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Abstract. We present a modification of the well-known Self-Organizing
Map (SOM) in which we incrementally allocate the neuronal nodes to
progressively added new stimuli. Our incremental SOM (iSOM) aims at
the situation when a stimulus, or percept, is represented by a number of
neuronal nodes a typical case in biological situation when the redundancy
of representation of data is important. The iSOM is applied to catego-
rization of visual objects using the recently introduced feature vector
based on the angular integral of the Radon transform [10].

Keywords: Self-organizing maps, Incremental learning, Radon
transform.

1 Introduction

We present a modification of the well-known SOM in which we incrementally
allocate the neuronal nodes to new stimuli, or data points. The incremental SOM
is applied to categorization of visual objects using the feature vector based on
the angular integral of the Radon transform.

Self-organizing maps [7] have found numerous applications due to the fact
that they are able to perform non-linear dimensionality reduction [8,14] map-
ping high-dimensional data (observation points, stimuli) x ∈ R

D into a low-
dimensional (typically 2) “position” vector v ∈ R

2 in the latent space, so that

v = K(W · x) (1)

where W is an M × D matrix of parameters, the weight matrix, M being the
number of nodes (neurons), and K is the Winner-Takes-All function identifying
the position of the neuronal node v for which the post-synaptic activity W ·x at-
tains the maximum. In this formulation, each k-th neuronal node, k ∈ {1 . . .M},
is identified by its weight vector wk and the position vector vk. By applying a
learning law which successfully drags weights vectors w towards data points x,
the mapping (1) can achieve the topology preserving property, mapping close
data points x to the common node vector v, hence, performing the clustering.

We start with a brief review of fundamental concepts related to typical ap-
plications of SOMs and their modifications, to locate the place where our iSOM
fits in the large family of self-organizing algorithms. In the simplest case, the
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Fig. 1. Clustering with a SOM. A SOM with 3× 4 nodes approximates 120 3-D data
points arranged in six clusters.

number of data points, N , and the number of the neuronal nodes, M , are fixed.
Typically, when clustering applications are involved, the number of neuronal
nodes is smaller than the number of the data points and the SOM “explains the
data” giving a simplified, 2-dimensional view of the D-dimensional data as in
Figure 1. Note that some of the nodes in Figure 1 do not really fit any cluster
and can be considered as “dead” ones. Since in this example the dimensionality
of data is low (D = 3), visualization can be performed in the input space.

In categorization applications as in Figure 2, when the dimensionality of the
feature vector is high, the mapping is visualised in the latent space when cate-
gories are allocated to neuronal nodes. As in the clustering case, if the structure
and the size of the SOM is fixed there might be “dead” nodes not representing
any particular category. On the other hand, we can see that the category of cats
is crowded into a single neuronal node.

The above two generic cases1 show the fundamental problem related to the
rigid structure of the nodes in the latent space, namely, inefficient use of the
nodes to represent data. Conceptually, a regular lattice from the latent space is
well-suited for the data which is evenly distributed in the input space, a really
trivial case. In general, we would like to have the structure and the number of
nodes to be adjustable in order to represent better the important aspects of the
data.

To address the above problem a number of adjustable SOM structures have
been developed. The first, to my knowledge, such a structure is known as the
Incremental Grid Growing Feature Map (IGGFM) [2], followed by the Growing
Cell Structures (GCS) [4], the Growing Neural Gas (GNG) [5], the Dynamic

1 An interesting case, when the number of nodes is equal to the number of data points
(image pixels) is shown on our web page http://www.csse.monash.edu.au/∼app/.
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catEcld0
catStrp0
catBlck0
catSiam0

WSwan  0
BSwan  0

Salmon 0
Trout  0

Kangaro0
Wallaby0

Anacond0

ocelot 0
fishCat0
serval 0

Horse  0
Zebra  0

lynxEur0
cheetah0

Wolf   0
Dingo  0

Rhino  0
Hippo  0

panther0
leopard0
snwLprd0

KBear  0

Andrews 3

puma   0

lion   0
catWhal 6

jaguar 0
tiger  0

PBear  0

Whale  0

Fig. 2. Categorization with a SOM. A SOM with 6 × 6 nodes is used to categorized
32 “objects” (animals). Two test animals are also shown. The numbers are the relative
distance from the winning node. The “dead” nodes are marked with crosses.

aka Growing SOM (GSOM) [1], and the Time-Adaptive SOM (TASOM) [16]. In
the above self-organizing algorithms the nodes are located on a regular lattice
([2,1,16]), or on a lattice built from the triangles ([4,5]) with the objective for the
network to map the topology, or probability distribution of the data. Extension
of the above concepts to the multi-map network is presented in [17]. Here the
reader can find a good description of the above concepts.

In our recent applications a network of SOMs is used to model multimodal in-
tegration [12,6,11] and rotation invariant categorization of visual objects [10]. In
the above applications related to modelling selected aspects of cortical functions,
we argue that a number of neuronal units is required to represent a concept, or
percept, in order to create redundancy, hence ensuring robust working of the
cortex. We selected this number to be in the range ε ∈ [16 . . . 20] nodes per
data unit. The motivation was to have the number of nodes of the same order
of magnitude as the number of neurons in the cortical mini-columns. Since the
number of data points is smaller than the number of nodes, representation of
data topology plays a secondary issue, unlike in the works mentioned above in
which it is the primary aspect.

In this paper we consider SOMs in which we progressively add new objects, or
data points, and generate a number of new nodes to maintain a fixed density of
nodes per object ε. Our latent, or neuronal space consists of randomly distributed
nodes inside of a unity circle. In other words, with each new object added, we
also incrementally generate ε new nodes. Hence, we call our extension of Self-
Organizing Maps an Incremental SOM, or iSOM.
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2 Categorization of Visual Objects

Categorization of visual objects remains one of the grand challenges despite of
an enormous progress in this area. The principal problem is the selection of the
features that can represent a visual object in a way invariant to factors like
rotation, scaling, changes in illumination and the viewpoint. Currently the local
descriptors, specifically, based on the Scale Invariant Feature Transform (SIFT)
[9], are most commonly used [15,3].

In this paper categorization of the visual objects is only used as an illustration
for our incremental SOM. Therefore, we use a simplified feature vector based on
the Radon transform as presented in [10]. The Radon transform Rf(θ, s) [13]
of a function f(z), where z = x + jy, is calculated as an integral of f(z) over
straight lines z(t) = ejθ(s+ jt) with the slope θ

Rf(θ, s) =

∫ +∞

−∞
f(ejθ(s+ jt))dt (2)

where s is the distance of the line from the origin and t is its parameter. In order
to obtain a feature vector h(s) that is rotation invariant, we integrate transform
(2) over all angles

h(s) =

∫ 2π

0

Rf(θ, s)dθ (3)

Such a feature (signature) function h(s) retains some characteristics of the orig-
inal image f(x, y), but the angular dependency is removed, hence the rotational
invariance is achieved.

In the discrete case, the feature vector based on eqn (3) has the size equal
to the diagonal of the image, which is significantly smaller than the size of the
SIFT-based feature vectors. In what follows we use two types of images:

– The characters represented as binary 46× 46 images
generated using the Times New Roman font of size 24.
There are 26 lower-case characters. The feature vector
calculated using eqn (3) has the size of 67.

– The 64× 64 gray scale iconic images of 30 animals as in the
example shown on the right. The feature vector is
82-element long.

The feature vectors are normalised to be in the range [−1,+1] and then projected
up on the (D + 1)-dimensional hypersphere, so that we operate with the unity
vectors.

3 Incremental SOM

As it has been said above our iSOM aims at situation where the number of nodes
per stimulus, ε is approximately constant and in the range [16 . . .20]. The nodes
are randomly distributed on a top half-surface of a unity sphere. In Figure 3 the
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Fig. 3. The evolution of the map after application of 3, 11, 19 and 26 visual stimuli
(letters)

location of the nodes projected onto a unity circle are marked with (yellow) dots.
Each neuronal node is identified by its weight vector wk and the position vector
vk, both being unity vectors. We start with some initial number of stimuli (three
in our example) and nodes (3 ∗ ε). The weight vectors are intialised around the
north pole of the hypersphere, and a standard Kohonen “dot-product” learning
law is applied in which the update of the weight vector wj for the jth neuron is
described by the following expression:

Δwj = η · Λj · (xT − dj ·wj) ; dj = wj · x (4)

where Λj is a neighbourhood function, Gaussian in our case, centred on the
position of the winning neuron, and dj is the post-synaptic activity of the
jth neuron. Similarly to the neighbourhood function, the gain η is also reduced
according to a Gaussian curve, η = exp(−n2/(2σ)), where σ is selected so that
η = 0.5 for n = E/2, E being the number of epochs. This ensures a good
proportion between the ordering and convergence phases.
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After learning is completed for a given number of stimuli, say 11, (see Figure
3), we choose a required number of new stimuli, say γ, one in particular, and
generate γ × ε new nodes as described above. For simplicity, the new weight
vectors are intialised as before around the north pole, and the learning procedure
is repeated. Alternatively, the weight vectors of the newly generated neuronal
nodes could be cloned from the nearest neighbours. The results of learning are
shown in Figure 3. As expected, at each stage the map organizes the stimuli
according to their visual features, e.g., keeping ‘f’, ‘l’, and ‘i’ together.

The second example is similar and we incrementally create map for catego-
rization of animals base on their visual appearances. The resulting maps after
application of 3, 12, 21 and 30 stimuli are shown in Figure 4. Unlike in the letter
case, this time we categorize visual objects represented by the gray scale images.
It is more difficult to notice similarities with respect to the feature vector as
in eqn (3). Since the images were not standardized with respect of the average
value of the gray scale pixels, the lighter images of objects tend to be clustered
together, as do the darker images.

Incremental SOM
AMay22h1101

Incremental SOM
AMay22h1101

Incremental SOM
AMay22h1101

Incremental SOM
AMay22h1102

Fig. 4. The evolution of the map after application of 3, 12, 21 and 30 visual stimuli
(images of animals)
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4 Concluding Remarks

We have presented a new version of a self-organizing map, incremental SOM,
targeted at the situation when percepts represented by stimuli, or data points,
are mapped onto a group of neuronal modes thus ensuring redundancy required
in the biological systems. The mapping is performed incrementally, so that, for
each new stimulus applied to the map, a statistically fixed number of nodes is
randomly generated in the latent space. We apply the new iSOM to categoriza-
tion of visual objects testing a newly introduced feature vector based on the
angular integral of the Radon transform of the image representing the visual
object.

Finally, with reference to Figures 3 and 4, we would like to emphasize that
the “position” vector v describes the location of the node in the latent space,
not in the physical space. It means that the physical location of neurons is not
affected by the incremental learning process. The “position” vector v, similarly
to the weight vector w, is a property of a neuron, not its physical location. In
this sense, the neurons are not “crowded” when the new percepts are introduced.
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