership 0.75 to give 405 genes).The minimum value indicates more valid clusters. For 
this dataset, the trimming at specific fuzzy memberships was required for a fair com-
parison, thus Flame/Gedas was hard to compare to, since the fuzzy membership  
values are generally not included in the clustering result output –only the final clusters 
after thresholding are obtained. 

5 Conclusion 

In this work, a novel possibilistic clustering approach is introduced to find the degree 
of a pattern’s typicality to a cluster in the presence of outliers. The algorithm is de-
signed to be able to find clusters of arbitrary shapes and densities in a possibilistic 
framework. The experimental results on 2-D and higher dimensional sets illustrate its 
performance compared to a recent developed algorithm (Flame using Gedas software) 
and the most commonly used uncertainity based clustering Fuzzy C-Means.  
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Abstract. Bicluster discovery is an important task in various experi-
mental domains. We propose here a new biclustering system COBIC,
which combines graph algorithms with data mining methods to efficiently
extract highly relevant and potentially overlapping biclusters. COBIC
is based on maximum flow / minimum cut algorithms and is able to
take into account background knowledge expressed as a classification,
by a weight adaptation mechanism when iteratively extracting dense re-
gions. The proposed approach, when compared on three real datasets
(Yeast gene expression datasets) with recent and efficient biclustering
algorithms shows very good performances.

Keywords: Constrained biclustering, noisy datasets, dense subgraphs,
maximal flow/minimal cut.

1 Introduction

Itemset mining in boolean data consists in finding all rectangles of 1 in a boolean
matrix. When such a boolean matrix comes from numerical data resulting from
complex experimental processes, it may contain noise. One effect of the noise
when mining itemsets is to shatter relevant itemsets satisfying some constraints
(such as the minimal support constraint) into an exponential number of small
irrelevant fragments. Many approaches have been proposed [21,4,16,6] in order
to take into account the effect of noise in itemset mining that introduce a density
constraint on the patterns to be mined. A large majority of the proposed methods
use the level-wise principle of Apriori algorithm [1]. An exception is the work of
Poernomo and colleagues [19] in which a constraint of noise proportional to the
support of the itemset is considered.

We have proposed in [17] a system HANCIM and shown empirically that
HANCIM heuristically builds a relatively small number of regions that have
comparable or better quality (both in terms of supervised or unsupervised crite-
ria) than state of the art systems constructing (bi)-clusters from noisy datasets.
We propose here an extension of HANCIM that guides the extraction of dense
regions with background knowledge, expressed as a classification. This guidance
takes place by adapting weights when building the bipartite graphs that support
the computation of dense regions by maximum flow / minimum cut algorithms.
This guidance is soft : it is used to adapt the weights in the bipartite graphs to
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reward coherence with respect to a potentially sparse classification. It smoothly
generalizes must-link constraints from constrained clustering approaches [23] and
extends it to a biclustering context. It can also be seen as some kind of semi-
supervision of biclustering [2]. The rest of the paper is organised as follows:
section 2 sketches a state of the art in the area itemset mining in noisy contexts
and in particular, about extraction of overlapping biclusters. Section 3 describes
our original contribution in this paper. In section 4, we describe how our ap-
proach is evaluated and compared to state of the art biclustering algorithms and
conclude in section 5.

2 Related Work

We consider in the following a finite set of attributes A, a finite set of observa-
tions O, and a binary relationship R ⊆ O ×A. R can be modelled by a boolean
matrix. An itemset m is a subset of A. Many approaches have been proposed in
order to handle noise during itemset mining. These approaches can be divided
into complete and heuristic methods. Complete (discrete) methods look for all
itemsets that satisfy a set of constraints, including a density and a min support
constraint, hopefully both anti-monotonic. As a consequence, they proceed with
an APRIORI level-wise search [1] and prune their search space according to their
anti-monotonic constraints [21,16,4]. Let us mention other studies [22,15] that
have focused on the enumeration of all maximal bicliques that verify a mini-
mum density constraint, called quasi-bicliques, in transactional data. However,
these methods are very costly in execution time and provide a high number of
(redundant) results.

To overcome the limitations of complete methods, especially when working on
large and noisy datasets, non-complete or heuristic methods have been applied,
such as biclustering approaches [7,20,9,11]. In contrast to classical clustering
techniques, biclustering does not require attributes in the same cluster to behave
similarly over all the observations. Instead, a bicluster is defined as a subset of
attributes that exhibit compatible values over a subset of observations.

CC [7] uses a greedy search heuristic to generate arbitrarily positioned, over-
lapping co-clusters, based on a homogeneity constraint. Their algorithm is ex-
pensive and it identifies individual coclusters sequentially, which may quickly
deteriorate the quality of obtained biclusters. The Plaid model approach [13]
improves upon this by directly modeling overlapping clusters, but still cannot
identify multiple co-clusters simultaneously. The BiMax system [20] proposes
a methodology for comparing and validating biclustering methods that handle
a binary reference model. It proposes a simple divide-and-conquer combinato-
rial algorithm that exactly determines all optimal and maximal groupings, and
produces a number of co-clusters exponential in the number of genes and ex-
periments, making it impractical in case of large datasets. OPSM [3] looks for
submatrices in which the expression levels of all the genes induce the same linear
ordering of the experiments. BiMax and OPSM outperforms other biclustering
approaches. However, BiMax on one hand produces a huge amount of results,
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among which a high number are irrelevant and on the other hand, OPSM, al-
though very accurate, is designed to identify only a single co-cluster. The ROCC
system [9], like CC, generates arbitrarily positioned, overlapping biclusters, using
a two-step approach. The method is quite sophisticated but requires a high num-
ber of parameters to be set before learning. SScorr [18] uses an evolutionnary
technique relying on a fitness function based on the linear correlation among
genes to search for potentially overlapping bicluters. This approach also requires
setting a high number of parameters. Bagged Biclustering [11] is another recent
method for generating potentially overlapping biclusters, the main limitation is
that it requires a priori setting the number of searched biclusters K.

3 Proposed Approach

Our goal is to efficiently build a relatively small number of maximally dense
biclusters without any specification on the number of biclusters or on their size.
Our previous algorithm HANCIM iterates a two-step approach : it first identifies
a bicluster (O0, A0) with density 100% and then uses the attribute set A0 named
also seed pattern s to find, in a second step, a dense bicluster (Oj , Aj) such that
s ⊆ Aj . The bicluster (Oj , Aj) should satisfy two constraints : i) each attribute
of Aj has a density in Oj greater than or equal to a threshold δ, and ii) each
observation of Oj is strongly associated to each attribute of Aj (see [17]).

In order to mine a maximal dense bicluster which includes a given seed pattern
s ∈ 2A, a bipartite valuated graph associated to s is first built, and then a
minimum cut is computed. We adapt the capacities assigned to edges so as to
recover, after computing a minimum cut, a dense subgraph which includes the
attributes of the seed s and the set of observationsOj that are strongly associated
to these attributes. At the next step, the graph corresponding to the observations
set Oj is constructed so as to recover, after computing a minimum cut, a subset
of attributes that have densities greater than or equal to δ for the observations
in Oj . These two steps are alternatively repeated on observations and attributes
until the dense subgraphs extracted at steps l and l+1 are identical, in this case
our subgraph can not be extended anymore and the process is stopped.

3.1 Constrained Biclustering

We present in this section our methodology, named COBIC (COnstrained BI-
Clustering), for extracting relevant biclusters from noisy contexts. Our goal in
this work is to exploit background information in the form of a reference clas-
sification to guide the extraction of dense regions. This guidance takes place by
adapting weights when building the bipartite graphs that support the computa-
tion of dense regions by maximum flow / minimum cut algorithms. This guidance
is soft as it is used to adapt the weights in the bipartite graphs handled to im-
plement a light coherence with respect to a potentially sparse classification CY .

Definition 1. Let Y be a finite set of elements (attributes or observations). We
define a classification of Y as CY = {Ci / Ci ⊆ Y }.
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No constraint is imposed on the structure of CY , which can be sparse (some
elements of Y may not belong to any class in CY or belong to several classes),
and may not be a partition (given two Ci and Cj , i �= j of CY it may be the
case that Ci ∩ Cj �= ∅).

3.2 Adapting Weights

We detail in Algorithm 1 the construction of a weighted graph for a set of
elements (attributes or observations) denoted by Xl at the lth step. The purpose
is to extract a set of attributes satisfying the constraint of minimum density
after computing the minimum cut. When l > 2, we compute a quality measure
for both extracted element sets Yl−1 and Yl−2 in the last two iterations l − 1
and l − 2. The quality of a set Yi is evaluated in terms of its similarity with all
classes Ci ∈ CY defined on Y . At each step, our objective is to guide the search
of biclusters in order to favour the computation of sets of elements coherent with
classes of a classification CY , and not with a single class of CY .

Given the behaviour of our algorithm in the last two iterations, we check the
similarity of sets Yl−2 and Yl−1 with classes in CY , denoted simYl−2

and simYl−1

in the following. When the similarity of set Yl−1 extracted during the previous
iteration l− 1 is better than the similarity of Yl−2, the algorithm performs well
and so we construct the graph corresponding to Xl as we done in HANCIM (line
24 of algorithm 1). Otherwise (line 9), we use the similarity values to weight the
capacities of the edges of the graph. In fact, if the similarity of Yl−1 is less than
the one of Yl−2, this means that our solution moves away from classification CY

which is either due to elements of Yl−2 removed from Yl−1 or/and new elements
added to Yl−1. In this case, at step l, by weighting the capacities of edges incident
to vertices yj belonging to Yl−1 \ Yl−2 by the value of the similarity simYl−1

, we
penalize these vertices yj , and by weighting the capacities of edges incident to
vertices yk belonging to Yl−2 by the value of the similarity simYl−2

> simYl−1
,

we indicate our preference towards these vertices yk compared to yj. To do
this, we weight the capacities of the edges (xi, yj) such that yj ∈ Yl−1 \ Yl−2

by the value of similarity simYl−1
and the edges (xi, yj) such that yk ∈ Yl−2 by

the value of similarity simYl−2
. Knowing that the capacities differ according to

the graph construction associated to attributes or to observations, the original
capacities, proposed in [17] are defined as follows :

1. if Xl ⊆ O :

– Wxiyj=
100

|Xl|
(lines 14, 17, 19 of algorithm 1) and

– Wyjt=2 × (100 × δ) - weight−(yj) (line 22 of algorithm 1).
2. if Xl ⊆ A :

– Wxiyj=(
d+(xi)

maxxk∈Xl
(d+(xk))

+
d−(yj)

maxyk∈Yj (d
−(yk))

) x
100

|Xl|
(lines 14, 17,

19 of algorithm 1) and
– Wyjt= maxyk∈Yj (d

−(yk))× 200
|Xl| - weight−(yj) (line 22 of algorithm 1).
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As simYl−1
< simYl−2

, by weighting the capacities of the edges (xi, yj) such
that yj ∈ Yl−1 \ Yl−2 with the similarity value simYl−1

, the capacities of these
edges (xi, yj) is greatly reduced and thus the possibilty to cut these edges and
so to suppress vertices yj ∈ Yl−1 \ Yl−2 from Yl is increased.

Algorithm 1. CONSTRUCT_GRAPH_COBIC
input : D = (O,A): Dataset, Xl: vertices set (Xl ⊆ A or Xl ⊆ O) and l > 2, δ: density

threshold, C: Classification of Y (if Xl ⊆ A then Y = O, else Y = A ), Yl−1 ⊆ Y :
vertices extracted at step l − 1, Yl−2 ⊆ Y : vertices extracted at step l − 2

output: G(V,E): the graph constructed
1 begin
2 simYl−1

= SIMILARITY(Y , CY , Yl−1);
3 simYl−2

= SIMILARITY(Y , CY , Yl−2);
4 if (simYl−1

< simYl−2
) then

5 V = Xl ∪ {s, t} ;
6 forall the xi ∈ Xl do
7 E=E ∪ (s, xi);
8 weight(s, xi)= +∞ ;

9 forall the xi ∈ Xl do
10 forall the yj s.t. D[xi][yj] == 1 do
11 V =V ∪ yj ;
12 E=E ∪ (xi, yj) ;
13 if ( yj ∈ Yl−2) then
14 weight(xi, yj)= Wxiyj

× simYl−2
;

15 else
16 if ( yj ∈ Yl−1) then
17 weight(xi, yj)= Wxiyj

× simYl−1
;

18 else
19 weight(xi, yj)= Wxiyj

;

20 forall the yj ∈ V \(Xl ∪ {s, t}) do
21 E=E ∪ (yj , t) ;
22 weight (yj , t)= Wyjt;

23 else
24 CONSTRUCT_GRAPH_HANCIM (cf [17]);

For calculating the average similarity between a set of attributes (resp. ob-
servations) and some classes of attributes (resp. observations), we consider Y a
set of elements (attributes or observations), CY a classification of Y and SubY
a subset of Y . We compute our similarity between SubY ⊂ Y and Ci ∈ CY as
the Jaccard similarity between the partitions (SubY , Y \SubY ) and (Ci, Y \Ci).
So, Jaccard similarity is defined as follows :

Sim_JACCARD(Y, SubY , Ci) =
N01 +N10

N01 +N01 +N11
, where N11 = |SubY ∩Ci|,

N01 = |Ci \ SubY |, N10 = |SubY \ Ci| and N00 = |(Y \ SubY ) ∩ (Y \ Ci)|.
As mentioned previously, we use several classes of CY to guide our search, so

we compute an average value over k best similarities. We have empirically set k
to 5 in our experiments.
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4 Experiments and Results

All computational tests were run on a Linux PC with an Intel(R) Pentium(R) 4
(3 GHz) microprocessor and 2GB of RAM. Evaluation of HANCIM with respect
to artifical datasets have been performed in previous work [17]. The advantage
of evaluation on artificial datasets is that true classes are available, allowing the
implementation of supervised measures. In this work, we chose to evaluate the
performance of COBIC on two yeast microarray datasets, the Gasch dataset [10]
and the Lee dataset [14], due to the availability of a reference classification, cor-
rect but expected to be highly incomplete, to guide the biclustering process.
The Gasch dataset consists of the expression values of 6152 yeast genes under
173 environmental stress conditions. The Lee dataset consists of gene expres-
sion values of 5612 yeast genes across 592 experiments. To assess the biological
relevance of the biclusters extracted from these real datasets, we rely on the
enrichment of extracted biclusters in GO terms, as done in [5], according to the
p-value (lower p-values denote highly significant associations) contained in pub-
lic databases such as Gene Ontology (GO) [8] and Kyoto Encyclopedia of Genes
and Genomes (KEGG) [12].

We compare the performance of COBIC with prominent biclustering algo-
rithms, i.e., HANCIM [17], SScorr [18] and ROCC [9]. Through extensive ex-
perimentations, Prelic et al. [20] have already shown that OPSM [3] and Bi-
Max [20] outperform other previous and well known biclustering algorithms,
More recently, Deodhar et al. [9] have shown that ROCC outperforms OPSM
and BiMax, and Mouhoubi et al. [17] shown that HANCIM outperforms Bi-
Max both on synthetic and real datasets. As in [9], in order to compare COBIC
with ROCC and SScorr, we select our 200 best results (with the best p-values).
To compare our results with those obtained by BiMax, for both COBIC and
HANCIM, we use the same discretization model described in [20] and a dis-
cretization threshold set to emin + (emax − emin)/2 where emin and emax rep-
resent the minimum and maximum gene expression values in the data context.
We ran COBIC and HANCIM on the discretized Gasch and Lee datasets with
minimum support set of 20% and density threshold of 80%. We use KEGG for
the weight adaption phase in COBIC. Evaluation is made with respect to GO
terms’ enrichment of biclusters for both approaches. As GO contains more re-
sults than KEGG (GO contains 4227 clusters of size 14 in average, as opposed to
99 clusters of size 37 in average for KEGG), this means that sparse but correct
information is enough to improve results from HANCIM. Computation time are
rather small except on the Lee dataset : 3min and 35min for the restricted and
complete Gasch datasets and 280min for the Lee dataset. Indeed, on the Lee
dataset, we obtain almost twice the number of results as for the Gasch dataset,
the average number of iterations to converge for each result is more important
and each iteration of COBIC is also more time-consuming, as the Lee dataset
contains 3.5 times more genes than the Gasch dataset. The additional time in-
duced by the weight learning phase is limited to approximately 20% of the total
computation time.
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Gasch dataset. First, we compare COBIC with HANCIM on the restricted
Gasch dataset used in [20,17]. Table 1 gives the percentage of GO-term’s enrich-
ment of computed biclusters for each method, in which at least one GO term is
over-represented for different levels of significance.

As we can see in table 1, the best results are obtained by COBIC over
HANCIM ; the number of results is almost equivalent (6 more with COBIC ),
but the proportion of biclusters significantly enriched by a GO term of the bi-
ological process hierarchy for COBIC is always greater than for HANCIM for
all levels of significance. We observe the same behaviour if we compare COBIC
with the results of SScorr in [18], but here COBIC is better than SScorr by
a larger amount. On the restricted Gasch dataset, for the 100 best results of
SScorr, the percentage of enriched biclusters with a p-value less than 0.01 (resp.
0.001) is less than 30%, (resp. 20%). If we take our 200 best biclusters (see ta-
ble 1), 100% of our enriched biclusters have a p-value less than 0.001. Table 1
gives also the percentage of GO-term enriched biclusters for COBIC in which
one or several GO terms are over-represented for different levels of significance
on the complete Gasch dataset. As we can see, results obtained by COBIC on
the complete Gasch dataset are better than on the restricted Gasch dataset. All
p-values associated to the 200 best biclusters obtained with COBIC are inferior
to e−10 and the best p-value is e−98.

Lee dataset. The third column of table 1 gives the same information for the
results obtained from the Lee dataset. We can see that all p-values associated
to the 200 best biclusters obtained with COBIC are inferior to e−03 and with
best p-values, 5.46e−43 and 1.58e−34 correspond to the GO processes that were
already indentified in the Gasch dataset. Note that the percentage of the gene
(attributes) represented in at least one bicluster in the 200 best results of ROCC
is 16.5% for the Lee dataset, whereas 30% of the genes are represented in the
200 best results of COBIC.

Table 1. Obtained results on restricted and complete Gasch dataset and Lee dataset

Dataset restricted Gasch complete Gasch Lee
HANCIM COBIC COBIC 200 best COBIC COBIC 200 best COBIC COBIC 200 best

# results 548 554 200 1075 200 1969 200
<e−2 94% 97.3% 100% 96% 100% 86% 100%
<e−3 48% 58% 100% 60% 100% 34.5% 100%
<e−4 28% 33.7% 93.5% 41.5% 100% 11% 77%
<e−5 18% 24% 66.5% 35.6% 100% 6% 40%
<e−10 7% 10% 28% 25% 100% 1.5% 8.5%
<e−20 4% 6.5% 18% 15% 83% 0.2% 2%

Best p-value e−38 e−64 e−64 e−98 e−98 e−43 e−43

5 Conclusion

In this paper, we have evaluated an original biclustering technique, COBIC,
taking into account background knowledge expressed as a classification. A com-
parison with other methods demonstrates that COBIC is both efficient and
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quite competitive. This opens new possibilities for mining heterogeneous multi-
view datasets. Indeed, while in this paper we focused on biclustering microarray
datasets, it would be worthwhile to study the applicability of adapted or gen-
eralized instances of COBIC to different application domains, like community
extraction in social networks.
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Abstract. The performance of active learning (AL) is crucially influ-
enced by the existence of outliers in input samples. In this paper, we
propose a robust pool-based AL measure based on the density power
divergence. It is known that the density power divergence can be accu-
rately estimated even under the existence of outliers within data. We
further derive an AL scheme based on an asymptotic statistical analy-
sis on the M-estimator. The performance of the proposed framework is
investigated empirically using artificial and real-world data.

Keywords: Active Learning, Density Power Divergence, Regression.

1 Introduction

Recent development of information technology has made it possible to collect
huge amount of data automatically in various domains. In most cases, such data
are composed of majority unlabeled-instances and minority labeled-instances.
This is because labeling tasks by human experts or additional experiments (or-
acles) are usually expensive or time-consuming. For example, in a car insurance
company, an insurance fee is determined by its company’s employees based on
car information, driver’s driving records and so on. However, such determination
by hand needs enormous cost and time. In recent years, active learning (AL) has
been discussed to make learning processes with majority unlabeled-instances and
minority labeled-instances more efficient [1]. In contrast to passive learning, AL
selects some unlabeled instances expected to be informative for learning and asks
an user to label them. This AL framework has been widely applied successfully
in various regions, such as speech recognition [2] and classification [3].

One of the most important problems in AL is how to select unlabeled in-
stances called queries and several querying measures have been discussed over
the last few decades [4,5]. These conventional AL methods commonly assume
that oracles always give correct labels on instances. In the real-world, however,
human experts might give incorrect labels due to their conditions or additional
experiments might make mistakes due to their environments. Such an oracle
giving noisy labels is called a noisy oracle. With a noisy oracle, the accuracy of

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 594–602, 2012.
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model estimation by AL could become worse. Thus, in this paper, we propose a
new AL algorithm to tackle this problem caused by a noisy oracle.

Among various types of query measures, in this paper, we employ Variance
Reduction Approach (VRA) [6], which is based on an estimation variance of
parameters (estimators). In this approach, AL algorithms select queries that are
expected to minimize the estimation variance and aim to derive better param-
eters. A conventional method based on VRA use Kullback-Leibler (KL) diver-
gence in estimating model parameters and the Fisher information criterion in
determining queries [7]. However, the KL-divergence-based methods do not con-
sider noisy-oracles and thus work worse if there are noisy labels. Therefore, in
this paper, we employ robust divergences called density power divergence, which
are known to be robust measures for evaluating the difference between two dis-
tributions. Through the asymptotic analysis on M-estimator, we incorporate the
density power divergence into our querying measure based on VRA.

The remainder of the paper is organized as follows. In Section 2, we first
briefly review the pool-based AL framework and the conventional AL method
based on VRA. In Section 3, we extend VRA through an asymptotic analysis on
M-estimator and apply it to the density power divergence. Then, in Section 4,
we propose a practical querying measure based on the discussion in the previ-
ous section. Finally, we show experimental results using artificial and real-world
datasets in Section 5 and conclude our paper in Section 6.

2 Preliminaries

2.1 Pool-Based Active Learning

Let us consider the pool-based AL, which is a frequently-discussed framework for
situations where the distribution of input instances is unknown but instances from
the true input distribution are given [3]. Formally, in pool-basedAL framework, it is
assumed that one has a small set of labeled instancesL = {(x1, y1), · · · , (xnl

, ynl
)}

and a large set of unlabeled instances U = {xnl+1, · · · ,xnu} (nl � nu). Then, one
tries to find a set of queries fromU that is expected to be informative for estimating
a ’good’ model. An overall procedure of the pool-based AL algorithm is described
in Algorithm 1. At the beginning of the algorithm, a model with parameter θ is
estimated from the small set of labeled instances L (Algorithm 1, Step 1).

Next, the algorithm select the most ’informative’ subset of unlabeled instances
as queries (Algorithm 1, Step 2a). Then, each query is labeled by an oracle and
added to L as labeled instances (Algorithm 1, Step 2b, c). These learning and
querying steps are repeated iteratively.

As mentioned above, the selection of an informativeness measure for queries
is an important problem in developing pool-based AL algorithms. One of the
promising measures is based on the estimation variance which evaluates an effi-
ciency of an estimator θ. The strategy for minimizing this estimation variance
is known as VRA [6]. However, a conventional method, which will be explained
in the next subsection, does not consider mis-labeled instances.
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Algorithm 1. Pool-based active learning algo-

rithm
– Input

• L: Set of labeled instances
• U : Set of unlabeled instances
• K:Number of queries per an iteration
• T :Number of querying iteration

– Main
1. θ(0) = LearnModel(L)
2. for i=1,· · · , T

(a) S = SelectQuery(U ,K,θ(i−1))
(b) Slabeled = AddLabel(S)
(c) L = L ∪ Slabeled, U = U\S
(d) θ(i) = LearnModel(L)

3. end
– Output

• θ(T ): Estimated parameters

Influence to the estimate

Estimated 
model

Fig. 1. An illustration of the
weighted estimator

2.2 A Conventional Method Based on VRA

In this subsection, we review the conventional AL method based on VRA [7].
This AL method estimates a model under an assumption that the model pθ(x, y)
with a parameter θ includes a true distribution q(x, y), i.e. q(x, y) = pθ∗(x, y)
where θ∗ is a true parameter. The model parameter θ is obtained by minimizing
the KL-divergence. Generally, given n labeled instances, the model parameter θ
is obtained by solving the following equation:

n∑
i=1

∂θ log p(xi, yi; θ̂n) = 0, (1)

where ∂θ denotes the partial derivation with respect to θ. The parameter θ̂n
estimated by solving Eq. (1) is called a maximum likelihood estimator (MLE)
and is known to converge to θ∗ if n→∞. Then, the method uses the variance of
the parameter, Eq[(θ̂n−θ∗)(θ̂n− θ∗)	], as the querying measure, where Eq[·] is
the expectation over a set of {x, y} with respect to q(x, y), and selects queries to

minimize the difference between θ̂n and θ∗. This measure is called an estimation
variance and corresponds to the Fisher information. Refer [7] for the detail. If
outliers exist, this method tends to overfit and therefore to behave worse.

3 Querying Measure by Asymptotic Analysis

This section presents a querying measure in the proposed framework. We extend
the conventional VRA scheme to be applicable to consist estimators based on
the various divergence by using a general class of consistent estimators, so-called
M-estimators. In Section 3.1, we show the notion of the M-estimators and their
statistical aspects, which are basis of our querying measure. In Section 3.2, we
introduce robust estimators based on the density power divergence, and propose
new querying measures which provide us with the robust queries in the noisy
oracle situations.
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3.1 Asymptotic Analysis on M-estimator

The M-estimator is a general class of consistent estimators including the MLE.
The advantage of such the general class of estimators is to know common statisti-
cal aspects among various estimators without focusing on a particular estimator.
Suppose we have i.i.d. labeled instances {(x1, y1), · · · , (xn, yn)} generated from
a distribution q(x, y) = pθ∗(x, y). A function ψ(x, y; θ) is called an estimating
function when it satisfies the conditions for any θ:

Eθ [ψ(x, y;θ)] = 0, (2)

where Eθ[·] and det| · | denote the expectation with respect to pθ(x, y) and a

determinant of the matrix, respectively. If the estimating function exists, an

estimator θ̂n, which possesses desirable asymptotic properties, is obtained by
solving the following estimating equation:

n∑
i=1

ψ(xi, yi; θ̂n) = 0. (3)

A solution of Eq. (3) is called an M-estimator in statistics. The following propo-

sition states a convergence of the M-estimator, θ̂n → θ∗ if n→∞ (consistency)
and its asymptotic estimation variance.

Proposition 1. Suppose we have i.i.d. labeled instances {(x1, y1), · · · , (xn, yn)}
generated from a distribution q(x, y) and a function ψ(x, y; θ) satisfies the con-

dition (2). Then, if n → ∞, the M-estimator θ̂n converges to θ∗ in probability.
Moreover,

Eq[(θ̂n − θ∗)(θ̂n − θ∗)
] = 1

n
A−1

q Mq(A
−1
q )
, (4)

where
Aq = Eq [∂θψ(x, y;θ

∗)] , Mq = Eq[ψ(x, y;θ
∗)ψ(x, y;θ∗)
]. (5)

The proof of this proposition is given in [8]. The results in Proposition 1 allow
us to generalize the conventional VRA scheme so as to utilize not only the MLE,
but also any M-estimators.

3.2 Density Power Divergence

The weakness of the KL-based VRA is that overfitting often occurs in the es-
timation by this method if outliers exist. And, the querying measure based on
overfitted parameters might give noisy queries. To alleviate this weakness of
the KL-based VRA, we incorporate robust divergences into VRA. For such di-
vergences, we focus on the density power divergences, particularly β-divergence
and γ-divergence. The estimators based on these divergences are known as M-
estimators.

The density power divergence is a class of statistical measures between two
probabilistic distributions, and has been developed to realize robust estimation
against unanticipated outliers. One in the class is called the β-divergence pro-
posed in [9]. The divergence between q(x, y) and pθ(x, y) is defined by

Dβ(q‖pθ)=
1

(1 + β)

{
1

β

∫∫
q(x, y)1+βdxdy −

∫∫
q(x, y)pθ(x, y)

βdxdy +

∫∫
pθ(x, y)

1+βdxdy

}
,
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where β is a positive constant. Note that the β-divergence converges to the KL-
divergence if β → 0. Therefore, this can be regarded as a generalization of the
KL-divergence. Estimation based on the β-divergence can be achieved through
the minimization of this divergence. The β-divergence estimator is given as a
solution of the following estimating equation:

n∑
i=1

ψβ(xi, yi; θ̂n)=
n∑

i=1

(
pθ̂n

(xi, yi)
β∂θ ln pθ̂n

(xi, yi)−
∫∫

pθ̂n
(x, y)β+1∂θ ln pθ̂n

(x, y)dxdy

)
= 0, (6)

which is derived by taking the partial derivative of the β-divergence and by
replacing the expectation with respect to q(x, y) with its sample mean. Note
that since ψβ(x, y; θ) satisfies the condition (2), the estimator obtained from
Eq. (6) is an M-estimator. Thus, the β-divergence estimator shares the same
solution with the MLE.

The common property of all density power divergence is to take the self-
weighted log-likelihood estimating equation, such as Eq. (6). These weighted
estimating equations allow us to estimate parameters in disregard of outliers.
Fig. 1 demonstrates how the density-power-divergence-based estimator reduces
the influence of outliers. Since outliers generally tend to have lower probabilities
with repeat to model pθ, the weights on outliers automatically become small.
This characterizes the density power divergence as a robust estimator.

The γ-divergence, a variant of the β-divergence, is defined as follows [10]:

Dγ(q‖pθ)=
1

γ + 1

{
1

γ
ln

∫∫
q(x, y)

1+γ
dxdy− ln

∫∫
q(x, y)pθ(x, y)

γ
dxdy + ln

∫∫
pθ(x, y)

1+γ
dxdy

}
,

where γ is a positive constant. The γ-divergence also converges to the KL-
divergence if γ → 0. Also, the estimate of the γ-divergence is given by:

n∑
i=1

ψγ(xi, yi; θ̂n)=

n∑
i=1

(
pθ̂n

(xi, yi)
γ∂θ ln pθ̂n

(xi, yi)∑
n
i=1 pθ̂n

(xi, yi)γ
−

∫∫
pθ̂n

(x, y)γ+1∂θ ln pθ̂n
(x, y)dxdy∫∫

pθ̂n
(x, y)γ+1dxdy

)
= 0.

This can be regarded as the normalized version of Eq. (6). Similar to the β-
divergence estimator, the γ-divergence estimator obtained from the above equa-
tion is also an M-estimator since ψγ(x, y; θ) satisfies the condition (2).

As a result, we can obtain the estimating variance based on the β- and γ-
divergence using the estimating functions ψβ(x, y; θ) and ψγ(x, y; θ) for the
M-estimators.

4 Empirical Measures for Querying

Based on the asymptotic variance of Eq. (4), the estimating functions ψβ(x, y; θ)
and ψγ(x, y; θ) in the previous section, we explain empirical querying measures
in our AL methods. For simplicity, we collectively denote the estimating func-
tions by ψ(x, y; θ). Particularly, in this paper, we discuss the following linear

regression model with Gaussian noise: p(y|x;w, σ2) = 1√
2πσ2

exp
(
− (y−wTx)2

2σ2

)
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where w is a coefficient parameter of the regression model and σ is a standard
deviation. For simplicity, we denote the collection of these parameters by θ.

Our strategy of AL is to minimize the estimation variance in Eq. (4). However,
since the true distribution q(x, y) = pθ∗(x, y) is not known, Eq. (5) cannot
be calculated directly. Thus, similar to the existing work [7], we calculate the

estimators of Aq and Mq as in the following, using the parameter θ̂n estimated
from a set of labeled instances and the sample mean of query instances:

Âp
θ̂n
(S)=

∑
xi∈S

∫
pθ̂n

(y|xi)∂θψ(y|xi; θ̂n)dy, (7)

M̂p
θ̂n
(S)=

∑
xi∈S

∫
pθ̂n

(y|xi)ψ(y|xi; θ̂n)ψ(y|xi; θ̂n)

dy. (8)

If a model consists of an unique parameter, the above equations are scalars. In
this case, the estimation variance of the parameter given as a product of them
is obtained by selecting a set of queries S to minimize the variance. However, in
our case, the model has more than two parameters and the estimation variance
needs to be optimized over a matrix. Therefore, we take the trace norm of the
matrix and derive the querying measure as follows:

S∗ = argmin
S⊆U∧|S|=K

1

2K
tr
{
Âp

θ̂n
(S)−1M̂p

θ̂n
(S)(Âp

θ̂n
(S)−1)


}
. (9)

The procedure of taking a trace norm is known as A-optimality and is popular in
AL [11]. However, the querying measure based on the γ-divergence still cannot
be calculated directly due to the integration in it. Therefore, we employ the
Monte Carlo integration to calculate it. The optimization of S is known as a
combinatorial problem that is difficult to be solved. Thus, we utilize the greedy
algorithm to determine the set S similar to conventional AL algorithms [6].

5 Experiments

In this section, we show some experimental results to illustrate the performance
of our AL method using artificial and real-world datasets. In these experiments,
we compared the following six methods: three standard random-query algorithms
based on the KL-, β- and γ-divergence (KL-, β- and γ-RAND); a conven-
tional AL algorithm based on the KL-divergence ([7] applied in linear regression)
(KL-AL); our proposed AL methods based on the β- and γ-divergence (β- and
γ-AL). As for KL-AL and KL-RAND, parameters were estimated by solving
Eq. (3) analytically. And, as for the other methods, we employ quasi-Newton’s
method for estimating parameters. Moreover, in these experiments, the sample
size for the Monte Carlo integration in γ-AL was set to be 250 and the parameter
values β and γ were set to be 0.1.

5.1 Demonstration with Artificial Datasets

In the first experiment, we investigated the robustness of the proposed methods
using artificial datasets. The procedure for generating the datasets is as follows:
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Fig. 2. Difference among the five
methods in increasing noisy labels

Table 1. Characteristics of Datasets
Dataset # of Dim. # of Instances

concrete 8 1030
machine 7 209
elevator 7 9517

First, we randomly generated instances xi from a uniform distribution in the
range of [-1, 1], where the dimensionality and the number of instances are re-
spectively 5 and 300. Next, we randomly generated five-dimensional coefficient
vector w from a uniform distribution in the range of [-2.5, 2.5]. Moreover, noises
ei in linear regression models were randomly generated from a Gaussian distri-
bution with zero mean and unit variance. Finally, we determined labels yi as
yi = w	xi + ei.

Each of the generated datasets is randomly partitioned into the training set
with 80% instances and the test set with 20% instances. 10 instances in the
training set were randomly selected as initial labeled instances L. Then, noises±5
are added to r%(r = 0, 0.2, · · · , 5) of randomly selected labels in the remaining
instances U . In this experiment, the number of iterations for querying T was set
to be 2 and the number of queries K is set to be 5.

Fig. 2 shows the means-squared error (MSE) between true and estimated
labels on test instances by the methods. The values in the graph are averaged
over 2000 random trials for numerical stabilization. As can be seen in Fig. 2, with
the increasing of noisy labels, the average errors by the KL-divergence-based
methods grow more rapidly than the β/γ-divergence-based methods. Also, in
most cases, AL methods seem to perform better than the random-query methods.
However, the performance of γ-AL was worse than β-AL and the other random-
query methods. This would be because the querying measure of γ-AL selects less
informative instances due to an approximation by the Monte Carlo integration.
Although one could improve the approximation by increasing the number of
samples, it usually leads severe increase of computational costs. Thus, these
results seem to show that β-AL is more feasible.

5.2 Experiments with Real-World Datasets

Next, we conducted experiments with 3 real-world datasets provided from [12,13].
The summaries of the datasets are given in Table 1. First, each of the datasets
is partitioned into an initial set L, an unlabeled set U and a test set in the same
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Fig. 3. Comparisons of means-squared errors among six methods at each learning step

manner with the previous experiment. Then, noises ±5 were added to labels of
r%(r = 0, 5) instances in U as noisy labels. For this experiment, 300 instances
were subsampled from U as candidates for unlabeled instances before selecting
queries if the cardinality of U is more than 300. In this experiment, we set the
number of learning iteration T and queries K to 5, respectively. Similar to the
previous experiment, we evaluated the average MSE of 1000 random trials.

The graphs in Fig. 3 show the errors at each learning step of the methods. As
can be seen in Fig. 3, the error of β-AL is comparable with KL-AL without noisy
labels. On the other hand, in cases where noisy labels exist, the errors of KL-AL
become larger than β-AL. Similar to the result of the previous experiment, γ-AL
seems to work worse than the other methods in most cases. Thus, our proposed
method β-AL seems to work better than the other methods in this experiment.

6 Summary

We proposed the robust AL methods by incorporating density power divergence
into VRA. Our querying measures were obtained by the asymptotic analysis
on the M-estimator including the β- and γ-divergence estimator. The proposed
methods can achieve robust results under situations with a noisy oracle due
to the properties of the robust divergences. We investigated the performance
of our methods by the experiments with the artificial datasets and the real-
world datasets and confirmed that it could achieve desirable performance levels
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even under the situation with a noisy oracle. To show the practicality of our
AL strategy, we just applied it to a linear regression model in this paper. Our
strategy, however, is not restricted to the model and therefore one of our future
works is to apply our scheme into other models and investigate their behaviors.
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Abstract. Transfer algorithms allow the use of knowledge previously
learned on related tasks to speed-up learning of the current task. Re-
cently, many complex reinforcement learning problems have been suc-
cessfully solved by efficient transfer learners. However, most of these
algorithms suffer from a severe flaw: they are implicitly tuned to transfer
knowledge between tasks having a given degree of similarity. In other
words, if the previous task is very dissimilar (respectively nearly identi-
cal) to the current task, then the transfer process might slow down the
learning (respectively might be far from optimal speed up). In this pa-
per, we address this specific issue by explicitly optimizing the transfer
rate between tasks and answer to the question: “can the transfer rate be
accurately optimized, and at what cost?”. In this paper, we show that
this optimization problem is related to the continuum bandit problem.
Based on this relation, we design an generic adaptive transfer method,
which we evaluate on a grid-world task.

Keywords: Reinforcement Learning, Markov Decision Processes,
Transfer.

1 Introduction

In the reinforcement learning problem, an agent acts in an unknown environ-
ment, with the goal of maximizing its reward. All learning agents have to face
the exploration-exploitation dilemma: whether to act so as to explore unknown
areas or to act consistently with experience to maximize reward (exploit). Most
research on reinforcement learning deals with this issue. Recently Strehl et al. [5]
showed that nearly optimal strategies could be reached in as few as Õ(S×A) time
steps. However, with most real-world learning problems, the designer will face a
huge state and action space, thus preventing any kind of exhaustive exploration.

One way to circumvent this problem is to use previously acquired knowledge
related to the current task being learned. This knowledge may then be used
to guide exploration through the state-action space, hopefully leading the agent
towards areas in which high rewards can be found. This knowledge can be utilized
in different ways:
– By imitation: in particular, in a multi-agent environment, agents may observe

traces of other agents and use this observation to learn the environment faster
[2].
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– By bootstrap: related tasks may have been previously learned by reinforce-
ment [1] and the learned policy may be used to bootstrap the learning.

– By abstraction: a simplified version of the current task could have been
generated to quickly learn a policy which could be used as a starting point
for the current task.

– By demonstration: a human tutor may provide some explicit knowledge.
Other similar settings exist in the literature, among which are “advice taking”
or “apprenticeship”.

In this paper, we will focus on a simple version of the “bootstrap” transfer learn-
ing problem [1]: we will assume that a policy is available to the learner, and that
this policy has been learned on a past task which shares the same state-action
space as that of the current task. Note that unlike in the "imitation" setting, in
the boostrap setting no information about the transitions in the environment is
available to the learning agent.

Given this knowledge, the learning agent faces a new dilemma: it has to bal-
ance between following the ongoing learned policy and exploring the available
policy. Most transfer learners do not tackle this dilemma explicitly: the amount
of exploration based on the available policy does not depend on its quality.
However, if the available policy is unrelated to the current task, then exploring
the environment by following the available policy could result in a slowdown of
the learning process. This pathological behavior has been known in the transfer
learning litterature as the negative transfer phenomenon [7]. Ideally, this amount
should be tuned such that the transfer learner be robust with respect to the qual-
ity of the past policy : good policies should speed up the learner while bad ones
should not slow it down significantly. Recently, a new approach has been pro-
posed to solve this issue [4]. The main idea of this approach is to estimate the
similarity between the two tasks, and then to use this estimate to parameterize
the transfer learning process, balancing between ongoing and past policies. How-
ever, measuring this similarity is a costly process in itself and moreover there
are no guarantee that this similarity optimizes the transfer learning process.

In this paper, we show that a parameter called the transfer rate controlling
the balance between past policy and the ongoing policy can be optimized ef-
ficiently during the reinforcement learning process. For this purpose, we first
show in which way this optimization problem is related to the continuum-armed
bandit problem. Based on this relation, we propose a generic adaptive transfer
learning method consisting of a wrapper around some standard transfer learning
algorithm, and implementing a continuum-armed bandit algorithm.

We show that under some conditions, the regret of not having chosen from
the beginning the optimal value of the transfer rate can be efficiently bounded.
Experiments on a grid-world task validate our approach.

The paper is organized as follows. After some preliminaries, we introduce
the continuous bandit problem and relate it to the optimization of the transfer
rate. The following section introduces the generic transfer learner, which is then
studied in deep. Finally a set of experiments assesses both the robustness and
efficiency of our approach.
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2 Preliminaries

Reinforcement learning problems are typically formalized using Markov Decision
Processes (MDPs). An MDP M is a tuple 〈S,A, T, r, γ〉 where S is the set of all
states, A is the set of all actions, T is a state transition function T : S×A×S →
R, r is a reward function r : S × A→ R, and 0 ≤ γ < 1 is a discount factor on
rewards. From a state s under action a, the agent receives a stochastic reward
r, which has expectation r(s, a), and is transported to state s′ with probability
T (s, a, s′). A policy is a strategy for choosing actions. If it is also deterministic, a
policy can be represented by a function π : S → A. As in most transfer learning
settings, we assume that the learning process is divided into episodes : at the
beginning of an episode, the agent is placed on a starting state sampled from
a distribution D. The episode ends when the agent reaches a special absorbing
state (the goal), or when a time limit is reached.

For any policy π, let V π
M (s) denote the discounted value function for π in

M from state s. More formally, V π
M (s) � E [

∑∞
t=0 γ

trt], where r0, r1, . . . is the
reward sequence obtained by following policy π from state s. Also, let V π

M �
Es∼D [V π

M (s)]. To evaluate the quality of an action under a given policy, the Q-
value function Qπ(s, a) � r(s, a) + γEs′∼T (s,a,.) [V

π(s′)] is generally used (Here,
as there are no ambiguity, M has been omitted). The optimal policy π∗ is the
policy maximizing the value function. The goal of any reinforcement learning
algorithm is to find a policy such that the agent’s performance approaches that
of π∗.

To speed up learning on a new task, transfer learners exploit knowledge pre-
viously learned on a past task. Here, we will assume as in [1] that the past task
and the current task have the same state-action space. We study the case where
the available knowledge has the form of a policy π̄ learned on the past task.

3 Transfer Learners with Static Transfer Rates

In this section, we will present a state-of-the-art transfer learner, namely PPR
(Probabilistic Policy Reuse, as well as PPR-decay, a variation on PPR [1]). These
algorithms exhibit a parameter which controls the balance between the ongoing
learned policy and π̄. As in many transfer methods, PPR have been directly
built on a standard Q-learner, and thus share the same structure. The only
difference with a Q-learner lies in the action selection method (referred here as
ChooseAction).

Let us see how PPR works. At each step, the PPR algorithm randomly chooses
to follow the policy ε-greedy(π) or to follow π̄, as depicted in Table 1. Here, π refers
to the policy induced by the Q-values (π(s) = argmaxaQt(s, a)) and ε-greedy(π)
refers to the policy obtained by choosing π with probability 1 − ε, or a random
action with probability ε. Fernandez et al. proposed arbitrarily to initialize ϕ to
one at the beginning of each episode, and to decrease its influence at each step t
by 0, 95t. PPR-decay mimics a Q-learner when ϕ = 0, but does not follow π̄ at
each step when ϕ = 1 because of the decay. Therefore, we introduce a variation on
PPR-decay, namely PPR, in which ϕ is not decreased during the episode.
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Table 1. Examples of ChooseAction(st, π̄, ϕ) functions in static transfer learners

ChooseAction(st, π̄, ϕ) Name of transfer algorithm

at =

{
π̄(st) w. proba.ϕ× 0, 95t

ε-greedy(π) otherwise

PPR-decay [1]
(PPR with exponential decay)

at =

{
π̄(st) with proba.ϕ

ε-greedy(π) with proba 1− ϕ

PPR
(Probabilistic Policy Reuse)

Clearly, ϕ can be seen here as a parameter controling the transfer rate. It is not
hard to see that this rate should be dependent on the similarity between the past
and the current task. Computing such a similarity is difficult in the general case,
and optimizing ϕ can be done during learning. In this section, ϕ was assumed to
be a constant set before the learning process. In the next sections, we will show
how ϕ can be optimized dynamically, and ajusted after each episode.

4 Optimization of the Transfer Rate as a Stochastic
Continuum-Armed Bandit Problem

Consider a transfer method such as one of those discussed above, in which a
parameter ϕ ∈ [0, 1] controls the transfer rate, in such a way that if ϕ = 0, the
policy π̄ is not being used, and if ϕ = 1, the agent follows exclusively π̄. Let us
consider the problem of optimizing ϕ, in order to improve the speed up learning.
For the sake of simplicity, adjustment of ϕ will occur only after each episode,
thus exploiting the sequence of rewards gathered during the last episode.

Consider a learning episode starting at time t. Before the episode begins, the
agent has to choose a value of ϕ, which ideally would yield the highest expected
gain Vt(ϕ) � E [rt + γrt+1 + . . . | ϕ]. At the end of the episode, the agent can
compute

∑
k rt+kγ

k which is an unbiased estimator of Vt(ϕ). Choosing the best
value for ϕ is challenging, as gradient methods which require the knowledge of
∂Vt

∂ϕ might not be applicable. It turns out that this problem is a typical continuum
armed bandit problem.

The continuum armed bandit problem which belongs to the well known family
of multi-armed bandit problems, is a particularly appropriate setting for the
optimization of Vt(ϕ). In this setting, at each time step t, a learner chooses
a real number Xt ∈ [0, 1] and receives a reward depending on the sequence
X1 . . .Xt. The goal of the learner is to maximize the total sum of rewards, or to
minimize the regret as stated formally below:

Definition 1. (The continuum armed-bandit problem) Let P (. | x, t) be
an unknown distribution indexed by x ∈ [0, 1] and t ∈ {1 . . . n}. At each trial
t, the learner chooses Xt ∈ [0, 1] and receives return Yt randomly drawn from
P (. | Xt, t). Let bt(x) = E [Yt | Xt = x, t]. The agent’s goal is to minimize its
expected regret E [

∑
t bt(x

∗)−
∑

t Yt], given that x∗ = supx∈[0,1]

∑n
t=1 bt(x).
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This definition is a slight generalization of that found in [3]. Still in [3], Kleinberg
designs an algorithm called CAB1 solving this continuum armed bandit problem
with the following guaratees:

Corollary 2. If the function bt is L-lipschitz (i.e., | bt(x)− bt(x′) |≤ L | x−x′ |
for all x, x′ ∈ [0, 1]), then using CAB1 yields an expected regret bounded by
O(Ln

2
3 log

2
3 n).

In the next section, we will describe AdaTran, an algorithm using CAB1 as a
subroutine. Thus, corollary 2 will later be useful to derive a regret bound on
AdaTran.

5 AdaTran: A Generic Adaptive Transfer Framework

We now present a generic adaptive transfer learning algorithm, which can be
seen as a wrapper around a transfer learner, optimizing the transfer rate ϕ
using a stochastic adversarial continuum armed-bandit algorithm refered to as
UpdateContBandit. This leads to the AdaTran wrapper, a generic adaptive
transfer algorithm in which many transfer learners can be implemented. Note
that even though most transfer learners do not have such a parameter, they can
often be modified so as to make ϕ appear explicitly.

Algorithm 1. AdaTran
1: Init()
2: t← 0
3: ϕ ← ϕ0

4: for each episode h do
5: set the initial state s
6: while (end of episode not reached) do
7: at = ChooseAction(st, π̄, ϕ)
8: Take action at, observe rt+1, st+1

9: Learn(st, at, rt+1, st+1)
10: t← t+ 1
11: end while
12: ϕ ← UpdateContBandit(π̄, ϕ, 〈r1, r2, . . .〉)
13: end for

Depending of the function used for ChooseAction (e.g. one of Table 1), Learn
(e.g. a TD update of a model-based learning step) and UpdateContBandit (e.g.
CAB1), the AdaTran will lead to different types of transfer learners. In partic-
ular, the experimental section will evaluate AdaTran(PPR) and AdaTran(PPR-
decay) Let us now show how the bound on the regret of CAB1 can be applied.
Let ti be the time at which the ith episode begins. Suppose Vt(ϕ) satisfies the
L-lipschitz condition. Let ϕt refer to the parameter chosen by CAB1 at time t.
Then on the n first episodes, we have

∑n
i=1 Vti(ϕ

∗) − VtI (ϕt) ≤ O(Ln
2
3 log

2
3 n)

iff the following assumption holds:
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Assumption 3. At any given time step t, the value functions Vt(ϕ) does not
depend on previous actions in the MDP.

Equivalently, we might assume that the sequence of functions Vt(ϕ) is fixed in
advance. Note that this type of assumption has been widely discussed in the
multi-armed bandit setting. Also, there has been some attempts to overcome
this assumption in the bandit literature, in particular [6]. These attempts usu-
ally rely on non standard definition of the regret and/or on strong assumptions
on the type of non-stationarity of the environment, which does not suit our set-
ting. Nevertheless, in our case, the assumption 3 seems reasonable since in most
situations, choosing a sub-optimal exploration strategy for a given episode will
not jeopardize the whole learning process.

We have seen in this section that optimizing ϕ with bounded regret may be
possible, given that Vt(ϕ) satisfies the Lipschitz condition. This remains to be
proven. We will show this in detail for AdaTran(PPR).

6 Properties of the Value Function

In order to bound the regret of AdaTran, we now need to study the properties
of the value function V (ϕ) (the parameter t will be omitted). We will conduct
this analysis in detail for AdaTran(PPR).

First, we will show that without any restrictions, V (ϕ) cannot be optimized
in the worst case. This is due to the fact that the function V (ϕ) can be made
arbitrarily close to any continuous function. To show this, we must first recall
what Bernstein polynomials are. Without loss of generality, we will assume that
the probability distribution D of starting states is equal to one on a given state
s0 and is null elsewhere.

Definition 4. For any function f on [0, 1], the associated Bernstein polynomial
is defined as follows: Bn(f, x) �

∑n
k=0 f(

k
n )bk,n(x), where bk,n(x) �

(
n
k

)
xk(1 −

x)n−k .

Unfortunately, the set of all possible function V (ϕ) includes the set of all Bern-
stein polynomials:

Lemma 5. Let f be any continuous function of [0, 1] and d ∈ N. Then there
exist an MDP such that V (ϕ) = Bd(f, ϕ)

Proof. Let Ad be a deterministic MDP having the structure of a binary tree of
depth d. Let the root state be s0. At each state (node in the tree), Ad allows two
actions left and right leading respectively to the left and right child states. Let
the rewards of all state-actions be null, except those between depth d − 1 and d.
Let us allocate rewards to the 2d states-actions pairs at depth d− 1 of the tree in
the following way: if a state-action pair can be reached from the root by l steps
left and d − l steps right (in any order), then its reward must be γ1−d × f( l

d).
Suppose on each state s, the standard policy is π(s) = right, whereas the transfer
policy is π̄(s) = left. Thus, a learner exploring this tree and starting from the
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root node would walk down the tree, choosing randomly left and right branches
with probability ϕ (respectively 1 − ϕ), and collecting a reward γ1−d × f( i

d) at
the bottom of the tree. Let V Ad

(ϕ) = E [r1 + γr2 + . . .] be the value of the root
node, parameterized by ϕ. Clearly, the probability that an agent chooses l times
the left action and d−l times the right action in a given order is ϕl(1−ϕ)d−l. Thus,
the probability of choosing l times left in any order is bl,d(ϕ) =

(
d
l

)
ϕl(1− ϕ)d−l .

Therefore, we have V Ad

(ϕ) = 1
γd−1

∑d
l=0 γ

1−d × f( l
d)× bl,d(ϕ).

Recall now that the Weierstrass theorem states that for any continuous function
f on [0, 1], Bn(f, x) converges uniformly to f(x) as n → ∞. An immediate
corollary is:

Corollary 6. For any continuous function f on [0, 1], for any ε > 0, there exists
a deterministic MDP such that |V (ϕ)− f(ϕ)| < ε for all ϕ.

This has important implications in our setting: this corollary tells us that V (ϕ)
can be arbitrarily close to any continuous function, provided the appropriate
MDP. Thus, optimizing V (ϕ) without further restrictions is hopeless.

However, by upper-bounding the rewards, we will now show that V (ϕ) finally
satisfies the lipschitz condition. Let us first bound the derivative of Bernstein
polynomials.

Lemma 7. Let f be a real-valued function on {0, 1
n ,

2
n , . . . , 1}. Then we have

supx∈[0,1] | d
dxBn(f, x) |≤ 2n sup | f(x) |.

Due to space constraints, the proof of this technical lemma is omitted.
Applying this lemma on the tree MDPs used in lemma 5, we get the bound

| d
dxV

Ad(ϕ) |≤ 2dγd−1rmax, given that all rewards are bounded by rmax. Finally,
we generalize this result (again, the proof is omitted).

Proposition 8 For any MDP M in which rewards are bounded by rmax , any
policies π and π̄, and a starting state s0, we have

∣∣∣ d
dϕV (ϕ)

∣∣∣ ≤ 2rmax

(1−γ)2 .

Finally, combining the above result with the regret bound of corollary 2, we can
now show the following:

Corollary 9. The cumulative regret per episode of AdaTran(PPR) is

O

(
rmaxh

2
3 log

2
3 h

(1−γ)2

)
, where h is the episode number.

Again, note that the regret does not depend on the number of states, so the
MDP might be huge here.

7 Experiments

In this section, we evaluate AdaTran on a standard benchmark for transfer learn-
ing: the grid-world problem [1,2]. The reason behind our choice of this learning
task lies in its simplicity. In this learning task, an agent moves in a 25× 25 two-
dimensional maze. Each cell of this grid-world is a state and it may be surrounded
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by zero to four walls. At each time step, the agent can choose to move from its
current position to one of the reachable contiguous north/east/west/south cell.
If a wall lies in between, the action fails. Otherwise, the move succeeds with
probability 90%, and with probability 10%, the agent is randomly placed on one
of the reachable cells contiguous to the current cell. At the beginning of each
episode, the agent is randomly and uniformly placed on the maze. As the agent
reaches the goal state (the exit of the maze), it is given a reward of 1, and the
episode is ended. All other rewards are null and the discount factor is arbitrarily
set to γ = 0, 95.

The goal of the current task (the exit) is to reach the bottom right corner. We
generated two other tasks based on the exact same maze but different goals. The
first task refered to as the "similar task" has its goal located two cells away from
the bottom right corner, whereas the second task, refered to as the "dissimilar
task", has its goal located on the opposite corner (upper left corner).

The optimal policies computed on each of these two tasks will serve as transfer
knowledge to solve the current task. The goals of the "similar task" and the
current task are very close to each other. Thus, transfer between both might be
highly valuable. On the opposite, the goals of the "dissimilar task" and that of
the current task are very dissimilar to one another, and transfer is likely to be
less valuable.

AdaTran is compared to other algorithms on figure 1 and 2. Each of these
curves have been averaged over 100 runs. The x-axis represents the episodes,
and the y-axis is the average episode length, given that episode are limited to
10000 steps.

Fig. 1. Similar transfer tasks Fig. 2. Dissimilar transfer tasks

When transferring from the "similar task", PPR performs extremely well,
and AdaTran performs much better than Q-learning, as it quickly finds that
tasks are similar, but a bit worse that PPR as expected. When transferring
from the "dissimilar task", PPR with various levels of ϕ perform the worse: all
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episodes reach 10000 steps in average, and the exit of the maze is nearly never
found. The best learner here is Q-learning, which ignores the transfer policy. In
between both lies AdaTran, which quickly detects that the transfer policy should
not be trusted.

Clearly, AdaTran is shown to be robust to dissimilar tasks unlike most other
transfer methods, and it is shown to transfer successfully a high amount of
knowledge on similar tasks.

8 Conclusion

In this paper, we have presented a new framework for explicitly optimizing
the transfer rate in reinforcement learning. We have shown how this frame-
work could be applied on a well known transfer learner to make the transfer rate
auto-adaptable, namely the PPR method. Moreover, by bounding the maximum
reward, we showed that the average regret converged towards zero.
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Abstract. Going beyond the traditional text classification, involving a
few tens of classes, there has been a surge of interest in automatic doc-
ument categorization in large taxonomies where the number of classes
range from hundreds of thousands to millions. Due to the complex na-
ture of the learning problem posed in such scenarios, one needs to adapt
the conventional classification schemes to suit this domain. This pa-
per presents a novel approach for classifier selection in large hierarchies,
which is based on exploiting training data heterogeneity across the hier-
archy. We also present a meta-learning framework for further flexibility
in classifier selection. The experimental results demonstrate the appli-
cability of our approach, which achieves accuracy comparable to the
state-of-the-art and is also significantly faster for prediction.

Keywords: Hierarchical Classification, Classifier Selection, Meta-
learning.

1 Introduction

Many recent practical applications of text classification have the number of tar-
get classes as an added dimension to the complexity of the underlying learning
problem. Directory Mozilla and Wikipedia exemplify this research challenge in
the domain of text classification, where the number of target classes range from
hundreds of thousands to over a million. Due to the enormous effort involved
in manually classifying unseen data in such scenarios, automatic classification
has assumed significant importance. For large scale classification, an underlying
semantic structure, a rooted tree for instance, typically exists among the classes.
The taxonomy structure serves as useful prior information aimed at improv-
ing classification accuracy and speed. If no semantic structure exists among the
classes or is ignored if it exists, one needs to evaluate O(K) one-vs-all classifiers,
one for each of theK classes. This technique, also referred to as flat classification,
consequently leads to a significant slowdown in prediction performance.

In hierarchical classification, major challenges in obtaining higher classifica-
tion accuracy include: (i) error propagation, since the overall classification mech-
anism cannot recover from classification error at top levels of the hierarchy, (ii)
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data heterogeneity across levels in the hierarchy, and (iii) class size imbalance
between positive and negative examples for one-vs-all classification. Another im-
portant aspect for large scale hierarchical classification, which is also the main
focus of this work, is prediction speed. This factor has largely been ignored while
designing classification mechanisms in this domain, but is crucial for acceptable
behavior in many applications, such as large scale Question-Answering systems.

2 Related Work and Our Contributions

Various approaches have been proposed for hierarchical classification, which can
be broadly divided into one of the two techniques: (i) Big-bang approaches,
which train a single classifier for the entire hierarchy and hence are more suited
for relatively small-scale problems as in [3] where the number of classes are
limited to 1172, and (ii) Top-down approaches, in which the test document is
classified at the root and then iteratively following the most confident child class,
till leaf node is reached. In [5], an SVM classifier is deployed at each node of
the hierarchy, which is relatively slow for training and testing. Deep classification
technique [9] is slightly better in terms of accuracy but suffers from the limitation
that it needs to train a new classifier for every test document. Refined Experts [2]
employs top-down SVM classifiers which are augmented with a bottom-up pass
using validation set to correct false negatives. Classifier selection for hierarchical
classification on a smaller scale in protein function prediction has been studied in
[8]. A related study, with focus on empirical trade-offs of large scale hierarchical
classification, has been explored in [1].

This work presents a classification technique which exploits the properties
of the data, such as feature to example ratio and data imbalance between the
target class and rest of the classes, in a large scale hierarchy. Based on such
properties, our algorithm performs automatic classifier selection by choosing
either an SVM or a Naive Bayes classifier at the classification nodes of the
hierarchy. Additionally, this work formulates and solves a meta-learning problem
for dynamic classifier selection. Section 4 presents in detail the criteria which
determine the choice of classifiers.

3 Problem Setup

In single-label multi-class hierarchical classification, the training set can be rep-
resented by S = {(x(i), y(i))}Ni=1. In the context of text classification, x(i) ∈ X
denotes the vector representation of document i in the input space X ⊆ Rd.
Assuming that there are K classes denoted by the set Y = {1 . . .K}, the label
y(i) ∈ Y represents the class associated with the instance x(i). The hierarchy
in the form of rooted tree is given by G = (V , E) where V ⊇ Y denotes the set
of nodes of G, and E denotes the set of edges with parent-to-child orientation.
The leaves of the tree which usually forms the set of target classes is given by
Y = {u ∈ V : �v ∈ V , (u, v) ∈ E}.
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In the above setup, given a new test instance x, the goal is to predict the
class ŷ. This is typically done by making a sequence of predictions iteratively in
a top-down fashion starting from the root until a leaf node is reached. At each
non-leaf node v ∈ V , a score fc(x) ∈ R is computed for each child c and the
child ĉ with the maximum score is predicted i.e. ĉ = argmax

c:(v,c)∈E
fc(x).

In addition to requiring accurate predictions, we also focus on prediction speed,
two seemingly contradicting design requirements for a machine learning algo-
rithm. To address the above conflicting requirements of high prediction accuracy
and faster prediction and training time, we focus on Support Vector Machine
(SVM) and Naive Bayes (NB) classifiers as base classifiers. SVM classifier is
known to have better accuracy but is slower to train and deploy for prediction.
NB classifier, on the other hand, is faster for training and prediction but is on
the lower side of the accuracy spectrum. In the next section, we present condi-
tions in large hierarchies, which determine the selection of classifiers to achieve
better run-time performance without sacrificing accuracy.

4 Classifier Selection in LSHC

In this section, we present two approaches to classifier selection that exploit
the data heterogeneity in large scale hierarchical classification. The first one,
referred to as static approach 1, is based on using the relation between number
of features and number of training examples for the classification problem at a
given node in the hierarchy. The second approach to classifier selection is based
on solving a meta-learning problem which includes further meta-features such
as test instance size and class imbalance in one-vs-all classification.

4.1 Static Approach to Classifier Selection

For a multi-class classification problem at node v of the hierarchy, let dv denote
the dimensionality of the feature space and nv denote the number of training
documents for which the root-to-leaf path goes through node v. Let their ratio
for node v in the hierarchy be denoted by rv, i.e. rv = dv

nv
.

As one traverses down from the root node towards the leaves, in large scale
hierarchies such as DMOZ, rv varies over a wide range of values. Due to large
number of classes corresponding to the leaf nodes, the number of training docu-
ments (nv) decrease much faster than the number of features (dv) for classifica-
tion nodes on root to leaf path. As a result, this ratio is much higher at hierarchy
levels close to the root as compared to its value for nodes at lower levels. Figure
1(a) shows the variation of average value of rv for DMOZ dataset when plotted
against the hierarchy levels. Each piece-wise linear curve in the plot corresponds
to the class size range of the multi-class problem. Two important properties of
the dataset, one of which follows from Figure 1(a), are:

1 Called Adaptive Classifier Selection in our previous work [1].
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Fig. 1. 1(a)Variation in ratio of feature set size to training sample size with the hier-
archy level, and 1(b) Difference of SVM and NB accuracy, (SVM - NB), in % for each
hierarchy level. Level 1 corresponds to the root and level 5 to level leading to leaves.

1. The ratio rv increases towards the leaves;
2. Almost 97% of the multi-class classification problems involve 2-15 classes.

The above observations imply that in order to achieve the goal of high accuracy
and faster run-time, one needs to exploit the wide variation in training data
properties. In this context, we next present the relevant results from statistical
learning theory which deal with accuracy measure of discriminative classifiers
(such as SVM) and generative classifiers (such as NB).

Let fG and fD represent the classifiers learned by fitting generative and
discriminative model respectively and fG,∞ and fD,∞ be their corresponding
asymptotic versions, i.e. functions learned when the sample size approaches in-
finity. Let ε(.) be the function representing the generalization error of its argu-
ment. For a classification problem in d-dimensional feature space with n training
examples, these results can be summarized as follows [6]:

1. ε(fD,∞) ≤ ε(fG,∞);
2. ε(fG) ≤ ε(fG,∞) + δ0 if n = Ω(ln(d));
3. ε(fD) ≤ ε(fD,∞) + δ′0 if n = Ω(d);

for arbitrary but fixed δ, δ′0 > 0; Ω(.) denotes the big Omega notation.

Informally, the above inequalities can be interpreted as follows:

1. The generalization performance of discriminative classifiers is better than
that of generative classifiers under asymptotic regime of operation.

2. The number of training examples required for discriminative classifier to
reach its asymptotic performance is at least linear in the number of features.

3. The number of training examples required for generative classifier to reach
its asymptotic performance is at least logarithmic in the number of features.

The above results show that even though SVM is a better classifier for nodes
close to the root, NB can be used for nodes in the lower levels of the hierarchy
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due to its faster training and prediction time. Figure 1(b) confirms this intuition
further, showing that NB accuracy is much closer to that of SVM for lower levels
(4 and 5) than at higher levels (1 and 2). Consistently lower accuracy of NB for
all levels in the hierarchy can be attributed to the argument indexed 1 above.

In order to allow further flexibility in classifier selection and instead of fixing
NB classifier for the entire lower levels, we can use a threshold value τv for ratio
rv to choose the classifier at node v, such that

Classifier at node v =

{
Naive Bayes if rv ≥ τv
SVM otherwise

The thresholding strategy, even though a simplification of the three arguments
presented above, works well in practice, as shown in the experimental section 6.

4.2 Adaptive Hierarchical Classifier Selection

Using the classifier selection strategy introduced in the previous section, the choice
of a classifier at every node in the hierarchy becomes fixed for all test instances.
Further adaptivity can be achieved by enabling classifier selection for each test in-
stance separately. The rationale of incorporating an adaptive selectionmechanism
is that classification models have different levels of expertise in different parts of
the feature space. For example, for a specific node in the hierarchy, a NB classifier
may be complementary to an SVM classifier. Thus, it would be desirable to select
NB in some test cases targeting to both predictive accuracy and computational
performance. The proposed method for hierarchical classifier selection is based on
the concept of meta-learning. One of the objectives of meta-learning methods is to
produce general and robust learning algorithms [7].

In the context of hierarchical classification, the purpose of the meta-learning
framework is to select the best classifier for each node in the hierarchy as we tra-
verse it in a top-down manner. In order to do so, we need to define an appropriate

meta-learning problem. Let SV = {(x(i)
V , y

(i)
V )}NV

i=1 be a validation set containing
examples of the initial classification problem and Ca, Cb be two classifiers that
have been trained for each multi-class problem in the hierarchy. For every ex-
ample in the validation set, we create meta-learning examples by traversing the
hierarchy top-down. For a specific node v and a validation example i, a meta-

learning example is defined by the tuple: x
(i,v)
m =< γv, rv, ubrv, szi > such that

the elements of the tuple are the meta-features of the meta-learning problem:

γv : number of children of node v.
rv : ratio of the number of features to number of training examples for node

v.
ubrv : the unbalanced ratio of the classification problem at node v, calculated as

#examples of minority class
#examples of majority class

szi : the size of instance i. Different classification algorithms behave differently
according to the size of the instance and thus it would be desirable to adapt
to this phenomenon.
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Next, we need to define the label space of the meta-learning problem. Different
learning problems can be defined according to the characteristics of the classi-
fiers (prediction accuracy, training and testing time) and the objectives of the
hierarchical classification problem (accuracy, computational cost). For example,
if we assume that Ca ≺ Cb in terms of prediction accuracy and Ca '' Cb in
terms of computational cost, where ≺ denotes the natural preference relation,
then we set the following learning problem:

y(i,v)m =

{
Ca if Ca is correct
Cb otherwise

In this problem the objective is to identify regions where Ca complements Cb

while reducing the computational cost in cases where both classifiers have good
or bad prediction accuracy. Note that the definition of the meta-learning prob-
lem is flexible in order to allow different instantiations by considering different
and multiple classification schemes. For example, one may consider multiple clas-
sifiers and form a multi-label problem where more than one classifier could be
correct for an instance. In this case the method could be coupled with ensemble
techniques for acquiring a decision.

5 Experimental Setup

For the experiments we use the publicly available DMOZ data set from LSHTC2
2. The dataset, after preprocessing by stemming and stopword removal, appears
in the LibSVM format. Table 1 presents the important properties of the dataset.
Since the average number of labels per document is 1.02, we consider it as single-
label classification for our purpose. We use Liblinear [4] to train the models
for L2-regularized L2-loss support vector classification. The models are trained
for all 7,574 non-leaf nodes for One-Vs-All classification. For NB classifier, we
implement the standard multinomial NB using Laplace smoothing.

Table 1. Training Data Properties

Property Name Value

Total number of training examples 394,756
Size of the Overall Feature Space 594,158
Number of Target Classes (|Y|) 27,875
Number of Nodes in the Hierarchy (|V|) 35,449
Total number of multi-class classifiers 7,574

For producing the meta-learning training set we use a validation set (separate
from the training set for building the classifiers) containing 3000 examples. As

2 http://lshtc.iit.demokritos.gr

http://lshtc.iit.demokritos.gr
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meta-learner, we use a decision tree based on C4.5 algorithm as it can provide
interpretable rules. The Weka machine learning library was used in this case
setting the confidence factor to 0.25, with reduced error pruning and without
Laplace smoothing, using 10-fold cross-validation.

6 Results and Analysis

Table 2 shows the different classification mechanisms and the metrics of interest
for the overall classifier, which include, (i) SVM classifier for the entire hierarchy
(SVM-TD), (ii) Static classifier selection strategy based on threshold value (SCS-
τ), (iii) adaptive hierarchical classifier selection method (AH-CS) for Ca =NB
and Cb=SVM, and (iv) NB classifier for the entire hierarchy (NB-TD). We first
notice that the best performing algorithm in terms of accuracy is AH-CS with
a slight difference over SVM-TD, while the gain in prediction speed is about 5
times. Note that in the case of AH-CS the training time of the models is the
sum of the training times of SVM-TD and NB-TD as we need to retain all the
models due to the instance-based nature of the method.

Table 2. Trade-off between Prediction Accuracy in %, Total Training for entire dataset
in hours, and Average Test Time per Instance in seconds

Method Accuracy (%) Tr. Time (hours) Test Time (secs)

SVM-TD 35.58 35 20
SCS-τ , τ = 60 35.19 22 12
SCS-τ , τ = 30 34.68 12 5
AH-CS 35.66 35.25 4
NB-TD 22.22 0.25 0.5

AH-CS selected 45.58% times NB models during the testing procedure. To
better understand the results of the proposed method we consider the contin-
gency matrix of the two classifiers for each level of the hierarchy. Noticeably, the
NB classifier corrects the errors of SVM in 6.8%, 6.4%, 6.6% and 6.7% of the
examples for the first 4 levels respectively. This shows that being able to identify
these cases can lead us to better performance both in accuracy and speed. We
also calculated the κ-statistic for each level which shows how diverse the clas-
sifiers are, getting 0.42, 0.45, 0.44 and 0.45 for the 4 levels respectively. κ = 1
means that the two classifiers are identical while κ = 0 indicates independent
classifiers. The results show that the classifiers are diverse across the hierarchy
and supports the rationale of using different classifiers for different cases. Note
that the achieved performance of our method is comparable to the best partic-
ipant (38.8%) in LSHTC for the DMOZ track. However, the objective of our
work does not coincide with the participants’ in the challenge since their major
focus is on accuracy related metrics. As a result, some of them may employ some
pre-processing steps to boost accuracy.
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From rows 1 and 3 of table 2, the accuracy of the hierarchical classifier by
using static classifier selection is comparable to top-down SVM, while being four
times faster in prediction and three times faster to train. SCS-τ was computed
based on a uniform threshold value of τv = 60 and τv = 30, ∀v ∈ V . Increasing
the threshold value selects more SVM classifiers, leading to better accuracy but
slower training and test time, while decreasing it would have the opposite effect.

The gain in speed-up for test time is achieved as a result of more compact
models built by NB as compared to SVM from same the training data. All
NB models can be loaded in the physical memory for predictions. For SVM, the
models for only the top two levels can be loaded in physical memory.

7 Conclusions and Future Work

We presented a static and an adaptive classifier combination technique to build
large scale hierarchical classification systems. As a result, we not only achieve
accuracy comparable to state-of-the-art but also reduce the prediction time sig-
nificantly compared to the top-down SVM classifier. Further work includes the
consideration of more complex topologies such as directed acyclic graphs and
also allowing multiple labels.

Acknowledgement. This work was supported by the French National Research
Agency (ANR) as part of the project Class-Y (ANR-10-BLAN-02).
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Abstract. Despite the fact that Dynamic Bayesian Network models
have become a popular modelling platform to many researchers in re-
cent years, not many have ventured into the realms of data anomaly and
its implications on DBN models. An abnormal change in the value of a
hidden state of a DBN will cause a ripple-like effect on all descendent
states in current and consecutive slices. Such a change could affect the
outcomes expected of such models. In this paper we propose a method
that will detect anomalous data of past states using a trained network
and data of the current network slice. We will build a model of pilot ac-
tions during a flight, this model is trained using simulator data of similar
flights. Then our algorithm is implemented to detect pilot errors in the
past given only current actions and instruments data.

Keywords: Anomaly Detection, Dynamic Bayesian Networks, Intelli-
gent Systems, Machine Learning.

1 Introduction

Data anomalies can occur due to many different reasons, it can be due to a sensor
reading error, or a communication error while data is being transmitted through
a network, it can be a new type of a network attack which has not been encoun-
tered before, or it can simply be due to unexpected and rare system behaviour.
The list goes on but in all cases data anomalies share the property of being a
type of data that is deviated away from normal data patterns. Anomaly Detec-
tion is a very helpful instrument wherever it is applied, banks detect suspicious
invalid transactions through the use of anomaly detection, it helps maintain a
good level of Quality of Service in network communications, or detect a fail-
ing components of a mechanical system. Anomaly detection is useful in endless
scenarios, and that is why it has been implemented and investigated in many
ways, one of which is through the use of probabilistic graphical models. Many
researchers have taken different approaches to solve the anomaly detection prob-
lem, but most of these approaches belong to three main streams used to solve
the problem of data anomaly detection as shown by [1, 2], we list these below:

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 620–628, 2012.
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An Efficient Algorithm for Anomaly Detection

in a Flight System
Using Dynamic Bayesian Networks
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• Unsupervised Approach: Works by detecting anomalies without having
any prior information about them.

• Supervised Approach: Works by modelling both anomalous data and nor-
mal data, through manually specifying which data is considered anomalous
and which is normal.

• Semi-supervised Approach: Works by modelling normal data only, and
then uses the modelled data in the algorithm that detects anomalous data.

Not many researchers have Dynamic Bayesian Network models as basis for their
approach, in [3] researchers have developed two machine learning methods a cou-
pled and uncoupled DBN Anomaly Detector which aim to detect erroneous data
in two different windspeeds data streams in real time. These methods can work
on single or multiple data streams in real time. And in [4] researchers suggested
an anomaly detection algorithm based on the use of a new implementation of
the Dirichlet process precision parameter, outlier detection is done by calculat-
ing a maximum a posteriori (MAP) of the data partition, where observations
forming small or singleton clusters are deemed as anomalies. Researchers in [5]
have used a Bayesian Network to model the outliers as an ”unlikely events under
the current favored theory of the domain”, their approach is based on using a
Bayesian network modelling the background knowledge coupled with two rules to
detect the outliers, their approach not only focuses on detecting outliers but also
on explaining why these data are considered outliers. Researchers in [6] use an
unsupervised approach towards detecting fraud operations in a stock exchange
market, they use Peer Group Analysis (PGA) technique which is concerned with
characterizing the expected pattern of behaviour around the targeted time series
financial sequence in terms of the behaviour of similar objects and then detect
outliers through the detection of difference in evolution of the actual behaviour
and expected behaviour.

When using probabilistic models such as Dynamic Bayesian Networks to
model a certain environment or a system, modellers usually work with large
amounts of data, and that is due to the fact that the main reason behind prob-
abilistic modelling is to extract useful information about the environment from
its data, which otherwise cannot be easily extracted or interpreted, not even by
experts. And as we know wherever there is manipulation of large amounts of
data there are bound to be data anomalies which can have damaging effects on
the processes manipulating this data which could lead to erroneous outcome.
And these data anomalies can affect the information that is gathered from the
model greatly, and this is why in this paper we are focusing on the detection
of data anomalies that occur while working with Dynamic Bayesian Networks
which will be denoted from here on as DBN.

2 Dynamic Bayesian Network Model

A Dynamic Bayesian Network is the extension of Bayesian Networks to model
probability distributions of sets of random variables over time [7]. Bayesian Net-
work on the other hand are a type of probabilistic models that are based on
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Fig. 1. A Simplified DBN Model for Pilot Actions in a Flight System

directed acyclic graphs (DAGs) [8], the nodes in this model represent proposi-
tional variables of interest and the links between them represent the dependencies
among these variables [8], and these dependencies are quantified by conditional
probabilities of each node given its parents in the network. Nodes in our DBN
model Zk

t are divided into two sets where t represents the slice number which
indicates the time variable, and k is the number of nodes in each slice. The
first set contains the hidden state nodes Xn

t = {X1
t , X

2
t , X

3
t , ..., X

n
t }, where n

represents the number of hidden states in each slice. Hidden states represent
immeasurable variables in our model, and these are usually the variables that
we aim to gather information about. And the second set is the set of observable
nodes Y m

t = {Y 1
t , Y

2
t , Y

3
t , ..., Y

m
t }, where m represents the number of observable

nodes in each slice. Observable nodes represent variables that can be measured
and are completely or partially observable. These are sometimes called evidence
nodes. Note that n+m = k in our model.

Each DBN slice contains n hidden variable nodes which represent pilot actions,
and k observable and measurable nodes which represent different simulation
variables, and these are all observable in our model. The connections between
model nodes are set according to actual relationships between the modelled
environment variables. And inter slice connections are restricted to hidden nodes.
As we mention this we should mention that with the DBN model we set a
prior probability for the first slice in the network P (X1), and we have a state-
transition function P (Xt|Xt−1), and an observation function P (Yt|Xt). Since
we are working with DBN we assume that the model is first-order Markov [7]
(i.e. P (Xt|X1:t−1) = P (Xt|Xt− 1) ), and that observations are conditionally
first Markov [7] (i.e. P (Yt|Yt−1, Xt) = P (Yt|Xt) ). So from the two previous
assumptions we conclude that inter slice relations are limited to hidden states,
observable states are only related to their parent states in the same slice.

Now that the model is complete we would like to explain how it is usually
used, after the model is built to model different variables in the environment
and their relationships, we train the model using the Expectation Maximization
algorithm, for the purpose of training we use a number of data sets which usually
contain data for all variables (hidden and observable), after training we apply
inference techniques to gather the information we need about hidden variables,
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these techniques [7] include filtering, prediction, classification, control, abduction
and smoothing. When performing inference a new data set is used, and this
data set contains environment data that we wish to gather information about
and this data set usually contains only observable nodes data, and here were
anomalies effect can be detected. Our anomaly detection algorithm works using
some inference techniques as basic steps to enable it detect data anomalies.

3 Anomaly Detection in a DBN

Anomaly detection is the process of detecting patterns in data that do not con-
form to the expected normal patterns. Anomalies are also referred to as outliers
which Hawkins [9] defines as “an observation that deviates so much from other
observations as to arouse suspicions that it was generated by a different mecha-
nism”. Our approach to anomaly detection is not based on the typical approach
which usually focuses on detecting anomalies in general within data of a given
model, instead we take another route. When anomalies occur during the predic-
tion or classification process they often have a ripple-like effect on the descendent
states in the same slice and consecutive slices. If the anomaly occurs in one slice,
its affect is spread to related states in the same slice and to consecutive slices,
albeit the effect is shortly lived and soon all values turn back to normal. So
the longer the anomaly occurs, the longer and bigger the effect is. In adaptable
online learning models if an anomaly continues to occur for a certain period of
time, the model will adapt to it and this anomaly will be then considered the
norm. During the inference of trained models new data is used, this data could
contain some anomalies when compared to the data that was used to train the
model. Data could be considered as an anomaly due to its value which does not
belong to the range of acceptable values of a given variable. Or it could have
a normal value, but it is not normal for this value to occur at that point of
time. The second type of anomalies could pass undetected by the experts, and
thus effecting descendent states, and if it continued to occur, it could lead to
unexpected values when inference is applied to the model. Our algorithm aims
to detect this type of data anomaly. During the inference phase, the model is
supplied with a data set containing some anomalies. The anomalies are of an ac-
ceptable value but do not occur at the expected time, their effect is propagated
to related states in the same and succeeding slices. We suppose that we are able
to detect these effects on other state/states Zt at slice t. So our assumption is
that we are processing slice t and that all states Zt of slice t are observable with
known state values. Our objective is to go back trough the slices until we can
identify in which states Zt−k an anomaly started to occur which have caused
the values of future states to be affected and changed. As we mentioned in the
previous section, our DBN model is first-order Markov, and observations are
conditionally first-order Markov, this leads to the conclusion that hidden states
has an affect only on observable states of the same slice and hidden states in
the next slice and are only affected by hidden states of the previous slice. We
aim to find the node/set of nodes X i

t−k in slice t− k -where k is unknown- that
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Fig. 2. Flow Chart of Anomaly Detection Algorithm

effectively caused a considerable change of value in state Zj
t in slice t in com-

parison with the data of the trained model.
As it is apparent from algorithm 1, the algorithm takes as input a state Zj

t

where an abnormal value is detected, and produces as output the state or set of
states X i

t−k that had an anomaly which caused this abnormal change of value.
At first the algorithm makes sure that the input state does not have any parents
in the same slice, if parents do exist this means that the state in concern is an
evidence state, then the parent/parents -hidden states- of this state is found. In
this case the DETECTANOMALY algorithm is re-implemented on the parent
node/nodes. The algorithm calculates the highest probability of any expected
value of state Zj

t at slice t given the trained model. Then this value is compared to
probability of the actual value of the state occurring, if there is a large difference
between these two values then this data is considered anomalous. Otherwise the
algorithm exits. Next step is to go back one slice and to compute the probability
of Zj

t occurring with its current values given all possible values for its parent state
and the trained model, this is calculated through the state transition function of
the DBN model. If there is a value that supports such transition then state Zj

t is
labelled an affected state, otherwise it is considered as an anomalous state. This
process is repeated for all parent states as long as the difference in probability
between probable and possible values is above the threshold. When this difference
drops below the threshold, the state in that slice is considered normal, and the
descendent state in next slice is considered as the first anomalous state in the
anomalous path.
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Algorithm 1. DetectAnomaly(Zj
t , Z

j
t .V alue)

Require: A State Zj
t with its Abnormal value.

Ensure: A State or Set of States Xi
t−k with Anomalous Data.

1: if ((Pa(Zj
t ))&&(Pa(Zj

t ) ∈ Slice(t))) then

2: foreach (Pa in Pa(Zj
t )) do

3: AnomalyList·Add(DetectAnomaly(Pa,Pa.V alue))

4: end for

5: return AnomalyList<>

6: end if

7: Zj
t .ProbableValue = ComputeMarginals(Zj

t , Yt)

8: if (((P (Zj
t ).ProbableValue)−P (Zj

t .Value)) >Threshold)&&((t− 1) >= 0)) then

9: Xi
t−1 = Pa(Zj

t ) ∈ Slice(t− 1)

10: foreach (Xi
t−1.PossibleValue in Xi

t−1.Values) do

11: Xi
t .ProbableValue = StateTransitionFunction(Xi

t−1, X
i
t−1.PossibleValue)

12: if (Xi
t .ProbableValue == Zj

t .Value) then

13: AnomalyEffect = true

14: TempStateList·Add({Xi
t−1, X

i
t−1.PossibleValue})

15: end if

16: end for

17: if (AnomalyEffect == true) then

18: foreach (State in TempStateList<>) do

19: TempAnomalyList·Add(DetectAnomaly(State,State.Value))

20: end for

21: if (TempAnomalyList �= null) then

22: AnomalyList·Add(TempAnomalyList<>)

23: end if

24: return AnomalyList<>

25: else

26: AnomalyList·Add(Zj
t )

27: end if

28: else

29: return null

30: end if

4 Experiment and Results

We started by building a DBN model based on a flight scenario, the flight is
routed between London Heathrow and East Midlands airports, the flight dura-
tion is 50 min on average. We have used MicrosoftR© Flight Simulator X as the
basis for our simulator, because it is supplied with an SDK which was used to
build our software, and another reason is that the simulator is very realistic and
accurate and it can give us over 1100 different data variables in high frame rates.
We have built our custom software that interacts with the simulator and records
all of the flight data online with the desired frame rates.
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For training purposes we have recorded data of 30 flights between the two des-
ignated airports, the flight direction is always the same. 24 of the recorded flights
were flown normally with small differences between them. While the remaining
6 flights had data anomalies occurring in them. These anomalies basically where
different than normal pilot actions, such as keeping landing gear lowered much
more than the usual time, or keeping Flaps at certain angle after takeoff, then we
programmed the simulator to cause an effect on the related variables when these
anomalies continued to occur, such as having a rough and bouncy landing when
landing gears were kept extended longer than they should, which resemble realis-
tic scenarios. The DBN model that we have built is a single layer DBN network,
which compromise of two types of nodes, Hidden nodes Xn

t which represent im-
measurable pilot actions which are annotated manually into the training data
sets, and observable nodes Y m

t which represent aircraft instrumentation data
recorded by our software. Due to the large number of available Sim variables, we
had to narrow down the numbers of variables. We have chosen variables which
are essential and related to our experiment (i.e. weather data, gps data, altitude
and speed data, landing gear data, flaps data, rudder data and data of all cockpit
switches that were used during the flight, etc...).

We train the DBN using the Expectation Maximization algorithm in [7], in
our training sets we have introduced three types of errors (Landing Gear error,
Flaps error, Excess Speed error), each one occurring twice, and the remaining
24 training sets there were no errors. Each one of the errors we have introduced
has its own effect. Our algorithm starts working on the slice where the effect
appears rather than the slice where the error begins.

In the testing phase we record 9 new data sets with the same types of errors
we have introduced, with each error type occurring in 3 different data sets. Note
that these data sets do not contain annotated pilot actions, therefore when the
algorithm begins data of the observable variables are fetched from the testing
data set, whilst data of unobservable variables are entered manually through an
annotation step done before running the algorithm.

We start by training the network on 4 training sets, 3 are of normal type and
1 containing an error (Landing Gear error), we run the algorithm on the first
of three (Landing Gear error) testing data sets. The algorithm detects 80.7% of
the anomaly list after first run, we increase the number of training sets to 9 sets,
8 of which are normal and 1 containing an error, the algorithm detects 82.6% of
the anomaly list. We continue adding normal training sets to the training step
and the results increase slightly until algorithm reaches 89.4% detection of the
complete anomaly list. We repeat the same process but using two different error
data sets rather than one. A surprising result was that the algorithm came out
with a low detection result (around 57%) when we ran 4 normal data sets with 2
error data sets, we found that the reason for this happing was that we have set a
very low value threshold and that the number of error data sets was considered
large compared to the number of normal data sets. We have fixed this through
increasing the threshold for big error to normal ratios and then increase the ratio
of normal to error training sets. After using all 24 normal training sets and 2
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Table 1. Error Testing Results

Learnt DS Lnd Gr Err (1-2) Flp err(1-2) exs spd err(1-2)

4 80.1%-82.7% 75.1%-77.7% 80.9%-84.6%
9 82.9%-84.9% 77.9%-79.9% 82.7%-86.4%
14 84.2%-86.4% 79.2%-82.6% 85.9%-88.8%
19 86.6%-88.5% 83.0%-84.5% 88.8%-91.2%
24 88.2%-90.8% 85.2%-87.3% 91.1%-93.6%
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Fig. 3. Landing Gear Error Results
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Fig. 6. Error Results Combined

error sets we have reached an anomaly list detection rate of 91.1%. Now we do
the same experiment again but on (Landing Gear error) testing data sets 2 and
3 separately. We get final results of 88.7% and 90.8% respectively. We find that
the combined accuracy for anomaly list detection with the Landing Gear error is
90.2%, which is considered a very good result. We repeat the same experiment
with the remaining two types of errors separately (Flaps error and Excess Speed
error) and we get a combined accuracy results of 88.7% and 92.3% respectively.
Therefore overall we get a anomaly detection combined accuracy rate of 90.5%
with a confidence range of ±1.8%.
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5 Conclusion

In this paper we focus on detecting data anomalies in a Dynamic Bayesian
Network model, we proposed a novel algorithm to detect data anomalies through
backtracking steps of its effect on descendent states until a data anomaly is
reached and detected, we have built a DBN model based on pilot actions and
instrument data of a flight scenario and then we have implemented our algorithm
which has shown robustness in detecting data anomalies that effect other states
in the model. Further work can concentrate on the distinction between anomaly
types and research its effect on other variables in the model.
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Abstract. A real time road sign detection and recognition system can provide 
an additional level of driver assistance leading to an improved safety to 
passengers, road users and other vehicles. Such Advanced Driver Assistance 
Systems (ADAS) can be used to alert a driver about the presence of a road sign 
by reducing the risky situation during distraction, fatigue and in the presence of 
poor driving conditions. This paper is divided into two parts: Detection and 
Recognition. The detection part includes a novel Combined Colour Model 
(CCM) for the accurate and robust road sign colour segmentation from video 
stream. It is complemented by a novel approach to road sign recognition which 
is based on Local Energy based Shape Histogram (LESH). Experimental results 
and a detailed analysis to prove the effectiveness of the proposed vision system 
are provided. An accuracy rate of above 97.5% is recorded.  

Keywords: Colour Segmentation, Detection, Recognition, CCM, LESH, SVM, 
ADAS. 

1 Introduction 

Road signs have meanings depending on their colours, shapes used and contents 
included within. Primarily, road sign colours are Red, Blue, Green, Brown, Yellow or 
White, which signify and categorize their importance, e.g. Red for obligatory signs 
and Blue for advisory signs. Therefore, colour plays an important initial role in a 
typical road sign detection task. Similarly, the global and local shape related features 
of a road sign can provide important clues in distinguishing one sign from another, i.e. 
in the recognition of the detected road signs. Due to varying lighting and weather 
conditions, segmentation of road signs using colour information and their recognition 
based on shape features; especially in outdoor images is a significantly challenging 
task. A detailed literature review carried out by the authors on automatic road sign 
detection and recognition revealed that even though a significant amount of research 
has been carried out in Road Sign Detection and Recognition (RSDR), none of the 
published work has either considered the use or all available colour representation 
schemes in colour based segmentation nor attempted to provide a detail comparison 
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as to how different colour spaces perform under changes of illumination and weather 
conditions. Further the possibility of use of Local Energy based Shape Histograms 
(LESH) has not been investigated before in the context of road sign recognition. This 
research is an attempt to bridge this research gap with the ultimate aim of 
recommending an efficient and robust colour model to be used in automatic road sign 
detection and an efficient invariant shape based features for recognition of road signs, 
under varying environmental conditions. For clarity of presentation this paper has 
been organized as follows: In addition to this section in which the research problem 
was introduced and its practical relevance was highlighted, Section-2 provides exiting 
State of the Art, Section-3 presents the proposed approach providing details about 
each operational stage. Section-4 provides the experimental results obtained and an 
analysis of the results leading to the conclusions that are provided in Section-5. 

2 State of the Art 

This section introduces existing literature in the application domain of the RSDR. The 
study of these approaches will conceptually compare the performance of the state of 
the art to the performance of the proposed approaches. This allows fair comparison, 
particularly when no standard dataset is available for researchers to carry out 
performance analysis. Road sign detection from an image or image sequence is the 
first key step of the RSDR. An extensive investigation of existing literature [1] , [2] 
and [3] has been made which reflects that using the properties of colour; shape or 
joint information carry out the detection step. Secondly road sign recognition is 
performed on the contents of the candidate road signs and is mostly dependent on an 
extensive shape analysis and classification. In addition, road sign tracking is adopted 
by some researchers to enhance the accuracy of the detection and recognition stages 
and to reduce the computational cost of having not to repeat the above processes on 
each video frames. A detailed taxonomy is provided in [1] shows varying ranges and 
combinations of the algorithms utilised by the RSDR systems in the literature. Colour 
based segmentation is achieved by using different colour models; Shape is also 
considered as an important feature of the road sign representation and Contents are 
recognised by utilizing various feature extraction techniques and classifiers. The next 
section aims to overcome previous research gaps in designing a robust road sign 
detection and recognition system that is capable of performing on video streams under 
wide variations of illumination and environmental conditions. 

3 Proposed Approach 

A number of key stages constitute the complete road sign detection and recognition 
system as shown below see Fig 1- “Road sign detection and Recognition Framework”. 



 A Novel Road Traffic Sign Detection and Recognition Approach 631 

 

Fig. 1. Road sign detection and Recognition Framework 

3.1 Pre- Processing 

In this stage each captured video frames from a video camera are partitioned 
horizontally at a ratio 7:3 (i.e. (7) top: (3) bottom) and the bottom third of the video 
frame can be ignored in the subsequent processing. This is based on the assumption 
that the camera is mounted at a view position of the car driver and the bottom third of 
the image will be mostly consisting of front bonnet of the car or road surface as seen 
through the windscreen by the car operator. 

 

Fig. 2. Colour classification based on CCM 
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3.2 CCM Based Detection 

The idea of CCM focuses on the merger of the properties of four distinct colour 
spaces in the presence of wider range of illumination variance which makes the 
detection task further robust. This enhances the colour segmentation accuracy of the 
road signs where single colour space based segmentation fails to extract the desired 
colour information. Fig. 2-“Colour classification based on CCM”, shows the block 
diagram of CCM which has been explained in this section. The model initiates with 
the retrieval of equivalent colour pixel values from four colour spaces i.e HSV, RGB, 
CIElab, and CYMK. The training images are the samples of road sign colours 
captured in varying illumination, weather and scaling conditions. In this model we 
have only obtained three distinct colour samples of road signs i.e. Red, Green and 
Blue. It is assumed that the training images are represented by RGB colour space. The 
gamma values are decoded prior to the transformation of these images to other three 
colour spaces i.e. HSV, CIElab and CYMK. The transformation of RGB images to the 
above mentioned colour spaces is detailed in [1]. The pixel information is obtained 
from each manually achieved training colour sample of road sign. Red, Green and 
Blue colour pixels are represented by 13 (3 components each from HSV, RGB and 
CIElab whereas 4 components of CYMK) components in total for each colour. The 13 
components vector representing one particular colour pixel from all colour spaces can 
be picked at any random order. This has to be noted that each component value of 
colour pixel were obtained manually from a sample colour of a road sign captured in 
various illumination conditions. Our experiments revealed that the use of a 13 
dimensional feature vector to represent a single colour pixel leads to an unacceptable 
level of computational cost in the classification. 

Table 1. Results of Search methods with selected components and Quantity 

Component Selector Selected Components Number of Components 

Best First H,R,B,a,b,C,M 7 

Exhaustive Search H,R,B,a,b,C,M 7 

Genetic Search H,R,B,a,b,C,M 7 

Greedy Stepwise H,A,b,C,M,K 6 

Random Search H,R,G,B,a,b,C,M 8 

Thus in order to reduce colour components set and the computational complexity 
in the subsequent stages or to reduce the chances of data over-fitting, component 
selectors of WEKA package is introduced. To obtain the optimum set of selected 
components combination, it is investigated that the use of five different popular 
search methods namely, Best First, Exhaustive Search, Genetic Search, Greedy 
Stepwise Search and Random Search. It was revealed that the set consisting of 7 
components, H, R, B, a, b, C and M (Hue, Red, Blue, a and b chroma components, 
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Cyan and Magenta respectively) were selected on an average to be the most 
appropriate components to represent a pixel colour value as shown in the Table 1. 
Thus the components set have been reduced from an original set of 13 components to 
7 components. This removes any redundancy present between components by 
disregarding components which are non-significant in data discrimination. The 
selected components are further analysed by using Principal Component Analysis 
(PCA). Each colour class i.e. Red, Green and Blue is converted into feature space in 
this analysis. This further helps in reducing the data dimensionality and redundancy. 
Table 2 shows the Eigen Vectors obtained against 7 components for each class 
respectively. The Eigen Vectors for Red Class are obtained from its 110 colour pixel 
instances. Similarly Eigen Vectors for Green and Blue Classes are obtained from their 
99 colour pixel instances respectively. The data transformation from component 
representation to feature space causes the dimensionality reduction. That is the 
components representing a particular colour pixel with 7 dimensions, are represented 
with 1 dimension in feature space. Each feature represents a colour pixel that carries a 
unique instance within its designated class. These features are later trained on SVM 
multiclass polynomial kernel for the classification of colour pixels from the input test 
image. The classified image represented in binary image format, where classified 
pixels are represented with white and non-classified are represented as black pixels. 
The next section explains about recognition of road signs which were detected with 
the method described in this section. 

Table 2. Eigen vectors for RED, BLUE and GREEN colours 

 

V1 V2 V3 V4 V5 V6 V7 V8 V9 

Red Colour Eigen Vectors  Blue Colour Eigen Vectors Green Colour Eigen Vectors 

H -0.0902 -0.0334 -0.7159 0.0406 0.4721 0.6379 0.0484 0.2146 0.7632 

R -0.4869 0.3552 0.1 -0.4559 0.1798 0.3904 -0.4763 0.2148 -0.3829 

B -0.5188 -0.2422 -0.1549 -0.3896 0.3487 -0.3967 -0.4358 0.3862 0.242 

A -0.0367 0.6121 -0.3614 0.2699 0.5755 0.0087 0.1893 0.5218 -0.3848 

B 0.2534 0.483 0.4061 -0.1774 -0.5296 0.47 -0.0877 -0.6323 -0.1382 

C 0.484 -0.3606 -0.0955 0.5222 -0.1066 -0.0809 0.5748 -0.0458 0.0672 

M 0.431 0.2757 -0.3856 0.5115 0.0098 0.2362 0.455 0.2908 -0.2015 

3.3 Recognition 

Once the classified binary image is obtained, it initiates the process of recognition and 
classification of the road sign contents. The recognition process comprises of the 
LESH [2], [5] features extraction of the road sign contents and training/testing of these 
features by employing SVM polynomial kernel. The candidate road signs, which are 
validated in the detection module, are further processed to obtain the valid road sign 
contents for feature extraction. The internal contents of road signs are normally 
represented as black and white colours. The white and black areas can be extracted by 
simple black and white region extraction using adaptive threshold. After obtaining the 
binary images, the connected components from the binary image are extracted this 
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removes the noisy objects (non-sign objects) at the same time. The image(s) are 
normalised to a square dimensional image of size 128×128 and at the same time 
converted to grey level image. It should be reminded that the image normalisation to a 
fixed dimensional size and its grey level conversion are the valid input requirements 
for LESH feature extraction. LESH features are obtained by computing the local 
energy along each filter orientation of image sub-region. The overall histogram 
represents the concatenated histograms, which are computed along each sub-region of 
the image. These extracted LESH features from different classes of road signs are 
trained and classified with the help of multiclass SVM polynomial kernel. 

4 Experimental Setup and Results 

This section provides experiments carried out on the video samples of miscellaneous 
road signs captured during varying lighting conditions. The resolution 640×480 pixels 
is used to capture testing video samples whereas 2592×1944 pixels resolution is used 
to capture images for training purposes. The hardware comprises of Canon IXUS80IS 
digital camera for image and video acquisition, Pentium 4 Dual Core 3.2 Ghz, and 4 
GB of RAM. The RSDR application is developed and tested by using Visual Studio 
.Net and signal and image processing toolboxes of MATLAB. 

Table 3 presents a set of miscellaneous road signs group (e.g. Advisory and 
Obligatory etc.)   i.e. ‘Round About’, ‘Stop’, ‘Slippery Road, ‘Speed 30’ and ‘Give 
way ’, and they are given class labels for this experiment as T1, T2, T3, T4 and T5 
respectively. The training of these road signs is performed on 40 image samples per 
class. The testing is performed on the video samples of road signs captured during 
poor weather conditions, partial occlusion and abnormal orientation. The confusion 
matrix of miscellaneous road signs is presented in Table 3. The ROC (Receiver 
Operating Characteristic) curve for tested miscellaneous road signs is presented in 
Fig.3.-“ROC curve of miscellaneous road signs”, where true positives are plotted against 
false positives. This has to be noted that the set of these miscellaneous signs have 
underperformed when tested under single colour space based segmentation and LESH 
based recognition [3]. 

Table 3. Confusion Matrix of tested miscellaneous road signs 

Road 
Signs 

True Labels Estimated Labels Totals 

 1 2 3 4 5 

 
T1 18 1 0 1 0 20 

 
T2 1 28 0 0 0 29 

 
T3 1 0 52 0 1 54 

 
T4 0 0 0 64 0 64 

 
T5 0 0 0 0 56 56 

 Totals 20 29 52 65 57 223 
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Fig. 3. ROC curve of miscellaneous road signs 

5 Conclusion  

In this paper we have presented a robust approach to real-time road sign detection. 
The algorithm utilizes a novel combined colour model for accurate detection of road 
sign from video stream which is proven to provide accurate results under significant 
variations of scene illumination and the presence of different ambient light source 
types. The combined colour model is the combination of properties of HSV, RGB, 
CIElab and CYMK colour spaces. The training process of this model initiates from 
obtaining the colour pixels information from the road signs; captured at various 
ambient levels. The equivalent colour pixel values are obtained for HSV, CIElab and 
CYMK colour spaces. The dominant components of these colour spaces are 
extracted with average results of popular search methods i.e. Exhaustive Search, 
Basic Search, Genetic Search, Greedy Stepwise and Random Search. The selected 
components representing a particular colour pixel are transformed to colour features 
by using PCA filter. The colour features are trained as three colour classes i.e. Red, 
Green and Blue using SVM multiclass classifier. The test image is classified with the 
help of colour classifier to extract the candidate sign for further analysis. The 
Recognition stage introduces the SVM classifier with the Local Energy based Shape 
Histogram (LESH) features. Overall accuracy figures of 97-99% have been reported. 
We are currently working on real time application of the algorithm within an in-car 
navigation system.  
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Abstract. Timetabling is a classical problem discussed extensively in the 
literature due to the widespread need for quality timetables. Most educational 
institutions still prepare their timetables manually, which is a highly time-
consuming process and subject to errors. Several approaches to solve this 
problem are also found in technical studies, which use stochastic search 
methods due to the problem’s complexity. The optimization strategies 
formulated and compared in this study are based on genetic algorithms and 
artificial immune systems. The proposed techniques provide quality solutions 
for the timetabling problem. 

Keywords: Genetic Algorithms, Artificial Immune Systems, Timetabling 
Problem, Systems Optimization. 

1 Introduction 

The generation of quality timetables is a critical factor in any educational institution. 
This is considered a complex problem because it involves several types of 
information, such as schedules, course subjects, teachers, students, etc., according to 
Pillay and Banzhaf [1]. Several search strategies have been applied to solve 
timetabling problems, whose constraints may vary from one educational institution to 
another [2]. 

Wang, Liu and Yu [3] state that the generation of timetabling must satisfy the 
constraints imposed by the institutions on which the problem is based. The more 
constraints the solution satisfies, the better it will be adapted to the problem. 

The timetabling optimization systems proposed here are systematic and automated 
procedures that generate tables containing all the subjects of a given course, organized 
by semester, and which also consider the available resources. 

The simulated results of two search and optimization methods were applied and 
compared in this study, i.e., genetic algorithms (GA) and artificial immune systems 
(AIS). GA and AIS are evolutionary algorithms inspired by biological metaphors. In 
this case, the GAs are based on Darwin’s theory of evolution, while the AISs are 
based on the natural immune system [5]. Decision support systems, which are 
responsible for automatically generating timetables, were developed based on GA and 
AIS, taking into account the most common constraints reported in the literature. 

This paper is divided into six sections as follows. Section 2 describes the genetic 
algorithms that were applied in this research and how they work. Section 3 discusses 
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artificial immune systems, highlighting the functions of the clonal selection algorithm 
also used in this study. Section 4 describes the timetabling problem, the algorithms 
that were developed, and the parameters that were used for their configurations. 
Section 5 describes the results of the applications developed here, and lastly, Section 
6 offers our conclusions and the main contributions of this work. 

2 Genetic Algorithms 

According to Goldberg, Korb and Deb [4], genetic algorithms are stochastic search 
techniques based on Darwinism and on concepts of nature genetics. Computational 
imitation and simulation of natural processes produces very interesting results. 

In any given population, individuals with superior genetic characteristics are more 
likely to survive and to produce increasingly fit individuals, while less fit individuals 
tend to disappear from the population. 

Given any random optimization problem, genetic algorithms search for a response 
based on a random set of solutions. Each of these solutions is called an individual or 
chromosome. An individual represents a complete solution to the problem in question. 
Thus, genetic algorithms favor the combination of the fittest individuals, or the most 
promising ones for the solution of a given problem, working with set of encoding 
parameters and not with their own parameters. 

During the evolutionary process, the population is evaluated as follows: each 
individual receives a fitness score, which indicates its ability to adapt to a particular 
environment. The natural selection process is simulated using the fittest individuals. 

Genetic operators are applied to selected individuals, thereby generating new 
individuals. New populations are generated until the stop condition is satisfied. A stop 
condition can be defined by specifying a maximum number of generations, or when a 
satisfactory solution to the problem has been reached. 

Additionally, genetic algorithms operate in parallel on a population of candidate 
solutions. Searches are made in different areas of the solution space, allocating an 
appropriate number of members to search in several regions. Thus, this technique has 
a greater chance of reaching the most promising areas of the search space because it 
works with a population of solutions rather than a single point. 

A chromosome has its own genotype, representing the encoding of the solution, 
and its phenotype, which represents a possible solution to the problem. Usually, 
chromosomes are lists of attributes or vectors, in which each attribute is known as a 
gene and its possible values are called alleles. 

Genetic algorithms belong to the class of probabilistic algorithms, but they are not 
purely random search methods, since they combine direct search and stochastic 
methods. 

Genetic algorithms have proved to be efficient in finding optimal (or satisfactory) 
solutions for a large class of optimization problems because, unlike traditional 
methods, they do not involve many constraints. Although this technique may seem 
simplistic in comparison to natural biological structures, it is sufficiently complex to 
provide robust adaptive search mechanisms. 
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3 Artificial Immune System 

Artificial immune systems are part of the research area inspired by natural systems, 
known as biologically inspired systems. The purpose of bio-inspired systems is to 
computationally model the mechanisms found in nature. Artificial immune systems 
belong to the class of bio-inspired algorithms based on the natural immune system. 

The natural immune system is responsible for protecting organisms from 
pathogenic agents. Throughout an individual’s life, his immune system adapts 
continually to recognize harmful agents and respond effectively when under an attack 
from those pathogens. This process of adaptation enables the individual to develop 
immune memory cells, which form the immune defense system. The ability of the 
immune system to adapt during its first exposure to an antigen, and to create specific 
antibodies to generate an immune response, serves as the basis for the theory of clonal 
selection. 

The Clonal Selection Algorithm (CLONALG) proposed by He, Hui and Lai [5] is 
based on the principle of clonal selection. The CLONALG involves the steps of 
initializing the population, the clonal expansion process, and variation of the 
population, as follows:  

• Random generation of the initial population of antibodies. Each antibody in the 
population represents a solution that is completely relevant to the problem in 
question; 

• Evaluation of the population by means of the objective function, which determines 
the affinity of each antibody;  

• Through the process of selection by affinity, the n best antibodies of the population 
will be chosen and subjected to clonal expansion. The process of clonal expansion 
consists of cloning the chosen antibodies and maturation of the clones in order to 
improve the solutions; 

• Each new antibody generated by clonal expansion will be evaluated and its affinity 
compared with the affinity of the original antibody. The antibody with the highest 
representativeness will then be inserted into the new population; 

• Finally, the diversity will be inserted into the population in order to prevent the 
algorithm from converging prematurely: the worst w antibodies will be replaced by 
new w antibodies; 

• The evaluation procedure, clonal selection, clonal expansion and insertion of 
genetic diversity are repeated until the predefined stop criterion is satisfied. 

The above described algorithm enables local searches by maturing the clones, as well 
as global searches by inserting diversity into the population. 

According to Castro and Von Zuben [6], the solution to the problem is obtained 
from solutions adapted during the evolutionary process of the CLONALG, which is 
inherent to the natural immune memory and is enhanced throughout an individual’s 
life. 
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4 Application of Bio-inspired Algorithms to Timetabling 
Problems 

According to Yue, Li and Xiao [7], the problem of timetabling optimization is 
considered a NP-complete problem due to its mathematical complexity. Thus, it 
requires the application of non-deterministic and stochastic search methods. 

The search optimization methods used in this work to solve the timetabling 
problem are genetic algorithms and the clonal selection algorithm, whose satisfactory 
results when applied to optimization problems are reported in the literature.  

Two decision support systems were developed in this work, combining heuristic 
techniques with the genetic algorithms and the clonal selection algorithm. The 
purpose of this research is to make a comparative analysis of the two techniques in 
order to determine which one offers the most promising results for solving the 
timetabling problem.  

This problem has characteristics and constraints that may vary according to the 
educational institution for which the implementation is intended. High-level 
constraints were also adopted here, i.e., if any of these constraints is violated, the 
results will be invalid. 

The software programs developed here are systematic and automated procedures 
for generating timetables, containing all the subjects of a course, organized by 
semester, considering the availability of the following resources: 

• The disciplines taught in a semester cannot be allocated at the same time; 
• The courses taught by a teacher cannot be allocated at the same time; 
• The availability of each teacher must be checked, and the subjects he teaches 

cannot be allocated at the times when he is not available.  

In this paper, the encoding of each chromosome (in GA) or antibody (in CLONALG) 
represents a complete timetable containing all the subjects of a course, organized 
according to the semester in which they belong. 

The initial population in the two algorithms is generated by a computational 
function that combines a random routine with heuristic techniques. The use of 
heuristics techniques is justified by the good values of fitness obtained in GA and of 
affinity in CLONALG, and by the computational effort involved in achieving the 
convergence of the algorithms. The heuristic techniques adopted here tend to generate 
a better adapted population, which includes the time slots when the teacher is absent 
from the university and should therefore not be allocated, thus satisfying one of the 
constraints of the problem upon the initialization of the population. 

The objective function, which determines fitness (in GA) or affinity (in 
CLONALG), applied in the evaluation of each candidate seeks to find a feasible 
solution that satisfies all the constraints. In this work, fitness and affinity were defined 
as a counter that is incremented each time a solution has a feature that violates any of 
the constraints. Whenever a resource constraint is violated, the fitness (or affinity) 
must necessarily be increased. 
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The stop condition applied here is the moment when the result of the objective 
function reaches a value equal to zero, i.e., when the solution that is obtained is 
considered viable because none of the constraints has been violated and a feasible 
timetable has been generated. 

The selection methods employed here to select the solutions for the next 
generation, as well as for the application of genetic operators to GA and of clonal 
expansion to CLONALG, were the methods that search for the best solutions for the 
problem in question, i.e., the rank selection method (for GA) and the affinity selection 
method (for CLONALG).  In both of these selection methods, the n solutions with the 
best values obtained through the objective function will be chosen. 

The different parameters of each technique adopted in this study are described  
below.  

4.1 Genetic Operators Applied to GA: Mutation and Crossover 

Genetic operators are used in GA to insert diversity into the population and achieve 
the goal of this research, i.e., that of devising a feasible timetable. The genetic 
operators used here were mutation and crossover.  

The purpose of mutation is to insert a small measure of diversity into the population. 
Thus, it is advisable to use a low mutation rate to avoid losing the advances that have 
been achieved through the use of the heuristic methods in the initialization of the 
population. The steps involved in the mutation were as follows: 

• Define the mutation rate;  
• Randomly choose the individuals to be mutated;  
• Randomly select two different points among the selected individuals;  
• Change all the selected points in the selected individuals, in each semester;  
• Evaluate the individuals thus generated.  

The mutation adopted here does not violate the constraints, since the change is 
applied in all the semesters of the solution, at the same points.  

The crossover operator performs the crossover between two randomly selected 
chromosomes, thus generating a new chromosome that possesses characteristics of the 
two original chromosomes. The newly generated chromosome must be checked and, 
if necessary, also restructured, since it may violate all the constraints imposed by the 
problem. The steps involved in the crossover were as follows:  

• Select the crossover rate; 
• Randomly select individuals to which the crossover will be applied; 
• Select a cutoff that corresponds to a time slot; 
• To generate the new chromosome, the genes of a chromosome will be used up to 

the cut-off point. The remaining genes will be extracted from the next selected 
chromosome, starting at the cut-off point, until the end of the timetable is reached; 

• Check if all the course subjects have been allocated in the new chromosome; 
• If necessary, correct the new chromosome to ensure that all the course subjects are 

included in the proper semester, with the correct workload; 
• Evaluate the new individuals thus generated.  
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4.2 Clonal Expansion of CLONALG 

The clonal expansion process in CLONALG involves the following steps: cloning of 
the n best antibodies, maturation of the clones, and evaluation of the clones. 

The number of clones was determined by the following equation: 
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where Nc is the total number of generated  clones; β represents the multiplication 
factor, defined here as β = 1; N represents the number of antibodies in the population, 
and round is the operator responsible for transforming the numerical result into an 
integer value [6]. 

Maturation corresponds to the mutation applied to the clones, whose rate is 
calculated inversely proportional to its affinity. The maturation adopted here consists 
of the following steps:  

• Randomly select different points in the selected and cloned timetables, in order to 
change these time slots; 

• Change all the selected points in each clone, in all the semesters;  
• Evaluate the newly generated antibodies;  
• Perform a comparative analysis of the affinity values to check if the 

representativeness of the new antibody in the population is greater than that of the 
antibody from which it originated.  

After concluding the maturation process, the timetables are evaluated and the 
antibodies with the highest affinity are inserted into the subpopulation. 

4.3 Inclusion of Diversity in the Population of CLONALG 

The process of inserting diversity into populations consists of substituting the 
timetables with the lowest affinity values for new solutions, which are generated by a 
function that randomly determines the codes of the solutions, in combination with the 
heuristic techniques, as was done to generate the initial population of this algorithm.  

5 Results of the Experiments 

The results of the execution of the decision support systems developed here are shown 
below. Since our goal was to obtain valid timetables at the lowest possible 
computational cost, several computer simulations were performed to determine the 
ability of each of the algorithms to adequately explore the search space of the 
problem.  

Table 1 lists the results of thirty runs of the clonal selection algorithm and thirty 
runs of the genetic algorithms in each configuration adopted for the genetic operators 
of crossover and mutation. Several tests were conducted to determine the most 
suitable crossover and mutation rates for this application.   
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Table 1. Experimentals results 

Algorithms 
Number of 
Software 

Runs 

Number of 
Iterations 

Mutation 
Rate (%) 

Crossover 
Rate (%) 

CLONALG 30 13953 - - 

AG 
30 17865 10 80 
30 24630 3 30 
30 19562 5 60 

 
As Table 1 indicates, CLONALG was run thirty times, which means that thirty 

feasible timetables were created, since the purpose of the stop condition adopted for 
this problem was to find timetables in which the predefined constraints were not 
violated. The third column in Table 1 shows the number of iterations required to 
create thirty feasible timetables. The same stop condition was adopted for the GA, and 
as indicated in Table 1, thirty valid timetables were generated in each of the adopted 
configurations.  

The most suitable configurations for GA were found at a mutation rate of 10% and 
a crossover rate of 80%, as indicated by the results in Table 1, lines 2, 3 and 4.  A 
comparison of GA and CLONALG confirmed the superiority of CLONALG, which 
required fewer iterations to produce the same number of feasible timetables as those 
produced by the GA, even in the best configuration of GA. 

6 Conclusions 

The purpose of this work was to perform a comparative analysis of the results 
obtained with genetic algorithms and artificial immune systems when applied to solve 
the timetabling problem in educational institutions. The main contribution of this 
work is the development of decision support systems that are responsible for the 
automated generation of feasible timetables, which were based on the most common 
parameters adopted by universities.  

As the results in Table 1 indicate, the clonal selection algorithm produced better 
results than the genetic algorithms, considering the parameters adopted here, since it 
required fewer iterations to obtain a valid timetables. The adoption of appropriate 
heuristic techniques to generate the initial population was a factor of success in this 
study, for it enabled faster convergence of both the algorithms developed here, and 
thus the identification of a feasible solution at low computational cost.  

Proposals for future research will involve the discussion and analysis of other bio-
inspired algorithms described in the specialized literature, such as Artificial Endocrine 
Systems and Particle Swarm Optimization, as well as their development based on 
parallel programming, in order to perform algorithm workload distribution on 
multiple processors and find solutions for the problem in the shortest possible time.  
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Abstract. This paper introduces a new bio-inspired Estimation of Dis-
tribution Algorithm for global optimization that integrates the quantum
computing concepts with the immune clonal selection, vaccination pro-
cess and Estimation of Distribution Algorithm (EDA). EDA is employed
in the vaccination process to improve the solutions diversity and main-
tain high quality solutions in addition to its ability to avoid falling in
local optimum for multi modal problems. The proposed algorithm is
implemented and evaluated using standard benchmark test problems.
Experimental results are compared with the quantum inspired immune
clonal algorithm (QICA) and the QICA- with vaccine algorithm, where
the proposed algorithm is superior to both of them. The obtained results
carried out, it is performing well in terms of the solutions quality and
diversity, and it is superior to both of compared algorithms.

Keywords: Quantum Inspired Immune Clonal Algorithm (QICA), Es-
timation of Distribution Algorithm (EDA), Vaccine Operator, Global
Optimization.

1 Introduction

Immune clonal algorithm (ICA) is inspired from the human immune systems
clonal selection process over the B cells where the evolution process of the anti-
bodies is a repeated cycle of matching, cloning, mutating and replacing. The best
B cells are allowed through this process to survive which increases the attacking
performance against the unknown antigens. Vaccination is another immunolog-
ical concept that ICA applies through the vaccine operator to introduce some
degree of diversity between solutions and increase their fitness values [1], [15].

The quantum-inspired immune clonal algorithm (QICA) is one of the Quan-
tum inspired evolutionary algorithms QIEAs, based on the combination of quan-
tum computing principles, like quantum bits, quantum superposition property
and quantum observation process, with immune clonal selection theory. The
quantum bit representation for antibodies and vaccines has the advantage of
representing a linear superposition of states (classical solutions) in search space
probabilistically. Quantum representation can guarantee less population size as

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 645–652, 2012.
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a few number of antibodies and vaccines can represent a large set of solutions
through the space [16]. The quantum observation process plays a great role in
projecting the multi state quantum antibodies into one of its basic states to help
in the individuals evaluation. Quantum vaccine ICA algorithm(QICA-V) is an
algorithm that applies quantum vaccines to inject the quantum antibodies in
the search space to increase their fitness. This algorithm has a drawback in its
obtained solutions because they have a lack in diversity. A new hybridization of
QICA-V and Estimation of distribution Algorithm is proposed to obtain some
degree of diversity between solutions and maintain low computational and time
complexity.

The aim of this paper is to develop a bio-inspired algorithm based on the
QICA and the vaccine operator with the aid of EDA to sample vaccines. The
algorithm merges the quantum computing concepts with the vaccine operator
and the EDA sampling to improve the diversity and save computational time.
The rest of this paper is organized as follows: Section 2 introduces a brief of
some related work that had been done using QIEA and a background about
QICA and EDA algorithms. The proposed algorithm is presented in section 3.
The experiments setup and results are presented in section 4, where the last
section is devoted to conclusions and further researches.

2 Related Works and Background

Quantum-Inspired Artificial Immune System algorithms had been applied ex-
tensively in virous real applications [5,7,9,12,17]. The vaccine operator was also
used in many works with the AIS algorithms to enhance their exploration ability
and increase their detection efficiency [2, 6, 13, 14, 18].

2.1 Estimation of Distribution Algorithm

iterated density estimation evolutionary algorithms (IDEAs) are EAs that apply
an explicit sampling procedure through using probabilistic models rep- resenting
the solutions characteristics. Estimation of Distribution Algorithms (EDAs) are
types of the IDEA and population based algorithms with a theoretical founda-
tion of probability theory. They can extract the global statistical information
about the search space from the search so far and builds a probability model of
promising solutions [1, 4, 9, 15]. The general procedure of EDA is described in
algorithm 1.

The EDA advantage is that it relies on the construction and maintenance of
a probability model that generates satisfactory solutions for the problem solved.
An estimated probabilistic model, to capture the joint probailties between vari-
ables, is constructed from selecting the current best solutions and then it is
simulated for producing samples to guide the search process and update the in-
duced model. Estimating the joint probability distribution associated with the
data constitutes the bottleneck of EDA. Based on the complexity of the model
used, EDAs are classified into different categories, without interdependencies,
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Algorithm 1. Estimation of Distribution Algorithm

1: Initialize the initial population.
2: while termination condition is not satisfied do
3: Select a certain number of excellent individuals.
4: Construct probabilistic model by analyzing information of the selected

individuals.
5: Create new population by sampling new individuals from the constructed

probabilistic model.
6: end while

pair wise dependencies and multiply dependencies algorithms where detailed
description is shown in [15].

2.2 Quantum Inspired Immune Clonal Algorithm

Quantum-Inspired Artificial Immune System algorithms had been applied ex-
tensively in virous real applications [5, 7, 9, 12, 17]. The vaccine operator was
also used in many works with the AIS algorithms to enhance their exploration
ability and increase their detection efficiency [2, 6, 13, 14, 18]. Quantum inspired
ICA (QICA), is the hybridization between QC and classical ICA to enhance
the perfrmonace of the ICA and helpe in solving the problem of its ineffec-
tive performance in high dimensional problems. Inspired quantum concepts used
in QICA include quantum bit (q-bit), quantum mutation gate and observation
process [16].

3 Proposed Algorithm

The proposed algorithm integrates the quantum computing and immune clonal
selection principles with the vaccination and EDA sampling mechansim to im-
prove the solutions fitness and degree of diversity. The quantum bit repre-
sentation is used for antibodies and vaccines where the vaccine population is
divided into two sub populations [9]. Genetic operators are used to evolve the
first subpopulation and the EDA is applied in the second one to sample the fittest
vaccines. The main steps of the proposed algorithm are described in algorithm 2.

The algorithm starts by initializing both the quantum antibody population
Q(t) and the quantum vaccine population V (t) followed by cloning and mu-
tataing antibodies to be then decoded for evlauation. Additional steps to the
simple QICA, like vaccine decoding and sampling will be described in details.
The quantum vaccine population V (t) is initialized in the same way with n
quantum vaccines where n is the number of grids that the decision space is
divided to and n = (D1 ∗ D2 ∗ · · · ∗ Dd) with d which is the number of
dimensions.
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Algorithm 2. The proposed Algorithm (QICA-V with EDA)

1: Initialize the quantum antibody and vaccine populations, Q(t) and V(t).
2: Initialize t=1 as first iteration
3: while termination condition is not satisfied do
4: Apply the clonal and quantum mutation operators over the Q(t) to get

Q′(t)
5: Produce B′(t) by observing Q′(t).
6: Decode V (t) to get V2.
7: Divide V2 into two subpopulations, V ′

2 and V ′′
2 .

8: Select the farthest vaccines from V ′
2 as the current Vbest.

9: Estimate probability distribution of the Vbest.
10: Sample the distribution to get the newV ′

2 .
11: Apply the genetic operators over the V ′′

2 to get the newV ′′
2 .

12: Build the newV2 by merging the newV ′
2 and newV ′′

2 .
13: Apply vaccination over B(t) using the newV2 to get BV (t).
14: Apply clonal selection operator over BV (t) to get Q(t+ 1).
15: end while

– Initilization: Quantum antibodies and vaccines populations are created
where V (t) is initialized with n quantum vaccines where n is the number
of grids that the decision space is divided to. Quantum antibodies Q(t) are
cloned and mutated to get Q′(t) using the clonal operator θ where,

θ(Qt) = [θ(q1), θ(q2), . . . , θ(qm)] (1)

– Vaccine Selection and vaccination: Hamming distance is used to com-
pute the distance between the vaccines and antibodies to evaluate the far-
thest vaccines. Vaccines with higher hamming distances from all antibodies
are selected into Vbest set. Vaccines in this set are used to apply the injection
process over the mutated antibodies clones.

– Vaccine Sampling: EDA estimates the probability distribution of the next
iterations best vaccines from the current Vbest. It uses the mean and standard
deviation (sd) of the vaccines in Vbest to construct its model.

– Clonal selection: The best antibodies from the vaccined antibodies popu-
lation and selected to form Q(t+1) to proceed to a new iteration.

4 Experiemntal Results

This section introduces the implementation and evaluation of the proposed algo-
rithm. An intial number of the antibodies was set to 5 where 1000 iterations were
done. Each antibody has a clone scale of 5 and a probabailty of mutation of 0.5.
The proposed algorithm is implemented and evaluated using eight benchmark
test problems where the first four are unimodal and last four are multimodal
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problems [9]. A set of four evaluation indicators are used in this paper where
they are computed for the QICA-V with EDA over all the test functions. These
indicators include the best (B) and worst solutions (W) found in addition to
the average fitness (AF) and average standard deviation (AS) of all solutions.
The results are then compared with their found in the literature for the QICA
and the QICA-V algorithms as in table 1. Table 1 shows that the QICA-V with
EDA performs better than QICA and QICA-V in all experiments except for the
unimodal Shwefels and multi modal Shwefel functions. The algorithm is able to
achieve the optimal solution of the problems with high degree of diversity repre-
sented in the high standard deviation values. The EDA sampling mechanism of
the proposed algorithm proved its effectiveness over the vaccine operator of the
QICA-V in reaching optimal solutions in multimodal problems and maintaining
better performance with reduced complexity.

The error rate of the proposed algorithm and compared algorithms are recorded
and visualized for all test problems. Due to limit pages Fig. 1(a)& 1(b) show error
rates for some benchmark test problems. The proposed algorithm performance is
the best over the other algorithms in achieving optimal solutions at earlier itera-
tions. Although the multimodal property of the Rastring problem, QICA-V with
EDA was the best and the quickest to achieve optimality where QICA-V takes
more iterations to achieve it. QICA has the worst performance where it failed to
achieve the optimality in the multi modal Rastring problem and converges to it
in Sphere problem. The population dynamics was also captured and visualized to
check how the solutions are evolved through the evolutionary process. The popu-
lation dynamics of the first 3000 evaluations of the QICA-V, QICA and our al-
gorithm for a sample of multimodal and unimodal test problems are shown in
Fig.2, 3 &4.

As shown in Fig.2, 3 &4, QICA-V with EDA was able to converge to optimal
solutions through the first evluations for the multi modal problems although the
QICA-V failed to do the same. Solutions have high degree of variation due to

Table 1. Experimental Results of all algorithms

Measure F1 F2 F3 F4 F5 F6 F7 F8

QICA-V
with EDA

B 19.89 2.12 2191.80 0 -5317.31 0 0 0.05
AF 14.03 1.49 154905.88 59.24 -648.16 129.73 6.13 236.64
AS 5.77 0.47 193707.88 96.89 749.71 202.43 9.2 390.10
W 0.8 -0.62 3529932.45 366.15 2844.27 21.60 21.61 1482.22

QICA-V

B 19.85 2.07 35.17 0 -12566.88 0.18 0.18 1.37
AF 12.43 1.69 7293.64 3.14 -12367.85 1.01 0.94 19.90
AS 4.47 0.5 6160.19 0.5 20.97 0.04 0.04 2.14
W 0.8 -0.62 1429705.25 391.35 905.60 21.43 21.43 1543.21

QICA

B 19.85 2.07 17348.69 44.28 -5353.18 189.66 17.5 279.58
AF 11.84 1.4 617023.70 176.80 5.19 412.5 20.73 827.96
AS 5.52 0.59 685738.53 35.27 1172.80 45.07 0.28 120.03
W 0.8 -0.62 8646771.22 435.9 4845.16 21.50 21.55 1758.54
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(a) Error Rate for Rastring problem. (b) Error Rate for Sphere problem.

Fig. 1. Error Rate for Rastring & Sphere function

(a) Pop. dynamics using QICA-V. (b) Pop. dynamics using proposed algorithm.

Fig. 2. Population dynamics of Ackely function

(a) Pop. dynamics using QICA-V. (b) Pop. dynamics using proposed algorithm.

Fig. 3. Population dynamics of Rastring function

the EDA sampling mechansim where low vaired solutions obtained by QICA-V
using the genetic cross over and mutataion. For unimodal functions, QICA-V
has better performance due to the simple problems structure but EDA sampling
was again better. For simple two dimension problem, both algorithms behave
almost the same either in convergence speed or solutions diversity.
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(a) Pop. dynamics using QICA-V. (b) Pop. dynamics using proposed algorithm.

Fig. 4. Population dynamics of Sphere function

5 Conclusions

In this paper, we proposed a new bio inspired algorithm that integrates quantum
vaccine immune clonal algorithm with EDA (QICA-V with EDA). It employs
immune concepts and the quantum computing principles with the aid of vac-
cine operator and EDA sampling mechanism. The quantum representation and
vaccination helped in improving the search capabilities of the algorithm and the
fitness of solutions. The EDA sampling helped in improving the diversity be-
tween solutions with reduced complexity and execution time. The performance
of the proposed algorithm was analyzed and the results verified that it outper-
formed QICA and the QICA-V. It was able to produce high quality diversified
solutions for both unimodal and multimodal benchmark problems. For further
research, extensive experiments with detailed analysis are needed as well as an
implementation of real applications.
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Abstract. Preferences and Constraints co-exist naturally in different
domains. Thus, handling both of them is of great interest for many real
applications. Preferences usually expressed in qualitative format where a
constraint satisfaction problem (CSP) is a well known formalism to han-
dle constraints. In this paper, we investigate the problem of managing
both qualitative user preferences and system requirements. We model
our preference part as an instance of Conditional Preference networks
(CP-nets) and the constraints as CSP. We propose a new method to
handle both aspects in an efficient manner. Our method is based on
the well-known Arc Consistency (AC) propagation technique. The ex-
periments demonstrate that the new approach can save a substantial
amount of time for finding the optimal solution for given preferences
and constraints.

1 Introduction

Handling user preferences is crucial step in building successful decision support
systems [1,2,3]. Conditional Preference networks (CP-nets) is graphical model to
represent conditional qualitative preferences. In addition to preferences, many
decisions take place in constrained environment. Therefore, handling both pref-
erences and constraints is of great interest in deploying successful applications.
A CSP is a well known framework for representing and solving problems under
constraints. Since solving these problems is in general NP-hard, constraint prop-
agation techniques such as Arc Consistency (AC) have been proposed to reduce
the size of the search space before and during the search [4,5,6].

Clearly, adding constraints could result in eliminating several scenarios or out-
comes from the correspondingCP-net. For example, assumex1y1 ' x1y2 ' x2y1 '
x2y2 is the pre order for a CP-net involving the values {x1, x2} and {y1, y2} for
variables X and Y respectively. Now assume that the constraint C(X,Y ) does
only allow the tuples (xi, yj) when i �= j. Obviously, this makes x1y1 and x2y2
not feasible according to C(X,Y ). Therefore, x1y1 is no longer the best outcome
but x1y2 is. These types of inconsistencies can easily be detected and removed
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if the CSP with AC is used to manage hard constraints. More precisely, our ap-
proach consists of applying AC first in order to remove some of the inconsistent
values. The result is a new CP-net where some domains values are removed from
the network. Ideally, this can result in a huge decrease in the search space. By
discarding these inconsistent assignments for the CP-net, the discovery of the op-
timal outcome will be obtained in a shorter period of time. In addition, AC is
performed in polynomial time which means that the extra cost due to this propa-
gation technique does not affect the overall running time as demonstrated by the
experimental tests we conducted on randomly generated instances and reported
in this paper. Note that if one of the variables domain becomes empty during the
AC process, the CSP is inconsistent in this case and there is no need to look for
an optimal solution since a feasible one does not exist.

Many attempts have been made in order to handle constraints and preferences
together [7,3,2,8]. In constrained CP-net [7], the CP-net is first converted into a
set of hard constraints. The solution to the new constraint network is then the
optimal solution to the CP-net. [8] propose a method to approximate the entire
acyclic CP-net to SCSP instance. However, our approach is different in sense
that it works in both acyclic and cyclic CP-nets. Also, we are not aware of any
attempt to prune variables values and CP statements before searching for best
outcome.

The rest of the paper is structures as follows. Literature review on existing
work is first covered in the next section. The relation between CP-nets and
CSPs is then investigated on section three. Following that, the managing aspect
of constraints and preferences is discussed and the new approach is represented.
The fifth section illustrates our method by detailed example for the dress-up
game. Experimental results of the new technique are shown in the sixth section.
Some possible future work and the conclusion is listed in the final section.

2 Background

2.1 Conditional Preferences Networks (CP-Nets)

A Conditional Preferences network (CP-net) [1,9] is a graphical model to rep-
resent qualitative preferences statements including conditional preferences such
as: “I prefer A to B when X holds”. A CP-net works by exploiting the notion
of preferential independency based on the ceteris paribus (with all other things
being without change) assumption. Ceteris Paribus (CP) assumption gives us a
clear way to interpret the user preferences. For instance, I prefer A more than
B means I prefer A more than B if there was no change in the main charac-
terstics of the objects. A CP-net can be represented by a directed graph where
nodes represent features (or variables) along with their possible values (vari-
ables domains) and arcs represent preference independencies among features.
Each variable X is associated with a ceteris paribus table (denoted as CPT (X))
expressing the order ranking over different values of X given the set of parents
Pa(X). An outcome for a CP-net is an assignment for each variable from its
domain. Given a CP-net, the users usually have some queries about the set of
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preferences represented. One of the main queries is the best outcome given the
set of preferences. We say outcome oi is better than outcome oj if there is a
sequence of worsening flips going from oi to oj [7]. A Worsening flip is a change
in the variable value to a less preferred value according to the variable’s CPT.

2.2 Constraint Satisfaction Problems (CSPs)

A Constraint Satisfaction Problem (CSP) [6] is a well-known framework for con-
straint problems. More formally, a CSP consists of a set of variables each defined
on a set of possible values (variable domain) and a set of relations restricting the
values that each variable can take. A solution to a CSP is a complete assignment
of values to variables such that all the constraints are satisfied.

2.3 Arc Consistency (AC)

A CSP is known to be an NP-Hard problem. In order to overcome this difficulty
in practice, several constraint propagation techniques have been proposed [6,5].
The goal of these techniques is to reduce the size of the search space before and
during the search for the solution to the CSP. One of the well-known constraint
propagation techniques is called Arc Consistency (AC) [4]. The aim of AC is
to enforce a 2 consistency over the constraint problem. More precisely, the 2
consistency consists in making sure that for each pair of variables (X,Y ) sharing
a constraint, every value a from X ’s domain has a corresponding value in Y’s
domain such that the constraint between X and Y is satisfied, otherwise a is
eliminated.

3 The Relation between CSPs and CP-Nets

Preferences and constraints represent different but closely related types of in-
formation. Preferences can be viewed as desires or wishes where constraints are
strict requirements. Both of them are closely linked in a sense that some prefer-
ences can be promoted to constraints and the vise versa. Another view is to see
preferences as tolerant constraints [2]. When given a particular CP-net N and
a set of constraints C, the relation between N and C can fall into one of the
following three cases:

1. N does not exist in C. Here, N has no common variables or attributes with
C. Therefore, N can be solved via different typical CP-net algorithms.

2. N partially in C. In this case,N has some features or variables that exist in C.
3. N fully exists in C. WhenN fully exists in C, all attributes inN are also in C.

In the last two cases, there are always subset variables V which exist both in
N and C. These types of relation are of interest in this paper. Henceforth, for
every CP-net and CSP there are some variables that are shared between them.
When considering CSP in Figure 1a, one possible representation for each case is
shown in Figures 1b 1c and 1d.
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Fig. 1. The Relation Between CP-net and CSP

4 Managing Preferences and Constraints

4.1 CP-Net under Constraints

While a CP-net is a powerful model for representing qualitative preferences
[2], managing both hard constraints and preferences is required in many real
world applications [11,10]. In these situations, it is important to determine the
best solution to the CP-net with respect to the set of hard constraints that we
represent with a CSP. It should be noted that satisfying a set of hard constraints
is often more important than satisfying the user’s preferences statements due
to the nature of the preferences and constraints. Constraints mostly represent
strict system requirements while preferences represent a pre-order likelihood over
a set of features. As a result, in our proposed approach, with respect to any
CP-net there is a CSP behind it representing the hard constraints. Following
this representation, when looking for the best outcome we will first run arc
consistency in order to remove some inconsistencies (which will reduce the size
of the search space) and then look for the best outcome in the simplified CP-net.

4.2 Arc Consistency for CP-Nets

Many instantiations can lead to inconsistent assignments in the presence of
constraints in addition to a CP- net. Therefore, detecting the inconsistent as-
signments in a CP-net from the beginning should lead to a reduction in the
complexity of the problem. The CSP framework comes with a large number of
techniques to detect inconsistencies in the domain. However, a CP-net does not
offer a systematic way to detect the set of preferences that are inconsistent with
the constraints. Determining the set of inconsistent preference statements will
eventually lead to finding the solution faster or declaring the problem to be
inconsistent. Thus, adapting these techniques to a CP-net seems to be a use-
ful technique. As result, a new method is defined to handle constraints over a
CP-net based on the Arc Consistency (AC) technique.

We say CP-netN with CSP C is arc consistent CP-net (ACCPnet) if for every
domain value x for variable X ∈ V ars(N) x is either satisfied by C or X does
not exist in C. Though we consider the query of finding the best outcome for a
particularCP-net, ourmethodworks regardless of the query posed by the user.Our
main contribution is reducing the search space needed for reasoning about CP-nets
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in the presence of constraints without posing any restriction to the type of query.
ACCPnet is the result of updating AC changes to CP-net. In order for a given CP-
net to reflect the AC changes we propose an algorithm (Algorithm 1) that traverse
over the original CP-net and CSP and return ACCPnet instance of the problem.

Checking the consistency of a variable X is straightforward. We simply check
the cardinality of the domains, i.e. |dom(X)| �= |dom(X)|. Since for each CP-net
variableX there is a set of parents Pa(X), we refer to the set of different instantia-
tions of the parents in CPT(X) as pa(X). The time complexity of the this approach
is as follows assumingN is the number of variables, e the number of constraints, d
the largest domain size of the variables andm the largest CPT in the network.We
use AC-3 [12] for the arc consistency and the corresponding cost is O(ed2). In the
worst case scenario, the cost of the ACCPnet algorithm isN(d+m).

Algorithm 1. ACCPnet(CPN, CSP)

1. Let Vcsp be CSP variables
2. Let Vcpn be CPN variables
3. Let Vshared = Vcsp ∩Vcpn

4. for each X ∈ Vshared

if ¬isConsistent(X,X)
for each xi ∈ dom(X)
if xi /∈ dom(X)
{ remove xi from dom(X) and CPT (X)
for each Y ∈ children(X)
for each S ∈ CPT (Y )
if xi ∈ pa(S)
remove S

}
return CPN

4.3 Finding the Optimal Outcome

To show the effectiveness of the ACCPnet, we consider the problem of finding
best outcome given set of constraints. The optimal solution for an acyclic CP-net
N is the one with the minimum worsening flips according to N [1,9]. The best
outcome can be computed by assigning each variable to its most preferred value
throughout the network . In the presence of constraints, an optimal assignmentA
can be infeasible. In this case, a solution should be investigated where A satisfies
the set of constraints C while minimizing the number of worsening flips.

5 Illustrative Example: The Dress-Up Game

In this sectionwe illustrate our proposedapproach through thedress upgamewhich
provides the user with sets of clothes, accessories and shoes. The user will then
use his free style Mix and Match imagination to create a complete outfit. In order
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to assist the user to have an appropriate outfit and be in a fashion trend, we can
enhance the dress up gameby adding rules, tips and advices from fashiondesigners.
This latter information can bemodeled as constraints and preferences respectively
through a CSP and a CP-net as we will show in the next two subsections.

5.1 CSP Representation

Figure 2 shows the constraint graph for a given dress up game problem. Figures
3 and 4 list the domains of the variables and the constraints for this problem.

5.2 CP-Net Representation

Let us consider the following preferences for our dress up game.

– We always prefer to wear “casual shoes” and “boots” instead of “sandals”,
“runners” and “pumps”.

– We like handbags “HB3” and “HB4” the most

– For matching clothes (Top & Bottom constraints), we like “Blouses with
Skirts” and “t-shirts with capris” and “jackets with jeans” the most.

– As for the Set & Shoes constraint, we prefer a “skirt outfit with boots” and
a “pant-suit with casual wear” for the rest.

Figure 5 shows the CPT tables corresponding to these preferences. The relation
+ between two pairs of values states that they are equally preferred to the user.

SET

C8

C3

SHOES

C9

C5

C6

BOTTOM

C4
C2

HANDBAG

C1

TOP

C7

HAT

JEWELRY BELT

Fig. 2. CSP for the Dress-up Example

SHOES {sandal=1, pump=2, boot=3, running=4, casual=5}
SET {skirt suit=6, dress=7, pant suit=8}
TOP {blouse=9, shirt=10, t-shirt=11, tank=12, jacket=13}
BOTTOM {pant=14, jean=15, skirt=16, capri=17, short=18}
HAT {bucket=19, visor=20, toyo=21, baseball=22}
BELT {B1=23, B2=24, B3=25, B4=26}
JEWELRY {J1=27, J2=28, J3=29, J4=30}
HANDBAG {HB1=31, HB2=32, HB3=33, HB4=34}

Fig. 3. Domain Values for the Dress-up Example
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JEWELRY HANDBAG
27 32
28 32
29 33
29 34
29 31
30 31
30 32
30 33

BOTTOM SHOES
14 5
14 2
15 4
16 3
16 2
17 1
18 1
18 4

TOP BELT
13 26
12 25
12 26
11 25
9 24
9 25
10 24
10 26

TOP BOTTOM
9 14
9 16
10 14
10 16
11 15
11 17
11 18
12 18
12 17
13 15

HAND BAG SET
32 7
31 6
34 8
33 7

HANDBAG SHOES
31 1
32 2
33 2
34 5
33 3
34 1

HAT BOTTOM
19 16
20 17
20 18
22 18
22 15
21 16

SET SHOES
6 2
6 3
7 2
8 2
8 5

TOP SHOES
9 2
10 5
11 1
11 4
12 1

Fig. 4. Dress-up Constraints

Attribute Preference Table

SHOES 5 � 3 � 1 � 4 � 2

BOTTOM 15 � 16 � 16 � 17 � 14 � 18

SET 5 : 6 � 7 � 8
3 : 8 � 7 � 6
otherwise : 7 � 6 � 8

TOP 15 : 13 � 12 � 11 � 10 � 9
17 : 11 � 9 � 10 � 12 � 13
otherwise : 9 � 10 � 11 � 12 � 13

HB 33 � 34 � 32 � 31

Fig. 5. The set of Conditional Preference Tables (CPTs)

5.3 Determining the Best Outcome

Let us assume the following topological ordering for the CP-net as
{SHOES,SET,BOTTOM,TOP,HANDBAG}. In order to demonstrate the im-
portance of arc consistency, the problem of finding the optimal outcome is shown
in the following subsections with and without this local consistency technique.

Finding the Best Outcome without AC. Figure 6b shows the search space
where the dotted arcs and nodes represent the inconsistent values for the cor-
responding variables. The most preferred values for SHOES, which is SHOES
= 5, is first taken. An attempt is then made to extend this assignment to the
most preferred value SET where SET = 6 and SET = 7 is inconsistent with
SHOES = 5. Hence, we have SHOES = 5 and SET = 8 as a partial assignment
with worsening flips = 2. This partial assignment is extended to BOTTOM as
follows: {5,8,14}. After considering the other consistent possibilities, this partial
assignment is extended to the following complete assignment which is incon-
sistent according to the CSP: {5, 8, 14, 10, 34}. The next value to consider is
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SHOES 5 2

SET 6 7 8

CUT

(a) After

SHOES 5 3 1 4 2

SET 6 7 8

BOTTOM 14 15 16 17 18

TOP 9 10 11 12 13

HANDBAG 31 32 33 34

CUT

(b) Before

Fig. 6. CP-net before and after arc consistency

3, but it is found to be inconsistent, along with 4 and 1. Finally, SHOES = 2
works with worsening flips = 3. The complete assignment {2,7,9,16,33} is then
obtained and is actually consistent with the CSP. The set of optimal outcomes
is any solution where SHOES = 2, SET = 7, BOTTOM = 16, TOP = 9 and
HANDBAG = 33 with 3 worsening flips.

Using AC to Find the Best Outcome. Figure 6a shows the same search
space for the CP-net after applying AC. The value 14 is removed from the domain
of BOTTOM which will prevent us from considering the partial assignment {5,
8, 14} as we did in the previous subsection. As we can easily see from the figure,
the search space is reduced and the inconsistency is detected here in advance.

6 Experimentation

We evaluate the performance of our proposed technique on different randomly
generated problems. We have implemented a solver to handle both CP-net and
CSP instances. Our solver is coded in Java under Netbeans IDE. The oper-
ating system specifications are Mac OS X versions 10.6.7 with 2GHz Intel i7
processor and RAM with 4GB. We have conducted 9 experiments to investigate
both the optimal solution and search space (number of possibilities) problems.
Eliminating some domain variables will indeed result in reducing the number of
possibilities. The goal of the space experiments is to show how our method can
drastically reduce the space needed for given CP-net regardless of the imposed
query (i.e. finding best outcome). Note that some problems are inconsistent and
thus we neglect them from our experiment calculations. This means there is no
solution which satisfy hard constraints. We generate 100 problems for each ex-
periment using Model RB [13]. The reason for choosing this model is that it has
exact phase transition and the ability to generate asymptotically hard instances.
We focus on two important parameters: tightness and density. The constraint
tightness is defined as the ratio of the number of allowed tuples to the total
number of possible combinations (cartesian product) [14]. In each experiment
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Fig. 7. Experiments with different Density and fixed T ightness
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Fig. 8. Experiments with different T ightness and fixed Desnity
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Fig. 9. Possibilities to Different T ightness with fixed Desnity

we alter one of the parameters and fix the other. For our computational limit,
we consider problems with 20 variables in each network. However the same con-
clusion can be reached with larger problems. Figure 8 shows the average for
finding optimal solution for CP-net in with different density parameters. Likely
Figure 7 shows three experiments when we have tightness equal to 25%, 50% and
75%. The x-axis represents number of variables where the y-axis represents the
execution time in milliseconds. Figure 9 represents the number of possibilities
when varying the tightness and setting the density to 50%.

7 Conclusion and Future Work

In this paper, a discussion was initiated regarding the relation between the CSP
and the CP-net. Then, the consistency aspect of the CP-net was introduced
along with a method to apply arc consistency to the CP-net. The ACCPnet
algorithm with which to update the CP-net to reflect the new domains in the
CSP was introduced and discussed. It was shown that applying arc consistency
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to the CP-net can reduce the search space and the time needed for finding the
best outcome. This work presents the believe that the usage and the efficiency of
CP-net can be improved by considering different CSP techniques. Future work
includes handling CP-net with quantitative preferences, generalizing the method
proposed to handle soft constraints and managing CP-net in the presence of
dynamic and conditional constraints.

References

1. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. J. Artif. Intell. Res. 21, 135–191 (2004)

2. Rossi, F., Venable, K.B., Walsh, T.: Preferences in constraint satisfaction and op-
timization. AI Magazine 29, 58–68 (2008)

3. Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Preference-based constrained
optimization with cp-nets. Computational Intelligence 20, 137–157 (2001)

4. Mackworth, A.K.: Consistency in networks of relations. Artificial Intelligence 8,
99–118 (1977)

5. Kumar, V.: Algorithms for constraint satisfaction problems: A survey. AI Maga-
zine 13, 32–44 (1992)

6. Dechter, R.: Constraint processing. Elsevier Morgan Kaufmann (2003)
7. Prestwich, S., Rossi, F., Venable, K.B., Walsh, T.: Constrained cpnets. In: Faltings,

B.V., Petcu, A., Fages, F., Rossi, F. (eds.) CSCLP 2004. LNCS (LNAI), vol. 3419,
Springer, Heidelberg (2005)

8. Domshlak, C., Rossi, F., Venable, K.B., Walsh, T.: Reasoning about soft con-
straints and conditional preferences: complexity results and approximation tech-
niques. CoRR abs/0905 (2009)

9. Brafman, R.I., Dimopoulos, Y.: A new look at the semantics and optimization
methods of cp-networks. In: IJCAI, pp. 1033–1038 (2003)

10. Mouhoub, M., Sukpan, A.: Managing temporal constraints with preferences. Spa-
tial Cognition & Computation 8, 131–149 (2008)

11. Alanazi, E., Mouhoub, M.: Arc consistency for cp-nets under constraints. In:
FLAIRS Conference (2012)

12. Bessière, C., Régin, J.C., Yap, R.H.C., Zhang, Y.: An optimal coarse-grained arc
consistency algorithm. Artif. Intell. 165, 165–185 (2005)

13. Xu, K., Li, W.: Exact phase transitions in random constraint satisfaction problems.
Journal of Artificial Intelligence Research 12, 93–103 (2000)

14. Beek, P.V., Dechter, R.: Constraint tightness and looseness versus local and global
consistency. Journal of the ACM 44 (1997)



T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 663–669, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

A Bio Inspired Fuzzy K-Modes Clustring Algorithm  

Omar S. Soliman, Doaa A. Saleh, and Samaa Rashwan 

Faculty of Computers and Information, Cairo University, Egypt 
dr.omar.soliman@gmail.com 

Abstract. This paper proposes a bio inspired fuzzy K-Modes clustering 
algorithm using fuzzy particle swarm optimization (FPSO) and fuzzy k-modes 
(FK-Modes) algorithm for clustering categorical data.  It integrates concepts of 
FK-Modes algorithm to handle the uncertainty phenomena and FPSO to reach 
global optimal solution of clustering optimization problem. The proposed 
FPSO-FK-Modes algorithm was implemented and evaluated using slandered 
benchmark data sets and performance measures. Experimental results showed 
that the proposed FPSO-FK-Modes algorithm performed well compared with 
FK-modes and Genetic FK-modes (GA- FK-modes) algorithm using adjusted 
rand index.   

Keywords: Fuzzy clustering, Categorical data, FK-modes, FPSO, ARI. 

1 Introduction  

Data clustering divide objects of a data set into conceptually meaningful groups 
(clusters), with the objects in a group being similar to one another but very dissimilar 
to the objects in other groups.  Each object has to belong to only one cluster, but, in 
case of data set with information ambiguity, may be causing to one object can belong 
to more than one cluster by a  degree of membership function (is called fuzzy data 
clustering). There are numerous algorithms available for doing data clustering. these 
algorithms can be categorized in various ways such as: hierarchical or partition, 
deterministic or probabilistic, hard or fuzzy [1], [8]. In the hard clustering algorithms 
each object is assigned to only one cluster, where in fuzzy clustering, data object is 
assigned to multiple clusters. The degree of membership function in the fuzzy clusters 
relies on the closeness of the data object to the center of cluster. The K-modes 
clustering algorithm is based on K-means paradigm but removes the numeric data 
limitation whilst preserving its efficiency [11], [17] and [18].  Fuzzy K-modes 
clustering is an effective algorithm, but the randomization in selecting the center points 
of cluster causes the falling in a local optimal solution easily. A few algorithms have 
been proposed in recent years for clustering categorical data. Some of computational 
intelligent algorithms have been used for improving the clustering performance by 
finding a global optimal solution for a clustering optimization problem as a Genetic 
Algorithm (GA) and a Tabu search technique with purpose of improving fuzzy k-
modes algorithm [4], [12]. Particle Swarm Optimization (PSO) algorithm is a 
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stochastic global optimization technique [9], [13]. There are some studies that focused 
on developing hybridized data clustering algorithms by integrating more than one 
computational such as [6], [4], and [14]. The aim of this paper is to develop a bio 
inspired fuzzy K-Modes clustering algorithm using fuzzy particle swarm optimization 
(FPSO) and fuzzy k-modes (FK-Modes) algorithm for clustering categorical data as 
well as to overcome FK-Modes of categorical data by finding the global optimal 
solution of the clustering optimization problem. The rest of this paper is organized as 
follow: Section 2 introduce problem background and related works of FK-modes 
algorithm and fuzzy PSO. Where, section 3 presents details of proposed algorithm.  
Section 4 introduces experimental results, measure performance and discussions. 
Finally, section 5 is devoted to conclusions. 

2 Background and Related Works  

2.1 Fuzzy K-Mode Algorithm  

The fuzzy k-Modes clustering algorithm was introduced in [16]. Unfortunately, the 
algorithm may be fail in a local optimal solution. Therefore, K-modes could be 
combined with any one of artificial intelligent techniques to overcome trapping in 
local optimal solutions. Mathematically, a fuzzy clustering problem can be 
represented as an optimization problem as follow: 

                 ,       μ,   ∑ ∑  ,   (1) 

 Subject to  

                       0   μ 1,         1 , 1 ,     (2) 

                       ∑ μ 1,             1 , (3) 

                       0 ∑ μ ,         1 , (4) 

Let D = {x1, x2, …, xn} be a categorical data set with n objects each of which is 
described by  d categorical attributes A1, A2, …., Ad. Attribute Al (1•l • d) has n d) has nj 

categories, i.e., DOM  , , … , . And let the cluster center be 
represented by  , , … ,     1  , where k is the number of 
clusters.  

The simple matching distance measure between x and y in D is defined as:  ,  ∑ ,                     (5) 

Where xj and yj are the jth components of x and y, respectively, and , 0                1                            (6) 

And clusters centroid is updated as: 
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  ∈                        (7) 

Where the fuzzy membership matrix is updated as:    ∑ ,,
                     (8) 

2.2 Fuzzy Particle Swarm Optimization  

In PSO, the potential solutions, called particles, fly through the problem space by 
following the current optimum particles [2]. [5], [9] and [13].  For a swarm of n 
particles the ith particle is represented by a position denoted as x  x , x , … , x  
where n is the number of particles. Except the position, each particle of a swarm is 
represented in D dimensional space with a velocity v  v , v , … , v . The 
particles explore in the search space with a velocity that is dynamically adjusted 
according to its own and neighbor’s performances. The standard PSO method updates 
the velocity and position of each particle according to the equations given below [15].  

V t 1  ω V t  c  r pbest t X t   c  r gbest t X t  (9) Xt 1  X t V t 1   (10) 

In FPSO algorithm, the position of particle, shows the fuzzy relation from set of data 
objects, o  o , o , … , o , to set of cluster centers, Z  z , z , … , z . The 
position matrix X   is defined as follows [5]: 

                         (11) 

In which µij is the membership function of the ith object with the jth .  And   ∈0,1      1, 2, … . , ;     1, 2, … . ,   is updated and normalized using eq. 10, 
and the position matrix    is updated using eq. 11.  

 ∑ ∑
∑ ∑                          (12) 

3 Proposed Algorithm  

The proposed bio inspired algorithm integrates FK-Modes and FPSO. It is divided 
into several steps starting by initialization required parameters; followed by 
calculating the position centroids matrix for each particle. Then distance and 
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membership matrix are updated. Followed by, calculating the fitness value for each 
particle. The next step is to check the stopping criteria either maximum number of 
iterations or no improvement in gbest.  The proposed FPSO-Fk-Modes algorithm is 
described in algorithm 1.  

Algorithm 1.  Proposed Bio Inspired algorithm (FPSO-Fk-Modes) 

1: Initialize the parameters including population size P, c1, c2, w, r1, r2 and the 
maximum iterative count. 

2: Create a swarm with P particles (X, pbest, gbest and V are (n × k) matrices). 
3: Initialize X, V, pbest for each particle and gbest for the swarm. 
4: Select α (α > 1); initialize Z0 and the membership function values µ0, where µij, i 

= 1, 2, …, n;  j = 1, 2, …, k. 
5: For t = 0  to q do  
6: Calculate Zt+1 for each particle.  
7: Calculate the fitness value of each particle. 
8:  If  F (Xt , Zt+1)  = F (Xt , Zt)  then 
9:  Stop; 
10:  Else; 
11: Calculate pbest for each particle. 
12: Calculate gbest for the swarm. 
13: Update the velocity matrix for each particle. 
14: Update (Xt+1) the position matrix for each particle. 
15: If (Xt+1, Zt+1) = (Xt, Zt+1) then 
16: Stop 
17: Else 
18: Xt  ← Xt+1; 
19: End if 
20: End if 
21: End for 

4 Experimental Results  

The proposed algorithm is implemented and evaluated using four benchmark datasets 
(Soybean, Congress, Hays-Rose, and Spect-Heart) of the UCI Machine Learning 
Repository [3]. It is developed using VC++ and its performance is measured using ARI. 

4.1 Results and Discussions 

To analyze the performance of the proposed algorithm, the worst, best, and average 
fitness, and standard deviation are recorded at each run. The average results of 100 
independent runs are reported in table 1 and visualized in Fig. 1 for each dataset.  
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same cluster. The proposed algorithm had been tested and evaluated on four 
benchmark datasets (Soybean and Congress Voting Hays-Rose, and Spect-Heart) 
from UCI Repository Machine Learning Datasets. The experimental results showed 
that the proposed FPSO-FK-modes algorithm performed well compared to FK-modes 
and GA-FK-modes algorithms.  For future work we intend to introduce more 
experiments and more analysis as well as introducing more performance measures to 
validate the proposed algorithm.  

References  

1. Chaturvedi, A., Green, P.E., Carroll, J.D.: K-modes clustering. Journal of Classification (18), 
35–55 (2001) 

2. Chen, A.L., Yang, G.K., Wu, Z.M.: Hybrid discrete particle swarm optimization algorithm for 
capacitated vehicle routing problem. Journal of Zhejiang University Science 7(4), 604–614 
(2006) 

3. Blake, C., Merz, C.: UCI Repository Machine Learning Datasets (1998) 
4. Gan, G. Wu, J., Yang, Z.: A genetic fuzzy k-Modes algorithm for clustering categorical 

data. Journal of Expert Systems with Applications (36), 1615–1620 (2009) 
5. Hesam, I., Ajith, A.: Fuzzy C-means and Fuzzy Swarm for Fuzzy Clustering Problem. 

Journal of Expert Systems with Applications (38), 1835–1838 (2011) 
6. Michael, K.L., Liping, J.: A new Fuzzy K-Modes Clustering Algorithm for Categorical 

Data. Int. Journal of Granular Computing, Rough Sets and Intelligent Systems (1), 105–119 
(2009) 

7. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 193–218 (1985) 
8. Kweku, M., Osei, B.: Towards supporting expert evaluation of clustering results using a 

data mining process model. Journal of Information Sciences 180, 414–431 (2010) 
9. Bajpai, P., Singh, S.N.: Fuzzy Adaptive Particle Swarm Optimization for Bidding Strategy 

in Uniform Price Spot Market. IEEE Transactions on Power Systems 22(4) (2007) 
10. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the 

American Statistical Association 66, 846–850 (1971) 
11. Aranganayagi, S., Thangavel, K.: Extended K-Modes with Probability Measure. 

International Journal of Computer Theory and Engineering 2(3), 1793–8201 (2010) 
12. Khan, S.S., Kant, S.: Computation of Initial Modes for K-modes Clustering Algorithm 

using Evidence Accumulation. In: IJCAI 2007, pp. 2784–2789 (2007) 
13. Shi, Y., Eberhart, R.C.: Parameter Selection in Particle Swarm Optimization. In: Porto, V.W., 

Waagen, D. (eds.) EP 1998. LNCS, vol. 1447, pp. 591–600. Springer, Heidelberg (1998) 
14. Wenting, C., Hai, Z., Fengling, D.: Cluster Analysis Based on Fuzzy K-Modes and 

Immune Genetic Algorithm. Journal of Computer Technology and Developmen 19(2), 
151–153 (2009) 

15. Shi, Y., Eberhart, R.C.: Fuzzy Adaptive Particle Swarm Optimization. In: Proceedings of 
the. IEEE Congress on Evolutionary Computer, Seoul, Korea (2001) 

16. Huang, Z., Ng, M.K.: A fuzzy k-modes algorithm for clustering categorical data. IEEE 
Transaction on Fuzzy Systems 7(4), 446–452 (1999) 

17. Huang, Z.: A fast clustering algorithm to cluster very large categorical data sets in data 
mining. In: Proc. SIGMOD Workshop on Research Issues on Data Mining and Knowledge 
Discovery, pp. 1–8 (1997) 

18. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with 
categorical values. Data Mining and Knowledge Discovery 2(3), 283–304 (1998) 



Evaluating SPAN Incremental Learning

for Handwritten Digit Recognition

Ammar Mohemmed1, Guoyu Lu3, and Nikola Kasabov1,2

1 Knowledge Engineering Discovery Research Institute,
Auckland University of Technology, New Zealand

{amohemme,nkasabov}@aut.ac.nz
http://www.kedri.info

2 Institute for Neuroinformatics, ETH and University of Zurich
3 Department of Information Engineering and Computer Science

University of Trento, Italy

Abstract. In a previous work [12, 11], the authors proposed SPAN: a
learning algorithm based on temporal coding for Spiking Neural Network
(SNN). The algorithm trains a neuron to associate target spike patterns
to input spatio-temporal spike patterns. In this paper we present the
details of experiment to evaluate the feasibility of SPAN learning on
a real-world dataset: classifying images of handwritten digits. As spike
encoding is an important issue in using SNN for practical applications,
we discuss few methods for image conversion to spike patterns. The ex-
periment yields encouraging results to consider the SPAN learning for
practical temporal pattern recognition applications.

Keywords: Spiking Neural Networks, Supervised Learning, Nuerocom-
puting, Spatiotemporal pattern recognition.

1 Introduction

Driven by the emerging need for systems that can behave autonomously and
adaptively through learning, research is turning to biological intelligence for
better solutions. The knowledge about how the brain is functioning that be-
comes available due to the discoveries of neuroscience is inspiring researchers to
mimic the brain, at different levels, to create more efficient methods and sys-
tems. Spiking Neural Networks (SNN) [5, 9], considered the third generation of
artificial neural networks, is an important tool to model many functional aspects
of the brain. Furthermore, SNN models have been investigated for a number of
computer applications including computer vision [18, 3], speech recognition [17],
autonomous robots [4, 15] and others.

Most of real-world data is represented as static or dynamic continuous values.
In the latter case, data changes in time and space where useful knowledge can
be extracted only after a certain time period of observing the data. An example
is extracting information from video data, such as human action recognition for
human-robotic interaction or security/health surveillance.

SNN internally use spikes to communicate, where information is encoded in
the time of the spikes. That makes SNN to be suitable for spatio-temporal data
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processing. However, for SNN to be applicable for real-world problems, input
data needs to be transformed into spikes before it can be processed in SNN.This
conversion should be done properly such that the inter-class/intra-class relation-
ships between data categories are preserved, otherwise the recognition task using
SNN will be hard to yield accurate results.

In fact how to encode information into spikes is a challanging problem that
extends to a deep research field in neuroscience. According to previous studies
such as in [6] and recent one [14], temporal coding whereby information is
encoded into precise time of the spikes, plays a significant role in the neural
code of the brain especially in the visual system.

SPAN [12, 11], is a learning algorithm for spiking neural networks which is
based on encoding input information as precise time of spikes (Temporal coding).
This is opposite to rate coding where information is coded in the mean firing
rate of the neurons. The algorithm was evaluated mainly on two tasks: precise
time spike sequence generation, and spike pattern classification [12]. In spike
sequence generation task, a spiking neuron is trained to generate any random
spike train in response to a recognised pattern of input spike sequences (spike
trains). This property is also used for temporal spike pattern classification by
training the neuron to associate different spike trains to different input classes.
Recently, we have extended the application of the algorithm to train multiple
neurons to classify multiple classes of spike patterns generated artificially [10].

In this paper, we investigate SPAN learning on a practical dataset where the
task is to classify images of handwritten digits from the MNIST dataset [7]. The
first stage in the learning process is to convert the images into spike patterns.
The conversion is done using the Virtual Retina [19] -a simulator that transforms
image/video into pattern of spike trains. The generated patterns are used to train
a single layer of SPANs for classification. The MNIST is a non-linear dataset
which guarantees that the different spike pattern classes have more complicated
inter/intra- class characteristics, i.e., patterns that belong to the same class are
varied and there is overlap between different classes, giving a clear indication of
the feasibility of SPAN learning for a practical applications.

2 Image to Spike Coding

The main function of the biological retina is converting input image stimulus to
patterns of spikes. How different features of the stimulus relate to the structure
of the generated spike pattern is not clear. A number of research works have
proposed simplified software and hardware tools to model the retina and other
parts of the visual system. Rank Order Coding (ROC) is one of the earliest coding
scheme for image coding is based on the biological principle of fast processing
of image stimulus in the brain [16]. Information is encoded in the order of spike
firing across a population of neurons in which each neuron fires at most a single
spike. Based on this coding, a face identification system is proposed [2] and also
an evolving SNN (eSNN) architecture for integrated audio-visual information
processing and pattern recognition [20].



672 A. Mohemmed, G. Lu, and N. Kasabov

A piece of hardware referred to Silicon Retina(SR) was made to convert input
streams of image frames into spike patterns in a format referred to Address En-
coding Representation (AER) [8]. The pixels of the SR respond to events that
represent relative changes in intensity by computing the difference in pixel in-
tensity between two successive frames (temporal contrast) and generating spikes
if this difference exceeds a threshold value. Although the concept is simple, the
hardware implementation provides fast computation power necessary for certain
vision application.

The Virtual Retina (VR) is a software simulator that models more compli-
cated aspects of the biological retina. It transforms a video input into spike pat-
terns [19]. The VR consists of three stages of processing layers that correspond to
different layers of the retina, namely the Outer Plexiform Layer (OPL), Contrast
Gain Control (CGC) and the Ganglion layer (GL). Particularly, the GL layer
is responsible of converting continuous current into spike trains. The conversion
is performed using a Noisy Leaky Integrate and Fire (LIF) neuron, where the
time delay of the generated spikes is proportional to the input current. The noise
is represented as a random value added to the membrane potential of the LIF
neuron in order to reproduce the variability found in trail-to-trail spike recording
of real ganglion cells. Because the conversion is temporal, the VR is suitable to
use for SPAN learning which is also based on temporal coding. We use a basic
configuration of the VR, that consists of OPL and a single GL, as an encoder to
convert digit images into spike patterns.

3 SPAN Learning Method and Network Topology

In this section, we describe briefly SPAN learning rule and the SNN network
architecture. More details can be found in previous publications [10–12]. SPAN
rule is a supervised learning method to associate input spike pattern to a target
spike train by adjusting the weights of the input synapses according to the
following formula:

Δwi = λ
(e
2

)2

⎡⎣∑
g

∑
f

(|tfi − tgd|+ τs)e
− |tf

i
−t

g
d
|
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−
∑
h

∑
f

(|tfi − tha |+ τs)e
− |tf

i
−tha |
τs

⎤⎦ (1)

where τs is the kernel function time constant, e is the exponential constant, ti, ta
and td are the times of the input, actual output and target spikes respectively,.

According to this rule, the synaptic weight w is adjusted based on the precise
time of the input, output and target spikes. Fig. 1 shows the configuration of
the SNN network, for two classes, trained by the above rule.

The network could be used to classify multi-class spike patterns or to generate
different spike trains. In [10], we have evaluated the network in classifying multi-
ple categories of spike patterns generated artificially. The dataset was created by
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class 0 input

class 9 input
2

1   

2

Fig. 1. The SNN topology used in this work. It is a single layer of spiking neurons,
each neuron is trained to recognize a single digit.

generating a number of template spike patterns, based on a uniform distribution.
Then, using these templates many samples were generated by adding time delay
jitters to the spikes of the templates. Therefore, it is likely this procedure will
lead to a dataset that is linearly separable. Hence, in next section we evaluate
SPAN on a more realistic dataset.

4 Learning Handwritten Digits Using SPAN

4.1 Description of the data

The MNIST handwritten digits, available from [7], is a well-known dataset used
by many researchers to evaluate pattern recognition methods. Each image is
28 × 28 pixels. We use 200 sample images per digit (a total of 2000 images)
for training and the network is tested on different 200 images per digit. Each
sample digit is converted into spike pattern using the Virtual Retina [19]. The
produced spike pattern consists of 784 spike trains. Fig.2 shows an example of
the generated spike patterns for four digits. It can be noted that it is quite
difficult to recognize the digit by only looking at the spike pattern.

4.2 Experimental Setup

SPAN rule is used to train the network of Fig. 1 to learn the animated digit
images. The network consists of ten neurons, each for one digit class. The weights
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Fig. 2. Raster plots of the generated spike patterns by the Virtual Retina for the first
four digits

are initialised randomly in the range [0.0, 5.0]. Each neuron has 784 synapses
corresponding to (28 × 28) pixels of the input image. Therefore, there are 7840
synapses to be trained (784 synapse × 10 classes).

The neurons are Leaky Integrate-and-Fire (LIF) described by the following
differential equation:

τm
dui
dt

= −ui(t) +R Isyni (t) (2)

where Isyni is the input signal current. The constant τm = RC is called the mem-
brane time constant of the neuron and fixed to 10ms. Whenever the membrane
potential ui crosses a threshold ϑ = 20mv, the neuron fires a spike and its po-
tential is reset to a reset potential ureset = 0mv. The learning rate (λ) in Eq. 1
is fixed to 0.01.

Each neuron is trained to produce a target spike train={25.,35.,45.,55.,65., 75.,
85.,95.}ms selected randomly when a spike pattern from the assigned class is pre-
sented at the input and not to spike when patterns from other classes presented. In
principle, different output spike patterns can be used for different digits.

The training is performed in 200 epochs, in each epoch the samples of each
class (digit) are presented in random order. After each presentation of a training
pattern, the synaptic weights of the neurons are updated according to Eq. 1.
Thus, the training is performed in incremental mode [10] rather than batch mode,
in which synapses are updated only after presenting the all training samples.

4.3 Results

We report the ability of the network to learn and classify the digit dataset in
terms of classification accuracy. The classification accuracy on each digit class is
defined as the number of patterns classified correctly over the total number of
training(testing) patterns for that digit. Fig. 3a reports the obtained accuracy
for the ten digits.
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(a) (b)

Fig. 3. (a) The average accuracy obtained in the training and testing phase for the
ten digits. (b) Evolution of the classification error, computed using 200 training and
testing patterns, after each training sample presentation.

The network was able to learn to recognize the ten digits with an average
accuracy of 92% in the training set and 86.6% in the testing set. Digit 8 has the
minimum accuracy of 78.8% while the highest accuracy was obtained for digit
1 with a value of 96%, i.e., digit 1 has the most distinctive spike patterns. The
obtained results confirm the ability of the network to classify the digit dataset
with a good efficiency. We note that we have obtained the same generaliza-
tion(testing) accuracy of 86% when the trained network was evaluated on more
testing samples (10000 testing samples).

To understand the network better, the evolving of the network performance
during training is investigated. During the training phase, the misclassification
accuracy(error), computed on 200 images from the training set and another 200
images from the testing set, are recorded after each input presentation. There are
2000 training samples and 200 epochs which leads to 2000 × 200 presentations.
However, we report the testing and training misclassification error in a step of 200
and up to 40000 presentations as shown in Fig. 3b. The figure shows the testing
error curve is following closely the training curve. After about 4000 presentation
, which is equivalent to two training epochs, the error curves start to flat and
show very slow change. Thus, it is possible to train the network with less than
20 epochs to obtain good results. In fact, there should be a balance between the
number of training epochs and number of training samples. Sufficient number of
training samples with few tens of epochs training are required for satisfactory
training for this experiment.

5 Conclusion and Future Work

In this paper we have demonstrated the application of SNN trained with SPAN
[10–12] on learning and classifying images of handwritten digits. One crucial
factor in using SNN for real-world computer application is properly encoding
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the information into spike patterns. SPAN learning method is based on tempo-
ral coding, i.e., information is coded into the precise time of the spikes. Using
the VR [19], it was possible to spike encode the digit images and classify the
generated spike patterns efficiently. It is noted that the neurons are trained to
produce the desired spike sequence in response to their class and not to fire for
other classes. After training, the synaptic weights take positive (excitatory) and
negative (inhibitory) values This means the neuron is learning its class and also
learning to reject other classes through weights adjustment. It might be more
desirable to design a mechanism that is based on inhibition to suppress the neu-
ron firing, for example using a similar mechanism to “winner-takes-all” as it is
in [1]. In addition, the used network consists of a single layer of spiking neurons
and there are no specific features extracted for classification. Therefore, there
is a space for more investigation to enhance the architecture of the network to
achieve better results. Although the digit images are static data where other
conventional methods can perform better, however after spike encoding the gen-
erated spike patterns are temporal data. The video data will take a similar form
after spike conversion, indicating that the proposed method has also the po-
tential to be applied for video signals with little modification to the algorithm,
which will be our future work to investigate. Furthermore, SPAN learning will
be enhanced for online learning and classification. We are also investigating the
feasibility of SPAN implementation on a SNN chip scuh as the SRAM- based
chip [13]. Such implementation will make it possible to use SPAN for a broad
range of engineering applications based on the principle of embedded systems.
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Abstract. Flood evacuation operations face a difficult task in moving affected 
people to safer locations. Uneven distributions of transport, untimely assistance 
and poor coordination at the operation level are among the main problems in the 
evacuation process. This is attributed to the lack of research focus on 
evacuation vehicle routing. This paper proposes an improved discrete particle 
swarm optimization (DPSO) with a random particle priority value and 
decomposition procedure as a searching strategy to solve evacuation vehicle 
routing problem (EVRP). The search strategies are proposed to reduce the 
searching space of the particles to avoid local optimal problem. This algorithm 
was computationally experimented with different number of potentially flooded 
areas, various types of vehicles, and different speed of vehicles with DPSO and 
genetic algorithm (GA). The findings show that an improved DPSO with a 
random particle priority value and decomposition procedure is highly 
competitive. It offers outstanding performance in its fitness value (total 
travelling time) and processing time.  

Keywords: Decomposition Procedure, Discrete Particle Swarm Optimization, 
Evacuation Vehicle Routing Problem; Priority Value, Potentially Flooded Area. 

1 Introduction 

Floods can be defined as the event resulting from heavy rainfall over a small area 
within a short time that can cause water to rise and fall quite rapidly [1]. The 
occurrence of floods is unpredictable. These instantaneous events usually occur due to 
inconsistent weather patterns, series of storm and extraordinary rainfall [2]. A lot of 
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people have to be evacuated at the shortest possible time to avoid loss of lives. In 
Malaysia, uneven distributions of transport, untimely assistance and poor coordination 
at the operation level have always been the main problem in the evacuation process 
during a flood event. Planning for evacuation is vital in assisting people to move to a 
safe place. As time is a decision factor in the evacuation process, urgent and firmly 
decisions are very much required at the operational level [3]. An evacuation plan 
should be efficiently constructed by taking into account routes for vehicles. Thus, 
routing the vehicles to potentially flooded area (PFA) is one of the primary concerns 
in the evacuation process. 

Several studies on evacuation plan applied optimization approaches on different 
types of disasters namely capacity constrained route planning [4], A* [5], Flip High 
Flip Edge (FHFE) [6], greedy heuristic [7][8], SP-TAG [9], ant colony optimization 
(ACO) [10], route construction heuristic and local search [11], particle swarm 
optimization (PSO) [12], and hybrid genetic algorithm (GA), and simulated annealing 
(SA) [13] have demonstrated good performance. However, research on the evacuation 
route problem for an optimal solution is pertinent. Vehicle travelling time has to be 
reduced to ensure all people arrive safely at destination. Thus, this paper addresses 
this gap of which route of vehicles is addressed and enhanced the work of [14] and 
[15] on evacuation vehicle routing problem (EVRP). 

The remainder of this article is organized as follows. Section 2 describes the 
EVRP and its features. Section 3 presents two solution representation and two DPSO 
algorithms for the EVRP solutions. The parameters, datasets and computational 
results are discussed in Section 4, and finally, Section 5 concludes the paper and 
opens some lines for future research. 

2 The Evacuation Vehicle Routing Problem 

This section explains the steps involved in finding a solution for EVRP comprising of   
EVRP formulation, the solution representation, and DPSO algorithms.   

2.1 Problem Formulation 

The EVRP involves a static routing of a number of vehicles from vehicle location 
multiple PFA. EVRP addresses the objective function to find the minimum total 
travelling time for all vehicles from vehicle location to the PFA. The problem can be 
formally defined as follows:  

Let G = (N, E) be a weighted directed graph. Define N = {N0, N1,…, Nn}. N0 
represents the vehicle location and Nn is the destination node (PFA). E is the set of 
edges. tij represents the travelling cost of traversing from i to j. For each edge (i, j) ∈ 
E, travel time tij≥ 0, is a non negative integers. H = {H1, H2, ....,Hk} is the set of all 
vehicles that are able to move from node i and j. The objective function is to find the 
minimum total travelling time for all vehicles from N0 to Nn. The EVRP is 
mathematically formulated as shown below:   

                               (1) 
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Subject to: 

                  
 (2)   

∈ {0,1} , ( , ) ∈                            
 (3) 

where:  
I  = index of nodes, i ∈N  
j  = index of nodes, j ∈N  

 k  = index of vehicle H, k ∈H 
= travelling time of vehicle k traversing from i to j. 

 Xij  =binary variable which is 1 if node i to node j is traversed,  
       otherwise it is 0.  
 

Constraints 2 ensure that the path starts at N0, end at Nn, and either pass through or 
avoid every other node j. Constraint 3 is the set of bound decision variables. The 
solution representation for EVRP was adopted from the work of Mohammed et al. 
[14] because of its good performance in solving SPP. To accommodate the EVRP, 
this solution representation is enhanced and takes into account a number of the 
vehicles. However, the use of PV that represents each node is maintained. The 
solution representation described above was enhanced from [14] and embedded in the 
myDPSO_1 algorithm. The new solution for EVRP has adopted the similar process of 
nodes expansion and the random selection of PV as stated in [15].  

2.2 myDPSO_2 Algorithm 

The new solution representation for EVRP that is discussed above is implemented in 
myDPSO_2 algorithm. The algorithm starts with the normal process of PSO. Step 2 
and 3 initialize the number of population and the coefficient values C1 and C2, 
respectively. Step 4 performs the initialization of PV and velocities. Step 5 retrieves 
vehicle's information which includes the vehicle id, vehicle capacity, and its standard 
travelling speed. Step 6 and 7 perform the search decomposition procedure for each of 
the vehicle.  In this step, only one path is selected and the selected node is assigned 
with PVmin upon selection of the path as demonstrated in Fig. 2. The Pbest and Gbest 
of each particle are calculated upon expansion of all nodes. Pbest is the total distance 
for each particle, whereas Gbest is the minimum total distance obtained from all 
particles. The iteration process starts at step 9 through 22 until a maximum iteration is 
achieved. In this iteration, each particle is updated with a new velocity and new 
position value (PV) at step 10 until 12. The new velocity and position value are in the 
form of the positive integer. Then, PV for all sub particles is updated using step 13. 
Step 14 performs the decomposition procedure of PV. Pbest(new) and Gbest(new) are 
calculated at step 15 and 16, respectively. Finally, steps 17 through 21 are the 
conditions for the selection of the best current fitness for each of the iteration. 
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myDPSO_2 algorithm 
1: Begin 
2:      Initialize number of  population 
3:      Declare  C1 and C2 

4:      Initialize PV, Vintialize(min)  and Vinitialize(max) for all particles in random 
5:      Retrieve vehicle's information from [15] 
6:     For each vehicles  
7:         Perform search decomposition procedure 
8:        Calculate Pbest and Gbest 
9:      Do 
10:    For each particle  
11:      Calculate V(new) 

12:      Calculate PV(new)  

13:      Update PV for all sub particles 
14:      Perform step 6 and 7 
15:      Calculate Pbest (new)   
16:      Calculate Gbest (new) 

17:      If (Gbest (new) > Gbest) 
18:        Assign Gbest as the best current fitness 
19:     If (Gbest (new) =< Gbest) 
20:       Gbest= Gbest (new) 

21:      Assign Gbest(new) as the best current fitness 
22: While (maximum iteration is achieved) 
23: End 

3 Performance of Algorithms Using Multiple PFA 

Parameters are applied and the value of inertia weight is selected from the range of 
this parameter suggested by Shi and Eberhart  [17]. The stopping condition is based 
on all vehicles are arrived destination or 200 iterations and 30 experiments were done 
for each of the datasets.  Datasets were taken from a flash flood in Malaysia’s Kota 
Tinggi district in 2007. Routes from vehicle location to PFA are indicated by source 
nodes (original vehicle location), nodes, edges, and destination node (PFA). All routes 
are transformed into graph abstraction. The graph is then transferred into an adjacency 
matrix for easy transformation into the algorithm. Table 1 shows the datasets for 
routing comprising the number of nodes, the total number of people that need to be 
evacuated and the number of vehicles generated based on [18].  

Table 1. List of datasets from flash flood evacuation in 2006 and 2007 for a single PFA 

Datasets Number of nodes 
Number 
people 

Number of  vehicles 

VR1_PFAs_07 49 1566 238 
VR2_PFAs_07 61 3106 374 
VR3_PFAs_07 88 3180 355 
VR4_PFAs_07 109 3800 496 
VR5_PFAs_07 133 3996 516 
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The following tables show the computational results for multiple PFA. Results for 
myDPSO_2 performed better than the other three algorithms as shown in Table 2.  
The total travelling time for GA_2 is slightly lower than myDPSO_2. Contrary to 
expectations, neither myDPSO_1 nor GA_1 produced any result after 200 iterations 
for VR1_PFAs_07. This failure may be attributed to the fact that the multi-valued PV 
assigned to each node failed to determine the valid paths. The dataset used greater 
number of nodes than a single PFA. This shows that the particles in multiple PFA 
utilize better the search space compared to a single PFA.  

Table 2. Performance of DPSOs and GAs using VR1_PFAs_07 

 
myDPSO_1 GA_1 myDPSO_2 GA_2 
ttvs PT (s) ttvs PT (s) ttvs PT (s) ttvs PT (s) 

Avg - - - - 10.170 3.314 10.173 3.452 

Min - - - - 10.167 0.920 10.167 1.482 

Max - - - - 10.187 5.132 10.193 8.596 

Std Dev - - - - 0.009 1.085 0.007 1.565 

* ttvs – total travelling time (hour), PT - processing time (second), iter - number of iteration. 

 
The next comparison highlights (Table 3) the results of VR2_PFAs_07. It was 

found that myDPSO_2 produced the best solution quality and used less processing 
time. However, myDPSO_1 and GA_1 failed to obtain any results. myDPSO_1 
stopped at 26th iteration, whereas GA_1 at 27th iteration. They failed to iterate up to 
200 iterations. With an increase in the number of vehicles and number of PFA for this 
dataset involving 374 vehicles to travel from the vehicle location to three PFA, more 
computer memory is required to converge. This may be because of many arrays in 
Java coding and the use of different structure of coding in the language which is not 
in the scope of this study. So far, the proposed myDPSO_2 has shown good results 
with only one iteration for convergence (all vehicles arrive at the assigned PFA). As 
can be seen in 1, the average processing time of myDPSO_2 is slightly higher than 
GA_2 for VR2_PFAs_07. The total travelling time for myDPSO_2 is 0.29% lower 
than GA_2, which is about 1.98 minutes. Hence, the result has confirmed the 
objective function that was stated in the problem formulation of EVRP. With a 
minimum total travelling time, all people can be picked-up by the assigned vehicles at 
each of the PFA at the shortest time.  

Table 3. Performance of DPSOs and GAs using VR2_PFAs_07 

 
myDPSO_1 GA_1 myDPSO_2 GA_2 

ttvs PT (s) ttvs PT (s) ttvs PT (s) ttvs PT (s) 

Avg - - - - 11.494 9.358 11.527 9.095 

Min - - -  - 11.385 3.978 11.385 4.493 

Max - - - - 11.723 22.433 13.583 21.419 

Std Dev - - - - 0.090 3.826 0.391 4.141 

* ttvs – total travelling time (hour), PT - processing time (second), iter - number of iteration. 
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As shown in Table 4, myDPSO_1 and GA_1 failed to obtain any results, 
myDPSO_1 stopped at only 19th iteration. Meanwhile, GA_1 run at 10th iteration. The 
result validates the employment of myDPSO_2 in solving EVRP. This algorithm 
provides results with less total processing time compared to GA_2 to move all 
vehicles from vehicle location to four PFAs, using dataset of VR3_PFAs_07. This 
result again ensures all vehicles arrive at PFA at a minimum total travelling time, 
which is important in evacuation planning. 

Table 4. Performance of DPSOs and GAs using VR3_PFAs_07 

 
myDPSO_1 GA_1 myDPSO_2 GA_2

ttvs PT (s) ttvs PT (s) ttvs PT (s) ttvs PT (s) 

Avg - - - - 12.170 7.594 12.174 17.006 

Min - - - - 11.736 4.025 11.625 3.931 

Max - - - - 13.466 22.479 13.257 309.620 

Std Dev - - - - 0.535 3.836 0.552 55.332 

* ttvs – total travelling time (hour), PT - processing time (second), iter - number of iteration. 
 

It is similar to VR3_PFAs_07, VR4_PFAs_07 and VR5_PFAs_07 are also failed 
to obtain any results. On the other hand, myDPSO_2 outperformed GA_2 for both of 
VR4_PFAs_07 and VR5_PFAs_07 in its total travelling time and processing time. It 
is noted that the use of myDPSO_2 has successfully achieved the best performance 
among the other three algorithms. Thus, these results confirmed that this algorithm 
satisfy the objective function which is to find the minimum total travelling time. 

Table 5 shows that there was a significant difference for fitness value (p-value = 
0.008) for a pair of myDPSO_2 and GA_2. However, no significant difference is 
noted for processing time. The finding validates the consistent performance obtained 
by myDPSO_2. 

Table 5. A pair t-test results for myDPSO_2 and GA_2 for the multiple PFA datasets 

 Pair T df Sig. (2-tailed) 
Fitness value myDPSO_2 - GA_2 -2.672 299 .008 

Processing time myDPSO_2- GA_2 -.904 299 .367 

4 Conclusions 

This paper presents the solution to EVRP in achieving the objective function which is 
to find the minimum total travelling time for all the vehicles from vehicle location to 
the PFA. The solution representation and a modified solution representation for the 
EVRP solution were addressed. The solution representation is embedded in 
myDPSO_1 while the modified solution representation is embedded in myDPSO_2. 
They were compared to GA_1 that embedded solution representation and GA_2 
which embedded a modified solution representation.  myDPSO_2 was found to be 
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the suitable algorithm for solving EVRP for multiple PFA. Thus, it can be said that 
the search decomposition procedure with random selection of PV embedded in 
myDPSO_2 and GA_2 provided better solutions compared to the solution that was 
embedded in myDPSO_1 and GA_1. Overall, it can be concluded that myDPSO_2 
that was applied with a new solution representation provided better results compared 
to GA_2, myDPSO_1, and GA_1 for multiple PFA datasets based on the t-test 
evaluation. Further experiments are required considering different parameter settings 
and large size of EVRP datasets. 
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Abstract. This paper proposes a novel type of quantum-inspired evolutionary 
algorithm (QiEA) for numerical optimization inspired by the multiple universes 
principle of quantum computing, which is based on the concept and principles 
of quantum computing, such as a quantum bit and superposition of states. 
Numerical optimization problems are an important field of research with 
several applications in several areas: industrial plant optimization, data mining 
and many others, and although being successfully used for solving several 
optimization problems, evolutionary algorithms still present issues that can 
reduce their performances when faced with task where the evaluation function 
is computationally intensive. In order to address those issues the QiEA 
represent the most recent advance in the field of evolutionary computation. This 
work present some application about combinatorial and numerical optimization 
problems. 

Keywords: Quantum Computing, Quantum Inspired, Evolutionary Algorithms, 
Optimization Problems. 

1 Introduction 

Evolutionary algorithms (EAs) are principally a stochastic search and optimization 
method based on the principles of natural biological evolution. EAs operate on a 
population of potential solutions, applying the principle of ‘survival of the fittest’ to 
produce successively better approximations to a solution. At each generation of the 
EA, a new set of approximations is created by the process of selecting individuals 
according to their level of fitness in the problem domain and reproducing them using 
variation operators. This process may lead to the evolution of populations of 
individuals that are better suited to their environment than the individuals from which 
they were created, just as in natural adaptation. EAs are characterized by the 
representation of the individual, the evaluation function representing the fitness level 
of the individuals, and the population dynamics such as population size, variation 
operators, parent selection, reproduction and inheritance, survival competition 
method, etc. To have a good balance between exploration and exploitation, these 
components should be designed properly. In particular, in this paper the 
representation and population dynamics are investigated to represent the individuals 
effectively to explore the search space with a smaller number of individuals (even 
with only one individual for real-time application) and to exploit the search space for 
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a global solution within a short span of time, respectively. For these purposes, some 
concepts of quantum computing are adopted in this paper for presenting the proposed 
evolutionary algorithm. Quantum computing is a research area which includes 
concepts like quantum mechanical computers and quantum algorithms. Quantum 
mechanical computers were proposed in the early 1980s [1] and their description was 
formalized in the late 1980s [2]. Many efforts on quantum computers have progressed 
actively since the early 1990s because these computers were shown to be more 
powerful than digital computers for solving various specialized problems. There are 
well-known quantum algorithms such as Deutsch-Jozsa algorithm [3], Simon’s 
algorithm [4], Shor’s quantum factoring algorithm [5], and Grover’s database search 
algorithm [6]. For giving an idea: if, for example, the speed of quantum or digital 
computer is 1 MIPS, Grover’s algorithm can find the secret key of 56-bit string within 
4 minutes in quantum computer without any factoring algorithms, while the classical 
algorithm can find it within 1000 years [7]. In particular, since the difficulty of the 
factoring problem is crucial for the security of the RSA cryptosystem which is in 
widespread use today, interest in quantum computing is increasing. Research on 
merging evolutionary computation and quantum computing has started since the late 
1990s.  Here, the concept of quantum computing utilizes the special nonlocal 
properties of the quantum phenomena. A quantum atomic or subatomic particle (e.g. 
atoms, electrons, protons, neutrons, bosons, fermions, photons) exists in a 
probabilistic superposition of states rather than in a single definite state. Particles in 
general are characterized by: charge, spin, position, velocity, and energy [8]. In this 
paper we want to propose a novel EA for numerical optimization inspired by the 
multiple universes principle of quantum computing that presents faster convergence 
time for the benchmark problems. In section one we introduce Evolutionary theory 
and its application for optimization problems, in section two we give an introduction 
for quantum principles, in section three structure of QiEA is described and in section 
four a  customizing of the algorithm is proposed and results are discussed, finally in 
section 5  some conclusions and points toward future works are presented. 

2 Evolutionary Strategy: An Overview 

EAs are based on computational models of fundamental evolutionary processes such 
as selection, recombination and mutation. Individuals, or current approximations, are 
encoded as strings composed over some alphabet(s), e.g. binary, integer, real-valued, 
etc., and an initial population is produced by randomly sampling these strings. Once a 
population is produced, it may be evaluated using an objective function which 
characterizes an individual’s performance in the problem domain. The objective 
function is also used as the basis for selection, and determines how well an individual 
performs in its environment. Genetic algorithms emphasize recombination (crossover) 
as the most important search operator and apply mutation with very small probability 
solely as a background operator. They also use a probabilistic selection operator 
(proportional selection) and often rely on a binary representation of individuals [9].  

Evolution strategies use normally-distributed mutations to modify real-valued 
vectors and emphasize mutation and recombination as essential operators for 
searching in the search space and in the strategy parameter space at the same time. 
The selection operator is deterministic, and parent and offspring population sizes 
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usually differ from each other [9]. Evolutionary programming emphasizes mutation 
and does not incorporate the recombination of individuals. Similarly to evolution 
strategies, when approaching real-valued optimization problems, evolutionary 
programming also works with normally distributed mutations and extends the 
evolutionary process to the strategy parameters. The selection operator is 
probabilistic. Presently, most applications are reported for search spaces involving 
real-valued vectors, although the algorithm was originally developed to evolve finite-
state machines [10]. 

3 Quantum Theory Principles  

Han and Kim proposed a Quantum Evolutionary Algorithm (QEA) in 2002 [11], 
which was inspired by the concept of quantum computing. According to the classical 
computing concept, the smallest information unit in today's digital computers is one 
bit, existing as state ‘1’ or ‘0’ at any given time. The corresponding analogue in a 
quantum inspired representation is the quantum bit (qbit) [12]. Similar to classical bits 
a qbit may be in ‘1’or ‘0’ states, but also in a superposition of both states. 
Superposition allows the possible states to represent both 0 and 1 simultaneously 
based on its probability.  A qbit state | Ψ > can be described as: 

 | Ψ > = α | 0 > + β | 1 >    (1) 

where α and β are complex numbers that are used to define the probability of which of 
the corresponding states is likely to appear when a qbit is read (measured, collapsed).  
|α|2 and |β|2 give the probability of a qbit being found in state ‘0’ or ‘1’ respectively. 
Normalization of the states to unity guarantees: 

 | α | 2  + | β | 2  =  1    (2) 

at any time. The qbit is not a single value entity, but is a function of parameters which 
values are complex numbers. In order to modify the probability amplitudes, quantum 
gate operators can be applied to the states of a qbit or a qbit vector. A quantum gate 
is represented by a square matrix, operating on the amplitudes α and β in a Hilbert 
space, with the only condition that the operation is reversible. Such gates are: NOT-
gate, rotation gate, Hadamard gate, and others [12]. General notation for an individual 
with several qubits can be defined as: 

Q(t) = {qt
1, q

t
2,…,qt

n}    (3) 

where n is the size of the population and qt
j is a Q-bit individual. 

Another quantum principle is entanglement - two or more particles, regardless of 
their location, can be viewed as “correlated”, undistinguishable, “synchronized”, 
coherent. If one particle is “measured” and “collapsed”, it causes for all other 
entangled particles to “collapse” too. Two fundamental motivations for the 
development of EAs that utilize quantum computation are:  

 
i. The properties of a quantum representation of probabilities;  

ii. The recent manifestation that quantum inspired evolutionary algorithms 
(QiEA) are probability estimation of distribution algorithms (EDA) [8]. 
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4 Quantum Inspired Evolutionary Algorithms 

Inspired by the concept of quantum computing, QiEA is designed with a Q-bit 
representation, a Q-gate as a variation operator, and an observation process. The 
representation, the proposed algorithm, and its characteristics are described in the 
following. 

A number of different representations can be used to encode the solutions onto 
individuals in evolutionary computation. The representations can be classified broadly 
as binary, numeric, and symbolic [12]. QiEA uses the representation reported above, 
called a Qbit, for the probabilistic representation that is based on the concept of 
qubits, and a Q-bit individual as a string of Q-bits, which are defined above and in 
[11]. Evolutionary algorithm with Q-bit representation has a better characteristic of 
population diversity than any other representations, since it can represent linear 
superposition of states probabilistically. 

4.1 Structure of QiEA 

QiEA is a probabilistic algorithm similar to other evolutionary algorithms. QiEA, 
however, maintains a population of Q-bit individuals, where Q(t) at generation t, 
where n is the size of population, and qt

j is a Q-bit individual defined as 

 
 
where the following holds for i = 1, 2, …, m as described previously, i.e., the string 
length of the Q-bit individual, and |α|2  + | β|2  =  1,   j = 1,2, …, n.  Figure 1 and 2 
show the procedure QiEA and the overall structure of QiEA explained in detail in 
[11][13], we want to specify some points useful for better comprising the rest of the 
paper: 

1) In the step of ‘initialize Q(t)’ all qt
j are initialized with 1/V2. It means that one Q-

bit individual, q0
j represents the linear superposition of all the possible states with the 

same probability: 

>
=

X
m

k
m

|
2

1
 = >  |

2

1
q0

j
ψ  

where Xk is the kth state represented by the binary string (x1, x2 … xm), where xi, i = 1, 
2, …, m, is either 0 or 1 according to the probability of either |α0

i|
2 or | β 0

i|
2, 

respectively. However, it should be noted that the performance of QEA can be 
influenced by the initial value.  
2) Each binary solution x0j is evaluated to give a measure of its fitness. 
3) The initial best solutions are then selected among the binary solutions P(0), and 
stored into B(0), where B(0) = {b0

1, b
0
2,…, b0

n} and b0
j (b

0
j| t = 0) is the same as x0

j at 
the initial generation.  
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4) Until the termination condition is satisfied, QiEA is running in the while loop. In 
particular, termination criteria are described in  the next section . 
5) In this step, Q-bit individuals in Q(t) are updated by applying Q-gates defined  
following rotation gate used as a basic Q-gate in QEA[13] 
6, 7) The best solutions among B(t - 1) and P(t) are selected and stored into B(t), and 
if the best solution stored in B(t) is better fitted than the stored best solution b, the 
stored solution b is replaced by the new one. 
8, 9) If the global migration condition is satisfied, the best solution b is migrated to 
B(t) globally. If the local migration condition is satisfied, the best one in a local group 
in B(t) is migrated to others in the same local group. The migration process defined 
below can induce a variation of the probabilities of a Q-bit individual. 

 
Procedure QiEA 

begin 
t ← 0 
1)  initialize Q(t) 
      make P(t) by observing the states of Q(t) 
2)  evaluate P(t) 
3)  store the best solutions among P(t) into B(t) 
4)  while (not termination condition) do 
begin 
t ← t + 1 
vi)   make P(t) by observing the states of Q(t - 1) 
vii)   evaluate P(t) 
5)   update Q(t) using Q-gates 
6)   store the best solutions among B(t - 1) and P(t) 
into B(t) 
7)   store the best solution b among B(t) 
8)   if (global migration condition) 
then migrate b to B(t) globally 
9)   else if (local migration condition) 
then migrate bt

j in B(t) to B(t) locally 
end 
end 

Fig. 1. Procedure QiEA 

5 Customization of QiEA 

QiEA was first discussed in [11][13] and there are several variants of QiEA The main 
idea of QiEA is to use a standard EA function to update the particle position 
represented in a qubit. Here, we have applied a new variant to the algorithm that gives  
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in our test a better performance of classical QEA [12]. We have applied an initial 
value of Han and applied a customization in termination criteria. Our proposal is that 
Hε gate is used as a Q-gate, the classical termination conditions of  
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respectively. To increase the period for fine tuning caused by the ε boundary, the 

mixed termination condition can be also used as follows: MAXGEN = τ tγ where tγ is 
the number of generations when the termination condition with γ of Cav or Cmax is 
satisfied and τ > 1. To investigate the performance of Hε gate, Schwefel function 
[12][13] is considered. Table 4.2 shows the effects of changing ε for the Hε gate. As 
shown in the table, the results for ε = 0.01 were the best for the Schwefel function, 
although the average number of generations was larger than other results. It should be 
noted that if ε is too big, the performance would be worse than that of QiEA with the 
rotation gate (ε = 0). While a large ε (= 0.03) induces a fast premature convergence, a 
properly selected-small value of ε (= 0.01) provides better solutions. In particular, Hε 
gate is recommended for a class of numerical optimization problems which have 
many local optima. We have employed other benchmark test, comparing results of 
our QiEA with differential evolution and particle swarm with 1000 function 
evaluations of several numerical problems with a suitable quantization of starting 
functions as an alternative to binary algorithms. In table 2 and 3 are shown results for 
these last benchmark tests, it is evident that QiEA was able to reach better results with 
much less evaluations than others two algorithms. Also, the algorithm was able to find 
better results than other two with the same number of function evaluations. 
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Table 1. Experimental results of the Schwefel function to show the effects of changing ε for Hε 
gate. The population size was 15, the global migration period 100, the local group size 3, the 
number of observations 3, and the number of runs 30. γ of (4.4) was set to 0.9999. b., m., and w. 
mean best, mean, and worst, respectively. σ and t represent the standard deviation and the 
average number of generations, respectively. 

 ε 0 0.005 0.01 0.015 0.02 0.03  

 b 1766.5 3.8 x 10-4 3.8 x 10-4 2.4  x 10-3 0.2978 470.8  

 m 2326.5 30.6 4.5 x 10-4 8.4721 64.840 1041.6  

f w 3462.1 420.9 6.7 x 10-4 131.4 574.21 1875.1  

 σ 550.8 69.65 6.1 x 10-5 27.142 99.78 356.84  

 t 5467.6 7001.8 7985.3 6874.0 5999.41 2891.3  

Table 2. Mean number of function evaluations for each experiment 

 QiEA Diff Evolution PSO 

f1 40000 40000 300000 

f2 19500 20000 250000 

f3 65000 100000 80000 

f4 10000 100000 80000 

Table 3. Comparative results between QiEA, differential evolution and PSO with 1000 
function evaluations 

 QiEA Diff Evolution PSO 

f1 8*10-19 3*10-17 21000 

f2 5*10-12 2*10-9 nan 

f3 0 2.3*10-21 0.678 

f4 1.5*10-13 4*10-13 nan 

 

Fig. 2. Overall structure of QiEA 
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6 Conclusions 

This paper presented a new quantum-inspired evolutionary algorithm with real 
representation that is better suited for numerical optimization problems than using 
binary representation. The new algorithm has been evaluated in several benchmark 
problems and showed very promising preliminary results, with better performance 
than other well-established algorithms. Further tests are needed in order to evaluate its 
robustness with other kinds of problems and a rigorous statistical analysis calculating 
e.g. standard deviation and average error is needed. Future works will include the use 
of the algorithm to optimize new benchmark functions and the use of the algorithm 
neuro-inspired [14] and other practical numerical optimization problems. Authors are 
working in these directions. 
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Abstract. Social recommendations have been found to increase the
product adoption probability. However, very few studies have considered
the impact of social opinions on the users’ evaluation of the product.
In social networks, many times users’ opinions are not completely inde-
pendent from their friends and users tend to change their rating such
that they are more similar to the social opinions. Understanding this
behavior is important for developing accurate recommendation systems,
precise information flow models and to launch effective viral marketing
campaigns. In order to understand this phenomenon, we propose a novel
formulation for the users ratings where every expressed rating is consid-
ered as a function of the social opinion along with the user preference
and item characteristics. The proposed method helps in improving the
prediction accuracy of users’ rating by more than 2% in presence of social
influence. Additionally, the learned model parameters reveal the degree
of conformity of users. Detailed analysis of user social conformity show
that more than 76% of users tend to conform to their friends to some
extent. On an average, user ratings become more positive in presence of
the social influence.

Keywords: Pattern Mining, Social Conformers, Recommender System.

1 Introduction

Social networks play a fundamental role in spreading information, ideas and
technologies among their members. Often the decision to adopt a product is in-
fluenced by one’s social connections. For example, positive friends reviews about
a book encourages us to read it. Numerous studies have indicated that social
recommendations result in an increase in the sales volume [2]. As a result, a
large amount of research efforts have been devoted to understand the intricacies
involved [5] and coming up with interesting applications like viral marketing [5],
personalized recommender systems [6], etc.

However, most of the existing models have largely ignored the effect of social
opinions on the posterior users evaluation of products i.e. the opinion the user
form after experiencing the product. They either assume that the expressed
opinion is same as the influencing opinion [5] or they are assumed to depend
strictly on the product quality [1]. However many times, user’s evaluation of
the product, is not completely independent of her social circle and she tends to
conform with social opinions. For example, a user reads a book and does not

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 694–701, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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like it much. However lots of friends praise it and call it a really insightful book
or “5/5”, then this might change the user’s opinion slightly and user might rate
the book as “3”. Had she not interacted with her friend, she might have given
a rating of “2”. This behavior usually arise because of the presence of social
pressure and the innate difficulty involved in providing an absolute numerical
rating to a product [8]. In such cases, social opinions can act as a reference rating
and calibrates the user ratings such that they are not very different from the
prevalent social opinion. We call this behavior as social conformity and the
users who changes their rating as social conformers. Recently, this effect has
been shown to exist on Goodreads and Douban [4].

Quantifying this behavior is important not just from the point of curiosity,
but it is also crucial in improving the accuracy of personalized recommender
systems and in developing better information flow models. The recommendation
systems can boost the quality of recommendation by removing the social confor-
mity bias, thus making the recommendation better tailored to users’ preference.
While the information flow models can more accurately predict the further in-
formation cascade by accurately predicting the users’ opinions. However, it is
a very difficult task to quantify the social conformity as for a given user and
product we never get to know the two ratings, one under the social influence and
one without it. All that is known is a single opinion expressed by the user. Thus,
the key challenge is to identify what component of any rating corresponds to the
user’s preference and what component corresponds to the social conformity.

In this paper, we account for social conformity and propose a novel formula-
tion for the user’s ratings. Contrary to homophily based recommender systems
[6], which try to learn user preference based on her friends’ preference, we focuse
on the change of ratings at item level caused by the social influence. The proposed
formulation represents every user rating as a function of social conformity and
social opinion along with user’s preference and item’s characteristics. The social
conformity down-weighs the user’s preference such that as the number of influen-
tial friends increases, the user’s rating become more similar to the social opinion.
Further, the model parameters provide an intuitive interpretation of the social
conformity behavior which reflect the degree a user conforms to her friend. It is
important to note that different from the homophily based recommendation sys-
tems, we focus on the change of ratings at item level. Using this model, we explore
the presence of social conformity on a real large scale dataset, Goodreads1.

The key contributions of this paper are following.

1. We propose a novel formulation for user ratings that explicitly considers the
social conformity. The proposed model improves the prediction accuracy of
users’ ratings by more than 2% in presence of social influence.

2. The learned social conformity parameters are also verified by qualitatively
comparing the discovered most influential users with the authoritative and
most socially active users.

3. Based on the learned users’ degree of conformity, we find various interesting
patterns on Goodreads that underline the impact of social conformity.

1 http://www.goodreads.com/

http://www.goodreads.com/
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2 Conformity Rating Model (CRM)

Notations. Let G = (V,E) be a directed graph where every node u ∈ V corre-
sponds to a user in the social network and edge (u, f) ∈ E exists if node f is a
friend of node u. The user ratings for the set of items I, are stored in user-item
matrix R, such that every element ru,i represents the rating for item i given by
user u. Let the set of active neighbors who have posted their ratings for item i
before user u be A(u, i).

Problem Definition. The task is to predict the rating ru,i for item i given
by user u, given the user-item matrix R and the set of active neighbors A(u, i).

Social opinions calibrate user’s inner rating r0u,i such that they are not very
different from them. To account for such social behavior, we propose the follow-
ing social conformity based rating model CRM as

r̂u,i = r0u,i + conf · (social opinion− r0u,i) (1)

=
(
1− conf

)
r0u,i + conf · social opinion, (2)

where conf represents the degree by which a user conforms to the social opinion
and social opinion is the social opinion about the item i before the user u rates
it. The rewritten form in Eq. (2) can also be seen as down-weighing the user’s
personal preference and giving higher weight to the friends’ opinions. That is, if
the user u has extremely high degree of social conformity then user u will change
her rating such that it becomes same as the social opinion. Now we define each
of the quantity conf , social opinion and r0u,i one by one.

– User’s Conformity conf . We expect the degree of conformity conf to
take large values as the number of friends who have already rated the item
increases. This phenomenon is known as the bandwagon effect in social
sciences [3]. According to the bandwagon effect, as the number of individu-
als who believe in something increases, others tend to disregard their own
opinions and also “hop on the bandwagon”. That is, the social conformity is
directly proportional to the number of friends with similar opinions. Thus,
conf = |Au,i|, because only active friends can affect the user’s rating for the
item. However, one can expect that users do not conform to all their friends
equally. The friends who are regarded highly in the user’s eyes, tend to affect
their rating more. Hence, we introduce a parameter ηf,u corresponding to
every user and her friend pair. This parameter defines the degree by which
user u conforms to the rating of its friend f . As the number of friends with
high ηf,u increases, the conf can be expected to increase. Thus, we write

conf =
∑

f∈Au,i

ηf,u. (3)
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Since conf can take maximum value of 1, we constraint ηf,u such that∑
f ηf,u ≤ 1. Such linear forms of social influence have also been used in

Linear threshold model [5] where the adoption probability of a product de-
pends linearly on the active friends’ influence.

– Social Opinion social opinion. We write the social opinion as the sum of
friends’ opinions weighted according to ηf,u. This is because the opinions of
friends with high ηf,u affect the user’s rating by the most amount. Thus, we
have

social opinion =

∑
f∈Au,i

ηf,u · rf,i∑
f∈Au,i

ηf,u
. (4)

– User’s Inner Rating r0u,i. To represent the user’s inner rating r0u,i, we
user one of the state of art recommendation models, Probability Matrix
Factorization (PMF) method [7]. PMF model uses a small number of factors
to represent the preference of users and item characteristics. The preference
of users qu ∈ RK and item characteristics pi ∈ RK are represented by low
dimensional vectors in latent space of dimensionality K. Then every rating
is written as

r̂0u,i = μ+ bi + bu + qTu · pi, (5)

where μ is average user-item rating, bi is item bias and bu is user bias.

Thus, we finally have

r̂u,i =
(
1−

∑
f∈Au,i

ηf,u

)
(μ+ bi + bu + qTu · pi) +

∑
f∈Au,i

ηf,u · rf,i.

Parameter Estimation. To estimate the model parameters bi, bu, qu, pi, ηf,u,
we construct the objective function such that it minimizes the square of differ-
ence between observed user rating ru,i and estimated rating r̂u,i. Additionally,
all parameters are regularized to avoid over fitting on the train dataset. Thus,
our objective function is

min
∑
u,i

(ru,i − r̂u,i)
2+λ1

(∑
u

b2u +
∑
i

b2i +
∑
u

||qu||2 +
∑
i

||pi||2
)
+ λ2

∑
u,f

η2f,u

s.t. ηf,u ≥ 0 ∀u, f ;
∑
f

ηf,u ≤ 1 ∀u,

where λ1 and λ2 are the hyper-parameters which control the amount of regular-
ization. The objective function is minimized by using the alternating minimiza-
tion. In every first alternating step, we minimize the function with respect to
the PMF model parameters bi, bu, qu and pi, using the steepest gradient decent
method. Then in the second alternating step, we minimize the function with re-
spect to ηf,u. Given the estimate r̂0u,i from first step, the objective function in the
latter step can be written as the sum of small subproblem, each corresponding
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Table 1. Goodreads data statistics

Users Edges Items Ratings Number of Authors

55,654 1,757,568 120,703 9,462,016 5,078

to one user. Since the set of parameters ηf,u of every subproblem are different
from the others, the objective function can be minimized by minimizing each of
the sub problems separately. Thus, each of the sub problem can be minimized
efficiently in parallel, using the gradient descent method.

3 Empirical Evaluation

We evaluate the effectiveness of CRM, both in terms of its ability to predict user
ratings and its ability to identify the social influencers.

3.1 Goodreads Dataset

Goodreads is an online social books cataloging website, which permits users to
rate books on 0 − 5 scale (with 5 being the best) and share their reviews with
friends. We use the dataset crawled by authors in [4]. The items and users are
filtered such that every item has at least 10 ratings and every user has rated
at least 5 books rated on 5 different dates and have at least 10 friends. This is
to make sure the selected users are active users. In addition, we also crawl the
profile pages of all the selected users. Users who have also authored books are
marked as the authors. The statistics of the data is summarized in Table 1.

3.2 Prediction Accuracy

We evalute the ability of CRM to predict the users’ ratings and compare its
accuracy with the PMF method. The model parameters of both the PMF and
the CRM, are trained on a train set and their performance is calulated on a test
set. The train and test sets are constructed by splitting the user-item ratings in
4:1 ratio.

Performance Measure. The Root Mean Square Error (RMSE) metric is used

for measuring the prediction accuracy. It is defined as

√∑
u,i(ru,i−r̂u,i)2

N , where
N is the number of ratings in the test set.

Observations. The RMSE values obtained using the CRM and PMF when
λ1 = 1, λ2 = 0.1 are presented in Table 2. We can observe following.

– RMSE improves by more than 0.3% when social conformity is taken into
consideration. Further, if we calculate RMSE value only for ratings who are
potentially affected by the social influence (conf > 0.1), the RMSE improves
by more than 2%.
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Table 2. RMSE when λ1 = 1, λ2 = 0.1

Number of test ratings PMF CRM

K = 10
All ratings 1,789,663 0.8556 0.8520

Ratings with conf > 0.1 208,852 0.8476 0.8254

K = 5
All ratings 1,789,663 0.8472 0.8441

Ratings with conf > 0.1 196,855 0.8471 0.8280

– Sensitivity to K. The RMSE value increases for both CRM and PMF
model when K increase from 5 to 10. However, the drop in RMSE value is
larger for PMF model than for CRM. This might be because a large value
of latent space dimensionality K, can lead to over fitting on the training set.
However, smaller impact on CRM underlines its robust performance.

– Sensitivity to λ2. Effect of λ2 (hyper-parameter to control the regulariza-
tion) on the RMSE values is as per the expectations and is shown in Figure 1.
The performance gets hurt if λ2 is too large (≥ 1) or when it is too small
(≤ 0.01). Higher value of λ2 forces the selection of small social conformity
factors ηf,u and thereby under fits the model. While very small value leads
to over-fitting on the training set. The best RMSE value is achieved when
λ2 = 0.1, though performance is reasonably robust around this value.

3.3 Influencers Quality

We evaluate the quality of the learned ηf,u parameters by analyzing the proper-
ties of most influential users. In our setting, the users who have maximum effect
on their friends’ ratings are the social influencers. Formally, we define the social
influence of a user u as

∑
f ηu,f (Note that it is defined by reversing the con-

formity ηf,u direction). We expect that the top influencers should have higher
authority and higher number of social connections. Hence, we rank the users
based on their social influence and study their degree and authority.

– Average degree of top influential users. The average degree (number
of friends) of top x most influential users as function of x is plotted in
Figure 2. It can be noticed that top 200 influential users have the highest
average degree and as we consider more and more top users as the influential
ones, their average degree starts to fall.

– Authority of top influential users. We validate the authority of the
influential users by checking if they have also authored the books. This is
a reasonable criterion as the book authors have higher perceived authority
among their friends. The plot of percentage of authors among the top x
influential users is shown in Figure 3. It can be noted that percentage of
authors is very high among the top influencers. More than 45% authors
appear in the top 200 influencers and there are only 12% authors among
the top 5000 users, while the entire dataset has approximately 9% authors.
Thus, as we keep widening the value of x, the ratio of authors to non-authors
approaches to the ratio of entire dataset.
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Both the observations show that CRM is able to identify the social influ-
encers accurately.

4 Social Conformity Analysis

Having verified CRM model, in this section we explore the nature of social
conformity. We seek to answer following the questions.

– How many users conform to their friends?
The distribution of user conformity ηu =

∑
f ηf,u is presented in Figure 4(a).

It can be noticed that more than 76% users have ηu > 0. Among these users,
most of them belong to the 0.2 to 0.6 interval. That is, most of the users
in the network display some sort of conformity to their friends. In gerernal,
we find that most of the users conform to only one friend and less than 9%
users conform to more than 14 friends.

– By how much amount the user ratings change because of social opinions?
We plot the distribution of change in ratings caused by the social opinions
for ratings with conf > 0.1. Results are presented in Figure 4(b). It can be
noted that, most of the ratings change is between -0.5 and 0.5. Additionally,
it is interesting that more ratings change by positive factor than by the
negative factor. 15% rating changes by +0.1 amount while only 12% ratings
changes to -0.1 amounts.

– When does the conformity prevail the most?
For each item, we find the percentage of social ratings with conf > 0.1
that appeared in between day d and day d + 10 since first rating is posted.
Then, we calculate their average over all the items and plot them against day
d. Similarly we plot the ratings with conf ≤ 0.1. Results are presented in
Figure 4(c). It can be seen that two kinds of ratings follow different pattern.
The ratings with conf ≤ 0.1 have maximum presence during the start of the
information cascade and their percentage decays slowly as the time passes
by. While the ratings with conf > 0.1 have relatively smaller presence at
the start. As the time passes by their percentage increases and peaks at
around 300 days passed. After that, their percentage falls with time and
follows similar pattern as the other ratings. In general, we find that users
with higher value of ηu tend to post their ratings late.
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Fig. 4. Patterns of social conformity

5 Conclusion

We propose a novel formulation for the user ratings CRM that explicitly consid-
ers the social opinions. The CRM is shown to be effective in both improving the
prediction accuracy of user’s rating and in accurately identifying the social in-
fluencers. Further, several interesting patterns have emerged. We find that more
than 76% of users show some degree of conformity with their friends. To our
surprise, our friends opinion makes our posterior evaluation of the product more
positive then negative, which is certainly a good news for the viral marketing
strategy. Similar to the item product adopters, the users with high conformity
tend to post their rating during the later part of the information cascade. We
hope that the patterns found in this paper, would help in developing better
recommendation systems and information propagation models.
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Abstract. This paper presents a canonical dual approach for solving
a general nonconvex problem in network optimization. Three challeng-
ing problems, sensor network location, traveling salesman problem, and
scheduling problem are listed to illustrate the applications of the pro-
posed method. It is shown that by the canonical duality, these nonconvex
and integer optimization problems are equivalent to unified concave max-
imization problem over a convex set and hence can be solved efficiently
by existing optimization techniques.

Keywords: Global Optimization, Canonical Duality, Wireless Network,
Traveling Salesman Problem, Scheduling Problem.

1 Introduction

Let us consider the following nonconvex (primal) optimization problem that
arises in a wide range of applications:

(P) : min

{
P (x) =

1

2
xTQx− fTx+W (x) : x ∈ Xa

}
, (1)

where Q = {qij} ∈ Rn×n is a given symmetric matrix, f ∈ Rn is a given vector,
Xa ⊂ Rn is a convex open set, and W (x) is a nonconvex function. Note that in
the context of constrained optimization problems, the function W (x) could be
simply defined as a (nonsmooth) indicator function of a feasible space Xc:

W (x) =

{
0 if x ∈ Xc

+∞ otherwise.
(2)

If Xa = Rn and Xc = {x ∈ Rn| Ax ≤ b, l ≤ x ≤ u}, where A ∈ Rm×n is a
matrix, b ∈ Rm, and l,u ∈ Rn are given vectors, then Problem (P) reduces to
a linearly constrained quadratic program:

(Pq) : min

{
P (x) =

1

2
xTQx− fTx : Ax ≤ b, l ≤ x ≤ u, x ∈ Rn

}
. (3)

T. Huang et al. (Eds.): ICONIP 2012, Part III, LNCS 7665, pp. 702–709, 2012.
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It is well-known that even this most simple problem is NP-hard if Q is indefinite
and considerable efforts have been devoted to solve this type of problems.

The key idea of the canonical dual transformation is to choose a certain geo-
metrically reasonable measure (operator) ε = Λ(x) : Xa ⊂ Rn → Ea ⊂ Rm such
that the nonconvex functional W (x) can be recast by adopting the canonical
form W (x) = V (Λ(x)). Thus, the primal problem (P) can be written in the
following canonical form:

min {P (x) = V (Λ(x)) − U(x) : x ∈ Xa} , (4)

where U(x) = − 1
2x

TQx+ fTx. For the given canonical function V (ε), its Leg-
endre conjugate V ∗(ς) can be defined uniquely by the Legendre transformation,
and the following canonical duality relations hold:

ς = ∇V (ε) ⇔ ε = ∇V ∗(ς) ⇔ V (ε) + V ∗(ς) = εT ς. (5)

In finite deformation mechanics, the one-to-one canonical duality relation ς =
∇V (ε) is called the canonical constitutive law [1]. By this canonical duality,
the nonconvex term W (x) = V (Λ(x)) in the problem (P) can be replaced by
Λ(x)T ς − V ∗(ς) such that the nonconvex function P (x) is reformulated as

Ξ(x, ς) = Λ(x)T ς − V ∗(ς)− U(x), (6)

which is the so-called total complementary function introduced by Gao and
Strang in nonconvex mechanics [1]. By using this total complementary function,
the canonical dual function can be formulated as

P d(ς) = sta{Ξ(x, ς) : x ∈ Xa } = UΛ(ς)− V ∗(ς), (7)

where UΛ(ς) = sta{Λ(x)T ς − U(x) : x ∈ Xa} is the so-called Λ-conjugate of
U , which is defined on the dual feasible space Sa.

2 Challenging Problems and Applications

2.1 Wireless Network Localization

Consider the following general nonlinear programming problem arising from Eu-
clidean distance geometry (see [3]):

(P) min

⎧⎨⎩P (X) =
∑

(i,j)∈S

1

2
wij

(
1

2
‖xi − xj‖2 − μij

)2

+
1

2
〈X,AX〉 − 〈X,T〉 |X ∈ Xa

}
,

where the decision variable X = [x1,x2, · · · ,xn] = {xαi }i,α ∈ Rr×n is a matrix
(two-point tensor) with each column xi ∈ Rr as a position of each sensor such
that

‖xi − xj‖ =
(

r∑
α=1

(xαi − xαj )
2

) 1
2
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denotes the Euclidian distance between xi and xj , (i, j) ∈ S = {1, 2, · · · , n};
Xa ⊂ Rd×n is a feasible set; T = {T i

α} ∈ X ∗ = Rn×d is a given matrix; wij ≥
0 and μij ≥ 0 (∀i, j ∈ S) are given weights and parameters for each pair

(xi,xj), respectively; A = {Ai,β
α,j} is a fourth-order symmetric tensor, and AX =

{
∑n

j=1

∑r
β=1A

i,β
α,jx

β
j }i,α, the bilinear form 〈X,T〉 : Xa ×X ∗ → R is defined as

〈X,T〉 = tr(XT) =

n∑
i=1

d∑
α=1

Xα
i T

i
α.

Canonical Geometric Measure and Dual Problem Since

X = (x1,x2, · · · ,xn) ∈ Rr×n,

we have the identity

‖xi − xj‖2 = (xi − xj)
T (xi − xj) = (ei − ej)

TXTX(ei − ej),

where ei is the i-th standard unit vector in Rn. Introducing a linear (difference)
operator D : Xa → Rr×n×n such that

DX = {X(ei − ej)} = {xi − xj},

the canonical strain measure ξ can be defined as

ξ = {ξij} = Λ(X) =
1

2
(DX)T (DX) =

1

2

{
(ei − ej)

TXTX(ei − ej)
}
,

where Λ is the so-called geometrical nonlinear operator from Xa ⊂ Rr×n into

Va = {ε ∈ Rn×n| ξ = ξT , ξ + 0, ξii = 0, i = 1, · · · , n}.

Clearly, ξij =
1
2‖xi−xj‖2, which is corresponding to the Cauchy-Riemann strain

tensor in finite deformation theory. By introducing a quadratic function V : Va →
R,

V (ξ) =
1

2

∑
i,j

wij(ξij − μij)
2 =

1

2
〈(ξ − μ);W ◦ (ξ − μ)〉,

where W = {wij}, μ = {μij}, W ◦ μ = {wijμij} represents the Hadamard
product of two matrices, and 〈∗; ∗〉 denotes the bilinear operator of two matrices.
The primal problem (P) can now be reformulated in the canonical form:

(P) : min

{
Π(X) = V (Λ(X)) +

1

2
〈X,AX〉 − 〈X,T〉 : X ∈ Xa

}
.

By the canonical dual transformation, the canonical dual problem can be pro-
posed as follows:

(Pd) : sta

{
P d(ς) = −1

2
〈G+(ς)T,T〉 − 1

2
〈ς;W−1 ◦ ς〉 − 〈μ; ς〉 | ς ∈ Sa

}
,
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where,G(ς) = A+DT ςD withDT ς = (eTi −eTj )ς,G
+ represents the generalized

inverse of G, the dual feasible space Sa is a subset of Rn×n such that for a given
T, the matrix equation G(ς) X = T is solvable on Sa.

Theorem 1 (Complementary-Dual Principle). The problem (Pd) is a
canonical dual of the primal problem (P) in the sense that if ς̄ is a critical
point of (Pd), then

X̄ = G+(ς̄)T (8)

is a critical point of (P) and

P (X̄) = P d(ς̄).

In order to identify extremality of the analytical solution (8), we need to intro-
duce a useful feasible space

S+
a = {ς ∈ Sa | G(ς) ' 0}.

Theorem 2. Suppose that ς̄ ∈ S+
a is a critical point of the canonical dual func-

tion P d(ς̄) and X̄ = G+(ς̄)T. Then, X̄ is a global minimizer of P (X) on Rr×n

if and only if ς̄ is a global maximizer of P d(ς) on S+
a , i.e.,

P (X̄) = min
X∈Rr×n

P (X)⇔ max
ς∈S+

a

P d(ς) = P d(ς̄). (9)

This theory shows that if the canonical dual function P d(ς) has a critical point
in S+

a , then the nonconvex primal problem (P) is equivalent to a concave max-
imization problem (Pd) over a convex space S+

a , which can be solved easily by
well-developed optimization methods.

2.2 Traveling Salesman Problem

Consider the well-known Traveling salesman problem (TSP), which we need to
determine the shortest closed path passing through a set of n cities, with each
city visited exactly once. Suppose N = {1, 2, · · · , n} is the set of TSP cities, and
the distance between city i and city j is given by dij . Assume

dii = 0, dij = dji, ∀i, j ∈ N .

Define a Boolean decision variable xij according to

xij =

{
1 if city i is in the jth position,
0 otherwise.

(10)

To make sure the round trip, we assume

xi0 = xin, xi1 = xi(n+1), ∀i, j ∈ N .
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Let X = {xij} ∈ Rn×n, the Traveling salesman problem can be represented by
following quadratic programming problem [8]:

(P) Minimize P (X) =

n∑
i=1

n∑
k=1

n∑
j=1

xijdik · (xk(j+1) + xk(j−1))

subject to

n∑
j=1

xij = 1, ∀i ∈ N ,

n∑
i=1

xij = 1, ∀j ∈ N ,

xij ∈ {0, 1}, ∀i, j ∈ N .

Canonical Dual Problem. Let

G(μ) = A+ 2Diag (μ),

F (σ, τ ,μ) = μ−CTσ −DT τ .

By the canonical dual transformation [1], the canonical dual problem can be
stated as follows:

(Pd) Maximize P d(σ, τ ,μ) = −1

2
F (σ, τ ,μ)TG†(μ)F (σ, τ ,μ)− σT e− τT e

subject to σ �= 0, τ �= 0,μ �= 0,

σ ∈ Rn, τ ∈ Rn,μ ∈ Rnn,

where, A = {ast} ∈ Rnn×nn is a block matrix, which satisfies

ast =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dik, if s = (i− 1)N + j and t = (k − 1)N + (j − 1), ∀i, k, j ∈ N ,
dik, if s = (i− 1)N + j and t = (k − 1)N + (j + 1), ∀i, k, j ∈ N ,
dki, if s = (k − 1)N + (j − 1) and t = (i − 1)N + j, ∀i, k, j ∈ N ,
dki, if s = (k − 1)N + (j + 1) and t = (i − 1)N + j, ∀i, k, j ∈ N ,
0, otherwise,

C =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...
. . .

...
...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤⎥⎥⎥⎦ ∈ Rn×nn,

D =

⎡⎢⎢⎢⎣
1 0 · · · 0 · · · · · · 1 0 · · · 0
0 1 · · · 0 · · · · · · 0 1 · · · 0
...
...
. . .

...
...

...
...
...
. . .

...
0 0 · · · 1 · · · · · · 0 0 · · · 1

⎤⎥⎥⎥⎦ ∈ Rn×nn,

e = [1, · · · , 1, · · · , 1, · · · , 1]T ∈ Rn.
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Theorem 3 (Complementary-Dual Principle). Problem (Pd) is a canon-
ical dual of Problem (P) in the sense that if (σ̄, τ̄ , μ̄) is a KKT solution of
Problem (Pd), then the vector X̄ = {xij} ∈ Rn×n defined by

xij = y(i−1)n+j , ∀i, j ∈ N , and ȳ = G†(μ̄)F (σ̄, τ̄ , μ̄) ∈ Rnn (11)

is a KKT solution of Problem (P) and P (X̄) = P d(σ̄, τ̄ , μ̄).

To continue, let the feasible space X of problem (P) and the dual feasible space
Z be defined by

X =

⎧⎨⎩X ∈ Rn×n :

n∑
j=1

xij = 1,

n∑
i=1

xij = 1, xij ∈ {0, 1}, ∀i, j ∈ N

⎫⎬⎭
Z = {(σ, τ ,μ) ∈ Rn × Rn × Rnn : σ �= 0, τ �= 0,μ �= 0},
Z+

a = {(σ, τ ,μ) ∈ Z : G(μ) ' 0}.

We have the following theorem.

Theorem 4. Assume that (σ̄, τ̄ , μ̄) is a KKT point of P d(σ, τ ,μ) and X̄ de-
fined by (11). If (σ̄, τ̄ , μ̄) ∈ Z+

a , then X̄ is a global minimizer of P (X) and
(σ̄, τ̄ , μ̄) is a global maximizer of P d(σ, τ ,μ) with

P (X̄) = min
X∈X

P (X) = max
(σ,τ ,μ)∈Za

+
P d(σ, τ ,μ) = P d(σ̄, τ̄ , μ̄) (12)

2.3 Scheduling Problem in Supply Chain

In project scheduling, a set of resource-constrained jobs has to be scheduled so as
to minimize a given objective resources. The scheduling problem has a variety of
applications in manufacturing, production planning, project management, and
elsewhere.

We consider the problem to minimize the total cost of a schedule when the jobs
are subject to temporal constraints only (i.e., there are no resource constraints).
A common way to model scheduling problems as integer linear programs is to
use time indexed variables. Let

xjt =

{
1 if job j starts at time t,
0 otherwise,

where, j ∈ J = 0, · · · , n. Jobs 0 and n are assumed to be artificial jobs indicating
the project start and the project completion, respectively, dij be the integral
length of a time lag (i, j) between two jobs i, j ∈ J , and let L ⊆ J ×J be the set
of all given time lags, T be the deadline of the project, and t = 0, · · · , T , pi be
the processing time of activity i, the precedence relation (i, j) ∈ L if activity j
cannot start before activity i completes. Finally, let wjt be the net present value
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of activity j when starting at time t. This leads to the following integer linear
program:

(P) Minimize P (x) =

n∑
j=0

T∑
t=0

wjtxjt (13)

subject to

T∑
t=0

xjt = 1, j ∈ J,

T∑
t=0

t(xjt − xit) ≥ dij , (i, j) ∈ L, (14)

xjt ∈ {0, 1}, j ∈ J, t = 0, · · · , T. (15)

Canonical Dual Problem. Let

X = [x00, · · · , x0T , · · · , xn0, · · · , xnT ]T ,
W = [w00, · · · , w0T , · · · , wn0, · · · , wnT ]

T ,

D = [d00, · · · , d0n, · · · , dn0, · · · , dnn]T , dij = 0 if i ≥ j

and

B =

⎡⎢⎢⎢⎣
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 · · · 1 · · · 0 · · · 0
...
. . .

...
...
. . .

...
. . .

...
. . .

...
0 · · · 0 0 · · · 0 · · · 1 · · · 1

⎤⎥⎥⎥⎦ ∈ R(n+1)×[(T+1)×(n+1)],

A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · T 0 · · · −T · · · · · · 0 · · · 0 0 · · · 0
...
. . .

...
...
. . .

...
. . .

. . .
...
. . .

...
...
. . .

...
0 · · · T 0 · · · 0 · · · · · · 0 · · · 0 0 · · · −T
...
. . .

...
...
. . .

...
. . .

. . .
...
. . .

...
...
. . .

...
0 · · · 0 0 · · · 0 · · · · · · 0 · · · T 0 · · · −T

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R[(n+1)×(n+1)]×[(T+1)×(n+1)],

By the canonical dual theory [1], the canonical dual problem can be stated as
follows:

(Pd) Maximize P d(σ, τ ,μ) = −1

2
F (σ, τ ,μ)TG+(μ)F (σ, τ ,μ)− σT e+ τT e

subject to σ > 0, τ ≥ 0,μ > 0,

σ ∈ Rn+1, τ ∈ R(n+1)×(n+1),μ ∈ R(T+1)×(n+1),

where,

G(μ) = 2Diag (μ), F (σ, τ ,μ) = μ−W −BTσ −AT τ .

And we have complementary-dual principle and optimization criterion similar
to Theorem 3 and Theorem 4.
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3 Conclusions

We have presented simple applications of the canonical duality theory for
three challenging problems. A general analytical solution is obtained by the
complementary-dual principle. Results show that by using the canonical dual
transformation, the nonconvex primal problem and integer programming prob-
lem can be converted to a unified concave maximization dual problem, which
can be solved by well-developed convex minimization techniques. The idea and
the method presented in this article can be used and generalized to solve much
more difficult problems in global optimization, network communication, and sci-
entific computations (see [2, 4–7]). The development of techniques is essential to
extrapolate the complexities of the real world.
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