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Abstract. In this paper, extensive study of ring-opening polymerization  
ε-caprolactone (ε-CL) using lipase Novozym 435 as catalyst in flask level and 
reactor level were conducted. The polymerization rates increase with an in-
crease in time up to 4 h after which there has been a steep decrease for all tem-
perature from 50 to 100 °C in the flask level. The conclusion out of flask level 
and reactor level study is that a uniform trend is obtained at 70 °C. A multilayer 
feed-forward neural network (FANN) model was trained with an error back-
propagation algorithm. Reaction time, temperature were used as the input pa-
rameters and molecular weight is the output for the flask level study where as 
reactor impeller speed was also included for reactor level study. Two FANN 
models with modeling performances of 2-10-1 in the flask level and 3-9-1 
FANN1 and 2-13-1 FANN2 (excluding reactor impeller speed) for the reactor 
level study were obtained.   

Keywords: Biopolymer, Lipase enzyme, Molecular weight distribution, nonli-
near process, Feedforward neural networks. 

1 Introduction 

Enzymatic polymerization as the name suggests is the polymerization using enzyme 
as the catalyst has been under scanner for the past few years. Enzymatic polymeriza-
tion enables the synthesis of polymers, which otherwise are difficult to prepare. Poly-
caprolactone (PCL) is one of the examples of bio based aliphatic polyesters that have 
emerged as important materials in industrial processes that require biodegradable high 
performance plastics. Lipik et al. [1] synthesized a series of polymers, according to 
experimental design and developed a mathematical model, which can account for the 
real molar mass of a synthesized polymer using the main polymerization parameters 
as the variables. Sivalingam et al. [2] investigated the thermal degrada-
tion/modification dynamics of poly (ε-caprolactone) (PCL) in a thermogravimetric 
analyzer under non-isothermal and isothermal conditions. Experimental molecular 
weight evolution and weight loss profile were modeled using continuous distribution 
kinetics. Sivalingam et al. [3] investigated the thermal degradation of the poly  
(ε-caprolactone) (PCL), poly (vinyl acetate) (PVAC), and their mixtures in solution. 
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Neural networks have been considered as one of the important empirical modelling 
technique for research in recent years and biotechnology is no exception. This is due 
in part to the simplicity of the “black-box “input-output relationship that results. Also 
important is the“universal approximation” capability of neural networks. Feedforward 
nets are easily implemented under real-time conditions. Neural networks can be ap-
plied to static systems and dynamic systems.  

As far as empirical  models  are  concerned,  feedforward  neural  network 
models  deserve  consideration  because  they  have  the  following advantages: 

1. Efficient identification algorithms and structure optimisation techniques have 
been developed. 

2. Have simple structure and relatively small number of parameters (unlike fuzzy 
models do not suffer from ''the curse of dimensionality'') 

3. Can be easily incorporated into the MPC algorithms and efficiently used on-line. 
FANN has its own share in the field of biopolymerization ranging from pattern recog-
nition for design of biomaterial scaffolds [4] to chemical fibers [5]. In this paper we 
wish to report extensive study of ring-opening polymerization ε-caprolactone (ε-CL) 
using lipase Novozym 435 as the catalyst. This paper explains the comparisons in 
terms of the kinetic trends, homogeneity temperature effects, and feedforward neural 
network modeling of both the flask level production and scale up of polycaprolactone 
in a bioreactor from e-caprolactone using ring opening polymerization. 

2 Material and Methods  

Two different set of experiments namely the flask level and scale up level experi-
ments carried out on the production of polycaprolactone. In flask level experiments 
focus was to achieve an optimum temperature at which maximum molecular weight 
could be achieved and these temperatures were considered for the scale up level so as 
to validate the reactor level study with the flask level study. 

2.1 Experimental Set-Up 

Flask Level Experiment. Polymerization grade ε-caprolactone purchased from 
Merck Private Limited, was first dried over calcium hydride and then distilled under 
reduced pressure in nitrogen atmosphere. Chloroform and toluene were purchased 
from Merck Private Limited. Toluene was dried over calcium hydride and distilled 
under nitrogen atmosphere. Novozyme-435 (specified activity 7000 PLU/g) was pur-
chased from Science Technics Private Limited. All liquid chemical transfers were 
performed by syringe through rubber septum caps under nitrogen atmosphere. ε-CL 
(10 g), toluene (20 mL) and Novozyme-435 (1 g) were added to a round-bottom flask 
(250 mL) and the reaction was maintained at 70°C, for 4 h, with magnetic stirring. 
Reactions was terminated by adding chloroform and filtrated. The chloroform in fil-
trate was removed by rotary evaporation and polymer in the concentrated solution 
was precipitated in methanol. The precipitate was isolated by filtration and dried (0.1 
mmHg, 50°C, 24 h). The molecular weights of the samples were determined by Gel 
permeation chromatography (GPC).  

Reactor Level Experiments. The scale up production of polycaprolactone from e-
caprolactone was carried out using an Infors-HT Labfors bioreactor. The temperatures 
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that were considered for the experiment was 60°C, 70°C and 80°C and the reactor 
impeller speed were 250, 500, 750 and  to 1000 rpm.  

2.2 Feed Forward Neural Networks  

In this study, feed forward neural network (FANN) were developed and trained by the 
Levenberg-Marquardt optimisation algorithm with regularisation and “early stop-
ping”. In order to determined the number of hidden nodes in the hidden layer, neural 
networks with different numbers of hidden neurons were trained on the training data 
and tested on the testing data. The network with the lowest sum square error (SSE) on 
the testing data was considered as having the best network topology. In assessing the 
developed models, MSE and r value on the unseen validation data is used as the per-
formance criterion as shown in Table 2.  

Flask Level Study (FANN) 

)](2),(1[)( tutufntY =    (1)

Therefore in this case study, the number of hidden neuron used in the models for 
FANN is 10. 

Reactor Study 
FANN1 (with reactor impeller speed) .  

)](3),(2),(1[)( tututufntY =   (2)

FANN2 (without reactor impeller speed).  

)](2),(1[)( tutufntY =   (3)

where 
u1(t)= temperature 

u2(t)= impeller speed 
u3(t) = reaction time 

Therefore in this case study, the number of hidden neuron used in the models for 
FANN1 and FANN2 are 9 and 13 respectively.  

3 Results and Discussion 

3.1 Experimental Results 

Flask Level Experiments. Figure 1 shows the variation of molecular weight with 
reaction time for toluene as solvent at various temperatures (50–100°C) with a vo-
lume ratio of 1:2 of ε-caprolactone: toluene being taken. The polymerization rates 
increase with an increase in time up to 4 h after which there has been a steep decrease 
for all temperature from 50 to 100°C. Hence the molecular weight is found to be the 
maximum at a temperature of 70°C for the 4th hour. The important feature of using 
toluene as the solvent is that the polymerizations using toluene gave a solution in 
which ε–CL and polymer were soluble and the catalyst remained insoluble.  
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Fig. 1. Effect of temperature on Molecular weight for flask level study 

Reactor Level Experiments. As mentioned earlier the following plots explain the 
time-temperature and time- reactor impeller speed relationships. This is to prove that 
the behavior of the bio-polymerization of e-caprolactone changes depends on the two 
parameters. 

Figure 2 indicates the variation of molecular weight with reaction time at impeller 
speed (500 rpm) for the temperatures of 60°C, 70°C, 80°C. 
Figure 3 shows the variation of molecular weight with reaction time at 60°C, indicates 
that the trend for all the impeller speeds namely 250, 500, 750, 1000 rpm is uniform.  

Comparison on Flask and Reactor Level. On comparing the results of flask level 
with the reactor level, Figure 1 which is the plot of molecular weight against the  
conversion for polymerizations carried out at 50 -100 °C in the flask level, shows a 
trend where in the maximum molecular weight is obtained at 4hr for 70°C, but when 
carried out in reactor level the results are not the same. The maximum output of more 
than 3000 daltons is obtained at 80°C, but the fact to be noted is that the trend 
followed in case of 80°C is not steady. So the conclusion out of the two studies of 
flask level and reactor level is that a uniform trend is obtained at 70°C and  
higher molecular weight (even though not maximum in case of the reactor level) is 
obtained . 

 

 

Fig. 2. Effect of Temperature on Molecular weight at of 500 RPM impeller speed 
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Fig. 3. Effect of impeller speed on molecular weight at a constant temperature of 60 Deg C 

3.2 Molecular Weight Prediction Using Feed Forward Neural Network 
(FANN) 

Flask Level Study. Figure 4 shows the plot comparing the predicted output with the 
actual output in flask level study which reveals the scaled molecular weight distribu-
tion for each sample. The plot shows that the experimental data and the predicted data 
match almost close to each other. The plot represent that the actual and predicted data 
are much synchronized and the plots are seen to be overlapping because of their simi-
larity and it is the sign of an excellent representation of the process.  

 

 

Fig. 4. Plot comparing the predicted output with the actual output for flask level study 

Table 1. Correlation Coefficient Value and MSE for flask level study 

Data NN (with flask level study) 

Correlation Coefficient, r MSE 

Training 0.916 0.144 

Testing 0.957 0.269 

Validation 0.938 0.081 
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Fig. 5. Plot comparing the predicted output with the actual output with reactor impeller speed 

 

Fig. 6. Plot comparing the predicted output with the actual output without reactor impeller 
speed 

SSE, RMSE and R values are the renowned method of assessment for neural net-
work model. The values of MSE and R value are 0.081 and 0.938, respectively from 
Table 1 shows that intricate process like biopolymerization can be modeled and gene-
ralized excellently. ANOVA (analysis of variance) is a statistical method that is capa-
ble to test whether or not the means of several groups of data are all equal. In this 
work, one-way ANOVA is chosen for assessing the data. One-way ANOVA demon-
strates the relation of mean of the flask level study between the experimental and 
predicted data for all the temperatures. The p-value (performance of the analyzed 
data) for One-way ANOVA is 0.6129 which is higher than significant value which 
should be less than 0.05 or 0.01, the reason being that range for the molecular weight 
range between flask, and neural network model is different.  

 
Reactor Level Study. Figure 5 & 6 shows the plot comparing the predicted output 
with the actual output with and without reactor impeller speed respectively revealing 
the scaled molecular weight distribution for each sample. MSE and R values can be 
seen in the Table 2. Table 3 shows One-way ANOVA the relation between mean of 
the reactor level study with (FANN1) and without impeller speed (FANN2). Hence 
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the standard ANOVA table determines the sums of squares, degrees of freedom, mean 
squares (SS/df), F statistic, and p value. The F statistic was used to do a hypothesis 
test to find out if the molecular weights obtained from the two experiments one with 
impeller speed and the other without impeller speed are the same. Anova1 returns the 
p value from this hypothesis test.  Based on the results, it is seen that p-value is high-
er because of the range for the molecular weight range between reactor, and neural 
network model is different.  

Table 2. Correlation Coefficient Value and MSE 

Data NN1(with impeller speed) NN2(without  impeller speed) 

Correlation  
Coefficient, r 

MSE Correlation  
Coefficient, r 

MSE 

Training 0.958 0.082 0.399 0.829 
Testing 0.938 0.31 0.632 0.458 

Validation 0.989 0.037 0.744 0.796 

Table 3. ANOVA plots for the reactor study 

p-value for One-way ANOVA for 

FANN1 

p-value for One-way ANOVA for 

FANN2 

0.568 0.8126 

4 Conclusion  

Molecular weight is found to be the maximum at a temperature of 70°C for the 4th 
hour with a uniform trend for 50 to 100°C in the flask level.. The maximum output of 
more than 3000 daltons is obtained at 80°C. The inference from flask level and 
reactor level study is that a uniform trend and higher molecular weight (even though 
not maximum in case of the reactor level) is obtained at 70°C. Two FANN models 
were obtained one with the inclusion and other with exclusion of reactor impeller 
speed. The results showed that a 2-10-1 in the flask level and 3-10-1 FANN1 and 2-
13-1 FANN2 arrangement for the reactor level study gave best performance. Results 
show that FANN1 performs better FANN2. 
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