
 

T. Huang et al. (Eds.): ICONIP 2012, Part II, LNCS 7664, pp. 664–672, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

SVM-Based Just-in-Time Adaptive Classifiers* 

Cesare Alippi1,2, Li Bu1, and Dongbin Zhao1 

1 State Key Laboratory of Management and Control for Complex Systems,  
Institute of Automation Chinese Academy of Sciences, Beijing, 100190 China  

bulipolly@gmail.com, dongbin.zhao@ia.ac.cn 
2 Dipartimento di Elettronica e Informazione, Politecnico, di Milano, 20133 Milano, Italy 

alippi@elet.polimi.it 

Abstract. Aging of sensors, faults in the read-out electronics and environmen-
tal changes are some immediate examples of time variant mechanisms violating 
that stationarity hypothesis mostly assumed in the design of classification sys-
tems. Such changes, known in the related literature as concept drift, modify the 
probability density function of measurements, hence impairing the accuracy of 
the classifier. To cope with these mechanisms, active classifiers such as the 
Just-in-time adaptive ones, are needed to detect a change in stationarity and 
modify the classifier configuration accordingly to track the process evolution. 
At the same time, when the process is stationary, new available supervised in-
formation is integrated in the classifier to improve over time its classification 
accuracy. This paper introduces a JIT adaptive classifier based on support vec-
tor machines able to track changes in the process generating the data with com-
putational complexity and memory requirements well below that of current JIT 
classifiers integrating k-nearest neighbor solutions. 
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1 Introduction 

Not rarely, data coming from real applications are characterized by a time-variant 
nature whereas applications built on the top of them mostly assume the stationarity 
hypothesis. As a consequence of nonstationarity, the accuracy of the application solu-
tion degrades over time. To mitigate this problem we need to intervene by checking at 
first if the stationary hypothesis holds for a given datastream and, when it does not, 
provide the application solution with adaptation mechanisms for tracking changes and 
keep performance at an acceptable level. In the following, we focus the attention on 
active classifiers [1]–[3], i.e., classifiers incorporating a change-detection test for 
identifying concept drift and react accordingly. Readers interested in passive classifi-
ers, i.e., classifiers adapting online without the need to detect a change, e.g., those 
based on incremental learning and ensemble of classifiers, can refer to [4], [5]. 
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The active classification mechanism has become very effective with the design of 
powerful sequential Change Detection Tests (CDT). For instance, the hypothesis test 
which uses the computational intelligence-based CUSUM (CI-CUSUM) proposed by 
Alippi [1] can be also used in a multidimensional analysis without requiring any 
strong a prior knowledge about the process, provided that data are independent and 
identically distributed (i.i.d.). Moreover, needed test parameters can be learned from 
available data. In Just-In-Time (JIT) classifiers the CI-CUSUM test is naturally 
coupled with a k-nearest neighbor (KNN) classifier which does not require a proper 
training phase making it an ideal classification system candidate to deal with an 
evolving environment. In fact, information can be easily inserted in (and at the same 
time removed from) the knowledge base (KB) without the need to retrain the classifi-
er. A main result is that the classifier tends asymptotically to the optimal Bayes one in 
stationary conditions. However, the computational complexity of the KNN scales 
badly with the number of samples in the KB, which increases as more supervised 
samples are made available and, unfortunately, condensing techniques are very com-
putational demanding.  

This paper, starting from [1][2], proposes a novel JIT adaptive classifier based on a 
SVM as a classification core substituting the native KNN. The use of SVM, also well 
grounded from the theory point of view, allows us for mitigating the main problems 
posed by the KNN, namely the computational complexity of the algorithm and the 
amount of memory requested to store the samples in the KB.  

Adaptive SVM classifier solutions can be found in the literature. In [6], an online 
SVM is proposed, which uses fresh supervised samples only for online training; pre-
vious samples are discarded. Xiao et al. [7] provide the -ISVM method, which com-
bines support vectors and misclassification samples to build the new training set; at 
the same time some less relevant data are selectively removed. Blanzieri et al. [8] 
proposed an alternative method based on KNN and SVM. 

The paper inherits the main advantages of the above methods and insert them in the 
JIT classifier framework.  

The structure of the paper is as follows. Section 2 introduces the computational in-
telligence-based CUSUM (CI-CUSUM) test for concept drift detection. The general 
framework design for JIT adaptive classifiers based on SVM, including the update 
mechanism of the Knowledge Base (KB) is presented in Section 3. Experimental 
results are provided in Section 4 and conclusions given in Section 5. 

2 CI-CUSUM Change Detection Test 

The traditional CUSUM test [1], evaluates the difference between two known proba-
bility density functions (pdf) at time t  

 
 (1)

where ( )x t  is an i.i.d random sample and ,  are the two pdfs paramete-

rized in the parameter vector ,  referring to the working 

condition before the concept drift and after  the change, respectively.  
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Then, the method estimates the minimum  on the train set. 

When the discrepancy  at time  is larger than a given threshold  

a change is detected. This method is rather effective in detecting changes but requires 

the availability of the pdfs, parameters ,  and ,  information which is rare-
ly available. 

The above problems can be solved by considering the CI-CUSUM [1], which ex-
tends the traditional CUSUM test, in the following aspects 

1) When sequence  , is composed of scalar, real, i.i.d. random 

samples and   is sufficiently large, thanks to the central limit theorem the trans-

formation    is ruled by a Gaussian pdf with 

mean and variance parameters . The parameters can be directly esti-

mated on the sequence  ; 

2) The threshold value  can be learned from the training set instead of been asked 
to the designer; 

3) Designers can consider their favorite features for constructing a new and applica-
tion tailored CDT; a principal component analysis (PCA) can be considered to re-
duce the complexity of the feature space; 

4) Configurations for the alternative hypothesis can be automatically generated 
by balancing change detection performance and computational complexity. 

In the following we consider the CI-CUSUM test as a CDT for the JIT classifier. 

3 JIT Adaptive SVM Classifier 

We briefly introduce the SVM and show how the technique can be modified to be 
integrated within the JIT framework. 

Let , ,  be the training set and  

     (2)

the SVM classifier with parameters obtained by solving the optimization problem 

  (3)

subject to , , i=1,…,N. is the normal vector to the 

hyperplane, is the hyperplane offset,  is a cost parameter and  the slack 

variable. The (3) can be cast in the dual form [9] 
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     (4)

subject to 

  

where  is a kernel function, here chosen to be the radial 

basis function (RBF) parameterized in . Finally, the classifier has form  

   (5)

Parameters  and  are determined by solving the dual problem: the support 

vectors (SV) are those samples for which . 

Here, we consider the Grid-Search method [10] to select the best parameters C and 
; performances were evaluated with a K-fold cross-validation to mitigate the fact 

that a limited data set is available. 
It should be noted that each newly made available supervised sample  sa-

tisfies the Karush-Kuhn-Tucker (KKT) condition [11] 
 ; 

;       (6) 

 

A sample satisfying the KKT conditions does not change the SVs and, as such, the 
structure of the classifier. Within an incremental learning strategy only those samples 
violating the KKT condition should be kept as relevant and stored in KB; the others 
can be discarded since do not provide any additional information to the current space 
partitioning. 

SVs fully describe the classification problem given the available data KB. Since in 
most cases the number of SVs is a small fraction of the number of samples in KB, we 
recommend to use the SVs instead of the original training samples in the KB for clas-
sification purposes. The final effect is that by using SVs, we save memory w.r.t to a 
solution envisaging a KNN classifier.  

When we are working in a stationary environment a new supervised sample violat-
ing the KKT must be added to the KB. However, inserting a sample in the SV set 
must be seen as a perturbation to the method. As such, when the number of inserted 
samples in the incremental knowledge base (IKB) exceeds a threshold, we need to 
fuse KB with IKB and re-train the SVM.  
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Differently, when a concept drift is detected, data contained in KB become obso-
lete, hence negatively impacting on performance. As such they must be removed and 
only the most recent ones kept to compose a short memory classifier. 

The joint use of the CI-CUSUM CDT and the dynamic management of the know-
ledge base of the classifier leads to the JIT adaptive SVM classifier of Algorithm 1. 
The Algorithm operates both in stationary and nonstationary conditions. In stationari-
ty conditions (also following an abrupt concept drift) the performance improves 
asymptotically; in non-stationary conditions the classifier adapts to track the change 
and keep performance high. 

 
JIT adaptive SVM classifier 

1. Configure the test CDT and train classifier SVM on the training set ; 

2. ; ; ; 

3. While (1) { 
          Acquire sample ; 
4.       if(new supervised knowledge is available) { 
5.           Insert samples  violating the KKT condition in }    

6.       if(CDT ( ) nonstationary) { 
7.            

8.            Train SVM and CDT on  ; 

9.            ; ;} 

10.      else{ 

11.          ; 

12.           if(  ){ 

13.               ; 

14.               Train SVM and CDT on ; 
15.                

16.               ; ; 

                 } 
          } 
17.    Classification=SVM ( , , , ); 
     } 

Algorithm 1. The Just-in-time adaptive classifier with a SVM core 

 
The performance of the JIT adaptive SVM classifier largely depends on the ability 

of the CDT to detect a concept drift. As such, when the process undergoes a concept 
drift but the CDT does not recognize it (false positive), the classifier will continue to 
follow the stationary mode, with and obvious loss in classification accuracy. Howev-
er, before or later the CDT will detect the change if the “magnitude” of the concept 
drift evolves over time (for instance, a gradual concept drift will be seen by the CDT 
as a sum of concept drift).   
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4 Experimental Validation 

In order to verify the performance of the suggested adaptive classifier we considered 
two applications. The first provides synthetically generated data taken from [2], the 
second are real acquisitions from photodiodes [3]. 

Application D1 contains four classification datasets characterized by different con-
cept drift: abrupt, transient, stairs and drift. Each dataset is composed of 50 sequences 
of 10000 real-valued observations drawn from two Gaussian-distributed classes in-

itially distributed (stationary condition) as , . 

In the abrupt case, the concept drift occurs in the middle of each sequence by provid-
ing an additive perturbation ( ) inducing an increment of the mean of both 
classes. In the transient dataset, the mean of both classes increases after one third of 
the dataset and returns to the original value after two thirds of the dataset samples. 
The sum of concept drift dataset increases its mean at one fourth, two fourths, and 
three fourths of the sequence. The drift dataset is configured so that the drift starts at 
sample 5000 and reaches a perturbation , on the expectations at the end of it 

(the distributions of last samples are , ). 

Application D2 refers to a dataset composed of 28 sequences of measurements tak-
en from couples of photodiodes. Each sequence is composed of 12000 16-bit mea-
surements (6000 per sensor). We test the algorithms by classifying the observations 
according to the sensor. From figure 1 we see that the photodiodes are subject to a 
sequence of abrupt concept drift. 

 

 

Fig. 1. Some data from application D2 
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Table 1. JIT adaptive SVM classifier and the KNN classifier: application D1 

    Classifiers 

Samples 

JIT adaptive KNN classifier JIT adaptive SVM classifier 

ACC(%) CT(s)/M(S) ACC(%) CT(s)/M(S) 

Abrupt  73.90 18.67/1351 74.35 15.44/846 

Transient  72.33 12.70/1323 73.58 10.06/931 

Stairs 
 72.39 12.63/969 73.35 11.60/671 

 73.62 14.27/1284 73.95 10.46/734 

Drift N(3,3) 73.61 14.42/1496 73.93 10.57/912 

Table 2. JIT adaptive SVM classifier and the KNN classifier: application D2 

    Classifiers 

Samples 

JIT adaptive KNN classifier JIT adaptive SVM classifier 

ACC(%) CT(s) /M(S) ACC(%) CT(s) /M(S) 

Application D2 (average) 71.87 20.29/1419 71.56 19.87/1220 

 

 
Fig. 2. Classification accuracy: the JIT adaptive SVM classifier, application D1  
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Tables 1 and 2 show the performance of the JIT adaptive SVM classifier and the 
JIT KNN classifier of [2] on applications D1 and D2, respectively. Results represents 
the average over 50 sets of experiments. We immediately observe how the accuracies 
of the JIT-SVM are perfectly aligned with those of the JIT-KNN, which, de facto, 
represents the optimal classifier (in [2] the KNN has been optimized). We appreciate 
the fact that, on average, the JIT-SVM is 16% faster than the KNN-SVM and its 
memory consumption (in samples S) is 32% less than its counterpart. Fig.2 shows the 
classification accuracy over incoming samples for application D1 (accuracy is aver-
aged every 100 samples). We comment that, when there are no changes (i.e., we are 
in stationarity conditions), new samples added to the KB improve the accuracy of the 
JIT adaptive SVM classifier. Of course, when a concept drift occurs accuracy drops 
but the classifier reacts as new supervised samples come in. 

5 Conclusions 

The paper presents an adaptive SVM mechanism within a Just-in-Time classification 
framework. It comes out that the computational complexity of the traditional JIT, 
which relies on the use of a KNN core for classification, can be reduced by consider-
ing an incremental SVM classifier instead of about 15%. The same results with the 
saving memory which shows an improvement of about 32% over the KNN.  

Surely, space for improvement is here. In particular, a more effective computation-
al-aware mechanism can be considered to train the SVM starting from an already 
configured situation with available support vectors (changes in the Bayes classifica-
tion border should be contained in the stationary and the gradual concept drift case). 
Another improvement issue resides in assessing the proportion of old and new sam-
ples to be kept to deal with the concept drift. 
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