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Abstract. The purpose of this study is to prove the existence of single
input rule modules which minimize the performance functional of the
feedback control using SIRMs fuzzy reasoning method. A bounded prod-
uct (�Lukasiewicz t-norm) and a bounded sum (�Lukasiewicz t-conorm)
are applied to the operations in SIRMs fuzzy reasoning for interpreting
“ands” and “ors” respectively.

Keywords: SIRMs approximate reasoning method, Bounded product,
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1 Introduction

In inference process, Mamdani method applies min-max operation (∧, ∨). On the
other the product-sum-gravity method proposed by Mizumoto applies product-
sum operation for simplification of calculation. �Lukasiewicz logical operation is
one of the operations on fuzzy sets. The bounded product is t-norm, and the
bounded sum is its dual t-conorm [1]. They are applied to fuzzy approximate
reasoning [2].

Single input rule modules (SIRMs) connected fuzzy inference method pro-
posed by Yubazaki et al., can decrease the number of fuzzy rules in comparison
with fuzzy IF-THEN rules [3]. This model needs few rules and parameters, and
the rules can be designed much easier. The functional type SIRMs method, in
which a general function is used instead of membership function for consequent
part, is a special case of the T-S reasoning method. It clarified that IF-THEN
rules can be transformed to SIRMs by Seki [4].

Generally product-sum or min-max operations are used in SIRMs connected
fuzzy inference. However the bounded product and the bounded sum are applied
in this study. Because applying bounded product makes the universe (domain) of
consequent fuzzy set smaller as different from the scaled method using “product”
and the clipping method using “min”. Then it is possible that the crisp value
of inference result is accurate. Since bounded sum is dual operator of bounded
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product, it is applied to the operation which integrates the inference results of
all SIRMs.

The optimization of fuzzy control discussed in this paper is different from
conventional method such as classical control and modern control. We consider
fuzzy optimal control problems as problems of finding the minimum (maximum)
value of the performance function with feedback law constructed by fuzzy rules
through fuzzy approximate reasoning [5,6,7]. To guarantee the convergence of
optimal solution, the compactness of the set of membership functions is proved.
And assuming fuzzy inference to be a functional on the set, its continuity is
obtained. Then, it is shown that the system has an optimal feedback control
by essential use of compactness of sets of fuzzy membership functions. The pair
of membership functions, in other words SIRMs, which minimize an integral
performance function of fuzzy logic control exists.

2 Fuzzy Control

In this study, it is assumed that the feedback part in the system is calculated by
SIRMs connected fuzzy inference method.

2.1 Nonlinear Feedback Control

Throughout this paper, Rn denotes the n-dimensional Euclidean space with the
usual Euclidean norm. Consider a system given by the following state equation:

ẋ(t) = f(x(t), u(t)), (1)

where x(t) is the state and the control input u(t) of the system is given by the
state feedback u(t) = ρ(x(t)). For a sufficiently large r > 0, Br = {x ∈ R

n :
‖x‖ ≤ r} denotes a bounded set containing all possible initial states x0 of the
system. Let T be a sufficiently large final time. Then, we have

Proposition 1. Let ρ : Rn → R be a Lipschitz continuous function and x0 ∈ Br.
Then, the state equation ẋ(t) = f(x(t), ρ(x(t))) has a unique solution x(t, x0, ρ) on
[0, T ] with the initial condition x(0) = x0 such that the mapping (t, x0) ∈ [0, T ] ×
Br �→ x(t, x0, ρ) is continuous.

For any r2 > 0, denote by Φ the set of Lipschitz continuous functions ρ :
R

n → R satisfying supu∈Rn |ρ(u)| ≤ r2. Then, the following a) and b) hold.
a) For any t ∈ [0, T ], x0 ∈ Br and ρ ∈ Φ,

‖x(t, x0, ρ)‖ ≤ r1,

where
r1 = eMfT r + (eMfT − 1)(r2 + 1). (2)

b) Let ρ1, ρ2 ∈ Φ. Then, for any t ∈ [0, T ] and x0 ∈ Br,

‖x(t, x0, ρ1) − x(t, x0, ρ2)‖ ≤ eΔf (1+Δρ1 )t − 1

1 + Δρ1

sup
u∈[−r1,r1]n

|ρ1(u) − ρ2(u)|, (3)

where Δf and Δρ1 are the Lipschitz constants of f and ρ1 [5].
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2.2 Performance Functional

We write x for a sequence of x1(t), x2(t), · · · , xn(t) for simplicity, and put

x = (x1, x2, · · · , xn) = (x1(t), x2(t), · · · , xn(t)) = x(t).

In the following, assume the feedback law u(t) = ρ(x(t)) of the nonlinear system
(1) is constructed based on fuzzy approximate reasoning. Then the operation ρ is
a composite mapping of the membership functions and the inference calculations.
On the other, put M be a set of membership functions and F be its element, we
can say that the operation ρ is a composite functional on the set of membership
functions M. Then F is indexed to ρ.

The performance index of this fuzzy feedback control system is evaluated with
following integral performance function:

J =

∫
Br

∫ T

0

w(x(t, ζ, ρF ), ρF(x(t, ζ, ρF )))dtdζ (4)

where w : Rn×R → R is a positive continuous function. J depends on ρF . Since
admissible range of initial state Br and final time T are known, J is a functional
on the family of membership functions M. The optimal control problem in this
study is considered to be calculus of variations. The following lemma guarantees
the existence of F on M which minimizes (maximizes) the previous performance
function (4).

Lemma 1. Suppose M to be a compact metric space and let {Fk}k∈N ⊂ M. If
Fk → F ∈ M (k → ∞) implies

sup
x∈[−r1,r1]n

|ρFk(x) − ρF(x)| → 0 (k → ∞), (5)

then the mapping

F ∈ M �→ J =

∫
Br

∫ T

0

w(x(t, ζ, ρF ), ρF (x(t, ζ, ρF )))dtdζ

has a minimum (maximum) value on the compact metric space M on the basis
of constants given by section 2.1.

Proof. It is sufficient to prove that the performance function J is continuous on
M. Fix (t, ζ) ∈ [0, T ] ×Br, by b) of proposition 1, we have

lim
k→∞

‖x(t, ζ, ρFk) − x(t, ζ, ρF )‖ = 0. (6)

Further, it follows from (5), (6) and a) of proposition 1 that

lim
k→∞

ρFk(x(t, ζ, ρFk)) = ρF (x(t, ζ, ρF )). (7)

Noting that w : Rn × R → R is positive and continuous, it follows from (6), (7)
and the Lebesgue’s dominated convergence theorem [8,9] that the mapping is
continuous on the compact metric space M. Thus it has a minimum (maximum)
value on M, and the proof is complete.
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2.3 Single Input Rule Modules Connected Fuzzy Inference Model

Assume the feedback law ρ consists of the following single input rule modules
(SIRMs) are given [3].

SIRM-i : {Ri
j : if xi = Ai

j then y = Ci
j}mi

j=1 (i = 1, 2, . . . , n) (8)

Here, n is the number of rule modules and premise variables, and mi(i =
1, 2, . . . , n) are the numbers of single input rules in each rule module SIRM-
i. x1, x2, . . . and xn are premise variables, and y is consequent variable. x is the
state of (1) and also input of this SIRMs connected fuzzy inference model.

Let Ai
j(xi) and Ci

j(y) (i = 1, 2, . . . , n; j = 1, 2, . . . ,mi) be fuzzy grade of each

fuzzy set Ai
j and Ci

j for input xi and consequent output y in the j-th rule Ri
j of

the SIRM-i respectively. The membership functions of fuzzy set Ai
j and Ci

j are

written as same character Ai
j and Ci

j in this paper. For simplicity, we write “if”

and “then” parts in the rules by the following notation: Ai = (Ai
1, A

i
2, . . . , A

i
mi

),
Ci = (Ci

1, C
i
2, . . . , C

i
mi

), A = (A1,A2, . . . ,An), C = (C1, C2, . . . , Cn). Then,
SIRMs (8) is named a fuzzy controller in this paper, and is denoted by (A, C)
which is the pair of the membership functions.

When an input information x = (x1, x2, . . . , xn) ∈ R
n at certain time t ∈ [0, T ]

is given to the fuzzy controller (A, C) (8), then one can obtain the amount
of operation from the controller through the following procedures. Although
product-sum or min-max operations are used in SIRMs connected fuzzy infer-
ence proposed by Yubazaki, bounded product and bounded sum are applied for
interpreting “ands” and “ors” respectively.

Procedure 1: The inference result of j-th rule Ri
j in SIRM-i is calculated by

αi
j(xi, y) = Ai

j(xi) � Ci
j(y) (j = 1, 2 . . . ,mi; i = 1, 2, . . . , n).

Here, � means bounded product between premise and consequent part.

Ai
j(xi) � Ci

j(y) = (Ai
j(xi) + Ci

j(y) − 1) ∨ 0.

That is to say, this operation presses graph of consequent membership function
Ci

j(y) down by (1 −Ai
j(xi)).

Procedure 2: The inference result of rule group SIRM-i is calculated by integrat-
ing the inference results of each rules Ri

j as follows:

βi(xi, y) =

mi⊕
j=1

αi
j(xi, y) (i = 1, 2, . . . , n).

Here, ⊕ is bounded sum. For example, in case j ≤ 2,

αi
1(xi, y) ⊕ αi

2(xi, y) = (αi
1(xi, y) + αi

2(xi, y)) ∧ 1.

Procedure 3: Defuzzification stage. The crisp outputs of each SIRM-i are ob-
tained as centers of gravity of inference results βi(xi, y).

γi(xi) =

∫
yβi(xi, y)dy∫
βi(xi, y)dy

(i = 1, 2, . . . , n).
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In SIRMs inference method, importance degrees di(i = 1, 2, · · · , n) are intro-
duced to give each SIRMs weight of contribution. In the same way as A and C,
put d = (d1, d2, . . . , dn).

Procedure 4: The inference result of all rule modules is calculated as weighted
sum of all γi(xi) using the importance degree d = (d1, d2, . . . , dn).

ρACd(x) =

n∑
i=1

diγi(xi).

Here, since the inference result depends on the membership functions in the
premise and consequent fuzzy sets, and the importance degrees, the subscripts
A, C and d are added to the function.

3 Compactness of a Family of Sets of Membership
Functions

Fix a sufficiently large r > 0, r2 > 0 and a final time T of the control (1)
according to section 2.1. Put r1 be the positive constant determined by (2). We
also fix Δij > 0 (i = 1, 2, . . . , n; j = 1, 2, . . . ,mi). Let C[−r1, r1] and C[−r2, r2]
be the Banach space of all continuous real functions on [−r1, r1] and [−r2, r2]
respectively. We consider the following two sets of fuzzy membership functions.

FΔij = {μ ∈ C[−r1, r1]; 0 ≤ μ(x) ≤ 1 for ∀x ∈ [−r1, r1],

|μ(x) − μ(x′)| ≤ Δij |x− x′| for ∀x, x′ ∈ [−r1, r1]} ,

G = {μ ∈ C[−r2, r2]; 0 ≤ μ(y) ≤ 1 for ∀y ∈ [−r2, r2]} .
The set FΔij above, which is more restrictive than G, contains triangular, trape-
zoidal and bell-shaped fuzzy membership functions with gradients less than
positive value Δij . Consequently, if Δij > 0 is taken large enough, FΔij con-
tains almost all fuzzy membership functions which are used in practical applica-
tions. In this study, we shall assume that the fuzzy membership functions Ai

j in
premise parts of the SIRMs (8) belong to the set FΔij for all i = 1, 2, . . . , n and
j = 1, 2, . . . ,mi. On the other hand, we assume that the membership function
Ci

j in consequent part belongs to G.
In the following, we endow the space FΔij and G with norm topology on the

space of continuous functions. Then, for all i = 1, 2, . . . , n; j = 1, 2, . . . ,mi, FΔij

and G are compact [5]. Put

L′ =
n∏

i=1

⎧⎨
⎩

mi∏
j=1

(
FΔij ×G

)
⎫⎬
⎭ .

Then, every element (A, C) of L′ is fuzzy controller given by the SIRMs (8). By
the Tychonoff theorem [9], we can have following proposition.
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Proposition 2. L′ is compact and metrizable with respect to the product topol-

ogy on

n∏
i=1

(C[−r1, r1] × C[−r2, r2])
mi .

Let n-tuple of importance degrees d join with fuzzy controller (A, C). Then it
is denoted by (A, C, d). We can consider (A, C, d) as the pair of SIRMs and
importance degree and newly call it SIRMs fuzzy controller.

D =

{
d = (d1, d2, . . . , dn) ∈ R

n; ∀i = 1, 2, . . . , n, di ∈ (0, 1),

n∑
i=1

di ≤ 1

}

In this paper, it is assumed that each di(i = 1, 2, · · · , n) is belonging to closed
interval (0, 1), and satisfies

∑n
i=1 di ≤ 1. Yubazaki does not need this condition

[3], but for the existence of solution of the state equation (1) it is needed in this
study.

Put L = L′ × D. Then L is Cartesian product and consists of SIRMs and
importance degrees of inference calculations. And it is obvious that (A, C, d) ∈ L.

To avoid making the denominator of the fractional expressions in the defuzzi-
fication stage in the previous section equal to 0, for any δ > 0, consider the
set:

Lδ =

{
(A, C, d) ∈ L; ∀i = 1, . . . , n, ∀x ∈ [−r1, r1]n,

∫ r2

−r2

βi(xi, y)dy ≥ δ

}
, (9)

which is a slight modification of L. If δ is taken small enough, it is possible
to consider L = Lδ for practical applications. An element (A, C, d) of Lδ is an
admissible fuzzy controller. Since Lδ is a closed subset of L, we can have the
following proposition.

Proposition 3. The set Lδ of all admissible fuzzy controllers is compact and
metrizable with respect to the product topology.

4 Continuity of Approximate Reasoning and Its
Application

For any (A, C, d) in Lδ from (9), we define the feedback control low u(x) =
ρACd(x) of the state equation (1) at certain time t ∈ [0, T ] on the basis of the
SIRMs (8).

ρACd(x) =

n∑
i=1

di

∫ r2
−r2

yβi(xi, y)dy∫ r2
−r2

βi(xi, y)dy
, where βi(xi, y) =

mi⊕
j=1

Ai
j(xi) � Ci

j(y).

Then, the following proposition about ρACd is obtained.

Proposition 4. Let (A, C, d) ∈ Lδ. Then, the following a) and b) hold.
a) ρACd is Lipschitz continuous on [−r1, r1]n.
b) |ρACd(x)| ≤ r2 for all x ∈ [−r1, r1]n.
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Proof. ajSince ρACd is the composite mapping of αi
j , βi and γi in section 2.3, Lips-

chitz continuity of each function is proved separately. For all x=(x1, . . . , xn), x′ =
(x1

′, . . . , xn
′) ∈ [−r1, r1]n, i = 1, 2, . . . , n; j = 1, 2, . . . ,mi,

|αi
j(xi, y) − αi

j(xi
′, y)| = |Ai

j(xi) � Ci
j(y) −Ai

j(xi
′) � Ci

j(y)|

≤ 1

2

{
|Ai

j(xi) −Ai
j(xi

′)| +
∣∣|Ai

j(xi) + Ci
j(y) − 1| − |Ai

j(xi
′) + Ci

j(y) − 1|∣∣
}

≤ |Ai
j(xi) −Ai

j(xi
′)| ≤ Δij |xi − xi

′|,
where Δij is Lipschitz constant defined by previous section. This inequality
means Lipschitz continuity of the mapping αi

j .
Mathematical induction for mapping βi is employed. For each i = 1, 2, . . . , n,

assume that ∣∣∣∣∣∣
mi−1⊕
j=1

αi
j(xi, y) −

mi−1⊕
j=1

αi
j(xi

′, y)

∣∣∣∣∣∣ ≤ Δ(mi−1)|xi − xi
′|.

Here Δ(mi−1) is Lipschitz constant. Then we have

∣∣∣∣∣∣
mi−1⊕
j=1

αi
j(xi, y) ⊕ αi

mi
(xi, y) −

mi−1⊕
j=1

αi
j(xi

′, y) ⊕ αi
mi

(xi
′, y)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣
mi−1⊕
j=1

αi
j(xi, y) −

mi−1⊕
j=1

αi
j(xi

′, y)

∣∣∣∣∣∣ + |αi
mi

(xi, y) − αi
mi

(xi
′, y)|

≤ Δ(mi−1)|xi − xi
′| + Δimi |xi − xi

′| = (Δ(mi−1) + Δimi)|xi − xi
′|.

Thus βi(xi, y) =

mi⊕
j=1

αi
j(xi, y) is Lipschitz continuous on [−r1, r1]n. Note that

|γi(xi) − γi(xi
′)| ≤ 4r2

3

δ2
mi|βi(xi, y) − βi(xi

′, y)|,

by [7] and di < 1, we find that

|ρACd(x) − ρACd(x′)| ≤
n∑

i=1

di|γi(xi) − γi(xi
′)|

≤ 4r2
3

δ2

n∑
i=1

mi|βi(xi, y) − βi(xi
′, y)| ≤ 4r2

3

δ2

n∑
i=1

{
mi(Δ(mi−1) + Δimi)

} ‖x− x′‖.

Then the proof of Lipschitz continuity of ρACd on [−r1, r1]n is complete.
b) The proof is omitted.

It needs that the domain of bounded Lipschitz function ρACd is expanded
from [−r1, r1]n to R

n to adopt the previous proposition 4 to the proposition 1.
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It is possible without increasing its Lipschitz constant and bound though details
are omitted. Then the state equation (1) for the feedback law ρACd has a unique
solution x(t, x0, ρACd) with the initial condition x(0) = x0 [10]. Consequently,
in the following the extension Lipschitz function is written as ρACd without
confusion.

The optimal control problem is considered to be the calculus of variations by
treating ρACd as functional on the family of sets of membership functions Lδ.
The following proposition is obtained.

Proposition 5. The mapping

J =

∫
Br

∫ T

0

w(x(t, ζ, ρACd), ρACd(x(t, ζ, ρACd)))dtdζ

has a minimum (maximum) value on the compact space Lδ defined by (9).

Proof. It suffices to prove the continuity of ρACd on Lδ as functional. For all
i = 1, 2, . . . , n; j = 1, 2, . . . ,mi, note that

∣∣∣Ai
j
k
(xi) � Ci

j
k
(y) −Ai

j(xi) � Ci
j(y)

∣∣∣ ≤
∣∣∣Ai

j
k
(xi) −Ai

j(xi)
∣∣∣ +

∣∣∣Ci
j
k
(y) − Ci

j(y)
∣∣∣ ,

and
∣∣∣∣∣∣
mi⊕
j=1

αi
j

k
(xi, y) −

mi⊕
j=1

αi
j(xi, y)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
mi∑
j=1

αi
j

k
(xi, y) ∧ 1 −

mi∑
j=1

αi
j(xi, y) ∧ 1

∣∣∣∣∣∣ .

Routine calculation gives the estimate

|ρAkCkdk(x) − ρACd(x)|

≤ r2
2

n∑
i=1

∣∣∣dik − di

∣∣∣ +
1

δ2

n∑
i=1

⎛
⎝2r2

3
mi∑
j=1

∣∣∣Ai
j

k
(xi) −Ai

j(xi)
∣∣∣

+ r2
2

∫ r2

−r2

mi∑
j=1

∣∣∣Ci
j

k
(y) − Ci

j(y)
∣∣∣ dy + 2r2

∫ r2

−r2

|y|
mi∑
j=1

∣∣∣Ci
j

k
(y) − Ci

j(y)
∣∣∣ dy

⎞
⎠ .

Assume that (Ak, Ck, dk) → (A, C, d) (k → ∞) in Fδ. Then it follows from the
estimate above that

lim
k→∞

sup
x∈[−r1,r1]n

|ρAkCkdk(x) − ρACd(x)| = 0.

Thus ρACd is continuous on Lδ. Then the existence of minimum (maximum)
value of J is proved by applying lemma 1.

This proposition guarantees the existence of SIRMs fuzzy controller (A, C, d) ∈
Lδ which minimizes (maximizes) the previous performance functional.
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5 Conclusion

A mathematical analysis of SIRMs connected fuzzy inference method, in which
bounded product and bounded sum are applied as operations, has been sug-
gested. The set of membership functions which compose SIRMs is considered as
variable of the performance functional, and the approximate reasoning calcula-
tion of SIRMs method is considered as functional on the family of sets of mem-
bership functions. Since the performance functional is composite mapping of the
approximate reasoning calculation, the family of sets of membership functions is
its domain. The compactness of the family of sets of membership functions and
continuity of performance functional on it have been mainly discussed. Based on
the above mathematical analysis, we conclude that there exists minimum value
of performance function on the family of sets of membership function. Generally
speaking, the SIRMs which give optimal control exist. Future research will focus
on method of solution by the calculus of variations.
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