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Preface

This book tells the story of an adventure, a scientific adventure moved by the de-
sire to understand the geometrical structures of the visual brain. For geometry we
attend here not the anatomical geometry of the brain shape, but the differential ge-
ometry of the connectivity between neural cells. This connectivity builds and shapes
the hidden brain structures underlying visual perception. The story of the problem
runs over the last 30 years, since the discovery of Hubel and Wiesel of the modular
structure of the primary visual cortex, and slowly cams towards a theoretical under-
standing of the experimental data on what we now know as functional architecture
of the primary visual cortex.

Experimental data comes from several domains. The two classical sources of
data, neurophysiology and phenomenology of perception, are nowadays more and
more sustained by neurocognitive imaging. Imaging techniques like functional MRI
and diffusion tensor MRI allow us to deepen the study of cortical structures at the
mesoscale, completing the scale range already well covered by neurophysiology
at the microscale and by psychophysics at the global scale. Due to the variety of
sources of experimental data, neuromathematematics deals not just with modelling
of cortical structures but also with modelling of perceptual spaces, in the Spinozist
tradition where “res cogitans” and “res extensa” are just the two sides of the same
sheet of paper.

From the mathematical point of view, neuromathematical structures are forged by
classical differential geometry and Lie groups, but are more and more demanding
for new instruments to pure mathematicians: research in sub-Riemannian geometry
is important to model horizontal connectivity, harmonic analysis in non commu-
tative groups is fundamental to understanding the pinwheels structure, as well as
non-linear dimensionality reduction is at the base of many neural morphologies and
possibly of the emergence of perceptual units. But what is at the center of the neu-
rogeometrical problem is overall the art to harmonize contemporary mathematical
instruments with neurophysiological findings and phenomenological experiments
towards the construction of a theoretical model of vision. The constributions to this
book are devoted to this task and come from the very founders of the discipline.



VIII Preface

Jan Koenderink in the *80s started using differential geometry to study percep-
tual spaces, and William Hoffman proposed a model of the visual cortex as a fiber
bundle equipped with a contact structure. Almost at the same time Steven Zucker
was observing the relation between the measurement of Euclidean curvature and
the role of end-stopping cells. A new idea of the brain as “geometric machine” was
being raised, and it started to complement the theories on neural dynamics, which
were already challenging the “cybernetic brain” of traditional artificial intelligence.

In the *90s a number of phenomenological models of vision appeared in the
mathematical framework of calculus of variations and parabolic (possibly degen-
erate) partial differential equations. The number of models is overwhelming and
we cite here just some pioneeristic papers, the segmentation model of Mumford -
Shah, the multiscale analysis of Alvarez, Lions, Morel and the first developements
of applied wavelet analysis. Even if these models are mathematically elegant and
their impact in image processing has been very important, they remained at that
time purely phenomenological, and they lacked of the double neuro-psycho nature
of neuromathematical models.

An important contribution in this sense has been carried out by David Mumford
with its elastica curves modelling perceptual illusory contours and paying attention
to both their psychophysical and neural basis. These curves are still at the center
of contemporary research, but rethought in new kinds of spaces and in a renewed
mathematical setting. A first stochastic model of illusory contours in his space of
position and orientation was proposed by Williams and Jacobs in ’95. At the end of
the "90s a fundamental contribution of Jean Petitot and Yannick Tondut reprehends
the model of the cortex as a contact bundle of William Hoffman with which authors
compute the geodesic curves of the non-integrable structure, observing that they are
able to model perceptual association fields, measured by Fields, Heyes and Hess.
In this way, they were able to predict the shape of an illusory contour, given its
inducturs. Petitot explicitly introduced the word Neurogeometry to denote the inner
geometry of cortical connectivity. Also Steven Zucker reprehends the model of the
cortex as a fiber bundle to describe the pinwheel organization and proposed a model
of horizontal connectivity between pinwheels in terms of Frenet frames. In 2003
Govanna Citti and Alessandro Sarti observed that the cortical structure is not defined
in the Heisenberg group but in the SE(2) Euclidean group of rotation and translation
equipped with a sub-Riemannian metric. In this fiber bundle structure, they proposed
a model of image completion, which is currently used, expressing cortico-cortical
propagation in terms of sub-Riemannian diffusion and SE(2) invariant advection-
diffusion PDE.

Bressloff and Cowan are interested in the dynamics of neural population in a
model of the cortex defined in the group SE(2). An impressive result is obtained
when the activation map is computed in absence of an external input and the ef-
fect of chemical drugs is simulated. In this case the resulting activation distribution
corresponds impressively to visual hallucinations, as reported in classical literature.
A similar model is proposed by Olivier Faugeras and Pascal Chossat, but in the
hyperbolic geometry, in relation to texture perception.



Preface IX

Remco Duits works in the SE(2) group from an image processing point of view.
He considers lifting and propagation of the visual signal in the R> x S' space, but,
by using invertible kernels (invertible scores), is able to reproject results in the 2D
image plane without loss of information. When these kernels are fundamental so-
lution of subelliptic PDE, their expression is provided a formal series with Fourier
transform. Results are impressive when applied to medical image processing.

Close to the neuromathematical paradigm is the entire activity of Jean-Michel
Morel and his group on computational gestalt, looking at the problem of geometry
of vision from a phenomenological point of view. His proposition to individuate in
the Helmoltz principle the basis of the classical theory of Gestalt is theoretically
deep and computationally fruitful. Daniel Bennequin is interested in a variety of
neuromathematical problems, all expressed in terms of invariance, symmetry and
ambiguity: from orientation maps distribution to neural structures in Lie groups.
He formalized these problems with principles of “information topology” theory, a
new co-homology theory of information based on probability and entropy theory,
partially inspired by quantum field theory.

Jim Bednar is oriented in reproducing the geometric morphologies of the visual
cortex on the base of brain plasticity principles. He recovers the main characteristics
of the functional architecture of the cortex simply by a process of learning of a
suitable set of stimuli. His work allows a possible reconciliation between an entire
ensemble of studies based on a differential geometry description of structures and
new trends towards organization of forms best adapted to their environment.

We feel great honor and privilege to have been part of this human and scientific
adventure. The present book contains the contributions of many protagonists of this
story, and on the other hand it is far from exhaustive, since many others are miss-
ing. The book is conceived to testify the past and to look towards contemporary
challenges in the understanding of the architecture of vision.

Finally we owe a huge debt to the various people who have supported us at many
levels. We would like to thanks particularly Davide Barbieri, Giacomo Cocci and
Gonzalo Sanguinetti.

Bologna, Paris Giovanna Citti
August 2013 Alessandro Sarti
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Chapter 1
Landmarks for Neurogeometry

Jean Petitot

Abstract. We present a historical survey of the way Neurogeometry links the mod-
elling of the functional architectures of primary visual areas with sub-Riemannian
geometry.

1.1 Introduction

In the 1990s, we coined the expression “neurogeometry of vision” to refer to ge-
ometrical models of the functional architecture of primary visual areas. The very
particular connectivity of the functional neuroanatomy of these areas explains the
geometry of percepts and must therefore be implemented in the synaptic weights of
the neural nets used for modelling.

The term “neurogeometry” (of vision) presents two complementary aspects.

1. The geometry of (visual) perception described, but not modelled, since the times
of Goethe, Helmholtz, Hering, Brentano, Poincaré, Husserl and Gestalttheorie
(von Ehrenfels, Wertheimer, Stumpf, Koffka, Kohler, Kliiver, etc.), from Kanizsa
to Marr in psychology, from Evans to Peacocke or McDowell in philosophy of
mind. We will use the expression “perceptual geometry” for its description. It
must be emphasised that, until the 1960s, a relevant mathematical perceptual
geometry was essentially lacking.

2. Strictly speaking the term “neurogeometry” concerns mathematical models for
the neural algorithms processing perceptual geometry.

Now, we will see that these mathematical models of neural implementation are
also geometrical but in a sense deeply different from that of perceptual geometry.
The difference is quite similar to that found in computer sciences between high

Jean Petitot
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Fig. 1.1 Examples of curved Kanizsa triangles with three methods for determining the exact
position of the illusory contour. One has to put a mark (the end of an orthogonal line, a small
segment, the axis of a small stripe) as exactly as possible on the extremum of the contour.
The good positions are shown on the middle line.
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level logic and low level A-calculus. Neurogeometry is, so to speak, “internal”,
neural, and “immanent”’, while perceptual geometry is “external”, ideal, and
“transcendent”.

To give an example (but, as we say in French, “I’exemple est la chose méme”),
let us consider Kanizsa illusory contours (see the celebrated Kanizsa’s Grammatica
del Vedere [73]). On the one hand, at the level of perceptual geometry, they have
been analyzed by a lot of psychophysicists, and we know quite well their proper-
ties as gestalts. They are particularly interesting when they are curved. Figure 1.1
shows different curved Kanizsa triangles with three methods for determining the
exact position of the illusory contour.

On the other hand, at the level of neurogeometry, we will see that illusory
contours result from the functional architecture of the primary cortical areas.
Now, to take only the case of V1, the first of these areas, we will see that its
functional architecture implements the contact structure of the fibre bundle of
1-jets of planar curves. There exists a natural metric, called sub-Riemannian, on
this contact structure and, mathematically speaking, Kanizsa illusory contours are
“geodesics of a sub-Riemannian geometry defined on the contact structure of the
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fibre bundle of 1-jets of planar curves”. The fact that such a formulation appears
highly esoteric and even non-sensical reveals the gap between perceptual geometry
and the neurogeometry in which it is implemented. The gap will be filled in section
1.4.10. In fact, we will see that this seemingly complicated neurogeometrical model
deepens in terms of the functional architecture of V1 a model proposed in 1992 by
David Mumford for computer vision [90].

We will evoke briefly in this survey the theory of caustics in optics. It is in-
teresting to parallel them with our theory of illusory contours. Caustics are well
known since antiquity as envelopes of optical rays. As we will see, in their current
definition, they are “singularities of the projections on R3 of the Lagrangian so-
lutions of the Hamiltonian system defined on the cotangent fibre bundle 7*R> by
the Hamiltonian H associated to the wave equation”. The formulation is as esoteric
and non-sensical as that of illusory contours and reveals the long way between the
phenomenological description of caustics and their physical explanations. The main
difference is that, in physics, such “long ways” are completely usual while in cog-
nitive sciences they are completely lacking. The ambition of neurogeometry is to
introduce a “mathematical turn” analogous to that found in theoretical physics.

Concepts such as jets, contact structures, sub-Riemannian metrics or geodesics
belong to differential geometry in the sense of Elie Cartan, Hermann Weyl, René
Thom or Misha Gromov, and it is therefore this type of geometry which is “inter-
nal”, neural and “immanent” in neurogeometry and explains the “external”, ideal
and “transcendent” perceptual geometry. It is crucial to understand this twofold as-
pect of geometry in neurogeometry. The situation is quite similar to what one finds
in particle fundamental physics. One observes complex trajectories of particles in
space-time M. And to explain them in the framework of quantum field theory, one
has to consider fibre bundles over M, Cartan connections, curvatures of connections,
etc. All these deep geometrical structures model a physical immanence, which ac-
counts for the observed empirical trajectories.

Since the editors of this volume thought that it could be of interest to present
some historical and biographical backgrounds for neurogeometry, we will give in
this survey a few landmarks, first for perceptual geometry, then for neurogeometry.!

1.2 Perceptual Geometry Since the 1970s
1.2.1 Thom’s Models

The first elements of mathematical perceptual geometry were worked out by René
Thom at the end of the 1960s as an aspect of his mathematical models for mor-
phogenesis (see [130] and [131]). He used the fundamental tools of singularity
theory (of which he was one of the main inventors after Marston Morse and Has-
sler Whitney) to explain how morphologies and patterns can appear and develop in
material substrates M. The key idea was that, at every point a of M, the physical,

! Many thanks to Francesco Galofaro and Heather Arielle Griffin for the English translation
of the text.
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chemical or metabolic properties of the substrate are described by an attractor A,
of an “internal” dynamics X, and that the dynamics of neighbouring points are cou-
pled. Then for some critical values a. of a bifurcations can happen, the attractor A
being substituted by another attractor B. The subset K of the a. can be very complex
(fractal, Cantor, etc.), but in simple cases it stratifies M and breaks its homogeneity.
This symmetry breaking generates a morphology. In that sense, any morphology is
a segmentation of the qualities of a substrate by a set of qualitative discontinuities.

Thom’s models constitute a wide expansion of the pioneering reaction-diffusion
models introduced in 1952 by Alan Turing [134]. The challenge is the same: ex-
plaining how “the chemical information contained in the genes” can be “con-
verted into a geometrical form”. In Turing, the internal dynamics are systems of
(non linear) differential equations modelling the chemical reactions between “mor-
phogens” inside the substrate. The spatial coupling is afforded by diffusion, and the
cause of the “patternized” morphologies is the breaking of homogeneity induced by
“diffusion-driven instabilities” (see our survey [107]). The great biologists inspiring
Turing’s and Thom’s projects are also the same: Sir D’ Arcy Wentworth Thompson
and Conrad Hal Waddington.

Thom’s models were called “catastrophic” by Christopher Zeeman. We preferred
the term “morphodynamical”. Morphodynamical models belong to a mathemati-
cal universe which experienced an extraordinary development in the 1960s-1970s
with masters such as René Thom, Bernard Malgrange, John Mather, Christopher
Zeeman, Vladimir Arnold, Stephen Smale, David Ruelle, David Mumford, John
Milnor, Martin Golubitsky, Robert MacPherson and many others. Their main tools
were the theory of dynamical systems (for the study of internal dynamics), their at-
tractors, their properties of structural stability, and their bifurcations; the theory of
critical points of differentiable mappings (for when the internal dynamics are gradi-
ent like); the geometrical theory of jet spaces and their stratifications; and universal
unfoldings of finite codimension singularities (see Thom [130], [131] and our com-
piling [98]). They aimed at a mathematical comprehension of morphogenesis and,
beyond biological morphogenesis, of morphological structures whatever their sub-
strate may be.

Thom’s models were inspired by a deep and rather universal mathematical “phi-
losophy” elaborated in the 1950s and the 1960s (see e.g. his two classical papers
“Les Singularités des applications différentiables” in 1956 [128] and “Ensembles et
morphismes stratifiés” in 1968 [129]):

1. The singularities of a space or of a map between spaces concentrate information
on its global structure into local morphologies.

2. To analyse locally a differentiable map f : M — N it is efficient to look at its
successive jets modulo a change of coordinates (a diffeomorphism) in M and
in N. In general, jets of sufficiently high order can be eliminated, and f can be
reduced locally to an algebraic form (codimension of singularities and normal
forms).

3. Jet spaces JX (M,N) of successive order k are manifolds stratified by a strati-
fication X; whose strata of increasing codimension (of decreasing dimension)
correspond to more and more singular singularities.
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4. One of the most fundamental theorem is the transversality theorem in jet spaces.
The k-jet j*(f) of f is a map j* (f) : M — J*(M,N) and the theorem says that,
generically, j* (f) is transverse on X;. A consequence is that f cannot present
generically singularities of codimension > dim (M).

5. Morse theory is a privileged tool for analysing manifolds. If M is a manifold of
dimension n and if f: M — R is a Morse function — that is a smooth function
whose all critical points (points where the gradient V f = 0) are non degenerate
(the Hessian is of maximal rank n) and whose all critical values (f (a) for a
critical) are distinct — then M can be qualitatively reconstructed from f via a
“handle representation”. In particular a fundamental formula allows computation
of the Euler-Poincaré characteristic y (M) of M from any of its Morse function:

x (M) =Y=0(—1 )* m; where m; is the number of critical points of Morse index i
(a is of Morse index i if in a suitable system of local coordinates f is of the form
—x% —...—xiz—&—xl%rl —&—...—I—x,zl).

6. Morse theory can be generalized to stratified manifolds (MacPherson).

1.2.2 Some Autobiographic Remarks

Perhaps the reader will authorise some more personal remarks aiming at precis-
ing briefly the initial interdisciplinary context of the following sections. I became
interested in Thom’s new ideas for two reasons. First, I began my career at the
Centre of Mathematics directed by Laurent Schwartz at the Ecole Polytechnique
and worked on singularity theory in differential geometry with René Thom and in
algebraic geometry with Heisuke Hironaka and Jean Giraud (a disciple of Alexan-
der Grothendieck working also on Hironaka’s ideas). Second, I was also very in-
terested in structural theories in social sciences from Saussure and Jakobson to
Lévi-Strauss. Thom’s ideas unified these two different interests. So, after having
joined the EHESS (Ecole des Hautes Etudes en Sciences Sociales) Mathematical
Centre (CAMS) in 1971, I focused on the applications of morphodynamics to cog-
nitive sciences and semiolinguistics and also on their far-reaching epistemological
consequences.

In order to elaborate this kind of models, it was essential to maintain close rela-
tionships with pure mathematical theories. I could succeed thanks to the colleagues
with whom I worked at Schwartz laboratory: Bernard Teissier, Alain Chenciner,
Jean-Pierre Bourguignon (who would become director of the ITHES, Institut des
Hautes Etudes Scientifiques), Jean-Marc Deshouillers (an arithmetician interested
in cognitive sciences), and later on some younger colleagues such as Daniel Ben-
nequin and Marc Chaperon. Moreover, the weekly seminar by Thom at the IHES in
Bures-sur-Yvette on the theory of singularities allowed me to follow the avant-garde
of the research in this field and to learn many things attending the talks of a number
of important geometers and physicists (e.g., Stephen Smale on complex dynamical
systems or David Ruelle on strange attractors, chaos and turbulence).

During the 70s an extraordinary interdisciplinary interest arose on the theory of
singularities. It started in mathematics (including mathematical physics: caustics
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in optics, defects in ordered media, critical phenomena and phase transitions) with
important symposia such as the Liverpool Singularities Symposium organized and
edited by C.T.C Wall in 1971 or the Summer Schools of the Institute of Scientific
Studies in Cargese organized in 1973 and 1975 by Frédéric Pham. The theory has
then been developed in an extremely rich scientific context in which different tradi-
tions converged. Not without controversies, the morphodynamical models met with
the dissipative structures which came from thermodynamics and chemistry at the
Bruxelles school of Ilya Prigogine, Grégoire Nicolis, and Isabelle Stengers, with
the works on self-organization by Henri Atlan, Jean-Pierre Dupuy and Francisco
Varela, with synergetics by Hermann Haken and Scott Kelso, and so on. A real new
scientific paradigm had been deployed to understand the emergence of morpholo-
gies in the fields of physics, chemistry, and biology.

The philosophical echoes were sensational. The problem of dynamics of forms
had been the great loser of the Galileo-Newtonian revolution which allowed the de-
velopment of mechanics of forces during the XVIIth century: such dynamics im-
plied to conserve certain Aristotelian teleological concepts such as “entelechy”.
From a philosophical point of view, many great authors were aware of this point.
First of all, Leibniz, who investigated the problem during his whole life, Diderot
(cf. his debate with d’Alembert), Kant (see the Critique of Judgment), Geoffroy
Saint Hilaire, Goethe (the inventor of modern structural morphology), Brentano
as psychology is concerned, Husserl and phenomenology, Gestalt theory, D’ Arcy
Thompson, Waddington which I already quoted. By showing how a mathematical
dynamics of forms compatible with physics was possible and how it could be ex-
tended to psychological and social sciences thanks to its transphenomenal nature,
René Thom ignited a philosophical breakthrough blowing up the traditional fron-
tiers between natural and human sciences.

At those times I decided to focus my researches on this unification of the prob-
lem of form and morphogenesis in different empirical disciplines. In order to detail
its dimension and implications, in 1982 I organised in honor of René Thom the
Cerisy Symposium Logos and Catastrophe Theory in which Christopher Zeeman
and many mathematicians participated as well as physicists, for example David Ru-
elle and Michael Berry; biologists as Yves Bouligand or Brian Goodwin, and experts
in morphogenesis; philosophers of science, semiolinguists and experts in Aristotle.

1.2.3 Perceptual Geometry and Phenomenology

Within perceptual geometry, five problems seemed particularly relevant in this con-
text. First of all, the link between morphological models and phenomenology. The
similarities are strong between the definition of forms as systems of qualitative dis-
continuities on spatial substrates and Husserl’s eidetic descriptions of perception,
in particular in Ding und Raum. During the 70s, it seemed strange how morpho-
logical models allow to relaunch phenomenology by “naturalizing” it. Today things
have changed, and neurocognitive sciences converge with phenomenology on dif-
ferent points, as it is shown, e.g., by the works of Alain Berthoz and Jean-Luc Petit
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Physiologie de I’Action et Phénoménologie [18]. The interested reader can consult
the volume Naturalizing Phenomenology [93].

Another problem in perceptual geometry is to construct objects in a tridimen-
sional space, starting from two-dimensional retinal sensations. From a geometrical
point of view, it is the problem of the apparent contours (AC) of objects which ap-
pear as surfaces S in R3. The deformations and the transformations of these AC in
the perceptual temporal flux allow to reconstruct the 3D objects. An AC is a sin-
gular locus. It is the singular locus Sy 5 of the projection of S on the 7 plane in
the direction parallel to § (transverse to 7). If S is smooth, its projection is a map
between manifolds of dimension 2, and, thanks to a theorem by Whitney, we know
the singularities it can present generically: fold lines, transversal intersections of
fold lines, and cusp points. The set of the (7,0) is called a Grassmannian, so a
3D object S is equivalent to an infinity of AC S; s parametrised by a Grassman-
nian. The direct problem, namely how to construct the AC S 5 knowing S, is rather
simple. On the other hand, the inverse problem, namely how to reconstruct S and
its metric properties (its hyperbolic domains of negative curvature, its elliptic ones
of positive curvature, its parabolic lines of curvature = 0), starting from a certain
number of AC Sy 5 is extremely difficult. However, it is what perception solves in
every instant. Also in this case, the similarity with the eidetic descriptions of the
phenomenology of perceptual geometry, namely Husserl’s theory of adumbrations
(Abschattungen) is remarkable.

1.2.4 Caustics in Optics

A third fundamental link between the theory of singularities and perceptual geom-
etry is given by the already mentioned theory of caustics in optics. René Thom
considered it of a central importance because caustics can realize all the “catastro-
phes” of codimension < 3 (folds, cusps, swallowtails, hyperbolic umbilics, elliptic
umbilics). In geometrical optics, caustics are envelopes of light rays and are mani-
fested as forms on a screen because the intensity of the light diverges on it. In wave
optics, what Michael Berry called “diffraction catastrophes” are superimposed to
these geometrical skeletons and their modelling as solutions of the wave equation is
founded on the theory of oscillatory integrals (see our compilation [98]).

Wave optics looks for solutions v(g,#) of the wave equation Dv = 0, where ¢ is a
point of R? with coordinates (x,,2), t represents time and D is the differential linear

2

operator of second order D = o~ A (where A is the spatial Laplacian). The sepa-

ration of spatial and temporal variables leads to the search for stationary solutions of
frequency 7, v(q,t) = €™ u(q), where u(q) is an amplitude which satisfies D;u = 0,
with D; = 72 4+ A and initial condition a given function uo(g) on the source surface
So. This means that one looks for a spatial propagation u(q) of uy(g) on which a
wave pattern ¢'¥ is engrafted.

The approximation of geometrical optics corresponds to an infinite frequency
T, i.e. to a wavelength = 0. However, when T = oo, the operator D¢ is not defined
any longer. This is the source of the idea of searching for asymptotic solutions ur,
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parametrised by 7, of the perturbed equation family D;u; = &;, where €&; is a rapidly
decreasing function in 7 (i.e. a function decreasing more rapidly than every negative
power of 7). “At the limit” the function u.. will then be a the solution of the equation
D..u = 0. Then, one looks for spatial solutions of the form u;(q) = a;(g)e'®, where
0 = tp(q) with @(g) a spatial phase, and where the amplitude a;(¢g) admits an
asymptotic expansion in 7 of the form:

1 1 .
az(q) ~ao(q) + 1_al(q) + o ar(q)+ ... withag # 0.

When 7 — oo, every — 0 for kK > 1. So it is simple to compute D;u; as an

k
expansion in decreasiné powers of 7, and since u; has to be a solution of D;u; = &;
where &; is rapidly decreasing, the coefficients of this expansion have to vanish.
This yields an infinite number of equations, first of all the eikonal equation 1 —
[Vo|?> = 0 (where Vo is the gradient of the spatial phase) which says that the level
surfaces of S; of ¢, the wave-fronts of the geometrical approximation, are parallel
surfaces, and that the gradient lines of ¢, the light rays (so-called characteristics
of the wave equation), are orthogonal to the wave-fronts. Further, the equations
(known as “transport” equations) for the a; coefficients, the first of which is agA @ —

d
2V -Vay = 0. On a light ray, given that ¢(r) satisfies d;I =2V, we have 2V -

dg d
Vay=Vay- d(tl = ;to , and this equation is reduced to an ordinary differential linear

d
equation 4o + apA @ = 0. On the caustic C the amplitude aq diverges.

In order to understand the geometrical status of caustics, it is necessary to intro-
duce the conjugated momenta p of positions ¢ € R?, to work on the phase space
which is the cotangent bundle 7*R> and to shift toward an Hamiltonian formalism
considering the Hamiltonian H (g, p) = 1 — |p|? associated to D;. Consequently, the
eikonal equation will be written 1 — [Vo|> = 1 —|d¢|*> = H(q,d¢) = 0, since the
Euclidean metric of R establishes an isomorphism between 7*R> and 7R3 which
allows identification of the differential 1-form d¢ with the gradient field V. Let
then Ay be the graph of d¢ on the open subset U of R3 where ¢ is defined. It is
simple to verify how, because of the canonic symplectic structure of 7*R3 defined
by the fundamental 2-form @ = dg A dp?, (i) Ay is a Lagrangian sub-manifold of
T*U, i.e. a sub-manifold A of dimension 3 on which the 2-form @ vanishes, (ii) the
Hamiltonian H vanishes on Ay and (iii) A, is transverse at each one of its points to
the fibres of the canonical projection  : T*U — U.

The obstruction to the construction of a global functional solution ¢ comes from
some deficits of transversality. Then one calls a Lagrangian solution of the problem

2 On the cotangent bundle 7*M of a manifold (of local coordinates (g, p)), there exists
a canonical 1-form 6 = pdq. 6(q,p) € T(’;’M(T*M) associates to every tangent vector
(&,n) € Tiy,p)(T*M) the real p(&) (well defined, because p € T, M and § € T, M). The
2-form @ = d0 is fundamental in classical mechanics because it is at the base of the
Hamiltonian formalism.
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a Lagrangian manifold A on which the conditions (i) and (ii) are verified but not
necessarily the condition of transversality (iii). A is a reunion of solutions of the
Hamiltonian system defined by H, solutions called bicharacteristic curves, and the
caustic C is the apparent contour on R3 of the Lagrangian solution A, i.e. the pro-
jection of the critical locus X~ where the condition of transversality (iii) is no longer
satisfied.

To transform such a geometrical solution into a functional one, sophisticated
tools such as oscillatory integrals are necessary. The key idea is due to Maslov (see
Maslov [84], Duistermatt [49] and our compilation [98]) and consists in looking for
asymptotic solutions u;(g) no longer of the previous type a(¢)e'*®@) but for sums
locally finite of oscillatory integrals:

2
I(q,7) = (;”)P /e”"’("""‘)ar(q,a)da

where o € R?, where (7/27)P/? is a renormalisation factor and where a(g, o)
(with compact support in ) is given, as a;(g), by an asymptotic expansion. The
relation between such functional representations and Lagrangian solutions is given
by the stationary phase principle, which says that, due to destructive interferences,
the oscillatory integral concentrates when 7 — oo on the critical locus V,, where

d@q(0r)

the phase ¢,(a) is stationary, i.e. where = 0. A theorem due to Lars

o
Hormander, says that, at least locally, every Lagrangian solution can be represented
that way.

1.2.5 Structuralism and Categorical Perception in Phonetics

The fourth link between morphodynamical models and perceptual geometry, which
concerned us for a long time, does not regard vision but what is called categori-
cal perception in phonetics: the categorisation of the phonemes is a product of the
perception of sounds, when these are recognised as speech sounds. Inside a cate-
gory, the discrimination ability degenerates (two different allophones of the same
phoneme are perceived as identical even if they are acoustically different), while
at the boundaries of the categories the discrimination is strong. As phoneticians
say, discrimination is subordinate to identification: we can’t discriminate correctly
some occurrences unless they are identified as occurrences of different phonemes.
It is possible to explain this remarkable phenomenon (which is really different, e.g.,
from the perception of colours) considering that the phonetic percepts are attractors
of neuronal internal dynamics X, parametrised by acoustic cues a. In each language
these cues as the voice onset time of stop consonants (VOT, the interval between the
release of the consonant and the vibration of vocal folds) have central values. Using
methods of vocal synthesis, it is possible to let them vary in a continuous way, and
then to observe how bifurcations of the phonetic percepts are induced when crossing
critical values. For example, a voiced labial \p\ becomes an unvoiced labial \b\.
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At the end of the 70s, we developed morphodynamical models of the phonetic
categorisations (see [99]) and we emphasised their double interest. First of all, they
show how to generalise the models to the cases in which the external space M
parametrising the internal dynamics X, is not the standard space any longer, but a
space of control-parameters. Second, as far as phonetics has been a model for mod-
ern structuralism, with Prince Troubetzkoy and Roman Jakobson, they show how
morphodynamical models are natural for structuralism. On this base we build the
“morphodynamical structuralism” program, which goes from phonetics to semiolin-
guistics (in Greimas’ and Eco’s sense), and anthropology (in Lévi-Strauss’ sense),
which in 1982 led to the four volumes of Pour un schématisme de la structure. De
quelques implications sémiotiques de la théorie des catastrophes and to the three
books Les Catastrophes de la parole. De Roman Jakobson a René Thom (Maloine,
Paris, 1985), Morphogenése du Sens [99] and Physique du Sens (Presses du CNRS,
1992).

1.2.6 Mental Dynamics

A fifth aspect of the morphodynamical models of the 70s is already linked with
neurosciences, even if in a theoretical and qualitative fashion and not in an experi-
mental and quantitative one. In his 1965 article Topology of the Brain (see [144]),
Christopher Zeeman introduced the key idea that brain activity must be modelled
by dynamical systems X, on internal configuration spaces P = I"V, where I = [0, 1]
is the range of activity of a neuron, N is the number of neurons of the system under
consideration, and the X, depend on control parameters @, micro-parameters such
as synaptic weights and macro-parameters such as behavioural or psychological
values. The main hypothesis was to identify mental contents with the topological
structure of attractors of the X, and the flow of consciousness with a “slow” tem-
poral evolution of the X,. The strategy for explaining mental phenomena was then
to use theorems concerning the general structure of attractors and their bifurcations
for drawing empirical conclusions from this dynamical scheme without knowing
explicitly the X,. Indeed, if mental contents are modelled by attractors, then their
significant changes during mental processes are modelled by bifurcations K observ-
able in the control space M of relevant control parameters (the relevance depends of
course on the nature of the mental phenomena under consideration). The dynamics
X, are defined on the very high dimensional manifold P and are “implicit”, while
the bifurcation sets K are “explicit”. But suppose that, due to theorems of classifi-
cation as those of Whitney-Thom, we know models of the K that are generated by
dynamics Y, defined on low dimensional internal spaces Q. Such a drastic reduction
of dimension of the internal space (which is very similar to what one meets in sta-
tistical physics when one reduces an enormous number of degrees of freedom using
what is called an order parameter) can then be identified to the passage from the
neurodynamical micro-scale to the “psychological” macro-scale.

Thom’s and Zeeman’s neurodynamical hypothesis could not be confirmed at
those times because of the lack of experimental tools. Nevertheless it raised an
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exciting problem, namely the mereological problem of constituency. Indeed, a key
feature of mental contents is indeed how they are structured into components, what
is called their “compositionality” or their “constituent structure”. One need only
think to the syntactic structure of a sentence to be convinced. If it is possible to
model a mental content through a neurally implemented attractor, then this attractor
must have a constituent structure on its turn. What could this possibly mean? This
is what I proposed to call the problem of an attractor syntax. It is particularly dif-
ficult. If structures can be modelled in terms of bifurcations of internal dynamics
X, defined on internal spaces P, bifurcations which are unfolded in external spaces
M, then one must “internalise” these external unfoldings into higher level internal
dynamics defined on the product spaces P x M.

The interested reader could consult our work (written with the help of René
Doursat) Cognitive Morphodynamics [106] dedicated to this theme in relation to
semiolinguistics (Per Aage Brandt, Wolgang Wildgen, Jean-Pierre Desclés, Pierre
Ouellet, Jean-Guy Meunier, etc.) and cognitive linguistics (Len Talmy, Ron Lan-
gacker, George Lakoff, Paul Smolensky, Peter Gérdenfors, Terry Regier, Rick
Grush, etc.).

1.3 The Connections between Perceptual Geometry, Image
Processing, and Computational Vision from the 80s

During the 80s, the research inspired by Thom in perceptual geometry has been
connected with parallel works by specialists in natural and computational vision
and image processing. We will cite some of the most remarkable ones.

1.3.1 Koenderink, Hoffman and the “Singularities of the Visual
Mapping”

In the mid-80s, the pioneering works by William Hoffman on the application of dif-
ferential geometry and Lie group theory to vision, and by Jan Koenderink (and, later,
by the Utrecht University group, in particular Luc Florack) on visual perception ge-
ometry, interested me, because, for the first time, I met specialists in perceptual
psychology using resources coming from differential geometry, and, in particular,
from singularity theory. Among the fundamental contributions of these scholars, I
would mention four issues:

(i) The thesis according to which the visual cortex is a “geometric engine” which
implements mathematical structures as fibrations, jet spaces of order 1 and 2, and
contact structures (see [77], [64]).

(i1) The structuring role of singularities in perceptual geometry (see [76]).

(iii) The necessity to integrate (in the mathematical sense) the neural detections
of local structures into global geometrical structures. If the brain can be a “geometric
engine”, this is because groups of receptive fields of visual neurons detect local fea-
tures as edge orientations, crossings, inflection points, etc., which can be integrated
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later on through the functional architectures connecting these feature detectors in a
specific way.

(iv) The essential role of scale. Perceptual geometry results from the integration
of local measures by receptive fields which have a certain width, and it is conse-
quently processed at a certain scale, i.e. at a certain resolution. For this very reason,
perceptive differential geometry must be multiscale, because classical differential
geometry corresponds to the idealisation of an infinite resolution (scale = 0). Koen-
derink and Witkin introduced the idea of scale-space analysis. It consists in a uni-
form parametrisation of all the relevant geometrical structures by a scale parameter
o. A constraint called “causality constraint” implies that when o increases the com-
plexity of the geometrical structures simplifies. Generally speaking, this constraint
is expressed through a diffusion operator D. This means that if one considers a struc-
ture S (x) defined on a background space E, one considers the multiscale background
space E x RT endowed with the operator D (x,5) and imposes that S (x) will be the
initial value S (x,0) of a solution S (x, o) of the diffusion equation D (S (x,0)) = 0.
The simplest way to obtain this for £ = R" is to use the heat equation g(Sy =AS
(where A is the spatial Laplacian). This strategy, called Gaussian blurring, raises
interesting mathematical problems. For example, James Damon rewrote in this new
framework Morse theory and the Whitney-Thom-Mather theory of universal unfold-
ings (see [42] and [104]).

1.3.2  Scale Space Analysis and Anisotropic Diffusion

The main drawback of Gaussian blurring in image processing and computational
vision is that it does not respect the morphologies of the image. In fact, as we saw,
these are dominated by the perceptual saliency of qualitative discontinuities and,
by definition, the isotropic diffusion induced by the heat equation smooths discon-
tinuities. That’s why a certain number of specialists founded scale-space analysis
on highly anisotropic non linear parabolic equations of diffusion, in which the in-
tensity of the gradient of the image inhibits diffusion. Along discontinuities the
gradient is very strong and even diverges, and therefore there is no diffusion any
longer: diffusion only operates transversally to discontinuities and therefore pre-
serves morphologies. The most known of these anisotropic equations is perhaps the
one introduced by Jitendra Malik and Pietro Perona in 1990 for images defined by
their intensity function I (x,y; o) (if we allow a small initial blurring, we can sup-
pose that I is smooth): gé = div (g(VI).VI) where VI is the spatial gradient of I,
and g is a decreasing positive function so that g(x) = 0. As div(VI) = AI, we

retrieve the standard heat equation for g = 1. Such PDEs are difficult to integrate
numerically, because they imply phenomena of inverse diffusion and deconvolution
which make them unstable. Let us also mention the well-known equation (1992) by
Pierre-Louis Lions, Jean-Michel Morel, and Luis Alvarez [6] gé = 8522[ where & is
a normal coordinate to the gradient, that is to say the tangent to the level line at the
considered point. This equation is written :
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ol (VI H(VI,VI)
9o = IV <V1> > VI

where H is the Hessian of S. It is uniformly parabolic along level curves, but it
is completely degenerated in the direction of the gradient. It lets the level curves
evolve as fronts with a normal speed equal to their curvature.

In a more general way, considering the level lines of the intensity functions
I(x,y;0), it is possible to generate evolutions of the plane curves Cs, which prop-
agate as fronts in accordance to a law of the kind g; = F(x)v where a is a point
of Cg, v the (external) normal at a to Cg and x the curvature of Cs at a. The more
studied cases have been the propagation at a constant speed, F (k) = v, for example
v =1 (wave equation): g; =V, g:; = —k?2. This way we obtain “grassfire” models
where the propagation speed is constant as in optics.

The above model corresponds to F(kx) = —k. Under the title of “curve shorten-
ing”, “flow by curvature” or “heat flow on isometric immersions”, this equation has
been studied by geometers as Michael Gage, Richard Hamilton, Matthew Grayson,
Lawrence Evans or Joel Spruck.’ According to Grayson’s theorem [60], “curve
shortening” convexifies the curves Cs and makes them metrically converge towards
acircle. If js : S! — R2 is the isometric immersion defining Cs, we have A jo = —Kn
and the diffusion equation ds jo = —Kn is the heat equation ds jo = Ajs. In the
functional space ¢ of immersions j : S! — R?, this equation defines the gradient
field of the function giving the length of the image curve C = j(S') and the theorem
says that if Cy is an embedded curve (as winding as it can be), then the heat equa-
tion contracts it into a circular point. And Cs becomes convex without reaching any
singularity.

This result concerning 1-dimensional curves cannot be generalized to surfaces.
For instance a “dumbbell” like surface can be pinched and disconnected into two
spheres. The interested reader could consult e.g. Brakke [26], Huisken [69], [70],
Ecker, Chen, Giga, Goto [33].

To return to curves, Stanley Osher and James Sethian [96] studied the interme-
diate cases where F (k) is neither constant nor equal to —k but of a mixed form

F(x) =1—¢€x.If 7 is the curvilinear abscissa of the curve Cg, the curvature K sat-

isfies an equation of the type g:; = 8315 +ex3 — k2 which is a reaction-diffusion

3 _ k2 (which pushes Cy towards singularities)

%Kk
ot2”

equation where the reaction term €x
is counterbalanced by the smoothing effect of the diffusion term &

3 As a matter of fact, the theory comes from Richard Hamilton which tried to solve much
more difficult problems in General Relativity. By using the heat equation, he showed how,
if X is a Riemannian compact 3-manifold with a positive Ricci curvature R;; , then X ad-
mits a Riemannian metrics with constant positive Ricci curvature. Now, the latter have
been classified. Hamilton tried also to generate closed geodesics starting from any closed
curve. Among others, these techniques allowed Grigori Perelman to prove Poincaré’s con-
jecture in 2003.
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1.3.3 Segmentation and Illusory Contours in David Mumford

Morphological geometry of images, clearly very close to perceptual geometry, be-
came this way a top-ranking scientific object as much as it was necessary to find
specific performing algorithms to compute it. This computational approach goes
beyond morphological modelling, and it intermediates in some sense between per-
ceptual geometry and neurogeometry insofar as, on the one hand, it is based on
explicit algorithms while, on the other hand, these algorithms don’t have to be neu-
rally implemented. One could think that this is not a real problem since neural nets
are computationally equivalent to Turing machines. But this is not the case, because
in neurogeometry the neural hardware is dedicated and it is the specificity of its
functional architecture that causes its activations to be equivalent to a calculus.

Another great mathematician in image processing, who has been an essential
inspirer for neurogeometry is David Mumford, 1974 Fields medal for his works in
algebraic geometry. Two contributions are of a peculiar importance.

(i) First, the Mumford-Shah segmentation model (see [91]), a variational model
which allows to optimize the approximation of an image I (x,y), defined on a win-
dow W and potentially very noisy, by a “good” morphological structure (u,K) where
K is a segmentation of W partitioning W in open domains W; (connected components
of W — K) and u an approximation of / which is regular on the W; while presenting
discontinuities along K. A considerable number of algorithms of this kind have been
proposed. In a way or in another, they all consist in a merging of local domains into
regular, homogeneous regions limited by crisp edges, that is in “splitting and merg-
ing different parts of the domain W as Mumford said. The principal theoretical
problem which they encounter is that the 2D regions and the 1D edges are geomet-
rical entities of a different dimension, which compete and interact in a very subtle
way (see the synthesis Morel-Solimini [89]). In order to compare the possible seg-
mentations between them and to measure their approximation degree of the image
1, it is relevant to introduce an energy. The energy proposed by David Mumford and
Jayant Shah is

E(u,K):/WiK\Vu\zderl/W(ufl)2+u/Kd0"

It includes that three terms: the first term measures the variation and controls the
regularity of u on the open subsets W;; the second term controls the quality of
the approximation of / by u; the third term controls the length, the regularity, the
parsimony, and the localisation of the edges K and inhibits the oversegmentation
phenomena (by segmenting in sufficiently small regions it is obviously possible to
approximate I as much as we want, but such oversegmentations are irrelevant).
This variational model is a particular case of what is called in physics a “free
boundary problem”. It is extremely difficult to solve and a lot of works have
been dedicated to it until now in particular by the Ennio De Giorgi centre at the
Scuola Normale Superiore in Pisa (among the others Luigi Ambrosio and Gianni
Dal Maso), Jean-Michel Morel, Alexis Bonnet and Guy David (for an introduc-
tion see [103] and [105]). If the set of edges K is fixed, then it is simply a classic
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Neumann problem: Au = p(u—1I) inside the connected components W; of W — K
and gc = 0 along the edges dW UK (v is the normal at the edge). If K is free,
the problem is really different. In the simplest case, where the approximants u are
locally constant, we have Vu = 0 and E (u,K) is reduced to a

E(u,K):?L/W(qu)2+u/Kd0'.

Then, the approximation u is entirely determined by K because, on the connected
components W; of W — K , it is simply equal to the average of /. Thus, we have only
to find K. Mumford has shown that, in this case, the minimum of E(u,K) exists
and is realised through a K which is piecewise C', whose curvature is bounded by
8osc(I)? (where the oscillation of I is osc(/) = max/ — min/) and which has triple
points at 120° and edge points at 90° on dW as only singular points.

In the general case where the approximations u are not necessarily locally con-
stant, Mumford’s conjecture says that it is still the same, except that a third class of
singularities of “end point” type could occur (they are called “cracktips” or “fault”
ends in reference to physical models). They are end points of the discontinuity
lines. The conjecture is still unsolved. First it has been shown that K is a closed
and “regular” set of topological dimension 1 (it can’t be fractal). Later on, David
and Semmes [43] showed a property of uniform rectifiability. Then Alexis Bonnet
proved the conjecture for the isolated connected components of K. Then Bonnet and
David [21] showed how the “cracktips” are minimisers.

In 2003, Giovanna Citti and Alessandro Sarti proved that the Mumford-Shah
model is a limit (in the variational sense of the word “limit”) of a model of synchro-
nisation of oscillators, a result which would justify a neural implementation (we will
return on this point in section 1.5.1.1).

(i) David Mumford’s second major contribution concerns a variational model
proposed in 1992 [90] regarding the illusory contours. This is the model which will
be reformulated by neurogeometry. It uses elastica curves, introduced by Euler in
elasticity theory, which are curves minimising at the same time the length and the
square of the integral of the curvature x of curves, i.e. an energy E = fy(OtK'z +B)ds

where ¥ is a smooth curve in R? with element of arclength ds. It is possible to jus-
tify this model in this way: the virtual contour will correspond to a chain of triplets
(ai, pi) (a; = positions and p; = orientations at the positions a;) along which the
loss of activity is the weakest possible. But leaks can have a double origin: (a) leaks
proportional to the number N of elements of the chain, with a constant factor 3; (b)
leaks due to curvature and equal to the sum of the deflections of orientation between

consecutive elements, with a constant factor «. If 6; is the angle of the slope p;, we
i=N—1
can take forexample Y, (641 — 6,-)2. At the limit, the first term tends to the length
i=1
fyds and the sum of the deviations A8 in the second term tends to fy K%ds since, by
definition, x = ‘fg . The minimisation of leaks “online” consequently leads to Mum-
ford’s variational problem. Its solutions are transcendental curves (i.e. non algebraic
ones) called elastica which could be explicitly represented by elliptic functions.
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David Mumford developed a stochastic explanation of his model. Let us suppose
that the curvature k(s) of the curve y (parametrised by its arclength s) is a white
noise. As k(s) = 6(s), this means that 6(s) is a Brownian motion. In other words,
at every time, motion is a random Gaussian variable of average 0 and of variance
o. If we further suppose that the length / of 7 is a random variable which follows
an exponential law Ae */dl (thus [ is constant for A = 0), then the probability of
a particular curve 7 is given by Pr(y) = e I 4B)ds with o = 2:’2 et B =A.
Consequently, elastica are the most probable curves.

1.3.4 Receptive Profiles and Wavelets

Another fundamental progress in image processing which can be used to mediate
between perceptual geometry and neurogeometry is the remarkable development of
wavelets algorithms promoted since the late 80s by analysts such as Yves Meyer,
Stéphane Mallat or Ingrid Daubechies. The wavelet transform of a signal is a lo-
calised and multi-scale harmonic analysis that allows to easily detect (unlike the
Fourier transform) the qualitative discontinuities encoded in the signal. For an in-
troduction, see Stéphane Mallat’s A Wavelet Tour of Signal Processing [80]. The
connection with David Marr’s pioneering way to treat the retinal signal by the reti-
nal ganglion cells was quickly established, and it became clear that the retina, the
lateral geniculate nucleus, and the primary cortical visual areas perform a series of
consecutive wavelet analyses of the optical signal and that this is where the primary
geometric formatting of the visual input comes from. In particular, the receptive pro-
files of the “simple” neurons of V1, which detect edge orientations, are assimilable
to oriented wavelets modelled on second derivatives (i.e. anisotropic Laplacians) of
Gaussians (the width of the Gaussian defines the scale of the processing). The zones
of the receptive field where the receptive profile is > 0 (resp. < 0) are called ON
(resp. OFF) by neurophysiologists.

A lot of fine grained analyses have been conducted on the receptive profiles of
the visual neurons, for example by Gregory DeAngelis’ team at Duke. In fact, the
receptive profiles implement derivatives of Gaussians up to order at least 3. For ex-
ample, figure 1.2 from [45] shows a receptive profile where the spatial and temporal
profiles are non separable: the ON/OFF regions are shifted during time, and for this
reason the periphery response of the receptive field is delayed with respect to the
central one. This allows the neuron to measure the speed of the edges it detects.
Figure 1.3 shows a model using the third derivative of a Gaussian a‘?;gv, where the
(x,1) plane is obtained through a ||, rotation of the (u,v) plane (it is the origin of the
non-separability). The agreement with the experimental data is quite remarkable.

This analogy between a wavelet analysis of an image and the processing of the
optical signal by fields of receptive profiles which operate in parallel and detect local
geometrical features plays a crucial role in neuroscientific theorisation on vision.
However, it failed to consider the functional architectures, which allow integration
of these local data into global structures.
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Fig. 1.2 Temporal evolution of a non-separable receptive profile ¢(x,y,t) from ¢ = 20ms to
t =220ms. The spatial organisation of the receptive profile changes; this is not the case for the
separable receptive profiles. Above, the spatial profile ¢ (x,y) = @(x,y,1). Below, its section
for y = 0. (From DeAngelis et al. [45]).
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Fig. 1.3 Model of the temporal evolution of the receptive profile ¢(x,y,r) of figure 1.2.

We took a third derivative of a Gaussian @(x,y,t) = aizgv (u,y,v) with the rotation (u,v) =

rg(x,t), @ = [i). Above, the evolution of the spatial profile ¢y (x,y) = @(x,y,t). At the middle,
the sections for y = 0. Below, the receptive profile ¢(x,0,7) on the (x,#) plane for y = 0.

1.3.5 Neural Net Dynamics and Attractors

As we saw in section 1.2.6, in the 70s Thom and Zeeman introduced the main idea,
according to which a mental content is an attractor of a neural dynamic. However,
these dynamics remained implicit in their models and if the hypothesis was yet op-
erative, this was because deep theorems on classification of singularities and bifur-
cations show their universality. So, from a methodological point of view, the models
were quite special: rather than starting from explicit equations and deducing from
them the bifurcations, they started from the observed bifurcations and they ascended
by abduction to some generating dynamics of minimal complexity, a dynamics of
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which the real implicit dynamics should only be an extension through irrelevant
parameters.

The situation changed with the introduction, at the beginning of the 80s, of the
neural net models inspired by statistical physics and later developed, after Jack
Cowan et Hugh Wilson (1972), by specialists as John Hopfield, Daniel Amit, Haim
Sompolinski [123], Misha Tsodyks [132] and, in France at those times, by physi-
cists as Gérard Toulouse, Marc Mézard, Jean-Pierre Nadal, Gérard Weisbuch at
the Lab of Statistical Physics of the ENS (Ecole Normale Supérieure), or Manuel
Samuelides at Toulouse [48], or Daniel Hansel and Claude Meunier at the Ecole
Polytechnique, or also Gérard Dreyfus at the ESPCI. Under its simplest form, a
neural net consists of N units u; whose activation state y; changes in a certain state
space S. The most useful cases are S = {0,1},{—1,1},[0,1]. An instantaneous net
state is therefore described by the vector y = (y;);=1,.. v in the configuration space
P = SV which is a space of great dimension if N is large. The units u; are little
threshold automata connected to each other through connections whose strength is
measured by synaptic weights w;;. The w;; determine the program of the net. The
w;; > 0 correspond to excitatory connections and the w;; < 0 to inhibitory connec-
tions. In general, w;; = 0.

The net “computes” in the following way: every neuron u; receives afferent sig-
nals coming from its pre-synaptic neurons, it integrates them, then it makes a deci-
sion and sends an efferent signal to its post-synaptic neurons. One defines in general
the input of the unit u; as the weighted summation of the afferent signals

Jj=N
hi = 2 WiiYj, ie. h= wy
Jj=1

and the local transition laws are of the kind:

yi(t+1) =g (hi(t) =T),ie y(t+1)=g(h(t)-T)

where 7; is a threshold and g a highly non linear gain function. Typically we have
g = Heaviside function if S = {0, 1}, g = sign functionif S = {—1,1}, g = sigmoid
function, for example 1/(1+¢*), if S = [0,1]. The synaptic weights w;; and the
thresholds 7; constitute a control space W. The global dynamics of the net ¥;, on
P is obtained by aggregating the local transition laws and by iterating them. In the
limit of a continuous time, we get a large system of differential equations of the
kind:
y=-y+gwy-T).

In the limit of a spatial continuum of neurons, we get PDE (on densities) of the kind:

‘9yg;’t) = (1) +g (/ (W, 2)y(z,1) — T(x))dz> :

As Daniel Amit emphasised, under the hypothesis of a complete feedback (loop
between the inputs and the outputs) the asymptotic states of the system — in
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particular its attractors — are meaningful (see [7]) and define the internal states of
the net. The basic dynamic phenomenon is therefore the asymptotic capture of an
instantaneous global state y of the net by an attractor A. That’s why Daniel Amit
proposed the expression “attractor neural networks”. ANNs are dynamical com-
puters that bifurcate from attractors to attractors. They make explicit the general
neurodynamical models worked out by Thom-Zeeman.

The dynamics that can be obtained this way are in general of a great complex-
ity. For example, in the case (neurobiologically completely unrealistic) of symmet-
rical connections, John Hopfield remarked at the beginning of the 80s that for
S ={-1,+1} and g = sign function, the equations of the net are analogous to
the ones for systems of interacting spins which we meet in statistical physics. The
energy minimised by the dynamics is given by:

1
E = ~H ZWijyiyj+zTiyi .
i#] i

In the measure in which the synaptic weights w;; are analogous to the coupling con-
stants and are, in an intricate way, at the same time > 0 et < 0, these systems —
which exemplify the simplest case of a formal neural net — correspond to the most
complex case of spin systems, the so called “spin glasses”. Their energy presents a
considerable number of local relative minima and, in order to find the global abso-
lute minimum, the classical methods of the “gradient descent” kind do not work. It
is necessary to use sophisticated algorithms coming from statistical physics such as
the so-called simulated annealing.

When the synaptic weights become asymmetrical, the energy function does not
exist any longer, and the dynamics can become of a greater complexity. One finds
different classical routes toward chaos and in particular the period doubling route
known as Coullet-Feigenbaum-Tresser subharmonic cascade.

Many results of this kind show how it is possible to give a rigorous status to
Thom’s thesis that mental contents are attractors of dynamical systems implemented
in neural nets and therefore that cognitive functions can be naturally conceived in
terms of statistical physics and neural dynamics. The example is particularly evident
for the fundamental cognitive processes of categorisation and learning. A sensory
input is modelled as an input of the net and the evoked percept is identified with the
attractor which captures the input. The categorisation of the inputs processed by the
percepts is interpreted as the partition of the configuration space of P in attraction
basins B(A) of attractors A — the categories — which work as profotypes. The scales
which psychologists call “gradients of typicality” are then interpreted as Liapounov
functions on the B(A) — A (i.e. functions of the “ energy” type that strictly decrease
on the trajectories when those asymptotically tend towards their limit attractors and
vanish on these attractors). We retrieve the morphodymamical models of the 70s,
e.g. for categorical perception in phonology, evoked in section 1.2.5.

The aspect of learning corresponds to an inverse problem. The associated direct
problem consists, given a matrix w of synaptic weights, of finding the attractors of
the dynamic Y,,. On the contrary, the inverse problem is, some attractors A; being
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given, to find a matrix w that generates them. Some algorithms have been devel-
oped for this purpose, in particular the one called backpropagation which consists
of computing, from an initial matrix wo, the gap between the attractors of Y,,, and
the desired attractors and to back-propagate the error by adjusting wy. Similar algo-
rithms define slow dynamics in the control spaces W of the synaptic weights.

In this way, neural nets become privileged models for cognitive processes under
the name of connectionist models. The fundamental problem of constituency in an
“attractor syntax” (see section 1.2.6) was raised again but in a more technical way
because now the internal dynamics of the models were explicit. It was also raised
in a more polemical way, because in 1988 Jerry Fodor and Zenon Pylyshyn [51] at-
tacked Paul Smolenky’s article [122] on the “Proper Treatment of Connectionism”
(PTC), explaining how connectionist models can’t in principle generate cognitive
models because their attractors lack an internal structure. The problem was partic-
ularly sharp as much as it concerns grammatical relations and semantic roles, con-
stituency and compositionality, but was partially solved by using the rich resources
of the theory of singularities and bifurcations, which were unused by standard con-
nectionist models of the PDP type (“parallel distributed processing” in the sense of
David Rumelhart and James McClelland) or PTC (Paul Smolensky). We refer to our
works [100] and Cognitive Morphodynamics [106] for details.

In 1991 and 1992 two Conferences on Compositionality in Cognition and Neural
Networks, organized by our colleagues Daniel Andler, Elie Bienenstock and Bernard
Laks [39], were held in France at the Royaumont Abbey. Then, Bernard Victorri and
Catherine Fuchs organized in 1992 a Conference on The Continuum in Linguistics.
We organized in 1995 with Umberto Eco and Patrizia Violi in San Marino an inter-
national Conference Topology and Dynamics in Cognition and Perception focusing
on Cognitive Grammars (in particular Len Talmy who was there). We edited also a
special issue of Sémiotiques “Dynamical Models and Cognitive Semiotics”. Inspired
by the Royaumont workshops, another Conference on Dynamic Representations in
Cognition was also organized by Robert Port and Tim van Gelder at Indiana Uni-
versity in 1992. They edited then at the MIT Press in 1995 a reference book Mind
as Motion on dynamical models in linguistics.

1.4 The Neurogeometrical Turn Since the 1990s

1.4.1 Neuromathematical Interdisciplinarity

At the end of the 80s, many instruments were available:

1. A perceptual geometry in a Thom-Koenderink fashion, which mobilised the tools
of Morse’s theory, jets, singularities, bifurcations, stratifications, and universal
unfoldings.

2. Deep connections with some algorithms of multi-scale image processing: local
algorithms as wavelet analysis (Mallat-Marr) and anisotropic diffusion, or global
algorithms as Mumford-Shah variational segmentation model.

3. Equally important deep connections with neural nets and statistical physics.



1.4 The Neurogeometrical Turn Since the 1990s 21

In other terms, one could count on suitable elements for morphological geome-
try and suitable implementation principles for image processing. Many works have
been developed in these directions, in particular at the CREA (Ecole Polytechnique),
a research centre created in 1982 by Jean-Pierre Dupuy, which I joined in 1986.
From 1991, Bernard Teissier invited me for some lectures on these topics at the
department of mathematics of the ENS (Ecole Normale Supérieure), and I also ded-
icated to them some of my master classes. However, what lacked at that time was a
technical link with neurosciences founded on precise experimental data. To be sure,
since the 70s Zeeman had introduced, in a qualitative way, some neural dynam-
ics, (see section 1.2.6), to be sure Koenderink and Hoffman (see section 1.3.1) or
wavelet analysis (see section 1.3.4) constituted a link with data on receptive fields
and the organisation of visual areas in hypercolumns, but it lacked a real confluence
with neurosciences, a confluence which would allow to connect rich experimental
data to non trivial mathematical models.

In my case, this confluence occurred at the beginning of the 90s at two levels.
First through the great richness of a new interdisciplinary context, and then through
the first neuroimaging data on the functional architectures of the primary visual
areas.

The interdisciplinary context was the one of the Master created in 1990 by the
prominent specialist in vision Michel Imbert. This original Master which institu-
tionally grouped the EHESS, the ENS and the Pierre et Marie Curie University
(Paris VI) was a great success and allowed collaborations with specialists of neu-
rosciences, physiology and psychophysics as, apart from Michel Imbert himself,
Alain Berthoz, director of the LPPA (Laboratoire de Physiologie de la Percep-
tion et de 1I’Action) at the College de France, Yves Frégnac director of the UNIC
(Unité de Neurosciences Intégratives et Computationnelles) at the CNRS (Centre
National de la Recherche Scientifique), Jean Lorenceau (UNIC and LPPA), the col-
leagues of the LENA (Laboratoire de Neurosciences et d’Imagerie Cérébrale) of the
CNRS at the hospital “La Pitié-Salpétriere”. In this particularly favourable context,
many fruitful interdisciplinary exchanges quickly started. A working group organ-
ised many conferences at the “Fondation des Treilles” (founded by Anne Gruner-
Schlumberger). The 1993-1994 ones on Geometry and Vision grouped among others
Bernard Teissier, Jean-Michel Morel, David Mumford, Gérard Toulouse, Stéphane
Mallat, Yves Frégnac, Jean Lorenceau, Olivier Faugeras, Elie Bienenstock, and the
1998 one was dedicated to Methodology in Cognitive Science. There have been
many other meetings, in particular in 1995 a symposium on Mathematics and Brain
at the Institut Henri Poincaré in Paris. Jean-Michel Morel, David Mumford and
Bernard Teissier also organised in 1998 a special quarter on Mathematical Ques-
tions on Signal and Image processing at the Centre Emile Borel of the Institut
Henri Poincaré. Then an important symposium, The Mathematical, Computational
and Biological Study of Vision, was held in 2001 at the Oberwolfach Mathematis-
ches Forschungsinstitut by David Mumford, Christoph von der Malsburg and Jean-
Michel Morel.

During the 1990s, another privileged collaboration with neurosciences was estab-
lished with Francisco Varela, member of the CREA, where he developed his ideas
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on self-organised and autopoietic systems, and also member of the LENA, where he
worked on global neural dynamics which are highly complex non linear dynamics
defined on very high dimensional spaces, presenting many chaotic properties but
also simpler observable ones. To reconstruct such dynamics from the time series
yielded by the measure of suitable neural signals, one can use tools elaborated on
the basis of deep mathematical results by Whitney, Thom, Zeeman, Takens, Crutch-
field and others. Often, the dynamics result from the interaction of a large number
of oscillators of the FitzHugh-Nagumo type*. As was emphasised by Wolf Singer,
Heinz Schuster and Varela, it is the synchronisation of oscillators which is cogni-
tively functional. It is of course complementary of desynchronisation processes, and
it is that way the difficult mathematical theory of coupled oscillators (Yoshiki Ku-
ramoto, Hiroaki Daido, Bard Ermentrout, Nancy Kopell, etc.) becomes involved in
neurodynamics. What is particularly interesting in global neural dynamics is that
they couple many subdynamics related by control, feedback and hierarchical rela-
tions. These dynamical hierarchies are structured in synchronisation / desynchroni-
sation temporal flows, which explains the temporal segmentation of consciousness
along “syntactically” organized cognitive acts.

On both experimental and theoretical sides, one of the contributions of the new
imaging techniques has been to allow the identification of two fundamental math-
ematical concepts corresponding respectively to the two systems of connections
which constitute the functional architecture of V'1: the concept of fibre bundle or
fibration for the “vertical” retino-geniculo-cortical connections, and the concept of
contact structure for the “horizontal” cortico-cortical connections (also called “lat-
eral” sconnections).

1.4.2 Efficient Coding, Receptive Profiles and Natural Images

Let us briefly return on the peculiar form of the receptive profiles of visual neurons
(from the ganglion cells of the retina to the cortical cells) modelled as derivatives
of Gaussians or Gabor patches. Many specialists, for example Joseph Atick and
Jean-Pierre Nadal, have shown how these profiles can be retrieved from general hy-
potheses of information theory. They correspond to an “informational strategy” and
to “design principles” which optimise the efficiency of the representation of infor-
mation. As Atick said ( [8], p. 213), “efficiency of information representation in the
nervous system potentially has evolutionary advantages”. The efficient neural codes
of visual information allow to describe the environment in a compact way using
an effective “visual vocabulary” of geometrical features. Now, natural image statis-
tics is particular because strong correlations exist between the pixels and because
of the existence of edges. The different possible statistics of the inputs influence
the distribution of the spikes. Yves Frégnac’s team, for example, studied four statis-
tics: moving gratings, dense noise, natural images with eye motion, and gratings
with eye motion too. They found that the variability of spikes decreases with the

4 FitzHugh-Nagumo equations are a simplified version of the Hodgkin-Huxley equations for
spikes.
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complexity of the classes of stimuli and that the temporal precision of their emis-
sion time increases. It is a remarkable result.

The “pixelised” representation at the level of photo-receptors does not reflect
these statistics and is therefore fundamentally inefficient. Consequently, it had to be
improved. From the years 1950-1960 Fred Attneave and Horace Barlow proposed
that, in order to be efficient, the neural coding must eliminate as much as it is possi-
ble the enormous redundancy of the inputs, in other terms it has to compress them.
For this reason, the statistical laws of natural images play a fundamental role in the
evolutionist explanation of the design of neuronal hardware. It imposes to the neu-
ral information processing “ecological” constraints (in James Gibson’s sense of the
term “ecological”) and some “priors” (in the Bayesian sense). As far as the relations
between neurons are concerned, the maximisation of the code-efficiency is based
upon the possibility of rendering the responses of the different neurons statistically
independent as much as possible. The problem is difficult.

The leading idea for solving it is to optimise the information and to decorre-
late the signal by eliminating increasingly higher correlations. The simplest way
is to suppose that it exists a linear filtering (a convolution by a receptive profile)
which performs a compression of the signal /(a) by decorrelating first of all its
spatial self-correlation C(ay,az) = (I(a;)I(az)) (where () represents the average).
Due to homogeneity and isotropy, the self-correlation depends only on the distance
r=la , and C(ay,ay) has the form C(r). The Fourier transform C(®) of C(r)
is called the power spectrum of the signal: C(®) = [ C(r)e™"dr. Now, the natu-
ral image statistics shows that they have a spectrum in c (w) = 1‘2 (Field’s law)

|@
and this corresponds to the fact that the spatial self-correlation is scale invariant
(i.e. C(ar) = aC(r)). Indeed, the inverse Fourier transform is C(r) = o Izd o and

A

therefore, using the change of variable w = 7 we get

zwlxr iAr
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Let ¢(a) be the receptive profile of the considered linear filters, and let (I @) ()
be the result of the filtering of the signal /. The decorrelation means that the aver-
age of the product ((I* @) (a).(I*¢@)(a’)) is 6 (a—a’) (where 6 (x) is the Dirac
distribution). If we consider only Field’s law, then the power spectrum of /* ¢ is
flat and the decorrelation is expressed by the “whitening” of the signal. But even if
this method is suitable to the spectra in |01|2 , it is indeed very bad for the noise be-
cause it amplifies it in the range of high frequencies where it already dominates. It is
necessary therefore to associate the decorrelation to a smoothing of the signal sup-
pressing the noise. That’s the way in which Atick shows that if we want to correctly
decorrelate the signal also when noise is present, we must use receptive profiles in
Laplacian of Gaussian AG of the type of ganglion cells.
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Jean-Pierre Nadal and his colleagues [133] deeply analysed the problem by con-
sidering not only Field’s law, but also, in an explicit way, the importance of multi-
scale edges in natural image statistics. They showed how the minimisation of neural
code redundancy under the constraint of edge detection leads to oriented wavelets.

In a more general way, we can consider large data bases of natural images and try
to analyse them in independent components (ICA) which are neurally implemented.
We look for components (the receptive profiles of the neurons) which are at the
same time statistically independent and “sparse”, where “sparsity” means that, for
a given image, the greatest part of the components present a very weak response,
only a few of them presenting a meaningful response. Sparse representations have
many advantages: they offer a compromise between, on the one hand, representa-
tions in which almost all the neurons of the net are implied in the elaboration of
every stimulus, and, on the other hand, representations in which, for every stimu-
lus, there would be just a neuron which would selectively respond (the so-called
“erandmother” cells); they are composed of basic patterns (the receptive profiles
considered as “atoms”) which are adapted to the considered set of stimuli (in our
case, natural images); they magnify the power of neural nets as associative mem-
ories by eliminating the interferences between the activity patterns elicited by the
different inputs; they make explicit the structure of the stimuli because their com-
ponents are relevant features; they allow the net to economise its energy; they can
easily be learned through Hebb’s learning rules.

The problem to find the optimal sparse representations for a class of stimuli is
difficult. It can be formulated in the following way. Let X C R be a class of stimuli
I, k=1,...,8=#(X), which are images I with P = p? pixels described as vectors
I=(I),___p in the canonic basis of R”. We want to find a “good dictionary” @ of
atoms @; € R”,i=1,...,N, which allows us to “well” decompose the I € ¥ under

the form
i=N
1= Z SiQ; -
i=1

The representation of I € X C R by s = (si),_, ___y is the code of I with respect to
the “dictionary” @ which is a matrix P x N the columns of which are the ¢; € RF.
In the present case, the one of the retina and of V1, we have N > P, i.e. what it
is called an “overcompleteness”. This means that the ¢; generate R” without being
linearly independent and are on the contrary highly redundant. That’s for the same
reason that the codes s can be sparse.

The space X is not a vector sub-space of R” because a linear superposition of
natural images it is not a natural image. It has a complex form and the atoms ¢;
are a way to locally analyse it at numerous points by means of a kind of tangent
structure.

In order to find optimal sparse codes, the basic idea is to minimise an energy of
the form

1 ) i=N
E(Ls) =, |[1-®s|*+2 Y sl

i=1
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where the first term is the square of the euclidean distance between the stimulus /
and its code @s and the second term is the L' norm of the code. The minimisation of
the first term guarantees that the representation @s is a good approximation of 7 and
the minimisation of the second one guarantees that the code is sparse. To precise
this guiding idea leads to a lot of difficult problems. We can refer, for example, to
the articles of Bruno Olshausen, David Field, Karol Gregor, Yann Le Cun, Eeno
Simoncelli [95], [61], [121]. They show how the base functions which one obtains
by similar methods are very close to the receptive profiles of the simple cells of
V1 with their selectivity to orientation, their odd symmetry (¢ (—a) = ¢ (a)) or
even symmetry (¢ (—a) = — ¢ (a)), their feature ON or OFF, and their selectivity to
spatial frequency (the scale). One observes also detectors of end points.

1.4.3 Orientation Hypercolumns, “Internal” Variables, and Fibre
Bundles

Let us return to the functional architecture of the striate area V1. After pioneering
experiments carried out in the late 50s by Vernon Mountcastle on the somatosen-
sory cortex of the cat, the structure of V1 (cortical area 17 of the cat) in orientation
hypercolumns has been a major discovery of David Hubel and Torsten Wiesel in the
early 60s. It won them the Nobel prize in 1981. In the V1 area the “simple” neurons
(as opposed to “complex” and “hypercomplex” cells) are sensitive to orientation
(and also to phase, resolution, spatial frequency, ocular dominance and colour). If
we simplify the situation, we can say that these neurons detect pairs (a,p) of a
retinal position a = (x,y) € M (M is the retinal plane or the visual field, M ~ R?)
and an orientation p at a. Along a penetration orthogonal to the cortical surface,
the retinal position a and the prefered orientation p detected by the neurons remain
approximately constant. This “vertical” redundancy — which implements a popula-
tion coding of the position — defines orientation columns of about 20um. As Gre-
gory DeAngelis demonstrated, the phase variation dominates inside the columns.
Moreover, population coding allows to the system a better resolution than the one
of individual neurons. But, along a penetration parallel to the cortical surface, the
prefered orientation p varies from 0° to 180° in steps of about 10°. This “horizon-
tal” grouping of columns defines an orientation hypercolumn which is a neuronal
micro-module from 200um to Imm wide.

This neuroanatomic structure means that, for every position a € M, there exists a
functional micro-module P, which implements the space P of every possible orien-
tation. Moreover, what neurophysiologists call the retinotopy of the retino-geniculo-
cortical pathway means that the P, vary in a regular way with a. We recognise in this
structure the fibre bundle © : V = M x P — M which projects the Cartesian product
M x P onto its first factor M, through the identification of the hypercolumn P, with
the fibre {a} x P. P can be, according to the case, modelled by the projective line
P! (the circle of angles 6 modulo ), the circle S! (the one of 8 modulo 27) or the
real line R (if we take the slope tan (0)).
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Fig. 1.4 The pinwheels of V1. The isochromatic lines are the iso-orientation lines of V1.
(From [138]).

By the way, this natural geometrical interpretation of the hypercolumns in terms
of fibre bundles corresponds to a description given by Hubel himself in 1988 [67]
with the concept of “engrafted variables”: the base-variables are the variables (x,y)
of retinal position and the cortex “engrafts” above them other secondary variables
such as the orientation. The “engrafted” variables, i.e. the ones which correspond to
the fibres of the fibre bundles, are similar to what physicists call “internal” variables
in field theory.

1.4.4 Pinwheels and in Vivo Optical Imaging

The structuration of V1 in orientation hypercolumns has been well understood only
after the introduction of revolutionary brain imaging techniques by Amiram Grin-
vald and Tobias Bonhoffer in the early 90s. This “in vivo optical imaging based on
activity-dependent intrinsic signals” used the fact that the metabolic activity of corti-
cal layers change their optical properties (differential absorption of oxyhemoglobin
or deoxyhemoglobine whose fluorescence is an index of the local depolarisation of
neurons). They enable to acquire images of the activity of the superficial cortical
layers. Key experiments show how hypercolumns are geometrically organised in
“orientation wheels” called pinwheels: the observed cortical layer is reticulated by
a lattice of singular points (distant about 1200 m in cats and about 600um in pri-
mates) which are the centres of local pinwheels glued together in a global structure.
This pinwheel organisation can be found in numerous species, cat, primate, tupaya
(tree shrew, see [25]), prosimian Bush Baby (see [139]), etc. Figure 1.4 from [138]
represents V1. Orientations p at different positions a are coded by colours and the
isochromatic lines are therefore iso-orientation lines.
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We notice immediately that there exists a sort of characteristic length A of the
lattice. It is possible to measure this approximate periodicity by taking the orien-
tation map, by translating it and calculating the correlation between the two maps.
The first peak of self-correlation gives A. We notice then how the orientations (the
colours) are globally distributed in a homogeneous way. We notice also three classes
of points. (i) Regular points where the orientation field is locally trivial (the iso-
orientation lines are approximatively parallel). (ii) Singular points at the centre of
the pinwheels where all orientations converge: they have a positive or negative “chi-
rality” depending on whether, when turning around them, orientations turn in the
same direction or in the reverse one; they present opposed chiralities when they are
adjacent. (iii) Saddle points at the centre of the domains defined by the lattice, that
is points where the iso-orientation lines bifurcate: two iso-orientation lines can start
from the same singular point and end to two opposed singular points.

We shall not confuse the iso-chromatic lines which are iso-orientation lines with
the integral curves of the orientation field itself. We owe figure 1.5 to Shmuel and
Grinvald. White segments represent the preferred orientations coded by colours. We
added the field lines of the orientation field near two singularities whose chiralities
are opposed. We can see how pinwheels respectively clockwise and counterclock-
wise are associated to the two kind of generic singularities of direction fields in the
plane. This is due to the fact that when a ray of a pinwheel rotates of an angle 6, the
associated orientation rotates of 6 /2. So, two diametrally opposed rays correspond
to orthogonal orientations. If the orientation Yy associated to the ray of angle 0 is
Yo = 0.+ 6/2, the two directions will be the same for yy = o0+ 6/2 = 0, i.e. for
0 = 2q. Since « is defined modulo 7, there’s only one solution, and we get an end
point. On the contrary, if the orientation is Yy = ot — 6 /2, the two directions will be
the same for Wy = ot — /2 = 0, i.e. for 0 = 20¢/3. There are then three solutions,
and we get a triple point.

It is really important to notice how the pinwheel structure is a material structure
of dimension 2 which implements an abstract structure of dimension 3 (3 degrees
of freedom x,y, p). If we compare it to the fibration model 7: V=M x P — M, we
see that the dimensional collapse consists in selecting a finite number of positions
c1,...,cn as singular points, taking the fibres P, and projecting them onto M as
small circles surrounding the c¢;. The fibration 7 will then appear as a limit of such
a structure for an infinite number of pinwheels. We will return later (section 1.4.6)
to this point.

1.4.5 The Pinwheels as Phase Singularities or Dislocations

We see how two a priori different ways of considering pinwheels appear: either as
singularities of an orientation field or as a discretisation of a fibration . The relation
between the two is rather subtle.



28 J. Petitot
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Fig. 1.5 The orientation map and the pinwheels of V1 in a tupaya (tree shrew). We observe
the relation between the pinwheels (colours) and the preferred orientations (white segments).
We represented the field lines (the integral curves) of the orientation field near two singulari-
ties whose chiralities are opposed. (Partially from Shmuel [119]).

1.4.5.1 From the Wolf-Geisel Model to Berry’s Dislocations

Being a phase field, an orientation field can be described by a section €@ (¢
modulo 7) of the fibre bundle M x P! — M. To simplify let’s take M = R>. Fred Wolf
and Theo Geisel proposed to interpret the selectivity to the preferred orientation (in
other terms the width of the tuning curve) as a field amplitude (see [141], [142]
and the synthesis [74]). Under this hypothesis, the orientation field is modelled by
a complex scalar field Z : R*> — C, a = pe'® — r(a) ¢'?'@). The singularities of the
pinwheels, which are points where the phase ¢ (a) is not defined, become then the
zeroes of Z and, as such, they are similar to dislocations of phase fields commonly
encountered in optical structures (and also in liquid crystals). They are in some
sense the dual singularities of caustics because the intensity vanishes instead of
diverging. Of course, the function ¢ (a) can also present (if it is differentiable),
some singularities in the classical sense, i.e. some critical points where the gradient
V¢ = 0. These are generically of three kinds: extrema (maxima or minima) and
saddles. From an empirical point of view, extrema (where, locally, the isochromatic
curves will be concentric circles) seem to be absent while saddles are numerous and
occupy the “centres” of the domains defined by the pinwheels. But, dislocations are
singularities of a different nature.

According to the general “philosophy” enlightened by René Thom (cf. section
1.2.1), in every situation in which we have to analyse fields, singularities play a
structural role which determines and concentrates what is essential in morpholog-
ical information. As it is remarked by Michael Berry in [16] (p.724) for 3 dimen-
sional waves, this philosophy can be applied to phase singularities: “Wave vortex
lines can be regarded as a skeleton, characterizing and supporting the full structure
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of the wave y.” A series of concepts from singularity theory (genericity, codimen-
sion, bifurcation, unfolding, normal form, etc.) seem therefore relevant for studying
pinwheels from a geometrical point of view.

In Cartesian coordinates, the Z (a) field is written Z (a) = X (a) 4 iY (a), where
X and Y are two real functions of the variables (x,y). Since R? ~ C, it is sometimes
convenient to consider the conjugated variables z = x + iy and Z = x — iy and to ex-
press Z as amap Z : C — C which depends on z and Z. We can analyse the geometry
of Z by using classical tools as gradient V, divergence, vorticity, Laplacian A, etc.
Near a point ap € R? taken as origin ag = (0,0), we have up to the first order

1224 X

2(0) =X O #2570+ O+ (Y0155 0435 ©)

i.e. Z(a) ~Z(0)4+a.VoX +ia.VoY where VoX is the value at O of the gradient of
X, VX = (‘?9);, %’;) (idem for Y), and u.v is the scalar product. Thus,

1Z(a)—Z(0)]* = R> = (a.VoX)* + (a.VoY )?

and the level curves R = cst are ellipses. They are circles only if Z (a) can be writ-
ten as a function Z(z) only of z, in other terms if on the one hand x‘?f; + iy ‘g is

: fh g i X _ 9Y e 0X - Y s
proportional to z, which implies %° = Dy and on the other hand if y oy TIX5, 18
proportional to iz, which implies %’; =— ‘g); These fundamental conditions, called

Cauchy-Riemann conditions, express that the gradients VX and VY are orthogonal
and characterise the property of holomorphy of Z.

Since Z = X +iY = re'?, the dislocations Z = 0 are the intersections of the curves
of equation X = 0 and Y = 0. The condition X = 0 corresponds to rcos(¢) =0, i.e.
¢ =7 modrm if r # 0 and Y = 0 corresponds to rsin(¢) =0, i.e. ¢ =0 modr if
r#0.If X =Y = 0, we necessarily have r = 0 because the two conditions on ¢
are incompatible. Generically, the curves X = 0 and Y = 0 intersect transversely at
isolated points. This means that the points which satisfy the two conditions are of
codimension 2 and, as the ambient space R? is of dimension 2, they are isolated
points (in an ambient space of dimension 3, they would be lines).

As we saw in the previous section 1.4.4, it is necessary to distinguish two fields.
The field Z is the field of orientations. As such, it defines a foliation of the plane
R? through its integral curves. In 1.4.4 we saw, with the models of end points and
triple points, the local geometry of these foliations at the singular points. Besides,
we have the field of iso-orientation or isophase lines, called “wavefronts” by anal-
ogy with optics, represented by the isochromatic lines in the pinwheel maps. Let’s
write it W (a) = s (a) ¢*(®) and suppose that we could assign a meaning to the am-
plitude s(a). Unlike the phase ¢ which is only defined modulo 7, the angle ¥ is
defined modulo 27 (if the pinwheels are without distortion, ¥ can be identified with
0). Now, we saw how in these cases we locally have the relation ¢ = o0 £ g, ie.

up to a factor, e’X = ¢*2¢ = (ei"”) . This lets us think that there is a relation of
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proportionality of the type W oc Z> between the two fields. We will return to this
point later.

Let ap be a dislocation of Z taken as the origin ag = (0,0). The topological
charge of this singularity is defined by g = zlﬂ $y,de where §,d¢ symbolises the
integral of the differential 1-form d@, i.e. the variation of ¢, along a little loop y
rotating around ay in the forward direction. Since ay is an isolated singularity, there
exists a Y which surrounds only this singularity, and we can show how the integral
is independent from the choice of such a . Through the Euclidean structure of R?,
the differential 1-form d¢ corresponds to the gradient vector V¢ and, if we interpret
differentials as infinitesimal variations, we have d@ = V¢.da (scalar product) and
fyd o= ny(p.da turns to be what it is classically called the “circulation” of the

gradient field V@ along the loop 7. Then, the topological charge g = 2]71 ny(p.da can
be interpreted as the topological index of the field V. For the field W of isophase
lines Z, the angle y varies as 60 and the index is 1. For the Z field itself, ¢ varies
as ig and the index is i%.

Near a pinwheel, the isophase lines ¢ = cst (the wave-fronts) are the rays of the
pinwheel. Along these fronts d¢ = 0, and therefore V¢.da = 0. This means that
the field V¢ is orthogonal to the rays and that its trajectories are therefore locally
concentric circles centred on the singular point. In general, the trajectories of V¢ are
orthogonal to the fronts. At a dislocation point the gradient V¢ is not defined and
diverges. In order to regularise this kind of situation, Berry and Dennis [13], [47]
consider, as physicists usually do, what is called the current ¢ of the field, i.e. the
vector (which points in the direction of the gradient V@ when it is # 0) defined
by # =r’V¢. We notice how # = XVY —YVX and therefore how ¢ is well
defined also at the singular points of the phase ¢. In terms of complex conjugated
values Z and Z the current ¢ is written _# = Im (ZVZ) because

ZVZ = (X —iY) (VX +iVY) = XVX +YVY 4+i(XVY —YVX) .

Another vector (in fact a pseudovector) considered by physicists is the vorticity 2
of the current _# . By definition, Q2 = ;V x ¥ =VX x VY, where x represents the
exterior product of two vectors of R? and consists in taking on an axis orthogonal
to R? a unitary vector e3 so that the frame {ex,ey,e3} is direct and to put on it

X JIX
the value w = det ( g; g)y, ) of the determinant of the Jacobian of Z considered
dx dy
as a map from R? into R?. The good interpretation of Q = we3 is to make of it a
differential 2-form. We will remark that when 2 = 0, either VX =0 or VY =0, or
the real gradients VX and VY share the same orientation. This condition, which tells
that VX and VY are parallel, is opposed to the Cauchy-Riemann conditions, which
tell that VX and VY are orthogonal. We will notice also how, in terms of complex
conjugate values Z and Z, the vorticity £ can be written Q = ) Im (VZ x VZ).

As we have seen before, to first order in the neighbourhood of a point a¢ taken
as origin 0, the module |Z| of Z is given by |Z(a)—Z(0)]* = R* = (a.VoX)* +
(a.VoY )2. Near a dislocation taken as the origin, the current ¢ is given up to
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the first order by ¢ (x,y) ~ €y X a = @y (—y,x). This enables to evaluate | 7| =
r?|Vo| ~ |o| p near the dislocations where ® # 0. But locally ¢ is constant on the
rays of such a singular point, so V¢ is orthogonal to the rays and, since in polar
coordinates Vo = gﬁ ep+ :) g‘g eg (Where e, is the unitary vector of the ray at a and

1d¢
p do

mula 72 ’ g‘g ’ = p?|w| which tells that, while 7 is (locally) constant on the ellipses

eg is the unitary vector orthogonal to e,), we have V¢ ~ eg. Whence the for-

2= (a.VX)* + (a.VY)%, 2 ’ g‘g ’ is on its turn constant on the circles p = cst. As
it has been noticed by Mark Richard Dennis in his thesis supervised by Michael
Berry [47] (p.41), it is a sort of “Kepler law” for 7> ’ g‘g ’ which works as an “angular

99,

momentum”: “equal area vectors of the core anisotropy ellipse [> = cst] are swept
out in equal intervals of phase”. We notice how the eccentricity of the ellipses mea-
sures the anisotropy of the vorticity. As we saw, isotropy is absent (the ellipses are
not circles) unless the Cauchy-Riemann conditions are satisfied.

1.4.5.2 The Helmholtz Equation

When presenting some experimental data on the pinwheels, we saw how they are not
intrinsic singularities and appear only when we superimpose the different cortical
maps of responses to different orientations. We saw also that there exists a charac-
teristic mesh of the pinwheel lattice. These two empirical facts suggest to consider
the Z field as a superposition of simpler fields. Now, every field can be considered
through its Fourier transform as a superposition of plane waves Ae’S*?, where A is a
complex amplitude Ee’ and k = (K, ky) is a wave vector of wave number k = |k|.
k is analogous to an impulsion and is associated to the wavelength A = zlf . When

they evolve during time, plane waves are of the form Ae/(*4~®)  where @ is an
angular frequency (or pulsation) associated to the frequency v = ;2 and the period
T=1=7 ‘

It is easy to verify how the plane waves U = Ae'*? satisfy Helmholtz’s equation
AU +k*U = 0. And since this PDE is linear, every linear superposition of solutions
with different x but same wave number £ is a solution too. That’s why it is natural
to suppose that the field Z satisfies Helmholtz’s equation for a certain characteristic
wavenumber k: AZ + k*Z = 0. Figure 1.6, from a work of Michael Berry [13] on
optical currents, shows a superposition of 10 plane waves sharing the same k. We
see at what point this phase field is similar to our orientation fields with pinwheels,
iso-orientation lines, orthogonal gradient lines and saddle points.

Let’s consider now under this hypothesis the divergence of the current ¢ which
is given by

div( #)=r*Ap+2rVr.Ve

where V.V is the scalar product and where the Laplacian operator A is by defi-
nition the divergence of the gradient. The Laplacian AZ of Z = re'? is given by the
formula
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AZ_a2z+1az+ 1 9%z
~dp? pdp p?oe?

=€ (Ar— r|\Vol* +i(rae + 2Vr.V(p))
and therefore if AZ +k*Z = 0 we necessarily have the two equations

Ar+r(k2—|V(p|2> —0
rAe+2VrVo =0

The second equation expresses that the current divergence vanishes: div(_#) =0. It
is a law of conservation. It implies that ¢ can be written as e3 x VS = (f ‘35, gi )

with

1/0 7, 0 1/0d [(dS d (dS 1
0= Sy _9S%) _ + = _AS.
2\ odx dy 2\ dx \ ox dy \ dy 2
As much as the first equation is concerned, we met it in optics for caustics in s;:ction
1.2.4 under a variant where k is integrated to the phase, i.e. where Z = re’*®. In

this case, it is written Ar = k*r (|V(p\2 — 1). When k — oo, which corresponds to

the approximation of geometrical optics, it becomes the eikonal equation \V(p|2 =1
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Fig. 1.6 Superposition of 10 plane waves with the same wave number k. The wave vectors K
are given in the upper-left square. (From Berry [13]).
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of section 1.2.4, which expresses that the “light rays” (i.e. the trajectories of the
gradient field V@) turn at a constant speed around the singularity, while the wave-
fronts ¢ = cst are the rays coming from the singularity (we must be careful here
with the lexical confusion between the two meanings of the term “ray”: the rays
of the dislocation singularity are orthogonal to the trajectories analogous to “light
rays”).

1.4.5.3 Mesogeometry and Microphysics

The optical analogy suggested by the processing of orientation maps as phase fields
and of pinwheels as dislocations of those fields is useful also to better understand-
ing the relations between levels. In optics, there are three levels: a geometric level,
a wave level, and a quantum level. In the analogy, the geometric level corresponds
to the mesogeometric level of contact, symplectic, and sub-Riemannian structures
which we will develop later in this survey. The wave level corresponds to the analy-
sis of pinwheels as singularities of phase fields that we just performed. However, as
Michael Berry noticed [13], wave optics is an average of microphysical interactions
at the quantum level. In particular, the optical current is an “energy flow” whose
trajectories are level lines of S, in a way a “momentum density” which yields the
classic force on a little particle placed at a. As much as the phase gradient Vo, it
gives the momentum induced on the particle by the impacts of individual photons.
And, as the probability of these impacts is 12, the average momentum is F = V.

In this context, it could be relevant to make the hypothesis that there exists a
micro-physics of elementary events, in relation to which the geometry of orientation
maps is a sort of morphological skeleton. Spikes could then play the role of “little
particles”.

1.4.5.4 Statistics of Pinwheels and Gaussian Fields

Pinwheel maps as phase fields can present great diversity. It is therefore interest-
ing to study them from a statistical point of view starting from certain simplifying
hypotheses. It is the purpose of converging studies by Wolf and Geisel (cf. [141]
and [142]), Berry and Dennis [14], [15], [47], Daniel Bennequin’s workgroup, and
also of recent works by Citti, Sarti and their PhD student Davide Barbieri [10].

In his thesis [47], Mark Dennis gives precise results for the superposition of
plane waves Z = ¥, Ae™¢ with complex amplitude A, = Exe'¥*, in particular
in the isotropic case where the E have a distribution which depends only on the
wave number k = |k| of the wave vectors and where the spatial phases ¢y are
random angular variables uniformly distributed on [0, 7). If the sampling of the
K in Z is sufficiently fine grained, it is possible to consider that the statistics of
the components X and Y of Z and of their partial derivatives are Gaussian distri-
butions, which makes the computations quite accessible. In particular, one defines
the energy spectrum & (k) by EZKE,% =[& (k)?dx and the radial spatial spec-

7 2 . . . . . . .
trum % (k) by ;ZKE,% =/ I;(’f,z dx. An ulterior simplification consists in consid-
ering the monochromatic waves sharing the same k, K varying then on the circle of



34 J. Petitot

radius k. In this case, % (1) becomes the Dirac distribution 8 (¢ — k). This hypothe-
sis corresponds to the fact that Z is a solution to the Helmholtz equation.

It is then possible to compute the average density d of phase dislocations. As
these are defined by the conditions X =0, ¥ = 0, it will be given by the average of
6 (X) 6 (Y) with respect to the measure dXdY . With respect to the measure dxdy we
must involve the Jacobian of Z (x,y) = X (x,y) +i¥ (x,y), i.e.

JdX Y JXdY
dx dy dy dx

0| = [VX AVX| = ’

X JY 0X dY
9x dy Ay ox > As X, Y and

their partial derivatives are independent random Gaussian variables, we know how
to compute them and we find:

So we have to calculate the average <3 (X)8(Y)

K oo
d=, withK= / K2 (k) dk = (k) , for the measure 77 (k) dk .
o %

But the wave number k is proportional to the inverse of a wavelength A = zlf S0

2 2 . . I .
A? = 415 and ff” = 7. Therefore, the density d of singularities is the average

T} . This term in 7z/A? has been found by Fred Wolf and Theo Geisel too.
A" %

Generally speaking, we can consider that the orientation maps are random sec-
tions of the fibre bundle R? x P! — R? which satisfy a set of constraints that explain
their pinwheel geometrical structure. At every point a in R?, we therefore consider
a random variable %, and this defines a random field 2 whose orientation maps
Z (a) are samples.

In order to simplify, one supposes in general that the field 2 is Gaussian, i.e.
that the %, are Gaussians of average m, = E{%,} (E = expectation) and variance

ol=E { (%, — ma)z} and that all the joint distributions ¥ ; o; 2, on a finite number

of points @; are Gaussian too. Moreover, it is natural to suppose that the law of the
%, is SE (2)-invariant. Translational invariance is called stationarity and rotational
invariance is called isotropy. For an introduction to Gaussian random fields, see for
example [1].

Random variables %, for different a can’t be decorrelated (i.e. indepen-
dent since for Gaussian random variables independence and decorrelation are
equivalent) because otherwise there would only be Gaussian noise and no ge-
ometrical structures. By the way, the definition of a continuum of independent
Gaussian random variables raises sensible problems. The field Z is characterized
by the correlation function C(a,b) = E{(Z, —ma) (2, —my)}. If we divide by
e
arity implies that C (a,b) = C (a — b) is a function of a — b, and isotropy implies that
C(a,b)=C(a—Db)=C(|la—b||) =C(r) is a function of r = ||a — b||. Averages are
all equal, m, = m, variances too, 0'112 =0= C(0),and I" (r) = gég;

Correlation functions are very particular because they are symmetrical and posi-
tive definite.

variances, we obtain the normalized correlation function I'" (a,b) = . Station-
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(1) In the stationarity case, a theorem by Bochner says that they have a spectral
representation which is a generalised Fourier transform. This means that we have
I (a) = [g2€/“¥)1dF (x) where F is a bounded positive measure on the space of
wave vectors k dual of positions a. We have F (R?) =T"(0) = 1.

(i) If the measure F is regular with respect to the Lebesgue measure dx,
then it has a spectral density f(x) and Bochner’s theorem is reduced to the
Fourier transform I (a) = [g2 %) f (k)dx with the inverse transform f (k) =
(27]1)2 Jg2 e @I (a)da.

(iii) If isotropy is present too, then I' (r) = [y"Jo (kr)kf (k)dk, where Jy is
Bessel’s function.

(iv) If we consider also some solutions of Helmholtz’s equations of wave number
ko, then f (k) is proportional to 8 (k — ko) and I" (r) is proportional to Jo (kr) ko.

In this context, the formula which gives us the statistics of the dislocations of
the fields Z (a) which realize the Gaussian random field 2 is a particular case of
a fundamental formula called Rice-Kac formula (see [9]). We want to calculate the
average number d = E{#{a € T :Z(a) =0}} (# means the cardinal of a set) of
zeroes of Z in a unit square 7. Let Ny be this number. Then we have d = E{Nr}.
Rice’s formula says that

d= [ E{ldet(ac(2)|: % =0} pz, (0)da
T

where Jac is the Jacobian and p #, the density of 2. The computations effectuated
by Mark Dennis [47] rest on a calculus of Gaussian integrals. Let .2, and %, be the
components of 2, and _#Z, = |det(Jac (Z;))|. One can show how, for a given g, the

: . o o oW oW .
six random variables .2, %, ( PN )a, < oy )a, ( o )a, ( 9y )% are independent

Gaussian variables, each of them with a law of the form \/217t

must compute an integral of the form

Jrmamrmn(2)+(3)(2) (3)

where p is the product of the laws. The two first variables 2, and %, are of variance

2
1, and this introduces a factor ( \/127:) = 21” in the integral and the four other vari-

_ ¢
o€ 202 | As we saw, we

4 2
ables are of variance 62 = ’2( , and this introduces a factor ( \/] ) = < ! 2) =
2no 2no
(7”]()2. The condition Z; = 0 is translated by the § (X)§ (Y) in the integral, but

2
Jé(X) ¢~"2 =1 and the same about Y. It remains therefore to calculate

1 1 _ VX |2+ Vx| 0X 0X Y Y
2ﬂ(nK)2/Je ’ d(3X)d(3y)d(9X)(3y>'

If we shift to polar coordinates, writing VX = Rye'¥% and VY = Rye'V", the integral
becomes
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2

Rx=c0 rRy=co ryx=21 Ry +R}
/ / / / |§1n (yy — l[lx)‘ K dRxdRydyxdvyy .
nK Ry

But the integral on the sine function results 87 and the ones on Ry and Ry give each
3
one iK 2 \/x. From these we finally have:

1 1 R K
= o (ax 168 T 4

These statistical computations, which are only a particular simple example of the
links between statistics and geometry, are really interesting on a theoretical (and
not only numerical) plane for the following reason. In their 2005 reference book
Random Fields and Geometry [2], Robert Adler and Jonathan Taylor thoroughly
studied the generalisations of the Rice-Kac formula for random fields .%#, defined
on a base space M and with values in R¥. Let’s take for example k = 1. One of
the main problems, extremely difficult, is to compute P {sup,¢,; %, > u} for large
u. This probability of “excursion” in the interval [u,e) is well approximated by
E{x ( )} where, if D is a domain of R¥, Ap := {a € M : .Z, € D} and where ¥
is the Euler Poincaré characteristic. Under the hypothesis of Gaussian laws, station-
arity, isotropy and regularity of the correlation functions C, one arrives to (complex)
explicit formulas for the E{y (Ap)}. What is interesting is that proving these formu-
las involves many fundamental tools of the “philosophy” of Morse-Whitney-Thom
which we presented in our first section 1.2.1. First, in order to process enough cases,
we suppose that M is a manifold with boundary endowed with a “good” stratification
(which satisfies what are called the Whitney’s A and B conditions) M = Uk_N oM
(where k is the dimension of the strata which compose d,M) with dyM = M (the
topological interior of M), dyM = {vertices of M}. We suppose that the properties
of regularity of C imply that the samples F of the field . are Morse’s functions
on M (we use the generalization of Morse’s theory to stratified manifolds owed to
MacPherson). The field .# defines a natural metric with distance d# (a,b) on the

base space M through the formula d% (a,b) = {||ﬁza — Z|| } So we can use

also the resources of Riemannian geometry: curvature tensor, Levi-Civita connec-
tion, covariant derivation, Lipschitz-Killing curvatures, etc.

For k = 1, we apply then to A, .. the formulas which connect Morse’s theory to
Euler-Poincaré characteristic. If the sample F of .%# is a Morse function and if u is
a regular value (i.e. not critical) of F, A, .. is a sub-manifold with boundary of M

which is “well” stratified by the intersection strata “i[u,w) NIM and 9A|, ..y NI M.
F' is not necessarily a Morse function on A|, . but we can approximate it by a

Morse function F on A[,) Whose critical points correspond to the critical points of
F above u.

The Rice-Kac formula corresponds to the case of a rectangle M = T of R" and to
an .# with values in RV. Let J be the Jacobian of a sample F (J is a matrix N X N).
Let N, be the number of points of T for which F (a) = u € R". The formula says
that
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E{N,} = /TE{|det(J)\ LF (@) = u) pa(u)d .

Inourcase N=2,.% = 2, u=0and T is a unit square.

1.4.6 The Fibre Bundle V = R?> x P! as a Blowing Up Model for
Pinwheels

The similarity between pinwheels and phase dislocations is particularly remarkable.
But we have to underline two points:

1. the model presupposes that selectivity to orientation vanishes at the dislocation
points (i.e. at the centres of the pinwheels);

2. it loses any meaning at the limit case of an infinite number of pinwheels because
it gives a field Z = 0.

It is therefore necessary to investigate more precisely the neighbourhood of sin-
gularities. There exist key results, e.g., by Pedro Maldonado, Imke Godecke, Charles
Gray and Tobias Bonhoffer [79] or by David McLaughlin Robert Shapley and
Michael Shelley [85], [118].

Now, many of these works, in particular the ones using in vivo imaging methods
based upon two-photon confocal microscopy (methods which enable one to reach
the resolution of individual neurons, see Ohki et al. [94]), show how orientation
selectivity is still good at the singular points of pinwheels. This is why we proposed
to reconsider the pinwheels as blowups. A blowup is constituted by a singular point
a, a fibre P, ~ P! and a helicoidal local section, above a small neighbourhood U
of a, of the fibre bundle 7 : U x P! — U. The section is constructed by taking as
orientation above any point b # a of U the orientation of the segment ab.

The idea is therefore to lift up the orientation field from R? to V = R? x P! by
blowing up the dislocations ¢; and by lifting up the field lines as curves in V: if a
field line 7 starts from a source c¢; with an angle 6; to end at the sink ¢, with the
angle 6,, v is lifted to a curve I' of V which starts from the height 0, in the fibre
above ¢ and arriving at height 6, in the fibre above c;. Only the fibres above the c;
are involved and everything is as if we had blew up the ¢; in parallel. The tangent
structures to this multi-blowing-up in the infinitesimal neighbourhoods of the fibres
P.; = A; — ¢; are all isomorphic to the local model.

In order to pass to the limit when the mesh of the lattice L of the ¢; tends to 0, a
method is to use a “non-standard” model’ (R*)2 of R? where, around each standard
point a = (x,y), there is a “monad” of infinitesimals u(a) = {(x+dx,y+dy)}. In
the blowup, the fibre A* above a standard point is then a (IP’1 ) “and Z}‘; anon-standard
real number p* = p +dp, equivalent to p € P!. To first order, field lines boil down
to infinitesimal segments from a to a + da. The standard part of the non-standard
fibration V* = (R2) " x (IP’I)* gives not only the fibre bundle 77 : V = R? x P! — R?

5 In a non-standard universe of set-theory, if X is a set, we write X* for its non-standard
enlargement
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but also the infinitesimal structure defined on it by the differential 1-form @ = dy —
pdx, i.e. the contact structure, as we will see in section 1.4.9.

The advantage of a non-standard model is to make intuitive the dimensional
collapse which characterises the pinwheel structure. We take the fibre bundle 7 :
R? x P! — R?, we “compactify” the fibres® until they become infinitesimal and we
project them into the monads (t(a). This concept of blowing up where the fibre A
is made infinitesimal and projected on the base plane has been introduced for rea-
sons of high pure mathematics of a different order (singularities of analytical func-
tions and Gevrey classes) by Pierre Deligne [46] in 1986 in his correspondence with
Bernard Malgrange and Jean-Pierre Ramis. Pierre Deligne introduced the concept
of a “fat point”, which consists in substituting a point a € C, let’s say a = 0, with
a little disc D with boundary A, and in considering the space C = (C—{0})UD
(union of C—{0} with D) endowed with the topology of the blowing up of 0 in
C along (C—{0}) U A. In his last text on Gevrey’s classes (edited by Jean-Pierre
Ramis), Jean Martinet [83] used this construction with discs D which are infinitesi-
mal in the sense of non-standard analysis. We could say that, at the continuous limit,
a lattice of pinwheels becomes a continuum of “fat” points, the standard part of this
structure returning the fibre bundle 7 : V = R? x P! — R?.

1.4.7 Independent “Engrafted” Variables and the Transversality
Principle

In the previous section, we focused on a single “engrafted” variable, the orientation
one, but other “engrafted” variables exist, for example spatial frequency (the size
of the receptive profiles, i.e. the scale or the resolution) or the ocular dominance
(the correlation between a simple neuron and the ipsilateral or contralateral eye).
All these “internal” variables are implemented in 2- dimensional cortical layers. In
the orientation case, an abstract structure of dimension 3 collapsed in dimension
2; now we are concerned with an abstract structure of dimension 5. This drastic
dimensional collapse obviously raises the question on how to know how to represent
in dimension 2 the independence of the “internal” variables. It is a central problem,
emphasised by specialists as for example Nicholas Swindale [126].

Experimental data, e.g. the ones of Hiibener et al. [68], show how the boundaries
of the ocular dominance domains (ODD) are strongly transversal, and often quasi-
orthogonal, to iso-orientation lines (see figure 1.7). It is so also for the boundaries
of the frequency domains. Consequently, it seems that the solution found by the bi-
ological evolution has been to maximise a condition of transversality. Evidently, if
more than 2 internal variables exist, then transversality can’t be that strong every-
where; nevertheless we can have an optimisation of two antagonist constraints of
transversality. This seems really to be the case.

Hongbo Yu et al. [140] analysed the relation between the three maps of orienta-
tion, ocular dominance, and spatial frequency, by focusing on the way in which a
strong transversality codes the independence of the associated continuous variables.

© Just as in physics, in Kaluza-Klein models of field theory.
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Fig. 1.7 The relations between pinwheels and ocular dominance domains. Many iso-
orientation lines cross the boundaries of the ODD quite orthogonally. (From Hiibener et
al. [68]).

They considered the gradients of the variables and first showed how they are maxi-
mal in disjoint zones and how transversality is maximal when the two gradients are
jointly sufficiently strong. As they say, (p. 277), “two features are mapped orthog-
onally in their high-gradient overlap regions”. In figure 1.8, we see the field lines
of the orientation field (which are the level lines of the “orientation” variable) and
the level lines of the ODD. The centres of the pinwheels are the points where the
orientation gradient is maximal and the boundaries of the ODD are the level lines
where the gradient of ocular dominance is maximal. These singularities avoid each
other according to many experiments which show how the centres of the pinwheels
are placed on the symmetry axes of the ODD. In the grey regions the two gradients
are jointly high. We find that in these regions transversality is also very high, almost
an orthogonality. These two constraints of avoidance and of transversality express
the independence.

It is particularly remarkable to see how the structural principle of transversality, to
which René Thom gave so much importance, could be used by biological evolution
for functional purposes.

1.4.8 Horizontal Connections and Association Field

Hypercolumns correspond to the “vertical” retino-geniculo-cortical connectivity.
One of the great experimental findings of the 90s were the lateral cortico-cortical
“horizontal” connections which are internal to cortical layers, long-ranged (up to
6-8mm), excitatory, slow (about 0,2m /s) and distributed in a very anisotropic and
“patchy” way. This second set of connections is particularly important for neuro-
geometry, because it implements the functional architecture which enables contour
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Fig. 1.8 The iso-orientation lines and the level lines of the ODDs. In the grey zones the
two gradients are jointly high. We notice how transversality is then very strong. (From Yu et
al. [140]).

integration. The fibre bundle structure 7 : M x P — M is not sufficient to this pur-
pose because the visual system needs also to compare orientations above different
points a and b of M (and so fibres P, and P,). It is this process, which geometers
call parallel transport since Elie Cartan, which is neurally implemented through the
lateral “horizontal” connections. Indeed, experimental data show how these connec-
tions link neurons with similar preferred orientations in distant hypercolumns.
Figure 1.9, from Bosking et al. [25], shows how biocytine locally injected in a
zone of about 100um of the layer 2/3 of V1 of a tupaya (tree shrew), diffuses along
horizontal connections in a selective, “patchy”’anisotropic way. Short-ranged dif-
fusion is isotropic and corresponds to intra-hypercolumnar inhibitory connections.
On the contrary, long-ranged diffusion is highly anisotropic, corresponding to ex-
citatory inter-hypercolumnar connections and is restricted to domains sharing the
same orientation as the injection site. We notice also how the marked synaptic but-
tons cluster along a great diagonal top-left —bottom-right. The interpretation of this
striking phenomenon is that “horizontal” connections preferentially link not only
contact elements (a, p) and (b,q) with p and g approximately parallel, but above all
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Fig. 1.9 Diffusion of biocytine along the horizontal connections of the 2/3 layer of V1 in a
tree shrew (tupaya). The injection site is marked by white dots in the upper-left corner. The
synaptic buttons reached by diffusion are marked in black. The distribution is anisotropic and
“patchy”, clustering in domains of the same orientation as the injection site, and globally
concentrated along the diagonal top-left — bottom-right. (From Bosking et al. [25]).

approximately coaxial elements where the common orientation p is the orientation
of the axis ab.

This major result has been confirmed on a psychophysical plane by David Field,
Anthony Hayes and Robert Hess’ works on perception of the orientation of seg-
ments, in their 1993 article Field et al. [S0]. If we consider a set of randomly
distributed little segments, perception does not identify any global structure in
them. However, if a curve y with a weak curvature, composed of aligned segments
vi = (ai, pi) is embedded in a background of other randomly-oriented distractors,
subjects perceive very well global alignment through a phenomenon of pop-out (of
perceptual saliency). As the authors explain, it is a low-level integration: there exist
local neurophysiological binding rules which let a global perceptual organization
emerge.

The measure of the variations of the detection rate in function of the spatial
positions and relative orientations of elements v; = (a;, p;) enabled Field, Hayes
and Hess to conclude that the tendency of the elements to be perceived as aligned
along a curve comes from the existence of a specific connectivity which they called
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Fig. 1.10 Schema of the association field. Two elements (ay, p1) and (az, pp) are connected
(thick lines) if it is possible to interpolate between the positions a; and a, using a curve y
with low curvature, tangent to p| at a; and to p; at a,. Otherwise the two elements cannot be
connected (thin lines).

association field. This connectivity is defined by joint conditions on positions and
orientations (see figure 1.10).

The psychophysical reality of the association field has been confirmed by other
experiments, in particular the ones by Jean Lorenceau and Yves Frégnac which used
the method of the apparent speed of fast sequences of oriented segments (“speedup
illusion”). One presents to the subject a series of segments moving along a verti-
cal straight line with a certain speed, where these segments can be oriented in the
direction of the motion (vertical colinearity) or in the orthogonal one (horizontal
parallelism). One finds that the apparent speed is over-estimated in the colinearity
case and under-estimated in the parallelism case. It seems that over-estimation is an
effect of the association field and results from the propagation of activity along the
horizontal lateral connections. Besides, in the colinearity case, the increase of the
apparent speed measured through these psychophysical methods turns to be essen-
tially comparable (about 0.2 m/s) to the propagation speed in the horizontal cortico-
cortical connections measured by electrophysiological means. The association field
seems then to be an effect of the functional architecture.

In arecent article [97], J. Lorenceau and his colleagues confirmed through MEG
(magnetoencephalography) this speeding up of vertical apparent motion. The im-
agery data show how along the horizontal cortico-cortical lateral connections there
exists a wave propagation and more precisely a spike train alignment mechanism
“that synchronises the neuronal activity tied to a figure contour”. Co-alignment
shortens the response latency and induces a phase advance along contours. This
seems to explain the pop-out and perceptual saliency phenomenon observed by psy-
chophysical means.

1.4.9 The Contact Structure

1.4.9.1 Legendrian Lifts and the Integrability Condition

The experimental results provided by the new imaging techniques had an utmost
importance for neurogeometry. Firstly, on the plane of the history of geometry, they
show from what neuronal processes, inherited from a vast phylogeny, can emerge
the primitive geometric form of a line. They allow to measure the abyss which
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separates the neuronal materiality from the geometrical ideality. A line is obtained
through the integration of oriented segments v; = (a;, p;) (i.e. contact elements, see
below) whose orientations p; are tangent to a curve interpolating the positions a;.
This means that, in V1, a line is represented as the envelope of its tangents and not
as a set of points. In some sense, neural darwinism invented what in classical ge-
ometry is called “projective duality”. Here we reach the origin of geometry. Then,
as far as functional architecture is concerned, these results show also that V1 is
mainly dedicated to the extraction of edges through integration. Finally they allow
understanding of how V1 can “calculate” geometry.

The last point is of a particular importance, and it has been well explained by Jan
Koenderink [77]. With the firing rates of spikes along their axons, neurons can only
code numerical values of features localised at their receptive field. As Koenderink
says, they are “point processors”. Retinotopic fields of neurons activated in paral-
lel can only calculate fields of numerical values, that is functions f (a). Thus, how
can they perform computations of differential geometry which impose to compute
derivatives and therefore limits? “Differential calculus” must come from very spe-
cific functional architectures which are structured in such a way that propagation of
activity along their connections is equivalent to a differential calculus. But this is
possible only if we add supplementary variables as the orientation p, and a func-
tional architecture forcing the interpretation of p as a tangent orientation. This is
why the subtle notions of jet and of contact structure must be involved in a natural
way imposed by experience. In his 1989 article “The visual cortex is a contact bun-
dle” [64] William Hoffman had already explicitly formulated the idea that contours
lift the discontinuities of the retinal stimulus into a retinotopic contact fibre bundle
implemented in the cortical hypercolumns.

To explain all these concepts, let us begin with the model 7 : J' (R,R) = V; =
R? x R — R? with M = R?, P = R the line orientations 6 measured by tan (0),
and J' (R,R) the fibre bundle of 1-jets of smooth curves in R?, which is defined in
the following way. Consider in R? a smooth curve y which is the graph {x, f(x)}
of a real function f on R. The first order jet of f at x, j' f(x), is characterized by
3 slots: the coordinate x, the value y = f(x) of the function f at x, and the value
p = f'(x) of the first derivative of f at x. So, a 1-jet is nothing else than a triple
v = (a = (x,y),p), what geometers call a contact element. Conversely, to every
contact element v = (a, p), one can associate the set of smooth functions f whose
graph is tangent to v at a.

One can give a more geometric version of the fibration 7;. Consider at every point
a of M, not the tangent plane T, M, but the set C,M of its lines through the origin 0.
C,M is isomorphic to the projective space P! The total space CM = R? x P! gluing
these fibres is called the contact bundle of M. We will denote it by Vp. Vp is the
compactification of the space of 1-jets J! (R,R) = V, and its fibre P! corresponds
to the fibre R of V; via the stereographic projection P! — {5} — R, 6 + tan(6).

Now, let y be a parametrised smooth curve a(s) = (x(s),y(s)) in the base plane
IR? (a contour) with x'(s) # 0. It can be lifted to V using the 1-jet map j'y(a(s)) of y
that associates to a(s) = (x(s),y(s)) the contact element (a(s), pa(S)) where p () =

i : 8 is the slope of the tangent to v at a(s). If there are vertical tangents we have to
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use the compactification Vp of V. So I' =y =v (s) = (a(s), p(s)) = (a(s), pa(s) (s))-
This lift I' = ¥ — called the Legendrian lift of y — represents ¥ as the envelope of
its tangents. So, to every smooth curve y in R? (without any vertical tangent) is
associated a skew curve I in V; or Vp. But the converse is of course completely
false. If I = v(s) = (a(s),p(s)) = (x(s),y(s),p(s)) is a skew curve in V; or Vp,
the projection a(s) = (x(s),y(s)) of I' is a curve y in R?. But I" is the Legendrian
lift y of y if and only if p(s) = p,(s) (s). In other words, if I is locally defined by
equations y = f(x), p = g(x), there exists a curve y in R? such that I" = ¥ if and only
if g(x) = f'(x), that is if and only if p = y'. This condition is called an integrability
condition. It is the geometric interpretation of the functional architecture of V1 and
of the association field.

The integrability condition can be formulated in a more interesting way. Let
t = (a,p;o, ) = (x,y,p;&,M, ) be tangent vectors to V; at v = (a,p) = (x,y,p).
Along y (we suppose x is the independent variable) t = (x,y, p;1,y’, p’) and the
integrability condition p =y’ means that we have in fact 1 = (x,y,p;1,p,p’). It
is straightforward to verify that this condition is equivalent to the fact that ¢ is
in the kernel of the differential 1-form w; = dy — pdx, ®w; = 0 meaning simply
that p = Z;‘; . Indeed, to compute the value of a 1-form @ on a tangent vector
t=(&,n,m) at (x,y,p), one applies the rules dx(r) = &, dy(t) = n, dp(t) = 7.
If @(r) = Y @;t; (where t; and @; are the components of ¢ and @ with respect
to the bases of TV, and T*V; associated to the coordinates (x,y,p)), one gets
w;(t)=-p1+1.p+0.p = —p+p=0since @y = —pdx+ 1.dy+ 0.dp and dx
(resp. dy, dp) applied to (1, p, p’) selects the first (resp. second, third) component 1
(resp. p, p'). It must be emphasised that if p =y’ the “vertical” component 7 = p’ of
the tangent vector ¢ in the direction of the p-axis is the curvature of the projection y
at a. Indeed, p =y implies p’ = y" and therefore & = p’ = y".

The 1-form @y is called the contact form and its kernel is the field .2 of planes
K, — called the contact planes — with equation —p& + 1 = 0. The tangent vectors
X = gx+pgy =&=1n=p,r=0)and X, = aap =(&E=0,n=0,r=1)are
evident generators. Now we can express purely geometrically the integrability con-
dition: a curve I' in V; is the Legendrian lift ¥ of its projection v if and only if it
is everywhere tangent to the field .Z of contact planes, i.e. if and only if it is an
integral curve of .

1.4.9.2 The Contact Structure as a Cartan Connexion

The contact structure has several interesting properties. First, if we don’t consider
any more the projection 7ty : V; = R? x R — R? on the plane (x,y) but the projection
7, : V; =R? x R — R? on the plane (x, p), we can show how the 1-form @, defines
a connection in the sense of Elie Cartan, the contact plane K, becoming what are
called the “horizontal” planes. This representation deepens the projective duality
which we already mentioned. Instead of taking as base plane the (x,y) plane and
as fibre the axis of the tangents p calculated through the derivation p = ZS: , we take
as base plane the (x, p) plane and as fibre the y axis, the curves y being now given as
functions p = g(x), i.e. as envelopes of their tangents and y being calculated through
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the integration y = [y'dx = [ pdx. The curvature dw; of the connection 1-form @y,
has to be a symplectic form on the new base plane. It is evident, since dw; = dxAdp
is the standard symplectic form on the (x, p) plane.

1.4.9.3 The Non Integrability of the Contact Structure

The contact structure %" is the field of planes K, C T,V defined by the equations
N = p& parametrised by p. As the Legendrian lifts are its integral curves, there
exists therefore a lot of 1-dimensional integrals. But, nevertheless, there exist no
2-dimensional integrals, no surfaces S of V; which are tangent to K,, at every point
v €S, i.e. such that 7,,S = K,. This is due to the fact that the field K, spins too rapidly
with p to be integrable: K, is the “vertical” plane above the “horizontal” line of slope
p and, when p varies along the fibre R, above a, it rotates with p.

More precisely, the non integrability of .#~ — called non holonomy — results from
the violation of the Frobenius integrability condition saying that a 1-form @ admits
integral surfaces if and only if @ Ad@ = 0 (that is do(¢,t') = 0 for all tangent
vectors 7 and ' such that @ (t) = @ (t') = 0). Now, for @; = dy — pdx one gets

d
=—dpANdx=dxNdp

__(9p
dcoj<axdx/\dx+ 9

apdy/\dx+ apdp/\dx) +d*y — pd*x
y p

and therefore
oy Ndwy = (—pdx+dy)NdxNdp=dyNdxNdp=—dxNdyNdp .

But this 3-form is a volume form of V; and vanishes nowhere. By the way, for the
basis X| = gx —&—pgy =(1,p,0), Xp = aap = (0,0, 1) of K, one has [X|,X;] = —X3 =

_gy = (0’_1,0) andX3 = (0’1’0) ¢Kv since (D](X?,) -1 750

1.4.9.4 Scale and Characteristic Vectors

It must be emphasised that the definition of the contact structure using the 1-form wy
contains more information than the definition using its kernel, i.e. the distribution
 of contact planes K,,. Indeed, the 1-forms @y and @, (& # 0 € R) have the same
kernel and define the same distribution. The supplementary information encoded in
wy is the numerical value of @, on the “characteristic” tangent vector X3 transverse
to K.

1.4.9.5 SE(2)-Invariance

The contact structure is invariant under the action of the special Euclidean group
G = SE(2) of rigid motions in the plane, which is the semi-direct product SE(2) =
R? x SO(2) of the rotation group SO(2) and the translation group R?. If (b, rg) is an
element of SE(2), it acts on a point a of R? by (b,rg)(a) = b+rg(a). If (b,re) and
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(¢,rq) are two elements of SE(2), their (non commutative) product is given by the
formula:

(c,rg)o(b,rg) = (c+T1¢o(b),rg+0)-

This product is noncommutative since (b,rg) o (c,ryp) = (b + rg(c),rg+y) and
c+ry(b) # b+rg(c) in general. The rotation ry acts on the fibre bundle V; by
ro(a,p(@)) = (re(a),p(@+0)) (where p(¢) is the orientation of angle ¢), this
very particular form of action expressing the fact that the alignment of preferred
orientations is an invariant property.

1.4.9.6 The Polarised Heisenberg Group

A key point concerning the contact structure of V; is that it is left-invariant for a
noncommutative Lie group structure which is isomorphic to the Heisenberg group
and called the polarised Heisenberg group. The product law is given by the formula:

(x.y,p)- (Y. p') = (x+xy+y +px' . p+p).

It is straightforward to verify that this law is associative, that the origin (0,0,0) of V;
is its neutral element, and that the inverse of v = (x,y, p) is v_! = (—x, —y+ px, —p).
Due to the asymmetry of the coupling term px’, the product is noncommutative. V;
is a semi-direct product V; = R2 x R. The base plane R2 of the fibration 7y : V; =
R? x R — R? is the commutative subgroup of translations and the centre Z of V; is
the y-axis. Indeed, v/ = (¥,y’, p’) commutes with all v € V, if and only if for every
v = (x,y,p) we have px’ = p'x, which implies ¥ = p’ = 0.

If r = (&, 7, 7) are vectors of the Lie algebra ¥; = Ty V; of V, ¥ has Lie bracket

1,0 = [(&.n.7), (&0, 7)) = (0,&'m — E',0)

and is generated as a Lie algebra by the basis of K,: X| = gx +pgx = (1,p,0)
and X, = aap = (0,0,1) at v = 0. Indeed, at 0, X; = (1,0,0), X, = (0,0,1) and
[X1,X>2] = (0,—1,0) = —Xj (the other brackets = 0). The fundamental fact that the
basis {X;,X,} of the distribution %" is bracket generating, i.e. Lie-generates the
whole tangent bundle 7"V} is called the Hormander condition. 1t is the key prop-
erty for generalising to higher dimensions and general manifolds our very simple
contact structure V;. Moreover this group is nilpotent of step 2, which means that
all brackets of the form [z, [u,V]] vanish.

We will measure in the following sections the importance of Hérmander’s con-
dition. Lars Hormander (Fields Medal 1962) was one of the main specialists of hy-
poelliptic differential operators such as sub-Riemannian Laplacians. His 1983 four
volumes Analysis of Linear Partial Differential Operators [66] is a fundamental ref-
erence. Another classical opus is Elias Stein’s 1993 Harmonic Analysis, Real Vari-
able Methods, Orthogonality, and Oscillatory Integrals [124]. With Linda Preiss
Rothschild, Stein applied the theory to nilpotent groups (see [109]).



1.4 The Neurogeometrical Turn Since the 1990s 47

Computations in V; become very easy if we use the matrix representation

lpy
v=(xyp)=|01x
001

and
Orn

t:(gvn’”): 005
000

Indeed, the product in V; becomes the matrix product v.v' and the Lie product in
¥ becomes the commutator [¢,¢'] = .t/ —¢'.t. Using this trick, it is easy to see that
the contact structure is left-invariant. The left translation L, of V; is defined by
L,(v') =v.V and is a diffeomorphism of V; whose tangent map at 0 is the linear
map
HL,: V=TV, — T,V
r= ((S,T’,TC) = ToLy(t) = (éar’ +P<§,7t)

The matrix of TyL, is

0
ToL, = 1
0

o -
- O O

This shows that the basis { ng gy, aap} of the tangent bundle TV associated to the

coordinates {x,y, p} is not left-invariant. It is the source of non holonomy. To get a

left-invariant basis we must translate via L, the basis 4 , J , 9 L at0. We get the
dx* dy’ dp [

basis {gx +p§y7 gy’ 3817 }, that is {X1,X3,X2}.

Let now ¢ be a vector of the contact plane K at 0. Since 1 = p& and p = 0, we
have n = 0. Its translated TpL,(¢) is therefore (&, p&, ), and since n = p&, TyL,(t)
is an element of the contact plane K, and the contact structure .#” = {K, } is nothing
else than the left-invariant field of planes left-translated from Kj. In fact, the 1-form
oy itself is left-invariant and left-translates w; o = dy.

Using the matrix form, it is also very easy to analyse other aspects of the Lie
group structure of Vy, its adjoint and coadjoint representations and its unitary irre-
ducible representations (unirreps). According to a variant of the Stone-von Neu-
mann theorem concerning the Heisenberg group, every unirrep of the polarised
Heisenberg group V; which is not trivial on its centre Z (the y-axis) is equivalent to

a Schrodinger representation 7y, (x,y, p) acting on the infinite dimensional Hilbert
space # = L*(R,C) via

7, (.3, p)u(s) = 0 u(s 1 p), with A 0.

For A = 0 these unirreps degenerate into trivial representations of dimension 1:

Ty (x,y,p)u(s) = ei(ux+vp>”(s) :
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According to a deep theorem due to Kirillov, these unirreps correspond to the orbits
of the coadjoint representation of V: the planes (R,n*,R) if n* # 0 and, if n* =0,
every point of the (*,0,7*) plane ((£*,n*, ©*) are vectors of the dual Lie algebra
¥ of V). We will return on these topics in section 1.5.4.3.

1.4.9.7 Contact Structure and ‘‘Simplexity”

The contact structure of the space of 1-jets is a good example of what Alain Berthoz
proposed to call “simplexity”, i.e. the original solution found by biological evolution
“to decompose complex problems in simpler sub-problems, thanks to specialised
modules, and to recompose the whole later” ( [17], p.22). In our case, the com-
plex problem is to compute the derivatives of some functions with respect to retinal
position variables a = (x,y). The “simplex” solution phylogenetically “invented”
by simple neurons of V1 consists in adding a new independent variable p to the
variables (x,y), in organising in specialised modules (orientation hypercolumns) the
values of the three variables, i.e the contact elements (a, p), in processing the inputs
by measuring the point values of the (a, p) they activate, and finally in recomposing
the whole through a functional architecture which guarantees the equivalence be-
tween, on the one hand, taking the point values of the three variables (x,y, p) and,
on the second hand, deriving the initial variables (x,y). This equivanence is exactly
the definition of a 1-jet: {x,y, p} ~ j'y(x) (see. [108]).

1.4.10 Illusory Contours as Sub-Riemannian Geodesics

In this initial neuro-geometrical framework, we can easily interpret the variational
process giving rise to Kanizsa illusory contours evoked in the Introduction. We pre-
sented in section 1.3.3 Mumford’s model defined in R? by an energy of the type
E= f),(onc2 + B)ds. But we can now use what we know concerning the functional
architecture of V1. The pacmen define two contact elements (a,p) and (b,q) and
an illusory contour interpolating between (a, p) and (b, q) is a skew curve I' in V;
from (a, p) to (b,q) which is at the same time:

1. a Legendrian lift y of a curve ¥ in the base plane R?, i.e. an integral curve of the
contact structure (integrability condition p(x) = y'(x));

2. acurve “as straight as possible”, as it was already emphasised by Shimon Ullman
in 1972 [135] when he introduced the idea of a variational model “minimising
total curvature”.

The simplest way to satisfy these two requisites is to model illusory contours
using geodesics for a natural metric because, since the variation of p measures the
curvature x of ¥, we minimise at the same time the length and the curvature of the
projection . But, due to condition (1), the metric has to be defined only on the dis-
tribution ¢ of contact planes K,. In our 1999 first synthesis of neurogeometry Vers
une neurogéométrie. Fibrations corticales, structures de contact et contours sub-
Jjectifs modaux [101], geodesics were computed solving the Euler-Lagrange equa-
tions with the Lagrange multiplier expressing the condition of integrability. And
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these equations were reformulated in the framework developed by Robert Bryant
and Phillip Griffiths for variational models on Lie groups. Later on, the search for
constraint minima was naturally interpreted in terms of a suitable metric defined
on the contact distribution .#". Such a metric is called sub-Riemannian and so the
modelling of illusory contours is embedded into the mathematical context of left-
invariant sub-Riemannian metrics on nilpotent Lie groups.

We will return to sub-Riemannian geodesics in section 1.5.2. We will then ex-
plain in what rigorous sense Kanizsa illusory contours are “geodesics of a sub-
Riemannian geometry defined on the contact structure of the fibre bundle of 1-jets of
planar curves”. But before explaining this sub-Riemannian geometry of Vy, let us
sketch how Bryant-Griffiths’ more sophisticated framework enables to work directly
in SE (2).

1.4.11 From Maurer-Cartan to Bryant-Griffiths

A powerful tool to solve this kind of variational problem is the method of the moving
frame introduced by Elie Cartan. It is rather sophisticated but gives a remarkable
insight. The (direct) euclidean frames of R? constitute the Lie group G = SE(2) =
R? % SO(2) which is a principal fibre bundle of base R?. An essential structure
associated to G and to its Lie algebra ¢, a structure which explains the problems
of non-holonomy, is what is callled the Maurer-Cartan form. Let’s start from the

. 1
general expression g = < b e(,-)e > of an element g of G represented through a 3 x 3

matrix where b is a column vector of translation {u,v} and ¢’ the 2 x 2 matrix
. . . . 0 0

of rotation angle 8. We consider the differential of g, dg = ( db ie®d 9> and
we interpret it as a differential 1-form on G with values in ¢. This means that the
components of dg are 1-forms on G, but that dg has the type of an element of ¥.
In other terms, if Q!(G) is the vector space of 1-forms on G, dg is an element of
the tensor product Q'(G) ® 4. If g = e, we verify that dg(e) is the identity of 4.
This means that dg(e) is a 1-form on ¢ and is therefore applied to vectors ¢ € .
But as it has values in ¢, we have dg(e)(¢) € ¢. Identity means that dg(e)(g) = ¢.
More generally, dg can be interpreted as the identity function of the tangent fibre
bundle TG. The problem of non-holonomy is that dg is not invariant for the left-
translations L. It is the identity function of T'G, but not the one of TG globally
trivialised by the L,. Indeed, a 1-form on G with values in ¢ which is G-invariant
by left-translations must have constant components in the invariant bases of the
T, G dual to the invariant bases of the tangent spaces T, G. Now, this is not the case
for dg.

Then, Cartan’s idea is to translate dg(e) in order to get a 1-form on G with values
in ¢ which will be by construction invariant under the left-translations L,. Let Ag :
TG — % be this 1-form, called the Maurer-Cartan form. We can easily interpret it
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in a geometrical way. Indeed, we have by definition Ag(g) = (Tng,l) dg(e).” If
¢ € TG is a tangent vector to G at g, Ag(g)(5) = TyL,-1(5), in other terms, Ag
transports ¢ in ¢ through the global trivialisation provided by the left-translations

e’g db i;@ ) . Traditionally, one writes Ag

L,. We verify that we have Ag(g) = (
under the compact form Ag = g~ 'dg where g~! symbolises (Tng_1 ) *.

From now on we will write @ and p the 1-forms (with scalar values respectively
in C and R) e~db and d6. With these notations, the 1-form Ag (with values in ¥)
is written:

Ag = (0 O) =0RE+pRT
0 p
where (&, 7) is the natural basis of ¢ which corresponds to infinitesimal translations
and rotations.

The remarkable fact is that the structure of the Lie algebra of ¢ can be retieved
from the Maurer-Cartan form Ag and is given by the universal formula dAg =
fé [AG,Ag|. The exterior derivative of Ag is a G-invariant 2-form with values in
¢. In order to calculate it, we calculate first the exterior derivatives of the compo-
nents @ and p. We get, since for every scalar differential form ¢ we have a d*>c = 0:

do = —ie %dONdb+ e 0d’b = ie"%dbNdO = iw N p
dp =d*0=0

and so
dA¢=do®E+dp@T=i(0Np)RE.

Now, the space Q!(G) ® ¥ of the 1-forms on G with values in ¢ is endowed with
an exterior product which allows interaction between the exterior product of the 1-
forms and the Lie bracket of 4. Indeed,let ¢ = pu @ E+v@Ttand ¢’ = ' RE+Vv Q@71
be any two elements of Q!(G) ® 4. We have by definition:

6.6 =(uAp)@[EE]+ AV 1+ (vAr ) @[1,E]+ (vAV) ®]1,1]

which is a vector 2-form with values in ¢, i.e. an element of Q?(G)®%. As [£,&] =
[t,7] =0, [1,&] = —[£, 7] and [€, 7] = —i&, we finally obtain:

[c.¢l=((rAV)=(va))@[Et]=—i((uAV) - (vAp)) @& .

When ¢ = ¢’, we therefore obtain — unlike what happens for a scalar 1-form —
[¢,6] = —2i(uAV)®E&. In particular, [Ag,Ag] = —2i (@ A p) @ E. When we com-
pare the expressions which give dAg et [Ag, Ag] we obtain the universal equations
of Maurer-Cartan which code the geometry of every Lie group G:

7 We have TeLy1r = (TeLg)_] : T,G — T, G and therefore by duality (Tng—l)* (TG =
9" =T, G.
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1
— . [Ag,Aq]-

A =
dAg )

After expressing the geometry of G through the Maurer-Cartan equations, let’s
return to the curves ¥ in the plane R. If we follow the moving frame F = F, consti-
tuted by the unitary tangent and normal vectors at @ when the point a = (x,y) runs
through 7y, we get a curve I' in G that lifts y and that is called his Frénet lift. As G
is a principal fibre bundle on R? of fibre SO»(R) ~ S', we can reinterpret in this
new context the Legendrian lifts we studied before. If y is parametrised by ¢, I is
also parametrised by ¢. The element of arclength on y (and not on I') is given by
ds = o (t)dt with o(t) = ||d’(¢)]| . Moreover, the Frénet frame F, is given by the uni-

tary tangent vector e (1) = ’;/g)) = (cos(0),sin(0)) and by the unitary normal vector

ex(t) = ey (t)*t = (—sin(0),cos(H)). The differentials of e; et e; are consequently
the vector 1-forms on R? with values on R:

del
d62
Moreover, as ® = e ?da by definition, we have da = ¢%w = 0, @ e + ©, V e
where @, and ®, are the components in the moving frame. But as da = ¢'ds, we

have also @ = ds, i.e. W, = ds and w, = 0. Hence the following reinterpretation of
dg in the moving frame F of M :

(—sin(0)d0,cos(0)d0) =dO e, =p R ey
—(cos(0)d0,sin(0)d0) = —dO®e; = —pRe; .

dp = 0, Qe +w,Qer
dejy =pRey
dey = —pRey .

This differential system is associated to G and is therefore independent from any
particular curve 7y.

But we also know that, on a particular curve y, we have, by definition of ds and
of the curvature k%, the following expression for the infinitesimal variation dF of
the moving frame F:

da =ds®e; =0(t)dt®e;
dey = dsk(t) @ e, = k(t)o(t)dt @ ep
dey = —dsk(t)®e; = —k(t)o(t)dt®e .

If we compare the two expressions we see that, on the curves y(¢), the following
Pfaff system is verified:

w,—o(t)dt =0
M=1 o, =0
p—x(t)o(t)dt =0.

In the same way as the Legendrian lifts in the jet space were the integral curves of
the contact structure, the Frénet lifts in G are the integral curves of I1. We remark

8 Remember that x = d8 /ds and therefore that p = d6 = kds = xodt.
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that for these lifts we have dw = iw A p = 0 because dw, = —w, A p = 0 and
dw, = 0,Np = o(t)dt ANo(t)k(t)dt = 62(t)x(t)dt Ndt = 0.

The Pfaff system IT is defined on G but depends upon ¢ together with the func-
tions o () and k(7). Then we can apply exactly the same strategy we applied for
the contact fibre bundle and the 1-jets fibre bundle, namely to introduce supple-
mentary coordinates (0,K,t) € RE x Ry x R, = Y° and consider IT as actually
defined on the direct product X = G x Y'°. As (w,,®,,p) are the components of
Ac=0®E+p @1, it simply consists in the vanishing of the 1-form :

U= Ag— Pdt

where P = (0,0,k0). As Ag is now seen as a 1-form on X with values in ¢, the
coherence of the types imposes the same type for 4 = Ag — Pdt. Thus it is natural
to consider that P is a vector of ¢, namely the vector:

00
P= (G KG) =0RE+KORT.

Then, if we note 7 the subspace of ¢ constituted by the P of this form, we can
redefine Y as o7 x R; and consider that IT becomes actually definedon X =G x Y =
Gx o xRy

In this context Bryant and Griffith reformulated the variational problems on Lie
groups and in [101] we used their work to reformulate the V; model.

1.5 Developments in Neurogeometry after 2000

Starting from the late 1990s and the early 2000s, neurogeometry knew a number of
developments in an international context where interactions between mathematics
and neurophysiology became increasingly numerous and fertile, somehow as the
ones between statistical physics and neuronal nets during the 80s. When I assumed
the direction of the CREA and of the Master in Cognitive Sciences, I could easily
start at the Ecole Polytechnique a class in Cognitive Neurosciences and a seminar
on “Brain and Cognition” organised with my colleague of the ENS Patrick Char-
nay. The lectures were later published in 2008 under the title Neurogéométrie de la
Vision [105]. In this context some collaborations had been particularly strong and
fruitful. Quickly, they led to a new synthesis [102] published in 2003 in the Journal
of Physiology-Paris.

1.5.1 Collaborations with Alessandro Sarti and Giovanna Citti

At the end of 1997 Alessandro Sarti, a young specialist from Bologna in models
of vision and image processing, contacted me. We discussed on different aspects of
neurogeometry and, in 2001, when he returned from Berkeley where he had worked

9 The index represents the coordinate of the considered exemplar of R.
10 We trivially extend a 1-form on G to a 1-form on X and we keep the same symbol.
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from 1997 to 2000 with Sethian on Kanizsa illusory contours, we started a rich co-
operation which involved also his colleague at the University of Bologna, Giovanna
Citti, an outstanding specialist in functional analysis, diffusion PDE, and harmonic
analysis.

1.5.1.1 The Synchronisation of Oscillators and the Mumford-Shah Model

One of the first works by Sarti and Citti in this field has been linking the models of
synchronisation of fields of oscillators with the Mumford-Shah model of segmen-
tation which we analysed in section 1.3.3. The Mumford-Shah variational model
is fundamental in image processing and in computational vision, but it lacks of an
explicit neurophysiological meaning. However, specialists as Bard Ermentrout and
Nancy Kopell showed as continuous nets of coupled oscillators, whose frequencies
code the intensity of the input, works the same way as algorithms of segmentation.
This is the reason of the interest in a comparison with the Mumford-Shah model.

The main idea is the following (see Sarti ef al. [115]). We consider a 2D field of
oscillators where the phase 6(x,t) is a function of the spatial position x. Let & be
a variable of distance between neighbouring oscillators on a lattice of mesh €. We
introduce a PDE of the form:

d20(x,1)
o' = +2\5|z{1<x £)[0(6(xr) — 0(x— 1))

K(x)[@(0(x+¢,1) = 0(x,0))]}

where the function ¢ is analogous to a sine function, K (x) is a local coupling func-
tion, and the sum X is taken over the neighbours x + & of x. Then, if we encode
in the coupling function K(x) the anisotropic geometry of the functional archi-
tecture and if we let the mesh of the lattice tend to 0, we get a model which I"-
converges (I"-convergence being a convergence adapted to variational models) to
the Mumford-Shah variational model for the sub-Riemannian contact metric defined
by K(x) (see [115]).

1.51.2 The SE (2) Model

The jet-space V; model implies choosing a priviledged x-axis. We saw in section
1.4.11 that the group SE (2) naturally operates on the model, but the asymmetry
between x and y in the base space R> was reflected in the “polarisation” of the
Heisemberg group. As in every case in which a group G operates on a fibre bundle,
here G=SE(2)onmy:V;= R? x R — R?, it is relevant to consider the principal
associated fibre bundle, here

Ts:G=SE(2) =R*>xS0(2) ~ Vg =R?>x S! = R?.

We worked with G in section 1.4.11 with Bryant and Griffith when using the form
of Maurer-Cartan. But we can do this more directly with Citti, Sarti and Manfre-
dini [115], [37]. In this case, the contact form is @g = —sin(0)dx + cos(0)dy,
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that is cos (0) (dy — pdx) = cos(0) ®;. The contact planes are spanned by the tan-
gent vectors X; = cos(0) gx +5sin(0) gy and X, = 3‘99 with Lie bracket [X|,X;] =
sin (0) gx —cos(0) gy = —Xj. Contrary to the polarised Heisenberg case, the X;
constitute an Euclidean orthonormal basis and are therefore more natural. The dis-
tribution %~ of contact planes is still bracket generating (Hérmander condition)
and maximally non integrable since dwg = cos(0)dx Ad6 +sin(0)dy A d6, and
ws ANdws = —dx Ndy A dO cannot vanish because it is a volume form. The Frobe-
nius condition wg A dws = 0 is not satisfied, and there exists no integral surface of
2 in Vg (but there exist a lot of integral curves of .#": all the Legendrian lifts I" in
Vs of curves 7 in the base plane R?). As for the characteristic vector field (or Reeb
field) X3, it is orthogonal to K, for the Euclidean metric and defines a scale through

ws (X3) = (—sin (0)dx+cos(8)dy) (X3) = sin® (6) +cos> () =1 .

When we work with Vg, the natural sub-Riemannian metric is the one making
{X1,X,} an orthonormal basis of the contact plane K.

The two contact structures on V; = R2 x R and Vg = R? x S! seem to be alike
but are nevertheless very different. Indeed, let us look at their respective Lie alge-
bras. For V; we have the algebra ¥ generated by {#,t,73} (t) = gx +p gy, = ;p,
I = gy) with [t1,f,] = —t3 and [t],13] = [f2,13] = O (we denote these vectors by f;
and no longer by X; to avoid any confusion). As we have seen, ¥} is a nilpotent
algebra because the coefficients {1, p, 1} are polynomials whose derivatives vanish
after a certain rank (here 2). On the contrary, for Vg we have the algebra ¥ gener-
ated by {X1,X2,X3} (with X3 = —sin(0) gx +cos(0) gy) satisfying [X1,Xz] = —X3
, [X1,X3] = 0 and [X»,X3] = —X), which is therefore not nilpotent. Nevertheless we
can notice that for small 6, we have at first order p ~ 6, sin(6) ~ 6 and cos (0) ~ 1,
and so ws = —sin (0) dx+cos (6) dy can be approximated by @ = —0dx+dy which
is nothing else than the 1-form @w; = dy — pdx. V; is in some sense “tangent” to
Vs. In fact it is called the “tangent cone” of Vg or its “nilpotentisation” (see e.g.
Mitchell [86], Rothschild, Stein [109], Margulis, Mostow [81] and Bellaiche [12]).

So V; and Vg becomes two sub-Riemannian models, and we will see in sec-
tion 1.5.5 how it is possible to construct a continuous family interpolating between
them. V; is defined on a nilpotent group (Carnot group) and Vg on a non nilpotent
group. Methods for neurogeometry, that is for the modelling of neural functional ar-
chitectures of vision, become therefore part of sub-Riemannian geometry with their
geodesics, Laplacians, heat kernels, harmonic analysis, etc.

Many great geometers have studied these very rich structures since the 1980s-
1990s. We already cited Hormander [66], [65], Stein [124] and Rothschild-Stein
[109]. We shall also cite Folland-Stein [52], Nagel-Stein-Wainger [92] for the struc-
ture of sub-Riemannian spheres, and papers [58] and [59] of Daryl Geller for the
wavelet analysis on the Heisenberg group'!.

11 'We thank the anonymous referee for very interesting bibliographical informations.
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We were personally highly interested in works by Misha Gromov, Andrei
Agrachev, Richard Beals, Bernard Gaveau, Peter Greiner, Luca Capogna, Vladimir
Gershkovich, John Mitchell, Richard Montgomery, Robert Strichartz, Anatoly Ver-
shik, Jean-Pierre Pansu, Jean-Michel Bismut, André Bellaiche, and Jean-Jacques
Risler. Reference works have been for us Montgomery’s Tour of Sub-Riemannian
Geometries [88], Gromov’s Carnot-Carathéodory spaces seen from within [62],
Agrachev-Sachkov’s Control Theory from the Geometric Viewpoint [3], Vershik-
Gershkovich’s Non Holonomic Dynamical Systems, Geometry of Distributions and
Variational Problems [137], Capogna et al. An Introduction to the Heisenberg
Group and to the sub-Riemannian Isoperimetric Problem [31], or Strichartz’s Sub-
Riemannian Geometry [125].

1.5.1.3 Sub-Riemannian Diffusion and Perceptual Completion

A specialist of analysis in Lie groups endowed with sub-Riemannian metrics,
Giovanna Citti tackled many difficult problems, and in particular, with Luca Ca-
pogna, the mean curvature flow. We evoked in section 1.3.2 the non linear diffusion
equation

9 v G\ viP ) dxiox

al al
ol (VI H(VI,VI) (8xi) (8x1~) %
G|V1|dlv(|VI|)AI =Y 16

(where H is the Hessian of I) which makes the level curves Cy of I(x,y; 0) evolve
with a normal velocity equal to their curvature. When generalising this situation to
Carnot groups as V;, one meets several difficulties. First, one works on surfaces Sq
evolving in a 3 dimensional space, and we have seen in section 1.3.2 that for dimen-
sion > 3 the mean curvature flow can present singularities. Secondly, if one wants
to adapt diffusion techniques to sub-Riemannian geometry, one must substitute nor-
mals n to S with their projections ng onto the contact planes K,. We have also seen
section 1.4.9.3 that, because the non-integrability of the contact structure, no piece
of Sg, as small as it may be, can be everywhere tangent to the contact distribution
¢ . But, of course, there will exist in general points v € S5 where the tangency
T,Ss = K, occurs. At these points, called characteristic points, the projection ng is
no longer defined, and the diffusion becomes singular. Except at these characteristic
points, the diffusion equation becomes

ay ( 5, D) <le>> XX

i Y (Xl)?
In [32], Luca Capogna and Giovanna Citti, study this equation.

These theoretical works can be applied to image completion, image segmentation
and subjective surfaces as A. Sarti did in Berkeley with Sethian (see e.g. [117]).
Given an image of intensity function 7 (x,y) which is supposed to be regular on a
domain W of R? (if this is not the case we can smooth it infinitesimally), we can
consider the Legendrian lifts of its level curves in Vg. We get a surface X in V.
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Let’s suppose that the image is corrupted and contains a gap A. To restore the image
and to fill-in A, the idea is to process a propagation along the association field, i.e.
a highly anisotropic diffusion driven by the sub-Riemannian geometry of V. The
idea is simple in practice but very difficult on the mathematical plane. Indeed, even
in the simplest case of the heat equation, diffusion lets evolve the functions f (x)
on Vg through the equation gt = A, where A = X12 +X22 is the sub-Riemannian
Laplacian, and it is processed by transport along the geodesics. As the heat equation
is a linear parabolic PDE, it is sufficient to compute what is called the heat kernel,
i.e. the way in which a Dirac delta function is diffused. Then we write I (x,y) as an
infinite superposition of weighted deltas, and we apply linearity. This is equivalent
to performing the convolution of / with the heat kernel.

For links of sub-Riemannian diffusion with the mean curvature flow of section
1.3.2, one can consult Chen-Giga-Goto [33] and their proof of the convergence of
the Bence-Merriman-Osher algoritm.

But, as we will see later in section 1.5.2 and 1.5.4.1, sub-Riemannian geodesics
are far more complex than Riemannian geodesics, making computation of the heat
kernel really difficult. G. Citti dedicated many works to this technical question
most studied since the classical works of Lars Hormander. A good introduction
to this topic is the book [20] of Bonfiglioli, Lanconelli, Uguzzoni, Stratified Lie
Groups and Potential Theory for their sub-Laplacians. For general hypoelliptic
sub-Laplacians the reader could consult Jerison, Sdnchez-Calle [72] and Sanchez-
Calle [112] which present approximation techniques for finding the fundamental
solution using series expansions. For more precise results on the Heisenberg group
and nilpotent groups, the reader could consult, e.g., Folland, Stein [52], Rothschild,
Stein [109], and Citti, Uguzzoni [36]. For methods using harmonic analysis, he/she
could consult, e.g., Hulanicki [71] and Cygan [41].

But for the applications we are intrested in, general results are not sufficient, and
we need also operational computational techniques.We will return to this point in
section 1.5.2.

1.5.1.4 Curvature, 2-Jets and Engel Structure

Specialists of vision such as Steve Zucker put forward some experimental data to
support the hypothesis that not only detectors of orientation but also detectors of
curvature exist in V1. If we admit this hypothesis, the problem is to know if we
have to process these new detectors as the orientation ones by introducing the 2-jets
of curves in R?, and so, in addition to x,y, p or x,y, 6, to add a fourth independent
variable x and a supplementary 1-form which forces its interpretation as a curvature.
This is what Sarti, Citti, and I did together.

In the {x,y, p} case, we work in V; = R? x R with the contact 1-form w; = dy —

pdx and the nonholonomic basis of the contact planes {X1 = gx +p gy,Xg = aap },

the third base tangent vector X3 being given by the Lie bracket [X;,Xp] = —X3 =
— g . We introduce a fourth variable x, we work on the space V; = R? x R xR, and
we write that the natural interpretation of x is associated to the second derivative



1.5 Developments in Neurogeometry after 2000 57

S (x) for curves of equation y = f(x). The space V; of the {x,y, p, k} is the space
of 2-jets J? (R,R) and its canonic structure, called Engel structure'?, is the Pfaff
system constituted by the two 1-forms w; and 7y = dp — Kdx.

The kernel of 7; in V Jis generated by the 3 tangent vectors X = ax +p a} +

Ka =X1+xXp, X3 = Iy ,X4 = aK whereas the kernel of @; extended to Vj is gen-
erated by X%, X, and X4. The distribution of planes is now Span {X [, X4}, and it gen-

erates the whole Lie algebra because [X|,X4] = —X, = — aap and [[X{, X4] ,X{] =
_Xyi—= _ 0

3 dy*

In the SE(2) case, we work in Vg = R? x S' with the contact 1-form
ws = —sin(0)dx + cos (0)dy and the nonholonomic bases of the contact planes

{Xl =cos(0) gx —l—sin(e)gy,X2 = 939 }, the third base tangent vector X3 being
given by the Lie bracket [X;,X;] = —X3 = sin(0) gx —cos(0) gy. We introduce

the curvature K and work in the space Vs = R?> x S! x R. The Pfaff system
which defines the Engel structure is now composed of the two 1-forms @s and
Ts = d0 — Kds = dO — K (cos (0)dx+sin(0)dy), where s is the parametrisation
of the curves of the (x,y) plane by their arch length. Indeed, we know that the cur-
vature, which is given in Cartesian coordinates for a curve of equation y = f (x) by

(1+]J: ;i’)‘)z)g 1>+ is also given by K = 4°. The kernel of the 1-form g

is now generated by the 3 tangent vectors

the formula K =

XK =cos(0) gx +sin(0) gy +Kaae =X +KX»
Xy = —sin(6) J, +cos(0) 5,
d
Xi = K
while the kernel of wg extended to Vg‘ is generated by X1, X and XX. The distribu-
tion of planes is now Span {Xl XK } It generates the whole Lie Algebra because

(X[ xE] = =X = =, and [[xF,XK] ,X[] = X3 = —sin(0) J +cos(6) 7.

1.5.1.5 Scale and Symplectic Structure

We saw in section 1.4.9.4 how the distribution " of the contact planes K, is under-
determined with respect to the 1-form @; because all the 1-forms aw; (a # 0 € R)
have the same kernel. Whence the idea of explicitly taking into account the scale
factor « in the model. We developed it with Sarti and Citti in [116].

We work now in the 4-dimensional space W = R? x S! x R where the coordinates
are (x,y,0,0). We extend the group G = SE (2) in order to take into account the
multiplicative law of scales, and we use the left-invariant basis:

12 Briedrich Engel was one of the principal disciples and collaborators of Sophus Lie.
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X =¢° (cos(e)g)C +sin(6)g )
X, =29

a6
X;=¢° —sm(@)gx —I—cos(G)gy)
X4 = 836

For each scale o, we have now the contact 1-form o =
e~ (—sin(0)dx+ cos(6)dy) defined on the sub-space Vs = R?(x,y) x S'(8) x
{0} of W. The main point is that the 2-form d® obtained by differentiating @ with
respect to all its variables, including the scale, induces a symplectic structure on W.
We have:

do = (e % cos(0)dx+e %sin(0)dy) AdO
+ (—e %sin(0)dx+ e cos(0)dy) Ado
=W N+ 03\ Wy

where @; is the dual 1-form of X;. This way, the 2-form dw can be identified with
the left-invariant 2-form deduced by left-translations from the standard symplectic
2-form on ToW:

dxNdO+dyNdo .

We remark that as the orientation is the conjugated variable of x, the scale is the
conjugated variable of y.

1.5.1.6 Eikonal Equation and Skeletonisation of Forms

The great interest of the “symplectisation” of the contact structure through the
scale consists in the fact that on any symplectic manifold it is possible to define
Hamiltonian mechanics analogous to “geometrical optics”. In our case this allows
a definition of a neural implementation of the “grassfire” models we evoked in
section 1.3.2.

In [116], given a simple image constituted by regions E delimited by edges C =
JE, Sarti and Citti associate to every point (x,y) of the extension W C R? of the
image the maximal values 6 and G of 6 and o of the corresponding hypercolumn
(winner-take-all strategy) and interpret them (i) as the direction of the edge C at
the point which is the closest to (x,y) and (ii) as the distance (up to a factor) of
(x,y) to this point. By lifting all the points (x,y) of W, they generate a surface X
in the fibre bundle W, X = {(x,y,6(x,y), 5 (x,y)) }. Under natural hypotheses, it is
possible to deduce “good” properties of 0(x,y) and G (x,y) and “good” properties
of X with respect to the symplectic structure. Indeed, X is a Lagrangian surface
of W (see section 1.2.4). Then, if 6(x,y) is the orientation of the closest edge to
(x,y) and & (x,y) the distance of (x,y) from this edge, the projections of the level
curves of §(x,y) are orthogonal to C = JE and the ones of &(x,y) are parallel to
C = 0E (see figure 1.11). They propagate the edge C through wave-fronts parallel to
C (Huyghens model) and they are solutions of the eikonal equation of geometrical
optics we met in sections 1.2.4, 1.3.2 and 1.4.5.2.
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Fig. 1.11 Level curves of 8(x,y) (blue) and G(x,y) (red). The first ones are orthogonal to
C = JE and the second ones parallel to C = JE. (From Sarti er al. [116]).

The singularities of this “optical” propagation define what is called the “gener-
alised axis of symmetry” or “medial axis” S, or also “skeleton”, of the form E. For
a circle it is a point (the centre). For a contour it is generically a graph of dimen-
sion 1 constituted by pieces of lines S; connected by end points and triple points.
The fundamental perceptual role of this virfual structure associated to the contour
C has been underlined, after pioneering works by Harry Blum [19], by many great
geometers and specialists in vision as René Thom, David Marr, David Mumford,
Steve Zucker or James Damon because S allows canonical decomposition of C in a
set of cylinders C; whose axes are the S;. Consequently, it is important to notice how,
as the illusory contours, the medial axes are constitutive of perceptual geometry and
have a neurophysiological reality even if they are not present in the sensorial inputs.
This is a consequence of the functional architecture of the primary visual areas, and
we can give a neurogeometrical explanation about it.

1.5.1.7 Coherent States and Harmonic Analysis

G. Citti and A. Sarti also examined in depth the idea that the link between neuroge-
ometry and signal analysis (e.g. wavelets) is given through the notion of a coherent
state.

1. We want to analyse signals considered as vectors of a Hilbert space 7 (here
L2 (V).
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2. A locally compact group G is available (here the group SE(2)) which acts
irreducibly and unitarily on .7 through a representation 7.

3. A receptive profile @y € 5 is also available, which is well localised both in
the position space and in the Fourier space.

4. We take the orbit {(pg }g < Of @o under the action of G and we suppose that ¢y

is “admissible” in the sense in which [; [{ ¢y, f) |2du (g) < oo for any f € J, with
(.,.) the scalar product on # and d i (g) the Haar measure on G. We then say that
the representation 7 is square-integrable and we get a coherent state.

5. We process the harmonic analysis of the signals f of J# using these co-
herent states. This allows representation of signals as superpositions of elemen-
tary functions and this way, in our neurogeometrical context, to measure them
neurophysiologically. The general formula is f(x) = [;Tr(g) ¢g (x)du (g), where
Ty (g) = (f.@,) € L*(G) is the transform of f. We can notice the structure of this
formula. We want to analyse functions f(x) and we have receptive profiles @, (x)
parametrised by g € G. The function f(x) is constructed as an integral on G con-
sidering that x is fixed, where the coefficients Ty (g) are the respective weights of
the receptive profiles ¢, (x) in the synthesis of f(x). The coherent state {(pg}g e

allows to represent the f € J# through transforms 7y (g) = < £ (pg> el? (G), where
the < f, (pg> are the “measures” of the signal f given by the receptive profiles @,.

These works on coherent states are completed by a research on the optimal forms
of receptive profiles @,. We saw in section 1.4.2 that the statistics of natural images
imposes strong constraints to these profiles. Other converging works showed how
functional architectures and association fields, which materialise the Gestalt princi-
ple of good continuation, reflect the statistical properties of lines and edges in natural
images. For example in [120], Mariano Sigman et al. confirmed that “the geometry
of the pattern of interactions in primary visual cortex parallels the interactions of
oriented segments in natural scenes” (p.1939). Their experimental method consists
of measuring the correlation of the orientations of the edges between an origin 0
and a second point a on a corpus of N = 4.000 natural images. In his thesis [114],
Gonzalo Sanguinetti showed how the results by Sigman converge in a remarkable
way with the neurogeometrical models of good continuation.

Moreover, taking inspiration from the fact that Gabor functions have been intro-
duced in quantum mechanics as functions sufficiently well localised both in position
and in frequency in order to optimise Heisenberg uncertainty relations, Citti, Sarti,
and their PhD students Davide Barbieri and Sanguinetti showed that optimal recep-
tive profiles can be deduced from the structure of the group SE (2) (see [10]).

1.5.1.8 International Conferences, Seminars and Special Issues

These works have been associated with international symposia in neurogeometry
organised by G. Citti and A. Sarti. The first was held in Bologna (1-3 July 2004),
Mathematical Models in Visual Perception. Then came the symposium of the Scuola
Normale Superiore of Pisa (4-9 September 2006) Neuromathematics of Vision, then,
again in Bologna (31 August-4 September 2009) the conference Sub-Riemannian
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Geometry and Vision. Many scholars as, e.g., Paul Bressloff, Jack Cowan, Guy
David, Alain Destexhe, Olivier Faugeras, Yves Frégnac, Walter Gerbino, Jan Koen-
derink, Jean Lorenceau, Lamberto Maffei, Marc Mézard, Jean-Michel Morel, Scott
Pauls, Martin Reimann, James Sethian, Wolf Singer, or Steve Zucker gave their con-
tribution. We also edited together in 2009 a double special issue (103,1 —2) Neu-
romathematics of Vision of the Journal of Physiology, Paris. Since 2011, a seminar
Neuromathématiques et modeéles de perception has been held at the Institut Henri
Poincaré of Paris.

1.5.2 The Geodesics of the V; Model

We have seen in section 1.4.10 how to interpret illusory contours as sub-Riemannian
geodesics of the V; model. Let us now give an idea of these geodesics, and empha-
sise that, as the metric is sub-Riemannian, they are extremely different from Rie-
mannian ones, even at the infinitesimal level.

As the distribution .~ of the contact planes K, is bracket generating and satisfies
Hormander condition, a celebrated theorem of Chow says that every pair of points
(v,v") of V; can be connected by an integral curve of . If %" is endowed with a
sub-Riemannian metric, we can compute the length of such integral curves and look
for geodesics, which are integral curves of minimal length. The problem of com-
puting geodesics is quite difficult to solve. The 1981 work of Brockett [29] Control
Theory and Singular Riemannian Geometry is a classic reference. Excellent other
references are the already cited books of Montgomery [88] and Strichartz [125] and
also Ge [57] and Hammenstédt [63]. One of the main difficulties is that, contrary to
the Riemannian case, there can exist “abnormal” geodesics, that is geodesics which
do not satisfy the differential equation canonically associated to the geodesic varia-
tional problem. Fortunately we will not meet this “abnormality” since our models,
even if they are non trivial, remain rather elementary.

Richard Beals, Bernard Gaveau and Peter Greiner who solved with explicit for-
mulas the geodesic problem for the (non polarised) Heisenberg group emphasised
([11], p. 634): “how complicated a control problem can become, even in the sim-
plest situation.” It was a new mathematical result since in 1977 Bernard Gaveau still
said ( [56], p. 114) that the variational problem of minimising “the energy of a curve
in the base manifold under the Lagrange condition that its lifting is given in the fiber
bundle” seemed “not yet (...) studied.”

We adapted Beals, Gaveau and Greiner computations to the polarised
Heisenberg group V; = J'(R,R) with coordinates (x,y,p = tan(0)), product
(x,, pg‘(x’ VP = (x+x,y+y + px,p+ p’) and contact planes generated by
X =3 +p§y =(1,p,0) and X, = jp = (0,0, 1) with Lie bracket [X;,X,] = —X3 =
(0,—1,0) = — gy. Following the approach of Agrachev-Sachkov [3] (see section
1.5.4), let us formulate the geodesic problem as a control problem. If I' = {v (s)} is
a smooth parametrised curve in Vy, to say that it is an integral curve of the contact
structure is to say that v (s) = u; X; 4+ up X, for appropriate controls u; and us or, in
other words, that X = u;, y = pu;, p = u, the integrability condition 3‘; = p being
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automatically satisfied. To find the geodesics for the chosen sub-Riemannian metric
SR with scalar product (.,.) ¢ and norm ||.|| g5, one minimises the Lagrangian given
by the kinetic energy L = ; H\iHéR along such curves. L is defined on the tangent
bundle TV,. Using Legendre transform, it can be transformed into the Hamiltonian

N ST

h@) = (@)~ & 1513
1 2
= ('D(IuX] +u2X2) - ) ||M]X] +u2X2HSR

defined on the cotangent bundle 7*V,. If @ = £*dx+n*dy+n*dp = (E*,n*,n*)
is a 1-form on V7, then

1
h(v,0) =& ui +n"uip+muy —

2 2 2 2
5 (110 5 + 20 (%0, X) g 41 X2 -

It is natural to choose a left-invariant metric namely the sub-Riemannian metric
SR; making {X;,X,} an orthonormal basis of the contact plane K, since {X;,X,} is
the left-invariant basis translating the standard Euclidean orthonormal basis of K.
This metric is not the Euclidean metric (., .) g, ||.||g since, due to non holonomy, Eu-
clidean metric is not left-invariant. By the way, even if || Xa||; = 1 and (X;,X2) =0,
we have ||Xi||z = 1+ p? # 1 if p # 0: it is only on the (x,y) plane p = 0 that
the two metrics are the same. If we choose SRy, then |[Xi||sx, = [[X2[[sg, = L.
(X1,X2) g, = 0, and

1
h(v,0) =& ur +n"uip+nuy — > (“%JF“%)

1
=0 (M]Xl + uzXz) —

5 (u%+u%) .

One can then apply a fundamental result of control theory called the Pontrya-
gin maximum principle, which generalises the classical method of variational cal-
culus using Euler-Lagrange equations and Lagrange multipliers (see Agrachev,
Gamkrelidze [4]) we employed in our first synthesis [101]. It says that geodesics
are projections on V; of the trajectories of the Hamiltonian H having maximis-
ing controls u; max. The maximisation conditions are gfl =o(X;)—u; =0 and

gfz = @ (X2) — up = 0 and therefore
_ IR NI AR AT T A 2 2
H»o)=uo (X)) +ud (X2) 5 (“1 +“2> =, (“1 +“2> =, ((GLXO +(@,X>) )
and in terms of coordinates:
$ ok k) 1 * %\ 2 *2
H(xayapaé ,T’ ,7[ )*2 (é +pr’ ) +7 .

The structure of geodesics implies that the sub-Riemannian sphere S (the ends
of geodesics from 0 of sub-Riemannian length = 1, which are global minimisers)
and the wave front W (the ends of geodesics from 0 of sub-Riemannian length =1,
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which are not necessarily global minimisers) are rather strange. In particular, the cut
locus of 0 (that is the ends of geodesics when they cease to be globally minimising),
and the conjugate locus or caustic of 0 (that is the singular locus of the exponential
map & integrating geodesics) are rather complex.

The Hamilton equations on 7%V derived from the Hamiltonian H are

y anr = p(E*+pn*) = pi(s) (ie.p= )yc = Zﬁ, integrability condition)
po= g =
&)= =0
>k H
n*(s) =— dy =
*(s) = = = —n" (& +pn*) = —1"x(s)
As H is independent from x and y, the derivatives £*(s) = — %ZI and *(s) = — ‘?fy]

vanish, and the momenta £* and n* are therefore constant along any geodesic:
&* =&y and n* = 1. This fact simplifies the equations since x(s) = &; + png,
y(s) = p(&F+png), and 7*(s) = —ng (& + png). We emphasise the relations
p=n"=-n*xand ¥ = n*p, or (¥, p) = n*(p,—x), which means that in the (x, p)
plane the acceleration is orthogonal to the velocity and geodesics are circles whose
radius increases when 1 decreases (at the limit 1 = O the circle becomes a straight
line). By the way, H (x,y,p,&*,n*,n*) = ) (&> + p*) since, by construction, the
Hamiltonian A is the kinetic energy of the projection of the trajectories on the (x, p)
plane.

Computations show how the (x,p) = z part of the geodesics from 0 to

(x1 =x(7),y1 =y(7),p1 = p(7)) is given by the formulas:
)= Sl (cos (57 mg o sin (5 mg) )
= 58] (o (") ) )

which are effectively the equations of a circle

x2+p2—x(x1—|—plcot<ngr>) —-p (pl —xwot(ngT)) =0

passing through 0 and (x;, p; ), with center

1 iT 1 0T
xc—2<x1+plcot(ng >>,yc—2(p1xlcot<ng >>

and radius

1 17*1' 1

2 2 2 0 2
= +pi) [ 1+cot = ,

r (xl l) < cO < 2 >> . Z(TIOT) |Z1|
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One verifies that the constant value of the Hamiltonian along a trajectory is:

*2
BN V4
8 sin® <ngf) "= 2

For y(s), computations are more involved. We get

Hy =

1

y(S) ( (T’ T) ) 27105(x1+P1) 4x1P1005(n5 (S_T))"i'

0s
2 (xf — pt)sin (15 (s — 7)) +
2x1p1cos(ng (2s—1)) (x p%) sin(ng (2s— 1)) +

2xipycos (g ) + (x7 — p7) sin (ngT) +
2 (xi + pi) sin(ngs)] -

In terms of <§6‘ , My, Ny and T the formula writes:

0 2N5s+sin(2n] w2 sin(n . sin®(ns
v(s) =8> (21155) -&? (0)‘1'50”0 nas) _

4ng? g ny’*
1 —cos(ngis 2n4s —sin(2ngs
55756 *Z(r’() )—I-TESZ 770 *2( 770 ) .
rlo 4”0

The key point is that these equations explain the origin of the striking multiplicity
of sub-Riemannian geodesics connecting two points. Let us indeed compute y; =

y(7). We find
nyT nyT
aept| (0)  eos()

1
Y1 = X1p1+ N T *
2 4 sin® (ngr) sin (ngf)
If we introduce the new variable ¢ = ngr, we see that we must solve the equation

1
+(n=Jum) =uto)ia?

where (@) is the function

¢
= —cot(®) .
9)= .. ©) (¢)
It is the function u(¢) which is the key of the strange behaviour of sub-Riemannian
geodesics. It is an odd function that diverges for ¢ = km (k # 0) (i.e. Ny T = 2k7)
and presents critical points when ¢ = tan(¢). But when ¢ = tan(¢), we have



1.5 Developments in Neurogeometry after 2000 65

S S S S S R S
=30 =20 -10 L 10 20 30

Fig. 1.12 The function (@) occuring in the construction of sub-Riemannian geodesics of
the polarised Heisenberg group V; (the scale of the two axes are not the same)

u(o)= ) o)
sin“ (@)
1 —cos?(¢)
~ cos(@)sin(Q) tan(p) =@,
and the minima of u(¢) are on the diagonal. The graph of u(¢) is represented in
figure 1.12.

Let us compute the length of geodesics. Let y be a geodesic starting at 0 and
ending at time 7 at (x1,y1,p1) = (z1,p1). If L is its length, we have L = [ {ds
with (2 = (E* + pn*)2 + *? the squared norm of 7 in the contact plane endowed
with the orthonormal basis {Xl =0+ pdy, Xo = 8,3}. But /2 = 2H = 2Hj since the
Hamiltonian is constant along its trajectories, and we know that

8 «in2 (M7
s b

Hy |Zl|2 .

So, with ngT =0,

L—wz(”of !

2) .yt
sin (%)

In the sub-Riemannian geometry of V, the sphere S and the wave front W (with
radius v/2) are given by the fundamental equation

¢
=V2 .
1= V2 i g

sin
| @)
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Fig. 1.13 A piece of the sub-Riemannian wave front W. The external surface is the sub-
Riemannian sphere S. The internal part is W — S. It presents smaller and smaller circles of
cusp singularities which converge to 0.

We get therefore

X = |Sinq()¢)| cos(0)
pr =" sin (6)
yi = yx1p1+ gofsmiz)zcosw)
_ ;qu,g(p) cos (6)sin () + (pfcosizgsm((p)
_ @+2sin%()cos(8) sin(8)—cos(¢) sin(¢)
49?2

We present in figure 1.13 pieces of S and W. The external surface is the sub-
Riemannian sphere S. It has a saddle form with singularities at the intersections
with the y-axis. The internal part is W — §. It presents smaller and smaller circles of
cusp singularities which converge to 0. Such a complex behaviour is impossible in
Riemannian geometry.

1.5.3 New Collaborations with Neurosciences and Psychophysics

In parallel to these mathematical developments, other enrichments of neurogeome-
try during the 2000s came from the continuation of the dialogue with the colleagues
of neurosciences and psychophysics we already cited.
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Fig. 1.14 In the left figure, Ax, represents the eccentricity of the distal retinal stimulus (the
white segment to the left) with respect to the stimulus localised in the MDF (the white seg-
ment to the right, in the grey rectangle). Ax. represents the cortical distance between the
neurons of V1 activated by the two stimuli. Ax; is the time of latency induced by the propa-
gation along the horizontal connection. In the right figure, above we see the MDF (“minimal
discharge field” defined by the spiky responses) in the (x,y) plane and its temporal evolution
in the space (x,#). We see below the SIF (“synaptic integration field”) defined by the sublim-
inal activity. The SIF is distinctly more extended than the MDF. (From Frégnac et al. [55]).

1.5.3.1 The UNIC Lab of Yves Frégnac

The links with the laboratory UNIC of the CNRS (Gif-sur-Yvette) directed by Yves
Frégnac (my successor in 2010 at the Ecole Polytechnique) have been particularly
fruitful. We cite some results relevant for neurogeometry.

(i) The functional architecture of V1 leads to redefinition of the classic concept
of receptive field as a domain of the retinal field where localised stimuli elicit spiky
responses. This minimal discharge field (MDF) is narrow and does not takes into
account the fact that horizontal lateral connections induce strong contextual ef-
fects which are important for contour integration, surface perception, segmentation,
figure-ground distinction, etc. Figure 1.14 by Yves Frégnac et al. [55] schematises
the way in which the MDF widens, thanks to the propagation of cortical waves along
the horizontal connections, into a synaptic integration field (SIF).

(i1) Experimental advances allowed consideration of the response of visual neu-
rons not only to simple stimuli, as bars or gratings, but also to natural images whose
structure is much more complex. We already mentioned that in section 1.4.2. The
results of the UNIC team are really interesting, for example the replicability of the
fine structure of the trains of spikes emitted by an axon is far more strong.
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1.5.3.2 Entoptic Vision and the Ermentrout-Cowan-Bressloff-Golubitsky
Model

Furthermore, Yves Frégnac indicated to me some remarkable works of Bard Ermen-
trout, Jack Cowan, Paul Bressloff and Martin Golubitsky on visual hallucinations, in
particular in their 2001 article [28]. Visual hallucinations belong to entoptic vision,
in particular the purely geometric ones which show morphological patterns such as
tunnels and funnels, spirals, lattices (honeycombs, triangles), or cobwebs. They are
very interesting because they are completely virtual (without any input). They were
studied during the 1920s by Gestalt theoreticians such as Kliiver (see [75]). They
are morphologies of phosphenes perceived after strong pressions on the eyeballs
(mechanichal stimulation), electro-magnetic stimulations (transcranial magnetic
stimulation, electrical stimulation via implanted micro-electrodes), exposures to a
violent flickering light, headaches, absorptions of substances such as mescaline,
LSD, psilocybin, ketamin, some alkaloids (peyote) (neuropharmaco stimulation),
or near death experiences (see Fregnac [54]). They depend upon an increased ab-
normal excitability of the photoreceptors and of V1. In the case of ingestion of a
substance, a qualitative explanation is that the substance shifts the balance of activ-
ity of the brain away from its ground state, by a vector representing the profile of
binding affinities at different receptors. The bifurcation of the brain state explains
the hallucination.

The key result of Bressloff ez al. [28] is that these hallucinations can be deduced
from the encoding of the functional architecture of V'1 into the Hopfield equations of
aneural net (see section 1.3.5). They work with the fibre bundle 75 : Vg = R? x S! —
R? with coordinates v = (a,8) labelling the “simple” neurons. Let E(a, 6,¢) be the
activity of V'1. They look for the PDE governing the evolution of E using a standard
Hopfield equation:

aE(g;GJ) — —OtE(a7 G,t) + ‘l; /0” /RZ W<a, 9|a’7 6/> o (E(a/7 6’7t)) dd' de’ +h(a,0,1)
where o is a non linear gain function (with ¢(0) = 0), & an external input, and
w{a,0]d’,0’) the weight of the connection between the neuron v = (a,0) and the
neuronVv' = (d’,0’), a a parameter of decay (¢ can be taken = 1) and [ a parameter
of excitability of V1. The increasing of i models an increasing of the excitability of
V1 due to the action of substances on the nuclei which produce specific neurotrans-
mitters (such as serotonin or noradrenalin).

Then the authors specify this general model by encoding the characteristic ge-
ometry of coaxial alignments into the synaptic weights, an hypothesis which we
interpreted as a fundamental link between neural nets theory and sub-Riemannian
neurogeometry. They impose (i) that the local “vertical” connections inside a
single hypercolumn must be of the form w(a,8|a’,0") = wi,. (6 —0') 6 (a—d')
where 6 (a —d') is a Dirac distribution prescribing a = a’ and wy,. (6 — 0’) is a
given even function (in general a Gaussian centered at 0), while (ii) the lateral
“horizontal” connections between different hypercolumns must be of the form
w(a,0]d',0"y = wiy(s)8(a—d —seg)5(0—0") where the factor &(60—06')
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prescribes parallelism 6 = 0’ the factor & (a — a’ — seg) (wWhere eg is the unit vector
along the direction 6) prescribes alignment, and wy, (s) is a given function depend-
ing only upon the distance. It is straightforward to verify that the synaptic weights
w are E(2)-invariant under the group E(2) = R? x O(2) and that the PDE is itself
E(2)-equivariant if 2 = 0.

If there exists no external input (A = 0) and if u = 0, that is if the subject is
in the dark and sees nothing, then his V1 activity is in its “ground state” (which
can be very complex: endogeneous activity, spontaneous noise, etc.). In the model,
the “ground state” is the homogeneous state £ = 0. It is stable and the activity E
measures the shift of the V1 state away from the “ground state” when & = 0 but
u # 0. Now, the analysis of the PDE shows that, as the parameter  increases, this
initial state £ = 0 can become unstable and bifurcate, for critical values . of u,
towards new stable states presenting spatial patterns generated by an E(2) symmetry
breaking. The bifurcations can be analysed using classical methods: (i) linearisation
of the PDE near the solution E = 0 and the critical value U.; spectral analysis of
the linearised equation; computation of its eigenvectors (eigenmodes); hypothesis
of periodicity with respect to a lattice A of R?. The last step is to reconstruct from
eigenmodes in V1 virtual retinal images using the inverse of the retinotopic map
between the retina and V1. The mathematical model fits extremely well with the
empirical data.

This model by Bressloff’s er al. [28] was later improved, for example in [27]. It
is fundamental for (at least) three reasons.

1. First, it is in resonance with the two main streams in modelling we previously
evoked: (i) brain dynamics, their attractors and bifurcations (section 1.2.6), (ii)
neural nets (section 1.3.5).

2. As much as neural nets are concerned, it is one of the first examples in which the
synaptic weights are not considered in a statistical way but as something which
encodes a functional architecture. The consequences are spectacular.

3. It offers a perfect example of the enormous gap separating, on one side, a phe-
nomenological lived-experience of perceptual geometry (to experience the hal-
lucinations) and, on the other side, a neural explanation. We can use it to test
the contemporary philosophical discussion between phenomenology and neu-
rosciences on “neural correlates of consciousness”, developed by colleagues as
David Chalmers, Alva No¢, Evan Thompson or Shaun Gallagher. It shows how,
in contrast to the beliefs of many philosophers, what No€ and Thompson call the
“structural coherence of perceptual experience” can be build up out of receptive
fields if we take into account neural functional architectures (see [105]).

(iv) Another important cooperation has been the organisation, with Jean
Lorenceau in 2003 in the Journal of Physiology-Paris, whose Editor-in-Chief is
Yves Frégnac, of a double special issue Neurogeometry and Visual Perception. The
interested reader will find, in addition to the articles of the three editors, texts by
Hess-Hayes-Field, Lee, Angelucci-Bullier, Kimia,.Zucker et al., Ermentrout et al.,
Bressloff-Cowan, McLaughlin-Shapley-Shelley, Wolf-Geisel, Morel et al., Leaci et
al., Tallon Baudry, Van Rullen, Sarti-Citti-Manfredini.
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Many other conferences (Valparaiso, Rome, Bolzano, etc.) played an important
role in these developments from 2000, as well as many working groups. First the
seminar “Géométrie et Cognition”, organised at the ENS of Paris by Giuseppe
Longo and Bernard Teissier. Then, from 2004, the research program NIM of the
CNRS (“Nouvelles Interfaces des Mathématiques™) on the “Neurogéométrie de V17
which grouped colleagues from the LPPA of Alain Berthoz at the College de France
(Jacques Droulez, specialist in models of vision, Chantal Milleret, specialist of the
corpus callosum, Daniel Bennequin, specialist of contact structures and singulari-
ties), and of the UNIC of Yves Frégnac. In 2006, the annual day of the SMF (Société
Mathématique de France) has been dedicated to the topic Géométrie et Vision with
talks by Jean-Michel Morel, Stéphane Mallat and myself.

An important development on the “vertical” part of the models V,; and Vg has
been introduced in 2006 by Olivier Faugeras and Pascal Chossat [34]. Their main
idea is that hypercolumns of V'1 encode (of course at a given scale defined by the size
of the receptive fields) not only local features such as orientation or curvature but
the whole symmetric definite positive “structure tensor” .7 of the (smooth) stimulus

I(x,y). 7 is given by
( I ) 2 aran
- dx dx dy

\ arar (31>2
dy dx dy

As they claim: “a hypercolumn in V1 can represent the structure tensor in the re-
ceptive field of its neurons as the average membrane potential values of some of
its neuronal population”. Now, the space 77 of 2 x 2 symmetric definite positive
matrices .7 is the 3D hyperbolic quotient space GL(2,R)/O(2) foliated in 2D
leaves by det(.7) (det = determinant). For det(.7) = 1, the leaf is the quotient
SL(2,R) /SO (2) which is isomorphic to the hyperbolic Poincaré disk ID. An inter-
esting problem is then to add the spatial variables a and look at the bifurcations of
activity functions E(a,z,t) defined on the fibre bundle R? x ID with base space R?
(group E(2)) and fibre D (group SU(1,1)).

In 2011, Olivier Faugeras, Paul Bressloff, Nicolas Brunel, Wulfram Gersmer
and Viktor Jirsa organised the first special trimester of the CIRM (Centre Inter-
national de Rencontres Mathématiques de Marseille-Luminy) dedicated to Theo-
retical, Mathematical and Computational Neuroscience. The program included a
course of neurogeometry as well as four conferences, among which one has been
organised by Paul Bressloff and Stephen Coombes and a second by Viktor Jirsa and
Gustavo Deco.

1.5.4 Neurogeometry and Control Theory (Agrachev’s Group)

We saw in section 1.5.2 how to compute the sub-Riemannian geodesics of the V;
model. What about the Vg model?
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1.5.4.1 The Geodesics of the Vg Model

In 2006 a colleague of mine at CREA, Helena Frankowska, specialist in control
theory and in the Hamilton-Jacobi-Bellman equation, put me in contact with An-
drei Agrachev of the SISSA (International School for Advances Studies) in Trieste.
With A. Sarti and G. Citti, we organised a meeting with him at the THP. He was
interested in our discussions on the use of sub-Riemannian geometry in problems
related to vision, and some fruitful cooperation quickly started with him, and with
some members of his group, in particular Jean-Paul Gauthier, Ugo Boscain and Yuri
Sachkov.

Andrei Agrachev rapidly found the formulas of the geodesics for Vg = SE (2)
endowed with the sub-Riemannian metric making {X;,X,} an orthonormal basis
of K,. The formulation of the problem in terms of control theory yields the differ-
ential system { = u;cos(6),y=u;sin(0),0 =u>}. Applying Pontryagin maxi-
mum principle, one gets the Hamiltonian on 7%V

o) =) (i +d) = ) (@.% 00 +(@%0)°)

1
=, (@ +@3)

= ; (((ﬁ*cos (6)+n*sin(0))* + 19*2>

where {@),®,,®3} are the components of the covector @ in the dual basis of
{X1,X,,X3}. Hence the Hamilton equations:

X= ggH* = E*cos? (0) +n*cos(0)sin(0)
y= gg{ =n*sin® (6)+E*cos (0)sin ()

3y 0H __ g%
o
n = gy:()

¥ = 7‘3}6] = (&*cos(0)+Nn*sin(0)) (—&*sin(0) +n*cos(0))

The sub-Riemannian geodesics are the projections on Vg of the solutions. As
£* = &; and n* = n are constant, if one writes them (£;, 1) = poe’, then &+ =
1pgsin(2(6 — Po)) and the constant Hamiltonian H = } (p3 cos® (6 — By) + 9*?)
yields the energy first integral p§ cos? (6 — i) + 9> = ¢ (withc = 1 if H = ) and
the ODE for 0 (¢, po and By are constants) 6% = 9*> = ¢ — pg cos? (6 — o). For
Bo = 0 (which is allowed by rotation invariance), the equations become:

%= pocos”(0)
y=pocos(0)sin(6) = 3Posin (26)
0 =v*

6 =9 = 1pZsin(20)
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Fig. 1.15 The segments induce an illusory contour which can be perceived as a square or
a circle. In general, initial perception consists in a circle, but it can bifurcate after a certain
period of sight.

For pp =1,20 =n—u, and u =2¢ = w — 20, one gets a pendulum equation
ji = —sin (u) with first integral ¢ + sin” (). As

il
¢ \/1 — ismz((p)
the system can be explicitly integrated using elliptic functions.

A fundamental property of these geodesics is that, under certain conditions, when
the deviation from parallelism between the boundary conditions (ay, ;) and (a2, 6,)
becomes too wide, they become singular and present some cusps. At the level of
the underlying pendulum equation, this corresponds to oscillating solutions. Yuri
Sachkov and Igor Moiseev [87] studied these cusps and explicitly constructed the
sphere, the wave-front and the cut locus of the sub-Riemannian geometry of SE (2).
Their complexity is remarkable.

These singularities are very interesting and can perhaps explain an intriguing as-
pect of illusory contours, namely their bistability. Let’s consider for example the
cross in figure 1.15. The segments induce (with the cooperation of V2 which in-
duces orientations orthogonal to the segments at their end points) an illusory con-
tour which can be perceived as a square or a circle. If we look at the image for a
sufficiently long period the percepts spontaneously and periodically bifurcates from
a case to the other one.

In the context of a variational explanation of illusory contours, this shows how
two models can compete: a geodesic model where the curvature is maximally
spread out and, on the other side, a piecewise linear model which concentrates all
the curvature in some angular points (the curvature is null everywhere except at
these points where it is infinite). In the case of an illusory contour between (a1, ;)
and (ay, 6,), experimental data seem to show that, if the difference |8; — 6, ] exceeds
a certain threshold, the geodesic model is replaced by the piecewise linear model.
We can formulate the conjecture that this bifurcation of variational models occurs
when the geodesics become singular because of the emergence of cusps. In fact a
cusp occurs when a geodesic has a “vertical” tangent, i.e. a tangent to the fibre of the

dt
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fibration 7y : Vg = R? x S' — R2. But, in neurophysiological terms this means that
some ‘“horizontal” excitatory connections between different hypercolumns must be
identified with “vertical” inhibitory connections internal to a single hypercolumn,
which is not possible. Bi-modality could then be caused by the fact that the period
of fixation “stresses” the selected model and allows its bifurcation.

1.5.4.2 Elastica Revisited

In section 1.3.3 we cited the elastica variational model [90] proposed in 1992
by David Mumford for illusory contours. It consists in minimising an energy
E= f},(onc2 + B)ds where 7 is a curve in R? with element of arc length ds. For
o = f = 1, its formulation as a control problem on the group G = SE (2) = Vg

can be written {t=cos(6),y=sin(60),0 = k} where the derivatives are taken

with respect to the arc length s and where x = 712 is the curvature of y. This

model is defined in the base plane R? with Euclidean metric, and not with re-
spect to the sub-Riemannian metric in G, because, in G, ds is not the element of
arc length. The element of arc length in G is dt = \/ 1 + k2 (s)ds and the curvature
o) = 0~ 40—

V1+K2(s)
$) K (s) = K¢ (s). Yuri Sachkov [110] investigated the elastica and compared them
to the sub-Riemannian geodesics. The problem is difficult because of the cusps.
He later deepened his investigation with Ugo Boscain, Remco Duits and Francesco
Rossi [23].

We also saw in section 1.3.3 how David Mumford gave a stochastic inter-
pretation of his elastica model by supposing that the curvature x(s) of ¥ in
R? is a white noise and that the angle 6(s) is therefore a Brownian motion.
In terms of control theory, this is equivalent to consider the stochastic process
{x=cos(6),y=sin(60),0 ~N(0,62)} where 6 is now a normal random Gaus-
sian variable of mean 0 and variance 6. This process has been studied by Gonzalo
Sanguinetti (in his thesis supervised by G. Citti and A. Sarti) and also by Remco
Duits and Markus van Almsick. It is no longer a mere diffusion but an advection-
diffusion mechanism described by a Fokker-Planck equation. The advection (the
drift) occurs along the X direction and the diffusion of 6 occurs along the X, direc-
tion. The fundamental solution of the Fokker-Planck equation being too complex in
the Vg model, the authors come back to the first order approximation of G = SE(2)
(its tangent cone or nilpotentisation), that is to our V; model based on the polarised
Heisenberg group. Let vy = (xo, Y0, 60) = (ao, 6) be an initial point in G and let us
follow a random walk starting at vo. Whithout noise, the trajectory is of course deter-
ministic and is a straight line satisfying the principle of strict coaxiality (without any
curvature): {6 = 0p,x = xo +cos(60)t,y =yo+sin(6)t}. If v=(x,y,0) = (a,0)
is a generic element of G and if P(v,¢) is the probability to find the random walk at
v at time 7, the evolution equation for P with initial condition Py (v) = P (v,0) is

satisfies the pendulum equation (with respect to
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2 12
‘Z) (1) = — (cos(e) ‘;f (vy1) + sin (8) ‘;’: (v,t)) + 39’; (1)
2
=X (P + G (0 (P(ur)

For the V; model where 0 is small, 6 ~ tan (0) = p, the Fokker-Planck equation is

therefore 5 5 5 2 52
P P P o P
ot (Vvt)_<ax (Vvt)+pay (Vat)>+ 2 apz (V,I)

The authors solve this equation and, to complete a contour with boundary conditions
vo = (agp,0y) and v; = (a1, 0y), consider two direction processes, a forward process
starting at vo and a backward process starting at vi. They compute the probability of
collision of these two random walks.

1.5.4.3 Sub-Riemannian Diffusion, Heat Kernel, and Noncommutative
Harmonic Analysis (Gauthier, Boscain)

We underlined in section 1.5.1.3 the importance and the difficulties of the sub-
Riemannian diffusion techniques. We evoked the works of some specialists and also
the neurogeometrical applications made by G. Citti and A. Sarti in this domain.
These techniques belong to the general theory of heat kernels on Riemannian and
sub-Riemannian manifolds. The specialised literature on them is enormous. We al-
ready cited Rothschild-Stein [109] and Nagel-Stein-Wainger [92]. Let us cite also
Davies [44], Varopoulos [136], Saloff-Coste [111], Kusuoka-Stroock [78], Coulhon-
Grigor’yan [40], and ter Elst-Robinson [127].

On their side, A. Agrachev, J-P. Gauthier, U. Boscain and their Ph.D. student F.
Rossi, following previous results by Hulanicki [71], gave an “intrinsic” formulation
of the sub-Riemannian Laplacian and proved in 2009 [5] a general theorem for the
unimodular Lie groups (i.e. whose Haar measures, invariant to the left and to the
right, are identical) of dimension 3 endowed with a left-invariant sub-Riemannian
geometry. They use the noncommutative generalised Fourier transform (GFT) de-
fined on the dual space G* of G (the set of irreducible unitary representations in
Hilbert spaces) to compute the heat kernel associated to the hypoelliptic Laplacian
Ay = X]2 —|—X22, i.e. the sum of squares of the generators {X;, X} of the distribution
2 . The Laplacian is hypoelliptic due to the fact that " is bracket generating, i.e.
satisfies Hormander condition.

The use of the Fourier transform on groups to compute heat kernels and fun-
damental solutions of diffusion equations has a long history. The interested reader
could consult the already cited pater of Geller [58], Christ ef al. [35] and more
recently the book of Calin-Chang-Furutani-Iwasaki Heat Kernels for Elliptic and
Sub-Elliptic Operators [30].

In the case of the polarised Heisenberg Lie group V;, we have seen in section
1.4.9.6 that, according to the Stone-von Neumann theorem, the non trivial unirreps
are group morphisms 7, from V; to the group % (%) of unitary automorphisms of
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the Hilbert space .# = L? (R, C), morphisms parametrised by a real scalar A # 0.
They are of the form (u (s) € 7):

m Vy— w (%)
v = m ) H = H
u(s) = e*ot)y(s 4 p) .

There exists a measure on the dual sace V7, called the Plancherel measure, given by
dP(A) = AdA which enables making integrations. To compute the Fourier transform
of the sub-Riemannian Laplacian A ,, one looks at the action of the differential of
the unirreps on the left-invariant vector fields X on V;, which are given by the left
translation of vectors X (0) of the Lie algebra ¥} of V. By definition,

d

dmy, : X —dmy, (X) := Ut X

T, (e
t=0

. SA . .
and one gets the Fourier transform X; = dm; (X;). Computations yield X, (0) =
(1,0,0), &1 = (2,0,0), ), (1) u(s) = e™u(s),

—2 d
% u(s) = dm (uls) = | m (@) uls)
t=0
_ d iAts _
= 5 t:oe u(s) =iksu(s)

and X; (0) = (0,0,1), &2 = (0,0,1), my ("2) u(s) = u(s+1),

)/(;)Lu(s) =dmy, (Xp)u(s) = jt B 7 (¢) u(s)
_d _du(s)
= 4 [:()u(s—l—t)— g

The GFT of the sub-Riemannian Laplacian is therefore the Hilbert sum (integral on
—A
A with the Plancherel measure dP(1) = AdA) of the A with

Z}Au(s) = (()/(Il)z—i— ()/(El)z) u(s)= dz;;gs) —225%u(s) .

This equation is nothing else than the equation of the harmonic oscillator.
The heat kernel is then

P(v1) = /V; Tr (affm @)) dP(1),1>0.

—2
If the A » have discrete spectrum and a complete set of normalised eigenfunctions
{uﬁ } with eigenvalues {ot,fL } then
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P(v) = /V; (geaﬁf @,ﬁ,m v) (ul)>> dP(1),1>0.

It is the case here. The eigenfunctions of the harmonic oscillator are well know and
satisfy:

dup (s) .22 2 AA
dl;z —A%s Uy (S) = Oy uy (S)
with o} = — 2"; ! They are essentially the Hermite functions scaled by A

2
ul (s) = (2"n!\/717)_é Aie A H, (\/As>
H, being the n-th Hermite polynomial.

In the case of SE (2) = Vg, A. Agrachev, J-P. Gauthier, U. Boscain, and F. Rossi
found explicit formulas for the heat kernel. The dual V§ of Vy is this time the set of
unirreps in the Hilbert space . = L2 (Sl , (C). These unirreps are parametrised by a
positive real A and are of the form:

X Vg — U (H)
v o= 2Zr) A s H
W(e) — eil(xsin(9)+ycos(9))w(9_|_a) )

The Plancherel measure on V5 is still dP(A) = AdA. As we have previously ex-
plained it, we get 27 (¢X1) y (6) = ¢15in(0) yr (9) and

A d
Xy@)=d2t(xyy(e)= | 27 (M) y(e)
=0
_ eM5O)y (9) = idsin (0) w (6)
dt|,_

and 2% (™) y(0) =y (0 +1)and

%' y(0)=d2” () y ()= | 2 yo)
d _ay(6)
= 5 z:oW(e—H)_ 10

—A
The GFT of the sub-Riemannian Laplacian is therefore the Hilbert sum of the A
with

A wie)= ((E*)Z (fc?)z) wie) =¥ 22 o) (6)
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which is nothing else than the Mathieu equation. The heat kernel is
—2
P(vt) = / Tr (em% 2 (v)) dP(A),t>0.
Vs

2
The A have discrete spectrum and a complete set of normalised eigenfunctions
{l[/,/} } with eigenvalues {ot,ﬁI } and therefore

P(v,1) = Aj ( n oot <y/,%,3ﬂ ) (wﬂ)>) dP(A),1>0.

N
The 27-periodic eigenfunctions of the Mathieu equation satisfy:
d*y (6)
do?

and, as sin® (6) = 5 (1—cos(20)), this means:

—A%sin® (0) y (6) = Ey ()

2 2 2
d ;’gg") _ '12 w(8)—Ey(6) + ’12 cos (26) y(6) =0
d*y(6)

A2 A2
P +(a72qcos(26))w(9)207witha=7< +E> andg=—" .

2 4

The normalised 27-periodic eigenfunctions are known: they are even or odd and
denoted cen(6,q) and sen(0,q). The associated a,(g) and b,(q) are called charac-
teristic values. There can exist parametric resonance phenomena (Arnold tongues)
whena = — (’122 +E) =n?.

The authors solved also the problem for SU (2), SL(2) and SO (3).

The sub-Riemannian diffusion is highly anisotropic since it is restricted to an an-
gular diffusion of 0 and a spatial diffusion only along the X direction. It is strongly
constrained by the “good continuation” Gestalt law and its difference with classi-
cal (Euclidean) diffusion is spectacular. The figure 1.16, due to Jean-Paul Gauthier,
starts with the image of an eye masked by a white grid and applies sub-Riemannian
diffusion until the grid has vanished. In spite of this very important diffusion the
geometry of the image remains quite excellent.

During Fall 2014, U. Boscain and L. Rifford will organise a special Trimester at
the THP in Paris on Geometry, Analysis and Dynamics on Sub-Riemannian Mani-
folds. Several geometers we have cited will be present: Montgomery, Bryant, Am-
brosio, Agrachev, Gauthier, Pansu, Bellaiche, and many others. A workshop on
Neurogeometry will be organised with G. Citti and A. Sarti.

1.5.5 Confluence between V; and Vg Models

We analysed two neurogeometrical models of V1, V; and Vg. It is interest-
ing to notice that one can easily construct an interpolation between the two
models. Mohammed Brahim Zahaf and Dominique Manchon [143] constructed
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Fig. 1.16 Sub-Riemannian diffusion in Vg according to Jean-Paul Gauthier. The initial image
is an eye masked by a white grid. Sub-Riemannian diffusion is applied until the grid has
vanished.

such an interpolation given by a family of models V* and studied the conflu-
ence of the corresponding differential equations in the Fourier space The model
V& can be summarised by the following table: X* = cos(0) gx + sm((xe) Iy

X§ = 5y, X = —asin(a6) § +cos(6) 5, [Xl“,Xz} —X¢, [X5,X¢] = 02X,
(X, XE] =0, V¥ = SEq (2) with Sf, = ,_*, . # =L*(S},C), X (y(0)) =
izasin(a0) y (), X§ (y(0)) = v'(0), A : y"(0) — 5 sin? (00) y(6),
v (0) + (,u — fg sinz((xe)) v (0) = 0. For o = 1, V! yields the Vg model and
when o — 0, for small 6 denoted p, Vo yields the V; model.

1.6 Conclusion

In this survey, we tried to situate the elements of neurogeometry in their context. We
summarised their principles both on the experimental neurophysiological plane and
on the mathematical one. We showed how neurogeometry connects two mathemati-
cal worlds: (i) the one of perceptual geometry, in reference to Thom, Zeeman, Berry,
Koenderink and Mumford, (ii) the one of neurogeometry in its proper sense, mod-
elling the functional architectures in terms of phase-dislocations, Lie groups, Carnot
groups, Cartan connections, sub-Riemannian geometry, wavelets, coherent states
and noncommutative harmonic analysis in reference to Citti and Sarti, Agrachev,
Faugeras and Mallat.

Everything remains to be done in this field. First to “go down” to the underlying
microphysical level of the individual neurons and their spikes, governed by equa-
tions of Hodgkin-Huxley type. In fact, Neurogeometry works at a meso-neuronal
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level. Then to “go up” to higher visual areas of the extrastriate cortex, from V2
to MT (we focused on the striate area V1). However, in spite of the very partial
character of these results, we hope we showed how we can start to understand the
constitution of an external and “transcendent” perceptual geometry from internal
and “immanent” neurogeometrical algorithms.

Sometimes we proposed a parallel with fundamental physics. It is more than a
vague analogy. We think that, as Gestalt theoreticians anticipated in a speculative
way, perception depends upon a “field theory” and we tried to present some mathe-
matical structures which enable to conceptualise and compute it.
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Chapter 2
Shape, Shading, Brain and Awareness

Jan Koenderink and Andrea van Doorn

Abstract. Shading is one of the generic “monocular depth (and shape) cues”. It is of
conceptual interest because it apparently implies “causal relations” between the ge-
ometry of the scene in front of the observer, the formal description of brain activity,
and the visual awareness of the observer. These are three disjunct ontological levels,
so the very notion of “causal connections” is problematic. Some silent assumptions
in current accounts indeed invoke “magic”, we identify internal and external local
sign as instances. We attempt an account of the shading cue that avoids at least some
of these pitfalls. We conclude that (for the human observer, machine vision has dif-
ferent objectives) the shading cue allows “direct perception” of surface shape.

2.1 Structure of the Scene in Front of an Observer: Radiometry

The radiometric problem of “Shape From Shading” is simple in principle, but fre-
quently intractable in practice [3,7, 12, 16,57]. Consider the simplest case.

In the simplest setting, one considers a surface being illuminated with a uni-
form, unidirectional beam. This constraint may obtain in real life, for instance,
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direct sunlight is a good approximation [18, 30, 43]. (However, it is the worst set-
ting for effective shading, overcast sky being much more useful, as any professional
photographer knows.) The surface is supposed to be uniform. This may obtain in
real life, at some reasonable scale. For instance, a blank piece of paper will do at the
millimeter scale. The BRDF (Bidirectional Reflectance Distribution Function [47])
is supposed to be constant. This is the so called “Lambertian assumption” [12,41].
Although such surfaces don’t exist, the constant may obtain approximately, if the
range of surface spatial attitudes is not too large. For instance, a piece of blotting
paper is a good approximation for angles of incidence and observation not too far
from normality. Vignetting is supposed to be absent. “Vignetting” indicates occul-
tation of the source by parts of the object [27]. Thus, various parts of the object
are illuminated by mutually different “effective” sources. An example is an apple
seen under overcast sky illumination. The constraint can be met in many cases, for
instance direct sunlight away from the attached shadow boundary. Multiple scatter-
ing is supposed to be absent. That constraint can only be met for convex objects,
which is very restrictive [27]. However, a surface that is fairly flattish yields a good
approximation [27].

Notice that these constraints are quite limiting in their totality. However, the con-
straints are automatically met if you sufficiently limit the region of interest (ROI).
Such a constraint serves to select approximately homogeneous and flattish surface
patches. However, the “effective” source might well be quite different from the nom-
inal one. For instance, it could be modulated by vignetting and/or multiple scattering
effects. If one considers smaller ROIs the problem becomes simpler, but the effec-
tive direction of illumination becomes more variable.

This makes it likely that biological “shape from shading” [8-10, 45, 56] will be
limited to rather smallish ROI’s, and makes it likely that methods that do not explic-
itly require knowledge of the effective direction of illumination will be preferred.

2.1.1 Shading Geometry

In the simplest case, the radiance incident upon the eye is independent of the viewing
direction. It depends only on the structure of the incident beam. In the simplest case
we can summarize the incident beam by a “light vector”, which is a suitable average
over the directions represented in the beam [36-38,46]. The radiance scattered to
the eye is proportional to the irradiance caused by the incident beam. If the BRDF is
approximately constant, the angle of incidence is crucial. The radiance scattered to
the eye is proportional to the illuminance, which is proportional to the cosine of the
angle of incidence. This implies that the scattered radiance as a function of location
is approximately proportional to the change of spatial surface attitude [28,29,31,33,
53]. Notice that there are numerous complicating factors whose influence we have
somehow ignored. The degree to which these approximations “work’ depend all on
the size of the ROI. They also depend upon the form of the BRDF, vignetting, and
so forth, something we will ignore from here on, but should not be forgotten.
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2.1.2 OQutline of the Paper

In order to proceed, we need to connect brain activity to scene geometry, to physics,
and to visual awareness. We will do this in steps. First we discuss the nature of the
relevant brain activity. Then we discuss the relevant nature of the “scene”, which
involves merely the local surface shape landscape. Then we have to connect these
(ontologically distinct) universes in some way. Finally, we need to establish the
relation to visual awareness. Needless to say, this is a very ambitious program, and
we are unlikely to succeed. The goal of the exercise is mainly to obtain a more
focussed conceptual grip on the problem.

2.2 Visual Front-End

Visual awareness is perhaps best understood as a “user interface” [25]. The user in-
terface depends mainly on templates of various sorts. Microgenesis tries templates
by running “reality checks” against the front end neural activity. As a result, such
“hallucinations” may gain any desired degree of objectivity.

The “reality checks” are against the activity of the “visual (“optical” would have
been more apt) front end”. It is hard to define the boundaries of the front end. Here
we simply talk of V1, the primary visual cortex. However, we are prepared to ex-
tend this definition when opportune, neuro-anatomy proper not being our primary
interest.

The visual front end is a volatile buffer, that is continually being overwritten by
the world (the radiance at the corneas). It is in many respects like the beach, which
“represents” footprints. Wet (but not too wet) beaches are better than dry beaches in
that respect. Likewise, the front end is optimized to retain useful structure, and dis-
card useless junk. Moreover, it has a number of limiting constraints. For instance, at
any location, the front end optimizes dynamic range by adjusting the local set point
and gain. These are not forwarded to more remote parts of the brain. The local set
point and gain are simply lost. Only in very local regions can one count on the gain
to be constant. An example might be a “column”, but we can’t be sure.

2.2.1 Brain Activity due the Optical Structure

One simple principle used by the front end is to prefer derivatives of some useful
degree over absolute values [24]. This is useful (at least in principle), because it
obviates the need for absolute calibration. The generic example is the Laplacean
(“Mexican hat receptive field”), which encodes the difference between a local re-
gion and a larger one. Another principle is to prefer ratios over absolute values.
The ratio of two values of a non-negative quantity is evidently independent of the
absolute calibration. A combination of these principles is to retain the “contrast gra-
dient”. The “contrast gradient” may also be defined as a “logarithmic derivative”
(same thing). For a retinal illuminant /(x,y) (Cartesian spatial coordinates {x,y}),
the contrast gradient is (defining Iy = I(xo,y0)):
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Such a contrast gradient might be available in the visual front end, at least in regions
of limited extent. Over larger regions one runs into problems because the location
dependent gain factors cannot be assumed to be available.

The contrast gradient is a vector quantity. The front end represents it in terms
of an overcomplete basis of first order directional derivatives. The kernel of such a
derivative in the x-directions is [22]

_ xz +y2

(&} 252

(2.2)

where the parameter s parameterizes the scale of the derivative operator. In polar

coordinates {p = \/x2+y2, ¢ = arctany/x}, the derivative in the direction ¢ is
_

e 252

2mst (2.3)

E(p, s, ¢0) = pcos(¢ — ¢o)
The overcomplete basis is indexed by ¢y, it is a “cortical column” of “edge detec-
tors”. The contrast gradient is represented through the total activity in the column. It
is the first Fourier component of the activity. All other Fourier components may be
ignored. They represent noise. The overcomplete basis has the advantage of yielding
a very robust representation, and not forcing you to decide on a fiducial coordinate
frame.

Notice that the edge detector kernel depends upon an additional parameter s. This
is a nonnegative quantity, that represents the scale. The edge detector yield exact first
order directional derivatives at some finite scale [22]. We assume that the brain has
a range of scales available. Thus, the topic of “scale space” is of basic importance.

Both the size of the ROI, and the scale of computation, will depend upon the
task at hand. The square of the ratio of ROI diameter and scale value represents
the number of degrees of freedom in the local representation. We expect it to be
typically limited, not exceeding a small “icon” (as familiar from computer desktops)
in complexity.

2.2.2 Representation of the Optical Structure

In the previous subsection we discussed the activity of the front end “at a point”.
This is obviously not sufficient for our goal. The contrast gradient (modulo gain) at
a point is useless. What is needed is the spatial variation over a region of (at least
approximately) constant gain. We need a contrast gradient field.
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2.2.2.1 Local Sign

The first problem one meets here is that of local sign. How do brain “algorithms”
take account of location? This is a fundamental problem, first noticed by Lotze [42],
that is conventionally ignored in contemporary accounts. Many people apparently
believe that somatotopy renders the problem a non-problem. This is naive. It is
enough to consider a thought experiment in which a super-surgeon carefully per-
mutes V1 cells, taking the utmost care to leave all mutual connections intact. Will
this produce a local deformation of the visual field? If you don’t count on magic,
your answer has to be no. The “machine” is still the same, but the somatotopy has
been destroyed.

There is one way to deal with local sign locally. One designs a complex receptive
field that implements the complete algorithm. This takes care of the problem. Local
sign has been “encapsulated”. An “edge detector” is the simplest instance [12]. It is
really a bilocal entitity, wrapped up into a purely local one.

In general, the local sign problem has never really been solved. The problem is
too hard to tackle in this paper. We will simply ignore it, but we will acknowledge
the problem, and use it to change our treatment to rather formal, and abstract, when-
ever the local sign issue arises. There seems to be little use in pretending to suggest
“neural implementations” when major basic problems are left open. Of course, our
formal treatment will be implementable in principle once ideas concerning local
sign take more rigid form.

2.2.2.2 The “Contrast Gradient Image”

The “contrast gradient image” is a formal description of the structure of V1 activity
that depends upon the local sign issue. Thus we treat it formally, instead of suggest-
ing some “neural network” implementation. We make the essential role of local sign
explicit.

The contrast gradient field is a map of part of the visual field (this is where local
sign comes in) to the space of possible gradient values. Both spaces are two-fold
extended. The patch of the visual field is a topological disk, say. A convex region
will be most convenient. The “gradient space” is a vector space, with a well defined
origin. We will mostly consider a disk centered on that origin. The diameter of the
region depends upon the dynamic range of the edge detectors.

The map is “from the plane into the plane” [58], thus its generic singularities will
be folds and cusps. Non-generic cases will no doubt occur, mostly of a degenerate
kind. For instance, a region of uniform illumination will map on the origin, thus the
map will collapse on a point. We will mainly be interested in the generic case.

The singular entities are curves (the folds) and points (the cusps) [1]. (See fig-
ure 2.1.) The configuration of singular elements alone suffices to characterize the
contrast gradient image in a qualitative (or, rather, semi-quantitative) way. We will
consider this contrast gradient image as the “representation of the optical structure”
in the visual front end. It contains all that is of relevance to the shading cue (“cue”
is a notion due to Berkeley [4]), and nothing else.
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Folds occur when the Jacobian of the image vanishes, that is to say
when ‘932*' aa(;“ — ‘936;*' a;;v = 0. This implies Iy lyy — Ify = 0. This occurs on curves.
Cusps occur when the gradient of the Jacobian is tangent to the curve, they occur as
isolated points [1].

The contrast gradient image is a data structure that makes the spatial variation of
the local edge detector activities explicit. It is necessary, because the raw presence
of a distribution of edge detector activities in the brain only contains this structure
implicitly. Because of the retinotopic structure of the brain it is visible to an external
observer of V1. For instance, it might be revealed through some smart imaging
technique. However, it is not available to V1 itself, because VI cannot “see itself”.
It is a sufficient summary of what might be “seen” (that is to say, made explicit as
some data structure) by some “higher” part of the brain.

The very concept of “contrast gradient image” depends upon the existence of
a local sign. The more primitive apparatus (the edge detectors) is simple and well
understood. The local sign is not. We will not speculate on the form the contrast

gradient image might take in terms of higher brain activity.

2.3 Local Shape

The description of “local shape” has nothing to do with the brain per se. It is a
geometry of certain aspects of the scene in front of the observer. It does not even
specify the optical structure impinging on the eyes directly. With local shape we
mean the “curvature landscape” of the boundary surfaces of environmental objects.
“Local” implies that we study the curvature in the neighborhood of a point. Of
course, a certain scale is always implied, since there exist no smooth environmental
surfaces if the scale is left unspecified. A local, smooth surface, is an entity that can
be described sufficiently well by way of a Taylor expansion up to some reasonable
order (say less than ten). This implies both a scale and an extent [23]. One typically
has a choice here. For instance, a treetop can be treated as a surface on one scale, but

Fig. 2.1 Examples of the generic singularities of the contrast gradient image. At left a fold,
at right a cusp. Near a fold gradient space is either covered zero or twice, near a cusp once
and thrice.
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not on the scale where individual leaves appear. This type of description has been
intuitively used in the visual arts for centuries.

A local surface element can be located by its visual direction and distance. It has
a spatial attitude that may be specified by its slant and tilt with respect to the visual
direction and the vertical. This specifies the surface element as a “planelet” in the
sense of Barrow. The deviations from the tangent plane may be denoted “surflets”.
In the lowest relevant order a surflet is described by its curvature, a “shapelet”. The
curvature varies from point to point, one has a “curvature landscape”. The formal
description is simply the classical differential geometry of Euclidean space as pio-
neered by Gauss.

Perhaps unfortunately, the classical theory is not particularly fit to describe the
geometry as relevant to a stationary, monocular observer. We develop the necessary
geometry in the next subsection.

2.3.1 The Geometry of “Pictorial Space”

When you look at a painting you are visually aware of a flat object, embedded
in Euclidean space (that is the “space you move in”), covered with pigments in
some simultaneous arrangement. When you look info the painting (we assume a
“realistic” rendering, say a generic late nineteenth century landscape painting), you
become aware of a “pictorial space”. This pictorial space is fully detached from the
space you move in. For instance, both your eye and the picture surface are in the
space you move in, but neither of them is to be found in pictorial space. The space
you move in and pictorial space don’t even meet in the picture surface (as the world
and the reflected world do in a mirror surface).

The geometry of pictorial space has been extensively researched, and formal ac-
counts with excellent predictive power exist [32—35]. We use this formalism here, as
it applies equally to pictorial space and to the visual space of a stationary, monocular
observer.

Pictorial space has the structure of a fiber bundle [17,21, 33], namely the depth
domain over the visual field. For simplicity, we describe the visual field as a Eu-
clidean plane E2. As a convenience, we fit it with a Cartesian coordinate frame, we
denote the coordinates r = {x,y}. The origin is arbitrary, for convenience we place
it at the center of the ROI. The depth domain (parameterized by the z—coordinate)
has the structure of the affine line A'. There is no origin of the depth domain, since
“absolute depth” is a non-entity, and there is no preferred scale. Thus, pictorial space
has the structure E? x A!. In the simplest cases depths on different fibers are coordi-
nated with a global, linear gauge field. The gauge can be geometrically represented
by two parallel, planar cross sections, one defining an arbitrary origin, the other
an arbitrary unit point, on each fiber. The gauges are idiosyncratic and often change
over time, even for a single observer. The group of similarities (“proper movements”
forn=y=1)
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Fig. 2.2 Action of similarities on spheres of the second kind in pictorial space. At left the
action of similarities of the second kind (parameter yin eq. 2.4). At center and right the action
of isotropic rotations (parameters py, py in eq. 2.4).

X = n(xcos@ —ysinQ) + 1, (2.4)
Y = n(xsing +ycosp) + 1, (2.5)
7 =px+py+yi+, (2.6)

describes gauge transformations [33,49,54,59]. It is an 8-parameter group, whereas
the corresponding group in Euclidean E3 is only 7-parameter. We will henceforth
setn=1,¢=0,and T = {7, 7,} =0, that is to say, ignore the Euclidean trans-
formations in the visual field. The remaining transformations are a parabolic rota-
tion, parameterized by R = {p.,p, }, a “‘similarity of the second kind” parameterized
by 7, and a depth translation, parameterized by 7,. (See figure 2.2.) The translation
merely shifts the gauge planes along the fibers, and is generally irrelevant. We ig-
nore it here. The parabolic rotation affects the spatial attitude of the gauge planes,
and the similarity affects their spacing.

A “(depth) relief” is a cross section of the fiber bundle. It can be specified as a
depth map {x,y,z(x,y)}. We will consider depth maps modulo arbitrary gauge trans-
formations. This describes the nature of pictorial reliefs in considerable quantitative
detail.

The geometry of pictorial space is no doubt due to the fact that the optical struc-
ture at the eye specifies the scene in front of the observer only partially. The gauge
transformations describe the generic ambiguity for many “depth cues”. Consider
the shading cue for instance. Suppose the ROI is filled with a uniform illuminance.
Could it be due to an illuminated surface in the scene? Sure, it could, although this
is not necessarily the case. Suppose it is, what may one infer with regard to the
shape of the surface? Well, if the illumination is uniform, then (in the generic case),
the surface has to be planar. Notice that any plane will do. Thus the set of possible
inferences is simply z(x,y) = 0, modulo arbitrary gauge transformations.
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2.3.2 Differential Geometry of Pictorial Space

The differential geometry of pictorial space is similar to, but different from, the fa-
miliar differential geometry of Euclidean space E3 [20,33,49, 54, 59]. Consider the
metric of E> x A! induced by the gauge transformations. The Euclidean distance in
the visual field is conserved, it may be used as the metric of pictorial space. Notice
that this renders all points on a single fiber as coincident. The fibers are isotropic
(null-)directions. Two points on a single fiber can be assigned a “special distance”,
which is also conserved. However, the special distance applies only to such “parallel
points”. The angle measure in the visual field is elliptic, just the familiar (periodic)
Euclidean angle. In an isotropic plane, the angle measure is parabolic, thus not peri-
odic. It is measured as the arc length of a “unit circle of the first kind”. For instance,
in the plane y = 0, the unit circle with center at the origin consists of the lines x = +-1.
Thus the slope of the line from {0,0,0} to {x,0,z} is simply z/x.

A regular plane is a planar cross section. Thus, it does not contain an isotropic
direction. The fibers meet this plane orthogonally, that is to say, the isotropic an-
gle is infinite. Thus the isotropic direction is the normal of any regular plane. The
implication for differential geometry is that the concept of “surface normal” can-
not play the dominant role as it does in the conventional treatments of Euclidean
differential geometry. One uses the tangent planes instead. The tangent planes can
be parameterized by their slopes, that is their depth gradient {zy,z, }. The map of a
cross section to its gradients, is the “gradient image” of the relief. It can be regarded
as the isometric stereographic projection of the “spherical image” of the relief. The
spherical image of a surface is a map of the surface on the “unit sphere of the second
kind” {x,y, (x* +y?)/2} by parallel tangent planes. The stereographical projection
maps {x,y, (x> +y%)/2} on {x,y,0} (the “center” of the sphere is {0,0,}). The
stereographical projection is evidently isometric, not just conformal. Notice that this
is analogue to the construction of the Gaussian normal spherical image in Euclidean
differential geometry. Gauge transformations simply translate and/or magnify the
spherical image. Thus, the relative metrical structure of the spherical image defines
the curvature landscape.

Near the origin we may transform any relief to the form

1
(axxx2 +2ayxy + ayyyz) + O[x,y]3, 2.7)

Z(x’y) = 91

by adopting a suitable gauge. This is the shapelet descrion we use in this chapter. The
differential invariants K = aycay, — ay, and 2H = ay, + ay, then define the Gaussian
and the mean curvatures [15,23]. Notice that these expressions are much simpler
than the corresponding expressions for the Euclidean case. Reason is the absence of
“foreshortening”.

2.3.2.1 Shapelet Space

The deviation from planarity near a point is denoted the “surflet’ at that point, adapt-
ing Barrow’s formalism [5, 11]. (See figure 2.3.) The lowest non-trivial description
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Fig. 2.3 “Surflets” can be scaled and added. Here the umbilical surflet at left and the saddle-
shaped surflet at center are added so as to yield the cylindrical surflet at right.

is in terms of the second order terms in a Taylor expansion about the origin. In the
geometry of pictorial space that implies equation 2.7. A shapelet may be parameter-
ized by the coefficients {ay,axy,ayy }, and indicated as a point in “shapelet space”.
This is useful, because it allows us to regard “curvature landscapes” as surfaces
(maps of the visual field, thus immersions) in shapelet space.

The parameterization by {a.,dxy, @,y } is not very useful, because referred to the
arbitrary Cartesian frame. One may do better by rewriting the form as

rngyz—i-sxy-ktxz;ryz, (2.8)
where
1
r = 5 (A —ayy), (2.9)
S = Qyy, (2.10)
t = ; (axx +ayy), (2.11)

the point being that the shapelet (x> +y?)/2 is rotationally invariant, whereas the
shapelets (x2 —y?) /2 and xy transform as a pair under rotations of the Cartesian
frame. Thus, f and w = V12 + 2 are differential invariants, whereas ¢ = ; arctans/r
describes the “orientation of principal curvature” with respect to the Cartesian
frame. It may be called the “attitude” of the shapelet, whereas the ratio w : ¢t de-
scribes its shape proper, and V12 +w? its amount of curvature.

The “Casorati curvature” [6] C = v/r2 + s2 + 12 can be interpreted as the R.M.S.

deviation from planarity (simply defined through a suitable limiting process), or also

as its R.ML.S. sectional curvature, or (again equivalently) \/ (k7 + k37)/2, wherek] »

are the “principal curvatures”: in a frame rotated to set ¢ = O the shapelet is de-
scribed as (Kk1x* + k»y?)/2. Vanishing planarity implies C = 0, thus for a proper
shapelet one has C > 0.

The parameter

K+ K t
o =arctan ' — arctan , (2.12)
K w
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Fig. 2.4 The shape index series of quadric surflets. Notice that the umbilicals are at the end-
points. The symmetrical saddle at zero is congruent to its own mould. Shapes of opposite
signs are related as object to mould.

(where we use the convention k| > k3) is a pure shape descriptor, the “shape in-
dex” [23]. It assumes values in the range [—7/2,+7m/2). (See figure 2.4.) At the
endpoints of the range the shapelet is “umbilical”, that is rotationally symmetric, so
the orientation ¢ is not defined. At ¢ = 0 the shapelet is a “symmmetrical saddle”,
meaning that its inverse (inverted depth) is congruent to itself. For non-zero shape
index the shapelet and its inverse are in the relation of a shape to its mold.

One has

t = Csino, (2.13)
r = Ccosccos2Q, (2.14)
s = Ccososin2Q, (2.15)

thus {rs,t} and {C,0,2¢} are natural Cartesian and polar coordinates of
“shape space”. The space is naturally polarized by the r-direction. The line r =s =0
contains umbilicals, and the principal directions are undefined on it. The right cir-
cular cones of semi-top-angle /4 with this line as axis are the locus of cylindrical
shapelets. Inside the cones one finds hyperbolical (saddle-like) shapelets, outside
elliptical ones (either like the outside, or like the inside of egg shells).

Because absolute size is largely irrelevant in vision, it is natural to define a Rie-
mann line element [52]

dr? + ds? + dr?

2 =du’+do?+4cos’ 0 dg?, (2.16)

(where u = logC) as a natural metric for shape space. The geodesics are planar
logarithmic spirals in planes through the origin (of course only arcs contained in a
half-space are relevant). In this metric the shape index scale (for constant Casorati
curvature and orientation) is linear, so is the log-Casorati curvature (for constant
shape index and orientation) scale, and so is the orientation (for constant shape
index and Casorati curvature) scale. On spheres of constant Casorati curvature the
spherical distance scaled by log-Casorati curvature is a geodesic distance.

2.3.2.2 Curvature Landscapes

A “curvature landscape” is a field of shapelets. We can represent it as a map of
the ROI in the visual field into shape space. It will generically be an immersed
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Fig. 2.5 Examples of a “Whitney umbrella”. At left the surface, at right the curvature land-
scape in shape space.

Fig. 2.6 A triple point

surface. Such immersions tend to have only mild singularities (there is lots of room
in the space), generically they are Whitney umbrellas [14] (or cross-caps) (fig-
ure 2.5) and triple points (figure 2.6). Whitney umbrellas occur when two relations
between the cubic terms in the Taylor expansion are simultaneously satisfied, thus at
isolated points (the condition i8 (ax ) (ax)y — (ax)}%y =0 A (ay)x(ay)y — (ay))zcy =
0). Because shading is proportional with the slope of the surface in some direction,
itimplies Iy, — Ify = 0, thus a point on a fold of the contrast gradient image, when
the surface is illuminated.

Notice that not just any immersed surface represents a curvature landscape, in
order to classify, the so called “integrability equations” (in the Euclidean case these
are the Codazzi-Mainardi equations) have to be satisfied. We are confronted with a
Pfaffian problem. For instance, it is evidently required that da,./dy = dayy/dx, and
dayy/dx = day,y,/dy. This means that there is a constraint on curvature landscapes,
and we cannot simply apply the generic taxonomy of singularities.

In one experiment we generated hundreds of high order, random polynomial sur-
faces. One finds Whitney umbrellas galore. Triple points are much harder to find, but
that is because one has to search over large regions, they are not local phenomena.
They certainly occur, because one may always start with three intersecting planes
and assemble them into a single surface.
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The notion of a “curvature landscape” is necessary if the local description stops at
the second order. Of course, similar notions will still be necessary if one includes the
cubic and quartic structure in the local description. The curvature landscape yields
a global data structure in terms of a map. This is similar to a geographic description
that mentions the relative locations of local features like mountains, lakes, and so
forth. (“Mountain range” being a simple example.) Without such a global map one
has only a bag of mutually unrelated features. In our case the “glue” is what might
be called “external local sign”, an awareness of the directions in the space external
to the eye corresponding to retinal locations.

2.4 The “Shape From Shading” Problem

The “Shape From Shading Problem” can be framed in a large variety of ways [12].
Most of the conventional settings are hardly relevant to human (or animal) vision [2,
4,26,30,40,43,48,50,51,53,55]. Here we impose the following a priori constraints
on the matter:

— the “data” are the contrast gradient image, based upon the edge detector activity
of the visual front end;
— the desired inference is a curvature landscape, that is the inverse of the image of
the ROI in shape space.

Shape space is not a brain activity, or anything like that, it is a formal construction
used in microgenesis.

The “microgenesis” of visual awareness is a hypothetical pre-conscious process
that generates awareness. From experimental phenomenology we know that micro-
genesis is a systolic process that regenerates awareness continuously, a single “beat”
taking less than a tenth of a second. The process generates hypotheses (or “halluci-
nates”) and runs reality checks against visual front end activity. In a single beat it
launches a volley of threads (representing different hypotheses), that may be novel,
but typically are diversified threads from the previous beat. Some threads from the
previous beats might be terminated. A competition between the threads leads to a fi-
nal “winner” that enters visual awareness. Thus, momentary awareness is the result
of an evolutionary process that runs on a very short time scale. In the generation of
each volley current situational awareness (“gist”) and goals (input from cognition
and emotional states) play a role, though the process is largely autonomous.

“Shape from shading” starts when the microgenetic process selects “shaded sur-
face” as a hypothesis. The same retinal illuminance may be interpreted in many
different ways. “Shaded surface” is just one. (For instance, “painted flat picture”
is another, “non-uniformly illuminated surface” yet another, and so forth.) It will
typically involve a number of mutually related hypotheses, some aimed at material
properties, others at the light field, etc. Here we concentrate on the “shaded sur-
face” hypothesis. The act of generating a “shaded surface” hallucination serves to
turn the front end structure into (meaningful) “data”. The meaning derives from the
hypothesis.
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2.4.1 Naive Radiometry

The microgenetic process may assume very little about the geometrical layout, and
physics of the scene. All it can do is assume an “uniformly illuminated surface”,
which involves a number of associated hypotheses, all of which might become fal-
sified in reality checks at a number of levels, from front end activity to reflective
thought. These include:

— the surface is a smooth Lambertian surface (no space-variant pigmentation, no
specularities inside the ROI);

— the illumination is oblique (no frontal illumination);

— the surface is illuminated throughout (no attached shadow terminator in the ROI).

Full analysis of these assumptions and their interrelations would take many pages,
we skip it here.

Notice that these are no detailed assumptions concerning surface attitude, nor
about the light field. The shading is subject to the well known “bas-relief ambigu-
ity”. What this all implies is that the magnitude of the contrast gradient cannot be
distinguished from the obliquety of the illumination. The structure of the contrast
gradient field depends upon the local shapelet and the tangential component of the
light vector over the surface (“surface illuminance flow”). Let the shapelet be pa-
rameterized as in equation 2.7, and let the direction of surface illuminance flow as
projected in the visual field be {cos®¥,sin ¥} in the xy-plane.

In order to simplify the formalism we set (arbitrarly, but without loss of general-
ity) ¥ = 0. Then the contrast gradient will (to a good approximation) be proportional
with

C(x,y) o< {axr, axy }- (2.17)

The constant of proportionality depends on many things (spatial albedo or BRDF
variations, obliquity of the light vector, vignetting, ...). If the surface is signifi-
cantly corrugated, the contrast gradient will be mainly determined by the curvature
landscape though.

2.4.2 The Shape Cue Inference

Notice that the “data”, that is the contrast gradient image based upon the front end
edge detector activity, is a projection of the curvature landscape in {dyy, @y, ayy }-
space obtained by dropping ayy, that is the second derivative of the depth in the di-
rection orthogonal to the illumination flow direction in the visual field. Since shape
space is a simple linear transformation of {axy, axy,a,y }-space, we find that micro-
genesis finds a projection of the shape image in the front-end data, and is not in need
of any further computation. (See figures 2.7 and 2.8.) There is even a check on the
viability of the hypothesis: simply find the curl of the gradient field, if it vanishes
the hypothesis can be upheld.

Notice that a,, = 0 implies r = ¢. Thus, the “view direction” of the view into
shape space subtends a 7 /4 angle with the axis of umbilicals.
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Fig. 2.7 Anexample of “Shape From Shading”. At top left the habitus of a surface. The other
subfigures show three views of the shape landscape in shape (that is rsz-) space. This surface
has no singularities.

One might regard this as an example of “direct perception” as propagated by
Gibson [13], in his ecological approach to visual perception. What is conceptually
interesting is that the shape from shading problem becomes formally identical to the
“shape from movement” problem. One observes a two-dimensional projection of a
surface immersed in a three-dimensional space, and attempts to make inferences
about the immersed surface (e.g., its projections as viewed from other directions).
Only the space is different, it is the “space you move in” in the case of shape from
movement, and the space of shapes in the case of shape from shading. It is hard
to see that this should make much difference to the brain: these spaces are just
as “abstract” as seen from the brain’s perspective. Both play some role in certain
perception-action cycles.

The shape image has generically fold and cusp singularities. The projection
generically generates folds and cusps in the contrast gradient image. The latter might
be called “spurious”, since they depend upon the direction of the projection, whereas
singularities in the gradient image that derive from the singularities in the shape im-
age have intrinsic meaning.

Variation of the (relative) illumination direction will clear up such ambiguities.
Such variations could be due to movements of the light source (relatively rare), or
movements of the surface with respect to the source (common). The latter type of
variation can often be brought about by manipulation, thus opening a way to active
exploration.
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Fig. 2.8 The example from figure 2.7. At top three shadings of the surface for different il-
lumination directions. At bottom the corresponding contrast gradient images. Compare these
to the projections of the curvature landscape: they are the same, except for a cos f = ;\/ 2
foreshortening.

A final point of some interest is the relation to the “Shape From Shading Prob-
lem” as it is usually framed in computer vision with the present setting. One
difference is that computer vision frames the problem in Euclidean terms, which in-
troduces some algebraic complications. More interestingly, in computer vision one
would not be satisfied with a curvature landscape, but would require an explicit rep-
resentation of a surface. In the case of the human observer the curvature landscape
should most likely be regarded as the end result (see below).

The difference is the need of an integration. One has a Pfaffian system of local
tangent quadrics and seeks for an integral surface. There will be a solution if the sur-
face integrability conditions are satisfied (the Codazzi-Mainardi equations), which
is never exactly the case if the field of quadrics is due to observations. The com-
puter vision methods differ primarily in the way they handle this problem, which
has nothing to do with the shading cue per se, it is just a problem of numerical
analysis. If one has clean data the integration poses no problem (for an N x N-pixel
image one has about 2N? equations for N2 unknowns, it is mere matter to deal with
the ambiguity), things start to become interesting in case the data are “dirty”’, which
they always are in real life. Again, this is not an issue of much biological interest.

2.5 The Shading Cue and Visual Awareness: Phenomenology
The shading cue has been studied extensively in experimental phenomenology.

The topic is closely related to that of pictorial space in general. How are pictorial
reliefs “represented”’? We have been able to show empirically that the representation
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Fig. 2.9 Left: The Mach book may be the simplest “shading” stimulus ever invented. Many
observers see an open book, or two planar facets meeting in a common edge, subtending a
roughly right dihedral angle. Ernst Mach [44] interpreted this as a direct causal connection
between intensity and the awareness of spatial attitude. Right: The circular disk filled with
a linear gradient is the “canonical stimulus” that has been used for almost two centuries in
psychophysical shape from shading research [19,50,51]. Many observers become aware of a
spherical pictorial surface when viewing this stimulus. The contrast gradient image is degen-
erate (a point). The square contains the same gradient. Many observers see it as a cylinder.
Any quadric surface could yield this gradient, for instance, a symmetrical saddle is a perfectly
valid inference. It is never reported.

is not a depth map, but more likely a map of spatial surface attitudes (a depth gra-
dient field), or possibly (this issue is still open) a curvature landscape. The present
treatment of shape from shading fits perfectly in this general framework.

Most of the psychophysical work has been concentrated upon very singular cases.
The simplest instance is no doubt the “Mach book™ (figure 2.9 left), but the most
widely used stimulus in shape from shading research is a linear illuminance gradient
limited to a circular disk. (See figure 2.9 right.) Thus the contrast gradient image is a
point that does not coincide with the origin. Thus, the corresponding curvature land-
scape would generically be a point. (A line in the direction of projection in the rst-
space being evidently non-generic.) Hence, the inference would be “any quadric”.
Observers report convex or concave elliptical shapes, which are indeed “solutions”,
albeit very specific ones. Hyperbolical shapes are never reported, although they are
equally valid inferences. Apparently microgenesis applies additional constraints. In
this case it is the shape of the outline (circular). If the outline is square (two edges
parallel to the gradient), observers report convex or concave cylindrical shapes (see
figure 2.9 right).

One would expect that the next round of empirical research would concentrate
on curvature landscapes that are degenerated to curves instead of points. However,
we know of no instances. So the next round should involve generic curvature land-
scapes. Unfortunately, we haven’t seen much activity on this topic either (except
from some work of our own). The problem of “shape from shading” is pretty much
open in the context of experimental phenomenology.
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2.6 Conclusion

We have presented a discussion of the shading cue that is decidedly different from
its conventional formulation in machine vision. The reason is that the present treat-
ment has been focussed upon the phenomenology of human visual awareness, and
upon an understanding of the brain “from the inside” as it were. We have refrained
from “representations” that are only available to an external observer. The result is
a description that renders the “’shape from shading problem” trivial. The inference
is essentially identical to the observation. Thus, we end up with a theory of “direct
perception”. This is not to say that the inference is complete, as it cannot be. The
resulting ambiguity is very simple in that one obtains a single perspective of the
curvature landscape in shape space. This is much like the visual projection itself:
you see only the fronts of objects in the scene in front of you.

The treatment requires the existence of both local sign (as defined by Lotze), and
external local sign [39]. None of these is well understood. There exist a number
of theories on the genesis of local sign, and mainly speculations on the origin of
external local sign. Recent empirical work has revealed that the structure of external
local sign in human observers is surprising, as already intuited by Helmholtz and
Kepler.

The connection of our treatment with the experimental phenomenology of human
visual awareness is still weak. The reason is mainly the lack of a solid body of
quantitative empirical results.
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Chapter 3
Why Shading Matters along Contours*

Benjamin Kunsberg and Steven W. Zucker

Abstract. Shape from shading is a classical inverse problem in computer vision.
It is inherently ill-defined and, in different formulations, it depends on the assumed
light source direction. In contrast to these mathematical difficulties, we introduce
a novel mathematical formulation for calculating local surface shape based on co-
variant derivatives of the shading flow field, rather than the customary integral min-
imization or P.D.E approaches. Working with the shading flow field rather than the
original image intensities is important to both neurogeometry and neurophysiology.
To make the calculations concrete we assume a Lambertian model for image forma-
tion, but we do not make global light source positional assumptions. In particular, for
smooth surfaces in generic position, we show that second derivatives of brightness
are independent of the light sources and can be directly related to surface proper-
ties. We use these measurements to define the matching local family of surfaces that
could result from a given shading patch. In total our results change the emphasis
from seeking a single, well-define solution to an ill-posed problem to characteriz-
ing the ambiguity in possible solutions to this problem. The result is relevant both
mathematically and perceptually, because we then show how the equations simplify
and the ambiguity reduces are certain critical points of intensity. We conclude with
a discussion of image reconstruction at these critical points.

3.1 Introduction

The inference of shape from shading information is so natural for us that the in-
herent difficulty in the problem seems paradoxical. Perceptually, when shape-from-
shading works, we see crisp surfaces and clear boundaries. However, as a classical
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Fig. 3.1 Classical methods attempt to go from pixel values of the image (A) to the surface
(C). In this work, we use the intermediate representation of the shading flow field, or the
tangent map to the isophote structure (B). This is both supported by biological mechanisms
and allows us to use the mathematical machinery of vector fields, transport, and differential
goemetry.

inverse problem it is clearly ill-posed, with the two-dimensional image providing
much less information than three-dimensional surface calculations require. Egyp-
tian artists took advantage of this inherent ambiguity by carving scenes with deep
apparent relief out of shallow stone. But this needs to be reconciled with the ideal for
computer vision systems: the exact recovery of unique surface descriptions. How are
we to make sense of the apparent contradiction between mathematical uncertainty,
perceptual crispness, and computer vision accuracy?

Mach [25], who first formulated the image irradiance equation in 1866, observed
that “many curved surfaces may correspond to one light surface even if they are
illuminated in the same manner”. Instead of working on the general problem, he
focused on cylinders. The modern shape-from-shading community seeks to resolve
the ambiguity by placing priors on the surface [1], in a sense following along the
lines set by Mach, or on the light source direction(s) [1,11] and albedo [1]. But these
priors are global and difficult to reconcile with physiology.

We propose an alternative approach: rather than attempting to resolve the ambi-
guity from the start using global priors, we suggest that the ambiguity can be char-
acterized and exploited. One part of this exploitation derives from neurobiology and
the other from mathematics, in particular differential geometry. Thus our goal in
this paper is to place the shape-from-shading inference problem in the context of
neurogeometry.

The first part of our approach is to build the surface inference process not from the
image, but from the manner in which the shading information could be represented
in visual cortex; see Fig. 3.1. This is called the shading flow field, and it has the
form of a vector field (plus discontinuities); in particular, it is the tangent map to
isophote contours. Formulating the shape inference then amounts to working out
the relationships between isophotes in the image and isophotes on the surface. The
differential geometry arises by formulating the problem in this fashion, and it opens
two rich projections back on to neurobiology.

The first of these projections has to do with reducing computations to neural
networks. As we show below, the shading flow field can be computed within a
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neurogeometric architecture of columns of cells tuned to different orientations, plus
connections between them (Fig. 3.3). Biologically these connections could be either
long-range horizontal connections within an area, or feedforward/feedback loops.
Mathematically these connections derive from transport operations, and we show
how to derive these transports in this paper. The result is a fibre bundle, and solu-
tions to the inference problem are given by sections through this bundle. In general
there are many, which corresponds to the ambiguity in the inverse problem, but we
shall have more to say on this momentarily.

The second projection onto neurobiology relates to the question of light source:
where, in the brain, might this be represented? How? Since there is no evidence that
it is represented in the early visual system, where the shading flow could arise, we
seek those image properties that are invariant to the direction of the light source.
We prove that ordinary second derivatives of the image irradiance do not depend
directly on the direction(s) of the light source(s), but rather only on the local surface
derivatives and image gradient properties. The image derivatives can then be used
to restrict the potential surfaces corresponding to a local shading patch, regardless
of the light source. This effectively “cancels out” the light source from the problem,
and is the second major aspect of our approach. It follows, of course, that the light
source can be calculated once the surface structure is known, which makes it a kind
of emergent property in some cases.

Finally, we return to the question of ambiguity. With our characterization we are
able to show how other cues, such as the apparent boundary, various highlight lines
or cusps, may be sufficent to effectively resolve them. In effect this provides a way
to anchor a solution from regions in the image that are clear, and build upon the
perceptual effect that the surface is crisp — but only around certain structures! See
Fig. 3.2. Understanding these structures and why they are important is the final focus
of this paper.

3.1.1 Motivation from Neurobiology

Because V1 is rich in orientationally-selective cells [13], we focus on understand-
ing how sets of orientations could correspond to surfaces. This suggests what at
first glance appears to be a small problem change: instead of seeking the map
from images to surfaces (and light sources), the image should first be lifted into
an orientation-based representation. This lift can be accomplished by considering
the image isophotes ( [17, 18]); the lift is then the tangent map to these isophotes.
This lift has been used earlier in computer vision, and is called the shading flow
field [2]. A significant body of evidence is accumulating that such orientation based
representations underly the perception of shape( [8,9]), but to our knowledge no one
has previously formulated the surface inference problem from it.

Since the shading flow field could be computed in V1 (Figure 3.3), we are devel-
oping a new approach to shape from shading that is built directly on the information
available in visual cortex. Thus it carries the constructions of neurogeometry from
contours to shading flows to surfaces. In the end theoretically our computations
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Fig. 3.2 Compare these two images: (Left) a shaded surface; (Right) reconstructed shading
values via a linear interpolation algorithm [5] using only the shading values at the highlights
and along the contours. Note that the 3D percept is nearly identical, even though the image
intensities are not always consistent. Although there are significant image intensity differ-
ences between these images, the surface “seen” at a rapid glance is hardly different. We
suggest that this is because shape-from-shading is mainly working around certain key image
regions. Our goal in this paper is to understand why these regions exist and how they might be
characterized.

Cylindrical({)omon‘ of orientation hypercolumn Long range connections to compatible cells
embedded within the cortical tissue

Rearrangement of orientation
hypercolumns by retinotopic position
abstracts V1 asR*x

Fig. 3.3 V1 mechanisms applied to the isophote curves result in a shading flow field. (left)
Visual cortex contains neurons selective to the local orientation of image patches. In a shading
gradient these will respond most strongly to the local isophote orientation; ie, it’s tangent. A
tangential penetration across V1 yields a column of cells. (middle) Abstracting the column of
cells over a given (retinotopic) position spans all orientations; different orientations at nearby
positions regularize the tangent map to the isophotes and reduce noise in local measurements.
(right) Illustrating the lift of the isophones into a V1 style representation. The mathematical
analysis in this paper extends this type of representation to the surface inference prolbem. As
such it could be implemented by similar cortical machinery in higher visual areas.

could be implemented by a combination of feedforward and feedback projections,
supplemented with the long-range horizontal connections within each visual area,
although we do not develop these connections in any detail here. Rather, we concen-
trate on the calculations and how how a crisp curvature structure emerges from the
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transport equations. As such it serves as the foundation of a model for understanding
feedforward connections to higher levels (surfaces) from lower levels (flows).

3.1.2 Overview

Our approach is summarized in Fig. 3.4. Rather than working globally and attempt-
ing to infer a full surface directly from the image and (e.g.) global light source
priors, we think of the surface as a composite of local patches (charts). Each patch
is described by its (patch of) shading flow, each of which implies a space of (sur-
face patch, light source) pairs. Much of the formal content of this paper is a way to
calculate them.

The story, of course, gets most interesting when we consider how to put the
patches together. Just as the orientations possible at a position define a fibre bun-
dle, the possible local surface patches define a “fibre” for each patch coordinate;
again, over the surface these fibres form a bundle. Conceptually the shape-from-
shading problem amounts to finding a section through this bundle. Once a section is
obtained, the light source positions emerge; i.e., can be calculated directly.

There are several advantages to this approach.

e Ambiguity now is a measure on these fibres, and it can be reduced by certain
(local) conditions, for example curvature at the boundary [27,28]. Thus it is con-
sistent with Marr’s Principle of Least Committment.

e The light source positions are essentially an emergent property rather than a prior
assumption.

e Mathematically our approach mirrors the composite nature of visual inverse
problems: there are those configurations in which solutions are nicely defined,
and there are others that remain inherently ambiguous. A powerful illustration
of this is provided by artists’ drawings: a single new stroke may change the im-
pression completely, such as the indication of a highlight, while others may be
lost in the cross-hatching of shading. This lead us to consider the shading flows
near critical points and contours as fundamental conditions for the global surface
perception.

We now briefly discuss the first stage to our approach — the shading flow field —
and follow this with the surface inference calculations.

3.2 The Shading Flow

Consider, from an abstract perspective, how a shaded image would be represented in
visual cortex. To start, we note that a smooth surface patch under diffuse Lambertian
lighting and orthogonal projection yields smooth image curves of constant bright-
ness. The shading flow derives from these level curves of image intensity I(x,y),
or isophotes ( [17,18]). In particular, consider image cells with orientated receptive
fields tuned to low spatial frequencies: the strongest responses will be from those
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Fig. 3.4 Our approach to shape from shading. Instead of inferring surfaces directly from the
image, we impose two fibre bundles between them. The first is the lift of the image into the
shading flow, and the second defines the fibre of possible surface patches that are consistent
with a given patch of shading flow. We do not assume a light source position, but instead will
use assumptions on certain local features to restrict the ambiguity. This amounts to finding a
section through the bundle of possible local surfaces. The light source position(s) are then an
emergent property.

cells with their excitatory zones on brighter portions of the shading, say, and their
inhibitory zones on the darker ones. It is these cells that signal the isophone tangents.

To construct a vector field V(x,y), we quantize these curves by taking their
tangents over a predetermined image coordinate grid. We call this vector field of
isophote tangents the shading flow field and it arose earlier in the literature [2]. In
the limit, as the spacing of the grid points goes to zero, integral curves of the shading
flow are precisely the intensity level curves. Our goal is to use this 2D vector field
to restrict the family of (surface, light source direction) pairs that could have re-
sulted in the image (Fig. 3.7). We shall also require the complementary vector field
of brightness gradients. In the limit, these two vector fields of isophote tangents and
brightness gradients together encapsulate the same information as the pixel values
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of the image. For computational work on regularizing and calculating the shading
flow, see [2].

Working with the shading flow has a number of advantages over working with
the raw image intensities.

e Orientation-selective cells [13] could readily provide the lift for computing it as
early as V1 (Figure 3.3).

e The shading flow field is lower dimensional than a pixel representation and is
invariant to overall contrast changes.

e There exists psychophysical evidence for the use of oriented flow in surface per-
ception [8, 9] for textures.

e The shading flow is invariant across important transformations in both image
space and shape space.

e [t allows for the use of machinery from vector calculus on surfaces. Although the
same calculus can of course be done point wise, the mathematical intuition and
equations are cleaner by working with vector fields.

We now expand on a few of these points.

3.2.1 Psychophysical Evidence

Fleming et al., among others, have focused on psychophysical work on orientation
fields [8,9]. He has shown that orientations are stable on specular surfaces and often
lie along directions of minimal second derivatives, regardless of the environment
map [9]. He then showed that “smearing” white noise via line-integral-convolution
can lead to 3D shape perception [8]. Thus, taking noise and adding in an orientation
structure yields a percept. Most importantly, it can be shown that 3D shape from
shading perception can be preserved even in the presence of certain non-monotonic
intensity transformations [10]. Orientation fields are thus a stable and basic structure
for shape perception.

3.2.2 Intensity Transformations

There are computational reasons to use the shading flow as a intermediate repre-
sentation rather than working directly with pixel values. First, it regularizes certain
errors due to noise in images [2]. Second, both the isophote tangents and curva-
tures are invariant under arbitrary monotonic transformations of the intensity [2,21].
These types of transformations include not only simple scalings (albedo changes),
but even complex transformations such as the ones in Fig. 3.5.

3.2.3 Surface Scaling

The previous paragraph illustrated invariances with respect to image transforma-
tions. But the shading flow is also stable under various surface transformations.
Here, we consider the case of a scaling in surface heights. See Fig. 3.6.
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Fig. 3.5 These figures illustrate a shaded surface (left) and two monotonic transformations of
intensity (center, right). Although the intensity values change in each of these images, the 3D
shading percept remains essentially invariant. This provides some evidence that the surface
inference is based on the geometry of isophotes rather than image intensities.

To build intuition, we illustrate the relevant phenomenon mathematically using
the simplifying assumption that the light source is behind the viewer. Consider a sur-
face S(x,y) and various scalings of that surface defined by T : S(x,y) — ¢S(x,y),c €
R™. The direction of the isophote tangent at point p is dependent on the second fun-
damental form /1 and the projected light source vector l;. (We will prove this in the
Analysis Section).

Thus, by considering the effects of the scaling on /7 and l¢, we can understand
the scaling effect on the isophote tangents. The projected light source will lie along
the gradient of the surface. Thus, its direction will not change by any scaling trans-
formation.
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Fig. 3.6 These figures illustrate the isophotes of a shaded surface (left), a 150% scaling of it
(center), and a 200 % scaling (right). 15 isophotes have been shown for each surface. Note that
the curvature of the isophotes is generally stable throughout the scaling, with the exceptions
being due to the singularities of new highlights. Since our percept hardly changes over these
images, again this provides evidence that the surface inference is based on the geometry of
isophotes rather than image intensities.

Similarly, the second fundamental form — /1 — is defined by:

,f.\’_X’ ‘f-\’}'
1l = N fix N- fiy _ V12412 \1+f2+12
N fo N-fyy Sy

xy

VIR 141247

Any scaling transformation multiplies the derivatives { fx, fy, fex, fry, fiy} by ¢.
o/ 1+ 12412
V1Hcfe 2+ cfy
fo, fy=0or fy, fy >> 1, the scaling of /I is minimal.
Since both the projected light source and /7 are only scaled under the transfor-
mation 7', the shading flow remains unchanged. Note that the magnitude of the

Note that T will scale /I by a factor of s In fact, in the cases where
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Fig. 3.7 This figure represents the workflow going from image to shading flow to a set of
local surfaces. Each surface along the fiber needs a particular light source position to corre-
spond to the given shading flow.

brightness gradients will increase, however. (If we remove the light source behind
viewer assumption, it is possible for the shading flow to change, but not generically.)

3.2.4 Critical Curves

Regardless of the the image representation that is used to ground the computation,
the shape from the shading (flow) problem will remain ill-posed. This is a global
statement. However, at certain points on a surface, the ambiguities will collapse in
dimension, and we believe understanding which points these are is critical. For ex-
ample, along the boundary of a smooth object, the view vector lies in the tangent
plane [16]. Along a suggestive contour [4], the dot product of the normal vector and
the view vector is at a local minimum in the direction of the viewer. At a generic
highlight, the dot product of the light source direction and normal vector is at a
local maximum. All of these special types of points are identifiable in the image
and provide additional geometric information that reduces the shading inference
ambiguity locally. These points are also important perceptually. This leads us to a
novel plan for reconstruction: First, parametrize the shading ambiguity in the gen-
eral shading case. Then, locate the points where the shading ambiguity vanishes (or
reduces greatly) and solve for the local surface shape at those points. Finally, calcu-
late the more complex regions via a compatibility technique [14] or interpolation.
Understanding these critical points is one of the most important implications of the
analysis that we present next.

3.3 Geometric Analysis of Shape Inference

Our mathematical goal is to translate the problem into the local tangent plane and
then use the machinery of covariant derivatives and parallel transport to represent
image derivatives (see Fig. 3.9) as a function of the surface vector flows. A similar
use of this machinery was developed for shape from texture in [12].
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Fig. 3.8 A diagram explaining our defined surface properties

1. We write the brightness gradient and isophote as tangent plane conditions be-
tween the projected light source and shape operator.

2. We take the covariant derivative of the projected light source and show it is inde-
pendent of the direction of the light source.

3. We take the covariant derivative of the isophote condition and separate into the
differentiation on the projected light source and the differentiation on the shape
operator.

4. We separate the image derivatives into functions of the image and surface prop-
erties without reference to the light source direction.

The Lambertian lighting model is defined by:

I(x,y) = pL-N(x,y)

Consider a small image patch under Lambertian lighting from an unknown light
source. This image patch corresponds to a local surface patch. Using Taylor’s theo-
rem we represent this as S = {x,y, f(x,y)} with f(x,y) = c1x + cay + c3x* + caxy +
C5y2 + c6x3 + C7x2y + ngy2 + C9y3.

Our goal is to understand the derivatives of intensity in terms of the coefficients
{ci}. It is essential that the order of the Taylor polynomial must be 3 since we shall
consider second derivatives of image intensity and intensity is already dependent
(via Lambertian lighting) on the first order derivatives of the surface. Other analyses
of SFS only consider 2nd order Taylor approximations [26].

For reference, we define our complete notation in the Table 3.1. The symbols
will be introduced throughout the analysis. V(x,y) is the shading flow field. We
normalize V(x,y) to be of unit length in the image, although the corresponding
surface tangent vectors have unknown length. We denote unit length vectors in the
image plane with a vector superscript, such as v. The corresponding vectors on the
surface tangent plane are defined by the image of v under the map composition of
the differential df : R* — R3 and the tangent plane basis change 7 : R? — T,(S).
We will use the hat superscript to denote these surface tangent vectors, e.g. v.

Thus,

V=Todf(v)

Because the computation is somewhat involved, we break it up into steps.
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Table 3.1 Notation Table

p a chosen point (xg,yo)

Ip(x,y) an image patch centered at p

Vi(x,y) the brightness gradient

Sp(x,y) the corresponding (unknown) surface patch

f(x,y) the Taylor approximation at p of S

{ci} the coefficients of the Taylor approximation f(x,y)

T,(S) the tangent plane of S at p

L the light source direction

l(p) the projection of the L onto the tangent plane

€j unit length standard basis vector in direction of coordinate axis i
N(x,y) the unit normal vector field of S

V(x,y) the vector field of isophote directions at each point (x, y)

veTy(S) the image unit length tangent vector in the direction of the isophote at p
ueT,(S) the image unit length tangent vector in the direction of the brightness gradient at p
W e T,(S) the tangent vector in direction w of unit length in the image, expressed in the surface tangent basis
ulV] the directional derivative of the vector field V in the direction u

VoV the covariant derivative (on the surface) of the vector field V in the direction u
D,V the directional derivative (on the image) of the vector field V in the direction u
G the first fundamental form (also called the metric tensor)

I the second fundamental form

H the Hessian

dN the differential of the Gauss Map, also called the Shape Operator

3.3.1 Calculating the Brightness Gradient

We derive the equations for the brightness gradient as a function of the light source
and the second fundamental form. Similar derivations (with different notation) ap-
pear in [17].

The brightness gradient VI can be defined as a linear 1-form having as input unit
length image vectors w and having as output a real number. The output is the change
in brightness along a step on the surface using w. We write:

VI-w=Ww[(L,N)] (3.1a)
= ((VsL),N) + (L, (V4N)) (3.1b)
=0+ (L,dN(w)) (3.1¢)
= (I, dN(w)) (3.1d)
=11 (3.le)

where the first term in equation (3.1b) is zero because the light source is fixed.
Proposition 3.1. The brightness gradient VI can be expressed as the vector 11 I1.

Along an isophote surface curve o(t), the brightness is constant. Writing v =
a/(0), we have (I, dN(v)) =11 11V = VI -v=0.
Thus, we conclude:

Proposition 3.2. Each isophote tangent vector v on S is a function of the normal
curvatures and light source and is defined by the equation
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(I, dN(v)) = 0.

In addition, we calculate each component of the brightness gradient via dot product
with e;.

L= (l,dN(ey)) (3.2)
Iy = (l,dN(ey)) (3.3)

3.3.2 Calculating the Covariant Derivative of Projected Light
Source

One of the major advantages of our approach is that we do not need to assume a
known light source direction. In fact, using the covariant derivative described below,
we can calculate the change in the projected light source vector without knowing
where it is!

We briefly remark on the use of covariant derivatives for surfaces in R>. We
consider “movements” in the image plane and syncronize them with “movements”
through the tangent bundle of the surface. The difficulty is that the image plane
vectors lie on a flat surface, whereas the vectors on the surface tangent planes “live”
in different tangent spaces: the surface tangent planes are all different orientations
of R? in R3. Thus, to calculate derivatives via limits of differences, we need to
parallel transport nearby vectors to a common tangent plane, and this is done with
the covariant derivative. We think of the covariant derivative in two ways. The first
definition, which we use in this section, is the expression as the composition of a
derivative operator in R? and a projection operator onto a tangent plane. This is an
extrinsic definition — it is a definition that requires use of the ambient space. The
second definition, which we will use in the following section, will be in terms of
parallel transport.

We exploit the structure in I;: it is the result of a projection from a fixed vector L
down into the tangent plane 7,(S). Thus, the change in I, just results from changes
in the tangent plane, which is dependent only on the surface curvatures and not on L.
Importantly, we avoid having to represent L in our calculations by only considering
its projected changes. We now show this rigorously.

Lemma 3.1. The covariant derivative of the projected light source is only dependent
on the position of the light source through the observed intensity. Thus,

Vale = — (L -N)dN(u).

Proof. Let I, be the projection operator taking a vector in 3-space onto the tangent
plane of S at pg. Recall that the covariant derivative of a tangent vector can be
expressed as the composition of a derivative operator and IT.
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Fig. 3.9 A diagram explaining our use of the shading flow field. As we move on 3 (¢) in the
direction of the isophote v from PO to P1, the flow field V (x,y) changes by VyV. Similarly, we
may move in direction u along f3,(s), which is perpendicular (in the image) to the isophote.
Then, our flow field changes by V,V. In Proposition 2, we relate these changes in closed
form to the curvatures of the surface and the light source direction.

Vale = I1,, (’Z‘) (3.42)
1, ( L N)N)> (3.4b)
— 1, (’fj‘t‘ - jt [(L~N)N]) (3.4c)
—1I,, <O—i[L~N]N—(L~N)ng) (3.4d)
_m, <_ [‘(’; N4L- ‘fjﬂ N- (L-N)dN(u)) (3.40)
— (L-N)dN(u) (3.40)

The fact that this change in the projected light source only depends on sur-
face properties (along with the measurable image intensity) allows us to remove
the light source dependence from the second derivatives of intensity as defined by
{Dyv,Dyv,Dyu}.

3.3.3 Covariant Derivative of the Isophote Condition

We now use the changes in the brightness gradient and the isophote directions to
restrict our surface parameters. Let v be the unit length image vector in the direction
of the isophote at an arbitrary point p. Let u be the unit length image vector in
the direction of the brightness gradient at p. In the image, v L u but the projected
vectors ¥ and # may not be orthogonal on the tangent plane at p.
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In fact, considering these particular changes in u and v is equivalent to choosing
a basis. This will result in solving for equations of the three second derivatives
{Dyv,Dyv,Dyu}, although we could have considered the changes in {I;,/,} and
instead solved for {/.\,I\y, 1,y }. However, the equations simplify when choosing the
basis defined by the isophote and brightness gradient.

To emphasize the conceptual picture, we will derive the Dyv equation here. The
remaining equations can be found in [24].

We start by first calculating 7, and then taking the directional derivative of I, in
the direction v. From Section 3.3.1, we can write:

0=1,=VI-v=(l;,dN(v)) (3.5)

Applying the directional derivative with respect to v on both sides and using the
result from Equation 3.4f:

0=v[(k,dN(v))] (3.62)
= ((Vsk) ,dN(v)) + (It, VydN(v)) (3.6b)

= (—(L-N)dN(v),dN(v)) + (I, VydN(v)) (3.6¢)
= —I{dN(v),dN(v)) + (I, Vv (dN(v))) (3.6d)

We now unpack (l¢, VydN(v)) which requires a technical computation using par-
allel transport and tensor algebra. Due to space constraints, we will state the simpli-
fication rather than derive it. However, the derivation can be found in [24].

We recall the second definition of covariant differentiation here. We define it
intrinsically, that is, independent of the ambient space R3. We will not go into the
derivations regarding connections or Christoffel symbols, which can be found in [7]
and [6]. We just summarize that parallel transport is a way to “equate” nearby
vectors in nearby tangent planes along a curve f(s). Using notation as in [7], we
will write the parallel transport in the forward direction of the vector field w(f(s))
as 7,7 (w(B(s))). Conversely, the parallel transports backwards along the curve is
written 7 (W(f(s))). Then, the covariant derivative can be defined intrinsically as:

V(o)W = lim (rf<w<ﬂ<s>> - W(ﬁ(O)))

s—0 s

Thus, covariant differentiation resolves the tangent plane orientation problem by
first transporting the vector w((s)) € Tp ) (S) back to a “parallel” vector in Tg ) (S)
before doing the standard derivative subtraction.

Now, we will need to parallel transport the operator dN in addition to the parallel
transport of v. Luckily, we can use the fact that dN can be represented as a (1,1)
tensor. Thus, the parallel transport of dN can be represented as a sum of tensor
products of parallel transports on vectors and 1-forms. We use this in [24] in order
to obtain the following simplification.

Simplification of (3.6d) using parallel transport yields the following equation:

VI-Dyv = —(L-N)||dN(v)||> + VIH ' (v[H]v)
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3.4 The Second-Order Shading Equations

We have now computed the covariant derivative of the vector v in the direction v.
For an arbitrary point p, let u be the image vector of unit length in the direction
of the brightness gradient. Then, we can repeat this calculation for the covariant
differentiation of v in the direction u. In addition, we can calculate the covariant
derivative of the vector u in the direction u. Both of these proofs are similar to
the one above. This gives us a total of three equations equating the second order
intensity information (as represented in vector derivative form) directly to surface
properties.

Theorem 3.1. For any point p in the image plane, let {u,v} be the local image
basis defined by the brightness gradient and isophote. Let I be the intensity, VI be
the brightness gradient, f(x,y) be the height function, H be the Hessian, and dN be
the shape operator. Then, the following equations hold regardless of the light source
direction:

VI-Dyv = —I||dN(V)|[*+ (VI)-H ' (v[H]v) (3.7)
V1] -
V[-Duu:fIHdN(u)Hsz\/l+vaH2<Vf,dN(u)>+(V1).H L. (u[H]u)
(3.8)
V1]

VI-Dyv = —I(dN(v),dN(u)) (V£ AN(V)) + (VI)-H™ - (u[H]v)

(3.9)

IRVARSIZiE

These equations are novel; we call them the 2nd-order shading equations. Note
that there is no dependence on the light source (except through measurable image
properties); thus, these equations directly restrict the derivatives of our local surface
patch.

3.5 Simplifications of the Shading Equations

In a generic patch, the second-order shading equations are highly complex and non-
linear. In addition, we have only three equations on the third order Monge patch,
which consists of 9 free parameters. Thus, there is a six dimensional local ambiguity.
For analysis in the generic case, see [24].

For this reason, we believe the shape from shading problem can — and should —
either be solved at certain points in the image (considered next) or should be com-
bined with other means for obtaining tangent plane information, such as a texture
flow. In the following section, we consider the above equations at critical points of
the intensity.
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3.5.1 Ambiguity Reduction at Critical Points

Much work has focused on the question: “Where should one draw lines on a sur-
face in order to give the best impression of the surface shape?” Recently, Decarlo
et al. [4] have considered “suggestive contours” and Judd et al. have suggested ap-
parent ridges [15]. How do we decide which feature lines are “better” [3]? Why are
certain curves so helpful in psychophysics? We believe that understanding shading
ambiguity can provide a useful metric for deciding between different definitions of
“shape representing contours.” We can also go the other way: we can use the dimen-
sion of the shading ambiguity to define contours (or sets of points) where the surface
information is mathematically more restricted by the shading than at a generic point,
key among these points are highlights and ridges [23], which we will define below.

Consider the points where the intensity is a local maximum or minimum, i.e.
VI = 0. Koenderink et al. classified the local surface at these critical points [20]
in the case where the tangent plane was frontal-parallel and the principal curvatures
were known. By using our shading equations, we can generalize significantly. There
are two cases: the Gaussian curvature K # 0 or K = 0. In the first case, we get
generic highlight points. The second case is even more interesting; we will use the
word “ridge” to denote contours consisting of these points.

3.5.2 Reconstruction from Critical Points

Let M be the map (under constant albedo) taking a surface to its respective image.
The shading equations define the inverse image M. Now, we are analyzing M~ at
specific points in image space. In general, the image under M~ will be high dimen-
sional and complex; however near ridges and highlights, we will see that the inverse
image is simply structured. It is possible the human visual system “understands”
these relationships at such special points and uses them to anchor the shape from
shading inference. For example, given a solution at the critical points interpolation
could be used to infer (or otherwise fill-in) the surface between them.

A necessary condition behind this hypothesis is that the image information at
critical points is (essentially) complete; that is, is sufficient to fill-in the remainder of
the image information. To test this we devised a simple reconstruction experiment.
Given a shaded image, we considered the shading flows only in the neighborhoods
of the highlights, ridges, and occluding contour. We then linearly interpolated [5]
between these critical points to gain the shading values on the rest of the surface.
See Figs. 3.10, 3.2.

By and large, the reconstructed image is very close to the original image in both
shape percept and intensities. This is evidence that shape from shading could be
done by just understanding the shading at critical points because (at least) the re-
maining image structure could be filled in. We conjecture that the same result holds
at the surface level. That is, we conjecture that the visual system may be able to
build a robust shape percept using just the simple relationships described below at
the highlight and ridge cases and then “filling in” between them in a consistent fash-
ion. As an aside, we find it hard to believe the visual system implements any of the
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Fig. 3.10 Left — a shaded surface. Center — shading values in 4x4 pixel neighborhoods sur-
rounding critical points. Right — reconstructed shading values via a linear interpolation algo-
rithm [5] using only the shading values in the center figure. Note that the 3D percept for both
Left and Right is nearly identical.

current computer vision shape from shading algorithms, due to the extreme com-
plexity and arbitrary priors used in many of them. Note that a linear interpolation of
intensity values can be achieved by a quadratic interpolation of normal vectors.

3.5.3 Highlights

We now analyze the two cases of critical points. First, consider the generic case
when the Gaussian curvature is not zero, so H ! is well-defined. Since ltT 11 =0,
and /1 is not singular, /, = 0. This is the case of normal incidence of the light source.
Then our equations 3.7, 3.8, 3.9 simplify:
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VI-Dyv = —(D)||dN(v)|]? (3.10a)
VI-Dyu= —(I)||dN(u)|]? (3.10b)
VI-Dyv = —(I){dN(v),dN(u)) (3.10¢)

At these points, the second derivatives of intensity relate directly to the total
change in normal for a unit step in the image. This cursory analysis may explain
why highlight lines are so effective at revealing surface shape psychophysically: A
simple rule relates the image derivatives to the surface derivatives. Essentially, the
widths of the highlights are proportional to the appropriate surface curvatures. See
Fig 3.11. Although one does not gain information about the tangent plane, due
to the unknown light source(s), one has information about the curvatures as seen
from the surface. Once the tangent plane has been found, these equations tell us the
second order shape properties.

Fig. 3.11 Left — a shaded surface. Center — the green pixels represent the highlight points,
determined via the gradient of the image (VI < €). Right — green pixels represent points on
either an occluding boundary or a ridge, calculated via a Laplacian filter.
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3.5.4 Ridges

The next class of critical points are ridges. In this work, we use the term “ridge” as
an image contour of connected points that are all either local minima or maxima of
intensity. However, this time, we assume K = 0. Ridges are very salient points of
the image; they can often be isolated via a Laplacian filter. See the interior contours
in Fig 3.11. Along these contours, we get a simplification of the shading equations.

Let w € T,S denote the unknown nonzero principal direction; w corresponds to
the major axis for the locally cylindrical Taylor approximation. For simplicity, we
can define a Frenet basis for the image contour and so express the surface deriva-
tives in that {u, v} basis. Let Iy be expressed as {/;,/,} in this basis. Although w is
unknown, at highly foreshortened tangent planes (as is the case on the ridges in this
example), tangent vectors project to either {u, v}, up to the visual system’s resolu-
tion. Without loss of generality, suppose w = u. (The other possible approximation
w = u leads to analogous equations.) Then, the shading equations again reduce after
some algebra:

l2fvvu
VI-Dyv = —(D||dN(V)|]* + 3.11
v =—(I)|[dN(v)]| 1+ VAR (3.11a)
VI-Dyu = b2 fu (3.11b)
VI+[VAP
l2fvuu
VI-Dyv = 3.11
VIR G

Thus, both I, and I, are proportional to the appropriate third derivatives of the
surface, once foreshortening has been accounted for. Note that the foreshortening of
the tangent plane and the light source make up the coefficient of proportionality. In
particular, the light source only affects /,,, and 1,,, by scaling the necessary f,, and
Sfouu- Thus, the ambiguity for several of the coefficients of the Taylor approximation
is only a matter of scale. To gain some geometric intuition, see Fig 3.12. The in-
teresting equation is the VI - Dyv one. It says we can trade off weighted versions of
[|[dN(v)|| and f,, and keep the image properties the same.

We remark on the possibility of multiple light sources. Due to linearity, one can
simply sum the various image properties created from each light source. Thus,
additional light sources can only represent a change in the value /; and often
these changes are on the order of a factor of 2 or so. However, the values of
{Dyv,Dyv,Dyu} are on the order of 103. Thus, these ridges tend to be remarkably
stable under addition of new light sources.

Although we do not claim that the shading outside the critical points is com-
pletely irrelevant, there is significant literature on how contours can “trump” shading
information [22,27,28]. In addition, it is clear that contours alone can lead to a rich
3D percept: simply view famous artists’ line drawings, etchings, etc! Finally, we
note that shape perception will also be ambiguous; the exact nature of the surface is
dependent on the task and the “beholder’s share” [19]. It is not possible and maybe
not even be desirable to calculate the precise depth values of the surface. Rather, a
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Fig. 3.12 Left — a portion of our shaded surface. The red line defines a normal plane, which
indicates a cross section (x-axis) in Center and Right. Center — The curves represent various
possible cross sections resulting in the same 7, value. The arrows represent the necessary
light source. Note the tangent plane changes. Right — Various cross sections and associated
light sources. Here, the tangent plane stays fixed, but the projected light source changes.
These two types of transformations generate the possible cross sections.

preferred output representation may be the local quadric class [17,28], which is a
more flexible and less precise representation. We believe studying the critical shad-
ing points will lead to mathematically natural ways to segment the surface according
to these quadric classes.

3.6 Conclusion

The differential invariants of surfaces are curvatures. Thus a natural framework for
formulating surface inferences is in terms of differential geometry. We here propose
such a framework, by lifting the image information to a vector field (the shading
flow field) and formulating the shape-from-shading problem on it. Our goal is to
find those (surface, light source) pairs that are consistent with a given shading flow.
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Working with simplifying assumptions, we develop the basic transport machinery
in closed form and calculate the full family of solutions.

On any image patch of a smooth surface, the curvatures of the shading flow re-
strict the possible local surfaces via these shading equations. However, the ambigu-
ous families are, in general, not easy to describe. Thus, we focused on understanding
the relationships between the shading flow and surface at critical points. On these
points, the geometric relationships are simplified. We propose that the visual system
may use the shading flows near these critical points and subsequent interpolation to
gain its “first pass” shape percept.

Finally, we close with a neurobiological point. It is known that the higher visual
areas are selective for surface properties, including their curvatures [29]. It is also
known that many different forms of orientation images, such as oriented texture
noise and glossy patterns (see references in [8]) are perceived as surfaces. To our
knowledge the calculations here are the first example of how this inference might
take place from the shading flow to surfaces. It thus serves as a common “language”
for formulating feedback, but also underlines the need for additional information.

Shape inferences are not done in a vacuum, and the rich interconnectivity of the
visual system should reflect the rich mathematical connectivity between surfaces
inferences from contour, shading, texture, stereo and motion. In our view thinking
of these in neurogeometric terms — vector and tensor fields, transport equations, and
differential geometry — may well be the research path to understand them.
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Chapter 4

From Functional Architectures to Percepts:
A Neuromathematical Approach

Giovanna Citti and Alessandro Sarti

Abstract. In this paper we will consider mathematical models of the functional
architecture of the primary visual cortex based on Lie groups equipped with sub-
Riemannian metrics. We will critically review and clarify our line of work, joining
together within an integrative point of view geometric, statistical, and harmonic
models. The neurogeometry of the cortex in the SE(2) groups introduced recalling
the original paper [12]. Amodal perceptual completion is reconsidered in terms of
constitution of minimal surfaces in the geometric space of the functional architec-
ture, and a new Lagrangian field model is introduced to afford the problem of modal
perceptual completion [14] of the Kanizsa triangle. The neurogeometric structure is
considered also from the a probabilistic point of view and compared with the statis-
tics of co-occurence of edges in natural images following [48]. Finally the problem
of perceptual units constitution is introduced by means of a neurally based non linear
PCA technique able to perform a spectral decomposition of the neurogeometrical
operator and produce the perceptual gestalten [52, 53].

4.1 Introduction

The pioneeristic work of Hubel and Wiesel in the seventies [32,33] allowed the dis-
covery of the modular structure of the mammalian visual cortex. Every module is
composed by many families of cells, every one sensible to a specific feature of the
image, either position, orientation, scale, color, curvature, velocity or stereo. Mod-
ules are spatially arranged in suitable maps always respecting retinotopy in such a
way that for every point (x,y) of the retinal plane there is a hypercolumn containing
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an entire set of cells sensitive to all feature instances. The functional architecture
of the visual cortex is the geometric machine underlying the processing of visual
stimuli, and it is defined in terms of hypercolumnar organization and its neural con-
nectivity. A particularly interesting framework to mathematically model the func-
tional architecture of the primary visual cortex has been introduced first by W.C.
Hoffmann in [30]. A differential geometry setting has been proposed to model the
hypercolumnar organization in in terms of a manifold equipped with a fiber bundle
structure. Steven Zucker in [61] followed a similar approach to model the action of
simple cells for orientation detection, introducing Frenet frames in a fiber bundle
structure to represent hypercolumns. Jean Petitot and Yannique Tondut in [46] in-
troduced in the fiber bundle structure a supplementary constraint, giving rise to the
so called contact structure. They propose for the first time the notion of neuroge-
ometry. The contact constraint is fundamental to take into account the anysotropic
pattern of connectivity between hypercolumns. Citti and Sarti proposed to repre-
sent the functional architecture in terms of Lie group structures equipped with sub-
Riemannian metrics, which better describe the symmetry of the cortex [12]. In their
model, the hypercolumnar structure is described in terms of the Lie symmetries of
the Euclidean group, equipped with the suitable sub-Riemannian metric for mod-
elling anysotropic connectivity. The integral curves of its generating vector fields
can also be considered as a mathematical representation of the association fields of
Field, Hayes and Hess [23]. The propagation in the sub-Riemannian setting allows
to perform amodal contour completion [12]. With similar instruments, both contour
and image completion have been achieved in the Lie group of affine transformation
in [49] and improved by introducing the hyperbolic plane in [50]. Analytical prop-
erties of the model [12] was further studied by R. Hladky and Pauls [29]. Finally we
recall the works of Duits, van Almsick, Franken, ter Haar Romeny [19] [20] [21]
who proposed new models in different Lie groups, with many applications to image
processing. The connectivity kernels resulting from the sub-Riemannian model of
the cortex are compared with the statistics of co-occurence of edges in natural im-
ages in [48], giving a possible explanation of their emergence. In [14] a Lagrangian
field model is introduced to couple the functional architecture of the Lateral Genic-
ulate Nucleus with the one of the visual cortex. The resulting model is able to afford
the problem of modal perceptual completion of the classical triangle of Kanizsa.
The problem of the constitution of perceptual units in the geometry of the func-
tional architecture is the very question to fill the gap between neurophysiology and
phenomenology of perception. In [52] and [53] a mechanism of grouping has been
proposed as extension of the model of visual hallucination proposed by Bressloff
and Cowan [7]. The model performs a non-linear Principle Component Analysis by
using the neurogeometrical kernels of the functional architecture.

In this paper we will critically review and clarify our line of work, joining to-
gether within an integrative point of view geometric, statistical and harmonic mod-
els previously presented. The paper is organized in six main parts. In section 4.2,
the functional architecture of the Lateral Geniculate Nucleus is presented, while in
section 4.3, the neurogeometry of the cortex is recalled following [12]. In section
4.5, a model of amodal perceptual completion is proposed in terms of constitution
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of minimal surfaces in the geometric space of the functional architecture. In sec-
tion 4.6, a Lagrangian field model is introduced to afford the problem of modal
perceptual completion [14]. In section 4.7, we will reinterpret the neurogeometric
structure from a probabilistic point of view and compare it with the statistics of co-
occurence of edges in natural images, following [48]. In section 4.8, we will afford
the problem of perceptual units constitution. By means of a sinlge neural population
model [8], we will construct the gestalten performing a spectral decomposition of
the neurogeometrical operator.

4.2 Functional Architecture of Lateral Geniculate Nucleus

4.2.1 Receptive Fields and Profiles of Thalamic Cells

A number of cells of visual areas elicit a spike response to a luminance signal ap-
plied on the retinal plane M C R?. Every visual neuron is characterized by its re-
ceptive field (RF) that is classically defined as the domain of the retina to which
the neuron is sensitive. Note that in general neurons are not directly connected to
the retina. For example, cortical neurons are projecting from the retina to the cortex
through the lateral geniculate nucleus along the thalamic way.

The receptive profile (RP) of a visual neuron is defined on the domain marked by
the RF, and corresponds to the impulse response of the cell as a filter kernel. It is a
function ¥'(x,y) (where x,y are retinal coordinates) ¥ : M — R which is defined on
the retinal plane M and measures the response (ON / OFF) of the neuron to stim-
ulation at the point (x,y). When a visual stimulus /(x,y) : M C R> — R activates
the retinal layer, the cells centered at every point (x,y) of M process in parallel the
retinal stimulus with their receptive profile. Reverse correlation techniques enable
the recording of the RPs in terms of the correlations of the inputs (generally flashes
of light and dark spot) with the outputs (spikes) [18]. The correlation of the inputs
with the outputs yields the transfer function of the neuron, namely the RP.

RPs of the retinal ganglion cells are usually modelled by Laplacians of Gaussians
(391,

%(é’n) = AG(&J]),

where G(&,1n) = ¢~(€°+1%) is the Gaussian bell and A is the standard Laplacian.
The same receptive profiles are found also in the Lateral Geniculate Nucleus (LGN),
that is a copy of the retina but strictly in contact with the visual cortex. The size of
the retinal and LGN RPs vary with a scale parameter allowing an entire multiscale
analysis of the signal. For the purpose of this study, we will consider a fixed scale,
since the phenomena described are invariant with respect to size changes, up to a
rescaling.
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Fig. 4.1 On the left: a measured LGN cell RP (thanks to De Angelis [18]), on the right: a
LGN cell RP modelled as Laplacian of a Gaussian

4.2.2 Cell Response and Lateral Connectivity of LGN

The output of the cells in LGN in response to the visual signal is highly nonlinear,
and it rescales the visual input in a logarithmic way:

O(XaY>LGN = AG(}C,y) * logl(x,y)

The output of LGN cells is propagated via the lateral connectivity in LGN itself.
Since this connectivity is isotropic [57], it can be modelled by the fundamental
solution I" (x,y) of the 2D Laplacian operator

I(x,y) = flog\/x2+y2.

LGN lateral connectivity with strength I'(x,y) acts linearly on the output
O(x,y)LGN, giving a total contribution

0(6) = 5 (Tluy)+Alogl(x,)). @

Note that the action of receptive profiles Alog/(x,y) and the one of LGN lateral
connectivity I' (x,y)« is dual in a differential sense.

4.2.3 The Retinex Algorithm as a Model of LGN Action

Eq. (4.1) corresponds to the Retinex algorithm in the version proposed by Horn
in [31], where the authors proposed a physically based algorithm, which recovers
the reflectance f of an image / as

Alog f(x,y) = Alogl(x,y), (4.2)

where I(x,y) is given. This is a Poisson equation with solution
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tog f(6.y) = 5 (T x) #Alog(x,7)).

formally equivalent to eq. (4.1) provided that ¢ (x,y) = logf(x,y).

Let us recall that the Retinex algorithm has been introduced in [37,38] to explain
lightness perception, i.e. the phenomenon causing a gray patch to appear brighter
when viewed against a dark background and darker when viewed against a bright
background. Improvements and new models have been proposed by [35,43] among
others.

In particular in [43], it has been proved that the original Retinex algorithm can be
equivalently espressed by the Poisson equation (4.2), and in [26,27] a new interpre-
tation was given in terms of covariant derivatives and fiber bundles. Indeed setting

A(x,y) = VI(x,y)/1(x,y) (4.3)
equation (4.2) can be considered the Euler Lagrange equation of the functional
. IVF(x,y) = Ale,y) f(x)]?
F(x,y)= / dxdy. 4.4)
(®3) flx,y)?

This functional is invariant with respect to the transformation

\%4

f—f, A—>A+ 7

so that the choice A(x,y) = Vlﬁx}’i) is compatible with the transformations which

leaves the functional invariant. The quantity V f — A f can be interpreted as a covari-
ant derivative.
Here we can further notice that, setting

¢(x,y) =log f(x,y), h(x,y)=logl(x,y), 4.5)
equation (4.2) simplifies as
A9 (x,y) = Ah(x,y) (4.6)

and setting as before: A(x,y) = VI(x,y)/I(x,y) = Vh(x,y), the functional becomes

F(ey) = [ IV9(ey) ~ Aley)Pdxdy = [ Vo (r.y) - Vh(ey)Pdxdy, @)
while the transformations which leave the operator invariant become
O —>¢+h, A—A+Vh

The functional (4.7) has to be considered as the invariant energy underlying the
Retinex Poisson equation (4.2) solved by the action of the LGN connectivity repre-
sented by eq. (4.1).
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4.3 The Neurogeometrical Structure of the Primary Visual
Cortex

4.3.1 The Set of Simple Cells Receptive Profiles as a Lie Group

While LGN cells are fairly isotropic, simple cells of the primary visual cortex V1
are strongly oriented, and their RPs are interpreted as Gabor patches [17, 36] or
directional derivatives of Gaussians.

A first derivative of Gaussian models odd simple cell RPs (Fig. 4.2 right):

Fig. 4.2 Left: an odd simple cell RPs measured by reverse correlation techniques (thanks to
De Angelis [18]). Odd receptive profile modelled as Gabor filter (middle) and first directional
derivative of Gaussian (right).

The set of observed profiles can be obtained from the mother profile ¥ (&,n)
(see [36]) under the action of a Lie group.

The entire set of RPs of the same point (x,y) is then obtained by rotating the
mother profile, explicitly:

¥y :%<§cos9+nsin9,—§ sin9+ncos9).

This structure enlightens the modular structure of the cortex. Each family of cells
acts on the same retinal basis but depends on different engrafted variables, and it is
described by different groups of symmetry.

We will describe the action of the affine group of rotation and translation on
vectors of R2, since the other two groups are subset of this one. The action M, .0

transforms every vector (€,1) in a new vector (€, 7)) as:

Em=ta&m = (3)+ (i) ooy ) (5)- @9
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The action of the group on the set of profiles will be:

Lsgyo.0) P (03) =P M) o) (x,9)). (4.10)

Then the whole set of receptive profile will be {%%Q(E 1) = Lixyo.0) YY)}
After rotation of the axis of an angle 0, the derivative an becomes

X3 = —sin(0)dg +cos(6)dy. 4.11)
Then the odd cell RP oriented in the direction 0 is in general represented by

‘Pg :X3G(§,T[) 4.12)
Finally the expression of filters on different points is obtained by translation:

lHr,y,@(iay) = lP@(xfx‘ayfy)
In Fig. 4.3 we visualize the set of odd simple cells.

Note that for simplicity we take Euclidean translations on the cortical plane ne-
glecting the conformal log-polar retino-cortical mapping, that can be easily taken
into account by introducing a Riemannian metric on the cortical layer. This feature
will not be implemented in the present study.
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Fig. 4.3 The set of simple cells odd receptive profiles ‘¥, ; (¥, 7) represented in the space
(x,5,0)

4.3.2 Simple Cells Response

If classical RPs are considered, the output u is given by linear filtering of the stimu-
lus 7(E,n) =log(I(&,m)) by the set of RPs:
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u(.3,0) = [ WER)Hyo) (€. M)dEd @.13)

and by eq. (4.12)

u(y.0) = [ XaG(&.m)h(E.M)AEAR = ~X:G(E, )+ h(E.7) = ~Xs(O)h
(4.14)
where h; is a smoothed version of 4,

hs=hxG(&,M).

4.3.3 Non Maximal Suppression

For a fixed point (x,y) the output is a function just of the variable 6 that attains its
maximum at the point

max|[u(x,y, 8)[| = [lu(x.y, 0)] (4.15)

This maximality condition can be mathematically expressed requiring that the

derivative of ||u|| with respect to the variables 0 vanishes at the point (x,y,0):

dou(x,y,0) =0. (4.16)
At the maximum point 8 the derivative with respect to 6 vanishes, and we have

0= aae"(x’y’é) - 8‘96)(3(9), =—X1(0) = —(X,(6),VI) 4.17)
where
X1(68) = cos(0)0g + sin(0)dy.

The condition (4.17) means that the vector (cos(6),sin(0)) is orthogonal to the
gradient of % (and to the gradient of 7) and then is tangent to its level lines. Then the
angle O maximizing the output indicates the direction of level lines of the stimulus
image.

Calling

p(x,y) = llulx,, 0 (x,y))Il, (4.18)

we can say that the point (x,y) is lifted to the point (x,y,0(x,y),p(x,y)) in the
cortical space (x,y,0,p). With the same procedure it is possible to lift all the level
lines of the 2D image I into 4D curves.

It is easy to check (see for example [12]) that the first 3 components of the lifted
curves are tangent to the plane generated by the vector fields

X = (cos(0),sin(0),0) X, =(0,0,1). (4.19)
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ind,0)

Fig. 4.4 A level line of the image (in blue) and its 3D cortical lifting (in red). The tangent
vector to the blue curve is (cos(6),sin(0)), so that the tangent vector to its lifting lies in the
plane generated by X = (cos(6),sin(6),0) and X, = (0,0, 1).

and visualized in Fig. 4.5. In Fig. 4.4 we depicted the 3D section with the plane
(x,5,0).

Let us notice that all admissible curves of the cortical space are tangent at ev-
ery point to the subspace generated by X and X, which has dimension 2. In the
standard Riemannian setting, the number of generators of the tangent space equal
the dimension of the space, while in the geometrical model of cortical space the
dimension of the manifold is 3, and the admissible tangent space has dimension 2.
This endows the 3D space R* x S! of the variables (x,y,0) with a sub-Riemannian
geometry. While no constraint is imposed on the last variable p, the vector field in
the p direction will be

X4 =(0,0,0,1).

The full 4D space will consequently be
R*x S' x R*,

with a sub-Riemnnian metric in the first 3 variables, and a standard metric in the last
variable. Since the geometry on the last component p is standard, we will describe
the geometry of the 3D space generated by the first 3 variables (x,y, ).

4.3.4 Association Fields and Integral Curves of the Structure

Field, Heyes and Hess in [23] have shown the existence of a perceptual field
connecting patches of position and orientation, see Fig. 4.6 left. This connectivity
pattern, called association field, is considered at the base of the constitution of
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Fig. 4.5 The bundle of subspaces of the tangent manifold generated by the fields X;(6) and
X»(0)

boundaries in visual perception, implementing the gestalt law of good continuation.
We have shown in [13] that the association field is well modelled by the integral
curves of the vector fields X; and Xj, starting from a fixed point (xo,yo, 60):

V(1) = (X(2),y'(1),6'(t)) =Xy (x(2),y(2), 0(1)) + kX2 (x(2),y(t), (1)) (4.20)
7(0) = (x0,Y0,60),

A fan of such integral curves by varying the parameter k is visualized in Fig. 4.6
right.

Fig. 4.6 The association fields of Fields, Heyes and Hess [23] (left) and the projected integral
curves with constant coefficients (right)
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Fig. 4.7 The constant coefficient integral curves of the fields X (6) and X;(6), modeling the
local connectivity between points of the cortical space

4.3.5 Length of Lifted Curves and Geodesics

A 2D level line
7= (x(t),y(1))

parametrized by arc length t, has tangent vectors

(¥ (1),5 (1)) = (cos(8(r)),sin(6(1)))

at every point, where 6 denotes the direction of the curve at the point (x(z),y(r)).
We have seen that the action of simple cells lifts the level line into a 3D cortical
curve y(¢) = (x(z),y(¢), 6(¢)). Differentiating x and y we get

(" (1),y"(8)) = (—sin(6(2))0'(r),cos(8(1))0(¢)) = (—'(1),x' (1)) (r)
so that the euclidean curvature can be computed as
_ y// X — x’y” o
(@2 + (/)2

The length of the lifted curve is

L) = [ V(02 + (1) + /(1) 2t = [\1+kar

considering that X' (1)* +y/(r)* = 1. Notice that the length of lifted curves depends
on the length of the 2D level line and on its curvature, analogous to the case of
the elastica functional [ (1+ k(¢)?)dt, introduced by David Mumford in [44]. The

distance between two cortical points (x,y, 0) and (%,7,0) is defined in term of the
length functional as
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d((x,y,0),(%,7,0)) = inf{L(y) : v is an horizontal curve (4.21)

connecting (x,y,0) and (%,7,0)},
see [13]. In other words the horizontal path on which the infimum is achieved is a
geodesic curve of the cortical space. As suggested by Petitot and Tondout in [46],
subjective contours can be computed as geodesics curves in a contact structure. Here
we can show (see Fig. 4.8) that subjective contours can be well represented by sub-
Riemannian geodesics in the SE(2) group, i.e. as minimizers of (4.21).

/

¢ %3¢

Fig. 4.8 A Kanizsa triangle with curved boundaries (left) and the subjective contours mod-
elled as geodesics of the cortical space (right). The geodesics are not rectilinear, since they
minimize the distance (4.21), which is a function of the curvature k.

4.4 The Cortical Implementation of the Neurogeometrical
Structure

4.4.1 Response of Simple Cells and Bargmann Transform

Daugmann in [17] first proved that the shape of the simple cells is intimately related
to their functionality. His crucial remark is the fact that simple cells try to localize
at the same time position (x,y) and frequency . Hence the set SE(2) can be inter-
preted as a real manifold of the phase space, with the frequency variables expressed
in polar coordinates:

SE(2) € C* = {(x,.|p|cos(6),|p|sin(6))}.

The classical uncertainty principle in the Heisenberg space asserts that it is not pos-
sible to detect with arbitrary precision both position and momentum (see [15]). The
principle also provides an explicit condition for functions that minimize uncertainty
with respect to the position and momentum operators. These minimizers are called
coherent states, and in the Heisenberg setting they are the Gabor filters. This is why
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these filters have been proposed in [17] as models for the shape of receptive profiles
(see Fig. 4.2 Middle). The complete set of coherent states can be obtained via the
action of the group (4.10) on a fixed mother state ¥ . Recall that, if ¥ is a coherent
state, the Bargmann transform of the function £ is

By (h)(x,y,0 /fxye V)h(X,¥)dxdy. (4.22)

Hence the response of the filters on an image defined in (4.13) can be interpreted as
a Bargmann transform (see [4] for the definition and [3] for this interpretation of the
cell response).

Fig. 4.9 A pinwheel map (left) and its spectral behavior (right). Figure extracted from [41].

4.4.2 The Activity Maps and the Pinwheel Structure

Even if the primary visual cortex shows the symmetries of SE(2), that is a 3-
dimensional group, its physical implementation is realized on the 2-dimensional
layer provided by the cortex. Orientation columns are radially arranged around sin-
gular points like the spokes of a wheel, that are called pinwheels (see Fig. 4.9). This
structure has been observed first with optical imaging techniques [6, 5] and more
recently by in vivo two-photon imaging proving their organization with single cell
precision. In [41] an empirical method was also introduced that is able to repro-
duce orientation map-like structures as a superposition of plane waves with random
phases. More recently, in [16], the activity in V1 has been reconstructed by measur-
ing cell responses to so called gratings. Activated regions depend on the orientation
at which they are presented so that if a family of gratings is presented to an observer,
the result is a family of real maps {ug(x,y)} (see Fig 4.10). The pinwheel image has
been reproduced in Fig.4.10 (center) by performing a vector sum of the orientations

Ny
x,y) = 2arg/0 ¢?Pug(x,y)de. (4.23)
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Fig. 4.10 The original results obtained by [16] showing a set of gray level cortical maps ug
acquired by optical imaging and the reconstructed color coded image at the center with the
well known pinwheel structure

4.4.3 An Uncertainty Principle on the Functional Geometry

In a recent paper [2] Barbieri, Sanguinetti and the authors of the present paper pro-
posed a model of the cortical activity and pinwheel structure based on an uncer-
tainty principle in the structure SE(2) of the visual cortex, which reproduces the
experiment in [16]. The image of the left-invariant vector fields (4.19) under the
differential of the action defined in (4.10) is defined as ¥; = d.Z(X;) and provides
the differential operators

Yi =09, Y»=730;—%dy. (4.24)

Under the action of the Fourier transform, these vector fields (4.24) become respec-
tively
FWf)=i&f, FNof)= (&0, —E10,)f-

Experimentally we see that the Fourier spectrum of the orientation maps is ap-
proximately concentrated on a circle (see Fig.4.9, right). On the other hand no
action is performed by the fields in the radial direction, allowing to restrict the
study to functions defined on the circle of radius p (see [55]). Since it is not pos-
sible to further reduce the set where to study these vector fields, the representa-
tion of these vector fields on the circle is called irreducible. In polar coordinates
(&1,&) = p(cos(B),sin(B)) they reduce to an even simpler representation:

VWf=ipsin(B)f, Yof =d;f. (4.25)
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Fig. 4.11 Top: A general function in the reduced Fourier plane, where only a circle is consid-
ered. The height of the graph represents the modulus, and the color represents the argument
of the function. Bottom: A coherent state in the reduced Fourier plane.

The uncertainty principle can be stated for any couples of noncommuting self-
adjoint operators on Hilbert spaces [24]. In terms of operators ¥; it reads:

(@, pcos(6)D)| < 2[psin(6)D]| [|95D||. (4.26)

Minimal uncertainty states can be computed by making use of an equation asso-
ciated to inequality (4.26), that in this case reads (see also [9])

(Y, —id¥;)D(6) =0 (4.27)

where the scaling parameter A represents frequency. Solutions to equation (4.27)
read, up to a normalization constant ¢ = ¢, (1)

() = cetPeos(®), (4.28)

The states (4.28) are the most concentrated functions in angular position and mo-
mentum, hence allowing optimal localization (from now on we will omit to write
the constant ¢ for simplicity). Note that the bigger A is, the sharper its localization
is: for large values of A, that means A >> 1/p, it is maximally concentrated. Due to
the uncertainty inequality, the variance of dd(p grows to infinity, i.e. it is maximally

undetermined. On the other hand, for small values of A, i.e. 2 < 1/p, then & (o)
approaches a constant, and the angular momentum is maximally concentrated.
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Fig. 412 The gray valued maps ug g(x,y) for different values of the orientation and in
center the color image obtained as a vector sum, to be compared with the experimental result
of [16], reproduced in Fig.4.10

4.4.4 Irreducible Bargman Transform, the Activity Maps and
Pinwheels

The notion of Bargmann transform in SE(2) has been introduced by Barbieri et
al. in [3]. In analogy with the classical expression in (4.22) it is expressed as the
operator associated to the coherent states. The action of the group on the coherent
states @ is the Fourier transform of the action defined in (4.10):

"S?(xye)é(é) _ efipo(xcos(é)ersm( ))‘f)(e 9)

Consequently, the irreducible Bargman transform reads:

B (h)(x,y,0 z% D(6)h(6)d6. (4.29)

Given a white noise W = W(0) with values in [0,27], defined on [0,27], and such
that W (6 + ) = —W(8) we can consider the function Bg(W)(x,y, 8). We impose
the symmetries of the cortex to represent orientations. Namely we require that it is
rm—periodic in 6 and provides opposite response at orthogonal angles as is the case
for V1 cells:

uo.0(x.y) = Re (Bo(W)(x.3,0) ~ Bo(W)(x3,0 +7/2)).  (4.30)
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By definition this irreducible Bargmann transform is simply the transform in (4.22)
restricted to functions with constant frequency. Hence it expresses a response of the
cortex, which has been interpreted in [2] as a model of the activity maps measured
in [16](see Fig. 4.12). As in (4.23) we perform the sum

Palny) = arg( [ ooy a0) @31)

reproducing the original experiment. An important property of (4.31) is that it can
be represented as a sum of plane waves, with frequency p, and random phases in
accordance with the mechanism introduced in [41]. This model is indeed able to in-
terpret both the orientation activity maps and the pinwheel-shaped orientation maps
as interference figures.

4.4.5 Propagation in the Pinwheel Structure

Techniques of optical imaging associated to tracers allow a large-scale obser-
vation of neural signal propagation via cortico-cortical connectivity. These tests
have shown that the propagation is highly anisotropic and almost collinear to the
preferred orientation of the cell (see Fig. 4.13), confirming at neural level the phe-
nomenological results of Field, Heyes and Hess in [23] and the model of propaga-
tion curves developed in section 3. This experiment suggests to introduce not only
a propagation along curves but with a differential operator, which can propagate in
a neighborhood of a point. Even though the propagation is performed in the cortex
at the pinwheel level, we will describe the neural propagation in the 3D model of
R?x S', which is formally simpler to handle, and from which it is possible to project
on the pinwheel structure.

Fig. 4.13 A marker is injected in the cortex, in a specific point, and it diffuses mainly in
regions with the same orientation as the point of injection
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4.5 Propagation in the Family of Simple Cells

4.5.1 Propagation along the Association Fields

Neural activity develops and propagates only along the integral curves of the struc-
ture. If 7y is one of the curves in (4.20), the Lie derivative of a function f along the
curve 7 is defined as

Xiu(&y) = js (u07)|5=0;

and on regular functions it coincides with the directional derivative. In analogy with
the Euclidean gradient, the sub-Riemannian gradient is defined by

Veu = (Xju,Xou).

Note that it does not contain derivatives in direction X3, which can be recovered by
commuting:
X3 =1X,X1] =XX — XX,

see [12] for details. Hence X3 will play a role similar to a second derivative. In this
setting the divergence of a horizontal vector field v = (v;,V,) is defined as

divgv =X1vi +Xov2,
so that the sub-Laplacian operator becomes
Agu = divg(Vgu) = X11u+ Xpou. (4.32)
The time dependent counterpart is the sub-Riemnnian diffusion operator:
Jiu = Agu, (4.33)

modelling a diffusive mechanism of propagation in the cortical space.

4.5.2 The Lifting Mechanism of the Whole Image: Regular
Graphs in R> x S'

The mechanism of non maxima suppression does not lift each level lines indepen-
dently, but the whole image is lifted to a surface. Condition (4.16) ensures that the
lifted surface is identified by a zero level set of the function

H(x,y,0) = deu(x,y,0),
meaning that if we consider only strict maxima, the lifted surface becomes

2 ={(x,»0):H(x,y,0) =0,0¢H (x,y,0) > 0}. (4.34)
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Fig. 4.14 The level lines of a 2D image (in blue), and their 3D lifting (in red)

Since the vector dg is a horizontal vector, then X is a regular surface in the sub-
Riemannian metric.

In particular, we can define a horizontal normal to X, and denote with vy its
projection on the horizontal plane of the Euclidean normal:

(Xl u,qu)
V(Xiu)? + (Xou)?

In analogy with the notion of Euclidean curvature, we define the sub-Riemannian
curvature as the R—divergence of the R—normal vector:

VR =

HR(E) = divR(vR),

4.5.3 Completion Model and Minimal Surfaces in the
Roto-translation Space

The two cortical mechanisms of sub-Riemannian diffusion (4.33) and non maximal
suppression (4.34) will be iteratively applied. The action of these two mechanism
can be formalized as a two step algorithm.

e The lifted surface Xy = X defined in (4.34) and the function py(x,y) = p(x,y)
defined on it in (4.18) allow to define a measure py0x, concentrated on the sur-
face. Diffusing this measure, we define a function u; (x,y, 0,¢) concentrated in a
neighborhood of the surface.

e The second step is a non maximal suppression, which performs a concentration
and allows recovering a surface X; via the condition dgu = 0 and a new function
p1 = ujx, .The surface X; will be the graph of a function 6 .

To the new surface we iteratively apply the same two step procedure.
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Fig. 4.15 The two step algorithm: the lifted surface generated by a concentration mechanism
(left), and its diffusion (right)

If we fix a time T and a discretization step h = T /m, we repeat m times the
algorithm. At a general step n we will have a surface X, and a function p,, defined
on X,. We diffuse for an interval of time of length A:

{a,u = Aguin(R2 x SY\%y ¢ € [nh, (n+ 1)h] 435

u(-,nh) = pyds,.

At time r = (n+ 1)h we have a new function p,.+ and a new surface defined as
Pnii((n+ 1Ry =u(-,(n+1)h) and Z,,i((n+ 1)h) = {dgu=0,d3u < 0}.

After m steps we have two sequences: py,11(-,T) and X, (T). Letting m go to
+oc0 we have:

p(T) = limp sy opui1(T), Z(T)=limpy s yeZni1(T)

The diffusion followed by a concentration in the normal direction leads to a purely
tangential diffusion of the surface giving rise to the surface X(7') moving by curva-
ture, with initial surface X,. The function p(T) coincides with the Laplace Beltrami
flow, with initial condition py.

This mechanism is a generalization of the well known algorithm of Merriman,
Osher and Sethian in [42]. The convergence of the Euclidean version of this scheme
has been proved by Evans [22] and Barles, Georgelin [5]. The convergence of the
analogous flow in the sub-Riemannian setting has been first presented in [13] and
then formalized in [10].

For T — oo the surface X(T') converges to a minimal surface X, and p(T) tends
to the solution p(x,y) of the (time independent) Laplace Beltrami equation on the
surface.
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Fig.4.16 Animage with a missing part (left) is lifted to the 3D space (middle) and completed
with the previous described algorithm (right)

The algorithm gives rise to an amodal completion of the image. Indeed the initial
image (see Fig. 4.16), left) is lifted in the rotranslation space. The lifted surface is
completed by iteratively applying the algorithm until a minimal surface is generated.

4.5.4 Minimal Surfaces as Minima of the Area Functional

The minimal surface X can be expressed as a graph of a function 6. In addition,
if we project the vector fields defined in (4.19) on the x,y plane, we end up with a
unique vector field

X1g = cos(8(x,)): +sin(8(x,)), = (V, (cos(6(x,y)),sin(6(x.y))))  (4.36)

since the projection of the vector X, on the same plane is 0. We explicitly note that
the vector X here is only formally similar to the vector X; in (4.19). Indeed 0 (x,y)
in (4.36) is a function while in (4.19) 8 was simply an independent variable of the
3D space.

The minimal surfaces equation can be expressed in terms of the function 0 (x,y)
as follows:

)

2X,00/(x,
X, ( ;; 106 y)2 )
V1p2X166 (x,y)? + 1

where 6 coincides with 8 on the existing boundaries. Taking explicitly the deriva-
tive, the equation becomes

X19(p?X190(x,y)) = 0. (4.37)

This equation can be interpreted as a second order directional derivative, in the
direction (cos(6),sin(0)). Hence it is the Euler-Langrange equation of the Dirichlet
functional

/ X100 (x,y)|2p>(x,)dxdy.
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The function p satisfies the Laplace Beltrami equation, which is the Euler-
Langrange equation of the functional

[ %100 (5.9 Py
Summing these two terms we obtain
[ 1000y P2 eydsdy+ [ [Xioplxy)Prdy.  @38)

In order to take into account the graphs of the two functions 6 and p we can
define a function

A(x,y) = p(x,y)(cos(8(x,y)),sin(0(x,y)).

In (4.18) we defined p as the modulus of the gradient and 0 as its orientation. Then,
if we denote A = (A,A;) the derivative X; is expressed in terms of A as

A A
Xia= 21 23x+ 22 23y7
VA A
and the functional in (4.38) can be expressed in terms of the function A as
/ |X1A|2dxdy. (4.39)

Indeed

/\XlAl\z — /|x1 (pcos(8))|? = /(lecos(e) + psin(0)X,0)2 =
—/le cos*(0) + p>sin®(0)(X10) +2pXpcos(0)sin(6)X, 0

/ XiAs|? = / (X1p)2sin(0) + p2cos?(8)(X16)% — 2pXipcos(8)sin(6)X, 6.

Summing up we get

[ AP = [eip?+prxio).

4.6 A Field Lagrangian for Perceptual Completion
4.6.1 The Full Lagrangian

In this section we will study the joint action of LGN cells and cells in V1, taking into
account feed-forward, horizontal and feedback connectivity. We propose a complete
Lagrangian, sum of three terms: a particle term corresponding to functional (4.7), a
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field term modelled by functional (4.39), and an interaction term coupling the two
terms as in the usual Lagrangian field theories.
The first term is

21 = [ 1V6(x.y) - Vh(x.y) Pxdy (440)

and is directly inspired by the Retinex model, describing the reconstruction of the
image from image boundaries. It is considered here as the particle term of the La-
grangian, where ¢ (x,y) is the particle and h(x,y) is the stimulus forcing term.
The field term is the functional (4.38), in analogy with the classical fields theo-
ries:
D= / X1 A > dxdy.

It expresses the spatial propagation of the field A(x,y) where A denotes the pres-
ence of subjective contours. As we have seen in chapter 4.5, the propagation of level
lines (and then of subjective contours) is a strongly anisotropic process, and it is per-
formed with respect to a sub-Riemannian metric, hence the functional is expressed
in terms of the vector field X;.

The last term describes the interaction between the particle ¢(x,y) and the field
A(x,y). In classical physics it is called “minimal coupling” because it tries to mini-
mize the difference between the two terms:

L= / IV (x,y) — A(x,y)[*dxdy. (4.41)

The field A(x,y) codifies illusory contours. When A (x,y) is viewed as a forcing
term for ¢(x,y), this second term is similar to the Retinex term (4.40) but driven
by subjective contour instead of existing ones, while when @(x,y) is viewed as a
forcing term for A(x,y), it drives the constitution of subjective contours.

The resulting functional £ = & + % + % is then

,Z:/|V¢th|2dxdy+/|V¢7A|2dxdy+/\XlA\2dxdy (4.42)

where all the terms are functions of the coordinates (x,y).

4.6.2 The Euler Lagrange Equations

The Euler Lagrange Equations of the functional (4.42) are obtained by variational
calculus:

Ap =L (Ah+div(A))
{ AAAZ: —Vo+A. (4.43)

The first equation (particle equation) is clearly a generalized Retinex equation,
forced by the boundaries present in the stimulus A/ and by the subjective bound-
aries div(A). It performs a contrast invariant reconstruction of the image. Note that
the two terms .£] and .25 which generalize the Retinex functional give rise to this
unique particle equation.
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The second equation propagates boundaries in the sub-Riemmanian metric, and
allows to recover subjective boundaries. Note that A = (Ax,Ay) is a vector, hence
the first equality is indeed a system, and the sub-Riemannian Laplacian A, is the
directional Laplacian associated to the considered metric.

We explicitly remark that the equation of A is a non-linear sub-Riemannian equa-
tion, and can be solved by iterative linearization.

This means that we need to find an initial approximated solution Ay. A natural
choice is the solution of the vector Laplace equation

AAg = V9.

Of course this is only an approximated solution A, but we can recover a better one
A as a solution of

AOAl = V¢’

using the sub-Riemmannian operator associated to Ay. From here we start an itera-
tion:
Ap Ay =V, Ax Aj=V9.

At each step we get a better approximation of the solution, moreover the sequence
has a limit A =lim;_, ;. A ;. Passing to the limit in the previous expression, we will
get:

AAA=V9,

so that the limit provides a solution of the nonlinear equation.

Fig. 4.17 The x and y components of V7 related to the Kanizsa triangle inducers
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4.6.3 Solution of Euler Lagrange Equations

We solve sequentially the coupled system of differential equations (4.43). We first
apply the Retinex equation to the initial image:

Ap = ;Ah (4.44)

and solve it by linear convolution

1
0= (rery) «An)
with the fundamental solution of the 2D Laplacian:

F(x,y) = —log\(x,y)|.

Then we solve the equation for boundaries propagation. In this first step, we
choose A = 0 in the right hand side, and the nonlinear equation reduces to

AAA = V.

As we explained in the previous section, this equation will be solved by lineariza-
tion, stopped after the first two steps:

AAy =V
{AAOA] _ V. (4.45)

The first term is computed by convolution
Ay = ? *Vo,
where ? is the fundamental solution of the vector Laplacian

T (xr,y) = (—log|(x,y)],— log | (x,)]).

The second one is computed by approximating functions with centered differences
and by means of a standard linear solutor.

The first equation in (4.45) propagates V¢ isotropically and generates a first ap-
proximated vector field Ag. In fig. 4.18 the vector field A related to the Kanizsa
inducers is visualized. The second equation generates a better approximation A by
propagating V¢ in the direction Ay. In fig. 4.19 the components of the vector field
A related to the same inducers is shown. Inducers have been manually selected.

Since particle and field equations are coupled, we can now solve the complete
particle equation

0= ;F(x,y) « <Ah+ ;(div(Al))
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Fig. 4.18 The field Ay generated by the Kanizsa triangle inducers

Fig. 4.19 The x and y components of the gauge field A related to the Kanizsa triangle
inducers. A is an approximation of the field A, solution of the gauge field equation.

again by convolution with the fundamental solution I'". This is a version of the
Retinex equation able to reconstruct the original image together with the subjective
surface. In Fig. 4.20 (left) the forcing term ) (Ah+div(Ay)) of the particle equation
is visualized, while in Fig. 4.20 (right) the solution ¢ is shown.

4.7 Stochastic Neurogeometry

The phenomenological experiment conduced by Field, Heyes and Hess [23] shows
that the association field allows to perceive configurations of oriented patches prefer-
ably fulfilling a co-circularity condition. This result is well modelled by the integral
curves of equation (4.20). The experiment shows also that even if the co-circularity
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Fig. 4.20 Left: The forcing term é (Ah+div(Ay)) of the particle equation. Right: The recon-
structed Kanizsa triangle as the solution ¢ of the particle equation.

Fig. 4.21 The association field of Field, Heyes and Hess showing that the co-circular config-
uration of patches is just the most salient among other possible configurations (double bars
in a circle).

condition induces a maximum perceptual saliency, all the configurations of patches
are perceived with a certain saliency.

To model the saliency of the entire set of perceptual configurations it is neces-
sary to leave the deterministic framework and introduce a stochastic setting that
constitutes the probabilistic counter part of the deterministic equation (4.20). David
Mumford first introduced a stochastic differential equation in [44] to model partially
occluded edges:

(W (1).5(1),6' (1)) = (cos(6(r)),sin(6(r)),N(0,6%)),
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where N (0, 62) is a normally distributed variable with zero mean and variance equal
to 62. The equation has been further discussed by August-Zucker [1], Williams-
Jacobs [59], and Sanguinetti-Citti-Sarti [48] who outlined that it is naturally defined
in the SE(2) group structure

(¥ (1),¥'(¢),6'(t)) = X1 (6(1)) + N(0,67)Xs. (4.46)

Indeed both systems (4.20) and (4.46) are represented in terms of left invariant
operators of the Lie group, the first one with deterministic curvature, the second
with normal random variable curvature. Equation (4.46) describes a random walk
with constant speed in a direction randomly changing. Let us denote p(x,y,0,t)
the probability density to find a particle at the point (x,y) moving with direction
X at the instant of time t conditioned by the fact that it started from the point
(x(0) =0,y(0) =0,6(0) = 0). After Ito integration, this probability density satisfies
a Kolmogorov Forward Equation or Fokker-Planck equation (FP):

ap(x,y,0,t) = X1p(x,,0,1) + 62 X02p(x,,0,1) (4.47)
= c05(8):p(x,y, 0,1) +5in(6)dyp(x.y,0,1) + 0> gep(x,y, 6,1).

Let us notice that the equation (4.47) consists of an advection term in the direc-
tion X; and a diffusion term in the direction X;, where the doubling of the index
expresses a second order derivation.

This equation has been largely used in computer vision and applied to perceptual
completion related problems. It was used by Williams and Jacobs in [59] to compute
stochastic completion field, by S. Zucker and his collaborators in [1] to define the
curve indicator random field, and more recently by R. Duits et Al. in [25] applying it
to perform contour completion, denoising and contour enhancement. In [48] it was
proposed to consider the stationary counterpart of (4.47) to model both the Fields,
Heyes and Hess association field and the probability of co-occurence of contours in
natural images. Both the phenomenon are indeed stationary.

For this purpose, we integrate eq. (4.47) in time, obtaining the stationary equation

le(x,y,9)+62X22p(x,y,9) :3(x7y76)' (448)

Equation (4.48) is strongly biased in direction X, and to take into account the
symmetry of both association fields and edge cooccurences, the model for the proba-
bility density propagation has been symmetrized considering the backward FP equa-
tion in the opposite direction

—Xip(x,y,0) + 6*Xnp(x,y,0) = 8(x,y,0). (4.49)

The desired fundamental solution is then obtained by summing the Green functions
corresponding to forward and backward FP equations.

The fundamental solution has been computed numerically with standard Markov
Chain Monte Carlo methods. This is done by generating random paths obtained
from numerical solutions of the stochastic system and averaging their passages over
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Fig. 4.22 The sum of fundamental solutions of the stationary Fokker Planck equations (4.48)
and (4.49). An isosurface of intensity is visualized in red together with the integral curves of
the group eq. (4.20).

Fig. 4.23 The stochastic neurogeometry as fundamental solution of stationary Fokker Planck
equation. It is a ’fat” version of the deterministic structure visualized in Fig. 4.7

discrete volume elements. See [40] for a classical and complete description of the
technique. In Fig.4.22 the sum of fundamental solutions of the stationary Fokker
Planck equations (4.48) and (4.49) is visualized together with the integral curves
of the group eq. (4.20). Note that the kernel seems to be a thick version of the fan
(4.20). The value of the probability decays slowly along the integral curves and
quickly in the direction normal to the surface ruled by the integral curves. In Fig.
4.23 the entire set of fundamental solutions is visualized in the space (x,y, 0). Notice
that it is a ”fat” version of the deterministic structure visualized in Fig.4.7.
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4.7.1 The Statistics of Edges in Natural Images

It can be of some interest to question the origin of the very specific shape of the
association field in its deterministic or stochastic version. An intriguing hypothesis
is that association fields have been learned by the visual stimuli and then that the
particular pattern comes from some statistical property of natural images.

n

Fig. 4.24 Geometric schemata of co-occurences of edges: a co-occurrence takes place when
two edges (x;,y;, 6;) and (x;,y;,0;) occur at the same time in the image. Only relative posi-
tions (Ax,Ay) and orientations A0 are taken into account in the computation of histograms.

A specific study to assess the existence of this relation has been proposed in [48].
Research has been focused on the statistics of edges in natural images and par-
ticularly in the statistics of co-occurrence of couples of edges taking into account
its relative position and orientation. The statistics have been estimated analyzing a
number of natural images from which a multidimensional histogram of relative po-
sition and orientation of edges has been constructed. Images have been preprocessed
by linear filtering with a set of oriented edge detection kernels (Gabor filters) and
performing non maximal suppression. A list of pixels corresponding to edges with
their respective orientations has been obtained by thresholding and binarization. A
four dimensional histogram (Ax, Ay, 6.,6,) has been computed by counting how
many times two detected edges with relative positions (Ax,Ay) have orientations
(6,6p). Finally a 3D histogram (Ax,Ay,A0) is obtained where the third coordi-
nate is the relative orientation A@ = 6, — 0.

4.7.2 Comparison between the Statistics of Edges and the
Stochastic Structure

A comparison between the estimated statistical distribution of edges and the com-
puted stochastic neurogeometrical model has been performed in [48]. In Fig. 4.27
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Fig. 4.25 Sections of the co-occurence maps (Ax,Ay) for different pairs of orientations A6
(left). Sections are piled up to build the 3D distributions (Ax, Ay, AO) (right).

Fig. 4.26 The whole distribution of co-occurrence of edges in natural images in the space
(x,y,0). It can be interesting compare this distribution with the deterministic structure visu-
alized in Fig. 4.7 and the stochastic structure of Fig. 4.23.

the two distributions are visualized and compared. There are two degrees of freedom
in the model to match: the variance o of the Fokker Plank operator and a scale factor.
After performing the parameter identification, the relative difference between both
functions is less than 0.02, and the reported value for ¢ is 1.71, a very interesting
value since it estimates the variance of the co-occurrence random process.

We found that it is possible to recover the co-circularity pattern from both the
distributions with the following procedure. First we compute the surface of maximal
probability 6 (x,y), where
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Fig. 4.27 Comparison between the computed stochastic model (left) and the distribution of
edge cooccurrences in natural images (right). The percentual error between the two distribu-
tions is less than 2.

mgxp(x,yﬁ) = p(x,y,0).

Secondly, the integral curves of the vector field (cos 0 (x,y),sin 6 (x,y)) are com-
puted. We found that in both cases curves present co-circularity. See Fig. 4.28
for a comparison. These comparisons strongly suggest that horizontal connectivity
modeled by the neurogeometry is deeply shaped by the statistical distributions of
features in the environment and that the very origin of neurogeometry as to be dis-
covered in the interaction between the embodied subject and the world.

Fig. 4.28 The co-circularity constraint in the neurogeometrical model, as the projection of
integral curves (left), and in the statistics of natural images as integral curves of the projected
vector field (right)
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4.8 A Harmonic Neurogeometrical Model

4.8.1 The Binding Problem and the Constitution of Perceptual
Units

The question of constitution of perceptual units is central in the entire body of study
of visual organization. The issue deals with the mechanism allowing the information
distributed in the visual areas to get bound together into coherent object represen-
tations. Electromagnetic radiations (photons) going from the physical world to the
eye are completely independent one to the other and do not contain any explicit in-
formation about the unitarity of objects. The visual areas are constituted in its turn
by million of cells. Along this path the unity of physical objects is completely lost,
but at the end of the chain the object shows up again at the perceptual level as a unit.
In which way is this reconstruction possible?

This process is known as “binding” or “perceptual grouping”, and it has been
extensively studied both from a phenomenological point of view by the experimen-
tal psychology of Gestalt [34] and from a neuro-physiological point of view aiming
to clarify its biological functionalities. Even if the mechanism of grouping is still
unknown there is a wide experimental evidence that the constitution of a perceptual
unit involves the response of a large number of neurons distributed over a large spa-
tial region. Different answers have been proposed to explain how these distributed
neural activities are integrated together to constitute a unit.

If excitatory-inhibitory neural populations are considered, the most accreditated
hypothesis is that binding is implemented with a temporal coding, meaning that
object segmentation is performed by the synchronization of oscillatory neural re-
sponses [28]. Many models have been proposed to explain phase locking of pop-
ulations of neural oscillators, see for example [56] for a review. In [11,51] it has
been shown that a neurophysiological model of coupled neural oscillators in phase
locking tends in its continuous spatial limit to the phenomenological model of seg-
mentation of Mumford-Shah.

On the other hand, if single population models are considered, different mecha-
nisms for binding can arise. For example in [52] and [53] a mechanism of grouping
has been proposed as an extension of the model of visual hallucination proposed
by Bressloff and Cowan [7]. We will reconsider extensively this model in the fol-
lowing. Particularly we want to investigate what is the role of the neurogeometry in
the constitution of perceptual units, considering that a global integration process is
needed. As stated by the studies of Gestalt theory, perception is a global process.
Moreover visual perception acts as a differentiation process of the entire field of
view, performing first a differentiation between figure and ground, and continuing
in the segmentation of single objects. We will try to keep in mind these fundamental
points and to formalize them in a coherent model.
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4.8.2 The Population Model

As shown in [53], the Ermentraut-Cowan mean field population model in presence
of a cortical input stimulus % (x,y, 0) provided by simple cells is

da(x,y,0,1)

_ h(x,y,0)
. ——aa(x,y,@,t)—I—Gy(a)*a(x,y,e,t)—I— ; ) (4.50)

where a(x,y, 0,t) is the neural activity of the population and « is the decay constant.
The kernel @ ((x, y0),(x,y,0 )) is the weight of connectivity between the pop-

ulation at the position (x,y) tuned at the orientation 6 and the one at the position
(«',y’) tuned at 8’, and it can be modelled by the fundamental solution of the station-
ary Fokker-Planck equation (4.48). It takes into account the contribution of cortico-
cortical connectivity.
The function oy is the transfer function of the population and it has the classical
sigmoidal behavior:
1

T lpe 10

oy(8)

where y is the threshold and ¥ is the gain. Notice that 6()) = 0 and this happens
when the input term & = o¢). For simplicity we will consider here a piecewise con-
stant input 2 = oy in a domain Q : {(x,y, 0) : h(x,y,0) = oy} and h = 0 elsewhere.
Note that in case of weak connectivity kernel, neurons outside £2 will stay constant
and under threshold in the dynamic of the system.

Then the activity equation becomes

1/2,

da(x,y,6,1)

o = —oa(x,y,0,t)+ 6y(w*a(x,y,0,1)) 4.51)

for (x,y,0) € Q, where
6,(8) = oy(&E —h/a)

with the property 6,(0) = 0. Let us outline that eq. (4.51) is formally equivalent
to the population equation studied by Bressloff and Cowan in [7] but defined in a
domain € instead of in the entire R? . We will study it with the same instruments
here.

4.8.3 Solutions of the Activity Equation

To compute stationary states of the activity equation (4.51), it is trivial to check that
since 6y(0) = O then the homogeneous state a(x,y,0,t) = 0 on the domain £ is a
stationary solution.
The stability of the solution can be studied in terms of eigenvalues of the lin-
earized functional
La=—aa+yw*a

in the domain Q where y = ¢’(0). Eigenvalues A verify the equation
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Aa=—oa+yo+a,
that is equivalent to the eigenvalue problem

ra=wxa
provided that A= (a;M. Then the stability problem is reduced to the study of
eigenvectors of the connectivity kernel @ in the domain €2, meaning the operator
K(a) = w*a in Q. Since o is the fundamental solution of the stationary Fokker
Planck equation (4.48), the convolution operator K (a) is compact, and its largest
positive eigenvalue is real. Moreover it has infinitely many eigenvalues, and the se-
quence of eigenvalues tends to 0.

This means that, when ¥ is small, zero is a stable solution, and it remains stable
until *%° takes the value of the largest eigenvalue of K (a). While y further increases,
the solution remains unstable.

(The eigenvectors of the operator K become marginally stable. Also note that the
corresponding eigen-space is of finite dimension since the operator K is compact.)

4.8.4 The Discrete Case

If the activity a(x,y,0) is approximated by a discrete distribution in terms of Dirac
masses

h
a= zais(xi-yzﬁi)’
i=1
then the convolution operator becomes

n
w*xa= 2 a)((xi,y,-,Gi)(xj,yj,ej))aj = lai.
j=1

Note that in this case the eigenvalue problem on the activity a(x,y, 6) reduces to the
spectral analysis of the matrix

Ajj = o((xi,yi,0;)(x},,6;))

with usual linear agebra instruments.

This matrix can be considered as the equivalent of the affinity matrix introduced
by Perona in [45] to perform perceptual grouping.

Perona proposed to model the affinity matrix in term of a euristic distance
d(x,y,0), facilitating collinear and cocircular couple of elements

Aj = o~ 47 (71,0 (x7.91.67))

In our case it is possible to prove that the distance d corresponds to the formal
Carnot Carathéodory distance d., meaning the geometric sub-Riemannian distance
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induced by the horizontal connectivity, since the fundamental solution @ can be
approximated by:

O((xi,3:. 0. (x7.7. 07)) = & (000 (5.0,

See [6] for a formal proof.

4.8.5 Dimensionality Reduction

In [45] the problem of perceptual grouping has been faced in terms of reduction of
the complexity in the description of a scene. The visual scene is described in terms
of the affinity matrix A;; with a complexity of order O(N 2) if N discrete elements
are present in the scene. The idea of Perona is to describe the scene by a point-wise
function p; of objects i taken one by one, rather than by a function A;; of object
pairs (i, j). This way the complexity of the description will drop to O(N). A way to
reduce by one order of magnitude the complexity of the description is to consider
the best approximation of the affinity matrix

N
p = argmin; Z (A — ﬁiﬁj)z
ij=1

where the term pp is a rank one matrix with complexity order O(N).

Perona proved that the minimizer p of the Frobenius norm is the first eigenvector
v of the matrix A with largest eigenvalue A: p = 7L]1/ 1.

Then the problem of grouping is reduced to the spectral analysis of the affinity
matrix A; ;, where the salient objects in the scene correspond to the first eigenvectors
with largest eigenvalues. We just showed in the previous paragraphs that this eigen-
value analysis can be accomplished by the activity of neural populations connected

by means of cortico-cortical horizontal connectivity.

4.8.6 Constitution of Perceptual Units

The affinity matrix can be represented as a graph whose nodes are the active cells
and the links are the neural connectivities with a weight that is defined in terms of
the connectivity kernel @((x;,yi, 6;)(x;,y;,0;)) (see Fig. 4.29).

Figure-ground articulation and the segmentation of different objects will corre-
spond to different eigenvectors a;. In Fig. 4.30 the three principle eigenvectors of
the neurogeometrical matrix associated to Fig. 4.29 are visualized in gray values,
showing the global emergence of perceptual units.

Let us note that this approach interprets the emergent figures in the image as
eigenstates of the neurogeometrical matrix A;;. Mathematically it corresponds to
the singular value decomposition of the neurogeometrical graph previously defined.
Co-occurring features are mapped to the same eigenvector; features that do not co-
occur are mapped to different eigenvectors. The eigenvector linked to the highest
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Fig. 4.29 Some perceptual units are perceived as coherent structures out of a random distri-
bution of segments. In the image on the top the most salient features are the semicircle and a
vertical segment. Neurogeometry lifts every segment in the E(2) group and induces connec-
tivity weights between every couple of segments represented in colors (bottom). The affinity
matrix A;; is constructed with the corresponding weights between couples of segments i — j.

singular value represents the most important vector in the data (i.e. the vector that
explains the most variance of the matrix); the singular vectors linked to the second
highest value represent the second most important vector (orthogonal to the first
one), and so on.

Models of image segmentation based on singular value decomposition and in
general on dimensionality reduction are largely used in contemporary computer vi-
sion (see for example [45], [54]), and we refer to [58] for a review of methods.
We have shown in this chapter how these sophisticated models of image segmen-
tation can be implemented at a neural level in terms of harmonic analysis of the
neurogeometry.
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Fig. 4.30 Eigenvectors of the affinity matrix are visualized mapping the intensity in gray
levels. The first a; eigenvectors correspond to the most salient perceptual units.
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Chapter 5

Cuspless Sub-Riemannian Geodesics within the
Euclidean Motion Group SE(d)

Remco Duits, Arpan Ghosh, Tom Dela Haije, and Yuri Sachkov

Abstract. We consider the problem P, of minimizing [y /B2 + |x(s)[2ds for a
planar curve having fixed initial and final positions and directions. Here x is the
curvature of the curve with free total length /. This problem comes from a 2D
model of geometry of vision due to Petitot, Citti and Sarti. Here we will provide a
general theory on cuspless sub-Riemannian geodesics within a sub-Riemannian
manifold in SE(d), with d > 2, where we solve for their momentum in the general d-
dimensional case. We will explicitly solve the curve optimization problem Peypye in
2D (i.e. d = 2) with a corresponding cuspless sub-Riemannian geodesic lifted prob-
lem defined on a sub-Riemannian manifold within SE(2). We also derive the so-
lutions of Peypyein 3D (i.e. d = 3) with a corresponding cuspless sub-Riemannian
geodesic problem defined on a sub-Riemannian manifold within SE(3). Besides
exact formulas for cuspless sub-Riemannian geodesics, we derive their geometric
properties, and we provide a full analysis of the range of admissible end-conditions.
Furthermore, we apply this analysis to the modeling of association fields in neuro-

physiology.

5.1 Introduction

Curve optimization plays a major role both in imaging and visual perception. In
imaging there exist many works on snakes and active contour modeling, whereas
in visual perception illusionary contours arise in various optical illusions [38,42].
Mostly, such snake and active contour models involve curve optimization in RY,
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d > 2, that rely on Euler’s elastica curves [24] (minimizing [(|x|? + ?)ds) in order
to obtain extensions where typically external forces to the data are included, cf. [9,
12,50-52] .

The elastica problem suffers from the well-known fact that not every station-
ary curve is a global minimizer, e.g. many local minimizers exist, cf. Figure 5.1.
Stationarity of a curve can be reasonably checked by the visual system using lo-
cal perturbations, whereas checking for (global) optimality [45,46] is much more
difficult. Some visual illusions (e.g. the Kanisza triangle) involve corners requiring
abrupt resetting of initial and ending conditions, which are difficult to explain in
the elastica model. Another problem with elastica is that it is very hard to solve
the boundary value problem analytically [3,4], and typically require (2d — 1)-dim.
shooting schemes. On top of that elastica curves relate to modes of the direction
process (for contour-completion [21,23, 38, 50]) where the direction of an oriented
random walker is deterministic and its orientation is random. Such determinis-
tic propagation only makes sense when the initial orientation is sharply defined.
Instead Brownian motion with random behavior both in spatial propagation di-
rection and in orientation direction ( [2, 13, 19, 22]), relates to hypo-elliptic dif-
fusion on the planar roto-translation group. Such a Brownian motion models
contour enhancement [19] rather than contour completion [21], see [17] for a short
overview. The corresponding Brownian bridge measures [22,57] (relating to so-
called completion fields in imaging [3,21,53]) tend to concentrate towards optimal
sub-Riemannian geodesics [7, 13,20, 35,37,45]. So both elastica curves and sub-
Riemannian geodesics relate to two different fundamental left-invariant stochastic
processes on sub-Riemannian manifolds on the 2D-Euclidean motion group [21]
(respectively to the direction process and to hypo-elliptic Brownian motion).

In short, advantages of the sub-Riemannian geodesic model over the elastica
model are:

e If d =2, every cuspless sub-Riemannian geodesic is a global minimizer [8, 15].

e The Euler-Lagrange ODE for momentum (including normalized curvature vector
x/+/|K|? + B2) can be reduced to a linear one,

e The boundary value problem can be tackled via effective analytic techniques,

e If d =2, the locations where global optimality is lost can be derived explicitly.

e Sub-Riemannian geodesics (in contrast to lifted elastica) are parametrization in-
dependent in the roto-translation group SE(d). Here we note in case d = 2, the
sub-Riemannian manifold (SE(2),4,,Gpg) is encoded via a pinwheel structure of
cortical columns in the primary visual cortex [41].

However, the practical drawback of sub-Riemannian geodesics compared to elas-
tica is that their spatial projections may exhibit cusps and it is hard to analyze when
such a cusp occurs. Therefore, in this article we provide a complete analysis of such
sub-Riemannian geodesics, their parametrization, solving the boundary value prob-
lem, and we show precisely when a cusp occurs. See Figure 5.3 and see Figure 5.2.

A variant of the sub-Riemannian problem that ensures avoiding cusps is the fol-
lowing variational problem, which we will explain next.
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Fig. 5.1 Stationary curves of the elastica problem ( foe k2 (s) + B2ds — min) do not need to
be global minimizers, cf. [44]. E.g. the non-dashed elastica is a global minimum (for 8 = 1),
whereas in dashed lines we have depicted a local minimum. This is in contrast to cuspless sub-
Riemannian geodesics in (SE(2),A2,Gg) where every stationary curve is globally optimal.

Fig. 5.2 An example of a smooth sub-Riemannian geodesic in (SE(2),42,Gp) whose spatial
projection shows a cusp
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Geodesic ‘ Elastica
x T
Y )
Cusps BC cusp-free geodesic

v y 2

Fig. 5.3 Top left: example of a spatially projected sub-Riemannian geodesic without cusp
(i.e. a solution of Peyrve ). Top right: example of an elastica curve reaching points x < 0. Such
a (weak) connection is not possible with cuspless sub-Riemannian geodesics. Instead we
see in the bottom left figure a comparable example of a spatially projected sub-Riemannian
geodesic connecting the g;, = (0,0,0) with g s, = (0,¥ iy, 0) via two cusps. Bottom right: not
all points in x > 0 can be reached via a globally minimizing geodesic, here we have depicted
the set 9 of admissible end-conditions g iy = (X fin, Y fin, Ofin) via black cones on half circles
with radius 1 and 2.

On the space of sufficiently regular curves in R, we define a functional & :
W21(]0,4),RY) — R*, with £ € R* being the length (free) of the curves, by

£(x) = /(f\/;c(s)2+/32ds. 5.1)

Here, s denotes the arc-length parameter of curve x and x : [0,¢] — R U {0} de-
notes the absolute curvature ||X(-)| of the curve x at each arc-length, and § >0 is a
constant.

The two dimensional case (i.e. d = 2) of this variational problem was studied
as a possible model of the mechanism used by the primary visual cortex V1 of the
human brain to reconstruct curves which are partially hidden or corrupted. The two
dimensional model was initially due to Petitot (see [40,41] and references therein).
Subsequently, the sub-Riemannian structure was introduced in the problem by Pe-
titot [42] for the contact geometry of the fiber bundle of the 1-jets of curves in the
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plane (the polarized Heisenberg group) and by Citti and Sarti [13, 47] for the prin-
cipal bundle on SE(2) also considered in this article. The stationary curves of the
problem were derived and studied by Boscain, Charlot and Rossi in [7], by Duits
in [20], by Sachkov in [35] and their global optimality is shown by Boscain, Duits,
Rossi and Sachkov in [8, 15]. The two dimensional problem relates to a mechanical
problem completely solved by Sachkov [37,45,46]. It was also studied by Hladky
and Pauls in [32] and by Ben-Yosef and Ben-Shahar in [6]. Within Section 3 of this
article we will summarize only the main results from our previous works [8, 15]. For
detailed proofs of these results, we refer the reader to [8, 15].

Many imaging applications such as DW-MRI require an extension to higher di-
mensions, see e.g. [14,23,27,50], which motivates us to study the higher dimen-
sional curve optimization of the functional given by Eq. (5.1).

Let Xg,x; € R? and ng,n; € S¢~! = {v € R?|||v|| = 1}. The goal is to find an
arc-length parameterized curve s — X(s) such that

X = arg inf E(y). (5.2)
y € WH1([0,4],RY),¢,
y(0) =xo, 3 (0)2110,
y( ) =X Y (f) =

We shall refer to this curve optimization problem as problem P. We assume that the
boundary conditions (xg,ng) and (x;,n;) are chosen such that a minimizer exists.

Remark 5.1. Due to rotation and translational invariance of the problem P, it is
equivalent to the problem with the same functional, but with boundary conditions
(0,a) and (R} (x; —Xo),R"ny), where a € §7~! is a fixed axis, and with Ry, is any
rotation that maps a fixed reference axis a tong € $97!.

Remark 5.2. The physical dimension of parameter f3 is [Length] ~!. From a physical
point of view it is crucial to make the energy integrand dimensionally consistent.
However, the problem with 8 > 0 is equivalent up to a scaling to the problem with
B = 1: The minimizer x of P with f > 0 and boundary conditions (x;,n;) relates
to the minimizer x of P with 3 = 1 and boundary condition ($x;,n;) by spatial
re-scaling, x(s) = B~ 'x(s).

Therefore, without loss of generality, we set (unless explicitly stated otherwise)
B=1,x0=0,andng =¢,

for the remainder of the article. Hence, the problem now is to find a sufficiently
smooth arc-length parameterized curve s — x(s) such that

X = arg inf E(y). (5.3)
y € W21([0,4,RY),0 >0,
¥(0) =0, y(0) = e,
y(0) =x1, y(£) =m

We refer to the above problem as Peyyye.
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We stress that there are restrictions on the boundary conditions for problem P and
problem Pcyrve to be well-posed [7]. For instance in case d = 2, one must have

(R;”: (Xm — xfin),R;i;nfm) €N, (5.4)

where in d = 2 we have ng, = (cos(0yn),sin(6y;,))" and where R denotes the
range of the exponential map [8, 15]. Roughly speaking this means that the endpoint
in Peyrve must be chosen such that it can be connected with a stationary curve.

In the d-dimensional setting criterium (5.4) is necessary, but so far it is still
an open problem whether it is sufficient (for d > 2). Therefore, in this article we
will lift and extend problem Pcyrve to a problem Ppee of finding sub-Riemannian
geodesics within SE(d), which is well-posed regardless the end-condition. Then
subsequently, we assume the end-condition in problem Peyrve is chosen such that
this end-condition gives rise to sub-Riemannian geodesic without cusps (i.e. %(¢) # 0
at the interior of the curve). Criterium (5.4) is then satisfied. Before we can formally
introduce this problem Ppe. We need some preliminaries.

5.1.1 Preliminaries and Notations

e The group of rotations in R? equals SO(d) = {R € R*¢|RT =R~ det(R) =1}

e The special Euclidean motion group on R is given by the semi-direct product
SE(d) = RY x SO(d). Tts group elements are denoted by g = (x,R) and it is en-
dowed with group product (x1,R])(X2,R2) = (R1X2+X1,R|Ry). Its unity element
equals e = (0,7) with I denoting the d X d identity matrix. The group SE(d) acts
on the set R? x §7~1 via

(x,R)(y,n) = (Ry +x,Rn). (5.5)

e Letac S7be afixed element on the d-dimensional Euclidean sphere S¢ := {x €
RY| ||x||=1}. Weseta =ey, e.g.ifd =3 weseta=e, := (0,0,1)7,if d =2 we
seta=e,:=(0,1)7.

e Let d > 2. The coupled space of positions and directions is defined as the Lie
group quotient

RY % $971 .= SE(d)/ ({0} x SO(d—1)) (5.6)

where we identify SO(d — 1) with {R € SO(d) | Ra = a}. For simplicity elements
of R x §%~! are denoted by (y,n) with y € R? and n € §?~!, where we keep
in mind that each element represents a left coset within SE(d). Such a left-coset
contains equivalent rigid body motions that map (0,a) to (y,n) via the rigid body
motion action (5.5):

(ya Il) = (yaRn)(O’a)

where Ry, € SO(d) denotes any rotation that maps a onton € 9=,

e The left-invariant vector fields considered as differential operators acting on
smooth functions ¢ : SE(d) — R are given by the push-forward of the left multi-
plication L, : SE(d) — SE(d) given by Lh = gh:
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1

Ay = (Lg)s i, i.e. Ay = Au(§0Ly), (5.7)

where <7, € T,(SE(d)), with T,(SE(d)) the tangent space at the unity element e.
We choose! a basis in T,(SE(d)), say {A1,...,Aq} U{As11,. .- Ad(ds1)/2} With

vector fields A; = aif , j=1,...,d acting only on the spatial part®, and
{Adt1s---Adq(a+1)/2} acting only on the SO(d) part. The matrix representations
of the spatial generators are given by

A= (8 tg() e RE@HDX@H) g 1. 4

The matrix representations of these angular generators in 7,(SE(d)) are given by

(—E;‘H +Et! 0) ifi=n(n+1)/2

0 0)’ forsomenc{l,...,d—1},
Agas1)/2-iv1 = £ g2 ifi=n(n+1)/2+io (5.8)
( "+20 fo ), with ig € {1,...,n}
forsomen € {1,...,d —1}.

with E ; € R4*? 3 matrix with all zero elements except for a unity 1 in row i and
column j. In this way we have

span{ i1, Fyas1)/2} = To(SO(d)) =s0(d) = span{E} — E/ | 1 <i < j<d}.
Furthermore, we observe that the angular generators are ordered such that
span{AZd, . 7Ad(d+1)/2} = TQ({O} X SO(d— 1)) 5.9

So in view of R x §?~1, Eq.(5.6), the redundant directions in SE(d) (i.e. the
angular generators of the stabilizing sub-group of a, which is isomorphic to
SO(d — 1)) come at the end. To this end we note that

d(d+1)/2=dim(SE(d)) = dim (R x §¢~1) + dim (SO(d — 1)) (5.10)
=Q2d-1)+(d-2)(d-1)/2. ‘
Via the push-forward (Lg). of the left-multiplication, Eq. (5.7), this basis
{A1,...,A4(as1)/2} provides us a moving frame of reference in the group SE(d).
This basis will be denoted by {7, ..., Zy(441)/2} With

m/,-\g = (Lg)*Ai ,forall i=1...,d(d+1)/2,g € SE(d), (5.11)
The main results (in contrast to the structure constants cf ) in this article do not depend

on this choice of basis, one may choose a different basis with an ordering such that (5.9)
holds.

2 In previous works [19,20] on SE(2), different ordering conventions are used in the Lie-

algebra, and we set a = e, instead of a = e,. In subsections 3.2-3.5 we will also adhere to
that convention.
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with A; = #|,_,. The corresponding dual frame {wk}k:l,...,d(d+l)/2 is given by

(o

,,Qij|g) :3]]-‘, forallk,j=1,...,d(d+1)/2and all g € SE(d), (5.12)
g

where § ]’ are the usual components of the Kronecker tensor. Explicit formulas for
the frame of left-invariant vector fields and corresponding dual frame are derived
in [18,20]. Note that the vector space of left-invariant vector fields forms a Lie-
algebra, with structure constants cﬁ j given by

d(d+1)/2
[, o)) = iy — A=Y, . (5.13)
k=1

e Within this article we consider the sub-Riemannian manifold (SE(d),Aq,Gp),
with base manifold SE(d), and with distribution A4, and metric tensor GB :
SE(d) x Ay x Ay — R given by

Ag = span{ <y, ..., g 1},
2d—1 . 2d—1 2d—-1 . 514
Gﬁ|g< b, X CJ*‘Z{J'L:) =Bt + Y b, (5.14)
i=d j=d i=d+1

for all b = (b")izi;l,c =(c )?i;l € R, So by construction the horizontal left-
invariant vector fields {mfi}?i;l form an orthonormal basis in A; w.r.t. metric

tensor Gj.

5.1.2  Lifting Problem P yyve to Problem Puec on (SE(d),Aq,Gg)

Now we relate the problem Peyrve to a sub-Riemannian problem Ppe. on the Lie
group quotient R? x §?~! given by Eq.(5.6). We define this sub-Riemannian prob-

lem by means of the left-invariant frame {mf,-}?:(?_l)/ 2, recall Eq. (5.11), and its

left-invariant co-frame { ' }?:(‘fﬂ)/ 2 given by Eq.(5.12). Within this frame, we will

consider the horizontal part only, where we recall that the d-dimensional distribu-
tion Ay is given by Eq. (5.14) where indices run from d to 2d — 1. See Figure 5.4 for
a visualization of this left-invariant frame in case d = 3. We will define Pypec On the
sub-Riemannian manifold (SE(d),As,Gg), with distribution A; and metric tensor
Gg given by Eq. (5.14), i.e.

2d—1
Gg=p*e0'®0’+ Y oo
i=d+1

In the geometric control problem Ppec on SE(d), we use the sub-Riemannian arc-
length parameter ¢. In Ppec, we aim for curves v : [0,T] — SE(d), with prescribed
boundary conditions y(0) = (0,7) and y(T') = (X;,Rn, ), such that
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x spatial velocity ) angular velocity

X = <w5,;}/>"41 - <w4,"y>A2 0= (w4,’7>u44 + <w577>¢45

Fig. 5.4 Tllustrations of the left invariant frame representing a moving frame of reference
along a curve on R3 % 52, i.e. d = 3. The spatial velocity and the angular velocity are depicted
in the frame to highlight the constraints between the spatial and angular frame.

—1

fwfﬁy@(w),ﬂr))dr=f\/ﬁ2<ud<r>>2+ RGO (5.15)

i=d+1
— minimize (with free T')

with
2d—1 2d—1

Y1) = 2 ul(t)ﬂfi‘y(t) = 2 <wl|y(t)a7(t)>=5z{i‘y(t)
i=d i=
where, u' € L;([0,T]) for i =d,...,2d — 1 and Rn, € SO(d) is any rotation such
that Ry, a = n;. In particular, we only consider the stationary curves for which the
absolute curvature is IL; rather than L...

The existence of minimizers for the problem P is guaranteed by the theorems
by Chow-Rashevskii and Filippov on sub-Riemannian structures [1]. We consider
those boundary conditions, for which a minimizer of Pyee does not admit an internal
cusp (i.e. an interior point with infinite curvature). Clearly, such minimizers are also
geodesics. We have the following important remarks about these minimizers.

Remark 5.3. ¢ We have that for Ppyec, there are no abnormal extremals. It follows
from the fact that any sub-Riemannian manifold with a 2-generating distribution
does not allow abnormal extremals (see Chapter 20.5.1 in [1]). This is the case,
since for Ay := {,..., 941} we have dim (A, + [Ag,A4]) = d(d+1)/2 =
dim(SE(d)).

e Due to the non-existence of abnormal extremals, the minimizers are always ana-
Iytic [1].
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Remark 5.4. Geodesics of Pryec may lose local and/or global optimality after the end
condition at a conjugate point, or global optimality at a Maxwell point. A Maxwell
point is a point y(r) on a sub-Riemannian geodesic y such that y(t) = ¥(¢) for an-
other extremal trajectory ¥ with initial condition satisfying 7(0) = y(0). A conjugate
point on the other hand is a critical point of the exponential map underlying the ge-
ometric control problem (cf. Theorem 21.11 in [1]). Here the exponential map maps
each allowable pair (1(0),£), with initial momentum A (0) and length /, to the end-
point y(¢) of the corresponding cuspless sub-Riemannian geodesic s — y(s) that
arises from integrating the canonical Euler-Lagrange or Hamiltonian equations (e.g.
obtained via the Pontryagin Maximum Principle). We will provide explicit tangible
formulas for this exponential map in case d € {2,3}.

Remark 5.5. Throughout this article we will associate to a curve Y in
(SE(d),A4,Gp) a corresponding curve v in RY % $9=1 by setting

(SE(d)aAdaGﬁ) > '}/(S) = (X(S),R(S)) — 516
¥(s) := (x(s),n(s)) € R? x 89~1 with n(s) := R(s)a. '

In the remainder of this article, we will write y(s) both for curves in (SE(d), A4, Gp)
and for its associated curve in R? x §¢~! as it is clear from the context what is meant.

The energy functional in Problem Pyrve and Problem Ppec coincide for arc-length
parameterizable curves ¥(-) = (x(:),R(:)) in (SE(d),As,Gg), as we have

2d—-1

i . 2 2 _ .2
3 o] MR = IR = R, 5.17)

(], 7)) = ()] = 1.

where K (s) = X(s) denotes the curvature vector and x(s) the curvature magnitude at
x(s) along the spatial part x of the curve 7.

Remark 5.6. Stationary curves of Problem P¢yrve and the spatial part of stationary
curves of Problem Ppe coincide if the end-condition (x;,n;) € R? % 891 is chosen
such that it can be connected by a stationary curve of Peypve (i.€. if the end condition
is contained within the range %R of the exponential map of Problem Pcypve)-

From now on, such end conditions will be called admissible end conditions. E.g. for
d = 2, we have shown [8] that for each admissible end condition, Problem Pcyrve
is well-posed and there exists a unique stationary curve connecting the origin (0,a)
with (x,n) that is the global minimum of Problem Peyyye. Furthermore, in [15] we
have explicitly derived the set of admissible conditions 9i. We will summarize these
results in Section 5.3.
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5.1.3 Structure of the Article

In Section 5.2, we will derive general results for (cuspless) sub-Riemannian
geodesics in (R? x S9=1 Ay, Gp). We apply the Pontryagin maximum principle and
we will show that for cuspless sub-Riemannian geodesics, the phase portrait of mo-
mentum reduces to a d-fold planar hyperbolic phase portrait. We express their mo-
mentum in terms of the initial momentum accordingly. We show that momentum is
parallel transported along the geodesics w.r.t. a Cartan connection, and we derive
a theorem allowing explicit integration to the sub-Riemannian geodesics from their
momentum. Finally, we show that cuspless sub-Riemannian geodesics are a good
model for association fields obtained in neurophysiology and neuropsychology.

In Section 3, we consider the special case d = 2, where we derive the unique
globally optimal cuspless sub-Riemannian geodesics and their properties. We also
carefully analyze the set R of admissible end conditions, which is contained in
x > 0, and for which we solve the boundary value problem associated with Problem
Pcurve via a semi-analytic method, allowing for a /D numerical shooting algorithm
to solve the boundary value problem. We also obtain a description and computation
of the piecewise smooth boundary dR. From this description we deduce that the
extreme orientations per positions are given by endpoints of geodesics ending in a
cusp and/or departing from a cusp.

In Section 4, we consider the special case d = 3, where we explicitly derive the
stationary curves for admissible end conditions (allowing a connection via cusp-
less sub-Riemannian geodesics). We express their torsion and curvature in terms
of momentum, from which we deduce a wide range of geometrical properties.
E.g. we show that if the boundary-conditions are co-planar, we obtain the sub-
Riemannian geodesics with d = 2. Numerical computations show that the sub-
Riemannian geodesics are again contained within cones determined by endpoints
of those geodesics that end and/or depart from a cusp, supporting (together with
the co-planarity results) our conjecture that the exponential map of the geometric
control problem has similar homeomorphic and diffeomorphic properties as in the
case d = 2, leaving a challenging open problem for future research. Furthermore,
we show that the extreme sub-Riemannian geodesics departing from a cusp will be
contained entirely in the half-plane z > 0.

In Section 5 we consider the special case d = 4, where we explicitly derive mo-
mentum of the stationary curves.

5.2 Sub-Riemannian Geodesics in (R? x S~ A;, G))

A general well-established tool to deal with geometric control problems, following
a Hamiltonian approach, is the Pontryagin Maximum Principle (PMP) [1,43,55].
In Appendix A, we formally apply the Pontryagin maximum principle to prob-
lem Ppec of finding sub-Riemannian geodesics in the sub-Riemannian manifold
(SE(d),A4,Gy). There we also include techniques from theoretical mechanics, fol-
lowing a Lagrangian optimization approach as proposed by [10, 11] which produces
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the same canonical equations, to simplify the canonical equations considerably. The
resulting equations are surprisingly simple and structured as we will show next. Let

d(d+1)/2 . 2d-1 4
A=Y u0 o], =3 Ao,
i=1 i=1

denote the momentum along the sub-Riemannian geodesics (stationary curves ¢ —>
¥(t) = (x(¢),R(t))) expressed in sub-Riemannian arc-length ¢. Here,

A =0forall 2d < i< d(d+1)/2 = dim(SE(d)),

since momentum does not contain components in the redundant directions ¢ =
02t = = @d@+1)/2 = 0, recall Eq. (5.10) and Eq. (5.6). To this end we recall
that we are interested in connecting points in the Lie group quotient

RY 5 891 = SE(d)/({0} x SO(d — 1)),

and the d(d — 1)/2-dimensional Lie-algebra spanned by {@%y,..., Zyas1)2} is
precisely the Lie algebra of the SO(d — 1) subgroup (i.e. the Lie-algebra of the
stabilizer subgroup of our arbitrarily fixed a € SY~!). Then the canonical equations
are given by

_ 2d-1
() = ;d Ai(t) il
1241 (5.18)

where the first equation relates to the horizontal part of PMP and the second equation
to the vertical part of PMP. These equations can be combined in a single equation
using a Cartan connection V on a cotangent bundle of the sub-Riemannian manifold
(SE(d),A4,Gpg) that is derived from a Cartan-Maurer form on the underlying prin-
cipal fiber bundle (akin to [15, App.C] for d = 2 and [30, App.A] for d = 3). More
explicitly, it turns out that (as we shall prove in Theorem 5.2):

2d—1 [ 2d—12d—1 ' '
Vi =0& it Y, Y V| o =0.
i=d k=1 j=d

with 7% := ( @* ’ " 7), which according to the first equality in (5.18) (i.e. the horizon-
tal part of PMP) is equal to A;. Computation of (5.18), where we omit the vanishing
structure constants, see (5.13), yields
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M) = =Aa(t) dag1(1)cf 5y fork=1...,d—1,

R d—1

%’d(t) = _kgl )‘k(t)A'Zd*k(t)cg 2d—k> (5.19)
Ak(l‘) = 7ld(l)lgd_k( )C]%dd k fork=d+1,...,2d —1,

() =0fork=2d,....d(d+1)/2.

Now, only for cusp-less sub-Riemannian geodesics y of problem Ppec, we switch to
spatial arc-length parameter s, where we note that along such curves we have

() = /1K) + 1 and (1) = 24(0) (5.20)

which follows from [|x(s)|| = 1 and Eq. (5.18). On top of that, we use the cyclic
property on the structure constants that holds for structure constants of SE(d):

ngdik = Céd*k.,d’ fOr k = 1 e 7d — 1,
and we obtain the following remarkably simple ODE system

Ai(s) = A(s), forkfd .
(alsDAas) == 3. (Rals)Aals), 62D

where A (s) := A (¢(s)) fork=1...,2d — 1. Then we use the fact (akin to [15,30])
that orbits in the augmented space of position and momentum are contained in the
co-adjoint orbits® of SE (d),i.e

d

d
2 () =Y |4 (0)] =: 2, (5.22)

k=1

for all 0 <'s < s4x, Where s,,4x Will be computed later, and the fact that A, is positive
(by Eq. (5.20)) to solve for momentum of cuspless sub-Riemannian geodesics:

Ai(s) = A4 (0) cosh(s) + A(0) sinh(s), for k # d,

d—1 (5.23)
hals) = \/ =T AP

Remark 5.7. In the remainder of this article, we will just write A (s) instead of A(s).
When writing A(s), we mean { A(s).

Remark 5.8. Besides preservation law (5.22), we deduce the preservation laws

2d—1
2 Mi‘z =1 and W(li,ﬁ,j) = likj — ﬁ,ji,' = li(()))uj(()) — ﬂ,j(O)i,‘(O), (5.24)

i=d

3 Conservation law (5.22) can also be deduced from the second part of Eq.(5.21).
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where W denotes the (constant) Wronskian of A; and A; for each pair i,j €
{1,...,d =1} withi # j.

We represent the momentum co-vector A(s) = 2 ). | by storing its com-

ponents in a row-vector where we split spatial and angular part
A= (A(Uald;l(z))a

with A1) = (My...,Aq—1) (where the component index increases), 22 =
(A2d-1,---,A4+1) (where the component index decreases). Then Eq.(5.21) becomes

i) = 220s),
. d—1
Aa(s) = —(Aa(s)) ™! kgl A (8)A2a 1 ()€ 2o
A (5) = A2 (y),
where A = diag ({Cz,zd—k}i;D e RE-1)x(4=1) i5 a diagonal matrix whose diago-

nal elements are determined by the vector {cz 2d— k}z;]] whose elements are within
{—1,1}. Since A% = I, it produces the solutions

AU (s):/l )(0) cosh(s) + AP (0)sinh(s),
Ja(s) = 1= 122 )| = /2 = AV )P, (529)
A3 (s) = ;L< )(0) cosh(s) + AL (0) sinh(s).

In turn, these formulas allows us to compute the arc-length towards a cusp

A \/1+c2+\/|1+c2\2*\|/1(1)()+/\/1 O -A22 )]
smax(A(0)) = log 121V (0)+A22 (0)]

(5.26)
since at a cusp, we have Ay (fcusp) = 0 and we have

lim A2 (s)|=1< 11m [As(s)] =0« lim x(s) — oo,
STSmax $TSmax $TSmax
recall Eq. (5.20), with teusp = t(Smax)-
Let us summarize these results on sub-Riemannian geodesics in (SE(d), Ay, G1)
in the following theorems.
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Theorem 5.1. Along the sub-Riemannian geodesics in (SE(d),Ay,G1), the follow-
ing canonical equations hold

_ 2d—1

70 =" 1) Al

. 1241 (5:27)
At)=— X X Cﬁja'k(t)a’j(t)v

j=d k=1

along cuspless sub-Riemannian geodesics (i.e. the sub-Riemannian geodesics that

allow parametrization by spatial arc-length s) in (SE(d),A4,Gg). Momentum A =
2d—1 _

> L@’ satisfies the simple ODE system Eq. (5.21), whose explicit solution is given
i=1

by Eq. (5.25). The spatial arc-length towards a cups is given by Eq. (5.26).

Proof. For Eq. (5.27), see Appendix A. The remainder of the proof follows by the
earlier derivations in between Eq. (5.19) and Eq. (5.26). Il

Corollary 5.1. The momentum orbit s — A(s) of a sub-Riemannian geodesic s —
v(s) is determined by a d-fold hyperbolic phase portrait, see Figure 5.5,

d (—c) oy ra—i(s)\ [0 —1 —cl g iMaa—i(s) F_
i (i) = (V) (o) i

and preservation law Ay(s) = \/1 — X ()| for all s < spmax(2(0)).
i=d+1

76?1,2(1—1')”
— c>1
L -
\ = c<1

7.
N

E . e

Fig. 5.5 In momentum space, sub-Riemannian geodesics reduce to a d-fold hyperbolic phase
portrait, see Corollary 5.1

2d—1
Theorem 5.2. e  Horizontal exponential curves given by s — go Exp(s Y. c'A;),
i=d

with gd =1, go € SE(d), are the auto parallel curves (i.e. V7= 0) w.r.t. connec-
tion V on the sub-Riemannian manifold (SE(d),Aq,Gpg) given by
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_ 2d—1 2d—1 o
Vxa =Y, [d= Y o ;7al | % (5.28)
k=

d ij=d

2d-1 2d-1
withX = Y Vo, o = Y a“.
i=d k=d
e Along an exponential curve, the tangent vectors are covariantly constant,

whereas, along a stationary curve, one has covariantly constant momentum, i.e.

B 2d-1 [ 2d—12d—1 N\

Vik=Y L+ Y Y a7 o' =0.
i=1 j=d k=1

Proof. Define 7 := (o' |y, 7). Then following the same approach as done in [20],

[15, App.C] (for the case d = 2) and done in [30, App.A] (for the case d = 3), the

Cartan connection on the tangent bundle is given by Eq. (5.28). From Eq. (5.28), it
is directly clear that the auto-parallel curves are horizontal exponential curves, since

Vit =0 Yic(a, 20-1y7 =0 Viera. 2a-1y7 = ¢ for some constants c;

a1\
< y(s) = y(0)Exp (s > c’A,-) .
i=d

and in order to ensure s to be the spatial arclength parameter we must have ¢ = 1.
Now the Cartan connection on the tangent bundle naturally imposes the following
Cartan connection formula on the co-tangent bundle given by

21 dt 2ot _ '
Vi Y holly=Y [+ Y Y ik a)’|y, (5.29)

i=1 i=1 j=1 k=1
which follows from Eq. (5.28) and d{(&*|y,«]) = (Vy0r|,. ) +
(@], Vy],) = 0. For details see [30, Lemma A.11]. Now, by the horizon-
tal part of PMP (i.e. first equation in Theorem 5.1), we have

¥ =M forallic {d,...,2d — 1},

so that the result follows by substituting this equality into Eq. (5.29). (I

Now that we have computed momentum A (s) in Theorem 5.1, we can integrate the
equation in Theorem 5.2 to find the sub-Riemannian geodesics.

Theorem 5.3. Let m : G — Aut(RZd ) denote the matrix group representation (see
Remark 5.9) such that
dAl, = Aly m(y")dm(y),

where we represent the covector field A |y = 2,251_1 A @ | v along the geodesic y(-) =

(x(-),R()), by a row-vector Al, = (1,...,A24)l,,
along the sub-Riemannian geodesics in (SE(d), A4, Gg) the following relation with
momentum applies

where we note Ayg = 0. Then
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A(s)m(y(s))~" = A (0)m(y(0))~".
Proof. Note that V() A|,(,) = 0 iff

LA+ A6y (1)) L mir(s) =0

ds ds

for all 0 <5 < 5,4 (A(0)). The rest follows by

1o P)(8() ™) = =A(s)(g(s) " 7(5)(8(s) " + As)(g(s) " =0,

with g(s) = m(y(s)). The last equation must be multiplied with g(s) from the right
to obtain the result. O

Remark 5.9. For d = 2, this group representation m is given by Eq. (5.33). Ford > 2
this group representation m is given by

m(x,R) = (ﬁ G;R> , (5.30)

d . d .
where ox = X XAy, € so(d), with x = Y x'e; and A,; € so(d). Here, we have
i=1 i=1

Orx = RoxR™! and thereby m(g1g2) = m(g1)m(g>) for all g;,g> € SE(d). Then

1
dA = Am(y-Ddm(y) = A (R dR "R“ix)

0 R 'R
—2 6<md+17m7w2d>r O'(w17'.'7wd>T
0 O+l w2d)T )’

with short notation @/ = @/
ector A = 21.2;11_1 Ai a)i|y by a row-vector A = (4y,...,A2). Note that a)j|y =0and
Aj =0 for all j > 2d along sub-Riemannian geodesics y(-) = (x(-),R(-)).

" A= My, dA = dMy, and where we represent cov-

5.2.1 Summary: The Exponential Map of Control Problem P .yyve

Now let us combine the results of Theorems 5.1, 5.2 and 5.3. Theorem 5.1 provides
us momentum A(s) which is entirely determined by A(0). This is not surprising
as by Theorem 5.2, one has covariantly constant momentum, as follows from the
canonical equations of the Pontryagin maximum principle. The structure of the Car-
tan connection can be employed to explicitly derive an admissible endpoint y(¢) of
a cuspless sub-Riemannian geodesic y from a pair

(R0,0) €D 1= {(A0,0) € € x R* | £ < 5ax (A(0)) # 0},

with € := {1(0) € T/ (SE(d)) | Zdi] Mi(O)P —1) (5.31)
i=d
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consisting of momentum Ay and length /¢, with the preservation law of Theorem 5.3.
The associated mapping

(Z0,£) = ¥(¢) =: Exp(%o,{)

is called exponential map4 lg&) of Peurve - It coincides with the exponential map for
Ppec When restricting to admissible end-conditions.

In the subsequent sections we apply this procedure to get an explicit formula
for the exponential map ]/Eiﬂxg) for the special cases of interest, respectively d = 2
and d = 3. We will also provide analysis and visualization of the range R :=
E;(I)(@) of the exponential map and show that it provides a reasonable group-
ing criterium to connect two points, say (0,a) and (x;,n;) within R? x §9-1 :=
SE(d)/({0} x SO(d — 1)). This analysis of problem Peyrve (and Ppyec for admissi-
ble end-conditions) is related to earlier neuro-psychological models of association
fields [26,41].

5.3 The Case d = 2: Sub-Riemannian Geodesics in
(R%2x S, Ay,G)

Let us first apply the results regarding sub-Riemannian geodesics within (R? x
Sd’l,Ad,Gﬁ) to the special case d = 2. Following our standard conventions, we
get

a := e, and furthermore

Ay =0y, Ay =0y, A3 =y,

/| =c0s 00, +5sin0d,, o = —sinOdy+cos 09y, 943 = dg,

o' = d6, w* = cos Odx + sin Ody, > = —sin Odx + cos Ody,

Ay = span{.ch, <},

Gp = ®° @ 0 + B>w? ® w* where we set B = 1.

3 .
This produces the following canonical ODE-system for momentum A = Y 4@’

i=1
along the sub-Riemannian geodesics:

() =22(t)23(t), Ma(t) = =M1 (1)2A3(t), A3(t) = Ay (£)Aa(1),

expressed in sub-Riemannian arclength parameter 7. Along cuspless sub-
Riemannian geodesics, this ODE-system simplifies to

A(s) = =23(s), Aa(s) = —Mﬁsjf:)“), A3(s) = —A(s),
using the spatial arc-length parameter s, and we find preservation laws

A +23 == A8(0)+A3(0), A7+ A3 =1,

4 In our notation of the exponential map, we include a tilde to avoid possible confusion with
the exponential map Exp : T,(G) — G from Lie algebra to Lie group.
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and solutions

7L (s) =10 )cosh( ) A3(0) sinh(s),

S \/1 |2,3
lg(s) = dd? (t(s)) = \/K';((SS)>+1 = A3(0) coshs — A;(0) sinhs,

where Kk(s) denotes the curvature of the spatially projected curve s — (x(s),y(s)).
The maximum length towards a cusp is given by

1+¢
Smax(A(0)) =1lo , 5.32
HOI=10¢ 3, 0) - 1(0) >3
with ¢ = /|21 (0) 2 + [A2(0)|2. Let m : SE(2) — R*>*3 be given by
cos@ sinf —x
m(x,y,0) = | —sinB cos@ y |. (5.33)

0 0 1
Then along the geodesics we have
A(s) m(y(s)) = A(0) m(¥(0)) = A(0) for all s € [0, smax(2(0))),

which allows us to compute the endpoint y(s) = (x(s),y(s),0(s)) € SE(2) of a cus-
pless sub-Riemannian geodesic from a pair (s,A(0)) with s < s,4x(A(0)).

5.3.1 Switching to the Case a = e, and Re-labeling of the
Lie-Algebra

So far we have applied the general formula for sub-Riemannian geodesics within
(RY x 8971, Ay, G)) to the special case d = 2, where we kept track of consistency
with the case d > 3.

However, in order to directly relate to previous works by the authors on sub-
Riemannian geodesics within the 2D-Euclidean motion group and orientation scores
[19,20], we will in the remainder of this section switch to the case a = e, (instead
of a = e,), and we will re-label the Lie-algebra as follows:

| 1= 0dy, oh:=cos00d,+sinbd,, o3 = —sin0dx+cosO0,. (5.34)
The corresponding dual vectors are given by

o' :=d0, ®?:=cosOdx+sinOdy, ®3:= —sinOdx+ cosOdy, (5.35)

3 .
that we will use to represent the momentum covector A = ¥, A;®' accordingly.
i=1
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5.3.2 Explicit Parameterizations of the Cuspless Sub-Riemannian
Geodesics and Their Properties

Let us explicitly compute the exponential map for the case d = 2 using spa-
tial arc-length parametrization which provides us an explicit formula for the sub-
Riemannian geodesics in (SE(2),Az,G)) (recall Remark 5.2). We will use the la-
beling/ordering conventions (5.34) and (5.35).

Theorem 5.1 directly provides us the linear ODE

L & K(s) _ KB
Mi(s) =Ai(s) & ds? (\/KZ(S)+1> B VK2 (s)+1

which directly provides us with the curvature x(s) of the cuspless sub-Riemannian
geodesics in terms of A(0) = A4;(0)d6 + A,(0)dx + A3(0)dy and spatial arc-length
s, with s < $;mqc(A(0)), recall Eq. (5.32). Now instead of integrating a Frenet ODE
system, we apply an effective integration procedure via Theorem 5.3. We have

di =2 (m(y) " dm(y) & A(s)m(y(s) = A (0)m(y(0) = 2(0),  (5.36)

where we use short notation for the row-vector

A= (=23(5), Aa(s), A1 () = (Aa(s), ) (53D

cos@ —sin6 x
withm(y) = | sinf cos6 y | the most common group representation of SE(2).
0 0 1

Lemma 5.1. Let ¢ := /|A2(0)| + |A3(0)|2. There exists a unique hy € SE(2) such
that X.(0)m (hy') = (¢,0,0). Consequently, we have for ¥(s) := hoy(s) that
(—=A3(5), A2(), A1 (s)) = A(s) = (¢ 0 0) m(¥(s)). (5.38)

Proof. Follows by Theorem 5.3 and the fact that m is a group representation. (I

Application of this lemma provides the following explicit formula for the
sub-Riemannian geodesics in (SE(2),4,,G).

Theorem 5.4. The exponential map of Peurve expressed in spatial arc-length
parametrization is given by

EXP (1§ l( ) ’y(O):e ’ S> ’ (5.39)
=Y(s) = (x(5),5(s), 6(s)),

Sfor all s € [0,£] with total spatial length (< smax(l (0)). The cuspless geodesics in
(SE(2),42,G) are given by y(s) = hy ' ¥(s), i
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0(s) =6(s)—6g € [—m, 7],
with cos(0g) = A0 gnd gy € [—m,0],

[

x(s) = Ry (X(s) — X0) , (5.40)
T [ cosBp sinBy\ | [ —2A3(0) —A2(0)
Wm%(_maw%%>c(bm)—@@)

with ho = (x0,R0) € SE(2), X0 = (_13(0) ,0)T. Here curve y = (%,7,0) is given by

c

Cc 9

Il
|
-
O =
<
|
=
—
IS
SN—
o
o,
:ﬁ

(5.41)

with A1(s) = A1(0)coshs — A3(0)sinhs, A3(s) = A3(0)coshs — A;(0)sinhs and
where ¢ = /|A2(0)| +|A3(0)[2 > 0.

From these formulas one can directly deduce the following properties:

e If ¢ < 1, the curvature does not switch sign and we obtain U-shaped curves,
unless 4;(0) = A3(0) = 0 in which case we get a straight line.

e If ¢ > 1 and A;(0)A3(0) > 0O, then the curve is an S-shaped curve with bending-

) 1o 1A 0)+2300) |
point at s = log ||/1; (0)—/1;(0)”'

e Ifc=1and A3(0) = A;(0) we have ;¢ = o°.
e The cuspless sub-Riemannian geodesics are monotonically increasing along the
A2(0)e + A3(0)ey-axis:

—§(s) = 0 A2(0)i(s) + A3(0)y(s) > 0,

and even if they tend towards a cusp where curvature tends to infinity, they do
not roll up and their sub-Riemannian length stays finite.

e The cuspless sub-Riemannian geodesics are contained within the half-space
x > 0 and the boundary x = 0 can only be reached with an angle (w.r.t. the posi-
tive x-axis) of & as formally proven in [15, Thm.7 and Thm.S§].

5.3.3 The Set R and Its Boundary 0R

Now that we have computed the exponential map, let us have a look at the range
R = Exp(®), which according to the results in [8] coincides precisely with the
points for which Peyrve admits a global minimum. In fact, we have

Theorem 5.5. In Peyrve with d = 2, we set initial condition (Xin,yin,0n) = € =

(0,0,0) and consider (X fin, Y fin, Ofin) € R2 % SL. Then

o (x finsY fin Gf,-,,) € R if and only if Peurve has a unique minimizing geodesic which
exactly coincides with the unique minimizer of Pmec.
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® (Xfin,Yfin, Ofin) & R if and only if problem Peyyve is ill-defined (i.e. Peyrye does not
have a minimizer).

Corollary 5.2. Set g, = e. Then g, is an admissible end-condition for Peyrve if
8fin € R.

According to the next theorem the exponential map has nice smoothness and
bijection properties and properly maps analytic trajectories in the hyperbolic
phase portrait in momentum space onto analytic sub-Riemannian geodesics in
(SE(2),A3,Gy). For a visualization on how this is achieved physically, see Fig-
ure 5.6.

Theorem 5.6. Let © and ‘R denote respectively the domain and range of the expo-
nential map of Peurve defined on (SE(2),A,,G). Then,

° Ec?a :® — R is a homeomorphism if we equip ® and R with the subspace topol-
gy’
o Exp:® — Ris a diffeomorphism.

Finally, the boundary d%R is given by
R =.SU [ UAR, (5.42)
with [:={(0,0,0) | — © < 0 < it} the sphere above the spatial origin,

S = {E%()-Oasmax()-())) | AO € (g} (5.43)

the set of endpoints of geodesics ending at a cusp (the blue surfaces in Fig.5.6), and
i = {EEJ(AO,S) A0 € € with A3(0) = +1 and s € (o,sm(;L(O))} (5.44)

the set of endpoints of geodesics departing from a cusp (the red surfaces in Fig.5.6).

Proof. See [15, App.F].

As a result the set 9i is a connected set with a piecewise smooth boundary
dM given by Eq. (5.42). In fact, when taking the intersection with {(x;,n) |n € S'}
with X| = (Xfin,Yfin) € R? fixed we get a cone in S'. Sometimes this cone is
bounded by a red and a blue surface and sometimes it is bounded by the blue
surfaces in Figure 5.6. Also see Figure 5.7.

Let us underpin this observation on the cone of reachable angles with a for-
mal theorem. To this end let Gengcusp(Xfin; Y fin) denote the final angle (w.r.t. the
positive x-axis) of the geodesic ending in (xfi,,yfin,-) With a cusp and where

5 As ® and R are not open w.r.t. standard topologies on the embedding spaces T,(SE(2)) x
R+ and R? x §', these subspace topologies do not coincide with the induced topology
imposed by the embedding via the identity map. W.r.t. the subspace topologies the set D,
respectively R, are open sets and the homeomorphism Exp : ©® — R is well-defined.
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a) X

)
) Iy

|
(NI

y 0

0 2 4
X

Fig. 5.6 Plots (from 3 perspectives a), b) and c)) of the range R of the exponential map of
Pcurve - Red surface: endpoints of geodesics starting from cusps. Blue surface: endpoints of
geodesics ending in cusps. The black lines are the intersections of the blue plane with the red
plane. Green surface: critical surface (¢ = 1) with zg = —zg. Purple surface: critical surface
(¢ = 1) with Zy = zg. The critical surface splits the range of the exponential map into four
disjoint parts ‘5]1, ‘5]0 , ‘5; and ¢, that relate to the splitting of the phase space into Cll, C?,
Czr and C; in b) where we have depicted R viewed from the x-axis. In ¢) we have depicted
R viewed from the 0-axis.

Ovegincusp (X fins Y fin) denotes the final angle of a geodesic ending in (x iy, y fin, -) start-
ing with a cusp. In case there exist two geodesics ending with a cusp at (Xfin, Yin),
we order them by writing

1 2
eendcusp (xfi” ) yfin) < eendcusp (xfi” ) yfiﬂ) :

Theorem 5.7. Let (X fin,Yfin, Ofin) € R. If

2 _
[Yfin| < —xfiniE (iarcsinh \/Xﬁ"z ,xﬁ’é 4) , and 0 < xgip <2. (5.45)

XFin
then we have

Yfin > 0= efin S [ebegincusp(xfinvyfin)a eendcusp(xfinayfin)]a

Yfin <0= efin S [eendcusp(xfimyfin)a ebegincusp(xfinayfin)]a
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otherwise (so in particular if xgi, > 2) we have

efi” € [eelndcusp (xfi” ’ yfi”) ’ egndcusp (xfi” ’ yfiﬂ)] .

Proof. See [15, App.E]. For a direct graphical validation of Theorem 5.7 see
Figure 5.6 (in particular the top view along the 8 direction).

5.3.4 Solving the Boundary Value Problem

The inverse of the exponential map (A, ¢) — Exp(A(0),¢) = y(¢) = gfin in Theo-
rem (5.4) can be computed analytically to a large extent. That is, ¢, 1,(0), A3(0) can
all be analytically expressed in terms of —1 < A;(0) < 1, which leaves an accurate
and efficient one dimensional numerical shooting algorithm to find the final remain-
ing unknown 4, (0), as given by the following theorem. Note that recently proposed
numerical approaches in the literature [6,35] rely on three dimensional numerical
shooting algorithms.

Theorem 5.8. Let g, € K. The inverse of the exponential map (Ag,l) —
Exp(A(0),¢) = y(€) = gfin in Theorem 5.4 is given by

15

Fig. 5.7 Sub-Riemannian geodesics (and their spatial projections in grey) obtained by our
analytical approach to the boundary value problem. We have kept (xyi,,yin) fixed and we
have varied 6y, to full range such that our algorithm finds solutions (with relative errors
less than 10~3). Left: (X fin,yfin) = (1,1.5), middle: (xfin,yfin) = (2,1), right: (xfin, ¥ fin) =
(4,1). At the boundary of cones of reachable angles, the endpoints of the sub-Riemannian
geodesics are located on the cusp-surface dR. End-points of geodesics departing from cusps
are indicated in red and endpoints of geodesics ending at cusps are indicated in red (as in
Figure 5.6).
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2
A(0) = X 4(0)o,
i=1
og M), ¢ = 1 and 23(0) = A,(0),
£(2(0),gfin) = log (0 0’ ¢ = land A3(0) = =24,(0),
log M0 )7”/{3(0), else (5.46)

where v,w, ¢ are given by
v=2A(¢) = 2A1(0) —x£inA3(0) + y finA2(0),
w=—2A3(¢) = —23(0) cos Bi, + A2 (0) sin Oy,

= V/122(0)]2 + [23(0) 2.

Here 2,(0),A3(0) are expressed as follows:

A2(0) = x2(41(0 \/1 1210

—23(0) :X3()~1( ),gf,-,,) = _b“’g’;(‘;é’fm)\/D7
with a = x3;, + sin? (6in),

b =2xin(A1(0) +yinA2(0)) — 22(0) sin(26;,),

¢ = |A2(0)]* (v, — sin*(Bin)) + 2y5in1(0) 22(0),
D =0b*—4dac=: DM (0),87in)s

and with sign function given by

1 lfgfin S %;7
1 ifgsm € 6 UEY is above ¥,
—1 ifgfin € €} UG is below ¥,
-1 lfgfin € %277

sign(gpn) = (5.47)

with surface V" € SE(2) (corresponding to the solutions with 23(0) =0)

V= {EC;J(ZO(DI +22(20)0%,£) | 20 € [~ 1,1] and 0 < € < span(20 0" +X2(Zo)w2)}~
Finally, A1(0) denotes the unique root F(A1(0)) =0 of F : I — R defined on

I={z € [-1,1]| Z(z0,8fin) > 0}

given by F(z0) = |Exp(a®' + x2(z0)@” + 13(20,8in)® £(z0.8in) ) —
where || - || denotes the Euclidean norm on R* x S'.

Proof. By Theorem 5.5, there is a unique stationary curve connecting e and g s, € R.
The exponential map of Peyrve is @ homeomorphism by Theorem 5.6 and thereby
the continuous function F has a unique zero, since ¢ and A3(0) are already deter-
mined by 24;(0) and g ;,. W.r.t the formula for ¢, Theorem 5.1 (for d = 2) implies
that:

A1(€) = A1 (0) cosh £ — 23(0) sinh £, A3(¢) = A3(0) cosh£ — A;(0) sinh ¢

from which e’ can readily be obtained, noting that (by Theorem 5.4 for s = £):
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11 (f) = l] (0) — Xfinﬂg (0) —I—yf,-,,)Lz (0), —13 (5) = —13 (0) Cos Gf,-,, + )Q(O) sin efin-

Finally, applying the preservation laws (recall Remark 5.8) |4;(s)|? + |A2(s)|* = 1
and |42 (s)|?> + [A3(s)[> = |22(0)|* + |A3(0)? to the case s = £ provides a quadratic
equation for A3(0) from which the result follows. For details on the choice of the
sign in the solution of this quadratic equation and surface ¥, we refer to [15, Lem.8].

O

Remark 5.10. Theorem 5.8 allows for fast and accurate computations of sub-
Riemannian geodesics, see Figure 5.7 where the computed geodesics are instantly
computed with an accuracy of relative L,-errors in the order of 10~8. For an example
of the application of Theorem 5.8 see Figure 5.8. Finally, we note that Theorem 5.6
implies that (our approach to) solving the boundary-value problem is well-posed,
i.e. the solutions are both unique and stable.

5 D(vlgfzn)
0 z () L
e 9fin = v &

g < ...... -~
_zi x(s)

5 7
-3 3

-10 I .’x (:vf'o X y

Fig. 5.8 The particular case where g, = (2,1,7/6), where sign(gy,) = —1 and where
unique root of F(-,gi,), whose domain [ is indicated in green, is approximatively A;(0) ~

0.749551 (and thereby 2,(0) = /1 — |41 (0)[2, 23(0) ~ —0.809740 and L ~ 2.26253).

5.3.5 Modeling Association Fields with Solutions of P.yrye

Sub-Riemannian geometry plays a major role in the functional architecture of the
primary visual cortex (V1) and more precisely its pinwheel structure, cf. [42]. In
his paper [42], Petitot shows that the horizontal cortico-cortical connections of V1
implement the contact structure of a continuous fibration 7 : R X P — P with base
space the space of the retina and P the projective line of orientations in the plane. He
applies his model to the Field’s, Hayes’ and Hess’ physical concept of an association
field, to several models of visual hallucinations [25] and to a variational model of
curved modal illusory contours [33, 38, 54].

In their paper, Field, Hayes and Hess [26] present physiological speculations con-
cerning the implementation of the association field via horizontal connections. They
have been confirmed by Jean Lorenceau et al. [34] via the method of apparent speed
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of fast sequences, where the apparent velocity is overestimated when the successive
elements are aligned in the direction of the motion path and underestimated when
the motion is orthogonal to the orientation of the elements. They have also been
confirmed by electrophysiological methods measuring the velocity of propagation
of horizontal activation [29]. There exist several other low-level vision models and
neuro-physiological measurements that have produced similar fields of association
and perceptual grouping [31, 39, 58]. For an overview see [42, ch:5.5,5.6].
Subsequently, we discuss three models of the association fields: Legendrian
geodesics, cuspless sub-Riemannian geodesics and horizontal exponential curves.
W.r.t. the latter model, we recall that horizontal exponential curves [20, 48] in the
sub-Riemannian manifold (SE(2),42,Gg), Eq.(5.14), are given by circular spirals

ri— go er(clA1+02A2) _

(x0+5(sin(clr+90)fsin(60)) Yo— o (cos(c r+60)—cos(6y)), B+rc!
(5.48)

for ¢! #0, go = (x0,70,60) € SE(2) and all r > 0. If ¢! = 0 they are straight lines:

2 1
goerc Ay _ ()C()+VC2COS 6(),)"0 +VC251n60,6()).

Clearly, these horizontal exponential curves reflect the co-circularity model [36].

To model the association fields from neuropsychology and neurophysiology Pe-
titot [42] computes “Legendrian geodesics”, [42, ch.6.6.4,eq.49] minimizing La-
grangian /1 + |y/(x)|2 4 |6’(x)|? under the constraint 8 (x) = y'(x). This is directly
related® to the sub-Riemannian geodesics in

((SE(2))o,Ker(—0dx +dy),d6 ® d6 + dx © dx), (5.49)

where (SE(2))o is the well-known nilpotent Heisenberg approximation ( [19,
ch:5.4]) of SE(2), which minimize Lagrangian /1 + |6/(x)|? under constraint
0(x) = y'(x). The drawback of such curves is that they are coordinate dependent
and not covariant’ with rotations and translations. Similar problems arise with B-
splines which minimize Lagrangian 1+ |6’(x)|? under constraint 6 (x) =y’ (x) which
are commonly used in vector graphics.

To this end, Petitot [42] also proposed the “circle bundle model” which has the
advantage that it is coordinate independent. Its energy integral

)P
b ¢” P+ 1y ® 530

© The dual basis in (SE(2))g is equal to (d6,dx, —6 dx+dy) and thereby the sub-Riemannian
metric on (SE(2))o does not include the |y’ (x)|? term.

7 The corresponding minimization problem (and induced sub-Riemannian distance) is left
invariant in (SE(2))o and not left-invariant in SE(2).
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can be expressed as fol/ V14 Kk2ds, where s € [0,/] denotes spatial arc-length
parametrization. So in case one restricts problem Pcyrveto those admissible
endpoints that allow a cuspless sub-Riemannian geodesic which can be well-
parameterized by (x,y(x),0(x)) with 6(x) = arctany’(x), this restricted problem
coincides with Petitot’s circle bundle model of finding sufficiently smooth curves
x> (x,y(x)) such that the functional in Eq. (5.50) is minimal.

In Figure 5.9, we have modeled the association field with sub-Riemannian
geodesics (B = 1) and horizontal exponential curves (Eq. (5.48) as proposed in
[5,48]). Horizontal exponential curves are circular spirals and thereby rely on “co-
circularity”, a well-known principle to include orientation context in image analysis,
cf. [28,36].

On the one hand, a serious drawback arising in the co-circularity model for asso-
ciation fields is that only the spatial part (xi,,yin) of the end-condition can be pre-
scribed (the angular part is imposed by co-circularity), whereas with geodesics one
can prescribe (Xfin, Y fin, Ofin) (as long as the ending condition is contained within
R). This drawback is clearly visible in Figure 5.9, where the association field (see
a) in Figure 5.9) typically ends in points with almost vertical tangent vectors.

On the other hand, the sub-Riemannian geodesic model describes less accurately
the association field by Field and co-workers in the (much weaker) connections
to the side (where the co-circularity model is reasonable). One could improve the
modeling by varying 3, but even then it is hard to approximate large circles: the
ODE # = 3%z does not allow z to be constant and one can approximate large circles
by resigning to large 3.

In the more aligned connections in the association field the sub-Riemannian
geodesics model the field lines remarkably well (in comparison to the exponential
curves), as can be observed in part b) of Figure 5.9. Moreover, the field curves of
the association field end with vertical tangent vectors, and these endpoints are very
close to cusp points in the sub-Riemannian geodesics modeling these field lines.
Following the general idea of Petitot’s work [42] (e.g. the circle bundle model) and
the results in this article on the existence set R, this puts the following conjecture:

Conjecture 5.1. The criterium in our visual system to connect two local orienta-
tions, say go = (x0,0,60) = (0,0,0) and gin = (Xfin,Yfin, Ofin) € SE(2), could be
modeled by checking whether g ;, is within the range R of the exponential map.

This conjecture needs further investigation by neuro-physiological experiments. In
any case, within the model Pyrve (coinciding with Petitot’s circle bundle model [42]
and the sub-Riemannian model by Citti and Sarti [13,49]) a curve is globally opti-
mal if and only if it is stationary, by the results in [8] (summarized in Theorem 5).
Furthermore, the sub-Riemannian geodesics strongly deviate from horizontal ex-
ponential curves even if the end condition is chosen such that the co-circularity
condition is satisfied (see c¢) in Figure 5.9).

Remark 5.11. Regarding association field models, we discussed 3 different models:

1. The cuspless sub-Riemannian geodesic model Peypve , cf. [6, 8, 13,20, 32],
(extending Petitot’s circle bundle model [42, ch:6.6.5])
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2. The Legendrian geodesic model [42],
3. The horizontal exponential curve model in [48] given by Eq. (5.48).

These models relate as follows:

e The Legendrian geodesics follow from the cuspless sub-Riemannian
geodesic model by contracting (e.g. [19]) the sub-Riemannian manifold
on (SE(2),A,,%p) towards its nilpotent approximation, cf. Eq. (5.49).

e The horizontal exponential curves keep the control variable in Peypye constant
and they are rough local approximations of sub-Riemannian geodesics, see item
¢) in Figure 7. We also recall Theorem 5.2: The discrepancy between horizon-
tal exponential curves and sub-Riemannian geodesics in (SE(2),42,Gg) is also
intriguing from the differential geometrical viewpoint. Due to the presence of
torsion in the Cartan connection auto-parallel curves (i.e. the straight curves in
(SE(2),42,Gp) satisfying V7 = 0) do not coincide with the sub-Riemannian
geodesics (i.e. the shortest curves in (SE(2),Az,Gp) satisfying V4 = 0).

c) d)

Fig. 5.9 Modeling the association field with sub-Riemannian geodesics and exponential
curves, a) the association field [26,42]. Compare the upper-right part of the association field
to the following lines: in b) we impose the end condition (blue arrows) for the SR-geodesic
model in black and the end condition (red arrows) for the horizontal exponential curve model
in grey; c¢) comparison of sub-Riemannian geodesics with exponential curves with the same
(co-circularity) ending conditions; d) as in b) including other ending conditions.

5.4 The Case d = 3: Sub-Riemannian Geodesics in
(R3 A SZ;A3;G1)

In order to obtain momentum along cuspless sub-Riemannian geodesics in (R3 x
52, As, Gﬁzl), we apply Theorem 5.1 to the case d = 3 with a = e,. We find
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A1(s) = 41(0) coshs — As(0) sinhs,
As(s) = A5(0) coshs — A, (0) sinhs,
Aa2(s) = A2(0) coshis + A4(0) sinhss, (5.51)
)L4(s) = A4(0) coshs + A2(0)sinhs,
A3(s) = /1= [Aa(9)2 — |As(5) 2,

and by using the horizontal part of the PMP, we now find explicit formulas for
curvature and torsion of the spatial part of the sub-Riemannian geodesic:

YA (5)1(5) _3( T (552)

T(s) = 1= |43 (s)? - s(s)2

i(s) = \/w />1 +A _ V1-1%(s)
S f

where W denotes the Wronskian, recall Eq. (5.24), of A5 = \/K; | and —A4 =
K2+

2 where K = (k1,K2) = K19 + K295 denote the curvature components of

V241’

the curvature vector-field X = x along the curve.
Consequently, we have

T(s) =W (1+ Kk %(s))

whenever k(s) # 0 for s < syqx(A(0)) and W the constant Wronskian.
Furthermore, we see that if torsion is absent in any part of the spatial part of a
sub-Riemannian geodesic it is absent everywhere, and we have

¥(s) is planar < 7 =0< W =0 < the boundary conditions are co-planar .

The final equivalence, is non-trivial. For details on the proof, see [30, Cor.3.44].

Remark 5.12. The planar solutions Peyryve With W = 0 coincide with the unique
two dimensional sub-Riemannian geodesics connecting the corresponding points
in R2 x S! (see [8, 15]) discussed in the previous section. As a result, the set

{(Xfin7Rnfin(xjin~,9jin)) | (X fin, efi”) € 9%2}

with Ngip (Xfim Gf,-n) (SlIl Qfm \/ e SlIl Qfm \/x
fm fin fi

fin o8 Ofin)T,

nﬂfm ! )

where PR, denotes the set of admissible end conditions in SE(2) allowing a connec-
tion via a globally minimal sub-Riemannian geodesic in (SE(2), A, G} ), is a subset
of end conditions admitting a unique globally minimizing sub-Riemannian geodesic
in (SE(3),A3,Gq). See Figure 5.11.

Remark 5.13. A sub-Riemannian geodesic is co-planar if W = —AsA; — A4 =0,
i.e. if its angular momentum (24, As,0) = A4®* + As®° is orthogonal to its spatial
momentum (11,)‘2,),3) = 11(01 + )Q(DZ + 13(1)3.

Now in order to compute the exponential map EE)(A(O),@) =7v(l) = gsin € SE(3),
one can substitute Eq. (5.52) into Eq. (5.51) while setting s = ¢ and then integrate
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the well-known Frenet-Serret formulas for curves in R3. However, the last step in
this procedure is somewhat cumbersome and here (again) Theorem 5.3 comes at
hand.

5.4.1 Explicit Parameterizations of the Sub-Riemannian
Geodesics

In order to integrate the Frenet-Serret formulas we apply Theorem 5.3 to the
case d = 3. This provides the following explicit formulas for the sub-Riemannian

geodesics, where we use the short notation A" = (A1,42) and A = (As,A4) from
Section 5.2.

Theorem 5.9. Let the momentum covector be given by Eq. (5.51). Then the spatial
part of the cuspless sub-Riemannian geodesics® in (SE(3),43,G) is given by

x(s) = R(0)" (x(s) — %(0)) (5.53)

where, R(0) and (s) := (%(s),¥(s),2(s)) are given in terms of AV(0) and A (0)
depending on several cases. For all cases, we have

#(s) = i [ (5.54)
0
For the case 2V (0) =0, we have
001
RO)=[ 0 10] es0(3), (5.55)
—-100
F0s)\ _ —1 [ Aals)
(Z(S)) c (ls(s)). (5.56)
For the case 2V (0 ) # 0, we have
| A ( 3) ((%; 43(0)
R(0) = ) y §o>u ;L)L D (0)]| 0 € S0(3). (5.57)
It et el AR O
Yol 1AM

For the case W = 0 along with A0 ( ) # 0, we have
3(s)) _ 22(0)A4(s) — A1 (0)As(s) (0
(Z(s>) a O] (1) 5:5%)

8 which are the lifts of the stationary curves of Peyryve for appropriate boundary conditions
and which coincide with the solutions of Ppec for the same boundary conditions.
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While for W # 0 along with A(U(O) 0 and

o Rl 2a(s) ~M@ss)  —"As(s)
A= 00w ( Visls)  Aals)ha(s) M(S)/k(S))

we have

JA(s)as
Fs)\ _ e W23(0)
<Z(S)) a0 <C(?Lz(0)/l4(0)15(0)/11(0))) (5.60)

Proof. From Theorem 5.3, we have
d(Am(y)"1) =0 (5.61)

with A = (44,...,A¢), the Lagrange multipliers which are already known by Theo-
rem 5.1, and with matrix representation m given by Eq. (5.30). Hence, as y(0) =e,
we have that Vs € [0, ¢] the geodesic must satisfy

As) = A(0)m(x(s))- (5.62)

To make calculations easier, we translate and rotate the curve and solve a slightly
. . : _ . _ R oxR
easier equation and transform it back to the original curve. With m(g) = ( 0 ;? > ,

we solve the system

A(s) = (c,0,0,— VCV 0,0)m(¥(s)) (5.63)
with ¥(s) = #(0) m(y(s)) such that

A(0)= (60,0, .0,0)7(0). (5.64)

Thus after having ¥(s), we retrieve the geodesic by using the relation

¥(s) = 7(0) ' (s). (5.65)

For the most general case, assuming non-vanishing denominators throughout, we
see that choosing (5.57) and

1 0
%(0) := WAz ,

2 2
VIO + 0P \ e(d,1, - A511)
(5.64) is satisfied. Then solving (5.63) for X, ¥ and Z we obtain ¥ and the following
system:
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Noting that A(s) and A(r) commute for all pairs s and ¢, and hence using Wilcox
formula [56], we get the desired results.

Clearly, the formulas are not valid as the denominators in some of the expressions
become zero. Hence we do the whole procedure keeping in mind the special cases
right from the start and get the required results.

A(s")ds’

The matrix /o can be computed explicitly, for details see [30,

K

JAS)AS [ @ g —w2e2 ((cosd(s) —sind(s) . .
Cor.4.11]. One has e0 = \/H?L(z)(O)HZ—ch*Z (sin(p(s) cosd(s) ) with ¢(s) =

Jo el gy
0 122 () 2= w2e2

5.4.2 Explicit Definition of the Exponential Map of Pcurve

In this section, we provide the explicit definition of the exponential map which maps
the pair (4(0),¢) to the endpoint g s, = Exp(A(0), £) of the corresponding cusp-less
sub-Riemannian geodesic in sub-Riemannian manifold (SE(3), Az, Gy).

Definition 5.1. Using the arc-length parametrization and setting t = s (= 0 = 1),
we consider the canonical ODE system for I'(s) = (g(s), k(s),A(s)) given by

[(s)=F(I(s)) s €0,
r'(0) = (e, k(0),4(0))
with unity element e = (0,1) € SE(3) and with k = (ki,k>)” where x1(0) =
/15( ) and k,(0) = ~4(0) where F denotes the correspond-

\/1 (A4(0)2445(0)2) V1= (24(0)2+25(0)2)

ing flow field given as

P15 5 ) K600 =

RK Ro,_+ 0xRK oAy — A As As 1 /N K o,
(( 0 RK ) 2 ) i\ )t ok (5.66)

0 0 As
where K = /1 ( 0 o0 M) .and O, € R3*3 such that O, X = €; x X.This ODE
—2As A O

has a unique solution
I'(s) =T(0)e s €10,4].

Recall the definition of © in Eq. (5.31) (for d = 3). On this set, we define Exp, :
© — SE(3) by -
Exp,(2(0),1) = woelf (e, x(0),A(0))

with 7 being the natural projection on SE(3). Note that this exponential map is
different from the Lie group valued exponential map defined on the Lie algebra.



206 R. Duits et al.

2% 8t = SE(2) R3 % $% = SE(3)/({0} x SO(2))
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Fig. 5.10 A comparison of the possible end conditions of Peyrye for the two dimensional
and the three dimensional cases. Right: possible tangent directions are depicted of cuspless
sub-Riemannian geodesics in (SE(3), A3, G ) with initial position at the origin and the initial
direction along e, and the final positions at unit distance from the origin. Left: cones of pos-
sible end conditions of cuspless sub-Riemannian geodesics in (SE(2),A,,G1). According to
Theorem 5.7, these cones are obtained by considering the end conditions of sub-Riemannian
geodesics that either begin with a cusp point (shown in red) or end at a cusp point (shown in
blue). Figure 5.11 depicts the comparison in the special case when we set the end conditions
on a unit circle containing the z-axis.

Y

Fig. 5.11 A comparison of the cones of reachable angles by the cuspless sub-Riemannian
geodesics in the two dimensional case as in [8, 15] (left) and those in the three dimensional
case (right). It represents the special case in Figure 5.10, of the end conditions being on a
unit circle containing the z-axis. The intersection of the cones in Figure 5.11 right withx =0
coincides with the cones depicted in Figure 5.11 left.
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Fig. 5.12 An illustration of the spatial part of arbitrary cuspless sub-Riemannian geodesics
in (SE(3),A43,G1) and the cones of reachable angles as depicted in Figures 5.10 and 5.11.
The cuspless sub-Riemannian geodesics are always contained within the cones. We checked
this for many more cases, which supports our Conjecture 5.2.

5.4.3 The Range of the E/';ci Map and Cones of Reachable Angles

There are various restrictions on the possible boundary conditions for which we can
get a cuspless sub-Riemannian geodesic of problem Peyyve, see Fig. 5.10. We present
some special cases which help us to get an idea about the range of the exponential
map of Peyrve. Note that this set coincides with the set of end conditions for which
Peurve is expected to be well defined, as we have shown for the 2D-case (recall
Theorem 5.5). The next corollary gives us the possible final positions when the final
direction is anti parallel to the initial direction.

Corollary 5.3. Let (x1,n)) be the end condition of Peurve with the initial condition
being (0,e;). Then, given that ny = —e;, a cuspless sub-Riemannian geodesic of
problem Peyrve exists only for x| - e, = 0. Moreover, this condition is only possible
for curves departing from a cusp and ending in a cusp.

Proof. Let x be a cuspless sub-Riemannian geodesic of problem Peyryve with
x(0) = —x(¢) for some ¢ < sy This means that going to the tilde coordi-
nates, we have X(0) = —X%(¢), which implies £(0) = —%(¢). But this is possible
only if #(0) = 0 = £(¢), which is possible only if |2 (0)]| =1 and ¢ = s,
i.e., if the geodesic both starts and ends in cusp. a
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Now we recall from Subsection 5.3.2, that in the 2D-case cuspless sub-Riemannian
geodesics in (SE(2),A,,G)) are contained in the half space x > 0 and x = 0 can
only be reached with sub-Riemannian geodesics both departing from and ending
in a cusp. In the 3D-case one expects a similar result, as it is confirmed by many
numerical experiments, see e.g. Figure 5.12 and Figure 5.11. However, it turns out
to be hard to prove for all cases. At least we have the following formal result.

Corollary 5.4. If a cuspless sub-Riemannian geodesic departs from a cusp, then it
can never have a negative component along the z-axis. Moreover, it can meet the
z =0 plane at non zero time only if s = Syax and W = 0.

Proof. See [30, Lemma 4.13].

Based on our numerical experiments, we pose the following conjecture which
is analogous to a result in the two dimensional case of finding cuspless sub-
Riemannian geodesics in (SE(3),43,Gy) [8, 13].

Conjecture 5.2. Let the range of the exponential map defined in Definition 5.1 be
denoted by R and let © be as defined in Definition 5.1.

° E;c;)e :® — MR is a homeomorphism when & and # are equipped with the sub-

space topology.
e Exp,:® — NRis adiffeomorphism. Here S denotes the interior of the set S.

The boundary of the range is given as

R = .S U.YRU.¥ with (5.67)
S = {Exp.(A(0), $max(2(0)))|A(0) € €'} and

= = {Exp,(A(0),5)|A(0) € € and A4(0)*> 4 A5(0)> = 1 and 5 > 0}

71 ={(0,Ry) € SE(3)In € §?}.

This conjecture would imply that no conjugate points, recall Remark 5.4, arise
within R and problem Peypve (5.3) is well posed for all end conditions in *R.

The proof of this conjecture would be on similar lines as in Appendix F of [15].
If the conjecture is true, we have a reasonably limited set of possible directions
per given final positions for which a cuspless sub-Riemannian geodesic of problem
Pcurve exists. Then likewise the d = 2 case, we have that every end condition in ‘R
can be connected with a unique minimizer of a well-posed problem P¢yrye. More-
over, the cones determined by .3 and . provide the boundaries of the field of
reachable cones. Figure 5.11 shows the special case of the end conditions being on
aunit circle containing the z-axis. The final tangents are always contained within the
cones at each position. Numerical computations indeed seem to confirm that this is
the case (see Figure 5.12). The blue points on the boundary of the cones correspond
to . while the red points correspond to .#% given in Equality (5.67).
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5.5 The Case d = 4: Sub-Riemannian Geodesics in
(SE(4),44,Gy)

Let us apply the results regarding sub-Riemannian geodesics in (SE(d), A4, Gp—1)
to the special case d = 4. Here we will rely on the standard matrix group repre-

sentation of SE(4) given by M(g)

_(Rx
“\01

€ R> forall g = (x,R) € SE(4). In

matrix-form, the Lie-algebra elements spanning 7, (SE(4)) are given by

Oe
A":”‘Zf"eE(o (f)

fork=1...4, with (e;)/ = 5,5, and

000 0O 00000 00010

000 0O 00010 00000
As=]1000—-10 |,Aq=]00 000 ],A7=1] 00000 [,
001 00 0-1000 —-10000

000 0O 00000 0 0000

00 0 00 00100 01000
00-100 00000 —-10000
Ag=]101 0 00 [,Ag=]|] —-10000 |,Aip=] 0 0000
00 000 00000 00000

00 000 00000 00000

The commutator table is given by

0 0 0 0 0 0 Ay 0 Az Ay

0 0 0 0 0 Ay 0 —-A3 0 -—A

0 0 0 0 —-Ay4 O 0 A —-A O

0 0 0 0 A3 —-Ay —A; O 0 0

AoAL it 10— 0 0 As —Ay 0 Ag —Ag —Ag A7 O
i-41i,j=1...10 0 —-A4 0 Ay, —Ag 0 Ajp As 0 —-Ay
—As O 0 Ay A9 —App O 0 —As Ag

0 A3 —Ay 0 Ag —-As5 O 0 —Ajp Ag

—A3 0 A, 0 —A7 0 As A 0 —Ag

Ay A, 0 0 0 A7 —Ag A9 Ag O

and the PMP produces the following ODE for the momentum components:

or more explicitly, using the fact that Ag = A9 = A9 = 0 yields



210 R. Duits et al.

M(t) = =2a(1) A7 (2), As(t) = =2 (1) Aa(t),
Ma(t) = —2a(1) 26 (1), () = =2 (1) Aa (1),
Ma(t) = A4(2) As(2), Ag(t) =0,
Aa(t) = =A3(1) As(t) + M (1) A6 (1) + A1 (1) a (1), Ao(t) =0,
As(t) = A3(t) Aa(0), Aro(t) =0

A (s) = —29(s), As(s) = —Aa(s),
Ma(s) = —2s(s), A7(s) = —Aa(s),
A3(s) = 2As(s), Ag(s) =0,
Aa(s) = —(Aa(5)) ™ (A3 (5) As(5) + Aa(s) As () + A1 (5) Aa (s)),  Ao(s) =0,
As(s) = Aa(s), Ao(s) =0,

which is indeed a special case of Eq. (5.21) with d =4 and A = diag{—1,—1,1},
whose solutions are now given by Eq. (5.25) (again with d = 4 and A =
diag{—1,—1,1}).

Now the case d = 3 with (cuspless) sub-Riemannian geodesics on
(SE(3),A3,Gp—1) studied in detail in the previous section, by omitting the A;, A7,
Ag and Ao directions and relabeling the indices of the Lie-algebra elements and
momentum components as follows: (2,3,4,5,6,8) — (1,2,3,4,5,6).
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Appendix A: Derivation of the Canonical Equations for
Sub-Riemannian Geodesics in (SE(d),A;,G;) Using the
Pontryagin Maximum Principle

Consider the sub-Riemannian manifold M = (SE(d),Ay,Gpg) given by Eq. (5.14),
with 3 = 1. Consider geometric control problem Ppec given by Eq. (5.15).

There exists a standard PMP for L..([0,7]) controls and there exists a recently
generalized PMP for L ([0,7]) controls [55] which in this case produces (by a
reparameterization argument) the same solutions, despite the fact that L..([0,T]) C
L ([0,T]). Here we note that Pec is equivalent to the solutions y: [0,T] — SE(d),
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with prescribed boundary conditions y(0) = (0,1) and y(T') = (X, Rn, ), of the con-
trol problem

T
/ L((t),...,u* " (t))dr — minimize (with fixed T')
0

with
2d—1 2d—1

W)= 3, w(O)lyy = X, {0y 7(0) Al y

i=d i=d
where for i = 1,2,3, u' € ([0, T]), and with Lagrangian

2d—1

L (1),...,u* Y 2 (¢

Applying the standard PMP to this problem with fixed time 7', we have that there
exists a Lipshitzian curve in the cotangent bundle given by [0,7] > ¢ — u(t) =

(Y(1),A()) # O with A(1) € Ty, (M) such that

fo=H(u())
w-1
H(u) = max (L(ud,...,MZdl) -y p.,-u’)
ucl i=d

where = (y,4), and where the Hamiltonian is given by H(u) = H(A) =
2d—1

> ¥ |4;|*. The Hamiltonian vector field H given by
i=d

2d—1 8 )
H= Zi o %+ﬁm (5.68)

is such that it preserves the canonical symplectic structure

o= Zdl Ao —Zdz]d)L Ao
i=1 i=d
and hence, we have
2d—1 . aH
oH,)=—-dH=— ZZ{ A Ho' + BAidli' (5.69)

From Equations (5.68), (5.69), we obtain fori = d,...,2d — 1 that

of = —o/H and B’ = gf = Ai.
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Consequently, (noting that «/H =0fori=1,...,dand i =2d,...,d(d +1)/2), we
have the Hamiltonian vector field

2d—1 2d—1 2d—12d—1

H(u) = Zﬁﬂf D 2 Y kBl
i=d+1 k=1 j=d

2d—1 2d—1 2d—12d—1 )

=2 hdi— ¥ DY e Mo
i=d i=d+1 k=1 j=d

So now let us consider the full canonical ODE in the PMP: 1 = H(u).
Clearly, the horizontal part of PMP (where time derivatives are w.r.t. sub-
Riemannian arclength t) is given as

2d—1
7= Aidily = Ai(t) = (0|, ¥(t)) fori=d,...,2d — 1.
i=d

The vertical part of PMP gives

d 2d—1 [ 2d—1 ; d ; 2d—1 2d—12d—1
i B0 0y = T 0 0l +h0) g o == 3 3T du oy,

which is equivalent to

PR ¥ (2 St o ) 5SS e,

=1 k=d j= i=d+1 k=1 j=
and therefore using the horizontal part of PMP we obtain

a /. w1 d ,
YA+ T X AN ) o, =0,
i=1 k=d j=1 "

2d—1 | . 2d—12d—1 t ;
S M)+ 3 danr) ) o, =o0.
Jj=d k=1

i=d+1

Now in the first equation above index j can as well run from 1 to 2d — 1, since if
i <d and k > d then for all j > d we have c{k = 0. As aresult we obtain

2d—12d—1
At)y=—=3 3 ¢ Mlt)A;(t), forallie {1,....2d—1}.
j=d k=1
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Chapter 6
Psychophysics, Gestalts and Games

José Lezama, Samy Blusseau, Jean-Michel Morel,
Gregory Randall, and Rafael Grompone von Gioi

Abstract. Many psychophysical studies are dedicated to the evaluation of the human
gestalt detection on dot or Gabor patterns, and to model its dependence on the pat-
tern and background parameters. Nevertheless, even for these constrained percepts,
psychophysics have not yet reached the challenging prediction stage, where hu-
man detection would be quantitatively predicted by a (generic) model. On the other
hand, Computer Vision has attempted at defining automatic detection thresholds.
This chapter sketches a procedure to confront these two methodologies inspired in
gestaltism.

Using a computational quantitative version of the non-accidentalness principle,
we raise the possibility that the psychophysical and the (older) gestaltist setups, both
applicable on dot or Gabor patterns, find a useful complement in a Turing test. In our
perceptual Turing test, human performance is compared by the scientist to the detec-
tion result given by a computer. This confrontation permits to revive the abandoned
method of gestaltic games. We sketch the elaboration of such a game, where the
subjects of the experiment are confronted to an alignment detection algorithm, and
are invited to draw examples that will fool it. We show that in that way a more pre-
cise definition of the alignment gestalt and of its computational formulation seems
to emerge.

Detection algorithms might also be relevant to more classic psychophysical se-
tups, where they can again play the role of a Turing test. To a visual experiment
where subjects were invited to detect alignments in Gabor patterns, we associated
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a single function measuring the alignment detectability in the form of a number of
false alarms (NFA). The first results indicate that the values of the NFA, as a func-
tion of all simulation parameters, are highly correlated to the human detection. This
fact, that we intend to support by further experiments, might end up confirming that
human alignment detection is the result of a single mechanism.

6.1 Introduction

Alan Turing advanced a controversial proposal in 1950 that is now known as the
Turing Test [35]. Turing’s aim was to discuss the problem of machine intelligence
and, instead of giving a premature definition of thinking, he framed the problem
in what he called the Imitation Game: A human interrogator interacts with another
human and a machine, but only in typewritten form; the task of the interrogator is
to ask questions in order to determine which of its two interlocutors is the human.
Turing proposed that a machine that eventually could not be distinguished from
humans by its answers should be considered intelligent. This influential suggestion
sparked a fruitful debate that continues to this day [29].

Our concern here is however slightly different. We are studying perception and
Turing precluded in his test any machine interaction with the environment other
that the communication through the teletype; he concentrated on the pure problem
of thinking and to that aim avoided fancy computer interactions, that anyway did
not exist at his time. Yet, machine perception is still a hard problem for which cur-
rent solutions are far from the capacities of humans or animals'. Our purpose is to
discuss a variety of perceptual imitation games as a research methodology to de-
velop machine vision algorithms on the one hand, and quantitative psychophysical
protocols on the other.

Human perceptual behavior has been the subject of quantitative experimentation
since the times of Fechner, the founder of Psychophysics. This relatively new sci-
ence investigates the relationship between the stimulus intensity and the perceived
sensation [33]. But this approach does not provide a perceptual theory in which
machine vision and an imitation game could be based.

The Gestalt school, Wertheimer, Kohler, Koffka, Kanizsa among others [8, 18,
21,25,42], developed from the twenties to the eighties an original modus operandi,
based on the invention and display to subjects of clever geometric figures [40,41].
A considerable mass of experimental evidence was gathered, leading to the conclu-
sion that the first steps of visual perception are based on a reduced set of geomet-
rical grouping laws. Unfortunately these Gestalt laws, relevant though they were,
remained mainly qualitative and led to no direct machine perception approach.

It is a common practice in Internet services to use the so-called CAPTCHAs to ensure that
the interaction is made with a human and not an automatic program. A CAPTCHA, which
stands for Completely Automated Public Turing test to tell Computers and Humans Apart,
usually consists in a perceptual task, simple to perform for humans but hard for known
algorithms. This suggests that visual and auditive perception currently provides the most
effective Turing test.
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Since the emergence of the field of Computer Vision [24] about fifty years ago —
initially as a branch of the Artificial Intelligence working with robots and its artificial
senses — there have been many attempts at formalizing vision theories and especially
Gestalt theory [31]. Among them one finds models of neural mechanism [15], theo-
ries based on logical inference [9], on information theory [22], invoking minimum
description principles [45], or grammars of visual elements [16,46]. Nevertheless,
only a small fraction of these proposals has been accompanied by systematic efforts
to compare machine and human vision. An important exception is the Bayesian
theory of perception [27] that has attracted considerable attention in cognitive sci-
ences, leading to several experimental evaluations [10,20]. A recent groundbreaking
work by Fleuret et al. [13] compared human and machine performing visual cate-
gorization tasks. Humans are matched against learning algorithms in the task of
distinguishing two classes of synthetic patterns. One class for example may contain
four parallel identical shapes in arbitrary position, while the other class contains the
same shapes but with arbitrary orientation and position. It was observed that hu-
mans learn the distinction of such classes with very few examples, while learning
algorithms require considerably more examples, and nevertheless gain a much lower
classification performance. The experimental design was more directed at pointing
out a flaw of learning theory, though, than at contributing to psychophysics.

Such experiments stress the relevance of computer vision as a research program
in vision, in addition to a purely technological pursuit. Its role should be comple-
mentary to explanatory sciences of natural vision by providing, not only descriptive
laws, but actual implementations of mechanisms of operation. With that aim, per-
ceptual versions of the imitation game should be the Leitmotiv in the field, guiding
the conception, evaluation and success of theories.

Here we will present comparisons of human perception to algorithms based on
the non-accidentalness principle introduced by Witkin, Tenenbaum and Lowe [23,
43,44] as a general grouping law. This principle states that spatial relations are
perceptually relevant only when their accidental occurrence is unlikely. We shall
use the a contrario framework, a particular formalization of the principle due to
Desolneux, Moisan and Morel [6, 7] as part of an attempt to provide a mathematical
foundation to Gestalt Theory.

This chapter is intended to give an overview of our research program; for this
reason we reduced the settings to the bare minimum, concentrating in one simple
geometric structure, namely alignments. The methodology however is general. By
using such a simple structure we will present two complementary aspects of the
same program, each one with specific imitation games: a research procedure in-
spired in the methodology of the Gestalt school and the use of online games for
psychophysical experimentation.

Gestaltism created clever figures in which humans fail to perceive the expected
structures, generating illusions. In the gestaltic game, as we shall call our first pro-
posed methodology, the experimenter tries to fool the algorithm by building a par-
ticular data set that produces unnatural results. This methodology is discussed in
Sect. 6.2, along with a brief introduction to the a contrario methods.
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The second part, in Sect. 6.3, is dedicated to a first attempt at a psychophysical
evaluation of the same theory. There is a difference with classic psychophysical
experiments in which detection thresholds are measured; here each stimulus will be
shown to human subjects but also to an algorithm, and both will answer yes or no to
the visibility of a given structure. In a second variation, both humans and machine
will also have to point to the position of the observed structure. This last variation
is proposed as an online game, used as a methodology to facilitate experimentation
and the attraction of volunteers.

Being the result of a work in progress, no final conclusion will be drawn. Our
overall goal is to advocate for new sorts of quantitative Gestalt and psychophysical
games.

6.2 Detection Theory versus Gestaltism

Here and in most of the text we shall call “gestalt” any geometric structure emerging
perceptually against the background in an image. We stick to this technical term be-
cause it is somewhat untranslatable, meaning something between “form” and “struc-
ture”. According to Gestalt theory, the gestalts emerge by a grouping process in
which the properties of similarity (by color, shape, texture, etc.), proximity, good
continuation, convexity, parallelism, alignment can individually or collaboratively
stir up the grouping of the building elements sharing one or more properties.

6.2.1 The Gestaltic Game

One of the procedures used by Gestalt psychology practitioners was to create clever
geometric figures that would reveal a particular aspect of perception when used in
controlled experiments with human subjects. They pointed out the grouping mech-
anisms, but also the striking fact that geometric structures objectively present in the
figure are not necessarily part of the final gestalt interpretation. These figures are
in fact counterexamples against simplistic perception mechanisms. Each one repre-
sents a challenge to a theory of vision that should be able to cope with all of them.

The methodology we propose in order to design and improve automatic geomet-
ric gestalt detectors is in a way similar to that of the gestaltist. One starts with a
primitive method that works correctly in very simple examples. The task is then
to produce data sets where humans clearly see a particular gestalt while the rudi-
mentary method produces a different interpretation. Analyzing the errors of the first
method gives hints to improve the procedure in order to create a second one that
produces better results with the whole data set produced until that point. The same
procedure is applied to the second method to produce a third one, and successive
iterations refine the methods step by step. The methodology used by the Gestalt
psychologist to study human perception is used here to push algorithms to be simi-
lar to their natural counterpart. Finding counterexamples is less and less trivial after
some iterations and the counter-examples become, like gestaltic figures, more and
more clever.
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We decided to render this process interactive by drawing figures in a computer
interface that delivers a detection result immediately. The exploration of counterex-
amples is in that way transformed into an active search where previous examples
are gradually modified in an attempt to fool the detection algorithm. The figures are
all collected to be later used at the analysis stage. The gestaltic game is at the same
time a method to produce interesting data sets, a methodology to develop new de-
tection algorithms and a collaborative tool for research in the computational gestalt
community. Each detection game will only stop when it eventually passes the Tur-
ing test, the algorithm’s detection capability becoming undistinguishable from that
of a human.

6.2.2 Dot Alignments Detection

For its simplicity, dot patterns are often used in the study of visual perception. Sev-
eral psychophysical studies led by Uttal have investigated the effect of direction,
quantity and spacing in dot alignment perception [36,37]. The detection of collinear
dots in noise was the target of a study attempting to assess quantitatively the mask-
ing effect of the background noise [34]. A recent work by Preiss analyzes various
perceptual tasks on dot patterns from a psychophysical and computational perspec-
tive [30]. An interesting computational approach to detect gestalts in dot patterns is
presented in [1], although the study is limited to very regularly sampled patterns. A
practical application of alignment detection is presented in [38].

From a gestaltic point of view, a point alignment is a group of points sharing
the property of being aligned in one direction. While it may seem a simple gestalt,
Fig. 6.1 shows how complex the alignment event is. From a purely factual point of
view, the same alignment is present in the three figures. However, it is only per-
ceived as such by most viewers in the first one. The second and the third figures il-
lustrate two occurrences of the masking phenomenon discovered by gestaltists [19]:

.
.

an alignment of points masking by texture masking by structure

Fig. 6.1 Exactly the same set of aligned dots is present in the three images, but it is only
perceived as such in the first one. The second one is a classic masking by texture case and the
third a masking by structure one, often called “Gestalt conflict”.
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the masking by texture, which occurs when a gestalt is surrounded by a clutter of
randomly distributed similar objects or distractors, and the masking by structure,
which happens when the alignment is masked by other perceptually more relevant
gestalts, a phenomenon also called perceptual conflict by gestaltists [18, 26, 45].
The magic disappearance of the alignment in the second and third figures can be
accounted for in two very different ways. As for the first one, we shall see that a
probabilistic a contrario model [7] is relevant and can lead to a quantitative predic-
tion. As for the second disappearance, it requires the intervention of another more
powerful grouping law, the good continuation [17].

These examples show that a mathematical definition of dot alignments is required
before even starting to discuss how to detect them. A purely geometric-physical de-
scription is clearly not sufficient to account for the masking phenomenon. Indeed, an
objective observer making use of a ruler would be able to state the existence of the
very same alignment at the same precision on all three figures. But this statement
would contradict our perception, as it would contradict any reasonable computa-
tional (definition and) theory of alignment detection.

This experiment also shows that the detection of an alignment is highly depen-
dent on the context of the alignment. It is therefore a complex question, and must
be decided by building mathematical definitions and detection algorithms, and con-
fronting them to perception. As the patterns of Fig. 6.1 already suggest, simple
computational definitions with increasing complexity will nevertheless find percep-
tual counterexamples. There is no better way to describe the ensuing “computational
gestaltic game” than describing how the dialogue of more and more sophisticated
alignment detection algorithms and counterexamples help build up a perception
theory.

6.2.3 Basic Dot Alignment Detector

A very basic idea that could provide a quantitative context-dependent definition
of dot alignments is to think of them as thin, rectangular shaped point clusters.
In that case, the key measurements would be the relative dot densities inside and
outside the rectangle. The algorithm described in this section follows the a contrario
methodology [7, Sect. 3.2] according to which a group of elements is detectable as
a gestalt if and only if it has a low enough probability of occurring just by chance in
an a contrario background model.

We shall first introduce briefly the a contrario framework [4, 6, 7]. The ap-
proach is based on the non-accidentalness principle [5,32,39,44] (sometimes called
Helmholtz principle) that states that structures are perceptually relevant only when
they are unlikely to arise by accident. An alternative statement is “we do not per-
ceive any structure in a uniform random image” [7, p.31]. The a contrario frame-
work is a particular formalization of this principle adjusting the detection thresholds
so that the expected number of accidental detections is provably bounded by a small
constant €. The key point is how to define accidental detections. This requires a
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Fig. 6.2 A schematic representation of the evaluated rectangle. In an image with N points,
there are (N(N — 1) x W) /2 possible rectangles defined by two dots. In the case shown in this
figure, N =49 and k(r,x) = 5.

stochastic model, the so-called a contrario model, characterizing unstructured or
random data in which the sought gestalt could only be observed by chance.

Consider a dot pattern defined on a domain D with total area Sp and containing N
dots, see Fig. 6.2. We are interested in detecting groups of dots that are well aligned.
A first reasonable a contrario hypothesis Hy for this problem is to suppose that the N
dots are the result of a random process where points are independent and uniformly
distributed in the domain. The question is then to evaluate whether the presence of
aligned points contradicts the a contrario model or not.

Given an observed set of N points x = {x;},—1.» and a rectangle r (the candi-
date to contain an alignment), we will denote by k(r,x) the number of those points
observed inside r. We decide whether to keep this candidate or not based on two
principles: a good candidate should be non-accidental, and any equivalent or bet-
ter candidate should be kept as well. The degree of non-accidentalness of an ob-
served rectangle r can be measured by how small the probability IP [k(r, X) > k(r,x)]
is, where X denotes a random set of N dots following Hy. In the same vein, a
rectangle ' will be considered at least as good as r given the observation x, if
P k(' X) > k(' ,x)] < P[k(r,X) > k(r,x)].

Recall that we want to bound the expected number of accidental detections. Given
that N;.ss candidates will be tested, the expected number of rectangles which are as
good as r under Hy, is about [7]

Niosis - P {k(r,X) > k(r, x)] . 6.1)

The Hy stochastic model fixes the probability law of the random number of points
in the rectangle, k(r,X), which only depends on the total number of dots N. The
discrete nature of this law implies that (6.1) is not actually the expected value but an
upper bound of it [7, 14]. Let us now analyze the two factors in (6.1).

Here the a contrario model Hy assumes that the N points are i.i.d. with uniform
density on the domain. Under the a contrario hypothesis Hy, the probability that one
dot falls into the rectangle r is

S,

Sp’ (6.2)

p:
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where S, is the area of the rectangle and Sp the area of the domain. As a consequence
of the independence of the random points, k(r,X) follows a binomial distribution.
Thus, the probability term IP [k(r,X) > k(r,x)] is given by

P [k(r, X) > k(r,x)} = B(N,k(r,x), p) 6.3)

where %(n,k, p) is the tail of the binomial distribution

B(n.k,p) = i (’;) pl(1—p). (6.4)

Jj=k

The number of tests Nyeys corresponds to the total number of rectangles that could
show an alignment, which in turn is related to the number of pairs of points defining
such rectangles. With a set of N points this gives N><(12V—1) different pairs of points.

The set of rectangle widths to be tested must be specified a priori as well. In the
a contrario approach, a compromise must be found between the number of tests
and the precision of the gestalts that are being sought for. The larger the number of
tests, the lower the statistical relevance of detections. However, if the set of tests is
chosen wisely, gestalts fitting accurately the tests will have a very low probability
of occurrence under Hp and will therefore be more significant.

At a digital image precision, the narrowest possible width for an alignment is 1
(taking the side of a pixel as length unit). The series of tested widths grows geo-
metrically until it achieves a maximal possible width, which can be set a priori as
a function of the alignment length. Since the number of tested widths depends on
the length of the alignment, we cannot predict a priori (before the dots have been
drawn) how many tests will be done. Fortunately the total number of widths can be
estimated as the number of widths tested in an average rectangle times the number
of evaluated rectangles. We call this quantity W. The impact of this approximation
in the detector results is insignificant [7]. The total number of tested rectangles is
then:

NN—1)xW
2

We will define now the fundamental quantity of the a contrario framework, the
Number of False Alarms (NFA) associated with a rectangle » and a set of dots x:

Niests = (6.5)

NFA(7 %) = News - P [k(r X) > k(r%)] = o 21) W B(Nkrx).p). 66
This quantity corresponds, as said before (Eq. 6.1), to the expected number of rect-
angles which have a sufficient number of points to be as rare as r under Hy. When
the NFA associated with a rectangle is large, this means that such an event is to be
expected under the a contrario model, and therefore is not relevant. On the other
hand, when the NFA is small, the event is rare and probably meaningful. A per-
ceptual threshold € must nevertheless be fixed, and rectangles with NFA(r,x) < €
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Fig. 6.3 Results from the basic dot alignment detector. (a) and (c) are the input data, and
(b) and (d) are the corresponding results. Each detection is represented by a rectangle and its
color indicates the NFA value. In (b) the algorithm correctly detects the obvious alignment.
Notice that multiple and redundant rectangles were detected; this problem will be discussed
in Sect. 6.2.5. The data set (¢) contains the same set of points in (a) plus added noise dots,
thus the aligned dots are still present. However, the algorithm handles correctly the masking
by texture or noise and produces no detection.

will be called e-meaningful rectangles [5], constituting the detection result of the
algorithm.

Theorem 6.1 ( [7])

E| Y Inpagrx)<e| <€
ReZ#

where It is the expectation operator, 1 is the indicator function, % is the set of

rectangles considered, and X is a random set of points on H.

The theorem states that the average number of €-meaningful rectangles under the
a contrario model Hy is bounded by €. Thus, the number of detections in noise is
controlled by € and it can be made as small as desired. In other words, this shows
that our detector satisfies the non-accidentalness principle.

Following Desolneux, Moisan, and Morel [4, 7], we shall set € = 1 once and for
all. This corresponds to accepting on average one false detection per image in the
a contrario model, which is generally reasonable. Also, the detection result is not
sensitive to the value of €, see [7].

Figure 6.3 shows the results of the basic algorithm in two simple cases. The
results are as expected: the visible alignment in the first example is detected, while
no detection is produced in the second. Actually, the dots in the first example are
also present in the second one, but the addition of random dots masks the alignment,
in accordance with human perception. Note that the first example produces many
redundant detections; this problem will be handled in Sect. 6.2.5.

6.2.4 A Refined Dot Alignment Detector

Naturally, the simple model for dot alignment detection presented in the last section
does not take into account many situations that can arise and significantly affect
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(a) (b) ()

Fig. 6.4 Local vs. global density estimation. In each example, only the most meaningful de-
tected alignment (the one with the lowest NFA) is shown for each algorithm. The algorithms
(a), (b), (c) use a background model with growing complexity to avoid wrong detections. (a)
global density estimation: the detected segment is not the most meaningful for our percep-
tion, but has nevertheless a high dot density compared to the average image density used as
background model. (b) here a local density estimation gives the background model, but the
local density is lower on the border of the big dot rectangle, hence the detection. (c) this last
problem is avoided by computing a local density estimation taking the maximum density on
both sides of the alignment.

the perception of alignments. For example: what happens if there are point clusters
inside the alignment? What if the background image has a non uniform density?
Should not the algorithm prefer alignments where the points are equally spaced?
These questions, among others, arise when subjects play the gestaltic game and try
to fool the algorithm with new drawings. There are two ways to fool the algorithm:
One is by drawing a particular context that prevents the algorithms from detecting
a conspicuous alignment. Inversely, the other sort of counterexample is a drawing
inducing detections that remain invisible to the human eye. As more counterexam-
ples are found, more sophisticated versions of the algorithm must be developed, and
each new version will become harder to falsify than the previous one.

Using this methodology, we produced several refined versions of the basic algo-
rithm. Here we will present the principal counterexamples that were found, and then
describe the last version of the algorithm which takes all of them into account. This
algorithm is therefore harder to fool. Ideally, the game should end when the Turing
test [29] is satisfied, namely when a human observer will be unable to distinguish
between the detections produced by a machine and by a human.

First, we noticed a deficiency in the detector when zones in the image have higher
dots density. This problem arises naturally from the wrong a contrario assumption
that the whole image has the same density of points. When it is not the case, the
global density estimation can be misleading and produces poor detection results, as
illustrated in Fig. 6.4 (a). The solution for this is to compute a local density estima-
tion with respect to the evaluated rectangle. The algorithm uses a local window with
size proportional to the width of the evaluated alignment.
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Fig. 6.5 In the refined version of the algorithm, the density of points is measured to each side
of the evaluated rectangle. The maximum of the densities in Ry and R3 is taken and this value
is used as an estimation of the dot density in both R| and R3.

However, this local density estimation can introduce new problems such as a
“border effect”, as shown in Fig. 6.4 (b). Indeed, the density estimation is lower on
the border of the dot rectangle than inside it, because outside the rectangle there
are no dots. Thus, the algorithm detects on the border a non-accidental, meaningful
excess with respect to the local density.

In order to avoid this effect, the version of the algorithm used in Fig. 6.4 (c)
measures for the background model the maximum of the densities measured on both
sides of the alignment. In short, to be detected, an alignment must show a higher dot
density than in both regions immediately on its left and right. This local alignment
detector is therefore similar to classic second order Gabor filters where an elongated
excitatory region is surrounded by two inhibitory regions. The local points estima-
tion is calculated in the following way, see Fig. 6.5. The local window is divided in
three parts. R; is the rectangle formed by the area of the local window on the left of
the alignment. Rz is the area of the local window on the right of the alignment, and
R is the rectangle which forms the candidate alignment. Note that the length of the
local window is the same as the alignment and that we can consider any arbitrary
orientation for it. Next, the algorithm counts the numbers of dots M, M, and M3 in
R1, R, and Rj respectively. Finally the a contrario model assumes that the number
of dots in the local window R{ UR, URj3 is

n(r,x) = max(M;,M3) X 2+ M, (6.7)

and that these dots are randomly distributed.

There is still an objection to this new algorithm, obtained in the gestaltic game
by introducing small dot clusters, as shown in Fig. 6.6 (a). The detected alignment
in Fig. 6.6 (b) seems clearly wrong. There is indeed a meaningful dot density ex-
cess inside the red rectangle, but this excess is caused by the clusters, not by what
could be termed an alignment. While the algorithm counted every point, the human
perception seems to group the small clusters into a single entity, and count them
only once. Also, as suggested in other studies [30, 34, 37], the density is not the
only property that makes an alignment perceptually meaningful; another character-
istic to consider is the uniform spacing of the dots in it, which the gestaltists call
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the principle of constant spacing. These objections have led to a still more sophis-
ticated version of the alignment detector. In order to take into account both issues
(avoiding small clusters and favoring regular spacing) a more advanced version of
the alignment detector was designed which divides each candidate rectangle into
equal boxes. The algorithm counts the number of boxes that are occupied by at least
one point, instead of counting the total number of points. In this way, the minimal
NFA is attained when the dots are perfectly distributed along the alignment. In addi-
tion, a concentrated cluster in the alignment has no more influence on the alignment
detection than a single dot in the same position.

The NFA calculation for this refined version of the algorithm is slightly different
than for the basic one. The event for which we are estimating an expected number
of occurrences in a background model is defined as follows. Given two points and
a number of boxes c, the question is: What is the probability that the number of
occupied boxes among the c is larger than the expected number under the a contrario
model? Let us start by computing the probability of one dot falling in one of the

boxes:
Sp

S’
where Sp and Sy, are the areas of the boxes and the local window respectively. Then,

the probability of having one box occupied by at least one of the n(r,x) dots (Eq. 6.7)
is:

po= (6.8)

P1 :‘@(n(rax)alapo)' (69)

We call occupied boxes the ones that have at least one dot inside, and we will denote
by b(r,c,x) the observed number of occupied boxes in the rectangle r divided into ¢
boxes. Finally, the probability of having at least b(r, ¢, x) of the ¢ boxes occupied is

(a) (b) (c)

Fig. 6.6 Counting occupied boxes to avoid false detections from the presence of clusters. The
dot pattern shown in image (a) presents two dot clusters but no alignment. However, the basic
algorithm finds a thin rectangle with a high dot density, hence a false detection, as shown in
(b). Dividing the rectangle into boxes and counting the occupied ones, avoids this misleading
cluster effect, as seen in (c¢), where the occupied boxes are marked in red and no alignment is
actually detected.
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Fig. 6.7 Redundant detections. Left: dot pattern. Center: all significant alignments found by
the refined dot alignment detector described in Sect. 6.2.4. The color represents the relative
NFA value, where red is the most significant (smallest NFA value) and blue the least (highest
NFA value). Right: Result of the masking process.

%(c,b(r,c,x),p]). (6.10)

A set € of different values are tried for the number of boxes ¢ into which the rectan-
gle is divided. Thus, the number of tests needs to be multiplied by its cardinal |%|.
In practice we set || = +/N and that leads to

N(N—1)xWx |%| :N(N—l)xWx\/N

Niests = 6.11
tests 2 2 ( )
The NFA of the new event definition is then:
NN—-1)xW N
NFA(r,x) = (N=1)xWx v -minB(c,b(r,c,x),p1).  (6.12)

2 cE?

Figs. 6.4 (c) and 6.6 (c) show two examples of the resulting algorithm, and we
will show some more after discussing the masking problem.

6.2.5 Masking

As was observed in Fig. 6.3, all the described alignment detectors may produce
redundant detections. The reason is that a relevant gestalt is generally formed by
numerous elements and many subgroups also form relevant gestalts in the sense of
the non-accidentalness principle. Every pair of dots defines a rectangle to be tested.
Clearly, in a conspicuous alignment there will be many such rectangles that partially
cover the main alignment and are therefore also meaningful. This redundancy phe-
nomenon can involve dots that belong to the real alignment as well as background
dots near the alignment, that can contribute to a rectangle containing a large num-
ber of dots, as illustrated in Fig. 6.7. However, in such cases humans perceive only
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one gestalt. Indeed, one could expect that there is only one causal reason leading to
redundant detections and it makes sense to select the best rectangle to represent it.

A similar phenomenon is described in the Gestalt literature [19]. Most scenes
contain other possible interpretations that are masked by the global interpretation.
A simple example is shown in Fig. 6.8 where subsets of the grid of dots form a huge
quantity of gestalts, but are invisible because they are masked by the rectangular
matrix of dots. This fact is, after Vicario, called Kanizsa’s paradox [7].

A simple model for this masking process was proposed by Desolneux et al. [7]
under the name of “exclusion principle”. The main idea is that each basic element
(for example the dots) cannot contribute to more than one perceived group or gestalt.
The process is as follows: The most meaningful observed gestalt (the one with
smallest NFA) is kept as a valid detection. Then, all the basic elements (the dots
in our case) that were part of that validated group are assigned to it and the remain-
ing candidate gestalts cannot use them anymore. The NFA of the remaining candi-
dates is re-computed without counting the excluded elements. In that way redundant
gestalts lose most of their supporting elements and are no longer meaningful. On the
other hand, a candidate that corresponds to a different gestalt keeps most or all of its
supporting basic elements and remains meaningful. The most meaningful candidate
among the remaining ones is then validated and the process is iterated until there
are no more meaningful candidates.

This formulation of the masking process often leads to good results, removing
redundant detections while keeping the good ones. However, the gestaltic game
showed that it may also lead to unsatisfactory results as illustrated in Fig. 6.9. The
problem arises when various gestalts have many elements in common. As one gestalt
is evaluated after the other, it may happen that all of its elements have been removed,
even if the gestalt is in fact not redundant with any of the other ones. In the example
of Fig. 6.9, individual horizontal and vertical alignments are not redundant, but if
all the vertical ones have been detected first, the remaining horizontal ones will be
(incorrectly) masked. This example shows a fundamental flaw of the exclusion prin-
ciple: it is not sound to impose that a basic element belongs to a single perceptually
valid gestalt. There must be a global explanation of the organization of the basic
elements in visible gestalts which is at the same time coherent with each individual
gestalt (eliminating local redundancy) and with the general explanation of the scene
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Fig. 6.8 A masking example by Kanizsa [19, p.155]: The “curve” in B is also present in the
grid of dots A; nevertheless, it is not visible as it is masked by the global matrix configuration
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in such a way that some basic elements can participate of several gestalts without
contradiction. The solution seems to be in a sort of relaxation of the exclusion prin-
ciple. The following definitions sketch a possible solution.

Definition 6.1 (Building Elements). We call building element any atomic image
component that can be a constituent element of several gestalts. Valid examples
of building elements are dots, segments, or even gestalts themselves, that can be
recursively grouped in clusters or alignments. From that point of view any gestalt
can be used as a building element for higher level gestalts.

Definition 6.2 (Masking Principle). A meaningful gestalt B will be said “masked
by a gestalt A” if B is no longer meaningful when evaluated without counting its
building elements belonging to A. In such a situation, the gestalt is not retained as
detected.

In short, a meaningful gestalt will be detected if it is not masked by any other
detected gestalt. The difference is that here a gestalt can only be masked by another
individual gestalt and not by the union of several gestalts as is possible with the
exclusion principle. Thus this masking principle is analogous to a Nash equilibrium,
in the sense that every gestalt remains meaningful when separately subtracting from
it the building blocks of any other gestalt. A procedural way to attain this result is to
validate gestalts one by one, starting by the one with smallest NFA; before accepting
anew gestalt, it is checked that it is not masked by any one of the previously detected
gestalts. The masking principle applies easily to point alignments.

Fig. 6.10 shows some dot alignment detection results when combining the
method of the previous section and the masking principle. The results obtained in
these examples are as expected.

Fig. 6.9 Examples of two alternative formulations of the masking process. Left: Set of dots.
Center: The Exclusion Principle as defined in [7], a validated gestalt prevents others from
using its dots. The vertical alignments (that were evaluated first) mask almost all the horizon-
tal ones. Right: The Masking Principle, described in the text, which solves the ambiguities
without forbidding basic elements to participate of two different gestalts. In this example, no
individual alignment can mask an individual one in another direction. Thus we get all oblique,
horizontal and vertical meaningful alignments.
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6.2.6 Online Gestaltic Game

The gestaltic game allowed us to discover examples of dot arrangements that the
current algorithm is not able to handle correctly. The hardest ones we encountered
to date belong to the “masking by structure” kind, as those presented in the right
hand part of Fig. 6.1. Surely there are more cases than those discovered so far. To
facilitate the search we created an online interface where everyone can easily play
the gestaltic game inventing new counterexamples.’

Being interactive, the online gestaltic game is designed to be eventually published
in the IPOL journal. It allows users to draw their own dot patterns and to see the
output of the detection algorithm. Alternatively, the user can upload a set of dots,
or modify an existing one by adding or removing individual dots or adding random
dots. All the experiments are stored and accessible in the “archive” part of the site
and may help improve the theory.

Current work is focused on the conflict between different gestalts with the objec-
tive of handling the masking by structure problem.

6.3 Detection Theory versus Psychophysics

In this second part we leave the question of a quantitative gestaltism and go back
to more classic psychophysics. The question is whether a quantitative framework
like the a contrario detection theory can also become a useful addition for human
contour perception psychophysical experiments.

Fig. 6.10 Results of the final dot alignment detector, using the refined method described in
Sect. 6.2.4 in conjunction with the Masking Principle (Def. 6.2). The top row is the input
data; the bottom row shows the results.

2 http://dev.ipol.im/~jlezama/dot_alignments
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Fig. 6.11 Left: An image extracted from Nygard et al. [28]. Right: Example of an alignment
detection experiment to be developed here.

Arrays of Gabor patches have become a classic tool for the study of the influence
of good continuation in perceptual grouping [12,28]. Gabor functions ensure a con-
trol on the stimuli spectral complexity and on the spatial scale of the contours. They
give a flexible and easy way for building a great variety of stimuli. It has been veri-
fied that the more aligned the Gabor patches are to the contour they lie on, the easier
their perceptual grouping into a shape’s outline [12, 28]. Fig. 6.11 (left), shows an
easy example where most subjects recognize a bottle. But the more freedom is left
to the Gabor orientation, the harder it is to distinguish such contours from the back-
ground. For the influence of other perturbations of the contour such as its motion or
its curvature on the object’s identifiability, we refer to a recent study [28].

Can we hope for a quantitative interpretation to this experimental framework,
namely a function of the stimuli parameters that would predict and explain the evo-
Iution of the detection performance? Probabilistic approaches (mainly Bayesian)
exist for contour modeling from a perceptual point of view [2, 11], and have some-
times been compared experimentally to human visual perception [10]; but none of
these approaches proposed to compute a priori detection thresholds as functions of
the stimuli parameters.

The influence of experimental factors such as the length of the alignment, the
density of the patches, and the angular accuracy on human detection is a classic
subject of psychophysical inquiry. But the question of whether human performance
can be measured with only one adequate quantitative function of the parameters
is still open. We shall explore here if the NFA furnished by the a contrario the-
ory can play this role. Indeed, the NFA retains the remarkable property of being a
scalar function of the three psychophysical parameters generally used in this kind of
detection experiment. In classic experimental settings, these parameters are varied
separately and independently, and no synthetic conclusion can be drawn; only sep-
arate conclusions on the influence of each parameter can be reached. If a function
like the NFA could play the role of generic detectability parameter, the experimen-
tal parameters could for example be made to vary simultaneously in the very same
experiment. In short, if the hypothesis of a single underlying detection parameter
is validated, this would simplify the experimental setups and entail a new sort of
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quantitative analysis of the results, two stimuli being a priori considered as equiva-
lent in difficulty if their NFA are similar.

The underlying hypothesis, that the reaction of the subjects to varying stim-
uli might be predicted as a single scalar function of the stimulus’ parameters, is
equivalent to the classic hypothesis of a “single mechanism” for contour detec-
tion. More precisely, we shall explore if this single mechanism might obey the non-
accidentalness principle (the NFA being its probabilistic quantitative expression).

To keep the line of the previous section, this study will again focus on the same
simple gestalt: straight contours, that is to say alignments of Gabor elements, as
illustrated in Fig. 6.11 (right). The remainder of this section describes the patterns
used, the a contrario method, the experiment performed on humans, and the result
of the comparison.

6.3.1 The Patterns

Figure 6.12 shows three examples of the stimuli used in our experiments. All of
them consist of symmetric Gabor elements with varying positions and orientations
placed over a gray background. There are two kinds of stimuli: positive stimuli and
negative stimuli. Negative stimuli contain elements with random orientations sam-
pled in [0, ), e.g. Fig. 6.12 (c). Positive stimuli, see Fig. 6.12 (a) and (b), contain
a majority of random elements like in negative stimuli but also a small set of fore-
ground elements. The latter lie on a straight line and are uniformly spaced; their
orientations are randomly and uniformly sampled from an interval centered on the
alignment direction. The size of this interval gives a measure of the angular jit-
ter and will be noted by J. When the jitter is zero, the foreground elements have
the exact same orientation as their supporting line. Inversely, a jitter of 7 leads to
completely isotropic elements.

The experiment is designed to study how angular jitter affects visibility. Yet, a
natural question arises about the contribution to the detection of the accuracy of

(b)

Fig. 6.12 Three examples of stimuli used in our experiments. (a) A jitter-free alignment
with 10 elements. (b) A weakly jittered alignment with 10 elements. (¢) A stimulus with no
alignment, containing only elements with random orientations.
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Fig. 6.13 Influence of stimuli position. Each dot represents the position where a Gabor el-
ement will be placed. The figure includes a perfectly regular and aligned set of dots, sur-
rounded by random placed elements, all generated by the GERT package. It is very difficult
to find the alignment, which shows that the position of the elements by itself conveys few cues
about the presence of the alignment. (For a comparison, see the same stimulus with Gabor
elements, Fig. 6.11 (right), where the alignment is easily spotted.)

the alignment and of the regular spacing of the aligned elements. All the stimuli
presented in this section were generated with the software GERT (v1.1) that includes
special algorithms for the generation of random placed and oriented Gabor elements
that mask as much as possible the aligned Gabor elements structure [3]. Figure 6.13
shows an example displaying only the elements position; even if there is in fact a set
of perfectly regularly aligned dots, it is very hard to spot them. This suggests that
the position of the elements carries few useful cues about the alignment.

6.3.2 The Detection Algorithm

Let us now present the alignment detection algorithm that will be matched to human
perception. The input to the algorithm is a set of Gabor elements g = { (x;, 6;) }i=1..n»
defined by the position and orientation of each element. We will further assume that
the total number of elements is a fixed quantity N.

A candidate to alignment is defined as a rectangle r, see Fig. 6.14 (left), and the
orientation of the Gabor elements inside it will determine whether the candidate
is evaluated as a valid alignment or not. The orientation of each Gabor element is
compared to the one of the rectangle and when the difference is smaller than a given
tolerance threshold 7, the element is said to be 7-aligned, see Fig. 6.14 (right). Two
quantities will be observed for each rectangle r: the total number of Gabor elements
inside it, n(r,g), and the number among them that are 7-aligned, k;(r,g). The a
contrario validation is analogue to the one described in Sect. 6.2.3.

Due to the way the patterns are generated, the only relevant information to eval-
uate in an alignment is the orientation of the Gabor elements. Consequently, the a
contrario model Hy is defined with N random variables corresponding to the orien-
tation of the elements and satisfying the following two conditions:
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e the orientations O; are independent from each other;
e cach orientation ©; follows a uniform distribution in [0, 7).

Under these a contrario assumptions, the probability that a Gabor element be 7-
aligned to a given rectangle is given by

plr)="". (6.13)

Notice that the symmetric Gabor elements are unaltered by a rotation of 7 rads. The
independence hypothesis implies that the probability term Plk:(r,G) > k:(r,g)],
where G is a random set of Gabor elements following Hy, is given by

P[k:(G) > ke(rg)] = 2 (n(r:g) ke(r8). p(D)), (6.14)

where as before % (n, k, p) is the tail of the binomial distribution.
We still need to specify the family of tests to be performed. Each pair of dots
will define a rectangle of fixed width w, so the total number of rectangles is N(A;_l) .

Also, a finite number of angular precisions 7; will be tested for each rectangle. Then,

N(N—1)

Niests = )

H#T (6.15)

where #.7 is the cardinality of the set .7 of precisions. The NFA of a candidate is
defined by

NFA(V,g) = ]vtests : igi;'%(n(ng%kf(rvg),p(r)) : (616)
A large NFA value corresponds to a likely (and therefore insignificant) configura-

tion in the a contrario model; inversely, a small NFA value indicates a rare and
interesting event. The proposed detection method validates a rectangle candidate

Fig. 6.14 Left: A candidate to alignment, defined by a rectangle R. Right-Top: A Gabor
element whose angle with (ab) is larger than T and thus it is not counted as an aligned point.
Right-Bottom: A detailed example where we see a total of five Gabor elements inside the
rectangle, n(r,g) = 5, being 7-aligned with (ab), i.e. k¢(r,g) = 4.
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NFA =99.5 no detection

NFA =107 detection

Fig. 6.15 Two examples of the proposed validation method for alignment of Gabor elements.
The rectangle in the first row has three elements inside, all of them aligned; that number is
nevertheless too small to produce a detection, as its NFA value is larger than one. In the
second example, all ten Gabor elements are aligned, giving an NFA of 107> and producing a
detection.

r whenever NFA(r,x) < €. The following theorem shows that it satisfies the non-
accidentalness principle.

Theorem 6.2

E <e.

z ]lNFA(R,G)<£
Re#

where It is the expectation operator, 1 is the indicator function, Z is the set of
rectangles considered, and G is a random set of Gabor elements on H).

Once again we follow Desolneux et al. [4,7] and set € = 1. In our experiments, we
use the NFA as an indication of the visibility of the gestalt according to the proposed
theory; a value considerably smaller than 1 is “non-accidental” and should imply a
conspicuous gestalt. A value larger than 1 can occur just by chance and should
therefore be associated to an irrelevant gestalt. Figure 6.15 shows two examples of
detection by this method.
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6.3.3 Experiment

A psychophysical experiment was performed online by voluntary subjects using an
interactive web site®. Their task was to report on the visibility of the aligned Gabor
patterns. The online methodology was necessarily more flexible and less controlled
on various aspects than it would be in a laboratory: we had no reliable informa-
tion about the subjects, their visualization conditions in front of their computers
were not controlled, the comprehension of the task by the subjects might vary, etc.
Notwithstanding their uncontrolled essence, online experiments give access to a
larger number of subjects and bring a great experimental flexibility.

The data set used for this experiment is composed of over 14000 stimuli (negative
and positive) as the one described in Sect. 6.3.1. Each image has a size of 496 x 496
pixels and containing N = 200 elements. For positive stimuli, 9 levels of jitter (J €
{0,%,%,5%, 7, 23”, 3f, 45” ,m}) and 8 different segment lengths were used, between 3
and 10 elements. During each session, the subject saw 35 of these images, one after
another. The first five images were training stimuli and no results were recorded at
this stage of the experiment. The following 30 images were randomly sampled over
the data set, with constraints that ensured a balance between negative, positive, hard
and easy stimuli. For each stimulus, the subject was asked to answer whether they
saw or not a “straight line”’; the answer and response time were recorded. There
was no time limit to provide the answer but it was suggested to answer as soon as
the subject made up their mind. At the end of the session, a feedback was given on
false detections and on the consistency of the subject’s answer through an “attention
score”. This score rewarded the fact that the subject answered better on easy stimuli
than on hard ones and indicated if the task was well understood or not.

6.3.4 Results

In order to compare human and machine perception we precomputed the NFA for
each rectangle on all the images of the data set. Each image was associated to its
best (smallest) NFA. The hypothesis to be tested was that the NFA value should be
related directly to the visibility by humans; if this is true, the average score given to
an image by humans, namely the proportion of “Yes”, should be related to the NFA
of the most salient structure. In what follows we will analyze the data obtained from
7137 trials.

The NFA scale was divided into bins. To each bin were associated statistics on
the trials whose NFAs belonged to this bin. Figure 6.16 shows the average an-
swer rate and response times for nine log;,(NFA) intervals. Note that NFA < 1
(or log;o(NFA) < 0) means detection of the alignment by the algorithm.

The results significantly support the hypothesis that a single scalar function of
all parameters predicts the detectability. Indeed, the answer rate follows a sigmoid
shape roughly centered at log;,(NFA) = 0. The second graph, plotting the response
time versus the NFA, also agrees with the hypothesis: the less visible the stimuli

3http://dev.ipol.im/~blusseau/aligned_gabors
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are, the more time is spent searching for valid gestalts. Statistical tests confirm this
average tendency.

The experiment confirms the hypothesis that, at least in this restricted perceptual
environment (formed of three parameters, the number of Gabor patches, the length
of the alignment and its jitter on orientation), the value of NFA may account for the
human “detectability” of an alignment. Surprisingly, the human detection (attentive)
threshold is close to the best algorithm in this restricted environment. Indeed, align-
ments with NFA smaller than 1 were detected by a majority of subjects. Alignments
with NFA larger than one, which are likely to occur just by chance, were detected by
a minority of subjects. Furthermore, the detection curve is steepest when the NFA
crosses 1. The curve is not as steep for the mean response time as a function of NFA.
This can be simply explained by the fact that the patience of subjects undergoes a
rapid temporal erosion; they are not ready to look long for a needle in a haystack.

6.3.5 Consequence: An Online Game

Online experimentation opens new possibilities that need to be explored farther, and
in particular the use of computer games as an experimentation tool. A successful
game may attract the attention of subjects and if the resulting mass of results is
large enough, it could compensate for the lack of control on other aspects of the
experimental setting.

The player of a computer game is usually directed toward an objective and faced
with obstacles. To be attractive, a game cannot be too easy, but not too hard either; a
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Fig. 6.16 Comparison of the subjects’ responses to the NFA. Left: The average answer rate
is plotted relative to log;q(NFA). Each point indicates the proportion of positive answers
to stimuli with best NFA in the corresponding bin. Right: The average response times in
seconds per bin. In both cases, the abscissa represents the scale of log;,(NFA) divided into
9 bins; the first bin is defined by log;(NFA) < —5, the last one by log;o(NFA) > 2, and the
other 7 bins by k <log;q(NFA) < k+ 1 for k = —5,...,1. The error bars give approximately
95 % confidence about the mean values (each interval is defined as [x—2 5 ,x+2 ) |, where

x,s and n are respectively the mean, standard deviation and number of trials of the bin).
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good balance of this difficulty is the key to the popularity of the game. To use games
for psychophysical purposes, the player should be directed to detect some pattern,
the obstacles being the conditions that preclude this perception. Motivated players
will do their best effort, revealing the limits of human perception.

To go in this direction we created a prototype version of an alignment game.* The
player is presented with Gabor stimuli as described before. Only positive stimuli
with variable difficulties are used. In this way one knows that there is an alignment
gestalt; but its position is unknown and the assignment of the player is to spot it.
The subject is asked to click in the image on any point of the straight line. The
distance between the clicked point and the actual line segment is recorded and a
score over 100 is computed as a function of this distance (the closer to the segment,
the better the score). When the stimulus is quite visible, all subjects are able to point
correctly to it; when it is not, the distance to the alignment becomes random. This
rash transition should permit to pinpoint the human detection threshold.

The presentation of the stimuli is divided into several sequences of ten images.
The first sequence is always supposed to be very easy (long segments with little
jitter). Then the difficulty of the following sequences change according to the per-
formance achieved on the previous one. The collected data will permit us to compare
a detection method to human performance in the way described before. The game
is still in a prototype phase but readers are invited to try it and provide feedback.

6.4 Conclusion

Needless to be said, the experimental devices and first results that we just described
are not sufficient to make any rash conclusion on the existence of quantitative pre-
dictions of human perception. They will need to be extended to other gestalts com-
monly used in psychophysics, such as for example contours (good continuation),
clusters, or symmetries. In the same way, the first described gestaltic game does not
furnish an end algorithm modeling what we could call the human notion of align-
ment. Finally, we did not deliver a detection algorithm directly usable on any image,
as required by the computer vision methodology. In short, this is work in progress,
and our goal was to raise the attention of psychophysical researchers and computer
scientists on the interest of introducing Turing tests in their methodology.
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Chapter 7

Remarks on Invariance in the Primary Visual
Systems of Mammals

Daniel Bennequin

7.1 Introduction

Poincaré observed that the perception of space is based on active movements, and
relies on the notions of invariance, covariation between sensors and environment,
and active compensation ( [179], [180], [181], [182]). The research of Piaget has
proved the importance of various kinds of geometrical invariance in cognitive and
behaviorial development ( [173], [177], [176]). To him intelligence is a form of
adaptation, the continuous process of using the environment for learning ( [174]).
Adaptation is a process that can happen at the scale of evolution, development
or functioning. In ecology, or in population biology and genetics, it means the
adjustment or change in behavior, physiology, and structure of an organism to
become more suited to an environment, thus better fitted to survive and passing
their genes on to the next generation (Darwin plus Mendel, [45]). In Neuroscience
it often means the decline in the frequency of firing of a neuron in response
to constantly applied environmental conditions, or more generally, any change
in the relationship between stimulus and response that is induced by the level
of stimulus (Laughlin, [121]). Adaptation is an ubiquitous essential property of
sensory and motor processing, allowing the living systems to sense and anticipate
what is changing in the world ( [27]). As we will see, invariance can contribute
to adaptation, and adaptation can create new invariance structures. Gibson gave
a precise formulation of invariance and adaptation in psychology, with special
emphasis on vision ( [71], [72], [73], [74]). From the formal point point of view,
the mathematical theory of groups, and its many extensions in algebra and analysis
(cf. 2.3 below for definitions), offer a clear mathematical basis for discussing
the notions of invariance ( [84]). About Gibson and symmetry groups, see Shaw,
Mclntyre, and Mace [202]. For a general discussion of psycho-physics, groups and
adaptation, see Shepard 1994 [203]. The link between symmetry, groups, perceptual
invariance and a priori of the brain was discussed by J.Droulez and myself in [57].
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In the following notes, we give examples of invariance, and of its multiform
relation to adaptation, in the mammalian visual systems, in cases where the actions
of groups can be made explicit. Most of these examples concern the primary
cortical visual system of higher mammals: carnivores, scandentia (three shrew) and
primates. The text is assembled from a collection of unpublished studies conducted
during the years 2004 to 2012, mainly made in collaboration with students and
other researchers in the laboratory LPPA (Colleége-de-France, Paris). The emphasis
is put on the mathematical equations.

The principle underlying these examples is that neurons and brain areas are
better understood by describing their structure of indifference, i.e. what they neglect
in the world for their function, and their structure of ambiguity, i.e. how they create
new entities from their inputs, allowing internal transformations. We have proposed
that group theory, in particular Galois theory, can be seen as an information theory,
in the same manner that probability theory subtends several kind of information
theories (Fisher, Shannon, Wiener, Kullback, Kolmogorov). The first mathematical
appendix is added to explain this point of view.

In order to modelize invariance and adaptation in one neuron or in a set of

neurons, we introduce a virtual space (that we propose to consider as a kind of
homology group, in the mathematical sense, cf. [61]), made by combinations of
equivalence classes of possible attractors of responses, modulated by relevant
stimuli, for categorization. The symmetry groups and the ambiguity groups are
acting on this virtual space (cf. 2.4. and Appendix 1 for the precise definitions). In
general this space / corresponds to a dimensional reduction of the input stimuli, it
is a skeleton of the rapid internal dynamics. In this model the possible responses
(of the neuron or the area) correspond to the coupling of virtual classes with
dynamical parameters of neurons or interactive sets of neurons. The space M of
these parameters can be seen as an unfolding in the sense of Thom ( [212]), which
introduces structural stability in the process. It contains intrinsic parameters and
preferences of the neurons, in general induced by connectivity or ambient activity.
Invariance acts both on I and M. Then, in some cases, adaptation is generated by
compensation of transformations in homology by transformations in the unfolding,
including bifurcations. We suggest that, in many cases, adaptation is a dynamic
on parameters that results from changing the attracting state. In turn this dynamic
induces a change in rapid dynamics.
This model permits to use at the same time a notion of receptive field (cf.
Marr [137]), with adaptable parameters, and a notion of affordance (Gibson), in the
form of invariant categorization, thus we can combine the notions of hierarchical
visual fields and the notions of sensori-motor loops for perception and action.

We propose that no meaning can emerge without some kind of invariance:
at each step of the neuronal sensory process, the neuronal activity is an act of
recognition, which, as every act of knowledge, either explicit or implicit, consists
in neglecting most of the individual aspects of the input for selecting the output,
combining a priori knowledge, novelties and inventions.
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The exposition starts with a general introduction to invariance from the perspec-
tive of groups an categories. Then we summarize several examples of invariance
in the visual system, mainly related to its adaptation to motions. The basic group
comes from Galilean relativity, and is implemented in the visuo-vestibular system.
However, the evolution of higher mammals, and specially carnivores and primates,
used other fundamental groups for vision and visual perception: phase space sym-
metries (i.e. symplectic transformations), internal affine symmetries of colors, affine
and projective symmetries of figures, diffeomorphisms of the visual plane, their ex-
tension by gauge transformations for colors, and so on. At the end of visual path, we
find in particular the Euclidian geometry realized in abstract spaces, and topology.

In section 2, we insist on the role of eye movements for invariant perception. In
section 3, we study affine invariance and adaptation in the color space. In 4.1 we de-
scribe models of the transformation from simple cells to complex cells and columns
in V1, with application to the “energy model”. Here we see an intervention of special
functions theory. In 4.2 we prove that the principles of invariance and probability
explain the geometry of the cortical map of orientations in V' 1. In 4.3 we put forward
a probabilistic model of optimal gluing of neuronal activities, with applications to
callosal connections and disparity. In 4.4 we study LGN and V1 in tree shrew, in
particular the structure of callosal connections and orientation maps. In this part
we give a review of the organization of the visual pathway from the retina to V1
through the LGN in mammals. In 5.1 we discuss the notion of general covariance
in V1. In 5.2 we describe the projective invariance of the optic flow, for application
to MT,MST . In this example we meet the classical invariant theory of linear group
representations. In 5.3 we review geometric cells in the para-hippocampal region.
In 5.4 we mention higher invariance in recognition. In 6 we briefly outline the way
a topology of information quantities, as developed in collaboration with Pierre Bau-
dot, could go deeper into the mechanisms of adaptation and formation of invariance
structure.

The original developments are 1) the formal definition of homology, periods and
adaptation, in 2.4; 2) the discussion in 3.2 of the affine structure on colors in LGN
and V1 and the description in 3.4 of color constancy in higher visual areas (inspired
from David Philipona and Kevin O’Regan); 3) the computations of non-linearities in
complex cells and superficial micro-columns of V 1, through Abel transforms, in 4.1
(work with Simon Capern and Jacques Droulez); in the same subsection, we intro-
duce of a special class of non-linear pseudo-differential operators for transforming
field activities from one brain area to another by taking frequencies in account; 4)
the link between probability and invariance in the orientation map of V1,V2, in
4.2, implying that the map is a Brownian coefficient of a unitary irreducible rep-
resentation of the Euclidian group (inspired by F.Wolf, T.Geisel, and D.Barbieri,
Giovanna Citti, G.Sanguinetti, Alessandro Sarti); 5) the formulation of the gluing
of the two eyes and the two hemispheres by callosal connections, in 4.3 (work with
Luc Foubert, Jacques Droulez and Chantal Milleret); 6) the explanation of the im-
possibility for the tupaia to respect orientation preference in its callosal connection
(and the possibility for the cat to do that), in 4.4; 7) the hypothesis of general co-
variance in the area V1, in 5.1; 8) a suggestion for the nature of objects and images
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in 5.4, modeled on color constancy and using co-cycles; 9) the perspective offered
by information theory, in 6 (joint work with Pierre Baudot); 10) the link between
the three roads of information geometry given by Shannon (probabilities), Galois
(groups) and Thom (catastrophes) theories, in Appendix 1; 11) the general defini-
tion of invariant receptive fields, through coefficients of unitary representations of
Lie groups, in Appendix 2.

An excellent reference in Neuroscience more than sufficient for all the applica-
tions we will present is the encyclopedia in two volumes, “The visual neuroscience”,
edited by L.M. Chalupa and J.S. Werner (MIT 2004); we will give in most subsec-
tion the related articles in this book, refereed as TV N or [44].

7.2 The Notion of Invariance

7.2.1 Mathematical Definition of Invariance

Given a set X (in applications the elements x of X can be things or events) and a set
G of partial transformations acting on X (i.e. a set of maps g : X’ — X where X’ is a
subset of X (in applications these transformations can be permutations but they also
can be deformations). We note x — g.x (or x.g) the effect of the map on the elements,
and we say that an element x( of X is an invariant point of the action of G if, for each
g acting on xo we have g.xo = xo (or xo.g = xp), i.e. xo is a fixed point of the action.
When G is stable by composition of transformations, i.e. g,h € G = goh € G, we
assume that for the operation g(h.x) = (gh).x (or (x.g)h = x.(gh) respectively). For
g.x we say that we have a left action of G, and for x.g we say that we have a right
action.

We need also the more general notion of co-variant: given two sets X and Y and
a set G acting by partial transformations of both X and Y, on the left for X and on
the right for Y, we say that a function fy from X to Y is a co-variant function if
we have fy(g.x) = fo(x).g, when both terms are defined. In particular a function
x+— f(x) of X to a set Y where the action of G is trivial (i.e. for any y € Y one has
y.g =), is a co-variant if and only if, for any g and x such that g.x is defined, we
have f(g.x) = f(x). In this last case we also say that f is an invariant function, or
simply an invariant; in fact it is an invariant point of the natural (right) action of G
on functions on X with values in ¥: f8(x) = f(g.x).

Remark that covariance appears as a particular case of invariance when the trans-
formations g of Y are everywhere defined and invertible: denote by g~! the inverse
operation of g, and consider the set F of all partially defined applications f from X
to Y, with the action of G on F given by f8(x) = g~'.f(g.x), then f; is a co-variant
for the actions of G on X and Y if and only if fj is an invariant point of the action of
GinF.

The main concept underlying invariance study is the concept of group G, that is
a set equipped with a neutral element e and an internal law (g, ) — gh satisfying
associativity g(hk) = (gh)k, neutrality ge = g = eg and invertibility (existence of
g ! such that gg=! = g7 'g = ¢) (cf. section 2.3). For applications in Physics an
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important role is played by the theory of harmonic analysis, that is the study of
unitary linear representations of groups in Hilbert spaces (cf. Appendix 2). Note
that the definition we will suggest for invariance of a receptive field is based on
coefficients of unitary linear representations of a group, thus belongs to harmonic
analysis. However, for most applications in Biology we are forced to restrict the
action to a certain subset of G, which relies in general on the notion of groupuscule
(cf. [34]) or the notion of category with inverse of arrows, or groupoids ( [133]).

The theory of groups was invented by Galois to formalize invariance, symmetry
and ambiguity, that arize in the study of algebraic equations (cf. [70], [218]); Klein,
Lie and Cartan have shown that all of geometry, with its geometrical transforma-
tions and curvature notions, can be understood in this framework. And the notion of
groups has been extended by notions from categories, introduced by Eilenberg and
Maclane (cf. [133]).

In another direction, the notions of signal analysis, in particular Fourier transform
or wavelets transforms, have been extended to non-commutative groups, giving the
modern harmonic analysis (cf. [222]).

Note that several authors already insisted that invariance in visual recognition is
better understood through general Lie groups theory ( [64], [143], cf. [168]).

The theory of groups and that of their representations are recognized as fun-
damental for the description of physical and chemical systems, from Classical Me-
chanics to Quantum Field Theory through Quantum Mechanics. In order to be useful
in Biology these tools have to be adapted to the proper concepts of Biology, taking
into account the discrete nature of neuronal networks, and their inherent variability.
In particular, as was noticed by René Thom, the usual assumptions of analyticity are
not generally valid in Biology. The study of Vision is an ideal occasion to test and
adapt these ideas.

7.2.2 Invariance for Neurons or Brain Areas

Consider a set A of neurons a; the biological function of a neuron a is the transfor-
mation of an input into an output, thus the biological function of the set A is a vector
of transformations. For instance the output of a primary visual neuron a is a function
F,(I;t), where t denotes the time of response and I denotes the past images before
t. By an image, here, we simply understand the local field of intensity of light cap-
tured in the retina. (For taking color in account, we must add a wavelength content,
and I must be a vector.) By a response here, we understand the spiking activity -that
is, a numerical function of time. However, in general, to understand the behavior of
the neuron a we must also take in account internal parameters (of the neuron or the
brain) and other inputs than the image (from other neurons or glial cells). Suppose
now that a group G acts on both the collection of input activity and the collection
of output activity, we say that the set A is co-variant for G if its biological function
ing — outg,a € A is co-variant for the actions of G. Note that in most cases the ele-
ments g of G do not respect separately the activities of the units a, but they mix the
components of the vector activities.
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To be concrete let us give four examples of neuronal invariance in the visual in-
formation flow, from the retina to areas at the end of the visual path in the brain:
1) adaptation of light sensors to the intensity: here the transformation g is made by
global shift and scaling of the luminosity 7 — (I —Iy)/1,, it involves a cascade of
chemical and electrical processes modifying the response of ganglion cells (cf. P.
Sterling in [44]); 2) view-co-variant recognition: there is a group of permutations
g of the cells in V1 such that, after any translation and rotation of a visual scene,
there is a permutation of the cells in V1 that gives a response equivalent to the re-
sponse for the initial scene (cf. G.C. DeAngelis, A. Anzai in [44]); 3) view-invariant
recognition: an individual cell in the human fusiform gyrus can be invariant under
the animated deformation of a face which is seen (cf. E.T. Rolls in [44]); 4) direc-
tion encoding: in the presubiculum of a rat, a head direction cell a is invariant by
translation of the head of the rat to a parallel direction, but the collection A of all
head direction cells in the presubiculum is co-variant under the group of rotations
of the head in the horizontal plane. In fact the response after a rotation corresponds
to a permutation in the population, moreover A is also co-variant for the group of
rotations of distant visual cues; in this case all the cells a rotate their preference by
the same angle (cf. [234]). In this last example, (that of the head direction cells),
we see the interest of considering at least two different groups, one acting on the
head, another one acting on the distant visual cues; this multiplicity of frames helps
to precise the notions of ego-centric and allo-centric reference frames.

Each neuron, each area, obeys to a first form of invariance, which is defined by
all the changes in the world or in the nervous system that have no influence on
its function. This invites to consider neurons and their assemblies from the point
of view of their indifference to the changes in the world. Based on this indifference,
neurons and areas can share a co-variance with their inputs, defined by all changes in
their function which can compensate changes in the world. This permits to consider
neurons and their assemblies as operators detecting certain changes in the world.

However, we will also present a dual point of view, that invariance and covari-
ance are first invented by the brain, from molecules to networks, by creating origi-
nal ambiguity groups in internal spaces. This gives geometrical structures on inner
spaces. These two kinds of operations, indifference and ambiguity, can be seen as
convergence of invariance and divergence of invariance respectively, as there exist
convergence and divergence in neuronal networks connectivity.

A basic example of divergence of invariance is given by inhibition: a given input
can generate two kinds of answers, one excitatory, another one inhibitory, creating
an involution in the brain exchanging excitation and inhibition. Remark that in re-
ality, the symmetry is not exact, in general there is more excitation than inhibition
(except some balanced cases), and in some brain systems inhibition largely domi-
nates (as the output of Purkinje cells in the cerebellum), but this symmetry between
excitation and inhibition gives a principle of organization, which explains part of
the functioning of the brain. For instance see M.M. Slaughter in [44].

A basic example of convergence of invariance is given by the ON-OFF cells in
the retina: opening or closing light, which are two different stimuli, generate the
same response of the so-called ON-OFF cells. Cf. R. Nelson, H. Kolb in [44].
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The groups underlying these two examples are isomorphic to the simplest non-
trivial group, with two elements; it is noted Z/2Z when considered additively, or
C, = {+1,—1} when considered multiplicatively.

In general the invariance structure is neither pure convergence nor pure diver-
gence; the mixture must be described case by case. For instance global multiplica-
tion of intensity of light 7 by a positive non-zero number A, has no effect on most
ganglion cells, by re-scaling, that is pure convergence; but the same light wave-
lengths composition can produce different responses of the CC-cells in V4, for de-
tecting reflectance of objects; this is a re-construction and constitutes a divergence.
Both are called adaptation; changes in the entries are compensated by changes in
the analysis to produce efficient signals.

We should note a great similarity between Quantum fields and neuronal functions
F,(@;1), where @ denotes a general field input, not necessarily an image, before the
time response ¢ and a denotes a cell in an area A. Each neuron at a given time is a
function of an extended function, in the same manner that a state of quantum field
is a function of all the classical fields, i.e. it is a function of functions. From one
area to another, we get an operator transforming these functions of functions into
other functions of functions, and symmetry groups act on these operators. In the
simplest regime, or in first approximation, the operator appears to be linear. In the
same manner interactions between fields are expressed in Quantum Field Theory
by a linear operators transforming the states. The coefficients of this operator are
the correlations (or amplitudes) between the states, input and output. More gener-

ally, considering a set of interacting areas A1, ...,A, we can consider the correlation
coefficients
A(al at] aaZatZa "'aal’latl’l) - <Fa1 ((P] 7t] )Faz((PZ§l2)-~-Fa,, ((Pn,tn»a (71)

by taking the average over repetition of the events (cf. [96]).

It is known that the renormalization group is a necessary tool for giving a sense to
the locality of Quantum objects; according to Wilson and Kadanoff ( [235], [235])
this group describes the manner the injection of high momentum and high energy
levels at small scales influences the theory at all larger spatial scales. We will see
in the examples below that adaptation is something comparable: a change of the
parameters in the receptive fields that are induced by changing the scale, the frame
or the context. This subject is further developed in joint work with Pierre Baudot.

One of the first noticed visual adaptation was the tilt aftereffect of Gibson ( [71]):
when tilted lines are viewed, even during a short time, then a new set of viewed
lines appear tilted on the other side. A long time elapsed till, Dragoi, Schummers,
Sur et al. ( [56], [201], [200]) showed that in V1, near the pinwheels, there exists a
corresponding shift of orientation preference of cells.

Michael A. Webster ( [227]) remarks that Gibson himself ceased to accord im-
portance to this effect, because he got more and more interested in natural images.
However, later on, researchers got a better understanding of the general role of adap-
tation, underlying vision and all other sensory modalities, even for natural data.
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As other sensory systems, the visual system prepares future actions of the ani-
mal depending on the contexts. The paradigm of animal action is locomotion. The
primitive function of the visual system is to transform the captured light into in-
formation on the situation of the animal in its environment and its future direction
of displacement. Note that even protozoa can have eyespots (aggregation of light-
sensitive pigments) to help them for swimming. So the visual system completes
the vestibular system for sensing and controlling the translations and rotations of
the head the world (cf. [24]). This information is combined with all other sensory
modalities (in particular proprioceptive) for managing the invariance under the rel-
ativity group of the physical laws of movements in Euclidean space. This relativity
group was described by Galilée (at the birth of Physics); it was formalized into the
Galilean group (cf. J-M. Souriau [207]). The Galilean group has 10 dimensions; it
is made by the 6D groups of rotations and uniform translations, extended by the 4D
translations in space-time. Due to the principle of inertia, the last part, the change of
origin of the frame, needs vision (or somatic sensation) to be detected. This global
invariance is the first basic invariance to be controlled by vision from the point of
view of evolution, because it allows the animal to internalize what comes from its
action and what comes from the changes in the world. Cf. [11]. Galilean invariance
was first implemented in subcortical vestibular and visual systems, for instance in
the cerebellum, and it was further elaborated in the cortical system, for instance in
the vestibular cortex or the parietal cortex. Note that the divergence in Galilean in-
variance can sustain what has been named infernal models (cf. Mclntyre, Berthoz
and Lacquaniti [140]); a spectacular example is the separation of the gravity vector
from the linear acceleration in the vestibular system, which appears in the vestibular
cerebellum (cf. [245]).

The linear part of the Galilean group is isomorphic to the Euclidean group of 3D
rigid motions. Poincaré suggested that the general notion of object is issued from the
manipulation of rigid bodies, the rigidity property being defined by the possibility
to compensate the time evolution of the object by a change of Euclidean frame. For
Poincaré this compensation characterizes rigid motions, then the nature of ambient
space. This approach was recently developed again by D. Philipona, K. O’Regan,
J-P. Nadal et al. in the context of sensory-motor contingence with virtual robotic
systems ( [171]).

In the primary visual area V' 1, the simple cells form a system of co-variants under
the 2D + 1 translation of an image (two coordinates for the visual plane and one co-
ordinate for the time), and the complex cells have responses that are invariant under
small translations (cf. section 4.1 below). This invariance was the reason invoked
by Hubel and Wiesel ( [88]) to explain the appearance of complex cells in V 1; this
produces an information on images that is stable under small displacement. Fourier
analysis and its localization by wavelets permit to analyze the receptive fields in V1
from the point of view of 2D + 1 translation invariance. However a more complete
invariance for all translations is achieved in the infero-temporal region (IT), cf. Rolls
etal. [188],[191])

Hubel and Wiesel ( [87], [88], [89]) also observed that the neurons in V1 of cats
and monkeys, have a preferred orientation of stimuli, which is constant in vertical
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columns of the cortex and varies continuously along the cortical surface. Thus an
action of 2D rotations in the visual plane is also implemented in V 1. From the works
of EWolf, T.Geisel ( [238]), and D.Barbieri, Giovanna Citti, G.Sanguinetti, Alessan-
dro Sarti ([16]), it appears that the organization of orientation maps results from the
invariance by the group of 2D Euclidean displacements, rotations and translations
together (see 4.2 below). In the same manner the disparity of binocular cells can be
studied from the point of view 3D + 1 invariance (cf. Ohzawa, Freeman [159]).

A further function of the visual system is to document the brain on the content of
the environment, from the neighborhood of the body to the far landscape. However
this information flow is not a passive registration of photons, it results from an
active process. A variety of eye movements (saccades, smooth pursuit, VOR,
nystagmus, ...) and internal adaptations (accommodation, efferent copy, ...) helps
to stabilize space and objects perception during relative motions. In the following
lines we only want to give an idea of the complexity of the brain system (in humans
or monkeys) that helps to preserve space invariance during locomotion. We will see
that invariance is distributed over many areas, not only visual. As said by Alain
Berthoz in [27], this system intertwines motor and sensory information in such a
manner that it is preferable to abandon the distinction between them.

The basic compensation movements of the eyes to stabilize the image in the
retina when the head is moving, is the vestibulo-ocular reflex (VOR); it is composed
of a rotational reflex, the angular VOR (aVOR) and a translational reflex (tVOR).
To generate rapid (few ms) compensation, the aVOR is organized in the planes
of the semi-circular canals, which register rotation acceleration in the inner ear.
A wonderful example of adaptation for respecting geometry in space is given by
the way flatfishes reorganize the connection from canals to eyes muscles during
development ( [77]). For aVOR and tVOR a path of three neurons exists in all
vertebrates (first order afferent contacting hair cells in the labyrinth, second order
neurons in vestibular nuclei, neurons in ocular motor nuclei activating extraocular
muscle fibers), but many other brain centers in the brainstem and the cerebellum are
used to control and adapt the VOR (cf. [237], [75]). Moreover in natural situation,
this reflex must be counteracted by other eyes movements for visual exploration or
smooth pursuit or motion anticipation, that involve for instance the saccadic system
in the brainstem and the reticulate formation, the superior colliculus (SC), the basal
ganglia (BG), the thalamus, the cerebellum and the neocortex (cf. [27]).

The cerebral network concerned with eye movement control involves a very large
part of the brain, for instance in the cortex, it involves FEF (frontal eye field), SEF
(supplementary eye field, known for its role in motor programs), preSEF (for motor
learning), CEF (for motivation), MT+, V5 (visual areas concerned by image move-
ment), PEF (parietal eye field, in particular projecting to FEF), and intraparietal
areas IPA (for visuo-spatial integration), but also the dorsolateral prefrontal cortex
(DLPFC), involved in inhibition of saccades, visual prediction and short term spa-
tial memory, plus several areas involved in visuo-spatial attention (as SMG,SPL).
The three areas FEF, PEF and DLPFC have strong projection to the SC, the
projection of DLPFC being inhibitory. These areas are interconnected with the
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parahippocampal region PHC and the hippocampal formation HF, known to play
an important role in spatial memory, in the medium and long term. Cf. the re-
view in [178], and [27], [28]. It is also known that vestibular information reaches
PHC and HF ( [223]) and the intraparietal areas (VIP in monkeys, /PA in humans)
( [250]). Thus gaze behavior during locomotion, naturally influenced by visual and
vestibular information, modulates the spatial perception and spatial memory, in
particular through the interaction of the cortical network PEF, FEF,DLPFC with
PHC,HF. In addition there is a strong interaction of PEF, FEF,DLPFC with the
brainstem, SC and other sub-cortical nuclei (NRTP, OS,...). Moreover we cannot
underestimate the important role of the cortico-cerebellar loops in producing the
precise movements of the eyes during locomotion (cf. [12], [60], [51]).

An anticipation of the future visual scene is necessary for stable perception
(cf. [65]). It relies on an unconscious visual remapping (made by a subset of the
visual neurons) preceding the eye movement. In particular neurons in intra-parietal
LIP (for monkeys) or its homolog for humans, have activities modulated by the
future visual stimulus; in particular they are known to be informed by afference
copy of voluntary eye movements ( [244], [149]). Such remapping is also present in
FEF,SC, and extra-striate visual cortex. This system is known to be modulated by
attention. Studies in human primary visual areas have shown visual remapping in
the ipsilateral field (cf. [142]), that is a probable feedback from the parietal cortex
(normalized responses in visual areas are as follows: in hV4 71%, V3A 61%, V3
35%,V223%,V1 17%). Neurons in V3,V3A, V4 react to saccades directed to their
RFs (more than 20%, less than 24%), and even in V'1,V2 (respectively 12% and
14%). The cited authors verified that the remapping effect cannot be explained by
saccades effect, or by the apparition of the stimulus, or by the independent conju-
gation of both. (Note that in V1 of macaques, Nakamura and Colby ( [151]) found
less than one cell over 64 responding to remapping; this can be due to the small
size of RFs in V1 of macaques, inducing error on the stimulus position, or to the
difference between human and monkey for attentional effect.) In V4 (for monkeys
and humans) there are influences of covert attention and oculomotor information, or
stimulation of FEF.

On the interaction of motor and sensory systems in V' 1, we must also cite the ex-
perimental use of image movements that mimic the natural eye movements in cats
(Baudot et al. [19]): these movements have profound effects on the statistics of indi-
vidual activity of neurons, they modify the non-linearly in the RFs (mostly spiking)
and augment the mutual information with the stimulus. In this case, we see not only
compensation for stabilization but also adaptation of the RFs for constructing more
visual information.

For all the above matter see the chapter X7 in TV N, which contains ten articles
on eye movements.

Object perception is the main subject in which ideas of invariance have been
applied (cf. Rolls, and Riesenhuber, Poggio in TV N, [44]). We will come back to
this vast subject in the last sections.

For a stable perception of space and objects, the visual system must compensate
transformations of stimuli. For far space this involves 2D-affine transformations in
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the visual plane. Note that this 2D-affine invariance is used to explain the dura-
tion of hand movement and locomotion [25], [169]). For nearer space 2D-projective
deformation occurs. Certainly the way the sensory-motor system works with this
extended affine and projective invariance plays a role in the learning of geometry by
children, so useful to act in the world (Piaget). Computer vision has made a great
use of affine and projective geometry, see Devernay, Faugeras [54] and Lowe et
al. [130], [131].

Koenderink et al. have established that the projective geometry of the visual plane
organizes the coherence of figure perception in space; cf. [114], [105], [163], [216].
For instance the Pappus theorem, and the Varignon theorem are implicitly used in
perceptual judgments. More generally, pictures deformed by projective transforma-
tions are recognized (sometimes with difficulty) as the same picture seen from an-
other place.

In the area MT (or V5) of primates neurons are sensitive to stimulus speed with
respect to the retina frame. In MT and part of MST (or 19 and 37 Broadmann’s
areas of humans), the so called complex M7+, the geometry of the optic flow is
exploited to give knowledge of the eyes (or body) position with respects to objects
(cf. [119], [147], [11]). For instance, projective geometry describes the optic flow of
one eye that appears when the subject moves in the Euclidean space E and looks at
pictures drawn on a fixed plane H in it (cf. section 5.2 below). The vector field on H
that describes the apparent movement of fixed points of H in the moving frame of the
eye, belongs to the special eight dimensional family of projective vector fields, i.e.
the infinitesimal transformations that generate the planar projective transformations.
Analysis of the invariant characteristics of the optic flow (the characteristics that
cannot be compensated by eye movements with respect to the head) relies on the
theory of linear representations of the 3D rotation group ( [115], [103]).

In the dorsal medial superior temporal area (MSTd) there are two types of vi-
sually responsive cells: 1) expansion/contraction cells, which selectively respond
either to an expansion or to a contraction; and 2) rotation cells, which selectively
respond either to a clockwise or to a counterclockwise rotation ( [210]).

Neurons in the area MST have responses correlated to speeds with respect to a
fixed frame in space, thus they compensate for smooth pursuit of the eye so as to
extract higher invariant information from relative information in MT (cf. [92]).

It has been suggested that V1, V2 computations involve other Lie groups than the
Euclidean group: for instance 4D and 6D symplectic transformations in the descrip-
tion of the energy flow (cf. [18]), or the group of isometries of the hyperbolic plane
for analyzing edges and textures in the model proposed by Chossat and Faugeras
([46]). See Petitot’s book [168] for a general discussion.

As we will see in 3.3 below the color space in LGN, and partly in V1,V2 and V4,
offers a good example of invariance constructed by the brain in order to work with
frequency of light and physical properties of objects; this invariance relies on affine
geometry in nD spaces (3D form most mammals because they are trichromatic).

A main subject in this text will be the general co-variance of V1: we suggest
that in V1 local deformations of the images are represented, to sense contours and
surfaces in motion. The invariance here relies on feed-forward connections from



254 D. Bennequin

LGN, on horizontal connections in V 1 and on feedback from higher areas. The local
deformations generate a group with an infinity of dimensions. However it is better
in this case to consider limited distortions, thus the considered transformations are
better represented by a category, not a group, which consists of open sets of the
visual plane (as objects) and diffeomorphisms from an open set to another one (as
morphisms), these diffeomorphisms being sufficiently close to the Identity, to insure
that they do not deform too much the objects.

Note that considering categories in order to extend the implication of geometry
in perception was suggested long time ago by Piaget ( [175]).

7.2.3 Categories and Groups

A nice introduction to categories, functors and their use is [133].

A category € is specified by a set 6 of objects a,b,c,..., and for each pair
of objects (a,b) a set €' (a,b) of arrows f,g,h, ..., equipped with an operation of
composition

€ (a,b) x €(b,c) = € (a,c) (7.2)
(f.8)—gof (7.3)

which satisfy the two following two axioms:

(i) for each a there is an element ¢, in € (a,a) such that whenever it has a meaning
goes=gandeyo f = f;
(ii) whenever it has a meaning we have (hog)o f=ho(go f).

An arrow f € €'(a,b) is noted f : a — b and is said to go from a to b, the object a
being its source and the object b being its target. Another name for arrow is mor-
phism. The axiom (if) is expressed by saying that composition is an associative law.
The morphisms e, are called identity elements; the axiom (i) asserts they are neutral
elements for composition to the right and to the left respectively.

For each category 4" we can form the dual category €°7: it has the same objects
but we decide that any arrow f : @ — b of ¥ becomes an arrow f°F : b — a.

Consider two categories €, %", by definition, a (covariant) functor F is the datum
of map a — F(a) from % to 6}, and for each pair (a,b) of objects of ¢, of a map
from € (a,b) to € (F(a),F (b)), -usually denoted f — F(f)- such that whenever
possible we have F(go f) = F(g) o F(f).
Note that, if F is a functor from € to €’ and G is a functor from €’ to €, the
composite maps form a functor from % to €. A sub-category Z of a category ¢
is a category specified by a subset of 4( and subsets of morphisms, containing the
identity elements and closed under composition. The embedding from 2 to ¢ is a
functor.

A functor F from €7 to 6" is called a contra-variant functor from € to €.

A natural transformation T between two functors F, G from € to ¢” is a set of
arrows T'(a) : F(a) — G(a) defined for each object a of ¢, satisfying the following
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commutativity relation for each morphism f:a — bin €: T(b)o F(f) = G(f) o
T (a). Itis a natural equivalence when, for every a, the arrow T (a) is invertible. An
equivalence between two categories ¢, %" is a pair of functors, F from ¢ to ¢’ and
G from €” to € such that there are natural equivalences T from F o G to Idy and T’
from Go F to Idy:.

Let @, & be two categories, the set of contra-variant functors from % to & forms
the set of objects of a category whose arrows are the natural transformations. This
is named the topos of &-valued pre-sheaves on &’; we denote it by .7 (¢;&’). The
category % embeds naturally in this topos, if we associate to a the functor b —
% (b,a). (In fact the complete notion of topos asks for a Grothendieck topology on
a category, and considers sheaves (cf. Grothendieck and Verdier, SGA4, [79]); here
we considered only the so called discrete topology.)

To any set X we can associate the category .# (X ) which has only one object, X
itself, and whose morphisms are the maps from X to X; to any vector space V we
can associate the sub-category . (V') with linear mappings as morphisms.

A left action of a category € on a set X is a functor F from % to the category
A (X); a linear representation of € on a vector space V is a functor F from % to
the category .Z (V). A right action is a left action of €°P. When nothing is specified
an action means a left action.

A group G is the set of arrows of a category % with one and only one object o,
such that, for every arrow f there is an arrow g with fog = go f = ¢,. In this case
g is unique (because if g’ satisfies the same equations, we have g’ = g'o(fog) =
(g’ o f)og = g),itis called the inverse of f and it is written g = f~!. It is traditional
to identify G with € (0, 0), to forget o and to write e, = e. In general, the composition
go fis written as a product g f.

By definition a morphism of a group G in a group G’ is a functor from G to G'.
It is a map ¢ from G to G’ such that ¢(eg) = e and such that for any pair g, of
elements of G we have ¢(gg’') = ¢(g)p(g).

Let H be a subgroup of G, two elements g, g’ in G are said to be equivalent to the
right modulo H if it exist an element 4 in H such that g’ = gh. The set of equivalence
classes is denoted by G/H. The group G acts on this set by left multiplication.
According to Klein this constitutes the model of a geometry.

A Geometry on a set X is characterized by a group G of transformations of X
which acts transitively on points (i.e. for any pair x,x’ of elements of X there exists
an element g of G such that ' = g.x), and a space for this geometry is characterized
by a sub-group of this group (Klein, Lie, Cartan), thus we are following the invita-
tion of Llinas and Pellionisz ( [166] [167]) to visit the brain as a geometric machine.
Let us stress that most of the involved geometries are not directly represented in
the external world, they act inside the brain on internal spaces, which are in general
dynamically distributed over many interacting brain areas.

Let us now set forth a scheme for such internal spaces.
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7.2.4 Adaptation and Co-homology

Cf. the appendix 1 for mathematical sources of the definitions below.

Individual neurons, denoted a, have functions F,(¢;?) that transform incoming
fields ¢ into numerical time functions, like electric potential or spiking time se-
quence or firing rate. In many cases it is possible to give precisions on the manner
F, depends on ¢. Inspired by the theory of singularities (Whitney, Milnor, Thom,
Arnold, cf. Appendix 1), we assume the existence of three sets M, I,, and E,, the
first one has a structure of smooth manifold, it describes the parameters of dynamics
of responses of the cell (and its preferences), the second one is discrete in nature and
describes the categorization made by the cell (and circuits around it), in particular
in relation with the external world, and the third one describes the internal context
(that we consider as a sort of boundary condition). We assume the existence of a
function ¢ which associates to any input field ¢ and context € in E,, an element
o(@,€) of I,, called a vanishing cycle. This can be seen as a virtual state of the
neuron, a virtual attractor of the internal dynamics of the neuron, or a combination
of them, affected by signs plus or minus, as could be given by reentries. We also
assume the existence of a map P (named the period map) which associates to any
U in M, a numerical function on I,, that we name a co-cycle (and I;; denotes their
space). Our first hypothesis on the (biological) functions of the neurons is that F,
factorizes through o and P.ie.the equation for F, as a function on M, x E, is given
by B

Fa((Pa&N;f) :P([,L[)(G((p,&‘,)) (7.4)

Commentary: each point in M, represents a possible rapid dynamic of the cell; a
point in /, represents a combination of attractors of the dynamics, a skeleton of the
dynamics which can represent memory or/and prediction and thus sustains ambigu-
ity; a point in E, plays the role of an initial condition for the dynamics. The map
o represents the manner the cell and the circuit around it, in particular feedback
loops and reentries, integrate the signal ¢ with the boundary condition, or context,
€. We can imagine that rapid dynamics happens in a fixed set X,, and that /, describe
combinations of stable attractors in X,,. For u fixed, the function 13# generalizes the
notion of a probability law on the effective attractors. Cf. figure (7.1).

We consider M, as the unfolding of the dynamics of the cell, in the sense of René
Thom [212]. Examples of characters of neurons underlying all the processes in the
brain were described by Rodolfo Llinas (cf. [125], [126]). Examples of unfolding
for neuronal function were given by Izhikevitch [97]. The categorization process,
underlying I, in our model, is also a subject of study, for instance by Jean-Pierre
Nadal et al. ( [31]). At the level of evolution M,I,X,E are changed, for instance
by coupling several systems. We can suppose that M, when fixed, is universal, in
the sense of universal unfolding, which implies structural stability of the system,
cf. [212].

For describing the role of invariance (or co-variance) in cell adaptation, we as-
sume the existence of a group G, which acts on M, and I, in such a way that, for
any U € My, 6 €1, g € G4, we have
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Fig. 7.1 The three dynamical spaces, the internal space X (with its variety of rapid dynam-
ics), the virtual space / (ideal homology, with rigid structures) and the unfolding space M,
equipped with a dynamics of adaptation.

P(g.p1)(0) = P(11)(g.0). (7.5)

This relation expresses the possibility to compensate a change of the state ¢ by a
change of the parameter u. It is more a co-variance than an invariance. In such a
way a flow in M changing the parameters of the neurons can compensate a change
in the input, the context in E or their interpretations by co-cycles in 1.

It is the main suggestion of the present exposition, that it can exist on the
unfolding M a dynamic induced by the dynamic in the internal space X of the cell,
when expressed by the virtual state in /. This dynamic on M subtends adaptation.

In most interesting examples, the action of G, on I, corresponds to a set of
transformations of the input ¢ and the context €. But it can happen that some
transformations exist only at the level of the cycles ¢ in /,. This is the main trend of
generation of internal symmetries: new symmetries are generated by ambiguities.
We will see examples of both situations.

The action of G, on M, may describe a structural homeostasis, but in general it
describes a structural variation, an evolution of the internal system. Moreover, in
reality it can happen that a change in context € or in stimulus ¢ is not compensated.
In general the point i does’nt change co-variantly, the equation (7.5) expresses a
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virtuality, not a necessity. For instance, in V1 of cats only the cells at pinwheels
follow the ambient change of orientation, not the other cells, cf. [200].

Importantly, a change in M, can happen without corresponding changes in the
context or the stimulus, this change plays the role of an internal simulation. This
could be the basis of construction of ”internal models” (cf. [27]).

Commentary: the origin of symmetries G, on I, is the inherent ambiguity of virtual
attractors, they are of Galois type; the existence of its compensatory action on M,
expresses particular cases of dynamics of adaptation. In general these dynamics
are slow dynamics that describes the change in the nature of rapid dynamics, rapid
reactions. However, adaptation can be very quick, within milliseconds. A wonderful
example of that is given by hair cells rapid adaptation in the inner ear ( [59], [90],
[91]). In the particular case of spontaneous oscillations of hair cells in the bullfrog
sacculus the adaptation flow on M has been completely described ( [122]).

A guide for understanding this compensation is the dynamics of renormalization

in statistical mechanics: in this case the integration of higher frequency band is com-
pensated by a change in Lagrangian for leaving invariant the truncated correlations,
i.e. for respecting physics at low frequency scale (large distance). This process gen-
erates a semi-group converging to a family of Lagrangian functions that depends on
a frequency scale of observation; on this family the change of scale can be expressed
by a change in the strengths of interaction. Cf. [96], [235], [236].
There is a parallel between the invariance equation of a cell and the co-variance
equation of movement production suggested in [25]. In this paper it was described
how movements (t adapt their duration to the action of geometrical transformations
g of the space on trajectories o'

(8-1)(o) = u(g.0), (7.6)

meaning that the movement in time ((g.0) on the transformed trajectory g.o is
given by applying the transformation g to the movement y on the initial trajectory
0. The groups considered in [25] were the group of affine transformations of the
plane, the equi-affine group made by transformations preserving the area, and the
Euclidean group. In [24] the Galilean group is considered. Thus invariance in motion
production has the same form as invariance in perception; which is not surprising
in the above mentioned view that perception is nothing else that overturned action
(1271, [126]).

Let A be a brain area. Several cells a € A form a vector or responses, where groups
can act linearly or not. On the union M of all M,, the union [ all I, and the union E
of all E,, there is a structure of bundle over A. A section (U of the bundle M — A rep-
resents a collection of receptive fields in the area A, a section ¢ of / — A represent a
collection of inputs and a section € of E — A a state of contexts as seen by the a in A.
However this point of view of bundles and sections is largely misleading, because it
neglects the possible interactions in A, the horizontal connections that give structure
to an area. What replaces M, when we go to the area A is a much larger space My
than the space of sections, in order to take into account the parameters of possible
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interactions of the dynamics between the cells a in A. For instance, consider two
cells a and b; the dynamical systems on the Cartesian product X, x X;, of their inter-
nal spaces cannot be reduced to separate dynamics on X, and X}, we must consider
in addition a variety of couplings. We name the space M, the parametric space of
A. In the case of a finite number of neurons (sic) and finite dimensional spaces M,
the dimension of M, approaches the product of the dimensions of the M,, not the
sum, as would be the case for the product of the spaces M,.

However, instead of 1, we consider the product %4 of all I, for a € A and the same
for &4, the product of all E, for a € A; they are respectively the spaces of sections
of the bundles / — A and E — A. They will play the roles of the spaces of virtual
attractors and contexts for the area A; we name them the vanishing homology and
the boundary condition respectively.

Moreover we introduce here a vector space V4 to take in account the dimensions
of the responses from A (they are the analog of primitive forms in Appendix 1). And
we assume the existence of a joint period mapping which associates to any element
u of My and any vector v of V4 a numerical function on the product . of the I,.
Then, using the maps o, that associate to each input @, each cell a and each context
&4, an element o,(@, &,) in I,, we can form the element (@, €) of .74, and we get
the amplitude of responses

Fy(@,€,15t) = P(1)(0(9,&)) (7.7)

If we assume linearity in o and v, the applications P, define a mapping P from My
to £y @V, (that is the space of co-cycles with multiplicity).

The numerical functions a — P,((@t)(a))(c(a));v € V4, represent the collection
of informative outputs of the area A.

If a stimulus ¢ and a conte