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Abstract. Classifier ensemble has been intensively studied with the aim of over-
coming the limitations of individual classifier components in two prevalent direc-
tions, i.e., to diversely generate classifier components, and to sparsely combine
multiple classifiers. Currently, most approaches are emphasized only on sparsity
or on diversity. In this paper, we investigated classifier ensemble with learning
both sparsity and diversity using a heuristic method. We formulated the sparsity
and diversity learning problem in a general mathematical framework which is
beneficial for learning sparsity and diversity while grouping classifiers. More-
over, we proposed a practical approach based on the genetic algorithm for the op-
timization process. In order to conveniently evaluate the diversity of component
classifiers, we introduced the diversity contribution ability to select proper clas-
sifier components and evolve classifier weights. Experimental results on several
UCI classification data sets confirm that our approach has a promising sparseness
and the generalization performance.
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1 Introduction

An ensemble of multiple classifiers has been intensively studied and widely considered
to be an effective technique for overcoming the limitations of individual classifiers’
accuracy and stability [1–4]. Classifiers differing in feature representation, architec-
ture, learning, or training data exhibit complementary behavior and the fusion of their
decisions can yield higher performance than the best individual classifier. Generally
speaking, besides the accuracies of classifier components, the performance relies on the
diversity of the classifier components, and the combining strategy. Consequently, the
research efforts in classifier ensemble have focused on two directions: how to generate
diverse classifiers, and how to combine available multiple classifiers. In classifier en-
semble, diversity learning is performed in two approaches such as seeking implicit and
explicit diversity [5]. The common way for the prior approach is to train individual clas-
sifiers on different training sets, e.g., Bagging [6], Boosting [7, 8], SVM ensemble [9]
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and Random Forests [10]. As in the latter approach, the general way is to train multiple
classifiers by using different classifier architectures or different feature sets [2, 11, 12].
Recently, Yu et al. proposed the diversity regularized machine, which efficiently gen-
erates an ensemble of assorted support vector machines [13]. Li et al. proposed the
diversity regularized ensemble pruning method with PAC analysis [14].

In the combination learning, multiple classifiers with proper combination of rules or
learning methods are grouped. Numerous methods such as an average, linear or non-
linear combination rules are employed [3, 11]. Given a number of available component
classifiers, most conventional approaches employ all of these classifiers to constitute
an ensemble. In the literature, many researchers suggested that ensemble of some parts
of the available component classifiers may be better than ensemble as a whole. This
leads to the sparse ensemble or pruned ensemble for the combination of multiple clas-
sifiers [15, 16], [17–20]. The sparsity learning seeks a sparse weight vector for combin-
ing the outputs of all classifiers. In general, a sparse model representation is expected
to improve the generalization performance and computational efficiency. As described
above, the diversity learning and the sparsity learning for classifier ensemble have dif-
ferent purposes and algorithmic treatments. Therefore, It is more rational for classi-
fier ensemble with both sparsity and diversity learning strategies. With a similar idea,
Chen and Yao et al. analyzed diversity and regularization in neural network ensembles
for balancing diversity, regularization and accuracy of multi-objectives [21, 22]. Their
methods were specifically designed for component classifier training and combination
with neural network ensembles.

In this paper, considering a general classifier ensemble with numerous available com-
ponent classifiers, we formulated the sparsity and diversity learning problem in a gen-
eral mathematical framework with an optimized equation. Moreover, we proposed a
practical approach based on the genetic algorithm (GA) with a direct evaluation of di-
versity for the optimization process. The rest of this paper is organized as follows. In
Section 2, our sparsity and diversity learning for classifier ensemble is presented in
details. Several comparative experiments with UCI classification data sets are demon-
strated in Section 3. Finally, conclusion is shown in Section 4.

2 Sparsity and Diversity Learning

2.1 Problem Statement for Classifier Ensemble

In classifier ensemble, each instance a is associated with a label y. To classify one
instance a into K classes {ω1, . . . , ωK}, assume that we have N different classifiers
(classification hypotheses) {h1, . . . , hN}, each using a certain feature vector for a. On
an input instance a, each classifier hn outputs discriminant measures xn = hn(a).
With all classifiers we get x = [x1 . . . xN ]T . We focus on the weighted combination.
The combined similarity measures are computed by H(a) =

∑N
n=1 w

nxn = wTx,
where wn is the weight for the nth classifier, and w = [w1 . . . wN ]T .

Formally, given a sample set {(am, ym)}Mm=1, with N different classifiers, we have
{(xm, ym)}Mm=1, where xm is a vector and xm = [x1

m . . . xN
m]T . The learning focuses

on finding w for with which the empirical loss is small. In our work, we used the least
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squares loss. The classifier weights are estimated on the sample data set to the least
squares loss. The general goal is to learn w with minw

∑M
m=1

1
2 (w

Txm − ym)2. With
X = [x1, x2, . . . , xM ] ∈ �N×M and y = [y1, y2, . . . , yM ]T ∈ �M , the classifier
weights w are learned by solving the least squares (LS) problem,

min
w

‖ XTw − y ‖2 s.t. wn ≥ 0 (1)

2.2 Sparsity and Diversity

Sparsity Learning. In the literature of classifier ensemble, many researchers suggested
that ensemble some parts of the available component classifiers may be better than
entire ones. This leads to the sparsity learning for classifier combination. The classifier
weights w in (1) are learned by incorporating the l1-norm regularization,

min
w

‖ XTw − y ‖2 +λ ‖ w ‖1 s.t. wn ≥ 0 (2)

where λ is the l1-norm regularization parameter.

Sparsity and Diversity Learning. To learn sparsity and diversity in classifier ensem-
ble, the targeted learning should be set with one diversity loss in the regularization
process,

min
w

‖ XTw − y ‖2 +λ ‖ w ‖1 +βs(w) s.t. wn ≥ 0 (3)

where, 0 ≤ s(w) ≤ 1 is one measure inversely proportional to the average diversity
of all component classifiers, and β is the diversity penalty parameter. The classifier
ensemble will have more stronger diversity when s(w) is less.

For robustness, we adopt the Yule’s Q statistic diversity measure for the average
diversity measure [4]. Suppose the Yule’s Q statistic for two classifiers, hn1 and hn2 ,
is Qn1,n2 . For statistically independent classifiers, the expectation of Qn1,n2 is 0. Q
varies between −1 and 1. Classifiers that tend to recognize the same objects correctly
will have positive values of Q, and those which commit errors on different objects will
render Q negative. That is to say, in classifier ensemble, if Q is small then the diversity
of the ensemble is large. In this way, the average diversity measure of the ensemble,
g(w), is calculated with Yule’s Q statistic by

g(w) =
2

N1(N1 − 1)

N1−1∑

n1=1

N1∑

n2=n1+1

1 +Qn1,n2

2
(4)

Then, the diversity semantic loss, s(w) in (3), is simply calculated as

s(w) = g(w) (5)

Obviously, 0 ≤ s(w) ≤ 1.
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2.3 Heuristic Learning Algorithm

The conventional optimization techniques of the l1-norm regularization in (2) depend
on the gradient computation with w. In sparsity and diversity learning with (3), the
“diversity” semantic loss is indirectly calculated from w with (4). As a result, we can
not directly compute the gradient of w from the “diversity” semantic loss with current
l1-norm regularization techniques.

Alternatively, we deal with the sparsity and diversity learning (3) in two steps which
incorporate the l1-norm regularization and the “diversity” semantic of ensemble classi-
fiers in a heuristic and iterative way (see Figure 1). Firstly, the l1-norm regularization is
performed for the left part of (3), i.e. (2), and a sparse w is learned. Then, based on the
learned w of the former step, we calculate the “diversity” measures of classifiers; more-
over, we remove some included classifiers and add some excluded classifiers both with
a probability proportional to the diversity contribution ability. The former two steps
are repeated until some criterions (e.g., the maximum of iterations, the rate of change of
the diversity measure) are satisfied. According to (3), the removal of included-classifiers
and the addition of excluded classifiers will decrease the sparsity and diversity loss in
(3). That is to say, in the second step, the new weight vector w′ with classifier removal
and addition will satisfied the following condition,

‖ XTw′ − y ‖2 +λ ‖ w′ ‖1 +βs(w′) <‖ XTw − y ‖2 +λ ‖ w ‖1 +βs(w) (6)

The diversity contribution ability of a classifier in the ensemble is defined as follows.
There are N1 included component classifiers in the ensemble. The average diversity
measure, g(w) in (3), is calculated with Yule’s Q statistic by (7),

f(w) =

N1−1∑

n1=1

N1∑

n2=n1+1

1 +Qn1,n2

2
(7)

The average diversity measure without one included classifier, hn(n ∈ {1, 2, . . . , N1}),
can be calculated with

f/n(w) =

N1−1∑

n1=1

N1∑

n2=n1+1

1 +Qn1,n2

2
−

N1∑

n1=1,n1 �=n

1 +Qn1,n

2

The diversity contribution ability of the included classifier hn is represented by

�f/n(w) = 1− 1

N1 − 1
(f(w)− f/n(w)) = 1− 1

N1 − 1

N1∑

n1=1,n1 �=n

1 +Qn1,n

2
(8)

In the similar way, for the diversity contribution ability of the excluded classifier nhl

(i.e., its weight in (3) is equal to zero), we compute the diversity measure both with the
N1 included component classifiers and the excluded classifier nhl,

f\l(w) =
N1−1∑

n1=1

N1∑

n2=n1+1

1 +Qn1,n2

2
+

N1∑

n1=1

1 +Qn1,l

2
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INPUT: Training set {(xm, ym)}Mm=1, regularization λ and β in (3), T iterations
INITIALIZE: Calculate X ∈ �M×N and y , and set the weight vector w with random values
FOR t = 1, . . . , T

(1) Learn sparsity weights w via the l1-norm regularization in (2)
(2) Learn sparsity and diversity weights from the sparse weights w

(2.1) Calculate the diversity contribution ability �f/n(w) in (8)
(2.2) Calculate the diversity contribution ability �f\l(w) in (9)
(2.3) Sort �f/1(w) ≤ �f/2(w) ≤ · · · ≤ �f/N1

(w)
FOR n = 1, . . . , Nthres

Remove hn with a probability inversely proportional to �f/n(w),
where wn < wthres

(2.4) Sort �f\1(w) ≥ �f\2(w) ≥ · · · ≥ �f\L(w)
FOR l = 1, . . . , Lthres

Remove nhl with a probability proportional to �f\l(w)
(2.5) Evolve the weights of added classifiers with (3) using the genetic algorithm
(2.6) Update w

OUTPUT: The sparsity and diversity weights w∗

Fig. 1. Algorithm for the sparsity and diversity learning with a heuristic approach

Obviously, the number of excluded classifiers is L = N −N1.
And the diversity contribution ability of the excluded classifier nhl is

�f\l(w) = 1− 1

N1
(f\l(w) − f(w)) = 1− 1

N1

N1∑

n1=1

1 +Qn1,l

2
(9)

which represents the increase of diversity while adding one excluded classifier.
Let’s look around (6) and (4), where the changed weight vector w′ is computed based

on permutation and combination of all component classifiers, and moreover with varied
weights of the excluded classifier addition. It is obvious that the computational cost
for removing included-classifiers, adding excluded classifier, and computing the new
weights are too extensive.

Consequently, we present a practical approach in the second step (see Figure 1) to
find out the component classifier that should be excluded or included from the ensemble.
The basic idea of this approach is a heuristic, i.e., assuming each included classifier
can be removed with a probability inversely proportional to its diversity contribution
ability. Also, each excluded classifier can be added with a probability proportional to
its diversity contribution ability. Moreover, each excluded classifier for adding can be
assigned a weight that could characterize the fitness of their inclusion in the ensemble.
Thus, the included and excluded component classifiers with the new weights decrease
the sparsity and diversity loss in (3) (satisfied (6)). With the help of (3) and (6), it could
be viewed as defining an optimization problem. We develop a genetic algorithm based
method for this optimization problem in Step (2) (see Figure 1). After Step (1) with
the l1-norm regularization in (2), a sparsity weight vector with included and excluded
classifiers is available. Firstly, included and excluded classifiers are removed and added
respectively according to their diversity contribution abilities (From Step (2.1)-(2.4) in
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Fig. 2. The experimental results of sparsity (green grids) and relative errors (blue grids), from
left/top to right/bottom: Chess, Credit, Ionosphere, Sick, Cancer Wisconsin, and Vote.

Figure 1). Subsequently, our approach employs genetic algorithm to evolve the weights
of added classifiers (excluded classifiers).

In the second step of the algorithm in Figure 1, we add excluded classifiers with
high diversity measures and remove included classifiers with low diversity measures
in the ensemble in a sequence, where one excluded classifier with a higher diversity
contribution ability will be added at first with a higher probability. In such a way, we
hope the final ensemble will have a large diversity semantic.

3 Experiments

Six data sets (the Chess, Credit (German), Ionosphere, Sick, Breast Cancer Wisconsin,
and Vote) for classification with 2 classes from UCI machine learning repository were
used in our experiments, each of which contained at least 350 instances. In our exper-
iments, 10-fold cross validation for the data sets was performed. We compared 4 en-
semble methods: Bagging (Bag), LS Estimation Combination (LSE), Sparsity Learning
(SPA), Sparsity and Diversity Learning (S&D). Each ensemble contained 100 neural
network classifier components (with Back-propagation in Matlab), which were same to
the components in Bagging.

The reported results were the average outcomes. The sparsities and relative errors are
shown in Figure 2. The sparsity is the percentage of used component classifiers (which
are with nonzero weights) in the ensemble. The relative error is the ratio against the
error of the baseline ensemble (Bagging).

We compared the SPArsity learning algorithm (SPA) to the baseline algorithm Bag-
ging (Bag) as shown in Figure 2. SPA has a better performance for the Chess, Iono-
sphere, and Sick datasets respectively. However, SPA has a worse performance for other
data sets such as the credit, Cancer Wisconsin and Vote respectively. Furthermore, Least
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Table 1. Comparison of test errors (%) of (S&D), Bag, LSE, SPA, and AB

Data sets S&D Bag LSE SPA AB
Chess 3.84 5.19 4.00 4.03 4.06
Credit 23.70 24.20 24.30 24.30 26.50
Ionosphere 7.14 8.29 7.43 7.43 11.71
Sick 1.85 2.16 1.85 1.85 2.57
Cancer 8.00 7.86 8.86 8.57 7.86
Vote 9.77 8.60 10.00 10.23 9.53

Average rank 1.67 2.83 2.83 3.00 3.67

Squares Estimation method (LSE) and SPA have a similar performance. To some ex-
tent, these results show that the pure pursuit of sparsity or the focus on accuracy for
combination will have little effect in classifier ensemble.

In contrast, our Sparsity and Diversity (S&D) learning approach has more impres-
sive results. Compared to the sparsity learning (SPA), the relative errors of S&D are
improved by 0.0361, 0.0248, 0.0345, 0.0000, 0.0727, and 0.0541 for all the data sets
respectively as shown in Figure 2. At the same time, the sparsity performance of our
S&D learning approach is not only competitive but also even better than the existing
sparsity learning. In most cases, the S&D has a better performance compared to the
baseline (Bag). As a result, we can conclude that our sparsity and diversity learning ap-
proach has taken more advantages for classifier ensemble using sparsity and diversity.

We also compared our sparsity and diversity learning method to the AdaBoost algo-
rithm in [7] with 100 neural network components. The average classification errors for
our (S&D) learning method, LSE, SPA, Bag, and AdaBoost (AB) are shown in Table 1.
On each data set, we assign ranks to methods. The best method receives the rank 1, and
the worst the rank 5.

From these experimental results in Table 1, we could find that our S&D learning
method has a competitive performance with the Bagging (Bag) and Adaboost (AB)
combination methods. In these five ensemble methods, our S&D learning method have
the highest average ranks (1.67). Especially, in comparison with AdaBoost, our S&D
learning method has improved the performance (in favor of decreasing the classification
error) by 0.22%, 2.80%, 4.57%, and 0.72% using the Chess, Credit, Ionosphere and
Sick datasets respectively. Moreover, our method has a very low sparsity, and only uses
a small number (from 7% to 21%) of available classifiers in all experimental data sets.

4 Conclusion

Classifier ensemble is widely considered to be an effective technique for improving
accuracy and stability for a classification system with numerous classifier components.
We proposed a mathematical framework of classifier ensemble with a sparsity and diver-
sity learning strategy, which captured advantages of features of both learning strategies.
This framework can be implemented by an optimization procedure which is embedded
with one diversity semantic loss incorporating the l1-norm regularization. We also pro-
posed a practical approach based on the genetic algorithm for the optimization process.
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Experimental results on 2-class UCI data sets confirmed the validity of our classifier en-
semble method with sparsity and diversity learning, which has a promising sparseness
and generalization performance.
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