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Abstract. A lot of neurophysiological findings rely on accurate esti-
mates of firing rates. In order to estimate an underlying rate function
from sparse observations, i.e., spike trains, it is necessary to perform
temporal smoothing over a short time window at each time point. In
the empirical Bayes method, in which the assumption for the smooth-
ness is incorporated in the Bayesian prior probability of underlying rate,
the time scale of the temporal average, or the degree of smoothness, can
be optimized by maximizing the marginal likelihood. Here, the marginal
likelihood is obtained by marginalizing the complete-data likelihood over
all possible latent rate processes. We carry out this marginalization using
a path integral method. We show that there exists a lower bound of rate
fluctuations below which the optimal smoothness parameter diverges.
We also show that the optimal smoothness parameter obeys asymptotic
scaling laws, the exponent of which depends on the smoothness of un-
derlying rate processes.
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1 Introduction

Neural activity, particularly in the cortex, is known to be highly variable [1]. The
spike sequences generated in response to identical behavioral stimuli applied on
separate occasions are not identical. In such a situation that the spiking response
contains uncertainties, it is often assumed that the spike trains are generated
from a smooth underlying function of time (i.e., the firing rate) and that this
function carries a significant portion of the neural information. Thus, estimating
the firing rate is important for understanding how the brain performs neural
computations.

The difficulty in estimating the firing rate lies in the fact that spike data gives
only a sparse observation of its underlying rate. In such a case, one usually repeat
the same trial a number of times to find a smooth estimate. However, averaging
across many trials can obscure important temporal features. Estimating the
underlying rate from a few spike trains, or even from single spike trains, is
therefore an important problem [2].

In order to obtain a smooth estimate of the firing rate from sparse data, it is
necessary to perform temporal averaging over a short time interval at each time
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point. The time scale of the averaging window (e.g., the bin size of a peristimulus
time histogram, PSTH) must be optimized to produce a plausible estimate of the
underlying rate. A method for selecting the bin size of PSTH has been proposed,
according to minimizing the (estimated) mean integrated squared error (MISE)
[3].

Here, we use the empirical Bayes method for estimating the firing rate, in
which the assumption for the smoothness is incorporated in the Bayesian prior
probability of the underlying rate, and the optimal smoothness parameter is
determined by maximizing the marginal likelihood [4–7].

We utilize the path integral method [8, 9], a technique developed in the fields of
quantum mechanics and statistical mechanics, in order to carry out the marginal-
ization over the latent path space. We show that there exists a lower bound of
the degree of rate fluctuations, below which the smoothness parameter diverges.
We also show that the optimal smoothness parameter obeys asymptotic scaling
laws, the exponent of which depends on the smoothness of the underlying rate
processes.

2 Inhomogeneous Gamma Process

We assume the underlying firing rate λ(t)(≥ 0), and then consider that the model
of spike trains is given by a conditionally inhomogeneous renewal process, given
λ(t), constructed in the following manner. First, we consider spikes {s0, . . . , sN}
occurring along the time axis according to the renewal process. Here, we employ
the gamma distribution for the interspike interval distribution:

fκ(x) = κ(κx)κ−1e−κx/Γ (κ), (1)

where Γ (κ) =
∫∞
0 xκ−1e−xdx is the gamma function. This fκ(x) is defined as

a function of a dimensionless variable x, which makes the mean of x unity,
independent of the shape parameter κ. An inhomogeneous gamma process can
be constructed by rescaling the time of the renewal gamma process with λ(t) as

ti = Λ−1(si), where Λ(t) :=
∫ t

0 λ(u)du. Accordingly, the probability density of a
sequence of spikes {ti} := {t0, . . . , tN} on the interval [0, T ] is given by

pκ({ti}|{λ(t)}) = p0(t0|{λ(t)}) ·
N∏

i=1

λ(ti)fκ(Λ(ti)−Λ(ti−1)) ·pT (tN |{λ(t)}), (2)

where p0(t0|{λ(t)}) is the density of the first spike occurring at t0, and
pT (tN |{λ(t)}) is the probability of no spikes being observed on (tN , T ]. This
inhomogeneous gamma process is a natural extension of both the inhomoge-
neous Poisson process (κ = 1) and the renewal gamma process (for which λ(t)
is constant) [10].

3 Empirical Bayes Method

We employ the empirical Bayes method to decode the underlying firing rate λ(t)
from n spike trains {tji} := {tj0, . . . , tjNj

}nj=1, (Nj being the number of spikes
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in the jth trial,) independent and identically derived from the inhomogeneous
gamma process (2). The likelihood of n spike trains is then given by the product
of the likelihood of single spike train. Let x(t) ∈ R a latent process that is
transformed from λ(t) via the log-link function x(t) = logλ(t). For the inference
of λ(t) from {tji}, we use a prior distribution of x(t), such that the large gradient
of x(t) is penalized with

pγ({x(t)}) = 1

Z(γ)
exp

[

− 1

2γ2

∫ T

0

(
dx(t)

dt

)2

dt

]

, (3)

where the hyperparameter γ controls the smoothness of the latent process x(t).
Z(γ) is the normalization constant given by

Z(γ) =

∫
exp

[

− 1

2γ2

∫ T

0

(
dx(t)

dt

)2

dt

]

D{x(t)}

=
1

√
2πγ2T

exp

[

− {x(T )− x(0)}2
2γ2T

]

, (4)

where
∫ D{x(t)} represents integration over all latent processes, or the Wiener

integral over all paths of x(t) [11]. Eq. (3) is the same as the smoothing-spline
penalization with the first-order derivative [12]. By inverting the conditional
probability distribution with the Bayes rule, the posterior distribution of {x(t)}
is obtained as

pν,γ({x(t)}|{tji}) =
pν({tji}|{x(t)})pγ({x(t)})

pν,γ({tji})
. (5)

The hyperparameter, γ and ν, which represent the inverse smoothness of the
latent process and the shape of the gamma distribution, can be determined by
maximizing the marginal likelihood defined by

pν,γ({tji}) =
∫
pν({tji}|{x(t)})pγ({x(t)})D{x(t)}. (6)

Under a set of hyperparameters (γ̂, κ̂) = argmaxγ,ν pν,γ({tji}), that optimizes
the smoothness of the rate process and the shape of the gamma distribution, we
can determine the maximum a posteriori (MAP) estimate of the latent process

x̂(t). The estimate of the firing rate is then obtained as λ̂(t) = ex̂(t).

4 Path Integral Analysis

We suppose that the underlying firing rate is given by

λ(t) = μ+ σf(t), (7)
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where μ is the mean firing rate, and f(t) represent the rate fluctuation such that
〈f(t)〉 = 0 and 〈f(t)f(t′)〉 = φ(t− t′), 〈·〉 denoting the ensemble average.

We also assume the following conditions for the asymptotic analysis: (A) the
time scale of the temporal modulation of f(t) is longer than the mean interspike
interval; (B) σ/μ is small; (C) a large observation interval T � 1, or equivalently,
a large number of spikes Nj � 1 for i = 1, . . . , n.

4.1 Evaluation of the Marginal Likelihood

From the condition (A), the firing rate in each interspike interval could be ap-
proximated to be constant, from which we can separate the rate fluctuation
from interspike interval as log(Λ(tji ) − Λ(tji−1)) ≈ x(tji ) + log(tji − tji−1). We
further decompose the state x(t) into the mean logμ and fluctuation y(t) as
x(t) = logμ + y(t). Accordingly, log of the likelihood function of the n spike
trains is decomposed into two parts as log pν({tji}|{x(t)}) = H + I, where H
represents the log likelihood function of the gamma distribution,

H =

n∑

j=1

[

− Tνμ+Njν logμ+Njν log ν

−Nj logΓ (ν) + (ν − 1)

Nj∑

i=1

log(tji − tji−1)

]

, (8)

whereas I represents the contribution of rate fluctuation. Note that we have
omitted p0(t

j
0|{λ(t)}) and pT (t

j
Nj

|{λ(t)}) due to T � 1. Substituting H and

I into Eq. (6), the marginal likelihood function is expressed as pν,γ({tji}) =
eHF/Z(γ). Here, the contribution of the rate fluctuation can be represented in
the form of a path integral [9]:

F =

∫
exp

[

−
∫ T

0

L(y, ẏ)dt

]

D{y(t)}, (9)

where L(y, ẏ) is a “Lagrangian” of the form:

L(y, ẏ) =
1

2γ2
ẏ2 + nνμ(ey − 1)− ν

n∑

j=1

Nj∑

i=1

δ(t− tji )y. (10)

The fluctuation in the apparent spike count is given by the variance to mean
ratio as represented by the Fano factor. For the renewal process in which inter-
spike intervals are drawn from a given distribution function, it is proven that
the Fano factor is related to the interspike interval variability with F ≈ C2

V ,
where CV is the coefficient of variation defined as the standard deviation of the
ISIs divided by the mean [13]. The interspike interval variability of the gamma
distribution (1) is given by CV = 1/

√
κ. Thus, in each realization of a spike gen-

eration, the occurrence of events fluctuates around the underlying rate, and the
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superimposed spike train in Eq. (10) can be represented as a stochastic process,
∑n

j=1

∑Nj

i=1 δ(t− tji ) = nλ(t)+
√
nλ(t)/κξ(t), where ξ(t) is a fluctuating process

such that 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t′)〉 = δ(t − t′). Note that this approximation
holds under the condition (A). Using this, and taking up to the second-order
terms with respect to y, the Lagrangian (10) becomes

L(y, ẏ) =
1

2γ2
ẏ2 +

nνμ

2
y2 − nν

[

σf(t) +

√
λ(t)

nκ
ξ(t)

]

y, (11)

which holds in O((σ/μ)3/2) due to y ∼ σ/μ.
The MAP estimate ŷ is obtained by taking the extremum of the action integral

S[y(t)] :=
∫ T

0
L(y, ẏ)dt in Eq. (9). The extremum condition for S is expressed

by the variational equation δS = 0, and an integration by part in δS with fixed
boundary values leads to the Euler-Lagrange equation for ŷ(t):

d

dt

(
∂L

∂ ˙̂y

)

− ∂L

∂ŷ
= 0. (12)

In the following analysis, we consider a long interval T � 1, in which the bound-
ary effect is negligible.

By considering the deviation from the MAP path as y(t) = ŷ(t)+η(t), (η(0) =
η(T ) = 0), and approximating the action integral to a range quadratic with
respect to η(t), the path integral (9) can be expressed as F = Re−S[ŷ(t)], where
e−S[ŷ(t)] represents the contribution of the mode to the path integral, whereas
R represents that of quadratic derivation:

R =

∫
exp

[

− 1

2

∫ T

0

(
1

γ2
η̇2 + nνμη2

)

dt

]

D{η(t)}. (13)

Using this, the marginal likelihood function is computed analytically as

pν,γ({ti}) = eH

Z(γ)
Re−S[ŷ(t)]. (14)

Note that the path integral method presented here can be regarded as a func-
tional version of the Laplace approximation. In the following, we evaluate the
three factors in Eq. (14): e−S[ŷ(t)], R and eH.

First, consider the contribution of the mode to the path integral e−S[ŷ(t)].
The MAP path ŷ(t) is obtained by solving the Euler-Lagrange equation (12)
associated with the Lagrangian (11) as

ŷ(t) =
γ

2

√
nν

μ

∫ T

0

e−γ
√
nνμ|t−s|

[

σf(s) +

√
λ(s)

nκ
ξ(s)

]

ds. (15)

By using Eqs. (11) and (12), we obtain

S[ŷ(t)] =

∫ T

0

[
1

2γ2
d

dt
(ŷ ˙̂y)− nν

2

{

σf(t) +

√
λ(t)

nκ
ξ(t)

}

ŷ

]

dt. (16)
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For T � 1, the boundary effect is negligible so that the first-term in the rhs
of the above equation vanishes. Substituting the MAP path (15) into Eq. (16)
leads to

1

T
S[ŷ(t)] = −γ

√
nνμ

4

{
ν

κ
+

2nνσ2

μ

∫ ∞

0

φ(u)e−γ
√
nνμudu

}

. (17)

Consider next R given by Eq. (13). An integration by part leads to

∫ T

0

(
1

γ2
η̇2 + nνμη2

)

dt =

∫ T

0

η

(

− 1

γ2
∂2t + nνμ

)

ηdt, (18)

where we have used the boundary condition η(0) = η(T ) = 0. Let {ϑi(t)}
be a complete set of orthogonal eigenfunctions of

( − 1
γ2 ∂

2
t + nνμ

)
vanishing

at the boundaries, and {θi} be its eigenvalues. Then, η(t) can be expressed
as η(t) =

∑
i aiϑi(t). Accordingly, the measure is transformed as D{η(t)} =

C
∏

i(2π)
− 1

2 dai, where C is a constant chosen so that the integral over this
measure corresponds to the Wiener integral (4), and we find

R = C
∏

i

∫ ∞

−∞

dai√
2π

exp

(

− 1

2
θia

2
i

)

= C
∏

i

θ
− 1

2
i := C det

(

− 1

γ2
∂2t + nνμ

)− 1
2

. (19)

From Eqs. (4) and (19), we also obtain C det
(− 1

γ2 ∂
2
t

)− 1
2 = 1/

√
2πγ2T . Thus,

R is obtained as

R =
1

√
2πγ2T

[
det

(− 1
γ2 ∂

2
t + nνμ

)

det
(− 1

γ2 ∂2t
)

]− 1
2

=
1

√
2πγ2T

[
ϕ1(T )

ϕ2(T )

]− 1
2

. (20)

It has been proved that the determinants can be computed by solving the asso-
ciated differential equations [8, 9]:

(

− 1

γ2
∂2t +

κ

μ

)

ϕ1(t) = 0, ϕ1(0) = 0, ϕ̇1(0) = 1,

− 1

γ2
∂2t ϕ2(t) = 0, ϕ2(0) = 0, ϕ̇2(0) = 1.

These differential equations are solved as ϕ1(t) =
1

γ
√
nνμ sinh γ

√
nνμt and ϕ2(t)=

t, from which R is obtained as

lim
T→∞

1

T
logR = −γ

√
nνμ

2
. (21)

In order to evaluate H given by Eq. (8), we need to compute 1
Nj

∑
i log(t

j
i −

tji−1). Let {tj(λ)i − t
j(λ)
i−1 } be a set of interspike intervals derived from the gamma
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distribution with the rate λ in the jth spike train, and N
(λ)
j be the number of

the interspike intervals in this set. Then, we obtain

1

N
(λ)
j

N
(λ)
j∑

i=1

log(t
j(λ)
i − t

j(λ)
i−1 ) → ψ(κ)− log κ− logλ, as N

(λ)
j → ∞,

where ψ(κ) is the digamma function. On the other hand, N
(λ)
j /Nj → λp(λ)dλ/μ

as Nj → ∞, from the law of large number. Using these, we obtain

lim
Nj→∞

1

Nj

Nj∑

i=1

log(tji − tji−1) =

∫ ∞

0

[ψ(κ)− log κ− log λ]
λp(λ)

μ
dλ.

Expanding up to the second-order with respect to σ/μ, the above equation can

be evaluated as ψ(κ)− log κ− logμ− σ2φ(0)
2μ2 . Substituting this into Eq. (8), we

obtain the factor eH.
Substituting the three factors into Eq. (14), the log marginal likelihood func-

tion is obtained as

L(γ, ν) := 1

T
log pν,γ({ti}) = 1

T

(

logR− logZ(γ)−
∫ T

0

L(ŷ, ˙̂y)dt+H
)

= −γ
√
nνμ

4

{

2− ν

κ

(

1 +
2nκσ2

μ

∫ ∞

0

φ(u)e−γ
√
nνμudu

)}

+ n
√
μσ

{
(
logμ− ν + ν log ν − logΓ (ν)

+ (ν − 1)[ψ(κ)− log κ]
)(σ

μ

)− 1
2

− (ν − 1)φ(0)

2

(
σ

μ

) 3
2

}

, (22)

in the limit of T → ∞. Note that Eq. (22) holds in O((σ/μ)3/2).

4.2 Results

Divergence of the Optimal Smoothness Parameter. In the range of
the parameter space (γ, ν) that is valid for the asymptotic analysis (in which
o((σ/μ)3/2) is negligible), the log marginal likelihood function (22) can have a
maximum at (γ, ν) = (0, κ̂0) or at (γ̂, κ̂), γ̂ > 0, which correspond to constant
and fluctuating rate estimations, respectively.

For the case of γ = 0, the fluctuation in the rate estimation (15) vanishes, and

thus the rate estimation becomes constant λ̂(t) = μ. Taking ∂L/∂ν = 0 leads to

ψ(κ̂0)− log κ̂0 − [ψ(κ)− log κ− σ2φ(0)
2μ2 ] = 0, the solution of which is obtained as

κ̂0 = κ− σ2φ(0)

2μ2I(κ)
+ o((σ/μ)2), (23)
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where I(κ) = ψ̇(κ)− 1/κ is the Fisher information of the gamma distribution.
We next evaluate the fluctuating rate estimation (γ̂ > 0) if it exists. From

(23), it must be that κ̂ = κ + O((σ/μ)2). Then, the log marginal likelihood
function becomes

L(γ, κ̂) = L(γ, κ) = − 1

4Δ

[

1− 2β

∫ ∞

0

φ(u)e−u/Δdu

]

+ L(0, κ̂0), (24)

in O((σ/μ)3/2), where we defined β := nκσ2/μ, and Δ := 1/(γ
√
nκμ) represents

the time scale of smoothness. L(γ, κ) satisfies L(0, κ̂) = 0 and L(∞, κ̂) = −∞,
and has the global maximum either at γ = γ̂ > 0 or γ = 0, depending on the
value of β. L(γ, κ) has the global maximum at γ = γ̂ > 0 if β exceeds the critical
value:

βc =
1

2maxΔ
∫∞
0 φ(u)e−u/Δdu

. (25)

In other words, the optimal time scale of smoothness Δ̂ = 1/(γ̂
√
nκμ) diverges if

β < βc (or the degree of rate fluctuations σ
2/μ is smaller than βc/(nκ)), in which

the empirical Bayes method cannot detect the underlying rate fluctuations.

Asymptotic Scaling Laws. For β � βc, which can be achieved by a large
number of trials n for instance, the optimal γ becomes γ̂ � 1, or Δ̂� 1. Then,
expanding Eq. (24) and taking the derivative with respect to Δ̂ leads to

1 + 2β
{
φ̇(0)Δ̂2 + 2φ̈(0)Δ̂3 + · · ·} = 0. (26)

If the underlying rate fluctuates smoothly (φ̇(0) = 0 and φ̈(0) < 0), the optimal
time scale obeys the scaling law:

Δ̂ ∼ {−4φ̈(0)β}− 1
3 . (27)

If, on the other hand, the underlying rate fluctuation is nowhere differentiable
(φ̇(0) < 0), such as a path of Brownian motions, Δ̂ obeys

Δ̂ ∼ {−2φ̇(0)β}− 1
2 . (28)

The asymptotic MISE between the true and estimated rates is also obtained as

MISE := lim
T→∞

1

T

∫ T

0

{λ̂(t)− λ(t)}2dt ∼ σ2

4βΔ̂
.

The MISE for smooth rate fluctuations is then given by

MISE ∼ 4−
2
3 {−φ̈(0)} 1

3 σ2β− 2
3 , (29)

while the MISE for rate fluctuations that are nowhere differentiable is scaled as

MISE ∼ 2−
3
2 {−φ̇(0)} 1

2 σ2β− 1
2 . (30)
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5 Discussion

We carried out the marginalization (6) using the path integral method, and ob-
tained the optimal smoothness parameter by maximizing the likelihood function.
This analysis enabled us to derive the lower bound of the degree of rate fluc-
tuations, below which the optimal time scale of smoothness diverges: in other
words, the empirical Bayes estimator cannot detect the underlying rate fluctua-
tions. We also derived the asymptotic characteristics of the rate estimator for a
larger number of trials.

Note that there commonly exists a lower bound below which the underlying
rate fluctuations are undetectable, not only in the empirical Bayes method with
the above prior distribution (3), but also with other prior distributions, and in
other rate estimators such as PSTH [14]. The condition for the lower bound in
these methods is similar to Eq. (25). The asymptotic characteristics (27) and
(28) are also respectively the same as those for the optimal bin size of PSTH
determined with the MISE criteria [15]. It would be interesting to investigate
how general these results are to other inference frameworks.
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