
Chapter 4
From Functional Architectures to Percepts:
A Neuromathematical Approach

Giovanna Citti and Alessandro Sarti

Abstract. In this paper we will consider mathematical models of the functional
architecture of the primary visual cortex based on Lie groups equipped with sub-
Riemannian metrics. We will critically review and clarify our line of work, joining
together within an integrative point of view geometric, statistical, and harmonic
models. The neurogeometry of the cortex in the SE(2) groups introduced recalling
the original paper [12]. Amodal perceptual completion is reconsidered in terms of
constitution of minimal surfaces in the geometric space of the functional architec-
ture, and a new Lagrangian field model is introduced to afford the problem of modal
perceptual completion [14] of the Kanizsa triangle. The neurogeometric structure is
considered also from the a probabilistic point of view and compared with the statis-
tics of co-occurence of edges in natural images following [48]. Finally the problem
of perceptual units constitution is introduced by means of a neurally based non linear
PCA technique able to perform a spectral decomposition of the neurogeometrical
operator and produce the perceptual gestalten [52, 53].

4.1 Introduction

The pioneeristic work of Hubel and Wiesel in the seventies [32,33] allowed the dis-
covery of the modular structure of the mammalian visual cortex. Every module is
composed by many families of cells, every one sensible to a specific feature of the
image, either position, orientation, scale, color, curvature, velocity or stereo. Mod-
ules are spatially arranged in suitable maps always respecting retinotopy in such a
way that for every point (x,y) of the retinal plane there is a hypercolumn containing
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an entire set of cells sensitive to all feature instances. The functional architecture
of the visual cortex is the geometric machine underlying the processing of visual
stimuli, and it is defined in terms of hypercolumnar organization and its neural con-
nectivity. A particularly interesting framework to mathematically model the func-
tional architecture of the primary visual cortex has been introduced first by W.C.
Hoffmann in [30]. A differential geometry setting has been proposed to model the
hypercolumnar organization in in terms of a manifold equipped with a fiber bundle
structure. Steven Zucker in [61] followed a similar approach to model the action of
simple cells for orientation detection, introducing Frenet frames in a fiber bundle
structure to represent hypercolumns. Jean Petitot and Yannique Tondut in [46] in-
troduced in the fiber bundle structure a supplementary constraint, giving rise to the
so called contact structure. They propose for the first time the notion of neuroge-
ometry. The contact constraint is fundamental to take into account the anysotropic
pattern of connectivity between hypercolumns. Citti and Sarti proposed to repre-
sent the functional architecture in terms of Lie group structures equipped with sub-
Riemannian metrics, which better describe the symmetry of the cortex [12]. In their
model, the hypercolumnar structure is described in terms of the Lie symmetries of
the Euclidean group, equipped with the suitable sub-Riemannian metric for mod-
elling anysotropic connectivity. The integral curves of its generating vector fields
can also be considered as a mathematical representation of the association fields of
Field, Hayes and Hess [23]. The propagation in the sub-Riemannian setting allows
to perform amodal contour completion [12]. With similar instruments, both contour
and image completion have been achieved in the Lie group of affine transformation
in [49] and improved by introducing the hyperbolic plane in [50]. Analytical prop-
erties of the model [12] was further studied by R. Hladky and Pauls [29]. Finally we
recall the works of Duits, van Almsick, Franken, ter Haar Romeny [19] [20] [21]
who proposed new models in different Lie groups, with many applications to image
processing. The connectivity kernels resulting from the sub-Riemannian model of
the cortex are compared with the statistics of co-occurence of edges in natural im-
ages in [48], giving a possible explanation of their emergence. In [14] a Lagrangian
field model is introduced to couple the functional architecture of the Lateral Genic-
ulate Nucleus with the one of the visual cortex. The resulting model is able to afford
the problem of modal perceptual completion of the classical triangle of Kanizsa.
The problem of the constitution of perceptual units in the geometry of the func-
tional architecture is the very question to fill the gap between neurophysiology and
phenomenology of perception. In [52] and [53] a mechanism of grouping has been
proposed as extension of the model of visual hallucination proposed by Bressloff
and Cowan [7]. The model performs a non-linear Principle Component Analysis by
using the neurogeometrical kernels of the functional architecture.

In this paper we will critically review and clarify our line of work, joining to-
gether within an integrative point of view geometric, statistical and harmonic mod-
els previously presented. The paper is organized in six main parts. In section 4.2,
the functional architecture of the Lateral Geniculate Nucleus is presented, while in
section 4.3, the neurogeometry of the cortex is recalled following [12]. In section
4.5, a model of amodal perceptual completion is proposed in terms of constitution
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of minimal surfaces in the geometric space of the functional architecture. In sec-
tion 4.6, a Lagrangian field model is introduced to afford the problem of modal
perceptual completion [14]. In section 4.7, we will reinterpret the neurogeometric
structure from a probabilistic point of view and compare it with the statistics of co-
occurence of edges in natural images, following [48]. In section 4.8, we will afford
the problem of perceptual units constitution. By means of a sinlge neural population
model [8], we will construct the gestalten performing a spectral decomposition of
the neurogeometrical operator.

4.2 Functional Architecture of Lateral Geniculate Nucleus

4.2.1 Receptive Fields and Profiles of Thalamic Cells

A number of cells of visual areas elicit a spike response to a luminance signal ap-
plied on the retinal plane M ⊂ R

2. Every visual neuron is characterized by its re-
ceptive field (RF) that is classically defined as the domain of the retina to which
the neuron is sensitive. Note that in general neurons are not directly connected to
the retina. For example, cortical neurons are projecting from the retina to the cortex
through the lateral geniculate nucleus along the thalamic way.

The receptive profile (RP) of a visual neuron is defined on the domain marked by
the RF, and corresponds to the impulse response of the cell as a filter kernel. It is a
functionΨ(x,y) (where x,y are retinal coordinates)Ψ : M→R which is defined on
the retinal plane M and measures the response (ON / OFF) of the neuron to stim-
ulation at the point (x,y). When a visual stimulus I(x,y) : M ⊂ R

2→ R
+ activates

the retinal layer, the cells centered at every point (x,y) of M process in parallel the
retinal stimulus with their receptive profile. Reverse correlation techniques enable
the recording of the RPs in terms of the correlations of the inputs (generally flashes
of light and dark spot) with the outputs (spikes) [18]. The correlation of the inputs
with the outputs yields the transfer function of the neuron, namely the RP.

RPs of the retinal ganglion cells are usually modelled by Laplacians of Gaussians
[39],

Ψ0(ξ ,η) = ΔG(ξ ,η),

where G(ξ ,η) = e−(ξ 2+η2) is the Gaussian bell and Δ is the standard Laplacian.
The same receptive profiles are found also in the Lateral Geniculate Nucleus (LGN),
that is a copy of the retina but strictly in contact with the visual cortex. The size of
the retinal and LGN RPs vary with a scale parameter allowing an entire multiscale
analysis of the signal. For the purpose of this study, we will consider a fixed scale,
since the phenomena described are invariant with respect to size changes, up to a
rescaling.
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Fig. 4.1 On the left: a measured LGN cell RP (thanks to De Angelis [18]), on the right: a
LGN cell RP modelled as Laplacian of a Gaussian

4.2.2 Cell Response and Lateral Connectivity of LGN

The output of the cells in LGN in response to the visual signal is highly nonlinear,
and it rescales the visual input in a logarithmic way:

O(x,y)LGN = ΔG(x,y) ∗ logI(x,y).

The output of LGN cells is propagated via the lateral connectivity in LGN itself.
Since this connectivity is isotropic [57], it can be modelled by the fundamental
solution Γ (x,y) of the 2D Laplacian operator

Γ (x,y) =− log
√

x2 + y2.

LGN lateral connectivity with strength Γ (x,y) acts linearly on the output
O(x,y)LGN , giving a total contribution

φ(x,y) =
1
2

(

Γ (x,y)∗Δ log I(x,y)
)

. (4.1)

Note that the action of receptive profiles Δ log I(x,y) and the one of LGN lateral
connectivity Γ (x,y)∗ is dual in a differential sense.

4.2.3 The Retinex Algorithm as a Model of LGN Action

Eq. (4.1) corresponds to the Retinex algorithm in the version proposed by Horn
in [31], where the authors proposed a physically based algorithm, which recovers
the reflectance f of an image I as

Δ log f (x,y) = Δ log I(x,y), (4.2)

where I(x,y) is given. This is a Poisson equation with solution
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log f (x,y) =
1
2

(

Γ (x,y)∗Δ log I(x,y)
)

,

formally equivalent to eq. (4.1) provided that φ(x,y) = log f (x,y).
Let us recall that the Retinex algorithm has been introduced in [37,38] to explain

lightness perception, i.e. the phenomenon causing a gray patch to appear brighter
when viewed against a dark background and darker when viewed against a bright
background. Improvements and new models have been proposed by [35,43] among
others.

In particular in [43], it has been proved that the original Retinex algorithm can be
equivalently espressed by the Poisson equation (4.2), and in [26,27] a new interpre-
tation was given in terms of covariant derivatives and fiber bundles. Indeed setting

A(x,y) = ∇I(x,y)/I(x,y) (4.3)

equation (4.2) can be considered the Euler Lagrange equation of the functional

F̃(x,y) =
∫ |∇ f (x,y)−A(x,y) f (x,y)|2

f (x,y)2 dxdy. (4.4)

This functional is invariant with respect to the transformation

f → f I, A→ A+
∇I
I

so that the choice A(x,y) = ∇I(x,y)
I(x,y) is compatible with the transformations which

leaves the functional invariant. The quantity∇ f −A f can be interpreted as a covari-
ant derivative.

Here we can further notice that, setting

φ(x,y) = log f (x,y), h(x,y) = log I(x,y), (4.5)

equation (4.2) simplifies as

Δφ(x,y) = Δh(x,y) (4.6)

and setting as before: A(x,y) = ∇I(x,y)/I(x,y) = ∇h(x,y), the functional becomes

F(x,y) =
∫

|∇φ(x,y)−A(x,y)|2dxdy =
∫

|∇φ(x,y)−∇h(x,y)|2dxdy, (4.7)

while the transformations which leave the operator invariant become

φ → φ + h, A→ A+∇h.

The functional (4.7) has to be considered as the invariant energy underlying the
Retinex Poisson equation (4.2) solved by the action of the LGN connectivity repre-
sented by eq. (4.1).
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4.3 The Neurogeometrical Structure of the Primary Visual
Cortex

4.3.1 The Set of Simple Cells Receptive Profiles as a Lie Group

While LGN cells are fairly isotropic, simple cells of the primary visual cortex V1
are strongly oriented, and their RPs are interpreted as Gabor patches [17, 36] or
directional derivatives of Gaussians.

A first derivative of Gaussian models odd simple cell RPs (Fig. 4.2 right):

Ψ0(ξ ,η) = ∂ηG(ξ ,η). (4.8)

Fig. 4.2 Left: an odd simple cell RPs measured by reverse correlation techniques (thanks to
De Angelis [18]). Odd receptive profile modelled as Gabor filter (middle) and first directional
derivative of Gaussian (right).

The set of observed profiles can be obtained from the mother profile Ψ0(ξ ,η)
(see [36]) under the action of a Lie group.

The entire set of RPs of the same point (x,y) is then obtained by rotating the
mother profile, explicitly:

Ψθ =Ψ0

(

ξ cosθ +η sinθ ,−ξ sinθ +η cosθ
)

.

This structure enlightens the modular structure of the cortex. Each family of cells
acts on the same retinal basis but depends on different engrafted variables, and it is
described by different groups of symmetry.

We will describe the action of the affine group of rotation and translation on
vectors of R2, since the other two groups are subset of this one. The action Mx,y,θ
transforms every vector (ξ ,η) in a new vector (ξ̃ , η̃) as:

(ξ̃ , η̃) = Mx,y,θ (ξ ,η) =
(

x
y

)

+

(

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

)(

ξ
η

)

. (4.9)
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The action of the group on the set of profiles will be:

L(x0,y0,θ)Ψ (x,y) =Ψ(M−1
(x0,y0,θ)

(x,y)). (4.10)

Then the whole set of receptive profile will be {Ψx,y,θ (ξ̃ , η̃) =L(x0,y0,θ)ψ(x,y)}.
After rotation of the axis of an angle θ , the derivative ∂η becomes

X3 =−sin(θ )∂ξ + cos(θ )∂η . (4.11)

Then the odd cell RP oriented in the direction θ is in general represented by

Ψθ = X3G(ξ ,η). (4.12)

Finally the expression of filters on different points is obtained by translation:

Ψx,y,θ (x̃, ỹ) =Ψθ (x− x̃,y− ỹ).

In Fig. 4.3 we visualize the set of odd simple cells.
Note that for simplicity we take Euclidean translations on the cortical plane ne-

glecting the conformal log-polar retino-cortical mapping, that can be easily taken
into account by introducing a Riemannian metric on the cortical layer. This feature
will not be implemented in the present study.

Fig. 4.3 The set of simple cells odd receptive profiles Ψx,y,θ (x̃, ỹ) represented in the space
(x,y,θ )

4.3.2 Simple Cells Response

If classical RPs are considered, the output u is given by linear filtering of the stimu-
lus h(ξ ,η) = log(I(ξ ,η)) by the set of RPs:
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u(x,y,θ ) =
∫

M
h(ξ̃ , η̃)Ψ(x,y,θ)(ξ̃ , η̃)dξ̃dη̃ (4.13)

and by eq. (4.12)

u(x,y,θ ) =
∫

X3G(ξ ,η)h(ξ̃ , η̃)dξ̃dη̃ =−X3G(ξ ,η)∗ h(ξ̃ , η̃) =−X3(θ )hs

(4.14)
where hs is a smoothed version of h,

hs = h ∗G(ξ ,η).

4.3.3 Non Maximal Suppression

For a fixed point (x,y) the output is a function just of the variable θ that attains its
maximum at the point

max
θ
||u(x,y,θ )||= ||u(x,y, θ̄ )||. (4.15)

This maximality condition can be mathematically expressed requiring that the
derivative of ||u|| with respect to the variables θ vanishes at the point (x,y, θ̄ ):

∂θu(x,y, θ̄ ) = 0. (4.16)

At the maximum point θ̄ the derivative with respect to θ vanishes, and we have

0 =
∂
∂θ

u(x,y, θ̄ ) =
∂
∂θ

X3(θ̄ )I =−X1(θ̄ )I =−〈X1(θ̄ ),∇I〉 (4.17)

where
X1(θ ) = cos(θ )∂ξ + sin(θ )∂η .

The condition (4.17) means that the vector (cos(θ̄ ),sin(θ̄ )) is orthogonal to the
gradient of h (and to the gradient of I) and then is tangent to its level lines. Then the
angle θ̄ maximizing the output indicates the direction of level lines of the stimulus
image.

Calling
ρ̄(x,y) = ||u(x,y, θ̄ (x,y))||, (4.18)

we can say that the point (x,y) is lifted to the point (x,y, θ̄ (x,y), ρ̄(x,y)) in the
cortical space (x,y,θ ,ρ). With the same procedure it is possible to lift all the level
lines of the 2D image I into 4D curves.

It is easy to check (see for example [12]) that the first 3 components of the lifted
curves are tangent to the plane generated by the vector fields

X1 = (cos(θ ),sin(θ ),0) X2 = (0,0,1). (4.19)
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Fig. 4.4 A level line of the image (in blue) and its 3D cortical lifting (in red). The tangent
vector to the blue curve is (cos(θ ),sin(θ )), so that the tangent vector to its lifting lies in the
plane generated by X1 = (cos(θ ),sin(θ ),0) and X2 = (0,0,1).

and visualized in Fig. 4.5. In Fig. 4.4 we depicted the 3D section with the plane
(x,y,θ ).

Let us notice that all admissible curves of the cortical space are tangent at ev-
ery point to the subspace generated by X1 and X2, which has dimension 2. In the
standard Riemannian setting, the number of generators of the tangent space equal
the dimension of the space, while in the geometrical model of cortical space the
dimension of the manifold is 3, and the admissible tangent space has dimension 2.
This endows the 3D space R2× S1 of the variables (x,y,θ ) with a sub-Riemannian
geometry. While no constraint is imposed on the last variable ρ , the vector field in
the ρ direction will be

X4 = (0,0,0,1).

The full 4D space will consequently be

R2× S1×R+,

with a sub-Riemnnian metric in the first 3 variables, and a standard metric in the last
variable. Since the geometry on the last component ρ is standard, we will describe
the geometry of the 3D space generated by the first 3 variables (x,y,θ ).

4.3.4 Association Fields and Integral Curves of the Structure

Field, Heyes and Hess in [23] have shown the existence of a perceptual field
connecting patches of position and orientation, see Fig. 4.6 left. This connectivity
pattern, called association field, is considered at the base of the constitution of
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Fig. 4.5 The bundle of subspaces of the tangent manifold generated by the fields X1(θ ) and
X2(θ )

boundaries in visual perception, implementing the gestalt law of good continuation.
We have shown in [13] that the association field is well modelled by the integral
curves of the vector fields X1 and X2, starting from a fixed point (x0,y0,θ0):

γ ′(t) = (x′(t),y′(t),θ ′(t)) = X1(x(t),y(t),θ (t))+ kX2(x(t),y(t),θ (t)) (4.20)

γ(0) = (x0,y0,θ0),

A fan of such integral curves by varying the parameter k is visualized in Fig. 4.6
right.

Fig. 4.6 The association fields of Fields, Heyes and Hess [23] (left) and the projected integral
curves with constant coefficients (right)
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Fig. 4.7 The constant coefficient integral curves of the fields X1(θ ) and X2(θ ), modeling the
local connectivity between points of the cortical space

4.3.5 Length of Lifted Curves and Geodesics

A 2D level line
γ̃ = (x(t),y(t))

parametrized by arc length t, has tangent vectors

(x′(t),y′(t)) = (cos(θ (t)),sin(θ (t)))

at every point, where θ denotes the direction of the curve at the point (x(t),y(t)).
We have seen that the action of simple cells lifts the level line into a 3D cortical
curve γ(t) = (x(t),y(t),θ (t)). Differentiating x and y we get

(x′′(t),y′′(t)) = (−sin(θ (t))θ ′(t),cos(θ (t))θ ′(t)) = (−y′(t),x′(t))θ ′(t)

so that the euclidean curvature can be computed as

k =
y′′x′ − x′y′′

((x′)2 +(y′)2)3/2
= θ ′

The length of the lifted curve is

L(γ(t)) =
∫
√

x′(t)2 + y′(t)2 +θ ′(t)2dt =
∫ √

1+ k(t)2dt,

considering that x′(t)2 + y′(t)2 = 1. Notice that the length of lifted curves depends
on the length of the 2D level line and on its curvature, analogous to the case of
the elastica functional

∫

(1+ k(t)2)dt, introduced by David Mumford in [44]. The
distance between two cortical points (x,y,θ ) and (x̄, ȳ, θ̄ ) is defined in term of the
length functional as
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d((x,y,θ ),(x̄, ȳ, θ̄ )) = inf{L(γ) : γ is an horizontal curve (4.21)

connecting (x,y,θ ) and (x̄, ȳ, θ̄ )},
see [13]. In other words the horizontal path on which the infimum is achieved is a
geodesic curve of the cortical space. As suggested by Petitot and Tondout in [46],
subjective contours can be computed as geodesics curves in a contact structure. Here
we can show (see Fig. 4.8) that subjective contours can be well represented by sub-
Riemannian geodesics in the SE(2) group, i.e. as minimizers of (4.21).

Fig. 4.8 A Kanizsa triangle with curved boundaries (left) and the subjective contours mod-
elled as geodesics of the cortical space (right). The geodesics are not rectilinear, since they
minimize the distance (4.21), which is a function of the curvature k.

4.4 The Cortical Implementation of the Neurogeometrical
Structure

4.4.1 Response of Simple Cells and Bargmann Transform

Daugmann in [17] first proved that the shape of the simple cells is intimately related
to their functionality. His crucial remark is the fact that simple cells try to localize
at the same time position (x,y) and frequency ω . Hence the set SE(2) can be inter-
preted as a real manifold of the phase space, with the frequency variables expressed
in polar coordinates:

SE(2)⊂ C
2 = {(x,y, |p|cos(θ ), |p|sin(θ ))}.

The classical uncertainty principle in the Heisenberg space asserts that it is not pos-
sible to detect with arbitrary precision both position and momentum (see [15]). The
principle also provides an explicit condition for functions that minimize uncertainty
with respect to the position and momentum operators. These minimizers are called
coherent states, and in the Heisenberg setting they are the Gabor filters. This is why
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these filters have been proposed in [17] as models for the shape of receptive profiles
(see Fig. 4.2 Middle). The complete set of coherent states can be obtained via the
action of the group (4.10) on a fixed mother stateΨ . Recall that, ifΨ is a coherent
state, the Bargmann transform of the function h is

BΨ (h)(x,y,θ ) =
∫

L(x,y,θ)Ψ(x̃, ỹ)h(x̃, ỹ)dx̃dỹ. (4.22)

Hence the response of the filters on an image defined in (4.13) can be interpreted as
a Bargmann transform (see [4] for the definition and [3] for this interpretation of the
cell response).

Fig. 4.9 A pinwheel map (left) and its spectral behavior (right). Figure extracted from [41].

4.4.2 The Activity Maps and the Pinwheel Structure

Even if the primary visual cortex shows the symmetries of SE(2), that is a 3-
dimensional group, its physical implementation is realized on the 2-dimensional
layer provided by the cortex. Orientation columns are radially arranged around sin-
gular points like the spokes of a wheel, that are called pinwheels (see Fig. 4.9). This
structure has been observed first with optical imaging techniques [6, 5] and more
recently by in vivo two-photon imaging proving their organization with single cell
precision. In [41] an empirical method was also introduced that is able to repro-
duce orientation map-like structures as a superposition of plane waves with random
phases. More recently, in [16], the activity in V1 has been reconstructed by measur-
ing cell responses to so called gratings. Activated regions depend on the orientation
at which they are presented so that if a family of gratings is presented to an observer,
the result is a family of real maps {uθ (x,y)} (see Fig 4.10). The pinwheel image has
been reproduced in Fig.4.10 (center) by performing a vector sum of the orientations

P(x,y) =
1
2

arg
∫ π

0
ei2θuθ (x,y)dθ . (4.23)
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Fig. 4.10 The original results obtained by [16] showing a set of gray level cortical maps uθ
acquired by optical imaging and the reconstructed color coded image at the center with the
well known pinwheel structure

4.4.3 An Uncertainty Principle on the Functional Geometry

In a recent paper [2] Barbieri, Sanguinetti and the authors of the present paper pro-
posed a model of the cortical activity and pinwheel structure based on an uncer-
tainty principle in the structure SE(2) of the visual cortex, which reproduces the
experiment in [16]. The image of the left-invariant vector fields (4.19) under the
differential of the action defined in (4.10) is defined as Yi = dL (Xi) and provides
the differential operators

Y1 = ∂ỹ, Y2 = ỹ∂x̃− x̃∂ỹ. (4.24)

Under the action of the Fourier transform, these vector fields (4.24) become respec-
tively

F (Y1 f ) = iξ2 f̂ , F (Y2 f ) = (ξ2∂ξ2
− ξ1∂ξ2

) f̂ .

Experimentally we see that the Fourier spectrum of the orientation maps is ap-
proximately concentrated on a circle (see Fig.4.9, right). On the other hand no
action is performed by the fields in the radial direction, allowing to restrict the
study to functions defined on the circle of radius ρ (see [55]). Since it is not pos-
sible to further reduce the set where to study these vector fields, the representa-
tion of these vector fields on the circle is called irreducible. In polar coordinates
(ξ1,ξ2) = ρ(cos(θ̃ ),sin(θ̃ )) they reduce to an even simpler representation:

Ŷ1 f̂ = iρ sin(θ̃ ) f̂ , Ŷ2 f̂ = ∂θ̃ f̂ . (4.25)
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� � Θ
�

Fig. 4.11 Top: A general function in the reduced Fourier plane, where only a circle is consid-
ered. The height of the graph represents the modulus, and the color represents the argument
of the function. Bottom: A coherent state in the reduced Fourier plane.

The uncertainty principle can be stated for any couples of noncommuting self-
adjoint operators on Hilbert spaces [24]. In terms of operators Ŷi it reads:

|〈Φ̂ ,ρ cos(θ̃ )Φ̂〉| ≤ 2‖ρ sin(θ̃ )Φ̂‖ ‖∂θ̃ Φ̂‖. (4.26)

Minimal uncertainty states can be computed by making use of an equation asso-
ciated to inequality (4.26), that in this case reads (see also [9])

(Ŷ2− iλŶ1)Φ̂(θ̃ ) = 0 (4.27)

where the scaling parameter λ represents frequency. Solutions to equation (4.27)
read, up to a normalization constant c = cρ(λ )

Φ̂(θ̃ ) = ceλρ cos(θ̃). (4.28)

The states (4.28) are the most concentrated functions in angular position and mo-
mentum, hence allowing optimal localization (from now on we will omit to write
the constant c for simplicity). Note that the bigger λ is, the sharper its localization
is: for large values of λ , that means λ � 1/ρ , it is maximally concentrated. Due to
the uncertainty inequality, the variance of d

dϕ grows to infinity, i.e. it is maximally

undetermined. On the other hand, for small values of λ , i.e. λ � 1/ρ , then Φ̂(ϕ)
approaches a constant, and the angular momentum is maximally concentrated.
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Fig. 4.12 The gray valued maps uΦ,θ (x,y) for different values of the orientation and in
center the color image obtained as a vector sum, to be compared with the experimental result
of [16], reproduced in Fig.4.10

4.4.4 Irreducible Bargman Transform, the Activity Maps and
Pinwheels

The notion of Bargmann transform in SE(2) has been introduced by Barbieri et
al. in [3]. In analogy with the classical expression in (4.22) it is expressed as the
operator associated to the coherent states. The action of the group on the coherent
states Φ is the Fourier transform of the action defined in (4.10):

L̂(x,y,θ)Φ̂(θ̃ ) = e−iρ0(xcos(θ̃)+ysin(θ̃))Φ̂(θ̃ −θ ).

Consequently, the irreducible Bargman transform reads:

BΦ(h)(x,y,θ ) =
∫

S1
L̂(x,y,θ)Φ̂(θ̃ )h(θ̃ )dθ̃ . (4.29)

Given a white noise W = W (θ̃ ) with values in [0,2π ], defined on [0,2π ], and such
that W (θ̃ +π) = −W (θ̃ ) we can consider the function BΦ(W )(x,y,θ ). We impose
the symmetries of the cortex to represent orientations. Namely we require that it is
π−periodic in θ and provides opposite response at orthogonal angles as is the case
for V1 cells:

uΦ ,θ (x,y) = Re
(

BΦ(W )(x,y,θ )−BΦ(W )(x,y,θ +π/2)
)

. (4.30)
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By definition this irreducible Bargmann transform is simply the transform in (4.22)
restricted to functions with constant frequency. Hence it expresses a response of the
cortex, which has been interpreted in [2] as a model of the activity maps measured
in [16](see Fig. 4.12). As in (4.23) we perform the sum

PΦ(x,y) = arg
(
∫ π

0
uΦ ,θ (x,y)e

i2θdθ
)

(4.31)

reproducing the original experiment. An important property of (4.31) is that it can
be represented as a sum of plane waves, with frequency ρ , and random phases in
accordance with the mechanism introduced in [41]. This model is indeed able to in-
terpret both the orientation activity maps and the pinwheel-shaped orientation maps
as interference figures.

4.4.5 Propagation in the Pinwheel Structure

Techniques of optical imaging associated to tracers allow a large-scale obser-
vation of neural signal propagation via cortico-cortical connectivity. These tests
have shown that the propagation is highly anisotropic and almost collinear to the
preferred orientation of the cell (see Fig. 4.13), confirming at neural level the phe-
nomenological results of Field, Heyes and Hess in [23] and the model of propaga-
tion curves developed in section 3. This experiment suggests to introduce not only
a propagation along curves but with a differential operator, which can propagate in
a neighborhood of a point. Even though the propagation is performed in the cortex
at the pinwheel level, we will describe the neural propagation in the 3D model of
R2×S1, which is formally simpler to handle, and from which it is possible to project
on the pinwheel structure.

Fig. 4.13 A marker is injected in the cortex, in a specific point, and it diffuses mainly in
regions with the same orientation as the point of injection
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4.5 Propagation in the Family of Simple Cells

4.5.1 Propagation along the Association Fields

Neural activity develops and propagates only along the integral curves of the struc-
ture. If γ is one of the curves in (4.20), the Lie derivative of a function f along the
curve γ is defined as

Xiu(ξ0) =
d
ds

(u ◦ γ)|s=0,

and on regular functions it coincides with the directional derivative. In analogy with
the Euclidean gradient, the sub-Riemannian gradient is defined by

∇Ru = (X1u,X2u).

Note that it does not contain derivatives in direction X3, which can be recovered by
commuting:

X3 = [X2,X1] = X2X1−X1X2,

see [12] for details. Hence X3 will play a role similar to a second derivative. In this
setting the divergence of a horizontal vector field ν = (ν1,ν2) is defined as

divRν = X1ν1 +X2ν2,

so that the sub-Laplacian operator becomes

ΔRu = divR(∇Ru) = X11u+X22u. (4.32)

The time dependent counterpart is the sub-Riemnnian diffusion operator:

∂t u = ΔRu, (4.33)

modelling a diffusive mechanism of propagation in the cortical space.

4.5.2 The Lifting Mechanism of the Whole Image: Regular
Graphs in R2×S1

The mechanism of non maxima suppression does not lift each level lines indepen-
dently, but the whole image is lifted to a surface. Condition (4.16) ensures that the
lifted surface is identified by a zero level set of the function

H(x,y,θ ) = ∂θu(x,y,θ ),

meaning that if we consider only strict maxima, the lifted surface becomes

Σ = {(x,y,θ ) : H(x,y,θ ) = 0,∂θH(x,y,θ )> 0}. (4.34)
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Fig. 4.14 The level lines of a 2D image (in blue), and their 3D lifting (in red)

Since the vector ∂θ is a horizontal vector, then Σ is a regular surface in the sub-
Riemannian metric.

In particular, we can define a horizontal normal to Σ , and denote with νR its
projection on the horizontal plane of the Euclidean normal:

νR =
(X1u,X2u)

√

(X1u)2 +(X2u)2
.

In analogy with the notion of Euclidean curvature, we define the sub-Riemannian
curvature as the R−divergence of the R−normal vector:

HR(Σ) = divR(νR),

4.5.3 Completion Model and Minimal Surfaces in the
Roto-translation Space

The two cortical mechanisms of sub-Riemannian diffusion (4.33) and non maximal
suppression (4.34) will be iteratively applied. The action of these two mechanism
can be formalized as a two step algorithm.

• The lifted surface Σ0 = Σ defined in (4.34) and the function ρ0(x,y) = ρ(x,y)
defined on it in (4.18) allow to define a measure ρ0δΣ0 concentrated on the sur-
face. Diffusing this measure, we define a function u1(x,y,θ , t) concentrated in a
neighborhood of the surface.

• The second step is a non maximal suppression, which performs a concentration
and allows recovering a surface Σ1 via the condition ∂θu = 0 and a new function
ρ1 = u|Σ1

.The surface Σ1 will be the graph of a function θ1 .

To the new surface we iteratively apply the same two step procedure.
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Fig. 4.15 The two step algorithm: the lifted surface generated by a concentration mechanism
(left), and its diffusion (right)

If we fix a time T and a discretization step h = T/m, we repeat m times the
algorithm. At a general step n we will have a surface Σn and a function ρn, defined
on Σn. We diffuse for an interval of time of length h:

{

∂t u = ΔRu in(R2× S1)\Σ0 t ∈ [nh,(n+ 1)h]

u(·,nh) = ρnδΣn .
(4.35)

At time t = (n+ 1)h we have a new function ρn+1 and a new surface defined as

ρn+1(·,(n+ 1)h) = u(·,(n+ 1)h) and Σn+1((n+ 1)h) = {∂θu = 0,∂ 2
θ u < 0}.

After m steps we have two sequences: ρm+1(·,T ) and Σm+1(T ). Letting m go to
+∞ we have:

ρ(T ) = limm→+∞ρm+1(T ), Σ(T ) = limm→+∞Σm+1(T )

The diffusion followed by a concentration in the normal direction leads to a purely
tangential diffusion of the surface giving rise to the surface Σ(T ) moving by curva-
ture, with initial surface Σ0. The function ρ(T ) coincides with the Laplace Beltrami
flow, with initial condition ρ0.

This mechanism is a generalization of the well known algorithm of Merriman,
Osher and Sethian in [42]. The convergence of the Euclidean version of this scheme
has been proved by Evans [22] and Barles, Georgelin [5]. The convergence of the
analogous flow in the sub-Riemannian setting has been first presented in [13] and
then formalized in [10].

For T →+∞ the surface Σ(T ) converges to a minimal surface Σ , and ρ(T ) tends
to the solution ρ(x,y) of the (time independent) Laplace Beltrami equation on the
surface.



4.5 Propagation in the Family of Simple Cells 151

Fig. 4.16 An image with a missing part (left) is lifted to the 3D space (middle) and completed
with the previous described algorithm (right)

The algorithm gives rise to an amodal completion of the image. Indeed the initial
image (see Fig. 4.16), left) is lifted in the rotranslation space. The lifted surface is
completed by iteratively applying the algorithm until a minimal surface is generated.

4.5.4 Minimal Surfaces as Minima of the Area Functional

The minimal surface Σ can be expressed as a graph of a function θ . In addition,
if we project the vector fields defined in (4.19) on the x,y plane, we end up with a
unique vector field

X1θ = cos(θ (x,y))∂x + sin(θ (x,y))∂y = 〈∇,(cos(θ (x,y)),sin(θ (x,y)))〉 (4.36)

since the projection of the vector X2 on the same plane is 0. We explicitly note that
the vector X1θ here is only formally similar to the vector X1 in (4.19). Indeed θ (x,y)
in (4.36) is a function while in (4.19) θ was simply an independent variable of the
3D space.

The minimal surfaces equation can be expressed in terms of the function θ (x,y)
as follows:

X1θ

( ρ2X1θθ (x,y)
√|ρ2X1θθ (x,y)|2 + 1

)

= 0,

where θ coincides with θ̄ on the existing boundaries. Taking explicitly the deriva-
tive, the equation becomes

X1θ (ρ2X1θθ (x,y)) = 0. (4.37)

This equation can be interpreted as a second order directional derivative, in the
direction (cos(θ ),sin(θ )). Hence it is the Euler-Langrange equation of the Dirichlet
functional

∫

|X1,θθ (x,y)|2ρ2(x,y)dxdy.
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The function ρ satisfies the Laplace Beltrami equation, which is the Euler-
Langrange equation of the functional

∫

|X1,θρ(x,y)|2dxdy.

Summing these two terms we obtain
∫

|X1,θθ (x,y)|2ρ2(x,y)dxdy+
∫

|X1,θρ(x,y)|2dxdy. (4.38)

In order to take into account the graphs of the two functions θ and ρ we can
define a function

A(x,y) = ρ(x,y)(cos(θ (x,y)),sin(θ (x,y)).

In (4.18) we defined ρ as the modulus of the gradient and θ as its orientation. Then,
if we denote A = (A1,A2) the derivative X1 is expressed in terms of A as

X1,A =
A1

√

A2
1 +A2

2

∂x +
A2

√

A2
1 +A2

2

∂y,

and the functional in (4.38) can be expressed in terms of the function A as
∫

|X1A|2dxdy. (4.39)

Indeed
∫

|X1A1|2 =
∫

|X1(ρcos(θ ))|2 =
∫

(X1ρcos(θ )+ρsin(θ )X1θ )2 =

=
∫

(X1ρ)2cos2(θ )+ρ2sin2(θ )(X1θ )2 + 2ρX1ρcos(θ )sin(θ )X1θ
∫

|X1A2|2 =
∫

(X1ρ)2sin2(θ )+ρ2cos2(θ )(X1θ )2− 2ρX1ρcos(θ )sin(θ )X1θ .

Summing up we get
∫

|X1A|2 =
∫

(X1ρ)2 +ρ2(X1θ )2.

4.6 A Field Lagrangian for Perceptual Completion

4.6.1 The Full Lagrangian

In this section we will study the joint action of LGN cells and cells in V1, taking into
account feed-forward, horizontal and feedback connectivity. We propose a complete
Lagrangian, sum of three terms: a particle term corresponding to functional (4.7), a
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field term modelled by functional (4.39), and an interaction term coupling the two
terms as in the usual Lagrangian field theories.

The first term is
L1 =

∫

|∇φ(x,y)−∇h(x,y)|2dxdy (4.40)

and is directly inspired by the Retinex model, describing the reconstruction of the
image from image boundaries. It is considered here as the particle term of the La-
grangian, where φ(x,y) is the particle and h(x,y) is the stimulus forcing term.

The field term is the functional (4.38), in analogy with the classical fields theo-
ries:

L̃2 =
∫

|X1A|2dxdy.

It expresses the spatial propagation of the field A(x,y) where A denotes the pres-
ence of subjective contours. As we have seen in chapter 4.5, the propagation of level
lines (and then of subjective contours) is a strongly anisotropic process, and it is per-
formed with respect to a sub-Riemannian metric, hence the functional is expressed
in terms of the vector field X1.

The last term describes the interaction between the particle φ(x,y) and the field
A(x,y). In classical physics it is called ”minimal coupling” because it tries to mini-
mize the difference between the two terms:

L3 =

∫

|∇φ(x,y)−A(x,y)|2dxdy. (4.41)

The field A(x,y) codifies illusory contours. When A(x,y) is viewed as a forcing
term for φ(x,y), this second term is similar to the Retinex term (4.40) but driven
by subjective contour instead of existing ones, while when Φ(x,y) is viewed as a
forcing term for A(x,y), it drives the constitution of subjective contours.

The resulting functional L =L1 +L2 +L3 is then

L =
∫

|∇φ −∇h|2dxdy+
∫

|∇φ −A|2dxdy+
∫

|X1A|2dxdy (4.42)

where all the terms are functions of the coordinates (x,y).

4.6.2 The Euler Lagrange Equations

The Euler Lagrange Equations of the functional (4.42) are obtained by variational
calculus:

{

Δφ = 1
2 (Δh+ div(A))

ΔAA =−∇φ +A.
(4.43)

The first equation (particle equation) is clearly a generalized Retinex equation,
forced by the boundaries present in the stimulus Δh and by the subjective bound-
aries div(A). It performs a contrast invariant reconstruction of the image. Note that
the two terms L1 and L2 which generalize the Retinex functional give rise to this
unique particle equation.
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The second equation propagates boundaries in the sub-Riemmanian metric, and
allows to recover subjective boundaries. Note that A = (Ax,Ay) is a vector, hence
the first equality is indeed a system, and the sub-Riemannian Laplacian ΔA is the
directional Laplacian associated to the considered metric.

We explicitly remark that the equation of A is a non-linear sub-Riemannian equa-
tion, and can be solved by iterative linearization.

This means that we need to find an initial approximated solution A0. A natural
choice is the solution of the vector Laplace equation

ΔA0 = ∇φ .

Of course this is only an approximated solution A0, but we can recover a better one
A1 as a solution of

ΔA0 A1 = ∇φ ,

using the sub-Riemmannian operator associated to A0. From here we start an itera-
tion:

ΔA1A2 =∇φ , · · · ΔA j−1 A j = ∇φ .

At each step we get a better approximation of the solution, moreover the sequence
has a limit A = lim j→+∞A j. Passing to the limit in the previous expression, we will
get:

ΔAA = ∇φ ,

so that the limit provides a solution of the nonlinear equation.

Fig. 4.17 The x and y components of ∇h related to the Kanizsa triangle inducers
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4.6.3 Solution of Euler Lagrange Equations

We solve sequentially the coupled system of differential equations (4.43). We first
apply the Retinex equation to the initial image:

Δφ =
1
2
Δh (4.44)

and solve it by linear convolution

φ =
1
2

(

Γ (x,y)∗Δh
)

with the fundamental solution of the 2D Laplacian:

Γ (x,y) =− log |(x,y)|.

Then we solve the equation for boundaries propagation. In this first step, we
choose A = 0 in the right hand side, and the nonlinear equation reduces to

ΔAA = ∇φ .

As we explained in the previous section, this equation will be solved by lineariza-
tion, stopped after the first two steps:

{

ΔA0 = ∇φ
ΔA0A1 = ∇φ .

(4.45)

The first term is computed by convolution

A0 =
−→
Γ ∗∇φ ,

where
−→
Γ is the fundamental solution of the vector Laplacian

−→
Γ (x,y) = (− log |(x,y)|,− log |(x,y)|).

The second one is computed by approximating functions with centered differences
and by means of a standard linear solutor.

The first equation in (4.45) propagates ∇φ isotropically and generates a first ap-
proximated vector field A0. In fig. 4.18 the vector field A0 related to the Kanizsa
inducers is visualized. The second equation generates a better approximation A1 by
propagating ∇φ in the direction A0. In fig. 4.19 the components of the vector field
A1 related to the same inducers is shown. Inducers have been manually selected.

Since particle and field equations are coupled, we can now solve the complete
particle equation

φ =
1
2
Γ (x,y)∗

(

Δh+
1
2
(div(A1)

)
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Fig. 4.18 The field A0 generated by the Kanizsa triangle inducers

Fig. 4.19 The x and y components of the gauge field A1 related to the Kanizsa triangle
inducers. A1 is an approximation of the field A, solution of the gauge field equation.

again by convolution with the fundamental solution Γ . This is a version of the
Retinex equation able to reconstruct the original image together with the subjective
surface. In Fig. 4.20 (left) the forcing term 1

2 (Δh+div(A1)) of the particle equation
is visualized, while in Fig. 4.20 (right) the solution φ is shown.

4.7 Stochastic Neurogeometry

The phenomenological experiment conduced by Field, Heyes and Hess [23] shows
that the association field allows to perceive configurations of oriented patches prefer-
ably fulfilling a co-circularity condition. This result is well modelled by the integral
curves of equation (4.20). The experiment shows also that even if the co-circularity
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Fig. 4.20 Left: The forcing term 1
2 (Δh+div(A1)) of the particle equation. Right: The recon-

structed Kanizsa triangle as the solution φ of the particle equation.

Fig. 4.21 The association field of Field, Heyes and Hess showing that the co-circular config-
uration of patches is just the most salient among other possible configurations (double bars
in a circle).

condition induces a maximum perceptual saliency, all the configurations of patches
are perceived with a certain saliency.

To model the saliency of the entire set of perceptual configurations it is neces-
sary to leave the deterministic framework and introduce a stochastic setting that
constitutes the probabilistic counter part of the deterministic equation (4.20). David
Mumford first introduced a stochastic differential equation in [44] to model partially
occluded edges:

(x′(t),y′(t),θ ′(t)) = (cos(θ (t)),sin(θ (t)),N(0,σ2)),
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where N(0,σ2) is a normally distributed variable with zero mean and variance equal
to σ2. The equation has been further discussed by August-Zucker [1], Williams-
Jacobs [59], and Sanguinetti-Citti-Sarti [48] who outlined that it is naturally defined
in the SE(2) group structure

(x′(t),y′(t),θ ′(t)) = X1(θ (t))+N(0,σ2)X2. (4.46)

Indeed both systems (4.20) and (4.46) are represented in terms of left invariant
operators of the Lie group, the first one with deterministic curvature, the second
with normal random variable curvature. Equation (4.46) describes a random walk
with constant speed in a direction randomly changing. Let us denote p(x,y,θ , t)
the probability density to find a particle at the point (x,y) moving with direction
X1 at the instant of time t conditioned by the fact that it started from the point
(x(0) = 0,y(0) = 0,θ (0) = 0). After Ito integration, this probability density satisfies
a Kolmogorov Forward Equation or Fokker-Planck equation (FP):

∂t p(x,y,θ , t) = X1 p(x,y,θ , t)+σ2X22 p(x,y,θ , t) (4.47)

= cos(θ )∂x p(x,y,θ , t)+ sin(θ )∂y p(x,y,θ , t)+σ2∂θθ p(x,y,θ , t).

Let us notice that the equation (4.47) consists of an advection term in the direc-
tion X1 and a diffusion term in the direction X2, where the doubling of the index
expresses a second order derivation.

This equation has been largely used in computer vision and applied to perceptual
completion related problems. It was used by Williams and Jacobs in [59] to compute
stochastic completion field, by S. Zucker and his collaborators in [1] to define the
curve indicator random field, and more recently by R. Duits et Al. in [25] applying it
to perform contour completion, denoising and contour enhancement. In [48] it was
proposed to consider the stationary counterpart of (4.47) to model both the Fields,
Heyes and Hess association field and the probability of co-occurence of contours in
natural images. Both the phenomenon are indeed stationary.

For this purpose, we integrate eq. (4.47) in time, obtaining the stationary equation

X1 p(x,y,θ )+σ2X22 p(x,y,θ ) = δ (x,y,θ ). (4.48)

Equation (4.48) is strongly biased in direction X1, and to take into account the
symmetry of both association fields and edge cooccurences, the model for the proba-
bility density propagation has been symmetrized considering the backward FP equa-
tion in the opposite direction

−X1 p(x,y,θ )+σ2X22 p(x,y,θ ) = δ (x,y,θ ). (4.49)

The desired fundamental solution is then obtained by summing the Green functions
corresponding to forward and backward FP equations.

The fundamental solution has been computed numerically with standard Markov
Chain Monte Carlo methods. This is done by generating random paths obtained
from numerical solutions of the stochastic system and averaging their passages over
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Fig. 4.22 The sum of fundamental solutions of the stationary Fokker Planck equations (4.48)
and (4.49). An isosurface of intensity is visualized in red together with the integral curves of
the group eq. (4.20).

Fig. 4.23 The stochastic neurogeometry as fundamental solution of stationary Fokker Planck
equation. It is a ”fat” version of the deterministic structure visualized in Fig. 4.7

discrete volume elements. See [40] for a classical and complete description of the
technique. In Fig.4.22 the sum of fundamental solutions of the stationary Fokker
Planck equations (4.48) and (4.49) is visualized together with the integral curves
of the group eq. (4.20). Note that the kernel seems to be a thick version of the fan
(4.20). The value of the probability decays slowly along the integral curves and
quickly in the direction normal to the surface ruled by the integral curves. In Fig.
4.23 the entire set of fundamental solutions is visualized in the space (x,y,θ ). Notice
that it is a ”fat” version of the deterministic structure visualized in Fig.4.7.
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4.7.1 The Statistics of Edges in Natural Images

It can be of some interest to question the origin of the very specific shape of the
association field in its deterministic or stochastic version. An intriguing hypothesis
is that association fields have been learned by the visual stimuli and then that the
particular pattern comes from some statistical property of natural images.

Fig. 4.24 Geometric schemata of co-occurences of edges: a co-occurrence takes place when
two edges (xi,yi,θi) and (x j,y j,θ j) occur at the same time in the image. Only relative posi-
tions (Δx,Δy) and orientations Δθ are taken into account in the computation of histograms.

A specific study to assess the existence of this relation has been proposed in [48].
Research has been focused on the statistics of edges in natural images and par-
ticularly in the statistics of co-occurrence of couples of edges taking into account
its relative position and orientation. The statistics have been estimated analyzing a
number of natural images from which a multidimensional histogram of relative po-
sition and orientation of edges has been constructed. Images have been preprocessed
by linear filtering with a set of oriented edge detection kernels (Gabor filters) and
performing non maximal suppression. A list of pixels corresponding to edges with
their respective orientations has been obtained by thresholding and binarization. A
four dimensional histogram (Δx,Δy,θc,θp) has been computed by counting how
many times two detected edges with relative positions (Δx,Δy) have orientations
(θc,θp). Finally a 3D histogram (Δx,Δy,Δθ ) is obtained where the third coordi-
nate is the relative orientation Δθ = θp−θc.

4.7.2 Comparison between the Statistics of Edges and the
Stochastic Structure

A comparison between the estimated statistical distribution of edges and the com-
puted stochastic neurogeometrical model has been performed in [48]. In Fig. 4.27
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Fig. 4.25 Sections of the co-occurence maps (Δx,Δy) for different pairs of orientations Δθ
(left). Sections are piled up to build the 3D distributions (Δx,Δy,Δθ ) (right).

Fig. 4.26 The whole distribution of co-occurrence of edges in natural images in the space
(x,y,θ ). It can be interesting compare this distribution with the deterministic structure visu-
alized in Fig. 4.7 and the stochastic structure of Fig. 4.23.

the two distributions are visualized and compared. There are two degrees of freedom
in the model to match: the varianceσ of the Fokker Plank operator and a scale factor.
After performing the parameter identification, the relative difference between both
functions is less than 0.02, and the reported value for σ is 1.71, a very interesting
value since it estimates the variance of the co-occurrence random process.

We found that it is possible to recover the co-circularity pattern from both the
distributions with the following procedure. First we compute the surface of maximal
probability θ̄ (x,y), where
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Fig. 4.27 Comparison between the computed stochastic model (left) and the distribution of
edge cooccurrences in natural images (right). The percentual error between the two distribu-
tions is less than 2.

max
θ

p(x,y,θ ) = p(x,y, θ̄ ).

Secondly, the integral curves of the vector field (cos θ̄ (x,y),sin θ̄ (x,y)) are com-
puted. We found that in both cases curves present co-circularity. See Fig. 4.28
for a comparison. These comparisons strongly suggest that horizontal connectivity
modeled by the neurogeometry is deeply shaped by the statistical distributions of
features in the environment and that the very origin of neurogeometry as to be dis-
covered in the interaction between the embodied subject and the world.

Fig. 4.28 The co-circularity constraint in the neurogeometrical model, as the projection of
integral curves (left), and in the statistics of natural images as integral curves of the projected
vector field (right)
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4.8 A Harmonic Neurogeometrical Model

4.8.1 The Binding Problem and the Constitution of Perceptual
Units

The question of constitution of perceptual units is central in the entire body of study
of visual organization. The issue deals with the mechanism allowing the information
distributed in the visual areas to get bound together into coherent object represen-
tations. Electromagnetic radiations (photons) going from the physical world to the
eye are completely independent one to the other and do not contain any explicit in-
formation about the unitarity of objects. The visual areas are constituted in its turn
by million of cells. Along this path the unity of physical objects is completely lost,
but at the end of the chain the object shows up again at the perceptual level as a unit.
In which way is this reconstruction possible?

This process is known as “binding” or “perceptual grouping”, and it has been
extensively studied both from a phenomenological point of view by the experimen-
tal psychology of Gestalt [34] and from a neuro-physiological point of view aiming
to clarify its biological functionalities. Even if the mechanism of grouping is still
unknown there is a wide experimental evidence that the constitution of a perceptual
unit involves the response of a large number of neurons distributed over a large spa-
tial region. Different answers have been proposed to explain how these distributed
neural activities are integrated together to constitute a unit.

If excitatory-inhibitory neural populations are considered, the most accreditated
hypothesis is that binding is implemented with a temporal coding, meaning that
object segmentation is performed by the synchronization of oscillatory neural re-
sponses [28]. Many models have been proposed to explain phase locking of pop-
ulations of neural oscillators, see for example [56] for a review. In [11, 51] it has
been shown that a neurophysiological model of coupled neural oscillators in phase
locking tends in its continuous spatial limit to the phenomenological model of seg-
mentation of Mumford-Shah.

On the other hand, if single population models are considered, different mecha-
nisms for binding can arise. For example in [52] and [53] a mechanism of grouping
has been proposed as an extension of the model of visual hallucination proposed
by Bressloff and Cowan [7]. We will reconsider extensively this model in the fol-
lowing. Particularly we want to investigate what is the role of the neurogeometry in
the constitution of perceptual units, considering that a global integration process is
needed. As stated by the studies of Gestalt theory, perception is a global process.
Moreover visual perception acts as a differentiation process of the entire field of
view, performing first a differentiation between figure and ground, and continuing
in the segmentation of single objects. We will try to keep in mind these fundamental
points and to formalize them in a coherent model.
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4.8.2 The Population Model

As shown in [53], the Ermentraut-Cowan mean field population model in presence
of a cortical input stimulus h(x,y,θ ) provided by simple cells is

da(x,y,θ , t)
dt

=−αa(x,y,θ , t)+σγ
(

ω ∗ a(x,y,θ , t)+
h(x,y,θ )
α

)

(4.50)

where a(x,y,θ , t) is the neural activity of the population and α is the decay constant.

The kernelω
(

(x,y,θ ),(x′,y′,θ ′)
)

is the weight of connectivity between the pop-

ulation at the position (x,y) tuned at the orientation θ and the one at the position
(x′,y′) tuned at θ ′, and it can be modelled by the fundamental solution of the station-
ary Fokker-Planck equation (4.48). It takes into account the contribution of cortico-
cortical connectivity.

The function σγ is the transfer function of the population and it has the classical
sigmoidal behavior:

σγ (ξ ) =
1

1+ e−γ(ξ−χ)
− 1/2,

where χ is the threshold and γ is the gain. Notice that σ(χ) = 0 and this happens
when the input term h = αχ . For simplicity we will consider here a piecewise con-
stant input h= αχ in a domainΩ : {(x,y,θ ) : h(x,y,θ ) = αχ} and h = 0 elsewhere.
Note that in case of weak connectivity kernel, neurons outside Ω will stay constant
and under threshold in the dynamic of the system.

Then the activity equation becomes

da(x,y,θ , t)
dt

=−αa(x,y,θ , t)+ σ̃γ(ω ∗ a(x,y,θ , t)) (4.51)

for (x,y,θ ) ∈Ω , where
σ̃γ(ξ ) = σγ(ξ − h/α)

with the property σ̃γ (0) = 0. Let us outline that eq. (4.51) is formally equivalent
to the population equation studied by Bressloff and Cowan in [7] but defined in a
domain Ω instead of in the entire R

2 . We will study it with the same instruments
here.

4.8.3 Solutions of the Activity Equation

To compute stationary states of the activity equation (4.51), it is trivial to check that
since σ̃γ(0) = 0 then the homogeneous state a(x,y,θ , t) = 0 on the domain Ω is a
stationary solution.

The stability of the solution can be studied in terms of eigenvalues of the lin-
earized functional

La =−αa+ γω ∗ a

in the domainΩ where γ = σ ′(0). Eigenvalues λ verify the equation
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λa =−αa+ γω ∗ a,

that is equivalent to the eigenvalue problem

λ̃a = ω ∗ a

provided that λ̃ = (α+λ )
γ . Then the stability problem is reduced to the study of

eigenvectors of the connectivity kernel ω in the domain Ω , meaning the operator
K(a) = ω ∗ a in Ω . Since ω is the fundamental solution of the stationary Fokker
Planck equation (4.48), the convolution operator K(a) is compact, and its largest
positive eigenvalue is real. Moreover it has infinitely many eigenvalues, and the se-
quence of eigenvalues tends to 0.

This means that, when γ is small, zero is a stable solution, and it remains stable
until αa0

γ takes the value of the largest eigenvalue of K(a). While γ further increases,
the solution remains unstable.

(The eigenvectors of the operator K become marginally stable. Also note that the
corresponding eigen-space is of finite dimension since the operator K is compact.)

4.8.4 The Discrete Case

If the activity a(x,y,θ ) is approximated by a discrete distribution in terms of Dirac
masses

a =
h

∑
i=1

aiδ(xi,yi,θi),

then the convolution operator becomes

ω ∗ a =
n

∑
j=1

ω((xi,yi,θi)(x j,y j,θ j))a j = λ̃ai.

Note that in this case the eigenvalue problem on the activity a(x,y,θ ) reduces to the
spectral analysis of the matrix

Ai j = ω((xi,yi,θi)(x j,y j,θ j))

with usual linear agebra instruments.
This matrix can be considered as the equivalent of the affinity matrix introduced

by Perona in [45] to perform perceptual grouping.
Perona proposed to model the affinity matrix in term of a euristic distance

d(x,y,θ ), facilitating collinear and cocircular couple of elements

Ai j = e−d2((xi,yi ,θi)(x j ,y j ,θ j)).

In our case it is possible to prove that the distance d corresponds to the formal
Carnot Carathéodory distance dc, meaning the geometric sub-Riemannian distance
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induced by the horizontal connectivity, since the fundamental solution ω can be
approximated by:

ω((xi,yi,θi),(x j ,y j,θ j))� e−dc
2((xi,yi,θi),(xj,yj,θj)).

See [6] for a formal proof.

4.8.5 Dimensionality Reduction

In [45] the problem of perceptual grouping has been faced in terms of reduction of
the complexity in the description of a scene. The visual scene is described in terms
of the affinity matrix Ai j with a complexity of order O(N2) if N discrete elements
are present in the scene. The idea of Perona is to describe the scene by a point-wise
function pi of objects i taken one by one, rather than by a function Ai j of object
pairs (i, j). This way the complexity of the description will drop to O(N). A way to
reduce by one order of magnitude the complexity of the description is to consider
the best approximation of the affinity matrix

p = argminp̂

N

∑
i, j=1

(Ai, j− p̂i p̂ j)
2

where the term ppT is a rank one matrix with complexity order O(N).
Perona proved that the minimizer p of the Frobenius norm is the first eigenvector

v1 of the matrix A with largest eigenvalue λ : p = λ 1/2
1 v1.

Then the problem of grouping is reduced to the spectral analysis of the affinity
matrix Ai,i, where the salient objects in the scene correspond to the first eigenvectors
with largest eigenvalues. We just showed in the previous paragraphs that this eigen-
value analysis can be accomplished by the activity of neural populations connected
by means of cortico-cortical horizontal connectivity.

4.8.6 Constitution of Perceptual Units

The affinity matrix can be represented as a graph whose nodes are the active cells
and the links are the neural connectivities with a weight that is defined in terms of
the connectivity kernel ω((xi,yi,θi)(x j,y j,θ j)) (see Fig. 4.29).

Figure-ground articulation and the segmentation of different objects will corre-
spond to different eigenvectors ai. In Fig. 4.30 the three principle eigenvectors of
the neurogeometrical matrix associated to Fig. 4.29 are visualized in gray values,
showing the global emergence of perceptual units.

Let us note that this approach interprets the emergent figures in the image as
eigenstates of the neurogeometrical matrix Ai j. Mathematically it corresponds to
the singular value decomposition of the neurogeometrical graph previously defined.
Co-occurring features are mapped to the same eigenvector; features that do not co-
occur are mapped to different eigenvectors. The eigenvector linked to the highest
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Fig. 4.29 Some perceptual units are perceived as coherent structures out of a random distri-
bution of segments. In the image on the top the most salient features are the semicircle and a
vertical segment. Neurogeometry lifts every segment in the E(2) group and induces connec-
tivity weights between every couple of segments represented in colors (bottom). The affinity
matrix Ai j is constructed with the corresponding weights between couples of segments i− j.

singular value represents the most important vector in the data (i.e. the vector that
explains the most variance of the matrix); the singular vectors linked to the second
highest value represent the second most important vector (orthogonal to the first
one), and so on.

Models of image segmentation based on singular value decomposition and in
general on dimensionality reduction are largely used in contemporary computer vi-
sion (see for example [45], [54]), and we refer to [58] for a review of methods.
We have shown in this chapter how these sophisticated models of image segmen-
tation can be implemented at a neural level in terms of harmonic analysis of the
neurogeometry.
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Fig. 4.30 Eigenvectors of the affinity matrix are visualized mapping the intensity in gray
levels. The first ai eigenvectors correspond to the most salient perceptual units.
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