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Abstract. The hippocampal CA3 is a recurrent network included small-
world topology. The percentage of co-active neurons in CA3 slice cul-
tures is approximated by power-law. We show that the power-law scal-
ing of synchronization is reproduced in the CA3 slice culture model
where synaptic weights are log-normally distributed and balanced exci-
tation/inhibition regardless of network topologies. However, small-world
topology improves the robustness of the reproduction of the power-law
scaling in the culture model. Power-law scaling is known as a sign of
optimization of a network for information processing. These results sug-
gest that CA3 may be robustly optimized for information processing by
excitation/inhibition balance, log-normally distributed synaptic weights
and small-world topology.

Keywords: Hippocampal CA3, Synchronization, Power-law scaling,
Log-normal distribution, Excitation/inhibition balance, Small-world
topology.

1 Introduction

The hippocampus consists of dentate gyrus (DG), CA3 and CA1. The hip-
pocampal CA3 region is anatomically unique in the hippocampus. Pyramidal
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neurons in CA3 are mutually connected with other CA3 neurons [1]. Takahashi
et al. have found the small-world topology of CA3 network from synchronized
spontaneous activity in CA3 slice cultures [2]. Therefore, the hippocampal CA3
network is considered as a recurrent network with small-world topology. They
have also revealed power-law scaling in the spontaneous activity. Synchrony size
that is the percentage of neurons emitting a spike in 10 ms time bin is ap-
proximated by power-law. Synchronized neuronal activity obeyed power-law is
called as a neuronal avalanche [3]. Neuronal avalanches have been observed in
many brain regions. It has been suggested that information capacity, information
transmission and dynamic range are maximized in the cortical network with neu-
ronal avalanches [4] [5]. These mean that CA3 network where power-law scaling
emerges may be optimized for the hippocampal information processing.

In this study, we reproduce the power-law scaling of synchronization in CA3
slice cultures by using a CA3 slice culture model. The slice model consists of
excitatory and inhibitory neurons described by the Izhikevich neuron model
[6]. Each neuron in the model is connected with other neurons to become the
small-world network. We show that the high reproducibility of the power-law
scaling emerges in the slice model when the synaptic weights are log-normally
distributed and inhibition balances with excitation. Additionally, we change the
network topology from regular to random. Although the power-law scaling is re-
produced in the network regardless of network topologies, small-world topology
improves the robustness of the reproduction of the power-law scaling. The fre-
quency of the high reproductivity becomes high in the small-world network. In
other words, the power-law scaling is robustly reproduced in the small-world
network. These results suggest that CA3 may be optimized for information
processing by excitation/inhibition balance and log-normally distributed synap-
tic weights, and then the small-world topology enhances the robustness of the
optimization.

2 Materials and Methods

2.1 Power-Law Scaling of Synchronization in CA3 Slice Culture

The activities of neurons in CA3 slice cultures obtained by high-speed func-
tional multineuron calcium imaging (fMCI) at 32 degrees Celsius are available
at http://hippocampus.jp/data/. We used the activities of 1, 193 neurons in 14
slices. The sampling rate is 500 Hz and recording time is 130 sec. Each slice
includes 53–137 neurons, but pyramidal cells and interneurons are not identified
in the data. Figure 1 shows the cumulative distribution of synchrony size. Syn-
chrony size is the percentage of neurons emitting spike in 10 ms time bin. As
referred to [7], we calculated cumulative distribution Cexp(s) of synchrony size
from experimental data. The probability of synchrony size obeys a power-law
distribution [2]. The distribution of synchrony size exhibited the linearity on a
log-log scale (Fig.1).
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Fig. 1. The cumulative distribution of synchrony size calculated from the experimental
data

2.2 Reproducibility of the Power-Law Scaling

We defined distance between the cumulative distributions of synchrony size ob-
tained from experimental data (Cexp(s)) and simulation results (Csim(s)) as the
reproducibility of the power-law activity. We calculated an overlapped range be-
tween Cexp(s) and Csim(s). Ten points are selected from the overlapped range.
The points are evenly spaced on the logarithmic scale. The distance (i.e. repro-
ducibility) r is given by

r =
1

10

10∑

i=1

| log(C
est
exp(si)

C est
sim(si)

) |, (1)

where Cest(si) is the estimated cumulative distribution at the ith point si by
kernel density estimation. When r approaches zero, the degree of reproducibility
becomes high.

2.3 CA3 Slice Culture Model

We constructed a CA3 slice model that is a recurrent network consisting of exci-
tatory and inhibitory neurons. Both neurons are modeled by using the Izhikevich
model [6]. The Izhikevich model is given by

v′i = 0.04v2i + 5vi + 140− ui − Ii(t), (2)

u′
i = a(bvi − ui), (3)

where i is neuron index. vi is the membrane potential and ui is the membrane
recovery variable. a is the rate of recovery. b is the sensitivity of the recovery
variable. Ii(t) is the inputs from other neurons to the ith neuron and calculated
by the following equation:

Ii(t) = gexi (vi − Vex) + ginhi (vi − Vinh) + gnoisei (vi − Vnoise),
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where Vex, Vinh and Vnoise are the reversal potential for excitatory, inhibitory
and noise inputs. We set these parameters as follows: Vex = Vnoise = 0 mV,
Vinh = −75 mV. gexi , ginhi and gnoisei are conductance for each input given by

gx
′

i = −gxi /τin +
Nx

i∑

j

wij

N fired
j∑

k

δ(t− tkj − τij), (4)

gnoise
′

i = −gnoisei /τin + wnoiseδ(t− tknoise), (5)

where x ∈ {ex, inh}, τin (=8.0 [ms]) is a time constant for each input. N ex
i (N inh

i )
is the total number of presynaptic excitatory neurons (inhibitory interneurons) of
the ith neuron. wij means the synaptic weight between the ith and jth neurons.
Nfired

j is the number of firing of the jth presynaptic neuron. δ(·) is the Dirac

delta function and tkj is the kth firing timing of the jth neuron. τij (=1.0 [ms]) is
the synaptic delay between the ith and jth neurons. wnoise(= 1.0) is the strength
of a noise input and the tk is kth noise timing of the jth neuron. Let the ith
neuron fire a spike when vi arrives at 30 mV and vi and are ui reset as follows:

if vi ≥ 30, then

{
vi ← c
ui ← ui + d.

(6)

Then vi and ui are abruptly reset to c and ui + d, respectively. An excitatory
neuron and an inhibitory neuron were modeled by regular spiking neuron [6], so
that we set parameters as follows: a = 0.02, b = 0.2, c = −65, d = 8.

We assumed that each neuron is driven by noise inputs and fires at respective
frequency. To assigned unique firing frequency to each neuron, we randomly
selected value from an exponential distribution (λ = 0.25) as a base frequency
parameter fi of the ith neuron. When the fi is over 0.2, we selected fi from the
exponential distribution again to avoid excess firing frequency. The intervals of
noise input timing (tknoise) of the ith neuron obeyed a exponential distribution
(λ = 1.0/fi sec.).

The number of excitatory neurons (Nex) in a CA3 slice is 50–140 randomly
selected. Since we assume that the ratio of pyramidal cell to inhibitory interneu-
ron is 10 : 1 in the hippocampus, as referred to [1], the number of interneu-
rons (Ninh) was 10 % of excitatory neurons. Excitatory neurons arranged on
ring lattice points (Fig. 2 (a)). Interneurons were distributed uniformly to keep
the distances between inhibitory interneurons on the ring. An excitatory neu-
ron connected to the nearest 9 % neurons of excitatory neurons (E−E), and
all inhibitory interneurons within a range where there are connected excitatory
neurons (E−I). The connection probability from inhibitory interneurons to ex-
citatory neurons is 60 %. The connections were rewired to randomly selected
neurons with probability p = 0.05, but inhibitory interneurons were rewired
only to excitatory pyramidal cells. There were no inhibitory connections among
inhibitory interneurons (Fig. 2 (a)). Additionally, the number of each type of
connections (E−E, E−I, and I−E) is kept before and after rewiring. By increas-
ing the rewiring probability p, the network among excitatory neurons changes
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Fig. 2. Structure of CA3 slice culture model. (a) Arrangement and connections of each
neuron. As a matter of convenience, although both the types of neurons are arranged
on the same ring, excitatory neurons and inhibitory neurons are plotted as gray dots
on outside and inside circle, respectively. A part of connections is shown by lines.
Each excitatory neuron connects with other nearest excitatory neurons and inhibitory
interneurons (black lines). Each inhibitory interneuron connects only with other nearest
excitatory neurons (gray dashed lines). However, a part of their connections is rewired
to distant neurons. (b) Clustering coefficient (gray line) and average path length (black
line) in the network among excitatory neurons rewired at each probability. Each value
is normalized by the value obtained at p = 0.

from regular to random network. The clustering coefficient is high and aver-
age path length is low around the rewiring probability p = 0.05; therefore the
network topology is the small-world [8](Fig. 2 (b)).

We defined synaptic weights of each type of connections. It has been reported
that the distribution of synaptic strength in the visual cortex layer 5 can be
fitted by a log-normal distribution [9]. The distribution has a heavier tail and
strong connections probably exist in the network. Therefore, we set the synap-
tic weight of a connection as randomly selected value from a log-normal dis-
tribution because the distribution of synaptic weight in CA3 is still unknown.
The strengths of E−E connections were randomly selected value from a log-
normal distribution (μ = log(0.17) + σ2, σ = log(2.0)). The strengths of E−I
and I−E connections were randomly selected value from a log-normal distribu-
tion (μ = log(W{EI or IE}) + σ2, σ = log(2.0)). We changed WEI and WIE from
0.1 to 0.4 in 0.01 steps, respectively.

3 Results

Using the CA3 slice model, we obtained the activities of all neurons from 10
trials on each combination of WEI and WIE. In each trial, we recorded the activ-
ities of neurons for 130 sec in 150 sec to exclude initial 20 sec. The cumulative
distribution of synchrony size was obtained from neuronal activities in 10 trials.
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We calculated the distance between the cumulative distributions of synchrony
size obtained from the experimental data and simulation results on each combi-
nation (Fig. 3(a)).
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Fig. 3. Reproduction of the power-law scaling in the CA3 slice model. (a) Distance
between experimental data and simulation results on each combination ofWEI andWIE.
(b) The cumulative density of synchrony size obtained on each of four combinations
along the diagonal line from bottom-left to top-right in Fig. 3(a) (WEI = WIE =
{0.1, 0.2, 0.3, 0.4}).

Inhibitory interneurons are driven by not only noise input, but also inputs
through E−I connections. Therefore, the change of synaptic weight (WEI and
WIE) corresponds to the change of the strength of inhibition. The inhibition is
weakest on the bottom-left corner, while the inhibition is strongest on the top-
right corner. Since the distance changed from long to short along the diagonal
line from bottom-left to top-right, the reproducibility of power-law was affected
by the strength of inhibition. Figure 3 (b) shows the cumulative distribution
of synchrony size at each of four points on the diagonal line (WEI = WIE =
{0.1, 0.2, 0.3, 0.4}). When inhibition was weak (WEI = WIE = {0.1, 0.2}), excess
synchronization tends to occur compared to the experiments. On the other hand,
when inhibition was strong (WEI = WIE = {0.3, 0.4}), excess synchronization
tends not to occur. It was expected that properly strong inhibition causes the
power-law distributed activity in the network. Indeed, as shown in Fig. 4 (b),
similar power-law scaling emerges in the network when WEI = 0.31 and WIE =
0.34. The small-world network with log-normally distributed synaptic weights
and inhibition balance with excitation reproduces the power-law scaling.

We changed rewiring probability p from 0.05 (small-world) to 0.0 (regular
network) or 1.0 (random network). The power-law scaling similar to the exper-
imental data emerged regardless of the network topology (Fig. 4 (a-c)). Fig. 4
(d) shows the cumulative distribution of distance obtained from each network
topology on all combination of WEI and WIE. The distribution obtained from
the small-world topology shows a steep slope. This result indicates that the dis-
tance frequently becomes small in the small-world network on the combinations
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Fig. 4. Cumulative distribution of synchrony size (a–c) and distance obtained (d) in
each network topology. (a–c) Cumulative distribution of synchrony size when the dis-
tance becomes minimum in each network topology: (a) regular (p = 0.0, WEI = 0.37
and WIE = 0.31), (b) small-world (p = 0.05, WEI = 0.31 and WIE = 0.34) and (c)
random network (p = 1.0, WEI = 0.37 and WIE = 0.14). (d) Cumulative distribution
of distance in each network topology.

compared to other topologies. In other words, the high reproducibility robustly
emerges in the small-word network.

4 Conclusion and Discussion

We have found that the high reproducibility of the power-law scaling emerges in
the slice model regardless of the rewiring probability when the synaptic weights
are log-normally distributed and inhibition balances with excitation. These re-
sults consist with the experimental results that power-law scaling disappears on
cortical slice culture with imbalance between excitation and inhibition [5]. The
distribution of synaptic weights in CA3 have not been reported yet; however
log-normally distributed synaptic weights are observed from the visual cortex
[9]. Our results suggest that the log-normally distributed synaptic weights may
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be observed from the hippocampal CA3 in experiments. On the other hand,
small-world topology in the slice model frequently reproduced power-law scaling
of synchronization. When power-law scaling emerges in a network, the network is
optimized for information processing [4] [5]. Small-world recurrent network with
excitation/inhibition balance and log-normally distributed synaptic weights ro-
bustly cause power-law scaling; therefore CA3 may be robustly optimized for
information processing.
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