
Lecture Notes in Morphogenesis 
Series Editor: Alessandro Sarti

Neuromathematics 
of Vision

Giovanna Citti 
Alessandro Sarti   Editors



Lecture Notes in Morphogenesis

Series editor

Alessandro Sarti, CAMS Center for Mathematics, CNRS-EHESS, Paris, France
e-mail: alessandro.sarti@ehess.fr

For further volumes:

http://www.springer.com/series/11247



Giovanna Citti · Alessandro Sarti
Editors

Neuromathematics of Vision

ABC



Editors
Giovanna Citti
Dipartimento di Matematica
Università di Bologna
Bologna
Italy

Alessandro Sarti
CAMS Center for Mathematics
CNRS-EHESS
Paris
France

ISSN 2195-1934 ISSN 2195-1942 (electronic)
ISBN 978-3-642-34443-5 ISBN 978-3-642-34444-2 (eBook)
DOI 10.1007/978-3-642-34444-2
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013954877

c© Springer-Verlag Berlin Heidelberg 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To my mother Maria and my father Roberto
To my mother Gabriella and my father

Vittorio



Preface

This book tells the story of an adventure, a scientific adventure moved by the de-
sire to understand the geometrical structures of the visual brain. For geometry we
attend here not the anatomical geometry of the brain shape, but the differential ge-
ometry of the connectivity between neural cells. This connectivity builds and shapes
the hidden brain structures underlying visual perception. The story of the problem
runs over the last 30 years, since the discovery of Hubel and Wiesel of the modular
structure of the primary visual cortex, and slowly cams towards a theoretical under-
standing of the experimental data on what we now know as functional architecture
of the primary visual cortex.

Experimental data comes from several domains. The two classical sources of
data, neurophysiology and phenomenology of perception, are nowadays more and
more sustained by neurocognitive imaging. Imaging techniques like functional MRI
and diffusion tensor MRI allow us to deepen the study of cortical structures at the
mesoscale, completing the scale range already well covered by neurophysiology
at the microscale and by psychophysics at the global scale. Due to the variety of
sources of experimental data, neuromathematematics deals not just with modelling
of cortical structures but also with modelling of perceptual spaces, in the Spinozist
tradition where “res cogitans” and “res extensa” are just the two sides of the same
sheet of paper.

From the mathematical point of view, neuromathematical structures are forged by
classical differential geometry and Lie groups, but are more and more demanding
for new instruments to pure mathematicians: research in sub-Riemannian geometry
is important to model horizontal connectivity, harmonic analysis in non commu-
tative groups is fundamental to understanding the pinwheels structure, as well as
non-linear dimensionality reduction is at the base of many neural morphologies and
possibly of the emergence of perceptual units. But what is at the center of the neu-
rogeometrical problem is overall the art to harmonize contemporary mathematical
instruments with neurophysiological findings and phenomenological experiments
towards the construction of a theoretical model of vision. The constributions to this
book are devoted to this task and come from the very founders of the discipline.



VIII Preface

Jan Koenderink in the ’80s started using differential geometry to study percep-
tual spaces, and William Hoffman proposed a model of the visual cortex as a fiber
bundle equipped with a contact structure. Almost at the same time Steven Zucker
was observing the relation between the measurement of Euclidean curvature and
the role of end-stopping cells. A new idea of the brain as “geometric machine” was
being raised, and it started to complement the theories on neural dynamics, which
were already challenging the “cybernetic brain” of traditional artificial intelligence.

In the ’90s a number of phenomenological models of vision appeared in the
mathematical framework of calculus of variations and parabolic (possibly degen-
erate) partial differential equations. The number of models is overwhelming and
we cite here just some pioneeristic papers, the segmentation model of Mumford -
Shah, the multiscale analysis of Alvarez, Lions, Morel and the first developements
of applied wavelet analysis. Even if these models are mathematically elegant and
their impact in image processing has been very important, they remained at that
time purely phenomenological, and they lacked of the double neuro-psycho nature
of neuromathematical models.

An important contribution in this sense has been carried out by David Mumford
with its elastica curves modelling perceptual illusory contours and paying attention
to both their psychophysical and neural basis. These curves are still at the center
of contemporary research, but rethought in new kinds of spaces and in a renewed
mathematical setting. A first stochastic model of illusory contours in his space of
position and orientation was proposed by Williams and Jacobs in ’95. At the end of
the ’90s a fundamental contribution of Jean Petitot and Yannick Tondut reprehends
the model of the cortex as a contact bundle of William Hoffman with which authors
compute the geodesic curves of the non-integrable structure, observing that they are
able to model perceptual association fields, measured by Fields, Heyes and Hess.
In this way, they were able to predict the shape of an illusory contour, given its
inducturs. Petitot explicitly introduced the word Neurogeometry to denote the inner
geometry of cortical connectivity. Also Steven Zucker reprehends the model of the
cortex as a fiber bundle to describe the pinwheel organization and proposed a model
of horizontal connectivity between pinwheels in terms of Frenet frames. In 2003
Govanna Citti and Alessandro Sarti observed that the cortical structure is not defined
in the Heisenberg group but in the SE(2) Euclidean group of rotation and translation
equipped with a sub-Riemannian metric. In this fiber bundle structure, they proposed
a model of image completion, which is currently used, expressing cortico-cortical
propagation in terms of sub-Riemannian diffusion and SE(2) invariant advection-
diffusion PDE.

Bressloff and Cowan are interested in the dynamics of neural population in a
model of the cortex defined in the group SE(2). An impressive result is obtained
when the activation map is computed in absence of an external input and the ef-
fect of chemical drugs is simulated. In this case the resulting activation distribution
corresponds impressively to visual hallucinations, as reported in classical literature.
A similar model is proposed by Olivier Faugeras and Pascal Chossat, but in the
hyperbolic geometry, in relation to texture perception.



Preface IX

Remco Duits works in the SE(2) group from an image processing point of view.
He considers lifting and propagation of the visual signal in the R2× S1 space, but,
by using invertible kernels (invertible scores), is able to reproject results in the 2D
image plane without loss of information. When these kernels are fundamental so-
lution of subelliptic PDE, their expression is provided a formal series with Fourier
transform. Results are impressive when applied to medical image processing.

Close to the neuromathematical paradigm is the entire activity of Jean-Michel
Morel and his group on computational gestalt, looking at the problem of geometry
of vision from a phenomenological point of view. His proposition to individuate in
the Helmoltz principle the basis of the classical theory of Gestalt is theoretically
deep and computationally fruitful. Daniel Bennequin is interested in a variety of
neuromathematical problems, all expressed in terms of invariance, symmetry and
ambiguity: from orientation maps distribution to neural structures in Lie groups.
He formalized these problems with principles of “information topology” theory, a
new co-homology theory of information based on probability and entropy theory,
partially inspired by quantum field theory.

Jim Bednar is oriented in reproducing the geometric morphologies of the visual
cortex on the base of brain plasticity principles. He recovers the main characteristics
of the functional architecture of the cortex simply by a process of learning of a
suitable set of stimuli. His work allows a possible reconciliation between an entire
ensemble of studies based on a differential geometry description of structures and
new trends towards organization of forms best adapted to their environment.

We feel great honor and privilege to have been part of this human and scientific
adventure. The present book contains the contributions of many protagonists of this
story, and on the other hand it is far from exhaustive, since many others are miss-
ing. The book is conceived to testify the past and to look towards contemporary
challenges in the understanding of the architecture of vision.

Finally we owe a huge debt to the various people who have supported us at many
levels. We would like to thanks particularly Davide Barbieri, Giacomo Cocci and
Gonzalo Sanguinetti.

Bologna, Paris Giovanna Citti
August 2013 Alessandro Sarti
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Chapter 1
Landmarks for Neurogeometry

Jean Petitot

Abstract. We present a historical survey of the way Neurogeometry links the mod-
elling of the functional architectures of primary visual areas with sub-Riemannian
geometry.

1.1 Introduction

In the 1990s, we coined the expression “neurogeometry of vision” to refer to ge-
ometrical models of the functional architecture of primary visual areas. The very
particular connectivity of the functional neuroanatomy of these areas explains the
geometry of percepts and must therefore be implemented in the synaptic weights of
the neural nets used for modelling.

The term “neurogeometry” (of vision) presents two complementary aspects.

1. The geometry of (visual) perception described, but not modelled, since the times
of Goethe, Helmholtz, Hering, Brentano, Poincaré, Husserl and Gestalttheorie
(von Ehrenfels, Wertheimer, Stumpf, Koffka, Köhler, Klüver, etc.), from Kanizsa
to Marr in psychology, from Evans to Peacocke or McDowell in philosophy of
mind. We will use the expression “perceptual geometry” for its description. It
must be emphasised that, until the 1960s, a relevant mathematical perceptual
geometry was essentially lacking.

2. Strictly speaking the term “neurogeometry” concerns mathematical models for
the neural algorithms processing perceptual geometry.

Now, we will see that these mathematical models of neural implementation are
also geometrical but in a sense deeply different from that of perceptual geometry.
The difference is quite similar to that found in computer sciences between high

Jean Petitot
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2 J. Petitot

Fig. 1.1 Examples of curved Kanizsa triangles with three methods for determining the exact
position of the illusory contour. One has to put a mark (the end of an orthogonal line, a small
segment, the axis of a small stripe) as exactly as possible on the extremum of the contour.
The good positions are shown on the middle line.

level logic and low level λ -calculus. Neurogeometry is, so to speak, “internal”,
neural, and “immanent”, while perceptual geometry is “external”, ideal, and
“transcendent”.

To give an example (but, as we say in French, “l’exemple est la chose même”),
let us consider Kanizsa illusory contours (see the celebrated Kanizsa’s Grammatica
del Vedere [73]). On the one hand, at the level of perceptual geometry, they have
been analyzed by a lot of psychophysicists, and we know quite well their proper-
ties as gestalts. They are particularly interesting when they are curved. Figure 1.1
shows different curved Kanizsa triangles with three methods for determining the
exact position of the illusory contour.

On the other hand, at the level of neurogeometry, we will see that illusory
contours result from the functional architecture of the primary cortical areas.
Now, to take only the case of V1, the first of these areas, we will see that its
functional architecture implements the contact structure of the fibre bundle of
1-jets of planar curves. There exists a natural metric, called sub-Riemannian, on
this contact structure and, mathematically speaking, Kanizsa illusory contours are
“geodesics of a sub-Riemannian geometry defined on the contact structure of the



1.2 Perceptual Geometry Since the 1970s 3

fibre bundle of 1-jets of planar curves”. The fact that such a formulation appears
highly esoteric and even non-sensical reveals the gap between perceptual geometry
and the neurogeometry in which it is implemented. The gap will be filled in section
1.4.10. In fact, we will see that this seemingly complicated neurogeometrical model
deepens in terms of the functional architecture of V 1 a model proposed in 1992 by
David Mumford for computer vision [90].

We will evoke briefly in this survey the theory of caustics in optics. It is in-
teresting to parallel them with our theory of illusory contours. Caustics are well
known since antiquity as envelopes of optical rays. As we will see, in their current
definition, they are “singularities of the projections on R

3 of the Lagrangian so-
lutions of the Hamiltonian system defined on the cotangent fibre bundle T ∗R3 by
the Hamiltonian H associated to the wave equation”. The formulation is as esoteric
and non-sensical as that of illusory contours and reveals the long way between the
phenomenological description of caustics and their physical explanations. The main
difference is that, in physics, such “long ways” are completely usual while in cog-
nitive sciences they are completely lacking. The ambition of neurogeometry is to
introduce a “mathematical turn” analogous to that found in theoretical physics.

Concepts such as jets, contact structures, sub-Riemannian metrics or geodesics
belong to differential geometry in the sense of Elie Cartan, Hermann Weyl, René
Thom or Misha Gromov, and it is therefore this type of geometry which is “inter-
nal”, neural and “immanent” in neurogeometry and explains the “external”, ideal
and “transcendent” perceptual geometry. It is crucial to understand this twofold as-
pect of geometry in neurogeometry. The situation is quite similar to what one finds
in particle fundamental physics. One observes complex trajectories of particles in
space-time M. And to explain them in the framework of quantum field theory, one
has to consider fibre bundles over M, Cartan connections, curvatures of connections,
etc. All these deep geometrical structures model a physical immanence, which ac-
counts for the observed empirical trajectories.

Since the editors of this volume thought that it could be of interest to present
some historical and biographical backgrounds for neurogeometry, we will give in
this survey a few landmarks, first for perceptual geometry, then for neurogeometry.1

1.2 Perceptual Geometry Since the 1970s

1.2.1 Thom’s Models

The first elements of mathematical perceptual geometry were worked out by René
Thom at the end of the 1960s as an aspect of his mathematical models for mor-
phogenesis (see [130] and [131]). He used the fundamental tools of singularity
theory (of which he was one of the main inventors after Marston Morse and Has-
sler Whitney) to explain how morphologies and patterns can appear and develop in
material substrates M. The key idea was that, at every point a of M, the physical,

1 Many thanks to Francesco Galofaro and Heather Arielle Griffin for the English translation
of the text.



4 J. Petitot

chemical or metabolic properties of the substrate are described by an attractor Aa

of an “internal” dynamics Xa and that the dynamics of neighbouring points are cou-
pled. Then for some critical values ac of a bifurcations can happen, the attractor A
being substituted by another attractor B. The subset K of the ac can be very complex
(fractal, Cantor, etc.), but in simple cases it stratifies M and breaks its homogeneity.
This symmetry breaking generates a morphology. In that sense, any morphology is
a segmentation of the qualities of a substrate by a set of qualitative discontinuities.

Thom’s models constitute a wide expansion of the pioneering reaction-diffusion
models introduced in 1952 by Alan Turing [134]. The challenge is the same: ex-
plaining how “the chemical information contained in the genes” can be “con-
verted into a geometrical form”. In Turing, the internal dynamics are systems of
(non linear) differential equations modelling the chemical reactions between “mor-
phogens” inside the substrate. The spatial coupling is afforded by diffusion, and the
cause of the “patternized” morphologies is the breaking of homogeneity induced by
“diffusion-driven instabilities” (see our survey [107]). The great biologists inspiring
Turing’s and Thom’s projects are also the same: Sir D’Arcy Wentworth Thompson
and Conrad Hal Waddington.

Thom’s models were called “catastrophic” by Christopher Zeeman. We preferred
the term “morphodynamical”. Morphodynamical models belong to a mathemati-
cal universe which experienced an extraordinary development in the 1960s-1970s
with masters such as René Thom, Bernard Malgrange, John Mather, Christopher
Zeeman, Vladimir Arnold, Stephen Smale, David Ruelle, David Mumford, John
Milnor, Martin Golubitsky, Robert MacPherson and many others. Their main tools
were the theory of dynamical systems (for the study of internal dynamics), their at-
tractors, their properties of structural stability, and their bifurcations; the theory of
critical points of differentiable mappings (for when the internal dynamics are gradi-
ent like); the geometrical theory of jet spaces and their stratifications; and universal
unfoldings of finite codimension singularities (see Thom [130], [131] and our com-
piling [98]). They aimed at a mathematical comprehension of morphogenesis and,
beyond biological morphogenesis, of morphological structures whatever their sub-
strate may be.

Thom’s models were inspired by a deep and rather universal mathematical “phi-
losophy” elaborated in the 1950s and the 1960s (see e.g. his two classical papers
“Les Singularités des applications différentiables” in 1956 [128] and “Ensembles et
morphismes stratifiés” in 1968 [129]):

1. The singularities of a space or of a map between spaces concentrate information
on its global structure into local morphologies.

2. To analyse locally a differentiable map f : M → N it is efficient to look at its
successive jets modulo a change of coordinates (a diffeomorphism) in M and
in N. In general, jets of sufficiently high order can be eliminated, and f can be
reduced locally to an algebraic form (codimension of singularities and normal
forms).

3. Jet spaces Jk (M,N) of successive order k are manifolds stratified by a strati-
fication Σk whose strata of increasing codimension (of decreasing dimension)
correspond to more and more singular singularities.
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4. One of the most fundamental theorem is the transversality theorem in jet spaces.
The k-jet jk ( f ) of f is a map jk ( f ) : M→ Jk (M,N) and the theorem says that,
generically, jk ( f ) is transverse on Σk. A consequence is that f cannot present
generically singularities of codimension > dim(M).

5. Morse theory is a privileged tool for analysing manifolds. If M is a manifold of
dimension n and if f : M→ R is a Morse function – that is a smooth function
whose all critical points (points where the gradient ∇ f = 0) are non degenerate
(the Hessian is of maximal rank n) and whose all critical values ( f (a) for a
critical) are distinct – then M can be qualitatively reconstructed from f via a
“handle representation”. In particular a fundamental formula allows computation
of the Euler-Poincaré characteristic χ (M) of M from any of its Morse function:
χ (M) =∑i=n

i=0 (−1)i mi where mi is the number of critical points of Morse index i
(a is of Morse index i if in a suitable system of local coordinates f is of the form
−x2

1− . . .− x2
i + x2

i+1 + . . .+ x2
n).

6. Morse theory can be generalized to stratified manifolds (MacPherson).

1.2.2 Some Autobiographic Remarks

Perhaps the reader will authorise some more personal remarks aiming at precis-
ing briefly the initial interdisciplinary context of the following sections. I became
interested in Thom’s new ideas for two reasons. First, I began my career at the
Centre of Mathematics directed by Laurent Schwartz at the Ecole Polytechnique
and worked on singularity theory in differential geometry with René Thom and in
algebraic geometry with Heisuke Hironaka and Jean Giraud (a disciple of Alexan-
der Grothendieck working also on Hironaka’s ideas). Second, I was also very in-
terested in structural theories in social sciences from Saussure and Jakobson to
Lévi-Strauss. Thom’s ideas unified these two different interests. So, after having
joined the EHESS (Ecole des Hautes Etudes en Sciences Sociales) Mathematical
Centre (CAMS) in 1971, I focused on the applications of morphodynamics to cog-
nitive sciences and semiolinguistics and also on their far-reaching epistemological
consequences.

In order to elaborate this kind of models, it was essential to maintain close rela-
tionships with pure mathematical theories. I could succeed thanks to the colleagues
with whom I worked at Schwartz laboratory: Bernard Teissier, Alain Chenciner,
Jean-Pierre Bourguignon (who would become director of the IHES, Institut des
Hautes Etudes Scientifiques), Jean-Marc Deshouillers (an arithmetician interested
in cognitive sciences), and later on some younger colleagues such as Daniel Ben-
nequin and Marc Chaperon. Moreover, the weekly seminar by Thom at the IHES in
Bures-sur-Yvette on the theory of singularities allowed me to follow the avant-garde
of the research in this field and to learn many things attending the talks of a number
of important geometers and physicists (e.g., Stephen Smale on complex dynamical
systems or David Ruelle on strange attractors, chaos and turbulence).

During the 70s an extraordinary interdisciplinary interest arose on the theory of
singularities. It started in mathematics (including mathematical physics: caustics
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in optics, defects in ordered media, critical phenomena and phase transitions) with
important symposia such as the Liverpool Singularities Symposium organized and
edited by C.T.C Wall in 1971 or the Summer Schools of the Institute of Scientific
Studies in Cargèse organized in 1973 and 1975 by Frédéric Pham. The theory has
then been developed in an extremely rich scientific context in which different tradi-
tions converged. Not without controversies, the morphodynamical models met with
the dissipative structures which came from thermodynamics and chemistry at the
Bruxelles school of Ilya Prigogine, Grégoire Nicolis, and Isabelle Stengers, with
the works on self-organization by Henri Atlan, Jean-Pierre Dupuy and Francisco
Varela, with synergetics by Hermann Haken and Scott Kelso, and so on. A real new
scientific paradigm had been deployed to understand the emergence of morpholo-
gies in the fields of physics, chemistry, and biology.

The philosophical echoes were sensational. The problem of dynamics of forms
had been the great loser of the Galileo-Newtonian revolution which allowed the de-
velopment of mechanics of forces during the XVIIth century: such dynamics im-
plied to conserve certain Aristotelian teleological concepts such as “entelechy”.
From a philosophical point of view, many great authors were aware of this point.
First of all, Leibniz, who investigated the problem during his whole life, Diderot
(cf. his debate with d’Alembert), Kant (see the Critique of Judgment), Geoffroy
Saint Hilaire, Goethe (the inventor of modern structural morphology), Brentano
as psychology is concerned, Husserl and phenomenology, Gestalt theory, D’Arcy
Thompson, Waddington which I already quoted. By showing how a mathematical
dynamics of forms compatible with physics was possible and how it could be ex-
tended to psychological and social sciences thanks to its transphenomenal nature,
René Thom ignited a philosophical breakthrough blowing up the traditional fron-
tiers between natural and human sciences.

At those times I decided to focus my researches on this unification of the prob-
lem of form and morphogenesis in different empirical disciplines. In order to detail
its dimension and implications, in 1982 I organised in honor of René Thom the
Cerisy Symposium Logos and Catastrophe Theory in which Christopher Zeeman
and many mathematicians participated as well as physicists, for example David Ru-
elle and Michael Berry; biologists as Yves Bouligand or Brian Goodwin, and experts
in morphogenesis; philosophers of science, semiolinguists and experts in Aristotle.

1.2.3 Perceptual Geometry and Phenomenology

Within perceptual geometry, five problems seemed particularly relevant in this con-
text. First of all, the link between morphological models and phenomenology. The
similarities are strong between the definition of forms as systems of qualitative dis-
continuities on spatial substrates and Husserl’s eidetic descriptions of perception,
in particular in Ding und Raum. During the 70s, it seemed strange how morpho-
logical models allow to relaunch phenomenology by “naturalizing” it. Today things
have changed, and neurocognitive sciences converge with phenomenology on dif-
ferent points, as it is shown, e.g., by the works of Alain Berthoz and Jean-Luc Petit
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Physiologie de l’Action et Phénoménologie [18]. The interested reader can consult
the volume Naturalizing Phenomenology [93].

Another problem in perceptual geometry is to construct objects in a tridimen-
sional space, starting from two-dimensional retinal sensations. From a geometrical
point of view, it is the problem of the apparent contours (AC) of objects which ap-
pear as surfaces S in R

3. The deformations and the transformations of these AC in
the perceptual temporal flux allow to reconstruct the 3D objects. An AC is a sin-
gular locus. It is the singular locus Sπ ,δ of the projection of S on the π plane in
the direction parallel to δ (transverse to π). If S is smooth, its projection is a map
between manifolds of dimension 2, and, thanks to a theorem by Whitney, we know
the singularities it can present generically: fold lines, transversal intersections of
fold lines, and cusp points. The set of the (π ,δ ) is called a Grassmannian, so a
3D object S is equivalent to an infinity of AC Sπ ,δ parametrised by a Grassman-
nian. The direct problem, namely how to construct the AC Sπ ,δ knowing S, is rather
simple. On the other hand, the inverse problem, namely how to reconstruct S and
its metric properties (its hyperbolic domains of negative curvature, its elliptic ones
of positive curvature, its parabolic lines of curvature = 0), starting from a certain
number of AC Sπ ,δ is extremely difficult. However, it is what perception solves in
every instant. Also in this case, the similarity with the eidetic descriptions of the
phenomenology of perceptual geometry, namely Husserl’s theory of adumbrations
(Abschattungen) is remarkable.

1.2.4 Caustics in Optics

A third fundamental link between the theory of singularities and perceptual geom-
etry is given by the already mentioned theory of caustics in optics. René Thom
considered it of a central importance because caustics can realize all the “catastro-
phes” of codimension ≤ 3 (folds, cusps, swallowtails, hyperbolic umbilics, elliptic
umbilics). In geometrical optics, caustics are envelopes of light rays and are mani-
fested as forms on a screen because the intensity of the light diverges on it. In wave
optics, what Michael Berry called “diffraction catastrophes” are superimposed to
these geometrical skeletons and their modelling as solutions of the wave equation is
founded on the theory of oscillatory integrals (see our compilation [98]).

Wave optics looks for solutions v(q, t) of the wave equation Dv = 0, where q is a
point of R3 with coordinates (x,y,z), t represents time and D is the differential linear

operator of second order D =
∂ 2

∂ t2 −Δ (where Δ is the spatial Laplacian). The sepa-

ration of spatial and temporal variables leads to the search for stationary solutions of
frequency τ , v(q, t) = eiτt u(q), where u(q) is an amplitude which satisfies Dτu = 0,
with Dτ = τ2 +Δ and initial condition a given function u0(q) on the source surface
S0. This means that one looks for a spatial propagation u(q) of u0(q) on which a
wave pattern eiτt is engrafted.

The approximation of geometrical optics corresponds to an infinite frequency
τ , i.e. to a wavelength = 0. However, when τ = ∞, the operator Dτ is not defined
any longer. This is the source of the idea of searching for asymptotic solutions uτ ,
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parametrised by τ , of the perturbed equation family Dτuτ = ετ , where ετ is a rapidly
decreasing function in τ (i.e. a function decreasing more rapidly than every negative
power of τ). “At the limit” the function u∞ will then be a the solution of the equation
D∞u = 0. Then, one looks for spatial solutions of the form uτ(q) = aτ(q)eiθ , where
θ = τϕ(q) with ϕ(q) a spatial phase, and where the amplitude aτ(q) admits an
asymptotic expansion in τ of the form:

aτ(q)∼ a0(q)+
1
τ

a1(q)+ · · ·+ 1
τk ak(q)+ . . . with a0 �= 0.

When τ → ∞, every
1
τk → 0 for k ≥ 1. So it is simple to compute Dτuτ as an

expansion in decreasing powers of τ , and since uτ has to be a solution of Dτuτ = ετ
where ετ is rapidly decreasing, the coefficients of this expansion have to vanish.
This yields an infinite number of equations, first of all the eikonal equation 1−
|∇ϕ |2 ≡ 0 (where ∇ϕ is the gradient of the spatial phase) which says that the level
surfaces of St of ϕ , the wave-fronts of the geometrical approximation, are parallel
surfaces, and that the gradient lines of ϕ , the light rays (so-called characteristics
of the wave equation), are orthogonal to the wave-fronts. Further, the equations
(known as “transport” equations) for the ak coefficients, the first of which is a0Δϕ−
2∇ϕ ·∇a0 = 0. On a light ray, given that q(t) satisfies

dq
dt

= 2∇ϕ , we have 2∇ϕ ·
∇a0 =∇a0 · dq

dt
=

da0

dt
, and this equation is reduced to an ordinary differential linear

equation
da0

dt
+ a0Δϕ = 0. On the caustic C the amplitude a0 diverges.

In order to understand the geometrical status of caustics, it is necessary to intro-
duce the conjugated momenta p of positions q ∈ R

3, to work on the phase space
which is the cotangent bundle T ∗R3 and to shift toward an Hamiltonian formalism
considering the Hamiltonian H(q, p) = 1−|p|2 associated to Dτ . Consequently, the
eikonal equation will be written 1− |∇ϕ |2 = 1− |dϕ |2 = H(q,dϕ) = 0, since the
Euclidean metric of R3 establishes an isomorphism between T ∗R3 and TR3 which
allows identification of the differential 1-form dϕ with the gradient field ∇ϕ . Let
then Λϕ be the graph of dϕ on the open subset U of R3 where ϕ is defined. It is
simple to verify how, because of the canonic symplectic structure of T ∗R3 defined
by the fundamental 2-form ω = dq∧ d p2, (i) Λϕ is a Lagrangian sub-manifold of
T ∗U , i.e. a sub-manifoldΛ of dimension 3 on which the 2-form ω vanishes, (ii) the
Hamiltonian H vanishes on Λϕ and (iii) Λϕ is transverse at each one of its points to
the fibres of the canonical projection π : T ∗U →U .

The obstruction to the construction of a global functional solution ϕ comes from
some deficits of transversality. Then one calls a Lagrangian solution of the problem

2 On the cotangent bundle T ∗M of a manifold (of local coordinates (q, p)), there exists
a canonical 1-form θ = pdq. θ (q, p) ∈ T ∗(q,p)(T

∗M) associates to every tangent vector

(ξ ,η) ∈ T(q,p)(T
∗M) the real p(ξ ) (well defined, because p ∈ T ∗q M and ξ ∈ TqM). The

2-form ω = dθ is fundamental in classical mechanics because it is at the base of the
Hamiltonian formalism.
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a Lagrangian manifold Λ on which the conditions (i) and (ii) are verified but not
necessarily the condition of transversality (iii). Λ is a reunion of solutions of the
Hamiltonian system defined by H, solutions called bicharacteristic curves, and the
caustic C is the apparent contour on R

3 of the Lagrangian solution Λ , i.e. the pro-
jection of the critical locus Σ where the condition of transversality (iii) is no longer
satisfied.

To transform such a geometrical solution into a functional one, sophisticated
tools such as oscillatory integrals are necessary. The key idea is due to Maslov (see
Maslov [84], Duistermatt [49] and our compilation [98]) and consists in looking for
asymptotic solutions uτ(q) no longer of the previous type aτ(q)eiτϕ(q) but for sums
locally finite of oscillatory integrals:

I(q,τ) =
( τ

2π

)p/2∫

eiτϕ(q,α)aτ(q,α)dα

where α ∈ R
p, where (τ/2π)p/2 is a renormalisation factor and where aτ(q,α)

(with compact support in α) is given, as aτ(q), by an asymptotic expansion. The
relation between such functional representations and Lagrangian solutions is given
by the stationary phase principle, which says that, due to destructive interferences,
the oscillatory integral concentrates when τ → ∞ on the critical locus Vϕ where

the phase ϕq(α) is stationary, i.e. where
∂ϕq(α)
∂α

= 0. A theorem due to Lars

Hörmander, says that, at least locally, every Lagrangian solution can be represented
that way.

1.2.5 Structuralism and Categorical Perception in Phonetics

The fourth link between morphodynamical models and perceptual geometry, which
concerned us for a long time, does not regard vision but what is called categori-
cal perception in phonetics: the categorisation of the phonemes is a product of the
perception of sounds, when these are recognised as speech sounds. Inside a cate-
gory, the discrimination ability degenerates (two different allophones of the same
phoneme are perceived as identical even if they are acoustically different), while
at the boundaries of the categories the discrimination is strong. As phoneticians
say, discrimination is subordinate to identification: we can’t discriminate correctly
some occurrences unless they are identified as occurrences of different phonemes.
It is possible to explain this remarkable phenomenon (which is really different, e.g.,
from the perception of colours) considering that the phonetic percepts are attractors
of neuronal internal dynamics Xa parametrised by acoustic cues a. In each language
these cues as the voice onset time of stop consonants (VOT, the interval between the
release of the consonant and the vibration of vocal folds) have central values. Using
methods of vocal synthesis, it is possible to let them vary in a continuous way, and
then to observe how bifurcations of the phonetic percepts are induced when crossing
critical values. For example, a voiced labial \p\ becomes an unvoiced labial \b\.
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At the end of the 70s, we developed morphodynamical models of the phonetic
categorisations (see [99]) and we emphasised their double interest. First of all, they
show how to generalise the models to the cases in which the external space M
parametrising the internal dynamics Xa is not the standard space any longer, but a
space of control-parameters. Second, as far as phonetics has been a model for mod-
ern structuralism, with Prince Troubetzkoy and Roman Jakobson, they show how
morphodynamical models are natural for structuralism. On this base we build the
“morphodynamical structuralism” program, which goes from phonetics to semiolin-
guistics (in Greimas’ and Eco’s sense), and anthropology (in Lévi-Strauss’ sense),
which in 1982 led to the four volumes of Pour un schématisme de la structure. De
quelques implications sémiotiques de la théorie des catastrophes and to the three
books Les Catastrophes de la parole. De Roman Jakobson à René Thom (Maloine,
Paris, 1985), Morphogenèse du Sens [99] and Physique du Sens (Presses du CNRS,
1992).

1.2.6 Mental Dynamics

A fifth aspect of the morphodynamical models of the 70s is already linked with
neurosciences, even if in a theoretical and qualitative fashion and not in an experi-
mental and quantitative one. In his 1965 article Topology of the Brain (see [144]),
Christopher Zeeman introduced the key idea that brain activity must be modelled
by dynamical systems Xa on internal configuration spaces P = IN , where I = [0,1]
is the range of activity of a neuron, N is the number of neurons of the system under
consideration, and the Xa depend on control parameters a, micro-parameters such
as synaptic weights and macro-parameters such as behavioural or psychological
values. The main hypothesis was to identify mental contents with the topological
structure of attractors of the Xa, and the flow of consciousness with a “slow” tem-
poral evolution of the Xa. The strategy for explaining mental phenomena was then
to use theorems concerning the general structure of attractors and their bifurcations
for drawing empirical conclusions from this dynamical scheme without knowing
explicitly the Xa. Indeed, if mental contents are modelled by attractors, then their
significant changes during mental processes are modelled by bifurcations K observ-
able in the control space M of relevant control parameters (the relevance depends of
course on the nature of the mental phenomena under consideration). The dynamics
Xa are defined on the very high dimensional manifold P and are “implicit”, while
the bifurcation sets K are “explicit”. But suppose that, due to theorems of classifi-
cation as those of Whitney-Thom, we know models of the K that are generated by
dynamics Ya defined on low dimensional internal spaces Q. Such a drastic reduction
of dimension of the internal space (which is very similar to what one meets in sta-
tistical physics when one reduces an enormous number of degrees of freedom using
what is called an order parameter) can then be identified to the passage from the
neurodynamical micro-scale to the “psychological” macro-scale.

Thom’s and Zeeman’s neurodynamical hypothesis could not be confirmed at
those times because of the lack of experimental tools. Nevertheless it raised an
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exciting problem, namely the mereological problem of constituency. Indeed, a key
feature of mental contents is indeed how they are structured into components, what
is called their “compositionality” or their “constituent structure”. One need only
think to the syntactic structure of a sentence to be convinced. If it is possible to
model a mental content through a neurally implemented attractor, then this attractor
must have a constituent structure on its turn. What could this possibly mean? This
is what I proposed to call the problem of an attractor syntax. It is particularly dif-
ficult. If structures can be modelled in terms of bifurcations of internal dynamics
Xa defined on internal spaces P, bifurcations which are unfolded in external spaces
M, then one must “internalise” these external unfoldings into higher level internal
dynamics defined on the product spaces P×M.

The interested reader could consult our work (written with the help of René
Doursat) Cognitive Morphodynamics [106] dedicated to this theme in relation to
semiolinguistics (Per Aage Brandt, Wolgang Wildgen, Jean-Pierre Desclés, Pierre
Ouellet, Jean-Guy Meunier, etc.) and cognitive linguistics (Len Talmy, Ron Lan-
gacker, George Lakoff, Paul Smolensky, Peter Gärdenfors, Terry Regier, Rick
Grush, etc.).

1.3 The Connections between Perceptual Geometry, Image
Processing, and Computational Vision from the 80s

During the 80s, the research inspired by Thom in perceptual geometry has been
connected with parallel works by specialists in natural and computational vision
and image processing. We will cite some of the most remarkable ones.

1.3.1 Koenderink, Hoffman and the “Singularities of the Visual
Mapping”

In the mid-80s, the pioneering works by William Hoffman on the application of dif-
ferential geometry and Lie group theory to vision, and by Jan Koenderink (and, later,
by the Utrecht University group, in particular Luc Florack) on visual perception ge-
ometry, interested me, because, for the first time, I met specialists in perceptual
psychology using resources coming from differential geometry, and, in particular,
from singularity theory. Among the fundamental contributions of these scholars, I
would mention four issues:

(i) The thesis according to which the visual cortex is a “geometric engine” which
implements mathematical structures as fibrations, jet spaces of order 1 and 2, and
contact structures (see [77], [64]).

(ii) The structuring role of singularities in perceptual geometry (see [76]).
(iii) The necessity to integrate (in the mathematical sense) the neural detections

of local structures into global geometrical structures. If the brain can be a “geometric
engine”, this is because groups of receptive fields of visual neurons detect local fea-
tures as edge orientations, crossings, inflection points, etc., which can be integrated



12 J. Petitot

later on through the functional architectures connecting these feature detectors in a
specific way.

(iv) The essential role of scale. Perceptual geometry results from the integration
of local measures by receptive fields which have a certain width, and it is conse-
quently processed at a certain scale, i.e. at a certain resolution. For this very reason,
perceptive differential geometry must be multiscale, because classical differential
geometry corresponds to the idealisation of an infinite resolution (scale = 0). Koen-
derink and Witkin introduced the idea of scale-space analysis. It consists in a uni-
form parametrisation of all the relevant geometrical structures by a scale parameter
σ . A constraint called “causality constraint” implies that when σ increases the com-
plexity of the geometrical structures simplifies. Generally speaking, this constraint
is expressed through a diffusion operator D. This means that if one considers a struc-
ture S (x) defined on a background space E , one considers the multiscale background
space E×R

+ endowed with the operator D(x,σ) and imposes that S (x) will be the
initial value S (x,0) of a solution S (x,σ) of the diffusion equation D(S (x,σ)) = 0.
The simplest way to obtain this for E = R

n is to use the heat equation ∂S
∂σ = ΔS

(where Δ is the spatial Laplacian). This strategy, called Gaussian blurring, raises
interesting mathematical problems. For example, James Damon rewrote in this new
framework Morse theory and the Whitney-Thom-Mather theory of universal unfold-
ings (see [42] and [104]).

1.3.2 Scale Space Analysis and Anisotropic Diffusion

The main drawback of Gaussian blurring in image processing and computational
vision is that it does not respect the morphologies of the image. In fact, as we saw,
these are dominated by the perceptual saliency of qualitative discontinuities and,
by definition, the isotropic diffusion induced by the heat equation smooths discon-
tinuities. That’s why a certain number of specialists founded scale-space analysis
on highly anisotropic non linear parabolic equations of diffusion, in which the in-
tensity of the gradient of the image inhibits diffusion. Along discontinuities the
gradient is very strong and even diverges, and therefore there is no diffusion any
longer: diffusion only operates transversally to discontinuities and therefore pre-
serves morphologies. The most known of these anisotropic equations is perhaps the
one introduced by Jitendra Malik and Pietro Perona in 1990 for images defined by
their intensity function I (x,y;σ) (if we allow a small initial blurring, we can sup-
pose that I is smooth): ∂ I

∂σ = div(g(∇I).∇I) where ∇I is the spatial gradient of I,
and g is a decreasing positive function so that g(x) −→

x→∞ 0. As div(∇I) = Δ I, we

retrieve the standard heat equation for g ≡ 1. Such PDEs are difficult to integrate
numerically, because they imply phenomena of inverse diffusion and deconvolution
which make them unstable. Let us also mention the well-known equation (1992) by
Pierre-Louis Lions, Jean-Michel Morel, and Luis Alvarez [6] ∂ I

∂σ = ∂ 2
ξ 2I where ξ is

a normal coordinate to the gradient, that is to say the tangent to the level line at the
considered point. This equation is written :
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∂ I
∂σ

= |∇I|div

(

∇I
|∇I|

)

= ΔS− H(∇I,∇I)

|∇I|2

where H is the Hessian of S. It is uniformly parabolic along level curves, but it
is completely degenerated in the direction of the gradient. It lets the level curves
evolve as fronts with a normal speed equal to their curvature.

In a more general way, considering the level lines of the intensity functions
I(x,y;σ), it is possible to generate evolutions of the plane curves Cσ , which prop-
agate as fronts in accordance to a law of the kind ∂a

∂σ = F(κ)ν where a is a point
of Cσ , ν the (external) normal at a to Cσ and κ the curvature of Cσ at a. The more
studied cases have been the propagation at a constant speed, F(κ) = v, for example
v = 1 (wave equation): ∂a

∂σ = ν, ∂κ∂σ =−κ2. This way we obtain “grassfire” models
where the propagation speed is constant as in optics.

The above model corresponds to F(κ) = −κ . Under the title of “curve shorten-
ing”, “flow by curvature” or “heat flow on isometric immersions”, this equation has
been studied by geometers as Michael Gage, Richard Hamilton, Matthew Grayson,
Lawrence Evans or Joel Spruck.3 According to Grayson’s theorem [60], “curve
shortening” convexifies the curves Cσ and makes them metrically converge towards
a circle. If jσ : S1→R

2 is the isometric immersion defining Cσ , we haveΔ jσ =−κn
and the diffusion equation ∂σ jσ = −κn is the heat equation ∂σ jσ = Δ jσ . In the
functional space J of immersions j : S1 → R

2, this equation defines the gradient
field of the function giving the length of the image curve C = j(S1) and the theorem
says that if C0 is an embedded curve (as winding as it can be), then the heat equa-
tion contracts it into a circular point. And Cσ becomes convex without reaching any
singularity.

This result concerning 1-dimensional curves cannot be generalized to surfaces.
For instance a “dumbbell” like surface can be pinched and disconnected into two
spheres. The interested reader could consult e.g. Brakke [26], Huisken [69], [70],
Ecker, Chen, Giga, Goto [33].

To return to curves, Stanley Osher and James Sethian [96] studied the interme-
diate cases where F(κ) is neither constant nor equal to −κ but of a mixed form
F(κ) = 1− εκ . If τ is the curvilinear abscissa of the curve Cσ , the curvature κ sat-

isfies an equation of the type ∂κ
∂σ = ε ∂

2κ
∂τ2 + εκ3−κ2 which is a reaction-diffusion

equation where the reaction term εκ3−κ2 (which pushes Cσ towards singularities)
is counterbalanced by the smoothing effect of the diffusion term ε ∂

2κ
∂τ2 .

3 As a matter of fact, the theory comes from Richard Hamilton which tried to solve much
more difficult problems in General Relativity. By using the heat equation, he showed how,
if X is a Riemannian compact 3-manifold with a positive Ricci curvature Ri j , then X ad-
mits a Riemannian metrics with constant positive Ricci curvature. Now, the latter have
been classified. Hamilton tried also to generate closed geodesics starting from any closed
curve. Among others, these techniques allowed Grigori Perelman to prove Poincaré’s con-
jecture in 2003.
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1.3.3 Segmentation and Illusory Contours in David Mumford

Morphological geometry of images, clearly very close to perceptual geometry, be-
came this way a top-ranking scientific object as much as it was necessary to find
specific performing algorithms to compute it. This computational approach goes
beyond morphological modelling, and it intermediates in some sense between per-
ceptual geometry and neurogeometry insofar as, on the one hand, it is based on
explicit algorithms while, on the other hand, these algorithms don’t have to be neu-
rally implemented. One could think that this is not a real problem since neural nets
are computationally equivalent to Turing machines. But this is not the case, because
in neurogeometry the neural hardware is dedicated and it is the specificity of its
functional architecture that causes its activations to be equivalent to a calculus.

Another great mathematician in image processing, who has been an essential
inspirer for neurogeometry is David Mumford, 1974 Fields medal for his works in
algebraic geometry. Two contributions are of a peculiar importance.

(i) First, the Mumford-Shah segmentation model (see [91]), a variational model
which allows to optimize the approximation of an image I (x,y) , defined on a win-
dow W and potentially very noisy, by a “good” morphological structure (u,K) where
K is a segmentation of W partitioning W in open domainsWi (connected components
of W −K) and u an approximation of I which is regular on the Wi while presenting
discontinuities along K. A considerable number of algorithms of this kind have been
proposed. In a way or in another, they all consist in a merging of local domains into
regular, homogeneous regions limited by crisp edges, that is in “splitting and merg-
ing different parts of the domain W” as Mumford said. The principal theoretical
problem which they encounter is that the 2D regions and the 1D edges are geomet-
rical entities of a different dimension, which compete and interact in a very subtle
way (see the synthesis Morel-Solimini [89]). In order to compare the possible seg-
mentations between them and to measure their approximation degree of the image
I, it is relevant to introduce an energy. The energy proposed by David Mumford and
Jayant Shah is

E(u,K) =

∫

W−K
|∇u|2 dx+λ

∫

W
(u− I)2 + μ

∫

K
dσ .

It includes that three terms: the first term measures the variation and controls the
regularity of u on the open subsets Wi; the second term controls the quality of
the approximation of I by u; the third term controls the length, the regularity, the
parsimony, and the localisation of the edges K and inhibits the oversegmentation
phenomena (by segmenting in sufficiently small regions it is obviously possible to
approximate I as much as we want, but such oversegmentations are irrelevant).

This variational model is a particular case of what is called in physics a “free
boundary problem”. It is extremely difficult to solve and a lot of works have
been dedicated to it until now in particular by the Ennio De Giorgi centre at the
Scuola Normale Superiore in Pisa (among the others Luigi Ambrosio and Gianni
Dal Maso), Jean-Michel Morel, Alexis Bonnet and Guy David (for an introduc-
tion see [103] and [105]). If the set of edges K is fixed, then it is simply a classic
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Neumann problem: Δu = μ(u− I) inside the connected components Wi of W −K
and ∂u

∂ν = 0 along the edges ∂W ∪K (ν is the normal at the edge). If K is free,
the problem is really different. In the simplest case, where the approximants u are
locally constant, we have ∇u = 0 and E(u,K) is reduced to a

E(u,K) = λ
∫

W
(u− I)2 + μ

∫

K
dσ .

Then, the approximation u is entirely determined by K because, on the connected
components Wi of W −K , it is simply equal to the average of I. Thus, we have only
to find K. Mumford has shown that, in this case, the minimum of E(u,K) exists
and is realised through a K which is piecewise C1, whose curvature is bounded by
8osc(I)2 (where the oscillation of I is osc(I) = max I−min I) and which has triple
points at 120◦ and edge points at 90◦ on ∂W as only singular points.

In the general case where the approximations u are not necessarily locally con-
stant, Mumford’s conjecture says that it is still the same, except that a third class of
singularities of “end point” type could occur (they are called “cracktips” or “fault”
ends in reference to physical models). They are end points of the discontinuity
lines. The conjecture is still unsolved. First it has been shown that K is a closed
and “regular” set of topological dimension 1 (it can’t be fractal). Later on, David
and Semmes [43] showed a property of uniform rectifiability. Then Alexis Bonnet
proved the conjecture for the isolated connected components of K. Then Bonnet and
David [21] showed how the “cracktips” are minimisers.

In 2003, Giovanna Citti and Alessandro Sarti proved that the Mumford-Shah
model is a limit (in the variational sense of the word “limit”) of a model of synchro-
nisation of oscillators, a result which would justify a neural implementation (we will
return on this point in section 1.5.1.1).

(ii) David Mumford’s second major contribution concerns a variational model
proposed in 1992 [90] regarding the illusory contours. This is the model which will
be reformulated by neurogeometry. It uses elastica curves, introduced by Euler in
elasticity theory, which are curves minimising at the same time the length and the
square of the integral of the curvature κ of curves, i.e. an energy E =

∫

γ (ακ2+β )ds

where γ is a smooth curve in R
2 with element of arclength ds. It is possible to jus-

tify this model in this way: the virtual contour will correspond to a chain of triplets
(ai, pi) (ai = positions and pi = orientations at the positions ai) along which the
loss of activity is the weakest possible. But leaks can have a double origin: (a) leaks
proportional to the number N of elements of the chain, with a constant factor β ; (b)
leaks due to curvature and equal to the sum of the deflections of orientation between
consecutive elements, with a constant factor α . If θi is the angle of the slope pi, we

can take for example
i=N−1
∑

i=1
(θi+1−θi)

2. At the limit, the first term tends to the length
∫

γ ds and the sum of the deviations Δθ in the second term tends to
∫

γ κ2ds since, by

definition, κ = dθ
ds . The minimisation of leaks “online” consequently leads to Mum-

ford’s variational problem. Its solutions are transcendental curves (i.e. non algebraic
ones) called elastica which could be explicitly represented by elliptic functions.
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David Mumford developed a stochastic explanation of his model. Let us suppose
that the curvature κ(s) of the curve γ (parametrised by its arclength s) is a white
noise. As κ(s) = θ̇ (s), this means that θ (s) is a Brownian motion. In other words,
at every time, motion is a random Gaussian variable of average 0 and of variance
σ . If we further suppose that the length l of γ is a random variable which follows
an exponential law λe−λ ldl (thus l is constant for λ = 0), then the probability of

a particular curve γ is given by Pr(γ) = e−
∫

(ακ2+β)ds with α = 1
2σ2 et β = λ .

Consequently, elastica are the most probable curves.

1.3.4 Receptive Profiles and Wavelets

Another fundamental progress in image processing which can be used to mediate
between perceptual geometry and neurogeometry is the remarkable development of
wavelets algorithms promoted since the late 80s by analysts such as Yves Meyer,
Stéphane Mallat or Ingrid Daubechies. The wavelet transform of a signal is a lo-
calised and multi-scale harmonic analysis that allows to easily detect (unlike the
Fourier transform) the qualitative discontinuities encoded in the signal. For an in-
troduction, see Stéphane Mallat’s A Wavelet Tour of Signal Processing [80]. The
connection with David Marr’s pioneering way to treat the retinal signal by the reti-
nal ganglion cells was quickly established, and it became clear that the retina, the
lateral geniculate nucleus, and the primary cortical visual areas perform a series of
consecutive wavelet analyses of the optical signal and that this is where the primary
geometric formatting of the visual input comes from. In particular, the receptive pro-
files of the “simple” neurons of V 1, which detect edge orientations, are assimilable
to oriented wavelets modelled on second derivatives (i.e. anisotropic Laplacians) of
Gaussians (the width of the Gaussian defines the scale of the processing). The zones
of the receptive field where the receptive profile is > 0 (resp. < 0) are called ON
(resp. OFF) by neurophysiologists.

A lot of fine grained analyses have been conducted on the receptive profiles of
the visual neurons, for example by Gregory DeAngelis’ team at Duke. In fact, the
receptive profiles implement derivatives of Gaussians up to order at least 3. For ex-
ample, figure 1.2 from [45] shows a receptive profile where the spatial and temporal
profiles are non separable: the ON/OFF regions are shifted during time, and for this
reason the periphery response of the receptive field is delayed with respect to the
central one. This allows the neuron to measure the speed of the edges it detects.
Figure 1.3 shows a model using the third derivative of a Gaussian ∂ 3G

∂u2∂v
, where the

(x, t) plane is obtained through a π
10 rotation of the (u,v) plane (it is the origin of the

non-separability). The agreement with the experimental data is quite remarkable.
This analogy between a wavelet analysis of an image and the processing of the

optical signal by fields of receptive profiles which operate in parallel and detect local
geometrical features plays a crucial role in neuroscientific theorisation on vision.
However, it failed to consider the functional architectures, which allow integration
of these local data into global structures.
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Fig. 1.2 Temporal evolution of a non-separable receptive profile ϕ(x,y, t) from t = 20ms to
t = 220ms. The spatial organisation of the receptive profile changes; this is not the case for the
separable receptive profiles. Above, the spatial profile ϕt(x,y) = ϕ(x,y, t). Below, its section
for y = 0. (From DeAngelis et al. [45]).

Fig. 1.3 Model of the temporal evolution of the receptive profile ϕ(x,y, t) of figure 1.2.

We took a third derivative of a Gaussian ϕ(x,y, t) = ∂ 3G
∂u2∂v (u,y,v) with the rotation (u,v) =

rθ (x, t), θ = π
10 . Above, the evolution of the spatial profile ϕt(x,y) = ϕ(x,y, t). At the middle,

the sections for y = 0. Below, the receptive profile ϕ(x,0, t) on the (x, t) plane for y = 0.

1.3.5 Neural Net Dynamics and Attractors

As we saw in section 1.2.6, in the 70s Thom and Zeeman introduced the main idea,
according to which a mental content is an attractor of a neural dynamic. However,
these dynamics remained implicit in their models and if the hypothesis was yet op-
erative, this was because deep theorems on classification of singularities and bifur-
cations show their universality. So, from a methodological point of view, the models
were quite special: rather than starting from explicit equations and deducing from
them the bifurcations, they started from the observed bifurcations and they ascended
by abduction to some generating dynamics of minimal complexity, a dynamics of
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which the real implicit dynamics should only be an extension through irrelevant
parameters.

The situation changed with the introduction, at the beginning of the 80s, of the
neural net models inspired by statistical physics and later developed, after Jack
Cowan et Hugh Wilson (1972), by specialists as John Hopfield, Daniel Amit, Haim
Sompolinski [123], Misha Tsodyks [132] and, in France at those times, by physi-
cists as Gérard Toulouse, Marc Mézard, Jean-Pierre Nadal, Gérard Weisbuch at
the Lab of Statistical Physics of the ENS (Ecole Normale Supérieure), or Manuel
Samuelides at Toulouse [48], or Daniel Hansel and Claude Meunier at the Ecole
Polytechnique, or also Gérard Dreyfus at the ESPCI. Under its simplest form, a
neural net consists of N units ui whose activation state yi changes in a certain state
space S. The most useful cases are S = {0,1},{−1,1}, [0,1]. An instantaneous net
state is therefore described by the vector y = (yi)i=1,...,N in the configuration space
P = SN which is a space of great dimension if N is large. The units ui are little
threshold automata connected to each other through connections whose strength is
measured by synaptic weights wi j . The wi j determine the program of the net. The
wi j > 0 correspond to excitatory connections and the wi j < 0 to inhibitory connec-
tions. In general, wii = 0.

The net “computes” in the following way: every neuron ui receives afferent sig-
nals coming from its pre-synaptic neurons, it integrates them, then it makes a deci-
sion and sends an efferent signal to its post-synaptic neurons. One defines in general
the input of the unit ui as the weighted summation of the afferent signals

hi =
j=N

∑
j=1

wi jy j, i.e. h = wy

and the local transition laws are of the kind:

yi(t + 1) = g(hi(t)−Ti) , i.e. y(t + 1) = g(h(t)−T)

where Ti is a threshold and g a highly non linear gain function. Typically we have
g = Heaviside function if S = {0,1}, g = sign function if S = {−1,1}, g = sigmoid
function, for example 1/(1+ ex), if S = [0,1]. The synaptic weights wi j and the
thresholds Ti constitute a control space W . The global dynamics of the net Yw on
P is obtained by aggregating the local transition laws and by iterating them. In the
limit of a continuous time, we get a large system of differential equations of the
kind:

ẏ =−y+ g(wy−T) .

In the limit of a spatial continuum of neurons, we get PDE (on densities) of the kind:

∂y(x, t)
∂ t

=−y(x, t)+ g

(
∫

(w(x,z)y(z, t)−T (x))dz

)

.

As Daniel Amit emphasised, under the hypothesis of a complete feedback (loop
between the inputs and the outputs) the asymptotic states of the system – in
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particular its attractors – are meaningful (see [7]) and define the internal states of
the net. The basic dynamic phenomenon is therefore the asymptotic capture of an
instantaneous global state y0 of the net by an attractor A. That’s why Daniel Amit
proposed the expression “attractor neural networks”. ANNs are dynamical com-
puters that bifurcate from attractors to attractors. They make explicit the general
neurodynamical models worked out by Thom-Zeeman.

The dynamics that can be obtained this way are in general of a great complex-
ity. For example, in the case (neurobiologically completely unrealistic) of symmet-
rical connections, John Hopfield remarked at the beginning of the 80s that for
S = {−1,+1} and g = sign function, the equations of the net are analogous to
the ones for systems of interacting spins which we meet in statistical physics. The
energy minimised by the dynamics is given by:

E =−1
2∑i�= j

wi jyiy j +∑
i

Tiyi .

In the measure in which the synaptic weights wi j are analogous to the coupling con-
stants and are, in an intricate way, at the same time > 0 et < 0, these systems –
which exemplify the simplest case of a formal neural net – correspond to the most
complex case of spin systems, the so called “spin glasses”. Their energy presents a
considerable number of local relative minima and, in order to find the global abso-
lute minimum, the classical methods of the “gradient descent” kind do not work. It
is necessary to use sophisticated algorithms coming from statistical physics such as
the so-called simulated annealing.

When the synaptic weights become asymmetrical, the energy function does not
exist any longer, and the dynamics can become of a greater complexity. One finds
different classical routes toward chaos and in particular the period doubling route
known as Coullet-Feigenbaum-Tresser subharmonic cascade.

Many results of this kind show how it is possible to give a rigorous status to
Thom’s thesis that mental contents are attractors of dynamical systems implemented
in neural nets and therefore that cognitive functions can be naturally conceived in
terms of statistical physics and neural dynamics. The example is particularly evident
for the fundamental cognitive processes of categorisation and learning. A sensory
input is modelled as an input of the net and the evoked percept is identified with the
attractor which captures the input. The categorisation of the inputs processed by the
percepts is interpreted as the partition of the configuration space of P in attraction
basins B(A) of attractors A – the categories – which work as prototypes. The scales
which psychologists call “gradients of typicality” are then interpreted as Liapounov
functions on the B(A)−A (i.e. functions of the “ energy” type that strictly decrease
on the trajectories when those asymptotically tend towards their limit attractors and
vanish on these attractors). We retrieve the morphodymamical models of the 70s,
e.g. for categorical perception in phonology, evoked in section 1.2.5.

The aspect of learning corresponds to an inverse problem. The associated direct
problem consists, given a matrix w of synaptic weights, of finding the attractors of
the dynamic Yw. On the contrary, the inverse problem is, some attractors Ai being
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given, to find a matrix w that generates them. Some algorithms have been devel-
oped for this purpose, in particular the one called backpropagation which consists
of computing, from an initial matrix w0, the gap between the attractors of Yw0 and
the desired attractors and to back-propagate the error by adjusting w0. Similar algo-
rithms define slow dynamics in the control spaces W of the synaptic weights.

In this way, neural nets become privileged models for cognitive processes under
the name of connectionist models. The fundamental problem of constituency in an
“attractor syntax” (see section 1.2.6) was raised again but in a more technical way
because now the internal dynamics of the models were explicit. It was also raised
in a more polemical way, because in 1988 Jerry Fodor and Zenon Pylyshyn [51] at-
tacked Paul Smolenky’s article [122] on the “Proper Treatment of Connectionism”
(PTC), explaining how connectionist models can’t in principle generate cognitive
models because their attractors lack an internal structure. The problem was partic-
ularly sharp as much as it concerns grammatical relations and semantic roles, con-
stituency and compositionality, but was partially solved by using the rich resources
of the theory of singularities and bifurcations, which were unused by standard con-
nectionist models of the PDP type (“parallel distributed processing” in the sense of
David Rumelhart and James McClelland) or PTC (Paul Smolensky). We refer to our
works [100] and Cognitive Morphodynamics [106] for details.

In 1991 and 1992 two Conferences on Compositionality in Cognition and Neural
Networks, organized by our colleagues Daniel Andler, Elie Bienenstock and Bernard
Laks [39], were held in France at the Royaumont Abbey. Then, Bernard Victorri and
Catherine Fuchs organized in 1992 a Conference on The Continuum in Linguistics.
We organized in 1995 with Umberto Eco and Patrizia Violi in San Marino an inter-
national Conference Topology and Dynamics in Cognition and Perception focusing
on Cognitive Grammars (in particular Len Talmy who was there). We edited also a
special issue of Sémiotiques “Dynamical Models and Cognitive Semiotics”. Inspired
by the Royaumont workshops, another Conference on Dynamic Representations in
Cognition was also organized by Robert Port and Tim van Gelder at Indiana Uni-
versity in 1992. They edited then at the MIT Press in 1995 a reference book Mind
as Motion on dynamical models in linguistics.

1.4 The Neurogeometrical Turn Since the 1990s

1.4.1 Neuromathematical Interdisciplinarity

At the end of the 80s, many instruments were available:

1. A perceptual geometry in a Thom-Koenderink fashion, which mobilised the tools
of Morse’s theory, jets, singularities, bifurcations, stratifications, and universal
unfoldings.

2. Deep connections with some algorithms of multi-scale image processing: local
algorithms as wavelet analysis (Mallat-Marr) and anisotropic diffusion, or global
algorithms as Mumford-Shah variational segmentation model.

3. Equally important deep connections with neural nets and statistical physics.
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In other terms, one could count on suitable elements for morphological geome-
try and suitable implementation principles for image processing. Many works have
been developed in these directions, in particular at the CREA (Ecole Polytechnique),
a research centre created in 1982 by Jean-Pierre Dupuy, which I joined in 1986.
From 1991, Bernard Teissier invited me for some lectures on these topics at the
department of mathematics of the ENS (Ecole Normale Supérieure), and I also ded-
icated to them some of my master classes. However, what lacked at that time was a
technical link with neurosciences founded on precise experimental data. To be sure,
since the 70s Zeeman had introduced, in a qualitative way, some neural dynam-
ics, (see section 1.2.6), to be sure Koenderink and Hoffman (see section 1.3.1) or
wavelet analysis (see section 1.3.4) constituted a link with data on receptive fields
and the organisation of visual areas in hypercolumns, but it lacked a real confluence
with neurosciences, a confluence which would allow to connect rich experimental
data to non trivial mathematical models.

In my case, this confluence occurred at the beginning of the 90s at two levels.
First through the great richness of a new interdisciplinary context, and then through
the first neuroimaging data on the functional architectures of the primary visual
areas.

The interdisciplinary context was the one of the Master created in 1990 by the
prominent specialist in vision Michel Imbert. This original Master which institu-
tionally grouped the EHESS, the ENS and the Pierre et Marie Curie University
(Paris VI) was a great success and allowed collaborations with specialists of neu-
rosciences, physiology and psychophysics as, apart from Michel Imbert himself,
Alain Berthoz, director of the LPPA (Laboratoire de Physiologie de la Percep-
tion et de l’Action) at the Collège de France, Yves Frégnac director of the UNIC
(Unité de Neurosciences Intégratives et Computationnelles) at the CNRS (Centre
National de la Recherche Scientifique), Jean Lorenceau (UNIC and LPPA), the col-
leagues of the LENA (Laboratoire de Neurosciences et d’Imagerie Cérébrale) of the
CNRS at the hospital “La Pitié-Salpétrière”. In this particularly favourable context,
many fruitful interdisciplinary exchanges quickly started. A working group organ-
ised many conferences at the “Fondation des Treilles” (founded by Anne Gruner-
Schlumberger). The 1993-1994 ones on Geometry and Vision grouped among others
Bernard Teissier, Jean-Michel Morel, David Mumford, Gérard Toulouse, Stéphane
Mallat, Yves Frégnac, Jean Lorenceau, Olivier Faugeras, Elie Bienenstock, and the
1998 one was dedicated to Methodology in Cognitive Science. There have been
many other meetings, in particular in 1995 a symposium on Mathematics and Brain
at the Institut Henri Poincaré in Paris. Jean-Michel Morel, David Mumford and
Bernard Teissier also organised in 1998 a special quarter on Mathematical Ques-
tions on Signal and Image processing at the Centre Emile Borel of the Institut
Henri Poincaré. Then an important symposium, The Mathematical, Computational
and Biological Study of Vision, was held in 2001 at the Oberwolfach Mathematis-
ches Forschungsinstitut by David Mumford, Christoph von der Malsburg and Jean-
Michel Morel.

During the 1990s, another privileged collaboration with neurosciences was estab-
lished with Francisco Varela, member of the CREA, where he developed his ideas
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on self-organised and autopoietic systems, and also member of the LENA, where he
worked on global neural dynamics which are highly complex non linear dynamics
defined on very high dimensional spaces, presenting many chaotic properties but
also simpler observable ones. To reconstruct such dynamics from the time series
yielded by the measure of suitable neural signals, one can use tools elaborated on
the basis of deep mathematical results by Whitney, Thom, Zeeman, Takens, Crutch-
field and others. Often, the dynamics result from the interaction of a large number
of oscillators of the FitzHugh-Nagumo type4. As was emphasised by Wolf Singer,
Heinz Schuster and Varela, it is the synchronisation of oscillators which is cogni-
tively functional. It is of course complementary of desynchronisation processes, and
it is that way the difficult mathematical theory of coupled oscillators (Yoshiki Ku-
ramoto, Hiroaki Daido, Bard Ermentrout, Nancy Kopell, etc.) becomes involved in
neurodynamics. What is particularly interesting in global neural dynamics is that
they couple many subdynamics related by control, feedback and hierarchical rela-
tions. These dynamical hierarchies are structured in synchronisation / desynchroni-
sation temporal flows, which explains the temporal segmentation of consciousness
along “syntactically” organized cognitive acts.

On both experimental and theoretical sides, one of the contributions of the new
imaging techniques has been to allow the identification of two fundamental math-
ematical concepts corresponding respectively to the two systems of connections
which constitute the functional architecture of V1: the concept of fibre bundle or
fibration for the “vertical” retino-geniculo-cortical connections, and the concept of
contact structure for the “horizontal” cortico-cortical connections (also called “lat-
eral” sconnections).

1.4.2 Efficient Coding, Receptive Profiles and Natural Images

Let us briefly return on the peculiar form of the receptive profiles of visual neurons
(from the ganglion cells of the retina to the cortical cells) modelled as derivatives
of Gaussians or Gabor patches. Many specialists, for example Joseph Atick and
Jean-Pierre Nadal, have shown how these profiles can be retrieved from general hy-
potheses of information theory. They correspond to an “informational strategy” and
to “design principles” which optimise the efficiency of the representation of infor-
mation. As Atick said ( [8], p. 213), “efficiency of information representation in the
nervous system potentially has evolutionary advantages”. The efficient neural codes
of visual information allow to describe the environment in a compact way using
an effective “visual vocabulary” of geometrical features. Now, natural image statis-
tics is particular because strong correlations exist between the pixels and because
of the existence of edges. The different possible statistics of the inputs influence
the distribution of the spikes. Yves Frégnac’s team, for example, studied four statis-
tics: moving gratings, dense noise, natural images with eye motion, and gratings
with eye motion too. They found that the variability of spikes decreases with the

4 FitzHugh-Nagumo equations are a simplified version of the Hodgkin-Huxley equations for
spikes.
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complexity of the classes of stimuli and that the temporal precision of their emis-
sion time increases. It is a remarkable result.

The “pixelised” representation at the level of photo-receptors does not reflect
these statistics and is therefore fundamentally inefficient. Consequently, it had to be
improved. From the years 1950-1960 Fred Attneave and Horace Barlow proposed
that, in order to be efficient, the neural coding must eliminate as much as it is possi-
ble the enormous redundancy of the inputs, in other terms it has to compress them.
For this reason, the statistical laws of natural images play a fundamental role in the
evolutionist explanation of the design of neuronal hardware. It imposes to the neu-
ral information processing “ecological” constraints (in James Gibson’s sense of the
term “ecological”) and some “priors” (in the Bayesian sense). As far as the relations
between neurons are concerned, the maximisation of the code-efficiency is based
upon the possibility of rendering the responses of the different neurons statistically
independent as much as possible. The problem is difficult.

The leading idea for solving it is to optimise the information and to decorre-
late the signal by eliminating increasingly higher correlations. The simplest way
is to suppose that it exists a linear filtering (a convolution by a receptive profile)
which performs a compression of the signal I(a) by decorrelating first of all its
spatial self-correlation C(a1,a2) = 〈I(a1)I(a2)〉 (where 〈 〉 represents the average).
Due to homogeneity and isotropy, the self-correlation depends only on the distance
r = |a1− a2|, and C(a1,a2) has the form C(r). The Fourier transform ̂C(ω) of C(r)
is called the power spectrum of the signal: ̂C(ω) =

∫

C(r)e−iωrdr. Now, the natu-
ral image statistics shows that they have a spectrum in ̂C(ω) = 1

|ω|2 (Field’s law)

and this corresponds to the fact that the spatial self-correlation is scale-invariant
(i.e. C (αr) = αC (r)). Indeed, the inverse Fourier transform is C(r) =

∫ eiωr

|ω|2 dω and

therefore, using the change of variable ω = λ
α we get

C(αr) =
∫

eiωαr

|ω |2 dω =
∫ α2eiλ r

|λ |2
dλ
α

= αC (r) .

Let ϕ(a) be the receptive profile of the considered linear filters, and let (I ∗ϕ)(a)
be the result of the filtering of the signal I. The decorrelation means that the aver-
age of the product 〈(I ∗ϕ)(a).(I ∗ϕ)(a′)〉 is δ (a− a′) (where δ (x) is the Dirac
distribution). If we consider only Field’s law, then the power spectrum of I ∗ϕ is
flat and the decorrelation is expressed by the “whitening” of the signal. But even if
this method is suitable to the spectra in 1

|ω|2 , it is indeed very bad for the noise be-

cause it amplifies it in the range of high frequencies where it already dominates. It is
necessary therefore to associate the decorrelation to a smoothing of the signal sup-
pressing the noise. That’s the way in which Atick shows that if we want to correctly
decorrelate the signal also when noise is present, we must use receptive profiles in
Laplacian of Gaussian ΔG of the type of ganglion cells.
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Jean-Pierre Nadal and his colleagues [133] deeply analysed the problem by con-
sidering not only Field’s law, but also, in an explicit way, the importance of multi-
scale edges in natural image statistics. They showed how the minimisation of neural
code redundancy under the constraint of edge detection leads to oriented wavelets.

In a more general way, we can consider large data bases of natural images and try
to analyse them in independent components (ICA) which are neurally implemented.
We look for components (the receptive profiles of the neurons) which are at the
same time statistically independent and “sparse”, where “sparsity” means that, for
a given image, the greatest part of the components present a very weak response,
only a few of them presenting a meaningful response. Sparse representations have
many advantages: they offer a compromise between, on the one hand, representa-
tions in which almost all the neurons of the net are implied in the elaboration of
every stimulus, and, on the other hand, representations in which, for every stimu-
lus, there would be just a neuron which would selectively respond (the so-called
“grandmother” cells); they are composed of basic patterns (the receptive profiles
considered as “atoms”) which are adapted to the considered set of stimuli (in our
case, natural images); they magnify the power of neural nets as associative mem-
ories by eliminating the interferences between the activity patterns elicited by the
different inputs; they make explicit the structure of the stimuli because their com-
ponents are relevant features; they allow the net to economise its energy; they can
easily be learned through Hebb’s learning rules.

The problem to find the optimal sparse representations for a class of stimuli is
difficult. It can be formulated in the following way. Let Σ ⊂R

P be a class of stimuli
Ik, k = 1, . . . ,S = #(Σ), which are images I with P = p2 pixels described as vectors
I = (Ir)r=1,...,P in the canonic basis of RP. We want to find a “good dictionary”Φ of
atoms ϕi ∈ R

P, i = 1, . . . ,N, which allows us to “well” decompose the I ∈ Σ under
the form

I =
i=N

∑
i=1

siϕi .

The representation of I ∈ Σ ⊂ R
P by s = (si)i=1,...,N is the code of I with respect to

the “dictionary” Φ which is a matrix P×N the columns of which are the ϕi ∈ R
P.

In the present case, the one of the retina and of V1, we have N � P, i.e. what it
is called an “overcompleteness”. This means that the ϕi generate RP without being
linearly independent and are on the contrary highly redundant. That’s for the same
reason that the codes s can be sparse.

The space Σ is not a vector sub-space of RP because a linear superposition of
natural images it is not a natural image. It has a complex form and the atoms ϕi

are a way to locally analyse it at numerous points by means of a kind of tangent
structure.

In order to find optimal sparse codes, the basic idea is to minimise an energy of
the form

E (I,s) =
1
2
‖I−Φs‖2 +λ

i=N

∑
i=1
|si|
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where the first term is the square of the euclidean distance between the stimulus I
and its codeΦs and the second term is the L1 norm of the code. The minimisation of
the first term guarantees that the representationΦs is a good approximation of I and
the minimisation of the second one guarantees that the code is sparse. To precise
this guiding idea leads to a lot of difficult problems. We can refer, for example, to
the articles of Bruno Olshausen, David Field, Karol Gregor, Yann Le Cun, Eeno
Simoncelli [95], [61], [121]. They show how the base functions which one obtains
by similar methods are very close to the receptive profiles of the simple cells of
V1 with their selectivity to orientation, their odd symmetry (ϕ (−a) = ϕ (a)) or
even symmetry (ϕ (−a) =−ϕ (a)), their feature ON or OFF, and their selectivity to
spatial frequency (the scale). One observes also detectors of end points.

1.4.3 Orientation Hypercolumns, “Internal” Variables, and Fibre
Bundles

Let us return to the functional architecture of the striate area V1. After pioneering
experiments carried out in the late 50s by Vernon Mountcastle on the somatosen-
sory cortex of the cat, the structure of V1 (cortical area 17 of the cat) in orientation
hypercolumns has been a major discovery of David Hubel and Torsten Wiesel in the
early 60s. It won them the Nobel prize in 1981. In the V1 area the “simple” neurons
(as opposed to “complex” and “hypercomplex” cells) are sensitive to orientation
(and also to phase, resolution, spatial frequency, ocular dominance and colour). If
we simplify the situation, we can say that these neurons detect pairs (a, p) of a
retinal position a = (x,y) ∈M (M is the retinal plane or the visual field, M � R

2)
and an orientation p at a. Along a penetration orthogonal to the cortical surface,
the retinal position a and the prefered orientation p detected by the neurons remain
approximately constant. This “vertical” redundancy – which implements a popula-
tion coding of the position – defines orientation columns of about 20μm. As Gre-
gory DeAngelis demonstrated, the phase variation dominates inside the columns.
Moreover, population coding allows to the system a better resolution than the one
of individual neurons. But, along a penetration parallel to the cortical surface, the
prefered orientation p varies from 0◦ to 180◦ in steps of about 10◦. This “horizon-
tal” grouping of columns defines an orientation hypercolumn which is a neuronal
micro-module from 200μm to 1mm wide.

This neuroanatomic structure means that, for every position a ∈M, there exists a
functional micro-module Pa which implements the space P of every possible orien-
tation. Moreover, what neurophysiologists call the retinotopy of the retino-geniculo-
cortical pathway means that the Pa vary in a regular way with a. We recognise in this
structure the fibre bundle π : V= M×P→M which projects the Cartesian product
M×P onto its first factor M, through the identification of the hypercolumn Pa with
the fibre {a}×P. P can be, according to the case, modelled by the projective line
P

1 (the circle of angles θ modulo π), the circle S
1 (the one of θ modulo 2π) or the

real line R (if we take the slope tan(θ )).
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Fig. 1.4 The pinwheels of V 1. The isochromatic lines are the iso-orientation lines of V 1.
(From [138]).

By the way, this natural geometrical interpretation of the hypercolumns in terms
of fibre bundles corresponds to a description given by Hubel himself in 1988 [67]
with the concept of “engrafted variables”: the base-variables are the variables (x,y)
of retinal position and the cortex “engrafts” above them other secondary variables
such as the orientation. The “engrafted” variables, i.e. the ones which correspond to
the fibres of the fibre bundles, are similar to what physicists call “internal” variables
in field theory.

1.4.4 Pinwheels and in Vivo Optical Imaging

The structuration of V1 in orientation hypercolumns has been well understood only
after the introduction of revolutionary brain imaging techniques by Amiram Grin-
vald and Tobias Bonhöffer in the early 90s. This “in vivo optical imaging based on
activity-dependent intrinsic signals” used the fact that the metabolic activity of corti-
cal layers change their optical properties (differential absorption of oxyhemoglobin
or deoxyhemoglobine whose fluorescence is an index of the local depolarisation of
neurons). They enable to acquire images of the activity of the superficial cortical
layers. Key experiments show how hypercolumns are geometrically organised in
“orientation wheels” called pinwheels: the observed cortical layer is reticulated by
a lattice of singular points (distant about 1200μm in cats and about 600μm in pri-
mates) which are the centres of local pinwheels glued together in a global structure.
This pinwheel organisation can be found in numerous species, cat, primate, tupaya
(tree shrew, see [25]), prosimian Bush Baby (see [139]), etc. Figure 1.4 from [138]
represents V1. Orientations p at different positions a are coded by colours and the
isochromatic lines are therefore iso-orientation lines.
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We notice immediately that there exists a sort of characteristic length Λ of the
lattice. It is possible to measure this approximate periodicity by taking the orien-
tation map, by translating it and calculating the correlation between the two maps.
The first peak of self-correlation gives Λ . We notice then how the orientations (the
colours) are globally distributed in a homogeneous way. We notice also three classes
of points. (i) Regular points where the orientation field is locally trivial (the iso-
orientation lines are approximatively parallel). (ii) Singular points at the centre of
the pinwheels where all orientations converge: they have a positive or negative “chi-
rality” depending on whether, when turning around them, orientations turn in the
same direction or in the reverse one; they present opposed chiralities when they are
adjacent. (iii) Saddle points at the centre of the domains defined by the lattice, that
is points where the iso-orientation lines bifurcate: two iso-orientation lines can start
from the same singular point and end to two opposed singular points.

We shall not confuse the iso-chromatic lines which are iso-orientation lines with
the integral curves of the orientation field itself. We owe figure 1.5 to Shmuel and
Grinvald. White segments represent the preferred orientations coded by colours. We
added the field lines of the orientation field near two singularities whose chiralities
are opposed. We can see how pinwheels respectively clockwise and counterclock-
wise are associated to the two kind of generic singularities of direction fields in the
plane. This is due to the fact that when a ray of a pinwheel rotates of an angle θ , the
associated orientation rotates of θ/2. So, two diametrally opposed rays correspond
to orthogonal orientations. If the orientation ψθ associated to the ray of angle θ is
ψθ = α + θ/2, the two directions will be the same for ψθ = α+ θ/2 = θ , i.e. for
θ = 2α . Since α is defined modulo π , there’s only one solution, and we get an end
point. On the contrary, if the orientation is ψθ = α−θ/2, the two directions will be
the same for ψθ = α −θ/2 = θ , i.e. for θ = 2α/3. There are then three solutions,
and we get a triple point.

It is really important to notice how the pinwheel structure is a material structure
of dimension 2 which implements an abstract structure of dimension 3 (3 degrees
of freedom x,y, p). If we compare it to the fibration model π : V= M×P→M, we
see that the dimensional collapse consists in selecting a finite number of positions
c1, . . . ,cN as singular points, taking the fibres Pci and projecting them onto M as
small circles surrounding the ci. The fibration π will then appear as a limit of such
a structure for an infinite number of pinwheels. We will return later (section 1.4.6)
to this point.

1.4.5 The Pinwheels as Phase Singularities or Dislocations

We see how two a priori different ways of considering pinwheels appear: either as
singularities of an orientation field or as a discretisation of a fibration π . The relation
between the two is rather subtle.
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Fig. 1.5 The orientation map and the pinwheels of V 1 in a tupaya (tree shrew). We observe
the relation between the pinwheels (colours) and the preferred orientations (white segments).
We represented the field lines (the integral curves) of the orientation field near two singulari-
ties whose chiralities are opposed. (Partially from Shmuel [119]).

1.4.5.1 From the Wolf-Geisel Model to Berry’s Dislocations

Being a phase field, an orientation field can be described by a section eiϕ(a) (ϕ
modulo π) of the fibre bundle M×P1→M. To simplify let’s take M =R

2. Fred Wolf
and Theo Geisel proposed to interpret the selectivity to the preferred orientation (in
other terms the width of the tuning curve) as a field amplitude (see [141], [142]
and the synthesis [74]). Under this hypothesis, the orientation field is modelled by
a complex scalar field Z : R2→ C, a = ρeiθ �→ r (a)eiϕ(a). The singularities of the
pinwheels, which are points where the phase ϕ (a) is not defined, become then the
zeroes of Z and, as such, they are similar to dislocations of phase fields commonly
encountered in optical structures (and also in liquid crystals). They are in some
sense the dual singularities of caustics because the intensity vanishes instead of
diverging. Of course, the function ϕ (a) can also present (if it is differentiable),
some singularities in the classical sense, i.e. some critical points where the gradient
∇ϕ = 0. These are generically of three kinds: extrema (maxima or minima) and
saddles. From an empirical point of view, extrema (where, locally, the isochromatic
curves will be concentric circles) seem to be absent while saddles are numerous and
occupy the “centres” of the domains defined by the pinwheels. But, dislocations are
singularities of a different nature.

According to the general “philosophy” enlightened by René Thom (cf. section
1.2.1), in every situation in which we have to analyse fields, singularities play a
structural role which determines and concentrates what is essential in morpholog-
ical information. As it is remarked by Michael Berry in [16] (p.724) for 3 dimen-
sional waves, this philosophy can be applied to phase singularities: “Wave vortex
lines can be regarded as a skeleton, characterizing and supporting the full structure



1.4 The Neurogeometrical Turn Since the 1990s 29

of the wave ψ .” A series of concepts from singularity theory (genericity, codimen-
sion, bifurcation, unfolding, normal form, etc.) seem therefore relevant for studying
pinwheels from a geometrical point of view.

In Cartesian coordinates, the Z (a) field is written Z (a) = X (a)+ iY (a), where
X and Y are two real functions of the variables (x,y). Since R2 �C, it is sometimes
convenient to consider the conjugated variables z = x+ iy and z̄ = x− iy and to ex-
press Z as a map Z : C→C which depends on z and z̄. We can analyse the geometry
of Z by using classical tools as gradient ∇, divergence, vorticity, Laplacian Δ , etc.
Near a point a0 ∈ R

2 taken as origin a0 = (0,0), we have up to the first order

Z (x,y)� X (0)+ x
∂X
∂x

(0)+ y
∂X
∂y

(0)+ i

(

Y (0)+ x
∂Y
∂x

(0)+ y
∂Y
∂y

(0)

)

i.e. Z (a) � Z (0)+ a.∇0X + ia.∇0Y where ∇0X is the value at 0 of the gradient of

X , ∇X =
(

∂X
∂x ,

∂X
∂y

)

(idem for Y ), and u.v is the scalar product. Thus,

|Z (a)−Z (0)|2 = R2 = (a.∇0X)2 +(a.∇0Y )2

and the level curves R = cst are ellipses. They are circles only if Z (a) can be writ-
ten as a function Z (z) only of z, in other terms if on the one hand x ∂X

∂x + iy ∂Y
∂y is

proportional to z, which implies ∂X
∂x = ∂Y

∂y , and on the other hand if y ∂X
∂y + ix ∂Y

∂x is

proportional to iz, which implies ∂X
∂y =− ∂Y

∂x . These fundamental conditions, called
Cauchy-Riemann conditions, express that the gradients ∇X and ∇Y are orthogonal
and characterise the property of holomorphy of Z.

Since Z = X + iY = reiϕ , the dislocations Z = 0 are the intersections of the curves
of equation X = 0 and Y = 0. The condition X = 0 corresponds to r cos(ϕ) = 0, i.e.
ϕ = π

2 modπ if r �= 0 and Y = 0 corresponds to r sin (ϕ) = 0, i.e. ϕ = 0 modπ if
r �= 0. If X = Y = 0, we necessarily have r = 0 because the two conditions on ϕ
are incompatible. Generically, the curves X = 0 and Y = 0 intersect transversely at
isolated points. This means that the points which satisfy the two conditions are of
codimension 2 and, as the ambient space R

2 is of dimension 2, they are isolated
points (in an ambient space of dimension 3, they would be lines).

As we saw in the previous section 1.4.4, it is necessary to distinguish two fields.
The field Z is the field of orientations. As such, it defines a foliation of the plane
R

2 through its integral curves. In 1.4.4 we saw, with the models of end points and
triple points, the local geometry of these foliations at the singular points. Besides,
we have the field of iso-orientation or isophase lines, called “wavefronts” by anal-
ogy with optics, represented by the isochromatic lines in the pinwheel maps. Let’s
write it W (a) = s(a)eiχ(a) and suppose that we could assign a meaning to the am-
plitude s(a). Unlike the phase ϕ which is only defined modulo π , the angle χ is
defined modulo 2π (if the pinwheels are without distortion, χ can be identified with
θ ). Now, we saw how in these cases we locally have the relation ϕ = α ± θ

2 , i.e.

up to a factor, eiχ = e±2iϕ =
(

e±iϕ)2
. This lets us think that there is a relation of
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proportionality of the type W ∝ Z2 between the two fields. We will return to this
point later.

Let a0 be a dislocation of Z taken as the origin a0 = (0,0). The topological
charge of this singularity is defined by q = 1

2π
∮

γ dϕ where
∮

γ dϕ symbolises the
integral of the differential 1-form dϕ , i.e. the variation of ϕ , along a little loop γ
rotating around a0 in the forward direction. Since a0 is an isolated singularity, there
exists a γ which surrounds only this singularity, and we can show how the integral
is independent from the choice of such a γ . Through the Euclidean structure of R2,
the differential 1-form dϕ corresponds to the gradient vector∇ϕ and, if we interpret
differentials as infinitesimal variations, we have dϕ = ∇ϕ .da (scalar product) and
∮

γ dϕ =
∮

γ ∇ϕ .da turns to be what it is classically called the “circulation” of the

gradient field∇ϕ along the loop γ . Then, the topological charge q= 1
2π
∮

γ ∇ϕ .da can
be interpreted as the topological index of the field ∇ϕ . For the field W of isophase
lines Z, the angle χ varies as ±θ and the index is ±1. For the Z field itself, ϕ varies
as ± θ2 and the index is ± 1

2 .
Near a pinwheel, the isophase lines ϕ = cst (the wave-fronts) are the rays of the

pinwheel. Along these fronts dϕ = 0, and therefore ∇ϕ .da = 0. This means that
the field ∇ϕ is orthogonal to the rays and that its trajectories are therefore locally
concentric circles centred on the singular point. In general, the trajectories of∇ϕ are
orthogonal to the fronts. At a dislocation point the gradient ∇ϕ is not defined and
diverges. In order to regularise this kind of situation, Berry and Dennis [13], [47]
consider, as physicists usually do, what is called the current J of the field, i.e. the
vector (which points in the direction of the gradient ∇ϕ when it is �= 0) defined
by J = r2∇ϕ . We notice how J = X∇Y −Y∇X and therefore how J is well
defined also at the singular points of the phase ϕ . In terms of complex conjugated
values Z and Z the current J is written J = Im

(

Z∇Z
)

because

Z∇Z = (X− iY )(∇X + i∇Y ) = X∇X +Y∇Y + i(X∇Y −Y∇X) .

Another vector (in fact a pseudovector) considered by physicists is the vorticityΩ
of the current J . By definition,Ω = 1

2∇×J =∇X×∇Y , where× represents the
exterior product of two vectors of R2 and consists in taking on an axis orthogonal
to R

2 a unitary vector e3 so that the frame
{

ex,ey,e3
}

is direct and to put on it

the value ω = det

(

∂X
∂x

∂X
∂y

∂Y
∂x

∂Y
∂y

)

of the determinant of the Jacobian of Z considered

as a map from R
2 into R

2. The good interpretation of Ω = ωe3 is to make of it a
differential 2-form. We will remark that when Ω = 0, either ∇X = 0 or ∇Y = 0, or
the real gradients∇X and∇Y share the same orientation. This condition, which tells
that ∇X and ∇Y are parallel, is opposed to the Cauchy-Riemann conditions, which
tell that ∇X and ∇Y are orthogonal. We will notice also how, in terms of complex
conjugate values Z and Z, the vorticity Ω can be written Ω = 1

2 Im
(

∇Z×∇Z
)

.
As we have seen before, to first order in the neighbourhood of a point a0 taken

as origin 0, the module |Z| of Z is given by |Z (a)−Z (0)|2 = R2 = (a.∇0X)2 +

(a.∇0Y )2. Near a dislocation taken as the origin, the current J is given up to
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the first order by J (x,y) � Ω0× a = ω0 (−y,x). This enables to evaluate |J | =
r2 |∇ϕ | � |ω |ρ near the dislocations where ω �= 0. But locally ϕ is constant on the
rays of such a singular point, so ∇ϕ is orthogonal to the rays and, since in polar
coordinates∇ϕ = ∂ϕ

∂ρ eρ+ 1
ρ
∂ϕ
∂θ eθ (where eρ is the unitary vector of the ray at a and

eθ is the unitary vector orthogonal to eρ ), we have ∇ϕ � 1
ρ
∂ϕ
∂θ eθ . Whence the for-

mula r2
∣

∣

∣

∂ϕ
∂θ

∣

∣

∣ = ρ2 |ω | which tells that, while r is (locally) constant on the ellipses

r2 = (a.∇X)2 +(a.∇Y )2, r2
∣

∣

∣

∂ϕ
∂θ

∣

∣

∣ is on its turn constant on the circles ρ = cst. As

it has been noticed by Mark Richard Dennis in his thesis supervised by Michael

Berry [47] (p.41), it is a sort of “Kepler law” for r2
∣

∣

∣

∂ϕ
∂θ

∣

∣

∣ which works as an “angular

momentum”: “equal area vectors of the core anisotropy ellipse [r2 = cst] are swept
out in equal intervals of phase”. We notice how the eccentricity of the ellipses mea-
sures the anisotropy of the vorticity. As we saw, isotropy is absent (the ellipses are
not circles) unless the Cauchy-Riemann conditions are satisfied.

1.4.5.2 The Helmholtz Equation

When presenting some experimental data on the pinwheels, we saw how they are not
intrinsic singularities and appear only when we superimpose the different cortical
maps of responses to different orientations. We saw also that there exists a charac-
teristic mesh of the pinwheel lattice. These two empirical facts suggest to consider
the Z field as a superposition of simpler fields. Now, every field can be considered
through its Fourier transform as a superposition of plane waves Aeiκ .a, where A is a
complex amplitude Eeiφ and κ = (κx,κy) is a wave vector of wave number k = |κ |.
k is analogous to an impulsion and is associated to the wavelength Λ = 2π

k . When
they evolve during time, plane waves are of the form Aei(κ .a−ωt), where ω is an
angular frequency (or pulsation) associated to the frequency ν = ω

2π and the period
T = 1

ν = 2π
ω .

It is easy to verify how the plane waves U = Aeiκ .a satisfy Helmholtz’s equation
ΔU + k2U = 0. And since this PDE is linear, every linear superposition of solutions
with different κ but same wave number k is a solution too. That’s why it is natural
to suppose that the field Z satisfies Helmholtz’s equation for a certain characteristic
wavenumber k: ΔZ + k2Z = 0. Figure 1.6, from a work of Michael Berry [13] on
optical currents, shows a superposition of 10 plane waves sharing the same k. We
see at what point this phase field is similar to our orientation fields with pinwheels,
iso-orientation lines, orthogonal gradient lines and saddle points.

Let’s consider now under this hypothesis the divergence of the current J which
is given by

div(J ) = r2Δϕ+ 2r∇r.∇ϕ

where ∇r.∇ϕ is the scalar product and where the Laplacian operator Δϕ is by defi-
nition the divergence of the gradient. The Laplacian ΔZ of Z = reiϕ is given by the
formula
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ΔZ =
∂ 2Z
∂ρ2 +

1
ρ
∂Z
∂ρ

+
1
ρ2

∂ 2Z
∂θ 2

= eiϕ
(

Δr− r |∇ϕ |2 + i(rΔϕ+ 2∇r.∇ϕ)
)

and therefore if ΔZ + k2Z = 0 we necessarily have the two equations
{

Δr+ r
(

k2−|∇ϕ |2
)

= 0

rΔϕ+ 2∇r.∇ϕ = 0

The second equation expresses that the current divergence vanishes: div(J ) = 0. It

is a law of conservation. It implies that J can be written as e3×∇S =
(

− ∂S
∂y ,

∂S
∂x

)

with

ω =
1
2

(

∂Jy

∂x
− ∂Jx

∂y

)

=
1
2

(

∂
∂x

(

∂S
∂x

)

+
∂
∂y

(

∂S
∂y

))

=
1
2
ΔS .

As much as the first equation is concerned, we met it in optics for caustics in section
1.2.4 under a variant where k is integrated to the phase, i.e. where Z = reikϕ . In

this case, it is written Δr = k2r
(

|∇ϕ |2− 1
)

. When k→ ∞, which corresponds to

the approximation of geometrical optics, it becomes the eikonal equation |∇ϕ |2 = 1

Fig. 1.6 Superposition of 10 plane waves with the same wave number k. The wave vectors κ
are given in the upper-left square. (From Berry [13]).
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of section 1.2.4, which expresses that the “light rays” (i.e. the trajectories of the
gradient field ∇ϕ) turn at a constant speed around the singularity, while the wave-
fronts ϕ = cst are the rays coming from the singularity (we must be careful here
with the lexical confusion between the two meanings of the term “ray”: the rays
of the dislocation singularity are orthogonal to the trajectories analogous to “light
rays”).

1.4.5.3 Mesogeometry and Microphysics

The optical analogy suggested by the processing of orientation maps as phase fields
and of pinwheels as dislocations of those fields is useful also to better understand-
ing the relations between levels. In optics, there are three levels: a geometric level,
a wave level, and a quantum level. In the analogy, the geometric level corresponds
to the mesogeometric level of contact, symplectic, and sub-Riemannian structures
which we will develop later in this survey. The wave level corresponds to the analy-
sis of pinwheels as singularities of phase fields that we just performed. However, as
Michael Berry noticed [13], wave optics is an average of microphysical interactions
at the quantum level. In particular, the optical current is an “energy flow” whose
trajectories are level lines of S, in a way a “momentum density” which yields the
classic force on a little particle placed at a. As much as the phase gradient ∇ϕ , it
gives the momentum induced on the particle by the impacts of individual photons.
And, as the probability of these impacts is r2, the average momentum is J = r2∇ϕ .

In this context, it could be relevant to make the hypothesis that there exists a
micro-physics of elementary events, in relation to which the geometry of orientation
maps is a sort of morphological skeleton. Spikes could then play the role of “little
particles”.

1.4.5.4 Statistics of Pinwheels and Gaussian Fields

Pinwheel maps as phase fields can present great diversity. It is therefore interest-
ing to study them from a statistical point of view starting from certain simplifying
hypotheses. It is the purpose of converging studies by Wolf and Geisel (cf. [141]
and [142]), Berry and Dennis [14], [15], [47], Daniel Bennequin’s workgroup, and
also of recent works by Citti, Sarti and their PhD student Davide Barbieri [10].

In his thesis [47], Mark Dennis gives precise results for the superposition of
plane waves Z = ∑κ Aκeiκ .a with complex amplitude Aκ = Eκeiφκ , in particular
in the isotropic case where the Eκ have a distribution which depends only on the
wave number k = |κ | of the wave vectors and where the spatial phases φκ are
random angular variables uniformly distributed on [0,π). If the sampling of the
κ in Z is sufficiently fine grained, it is possible to consider that the statistics of
the components X and Y of Z and of their partial derivatives are Gaussian distri-
butions, which makes the computations quite accessible. In particular, one defines
the energy spectrum E (κ) by 1

2 ∑κ E2
κ =

∫

E (κ)2 dκ and the radial spatial spec-

trum R (k) by 1
2 ∑κ E2

κ =
∫ R(k)2

2πk dκ . An ulterior simplification consists in consid-
ering the monochromatic waves sharing the same k, κ varying then on the circle of
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radius k. In this case, R (u) becomes the Dirac distribution δ (u− k). This hypothe-
sis corresponds to the fact that Z is a solution to the Helmholtz equation.

It is then possible to compute the average density d of phase dislocations. As
these are defined by the conditions X = 0, Y = 0, it will be given by the average of
δ (X)δ (Y ) with respect to the measure dXdY . With respect to the measure dxdy we
must involve the Jacobian of Z (x,y) = X (x,y)+ iY (x,y), i.e.

|ω |= |∇X ∧∇X |=
∣

∣

∣

∣

∂X
∂x

∂Y
∂y
− ∂X
∂y

∂Y
∂x

∣

∣

∣

∣

.

So we have to calculate the average
〈

δ (X)δ (Y )
∣

∣

∣

∂X
∂x

∂Y
∂y − ∂X

∂y
∂Y
∂x

∣

∣

∣

〉

. As X , Y and

their partial derivatives are independent random Gaussian variables, we know how
to compute them and we find:

d =
K
4π

with K =

∫ ∞

0
k2R (k)dk =

〈

k2〉

R
for the measure R (k)dk .

But the wave number k is proportional to the inverse of a wavelength Λ = 2π
k so

Λ2 = 4π2

k2 and k2

4π = π
Λ2 . Therefore, the density d of singularities is the average

〈

π
Λ2

〉

R
. This term in π/Λ2 has been found by Fred Wolf and Theo Geisel too.

Generally speaking, we can consider that the orientation maps are random sec-
tions of the fibre bundle R2×P

1→R
2 which satisfy a set of constraints that explain

their pinwheel geometrical structure. At every point a in R
2, we therefore consider

a random variable Za and this defines a random field Z whose orientation maps
Z (a) are samples.

In order to simplify, one supposes in general that the field Z is Gaussian, i.e.
that the Za are Gaussians of average ma = E{Za} (E= expectation) and variance

σ2
a =E

{

(Za−ma)
2
}

and that all the joint distributions∑iαiZai on a finite number

of points ai are Gaussian too. Moreover, it is natural to suppose that the law of the
Za is SE (2)-invariant. Translational invariance is called stationarity and rotational
invariance is called isotropy. For an introduction to Gaussian random fields, see for
example [1].

Random variables Za for different a can’t be decorrelated (i.e. indepen-
dent since for Gaussian random variables independence and decorrelation are
equivalent) because otherwise there would only be Gaussian noise and no ge-
ometrical structures. By the way, the definition of a continuum of independent
Gaussian random variables raises sensible problems. The field Z is characterized
by the correlation function C (a,b) = E{(Za−ma)(Zb−mb)}. If we divide by

variances, we obtain the normalized correlation function Γ (a,b) = C(a,b)
σaσb

. Station-
arity implies that C (a,b) =C (a− b) is a function of a−b, and isotropy implies that
C (a,b) =C (a− b) =C (‖a− b‖) =C (r) is a function of r = ‖a− b‖. Averages are

all equal, ma = m, variances too, σ2
a = σ2 =C (0), and Γ (r) = C(r)

C(0) .
Correlation functions are very particular because they are symmetrical and posi-

tive definite.
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(i) In the stationarity case, a theorem by Bochner says that they have a spectral
representation which is a generalised Fourier transform. This means that we have
Γ (a) =

∫

R2 ei〈a,κ〉dF (κ) where F is a bounded positive measure on the space of
wave vectors κ dual of positions a. We have F

(

R
2
)

= Γ (0) = 1.
(ii) If the measure F is regular with respect to the Lebesgue measure dκ ,

then it has a spectral density f (κ) and Bochner’s theorem is reduced to the
Fourier transform Γ (a) =

∫

R2 ei〈a,κ〉 f (κ)dκ with the inverse transform f (κ) =
1

(2π)2
∫

R2 e−i〈a,κ〉Γ (a)da.

(iii) If isotropy is present too, then Γ (r) =
∫ ∞

0 J0 (kr)k f (k)dk, where J0 is
Bessel’s function.

(iv) If we consider also some solutions of Helmholtz’s equations of wave number
k0, then f (k) is proportional to δ (k− k0) and Γ (r) is proportional to J0 (kr)k0.

In this context, the formula which gives us the statistics of the dislocations of
the fields Z (a) which realize the Gaussian random field Z is a particular case of
a fundamental formula called Rice-Kac formula (see [9]). We want to calculate the
average number d = E{#{a ∈ T : Z (a) = 0}} (# means the cardinal of a set) of
zeroes of Z in a unit square T . Let NT be this number. Then we have d = E{NT}.
Rice’s formula says that

d =

∫

T
E{|det(Jac(Za))| : Za = 0} pZa (0)da

where Jac is the Jacobian and pZa the density of Za. The computations effectuated
by Mark Dennis [47] rest on a calculus of Gaussian integrals. Let Xa and Ya be the
components of Za and Ja = |det(Jac(Za))|. One can show how, for a given a, the

six random variables Xa, Ya,
(

∂X
∂x

)

a
,
(

∂X
∂y

)

a
,
(

∂Y
∂x

)

a
,
(

∂Y
∂y

)

a
are independent

Gaussian variables, each of them with a law of the form 1√
2πσ e

− ξ2

2σ2 . As we saw, we
must compute an integral of the form

∫

δ (X)δ (Y )Jpd (X)d (Y )d

(

∂X
∂x

)

d

(

∂X
∂y

)

d

(

∂Y
∂x

)(

∂Y
∂y

)

where p is the product of the laws. The two first variables Xa and Ya are of variance

1, and this introduces a factor
(

1√
2π

)2
= 1

2π in the integral and the four other vari-

ables are of variance σ2 = K
2 , and this introduces a factor

(

1√
2πσ

)4
=
(

1
2πσ2

)2
=

1
(πK)2 . The condition Za = 0 is translated by the δ (X)δ (Y ) in the integral, but
∫

δ (X)e−
X2
2 = 1 and the same about Y . It remains therefore to calculate

1
2π

1

(πK)2

∫

Je−
‖∇X‖2+‖∇X‖2

K d

(

∂X
∂x

)

d

(

∂X
∂y

)

d

(

∂Y
∂x

)(

∂Y
∂y

)

.

If we shift to polar coordinates, writing∇X = RX eiψX and∇Y = RY eiψY , the integral
becomes
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1
2π

1

(πK)2

∫ RX=∞

RX=0

∫ RY =∞

RY =0

∫ ψX=2π

ψX=0

∫ ψY =2π

ψY =0
(RX )

2 (RY )
2 |sin (ψY −ψX )|e−

R2
X +R2

Y
K dRX dRY dψX dψY .

But the integral on the sine function results 8π and the ones on RX and RY give each
one 1

4 K
3
2
√
π . From these we finally have:

d =
1

2π
1

(πK)2 8π
1

16
K3π =

K
4π

.

These statistical computations, which are only a particular simple example of the
links between statistics and geometry, are really interesting on a theoretical (and
not only numerical) plane for the following reason. In their 2005 reference book
Random Fields and Geometry [2], Robert Adler and Jonathan Taylor thoroughly
studied the generalisations of the Rice-Kac formula for random fields Fa defined
on a base space M and with values in R

k. Let’s take for example k = 1. One of
the main problems, extremely difficult, is to compute P{supa∈M Fa ≥ u} for large
u. This probability of “excursion” in the interval [u,∞) is well approximated by
E
{

χ
(

A[u,∞)
)}

where, if D is a domain of Rk, AD := {a ∈M : Fa ∈ D} and where χ
is the Euler-Poincaré characteristic. Under the hypothesis of Gaussian laws, station-
arity, isotropy and regularity of the correlation functions C, one arrives to (complex)
explicit formulas for the E{χ (AD)}. What is interesting is that proving these formu-
las involves many fundamental tools of the “philosophy” of Morse-Whitney-Thom
which we presented in our first section 1.2.1. First, in order to process enough cases,
we suppose that M is a manifold with boundary endowed with a “good” stratification
(which satisfies what are called the Whitney’s A and B conditions) M = ∪k=N

k=0 ∂kM
(where k is the dimension of the strata which compose ∂kM) with ∂NM = M̊ (the
topological interior of M), ∂0M = {vertices of M}. We suppose that the properties
of regularity of C imply that the samples F of the field F are Morse’s functions
on M (we use the generalization of Morse’s theory to stratified manifolds owed to
MacPherson). The field F defines a natural metric with distance dF (a,b) on the

base space M through the formula d2
F (a,b) = E

{

‖Fa−Fb‖2
}

. So we can use

also the resources of Riemannian geometry: curvature tensor, Levi-Civita connec-
tion, covariant derivation, Lipschitz-Killing curvatures, etc.

For k = 1, we apply then to A[u,∞) the formulas which connect Morse’s theory to
Euler-Poincaré characteristic. If the sample F of F is a Morse function and if u is
a regular value (i.e. not critical) of F , A[u,∞) is a sub-manifold with boundary of M

which is “well” stratified by the intersection strata Å[u,∞)∩∂kM and ∂A[u,∞)∩∂kM.
F is not necessarily a Morse function on A[u,∞) but we can approximate it by a

Morse function ˜F on A[u,∞) whose critical points correspond to the critical points of
F above u.

The Rice-Kac formula corresponds to the case of a rectangle M = T of RN and to
an F with values in R

N . Let J be the Jacobian of a sample F (J is a matrix N×N).
Let Nu be the number of points of T for which F (a) = u ∈ R

N . The formula says
that
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E{Nu}=
∫

T
E{|det(J)| : F (a) = u} pa (u)dt .

In our case N = 2, F =Z , u = 0 and T is a unit square.

1.4.6 The Fibre Bundle V= R
2×P

1 as a Blowing Up Model for
Pinwheels

The similarity between pinwheels and phase dislocations is particularly remarkable.
But we have to underline two points:

1. the model presupposes that selectivity to orientation vanishes at the dislocation
points (i.e. at the centres of the pinwheels);

2. it loses any meaning at the limit case of an infinite number of pinwheels because
it gives a field Z ≡ 0.

It is therefore necessary to investigate more precisely the neighbourhood of sin-
gularities. There exist key results, e.g., by Pedro Maldonado, Imke Gödecke, Charles
Gray and Tobias Bonhöffer [79] or by David McLaughlin Robert Shapley and
Michael Shelley [85], [118].

Now, many of these works, in particular the ones using in vivo imaging methods
based upon two-photon confocal microscopy (methods which enable one to reach
the resolution of individual neurons, see Ohki et al. [94]), show how orientation
selectivity is still good at the singular points of pinwheels. This is why we proposed
to reconsider the pinwheels as blowups. A blowup is constituted by a singular point
a, a fibre Pa � P

1 and a helicoidal local section, above a small neighbourhood U
of a, of the fibre bundle π : U ×P

1 →U . The section is constructed by taking as
orientation above any point b �= a of U the orientation of the segment ab.

The idea is therefore to lift up the orientation field from R
2 to V = R

2×P
1 by

blowing up the dislocations ci and by lifting up the field lines as curves in V: if a
field line γ starts from a source c1 with an angle θ1 to end at the sink c2 with the
angle θ2, γ is lifted to a curve Γ of V which starts from the height θ1 in the fibre
above c1 and arriving at height θ2 in the fibre above c2. Only the fibres above the ci

are involved and everything is as if we had blew up the ci in parallel. The tangent
structures to this multi-blowing-up in the infinitesimal neighbourhoods of the fibres
Pci = Δi→ ci are all isomorphic to the local model.

In order to pass to the limit when the mesh of the lattice L of the ci tends to 0, a
method is to use a “non-standard” model5 (R∗)2 of R2 where, around each standard
point a = (x,y), there is a “monad” of infinitesimals μ(a) = {(x+ dx,y+ dy)}. In
the blowup, the fibreΔ∗ above a standard point is then a

(

P
1
)∗

and dy
dx a non-standard

real number p∗ = p+ d p, equivalent to p ∈ P
1. To first order, field lines boil down

to infinitesimal segments from a to a+ da. The standard part of the non-standard
fibration V

∗ =
(

R
2
)∗×(P1

)∗
gives not only the fibre bundle π : V=R

2×P
1→R

2

5 In a non-standard universe of set-theory, if X is a set, we write X∗ for its non-standard
enlargement
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but also the infinitesimal structure defined on it by the differential 1-form ω = dy−
pdx, i.e. the contact structure, as we will see in section 1.4.9.

The advantage of a non-standard model is to make intuitive the dimensional
collapse which characterises the pinwheel structure. We take the fibre bundle π :
R

2×P
1→ R

2, we “compactify” the fibres6 until they become infinitesimal and we
project them into the monads μ(a). This concept of blowing up where the fibre Δ
is made infinitesimal and projected on the base plane has been introduced for rea-
sons of high pure mathematics of a different order (singularities of analytical func-
tions and Gevrey classes) by Pierre Deligne [46] in 1986 in his correspondence with
Bernard Malgrange and Jean-Pierre Ramis. Pierre Deligne introduced the concept
of a “fat point”, which consists in substituting a point a ∈ C, let’s say a = 0, with
a little disc D with boundary Δ , and in considering the space ˜C = (C−{0})∪D
(union of C−{0} with D) endowed with the topology of the blowing up of 0 in
C along (C−{0})∪Δ . In his last text on Gevrey’s classes (edited by Jean-Pierre
Ramis), Jean Martinet [83] used this construction with discs D which are infinitesi-
mal in the sense of non-standard analysis. We could say that, at the continuous limit,
a lattice of pinwheels becomes a continuum of “fat” points, the standard part of this
structure returning the fibre bundle π : V= R

2×P
1→R

2.

1.4.7 Independent “Engrafted” Variables and the Transversality
Principle

In the previous section, we focused on a single “engrafted” variable, the orientation
one, but other “engrafted” variables exist, for example spatial frequency (the size
of the receptive profiles, i.e. the scale or the resolution) or the ocular dominance
(the correlation between a simple neuron and the ipsilateral or contralateral eye).
All these “internal” variables are implemented in 2- dimensional cortical layers. In
the orientation case, an abstract structure of dimension 3 collapsed in dimension
2; now we are concerned with an abstract structure of dimension 5. This drastic
dimensional collapse obviously raises the question on how to know how to represent
in dimension 2 the independence of the “internal” variables. It is a central problem,
emphasised by specialists as for example Nicholas Swindale [126].

Experimental data, e.g. the ones of Hübener et al. [68], show how the boundaries
of the ocular dominance domains (ODD) are strongly transversal, and often quasi-
orthogonal, to iso-orientation lines (see figure 1.7). It is so also for the boundaries
of the frequency domains. Consequently, it seems that the solution found by the bi-
ological evolution has been to maximise a condition of transversality. Evidently, if
more than 2 internal variables exist, then transversality can’t be that strong every-
where; nevertheless we can have an optimisation of two antagonist constraints of
transversality. This seems really to be the case.

Hongbo Yu et al. [140] analysed the relation between the three maps of orienta-
tion, ocular dominance, and spatial frequency, by focusing on the way in which a
strong transversality codes the independence of the associated continuous variables.

6 Just as in physics, in Kaluza-Klein models of field theory.
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Fig. 1.7 The relations between pinwheels and ocular dominance domains. Many iso-
orientation lines cross the boundaries of the ODD quite orthogonally. (From Hübener et
al. [68]).

They considered the gradients of the variables and first showed how they are maxi-
mal in disjoint zones and how transversality is maximal when the two gradients are
jointly sufficiently strong. As they say, (p. 277), “two features are mapped orthog-
onally in their high-gradient overlap regions”. In figure 1.8, we see the field lines
of the orientation field (which are the level lines of the “orientation” variable) and
the level lines of the ODD. The centres of the pinwheels are the points where the
orientation gradient is maximal and the boundaries of the ODD are the level lines
where the gradient of ocular dominance is maximal. These singularities avoid each
other according to many experiments which show how the centres of the pinwheels
are placed on the symmetry axes of the ODD. In the grey regions the two gradients
are jointly high. We find that in these regions transversality is also very high, almost
an orthogonality. These two constraints of avoidance and of transversality express
the independence.

It is particularly remarkable to see how the structural principle of transversality, to
which René Thom gave so much importance, could be used by biological evolution
for functional purposes.

1.4.8 Horizontal Connections and Association Field

Hypercolumns correspond to the “vertical” retino-geniculo-cortical connectivity.
One of the great experimental findings of the 90s were the lateral cortico-cortical
“horizontal” connections which are internal to cortical layers, long-ranged (up to
6-8mm), excitatory, slow (about 0,2m/s) and distributed in a very anisotropic and
“patchy” way. This second set of connections is particularly important for neuro-
geometry, because it implements the functional architecture which enables contour
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Fig. 1.8 The iso-orientation lines and the level lines of the ODDs. In the grey zones the
two gradients are jointly high. We notice how transversality is then very strong. (From Yu et
al. [140]).

integration. The fibre bundle structure π : M×P→M is not sufficient to this pur-
pose because the visual system needs also to compare orientations above different
points a and b of M (and so fibres Pa and Pb). It is this process, which geometers
call parallel transport since Elie Cartan, which is neurally implemented through the
lateral “horizontal” connections. Indeed, experimental data show how these connec-
tions link neurons with similar preferred orientations in distant hypercolumns.

Figure 1.9, from Bosking et al. [25], shows how biocytine locally injected in a
zone of about 100μm of the layer 2/3 of V 1 of a tupaya (tree shrew), diffuses along
horizontal connections in a selective, “patchy”anisotropic way. Short-ranged dif-
fusion is isotropic and corresponds to intra-hypercolumnar inhibitory connections.
On the contrary, long-ranged diffusion is highly anisotropic, corresponding to ex-
citatory inter-hypercolumnar connections and is restricted to domains sharing the
same orientation as the injection site. We notice also how the marked synaptic but-
tons cluster along a great diagonal top-left→bottom-right. The interpretation of this
striking phenomenon is that “horizontal” connections preferentially link not only
contact elements (a, p) and (b,q) with p and q approximately parallel, but above all
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Fig. 1.9 Diffusion of biocytine along the horizontal connections of the 2/3 layer of V 1 in a
tree shrew (tupaya). The injection site is marked by white dots in the upper-left corner. The
synaptic buttons reached by diffusion are marked in black. The distribution is anisotropic and
“patchy”, clustering in domains of the same orientation as the injection site, and globally
concentrated along the diagonal top-left→ bottom-right. (From Bosking et al. [25]).

approximately coaxial elements where the common orientation p is the orientation
of the axis ab.

This major result has been confirmed on a psychophysical plane by David Field,
Anthony Hayes and Robert Hess’ works on perception of the orientation of seg-
ments, in their 1993 article Field et al. [50]. If we consider a set of randomly
distributed little segments, perception does not identify any global structure in
them. However, if a curve γ with a weak curvature, composed of aligned segments
vi = (ai, pi) is embedded in a background of other randomly-oriented distractors,
subjects perceive very well global alignment through a phenomenon of pop-out (of
perceptual saliency). As the authors explain, it is a low-level integration: there exist
local neurophysiological binding rules which let a global perceptual organization
emerge.

The measure of the variations of the detection rate in function of the spatial
positions and relative orientations of elements vi = (ai, pi) enabled Field, Hayes
and Hess to conclude that the tendency of the elements to be perceived as aligned
along a curve comes from the existence of a specific connectivity which they called
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Fig. 1.10 Schema of the association field. Two elements (a1, p1) and (a2, p2) are connected
(thick lines) if it is possible to interpolate between the positions a1 and a2 using a curve γ
with low curvature, tangent to p1 at a1 and to p2 at a2. Otherwise the two elements cannot be
connected (thin lines).

association field. This connectivity is defined by joint conditions on positions and
orientations (see figure 1.10).

The psychophysical reality of the association field has been confirmed by other
experiments, in particular the ones by Jean Lorenceau and Yves Frégnac which used
the method of the apparent speed of fast sequences of oriented segments (“speedup
illusion”). One presents to the subject a series of segments moving along a verti-
cal straight line with a certain speed, where these segments can be oriented in the
direction of the motion (vertical colinearity) or in the orthogonal one (horizontal
parallelism). One finds that the apparent speed is over-estimated in the colinearity
case and under-estimated in the parallelism case. It seems that over-estimation is an
effect of the association field and results from the propagation of activity along the
horizontal lateral connections. Besides, in the colinearity case, the increase of the
apparent speed measured through these psychophysical methods turns to be essen-
tially comparable (about 0.2 m/s) to the propagation speed in the horizontal cortico-
cortical connections measured by electrophysiological means. The association field
seems then to be an effect of the functional architecture.

In a recent article [97], J. Lorenceau and his colleagues confirmed through MEG
(magnetoencephalography) this speeding up of vertical apparent motion. The im-
agery data show how along the horizontal cortico-cortical lateral connections there
exists a wave propagation and more precisely a spike train alignment mechanism
“that synchronises the neuronal activity tied to a figure contour”. Co-alignment
shortens the response latency and induces a phase advance along contours. This
seems to explain the pop-out and perceptual saliency phenomenon observed by psy-
chophysical means.

1.4.9 The Contact Structure

1.4.9.1 Legendrian Lifts and the Integrability Condition

The experimental results provided by the new imaging techniques had an utmost
importance for neurogeometry. Firstly, on the plane of the history of geometry, they
show from what neuronal processes, inherited from a vast phylogeny, can emerge
the primitive geometric form of a line. They allow to measure the abyss which
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separates the neuronal materiality from the geometrical ideality. A line is obtained
through the integration of oriented segments vi = (ai, pi) (i.e. contact elements, see
below) whose orientations pi are tangent to a curve interpolating the positions ai.
This means that, in V 1, a line is represented as the envelope of its tangents and not
as a set of points. In some sense, neural darwinism invented what in classical ge-
ometry is called “projective duality”. Here we reach the origin of geometry. Then,
as far as functional architecture is concerned, these results show also that V1 is
mainly dedicated to the extraction of edges through integration. Finally they allow
understanding of how V1 can “calculate” geometry.

The last point is of a particular importance, and it has been well explained by Jan
Koenderink [77]. With the firing rates of spikes along their axons, neurons can only
code numerical values of features localised at their receptive field. As Koenderink
says, they are “point processors”. Retinotopic fields of neurons activated in paral-
lel can only calculate fields of numerical values, that is functions f (a). Thus, how
can they perform computations of differential geometry which impose to compute
derivatives and therefore limits? “Differential calculus” must come from very spe-
cific functional architectures which are structured in such a way that propagation of
activity along their connections is equivalent to a differential calculus. But this is
possible only if we add supplementary variables as the orientation p, and a func-
tional architecture forcing the interpretation of p as a tangent orientation. This is
why the subtle notions of jet and of contact structure must be involved in a natural
way imposed by experience. In his 1989 article “The visual cortex is a contact bun-
dle” [64] William Hoffman had already explicitly formulated the idea that contours
lift the discontinuities of the retinal stimulus into a retinotopic contact fibre bundle
implemented in the cortical hypercolumns.

To explain all these concepts, let us begin with the model πJ : J1 (R,R) = VJ =
R

2×R→ R
2 with M = R

2, P = R the line orientations θ measured by tan(θ ),
and J1 (R,R) the fibre bundle of 1-jets of smooth curves in R

2, which is defined in
the following way. Consider in R

2 a smooth curve γ which is the graph {x, f (x)}
of a real function f on R. The first order jet of f at x, j1 f (x), is characterized by
3 slots: the coordinate x, the value y = f (x) of the function f at x, and the value
p = f ′(x) of the first derivative of f at x. So, a 1-jet is nothing else than a triple
v = (a = (x,y) , p), what geometers call a contact element. Conversely, to every
contact element v = (a, p), one can associate the set of smooth functions f whose
graph is tangent to v at a.

One can give a more geometric version of the fibration πJ . Consider at every point
a of M, not the tangent plane TaM, but the set CaM of its lines through the origin 0.
CaM is isomorphic to the projective space P1. The total space CM =R

2×P
1 gluing

these fibres is called the contact bundle of M. We will denote it by VP. VP is the
compactification of the space of 1-jets J1 (R,R) = VJ and its fibre P

1 corresponds
to the fibre R of VJ via the stereographic projection P

1−{π2
}→R, θ �→ tan(θ ).

Now, let γ be a parametrised smooth curve a(s) = (x(s),y(s)) in the base plane
R

2 (a contour) with x′(s) �= 0. It can be lifted to VJ using the 1-jet map j1γ(a(s)) of γ
that associates to a(s) = (x(s),y(s)) the contact element

(

a(s), pa(s)

)

where pa(s) =
y′(s)
x′(s) is the slope of the tangent to γ at a(s). If there are vertical tangents we have to
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use the compactificationVP of VJ . SoΓ = γ̃ = v(s) = (a(s), p(s)) = (a(s), pa(s)(s)).
This lift Γ = γ̃ – called the Legendrian lift of γ – represents γ as the envelope of
its tangents. So, to every smooth curve γ in R

2 (without any vertical tangent) is
associated a skew curve Γ in VJ or VP. But the converse is of course completely
false. If Γ = v(s) = (a(s), p(s)) = (x(s) ,y(s), p(s)) is a skew curve in VJ or VP,
the projection a(s) = (x(s) ,y(s)) of Γ is a curve γ in R

2. But Γ is the Legendrian
lift γ̃ of γ if and only if p(s) = pa(s) (s). In other words, if Γ is locally defined by
equations y = f (x), p= g(x), there exists a curve γ in R

2 such that Γ = γ̃ if and only
if g(x) = f ′(x), that is if and only if p = y′. This condition is called an integrability
condition. It is the geometric interpretation of the functional architecture of V1 and
of the association field.

The integrability condition can be formulated in a more interesting way. Let
t = (a, p;α,π) = (x,y, p;ξ ,η ,π) be tangent vectors to VJ at v = (a, p) = (x,y, p).
Along γ (we suppose x is the independent variable) t = (x,y, p;1,y′, p′) and the
integrability condition p = y′ means that we have in fact t = (x,y, p;1, p, p′). It
is straightforward to verify that this condition is equivalent to the fact that t is
in the kernel of the differential 1-form ωJ = dy− pdx, ωJ = 0 meaning simply
that p = dy

dx . Indeed, to compute the value of a 1-form ϖ on a tangent vector
t = (ξ ,η ,π) at (x,y, p), one applies the rules dx(t) = ξ , dy(t) = η , d p(t) = π .
If ϖ(t) = ∑ϖiti (where ti and ϖi are the components of t and ϖ with respect
to the bases of TVJ and T ∗VJ associated to the coordinates (x,y, p)), one gets
ωJ(t) = −p.1+ 1.p+ 0.p′ = −p+ p = 0 since ωJ = −pdx+ 1.dy+ 0.d p and dx
(resp. dy, d p) applied to (1, p, p′) selects the first (resp. second, third) component 1
(resp. p, p′). It must be emphasised that if p= y′ the “vertical” component π = p′ of
the tangent vector t in the direction of the p-axis is the curvature of the projection γ
at a. Indeed, p = y′ implies p′ = y′′ and therefore π = p′ = y′′.

The 1-form ωJ is called the contact form and its kernel is the field K of planes
Kv – called the contact planes – with equation −pξ +η = 0. The tangent vectors
X1 =

∂
∂x + p ∂

∂y = (ξ = 1,η = p,π = 0) and X2 =
∂
∂ p = (ξ = 0,η = 0,π = 1) are

evident generators. Now we can express purely geometrically the integrability con-
dition: a curve Γ in VJ is the Legendrian lift γ̃ of its projection γ if and only if it
is everywhere tangent to the field K of contact planes, i.e. if and only if it is an
integral curve of K .

1.4.9.2 The Contact Structure as a Cartan Connexion

The contact structure has several interesting properties. First, if we don’t consider
any more the projection πJ : VJ =R

2×R→R
2 on the plane (x,y) but the projection

π ′J : VJ =R
2×R→R

2 on the plane (x, p), we can show how the 1-form ωJ defines
a connection in the sense of Elie Cartan, the contact plane Kv becoming what are
called the “horizontal” planes. This representation deepens the projective duality
which we already mentioned. Instead of taking as base plane the (x,y) plane and
as fibre the axis of the tangents p calculated through the derivation p = dy

dx , we take
as base plane the (x, p) plane and as fibre the y axis, the curves γ being now given as
functions p = g(x), i.e. as envelopes of their tangents and y being calculated through
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the integration y =
∫

y′dx =
∫

pdx. The curvature dωJ of the connection 1-form ωJ

has to be a symplectic form on the new base plane. It is evident, since dωJ = dx∧d p
is the standard symplectic form on the (x, p) plane.

1.4.9.3 The Non Integrability of the Contact Structure

The contact structure K is the field of planes Kv ⊂ TvVJ defined by the equations
η = pξ parametrised by p. As the Legendrian lifts are its integral curves, there
exists therefore a lot of 1-dimensional integrals. But, nevertheless, there exist no
2-dimensional integrals, no surfaces S of VJ which are tangent to Kv at every point
v∈ S, i.e. such that TvS =Kv. This is due to the fact that the field Kv spins too rapidly
with p to be integrable: Kv is the “vertical” plane above the “horizontal” line of slope
p and, when p varies along the fibre Ra above a, it rotates with p.

More precisely, the non integrability of K – called non holonomy – results from
the violation of the Frobenius integrability condition saying that a 1-form ϖ admits
integral surfaces if and only if ϖ ∧ dϖ = 0 (that is dϖ(t, t ′) = 0 for all tangent
vectors t and t ′ such that ϖ(t) = ϖ(t ′) = 0). Now, for ωJ = dy− pdx one gets

dωJ =−
(

∂ p
∂x

dx∧dx+
∂ p
∂y

dy∧dx+
∂ p
∂ p

d p∧dx

)

+ d2y− pd2x

=−d p∧dx = dx∧d p

and therefore

ωJ ∧dωJ = (−pdx+ dy)∧dx∧d p = dy∧dx∧d p =−dx∧dy∧d p .

But this 3-form is a volume form of VJ and vanishes nowhere. By the way, for the
basis X1 =

∂
∂x + p ∂

∂y = (1, p,0), X2 =
∂
∂ p = (0,0,1) of Kv one has [X1,X2] =−X3 =

− ∂
∂y = (0,−1,0) and X3 = (0,1,0) /∈ Kv since ωJ (X3) = 1 �= 0.

1.4.9.4 Scale and Characteristic Vectors

It must be emphasised that the definition of the contact structure using the 1-formωJ

contains more information than the definition using its kernel, i.e. the distribution
K of contact planes Kv. Indeed, the 1-formsωJ and αωJ (α �= 0∈R) have the same
kernel and define the same distribution. The supplementary information encoded in
ωJ is the numerical value of ωJ on the “characteristic” tangent vector X3 transverse
to Kv.

1.4.9.5 SE(2)-Invariance

The contact structure is invariant under the action of the special Euclidean group
G = SE(2) of rigid motions in the plane, which is the semi-direct product SE(2) =
R

2
�SO(2) of the rotation group SO(2) and the translation group R

2. If (b,rθ ) is an
element of SE(2), it acts on a point a of R2 by (b,rθ )(a) = b+ rθ (a). If (b,rθ ) and
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(c,rϕ ) are two elements of SE(2), their (non commutative) product is given by the
formula:

(c,rϕ )◦ (b,rθ ) = (c+ rϕ(b),rϕ+θ ).

This product is noncommutative since (b,rθ ) ◦ (c,rϕ ) = (b + rθ (c),rθ+ϕ ) and
c+ rϕ (b) �= b+ rθ (c) in general. The rotation rθ acts on the fibre bundle VJ by
rθ (a, p(ϕ)) = (rθ (a), p(ϕ+θ )) (where p(ϕ) is the orientation of angle ϕ), this
very particular form of action expressing the fact that the alignment of preferred
orientations is an invariant property.

1.4.9.6 The Polarised Heisenberg Group

A key point concerning the contact structure of VJ is that it is left-invariant for a
noncommutative Lie group structure which is isomorphic to the Heisenberg group
and called the polarised Heisenberg group. The product law is given by the formula:

(x,y, p).(x′,y′, p′) = (x+ x′,y+ y′+ px′, p+ p′) .

It is straightforward to verify that this law is associative, that the origin (0,0,0) ofVJ

is its neutral element, and that the inverse of v= (x,y, p) is v−1 =(−x,−y+ px,−p).
Due to the asymmetry of the coupling term px′, the product is noncommutative. VJ

is a semi-direct product VJ = R
2
�R. The base plane R

2 of the fibration πJ : VJ =
R

2×R→ R
2 is the commutative subgroup of translations and the centre Z of VJ is

the y-axis. Indeed, v′ = (x′,y′, p′) commutes with all v ∈ VJ if and only if for every
v = (x,y, p) we have px′ = p′x, which implies x′ = p′ = 0.

If t = (ξ ,η ,π) are vectors of the Lie algebra VJ = T0VJ of VJ , VJ has Lie bracket

[

t, t ′
]

=
[

(ξ ,η ,π),(ξ ′,η ′,π ′)
]

= (0,ξ ′π− ξπ ′,0)
and is generated as a Lie algebra by the basis of Kv: X1 = ∂

∂x + p ∂
∂x = (1, p,0)

and X2 = ∂
∂ p = (0,0,1) at v = 0. Indeed, at 0, X1 = (1,0,0), X2 = (0,0,1) and

[X1,X2] = (0,−1,0) =−X3 (the other brackets = 0). The fundamental fact that the
basis {X1,X2} of the distribution K is bracket generating, i.e. Lie-generates the
whole tangent bundle T ∗VJ is called the Hörmander condition. It is the key prop-
erty for generalising to higher dimensions and general manifolds our very simple
contact structure VJ . Moreover this group is nilpotent of step 2, which means that
all brackets of the form [t, [u,v]] vanish.

We will measure in the following sections the importance of Hörmander’s con-
dition. Lars Hörmander (Fields Medal 1962) was one of the main specialists of hy-
poelliptic differential operators such as sub-Riemannian Laplacians. His 1983 four
volumes Analysis of Linear Partial Differential Operators [66] is a fundamental ref-
erence. Another classical opus is Elias Stein’s 1993 Harmonic Analysis, Real Vari-
able Methods, Orthogonality, and Oscillatory Integrals [124]. With Linda Preiss
Rothschild, Stein applied the theory to nilpotent groups (see [109]).
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Computations in VJ become very easy if we use the matrix representation

v = (x,y, p) =

⎛

⎝

1 p y
0 1 x
0 0 1

⎞

⎠

and

t = (ξ ,η ,π) =

⎛

⎝

0 π η
0 0 ξ
0 0 0

⎞

⎠

Indeed, the product in VJ becomes the matrix product v.v′ and the Lie product in
VJ becomes the commutator [t, t ′] = t.t ′ − t ′.t. Using this trick, it is easy to see that
the contact structure is left-invariant. The left translation Lv of VJ is defined by
Lv(v′) = v.v′ and is a diffeomorphism of VJ whose tangent map at 0 is the linear
map

T0Lv : VJ = T0VJ → TvVJ

t = (ξ ,η ,π) �→ T0Lv(t) = (ξ ,η+ pξ ,π)

The matrix of T0Lv is

T0Lv =

⎛

⎝

1 0 0
p 1 0
0 0 1

⎞

⎠ .

This shows that the basis
{

∂
∂x ,

∂
∂y ,

∂
∂ p

}

of the tangent bundle TVJ associated to the

coordinates {x,y, p} is not left-invariant. It is the source of non holonomy. To get a

left-invariant basis we must translate via Lv the basis
{

∂
∂x ,

∂
∂y ,

∂
∂ p

}

0
at 0. We get the

basis
{

∂
∂x + p ∂

∂y ,
∂
∂y ,

∂
∂ p

}

, that is {X1,X3,X2}.
Let now t be a vector of the contact plane K0 at 0. Since η = pξ and p = 0, we

have η = 0. Its translated T0Lv(t) is therefore (ξ , pξ ,π), and since η = pξ , T0Lv(t)
is an element of the contact plane Kv and the contact structure K = {Kv} is nothing
else than the left-invariant field of planes left-translated from K0. In fact, the 1-form
ωJ itself is left-invariant and left-translates ωJ,0 = dy.

Using the matrix form, it is also very easy to analyse other aspects of the Lie
group structure of VJ , its adjoint and coadjoint representations and its unitary irre-
ducible representations (unirreps). According to a variant of the Stone-von Neu-
mann theorem concerning the Heisenberg group, every unirrep of the polarised
Heisenberg group VJ which is not trivial on its centre Z (the y-axis) is equivalent to
a Schrödinger representation πλ (x,y, p) acting on the infinite dimensional Hilbert
space H = L2 (R,C) via

πλ (x,y, p)u(s) = eiλ (y+xs)u(s+ p), with λ �= 0 .

For λ = 0 these unirreps degenerate into trivial representations of dimension 1:

πμ,ν (x,y, p)u(s) = ei(μx+ν p)u(s) .
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According to a deep theorem due to Kirillov, these unirreps correspond to the orbits
of the coadjoint representation of VJ: the planes (R,η∗,R) if η∗ �= 0 and, if η∗ = 0,
every point of the (ξ ∗,0,π∗) plane ((ξ ∗,η∗,π∗) are vectors of the dual Lie algebra
V ∗J of VJ). We will return on these topics in section 1.5.4.3.

1.4.9.7 Contact Structure and “Simplexity”

The contact structure of the space of 1-jets is a good example of what Alain Berthoz
proposed to call “simplexity”, i.e. the original solution found by biological evolution
“to decompose complex problems in simpler sub-problems, thanks to specialised
modules, and to recompose the whole later” ( [17], p.22). In our case, the com-
plex problem is to compute the derivatives of some functions with respect to retinal
position variables a = (x,y). The “simplex” solution phylogenetically “invented”
by simple neurons of V1 consists in adding a new independent variable p to the
variables (x,y), in organising in specialised modules (orientation hypercolumns) the
values of the three variables, i.e the contact elements (a, p), in processing the inputs
by measuring the point values of the (a, p) they activate, and finally in recomposing
the whole through a functional architecture which guarantees the equivalence be-
tween, on the one hand, taking the point values of the three variables (x,y, p) and,
on the second hand, deriving the initial variables (x,y). This equivanence is exactly
the definition of a 1-jet: {x,y, p} � j1y(x) (see. [108]).

1.4.10 Illusory Contours as Sub-Riemannian Geodesics

In this initial neuro-geometrical framework, we can easily interpret the variational
process giving rise to Kanizsa illusory contours evoked in the Introduction. We pre-
sented in section 1.3.3 Mumford’s model defined in R

2 by an energy of the type
E =

∫

γ (ακ2 +β )ds. But we can now use what we know concerning the functional
architecture of V1. The pacmen define two contact elements (a, p) and (b,q) and
an illusory contour interpolating between (a, p) and (b,q) is a skew curve Γ in VJ

from (a, p) to (b,q) which is at the same time:

1. a Legendrian lift γ̃ of a curve γ in the base plane R
2, i.e. an integral curve of the

contact structure (integrability condition p(x) = y′(x));
2. a curve “as straight as possible”, as it was already emphasised by Shimon Ullman

in 1972 [135] when he introduced the idea of a variational model “minimising
total curvature”.

The simplest way to satisfy these two requisites is to model illusory contours
using geodesics for a natural metric because, since the variation of p measures the
curvature κ of γ , we minimise at the same time the length and the curvature of the
projection γ . But, due to condition (1), the metric has to be defined only on the dis-
tribution K of contact planes Kv. In our 1999 first synthesis of neurogeometry Vers
une neurogéométrie. Fibrations corticales, structures de contact et contours sub-
jectifs modaux [101], geodesics were computed solving the Euler-Lagrange equa-
tions with the Lagrange multiplier expressing the condition of integrability. And
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these equations were reformulated in the framework developed by Robert Bryant
and Phillip Griffiths for variational models on Lie groups. Later on, the search for
constraint minima was naturally interpreted in terms of a suitable metric defined
on the contact distribution K . Such a metric is called sub-Riemannian and so the
modelling of illusory contours is embedded into the mathematical context of left-
invariant sub-Riemannian metrics on nilpotent Lie groups.

We will return to sub-Riemannian geodesics in section 1.5.2. We will then ex-
plain in what rigorous sense Kanizsa illusory contours are “geodesics of a sub-
Riemannian geometry defined on the contact structure of the fibre bundle of 1-jets of
planar curves”. But before explaining this sub-Riemannian geometry of VJ , let us
sketch how Bryant-Griffiths’ more sophisticated framework enables to work directly
in SE (2).

1.4.11 From Maurer-Cartan to Bryant-Griffiths

A powerful tool to solve this kind of variational problem is the method of the moving
frame introduced by Elie Cartan. It is rather sophisticated but gives a remarkable
insight. The (direct) euclidean frames of R2 constitute the Lie group G = SE(2) =
R

2
� SO(2) which is a principal fibre bundle of base R

2. An essential structure
associated to G and to its Lie algebra G , a structure which explains the problems
of non-holonomy, is what is callled the Maurer-Cartan form. Let’s start from the

general expression g =

(

1 0
b eiθ

)

of an element g of G represented through a 3×3

matrix where b is a column vector of translation {u,v} and eiθ the 2× 2 matrix

of rotation angle θ . We consider the differential of g, dg =

(

0 0
db ieiθdθ

)

and

we interpret it as a differential 1-form on G with values in G . This means that the
components of dg are 1-forms on G, but that dg has the type of an element of G .
In other terms, if Ω 1(G) is the vector space of 1-forms on G, dg is an element of
the tensor product Ω 1(G)⊗G . If g = e, we verify that dg(e) is the identity of G .
This means that dg(e) is a 1-form on G and is therefore applied to vectors ς ∈ G .
But as it has values in G , we have dg(e)(ς) ∈ G . Identity means that dg(e)(ς) = ς .
More generally, dg can be interpreted as the identity function of the tangent fibre
bundle TG. The problem of non-holonomy is that dg is not invariant for the left-
translations Lg. It is the identity function of T G, but not the one of T G globally
trivialised by the Lg. Indeed, a 1-form on G with values in G which is G-invariant
by left-translations must have constant components in the invariant bases of the
T ∗g G dual to the invariant bases of the tangent spaces TgG. Now, this is not the case
for dg.

Then, Cartan’s idea is to translate dg(e) in order to get a 1-form on G with values
in G which will be by construction invariant under the left-translations Lg. Let ΛG :
T G→ G be this 1-form, called the Maurer-Cartan form. We can easily interpret it
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in a geometrical way. Indeed, we have by definition ΛG(g) =
(

TgLg−1

)∗
dg(e).7 If

ς ∈ TgG is a tangent vector to G at g, ΛG(g)(ς) = TgLg−1(ς), in other terms, ΛG

transports ς in G through the global trivialisation provided by the left-translations

Lg. We verify that we have ΛG(g) =

(

0 0
e−iθdb idθ

)

. Traditionally, one writes ΛG

under the compact form ΛG = g−1dg where g−1 symbolises
(

TgLg−1

)∗
.

From now on we will write ω and ρ the 1-forms (with scalar values respectively
in C and R) e−iθdb and dθ . With these notations, the 1-formΛG (with values in G )
is written:

ΛG =

(

0 0
ω ρ

)

= ω⊗ ξ +ρ⊗ τ

where (ξ ,τ) is the natural basis of G which corresponds to infinitesimal translations
and rotations.

The remarkable fact is that the structure of the Lie algebra of G can be retieved
from the Maurer-Cartan form ΛG and is given by the universal formula dΛG =
− 1

2 [ΛG,ΛG]. The exterior derivative of ΛG is a G-invariant 2-form with values in
G . In order to calculate it, we calculate first the exterior derivatives of the compo-
nentsω and ρ . We get, since for every scalar differential form σ we have a d2σ = 0:

{

dω = −ie−iθdθ ∧db+ e−iθd2b = ie−iθdb∧dθ = iω ∧ρ
dρ = d2θ = 0

and so
dΛG = dω⊗ ξ + dρ⊗ τ = i(ω ∧ρ)⊗ ξ .

Now, the space Ω 1(G)⊗G of the 1-forms on G with values in G is endowed with
an exterior product which allows interaction between the exterior product of the 1-
forms and the Lie bracket of G . Indeed, let ς = μ⊗ξ+ν⊗τ and ς ′= μ ′⊗ξ+ν ′⊗τ
be any two elements of Ω 1(G)⊗G . We have by definition:

[

ς ,ς ′
]

=
(

μ ∧μ ′)⊗ [ξ ,ξ ]+
(

μ ∧ν ′)⊗ [ξ ,τ]+
(

ν ∧μ ′)⊗ [τ,ξ ]+
(

ν ∧ν ′)⊗ [τ,τ]

which is a vector 2-form with values in G , i.e. an element ofΩ 2(G)⊗G . As [ξ ,ξ ] =
[τ,τ] = 0, [τ,ξ ] =− [ξ ,τ] and [ξ ,τ] =−iξ , we finally obtain:

[

ς ,ς ′
]

=
((

μ ∧ν ′)− (ν ∧μ ′))⊗ [ξ ,τ] =−i
((

μ ∧ν ′)− (ν ∧μ ′))⊗ ξ .

When ς = ς ′, we therefore obtain – unlike what happens for a scalar 1-form –
[ς ,ς ] =−2i(μ ∧ν)⊗ ξ . In particular, [ΛG,ΛG] =−2i(ω ∧ρ)⊗ ξ . When we com-
pare the expressions which give dΛG et [ΛG,ΛG] we obtain the universal equations
of Maurer-Cartan which code the geometry of every Lie group G:

7 We have TgLg−1 =
(

TeLg
)−1 : TgG→ TeG and therefore by duality

(

TgLg−1

)∗ : T ∗e G =
G ∗ → T ∗g G.
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dΛG =−1
2
[ΛG,ΛG] .

After expressing the geometry of G through the Maurer-Cartan equations, let’s
return to the curves γ in the plane R2. If we follow the moving frame F = Fa consti-
tuted by the unitary tangent and normal vectors at a when the point a = (x,y) runs
through γ , we get a curve Γ in G that lifts γ and that is called his Frénet lift. As G
is a principal fibre bundle on R

2 of fibre SO2(R) � S
1, we can reinterpret in this

new context the Legendrian lifts we studied before. If γ is parametrised by t, Γ is
also parametrised by t. The element of arclength on γ (and not on Γ ) is given by
ds = σ(t)dt with σ(t) = ‖a′(t)‖ . Moreover, the Frénet frame Fa is given by the uni-

tary tangent vector e1(t) =
a′(t)
σ(t) = (cos(θ ),sin(θ )) and by the unitary normal vector

e2(t) = e1(t)⊥ = (−sin(θ ),cos(θ )). The differentials of e1 et e2 are consequently
the vector 1-forms on R

2 with values on R
2:

{

de1 = (−sin(θ )dθ ,cos(θ )dθ ) = dθ ⊗ e2 = ρ⊗ e2

de2 = −(cos(θ )dθ ,sin(θ )dθ ) =−dθ ⊗ e1 =−ρ⊗ e1 .

Moreover, as ω = e−iθda by definition, we have da = eiθω = ωu⊗ e1 +ωv⊗ e2

where ωu and ωv are the components in the moving frame. But as da = eiθds, we
have also ω = ds, i.e. ωu = ds and ωv = 0. Hence the following reinterpretation of
dg in the moving frame F of M :

⎧

⎨

⎩

d p = ωu⊗ e1 +ωv⊗ e2

de1 = ρ⊗ e2

de2 = −ρ⊗ e1 .

This differential system is associated to G and is therefore independent from any
particular curve γ .

But we also know that, on a particular curve γ , we have, by definition of ds and
of the curvature κ8, the following expression for the infinitesimal variation dF of
the moving frame F:

⎧

⎨

⎩

da = ds⊗ e1 = σ(t)dt⊗ e1

de1 = dsκ(t)⊗ e2 = κ(t)σ(t)dt⊗ e2

de2 = −dsκ(t)⊗ e1 =−κ(t)σ(t)dt⊗ e1 .

If we compare the two expressions we see that, on the curves γ(t), the following
Pfaff system is verified:

Π =

⎧

⎨

⎩

ωu−σ(t)dt = 0
ωv = 0
ρ−κ(t)σ(t)dt = 0 .

In the same way as the Legendrian lifts in the jet space were the integral curves of
the contact structure, the Frénet lifts in G are the integral curves of Π . We remark

8 Remember that κ = dθ/ds and therefore that ρ = dθ = κds = κσdt.
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that for these lifts we have dω = iω ∧ ρ = 0 because dωu = −ωv ∧ ρ = 0 and
dωv = ωu∧ρ = σ(t)dt ∧σ(t)κ(t)dt = σ2(t)κ(t)dt ∧dt = 0.

The Pfaff system Π is defined on G but depends upon t together with the func-
tions σ(t) and κ(t). Then we can apply exactly the same strategy we applied for
the contact fibre bundle and the 1-jets fibre bundle, namely to introduce supple-
mentary coordinates (σ ,κ , t) ∈ R

+
σ ×Rκ ×Rt = Y 9 and consider Π as actually

defined on the direct product X = G×Y 10. As (ωu,ωv,ρ) are the components of
ΛG = ω⊗ ξ +ρ⊗ τ , it simply consists in the vanishing of the 1-form :

μ =ΛG−Pdt

where P = (σ ,0,κσ). As ΛG is now seen as a 1-form on X with values in G , the
coherence of the types imposes the same type for μ = ΛG−Pdt. Thus it is natural
to consider that P is a vector of G , namely the vector:

P =

(

0 0
σ κσ

)

= σ ⊗ ξ +κσ⊗ τ .

Then, if we note A the subspace of G constituted by the P of this form, we can
redefine Y as A ×Rt and consider thatΠ becomes actually defined on X =G×Y =
G×A ×Rt .

In this context Bryant and Griffith reformulated the variational problems on Lie
groups and in [101] we used their work to reformulate the VJ model.

1.5 Developments in Neurogeometry after 2000

Starting from the late 1990s and the early 2000s, neurogeometry knew a number of
developments in an international context where interactions between mathematics
and neurophysiology became increasingly numerous and fertile, somehow as the
ones between statistical physics and neuronal nets during the 80s. When I assumed
the direction of the CREA and of the Master in Cognitive Sciences, I could easily
start at the Ecole Polytechnique a class in Cognitive Neurosciences and a seminar
on “Brain and Cognition” organised with my colleague of the ENS Patrick Char-
nay. The lectures were later published in 2008 under the title Neurogéométrie de la
Vision [105]. In this context some collaborations had been particularly strong and
fruitful. Quickly, they led to a new synthesis [102] published in 2003 in the Journal
of Physiology-Paris.

1.5.1 Collaborations with Alessandro Sarti and Giovanna Citti

At the end of 1997 Alessandro Sarti, a young specialist from Bologna in models
of vision and image processing, contacted me. We discussed on different aspects of
neurogeometry and, in 2001, when he returned from Berkeley where he had worked

9 The index represents the coordinate of the considered exemplar of R.
10 We trivially extend a 1-form on G to a 1-form on X and we keep the same symbol.
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from 1997 to 2000 with Sethian on Kanizsa illusory contours, we started a rich co-
operation which involved also his colleague at the University of Bologna, Giovanna
Citti, an outstanding specialist in functional analysis, diffusion PDE, and harmonic
analysis.

1.5.1.1 The Synchronisation of Oscillators and the Mumford-Shah Model

One of the first works by Sarti and Citti in this field has been linking the models of
synchronisation of fields of oscillators with the Mumford-Shah model of segmen-
tation which we analysed in section 1.3.3. The Mumford-Shah variational model
is fundamental in image processing and in computational vision, but it lacks of an
explicit neurophysiological meaning. However, specialists as Bard Ermentrout and
Nancy Kopell showed as continuous nets of coupled oscillators, whose frequencies
code the intensity of the input, works the same way as algorithms of segmentation.
This is the reason of the interest in a comparison with the Mumford-Shah model.

The main idea is the following (see Sarti et al. [115]). We consider a 2D field of
oscillators where the phase θ (x, t) is a function of the spatial position x. Let ξ be
a variable of distance between neighbouring oscillators on a lattice of mesh ε . We
introduce a PDE of the form:

∂θ (x, t)
∂ t

= ω(x)+∑ 1

|ξ |2 {K(x− ξ ) [ϕ (θ (x, t)−θ (x− ξ , t))]−

K(x) [ϕ (θ (x+ ξ , t)−θ (x, t))]}

where the function ϕ is analogous to a sine function, K(x) is a local coupling func-
tion, and the sum Σ is taken over the neighbours x+ ξ of x. Then, if we encode
in the coupling function K(x) the anisotropic geometry of the functional archi-
tecture and if we let the mesh of the lattice tend to 0, we get a model which Γ -
converges (Γ -convergence being a convergence adapted to variational models) to
the Mumford-Shah variational model for the sub-Riemannian contact metric defined
by K(x) (see [115]).

1.5.1.2 The SE (2) Model

The jet-space VJ model implies choosing a priviledged x-axis. We saw in section
1.4.11 that the group SE (2) naturally operates on the model, but the asymmetry
between x and y in the base space R

2 was reflected in the “polarisation” of the
Heisemberg group. As in every case in which a group G operates on a fibre bundle,
here G = SE (2) on πJ : VJ = R

2×R→ R
2, it is relevant to consider the principal

associated fibre bundle, here

πS : G = SE(2) = R
2
� SO(2)� VS = R

2×S
1→R

2.

We worked with G in section 1.4.11 with Bryant and Griffith when using the form
of Maurer-Cartan. But we can do this more directly with Citti, Sarti and Manfre-
dini [115], [37]. In this case, the contact form is ωS = −sin(θ )dx + cos(θ )dy,
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that is cos(θ )(dy− pdx) = cos(θ )ωJ . The contact planes are spanned by the tan-
gent vectors X1 = cos(θ ) ∂∂x + sin(θ ) ∂∂y and X2 = ∂

∂θ with Lie bracket [X1,X2] =

sin(θ ) ∂∂x − cos(θ ) ∂∂y = −X3. Contrary to the polarised Heisenberg case, the Xj

constitute an Euclidean orthonormal basis and are therefore more natural. The dis-
tribution K of contact planes is still bracket generating (Hörmander condition)
and maximally non integrable since dωS = cos(θ )dx∧ dθ + sin(θ )dy∧ dθ , and
ωS ∧ dωS = −dx∧ dy∧ dθ cannot vanish because it is a volume form. The Frobe-
nius condition ωS ∧ dωS = 0 is not satisfied, and there exists no integral surface of
K in VS (but there exist a lot of integral curves of K : all the Legendrian lifts Γ in
VS of curves γ in the base plane R

2). As for the characteristic vector field (or Reeb
field) X3, it is orthogonal to Kv for the Euclidean metric and defines a scale through

ωS (X3) = (−sin(θ )dx+ cos(θ )dy)(X3) = sin2 (θ )+ cos2 (θ ) = 1 .

When we work with VS, the natural sub-Riemannian metric is the one making
{X1,X2} an orthonormal basis of the contact plane Kv.

The two contact structures on VJ = R
2×R and VS = R

2×S
1 seem to be alike

but are nevertheless very different. Indeed, let us look at their respective Lie alge-
bras. For VJ we have the algebra VJ generated by {t1, t2, t3} (t1 = ∂

∂x + p ∂
∂y , t2 =

∂
∂ p ,

t3 = ∂
∂y ) with [t1, t2] = −t3 and [t1, t3] = [t2, t3] = 0 (we denote these vectors by ti

and no longer by Xi to avoid any confusion). As we have seen, VJ is a nilpotent
algebra because the coefficients {1, p,1} are polynomials whose derivatives vanish
after a certain rank (here 2). On the contrary, for VS we have the algebra VS gener-
ated by {X1,X2,X3} (with X3 =−sin(θ ) ∂∂x + cos(θ ) ∂∂y ) satisfying [X1,X2] =−X3

, [X1,X3] = 0 and [X2,X3] =−X1, which is therefore not nilpotent. Nevertheless we
can notice that for small θ , we have at first order p∼ θ , sin(θ )∼ θ and cos(θ )∼ 1,
and soωS =−sin(θ )dx+cos(θ )dy can be approximated byω =−θdx+dy which
is nothing else than the 1-form ωJ = dy− pdx. VJ is in some sense “tangent” to
VS. In fact it is called the “tangent cone” of VS or its “nilpotentisation” (see e.g.
Mitchell [86], Rothschild, Stein [109], Margulis, Mostow [81] and Bellaı̈che [12]).

So VJ and VS becomes two sub-Riemannian models, and we will see in sec-
tion 1.5.5 how it is possible to construct a continuous family interpolating between
them. VJ is defined on a nilpotent group (Carnot group) and VS on a non nilpotent
group. Methods for neurogeometry, that is for the modelling of neural functional ar-
chitectures of vision, become therefore part of sub-Riemannian geometry with their
geodesics, Laplacians, heat kernels, harmonic analysis, etc.

Many great geometers have studied these very rich structures since the 1980s-
1990s. We already cited Hörmander [66], [65], Stein [124] and Rothschild-Stein
[109]. We shall also cite Folland-Stein [52], Nagel-Stein-Wainger [92] for the struc-
ture of sub-Riemannian spheres, and papers [58] and [59] of Daryl Geller for the
wavelet analysis on the Heisenberg group11.

11 We thank the anonymous referee for very interesting bibliographical informations.
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We were personally highly interested in works by Misha Gromov, Andrei
Agrachev, Richard Beals, Bernard Gaveau, Peter Greiner, Luca Capogna, Vladimir
Gershkovich, John Mitchell, Richard Montgomery, Robert Strichartz, Anatoly Ver-
shik, Jean-Pierre Pansu, Jean-Michel Bismut, André Bellaı̈che, and Jean-Jacques
Risler. Reference works have been for us Montgomery’s Tour of Sub-Riemannian
Geometries [88], Gromov’s Carnot-Carathéodory spaces seen from within [62],
Agrachev-Sachkov’s Control Theory from the Geometric Viewpoint [3], Vershik-
Gershkovich’s Non Holonomic Dynamical Systems, Geometry of Distributions and
Variational Problems [137], Capogna et al. An Introduction to the Heisenberg
Group and to the sub-Riemannian Isoperimetric Problem [31], or Strichartz’s Sub-
Riemannian Geometry [125].

1.5.1.3 Sub-Riemannian Diffusion and Perceptual Completion

A specialist of analysis in Lie groups endowed with sub-Riemannian metrics,
Giovanna Citti tackled many difficult problems, and in particular, with Luca Ca-
pogna, the mean curvature flow. We evoked in section 1.3.2 the non linear diffusion
equation

∂ I
∂σ

= |∇I|div

(

∇I
|∇I|

)

= Δ I− H(∇I,∇I)

|∇I|2 =∑
i, j

⎛

⎝δi j−
(

∂ I
∂xi

)(

∂ I
∂x j

)

|∇I|2

⎞

⎠

∂ 2I
∂xi∂x j

(where H is the Hessian of I) which makes the level curves Cσ of I(x,y;σ) evolve
with a normal velocity equal to their curvature. When generalising this situation to
Carnot groups as VJ , one meets several difficulties. First, one works on surfaces Sσ
evolving in a 3 dimensional space, and we have seen in section 1.3.2 that for dimen-
sion ≥ 3 the mean curvature flow can present singularities. Secondly, if one wants
to adapt diffusion techniques to sub-Riemannian geometry, one must substitute nor-
mals n to Sσ with their projections nK onto the contact planes Kv. We have also seen
section 1.4.9.3 that, because the non-integrability of the contact structure, no piece
of Sσ , as small as it may be, can be everywhere tangent to the contact distribution
K . But, of course, there will exist in general points v ∈ Sσ where the tangency
TvSσ = Kv occurs. At these points, called characteristic points, the projection nK is
no longer defined, and the diffusion becomes singular. Except at these characteristic
points, the diffusion equation becomes

∂ I
∂σ

=∑
i, j

(

δi j− (XiI)(XjI)

∑i (XiI)
2

)

XiXjI

In [32], Luca Capogna and Giovanna Citti, study this equation.
These theoretical works can be applied to image completion, image segmentation

and subjective surfaces as A. Sarti did in Berkeley with Sethian (see e.g. [117]).
Given an image of intensity function I (x,y) which is supposed to be regular on a
domain W of R2 (if this is not the case we can smooth it infinitesimally), we can
consider the Legendrian lifts of its level curves in VS. We get a surface Σ in VS.
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Let’s suppose that the image is corrupted and contains a gapΛ . To restore the image
and to fill-in Λ , the idea is to process a propagation along the association field, i.e.
a highly anisotropic diffusion driven by the sub-Riemannian geometry of VS. The
idea is simple in practice but very difficult on the mathematical plane. Indeed, even
in the simplest case of the heat equation, diffusion lets evolve the functions f (x)
on VS through the equation ∂

∂ t = Δ , where Δ = X2
1 +X2

2 is the sub-Riemannian
Laplacian, and it is processed by transport along the geodesics. As the heat equation
is a linear parabolic PDE, it is sufficient to compute what is called the heat kernel,
i.e. the way in which a Dirac delta function is diffused. Then we write I (x,y) as an
infinite superposition of weighted deltas, and we apply linearity. This is equivalent
to performing the convolution of I with the heat kernel.

For links of sub-Riemannian diffusion with the mean curvature flow of section
1.3.2, one can consult Chen-Giga-Goto [33] and their proof of the convergence of
the Bence-Merriman-Osher algoritm.

But, as we will see later in section 1.5.2 and 1.5.4.1, sub-Riemannian geodesics
are far more complex than Riemannian geodesics, making computation of the heat
kernel really difficult. G. Citti dedicated many works to this technical question
most studied since the classical works of Lars Hörmander. A good introduction
to this topic is the book [20] of Bonfiglioli, Lanconelli, Uguzzoni, Stratified Lie
Groups and Potential Theory for their sub-Laplacians. For general hypoelliptic
sub-Laplacians the reader could consult Jerison, Sánchez-Calle [72] and Sánchez-
Calle [112] which present approximation techniques for finding the fundamental
solution using series expansions. For more precise results on the Heisenberg group
and nilpotent groups, the reader could consult, e.g., Folland, Stein [52], Rothschild,
Stein [109], and Citti, Uguzzoni [36]. For methods using harmonic analysis, he/she
could consult, e.g., Hulanicki [71] and Cygan [41].

But for the applications we are intrested in, general results are not sufficient, and
we need also operational computational techniques.We will return to this point in
section 1.5.2.

1.5.1.4 Curvature, 2-Jets and Engel Structure

Specialists of vision such as Steve Zucker put forward some experimental data to
support the hypothesis that not only detectors of orientation but also detectors of
curvature exist in V1. If we admit this hypothesis, the problem is to know if we
have to process these new detectors as the orientation ones by introducing the 2-jets
of curves in R

2, and so, in addition to x,y, p or x,y,θ , to add a fourth independent
variable κ and a supplementary 1-form which forces its interpretation as a curvature.
This is what Sarti, Citti, and I did together.

In the {x,y, p} case, we work in VJ =R
2×R with the contact 1-form ωJ = dy−

pdx and the nonholonomic basis of the contact planes
{

X1 =
∂
∂x + p ∂

∂y ,X2 =
∂
∂ p

}

,

the third base tangent vector X3 being given by the Lie bracket [X1,X2] = −X3 =

− ∂
∂y . We introduce a fourth variable κ , we work on the space ˜VJ =R

2×R×R, and
we write that the natural interpretation of κ is associated to the second derivative
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f ′′ (x) for curves of equation y = f (x). The space ˜VJ of the {x,y, p,κ} is the space
of 2-jets J2 (R,R) and its canonic structure, called Engel structure12, is the Pfaff
system constituted by the two 1-forms ωJ and τJ = d p−κdx.

The kernel of τJ in ˜VJ is generated by the 3 tangent vectors Xκ1 = ∂
∂x + p ∂

∂y +

κ ∂
∂ p = X1+κX2, X3 =

∂
∂y , X4 =

∂
∂κ whereas the kernel of ωJ extended to ˜VJ is gen-

erated by Xκ1 , X2 and X4. The distribution of planes is now Span{Xκ1 ,X4}, and it gen-
erates the whole Lie algebra because [Xκ1 ,X4] = −X2 = − ∂

∂ p and [[Xκ1 ,X4] ,Xκ1 ] =

−X3 =− ∂
∂y .

In the SE (2) case, we work in VS = R
2 × S

1 with the contact 1-form
ωS = −sin(θ )dx + cos(θ )dy and the nonholonomic bases of the contact planes
{

X1 = cos(θ ) ∂∂x + sin(θ ) ∂∂y ,X2 =
∂
∂θ

}

, the third base tangent vector X3 being

given by the Lie bracket [X1,X2] = −X3 = sin(θ ) ∂∂x − cos(θ ) ∂∂y . We introduce

the curvature K and work in the space ˜VS = R
2 × S

1 × R. The Pfaff system
which defines the Engel structure is now composed of the two 1-forms ωS and
τS = dθ −Kds = dθ −K (cos(θ )dx+ sin(θ )dy), where s is the parametrisation
of the curves of the (x,y) plane by their arch length. Indeed, we know that the cur-
vature, which is given in Cartesian coordinates for a curve of equation y = f (x) by

the formula K = f ′′(x)
(1+ f ′(x)2)

3/2 , is also given by K = dθ
ds . The kernel of the 1-form τS

is now generated by the 3 tangent vectors
⎧

⎪

⎨

⎪

⎩

XK
1 = cos(θ ) ∂∂x + sin(θ ) ∂∂y +K ∂

∂θ = X1 +KX2

X3 =−sin(θ ) ∂∂x + cos(θ ) ∂∂y

XK
4 = ∂

∂K

while the kernel of ωS extended to ˜VS is generated by X1, X2 and XK
4 . The distribu-

tion of planes is now Span
{

XK
1 ,XK

4

}

. It generates the whole Lie Algebra because
[

XK
1 ,XK

4

]

=−X2 =− ∂
∂θ and

[[

XK
1 ,XK

4

]

,XK
1

]

= X3 =−sin(θ ) ∂∂x + cos(θ ) ∂∂y .

1.5.1.5 Scale and Symplectic Structure

We saw in section 1.4.9.4 how the distribution K of the contact planes Kv is under-
determined with respect to the 1-form ωJ because all the 1-forms αωJ (α �= 0 ∈ R)
have the same kernel. Whence the idea of explicitly taking into account the scale
factor α in the model. We developed it with Sarti and Citti in [116].

We work now in the 4-dimensional space W=R
2×S

1×R where the coordinates
are (x,y,θ ,σ). We extend the group G = SE (2) in order to take into account the
multiplicative law of scales, and we use the left-invariant basis:

12 Friedrich Engel was one of the principal disciples and collaborators of Sophus Lie.
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⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

X1 = eσ
(

cos(θ ) ∂∂x + sin(θ ) ∂∂y

)

X2 =
∂
∂θ

X3 = eσ
(

−sin(θ ) ∂∂x + cos(θ ) ∂∂y

)

X4 =
∂
∂σ .

For each scale σ , we have now the contact 1-form ω =
e−σ (−sin(θ )dx+ cos(θ )dy) defined on the sub-space Vσ = R

2(x,y)× S
1(θ )×

{σ} of W. The main point is that the 2-form dω obtained by differentiating ω with
respect to all its variables, including the scale, induces a symplectic structure on W.
We have:

dω =
(

e−σ cos(θ )dx+ e−σ sin(θ )dy
)∧dθ

+
(−e−σ sin(θ )dx+ e−σ cos(θ )dy

)∧dσ
= ω1∧ω2 +ω3∧ω4

where ωi is the dual 1-form of Xi. This way, the 2-form dω can be identified with
the left-invariant 2-form deduced by left-translations from the standard symplectic
2-form on T0W:

dx∧dθ + dy∧dσ .

We remark that as the orientation is the conjugated variable of x, the scale is the
conjugated variable of y.

1.5.1.6 Eikonal Equation and Skeletonisation of Forms

The great interest of the “symplectisation” of the contact structure through the
scale consists in the fact that on any symplectic manifold it is possible to define
Hamiltonian mechanics analogous to “geometrical optics”. In our case this allows
a definition of a neural implementation of the “grassfire” models we evoked in
section 1.3.2.

In [116], given a simple image constituted by regions E delimited by edges C =
∂E , Sarti and Citti associate to every point (x,y) of the extension W ⊂ R

2 of the
image the maximal values θ̄ and σ̄ of θ and σ of the corresponding hypercolumn
(winner-take-all strategy) and interpret them (i) as the direction of the edge C at
the point which is the closest to (x,y) and (ii) as the distance (up to a factor) of
(x,y) to this point. By lifting all the points (x,y) of W , they generate a surface Σ
in the fibre bundle W, Σ =

{

(x,y, θ̄ (x,y), σ̄ (x,y))
}

. Under natural hypotheses, it is
possible to deduce “good” properties of θ̄ (x,y) and σ̄(x,y) and “good” properties
of Σ with respect to the symplectic structure. Indeed, Σ is a Lagrangian surface
of W (see section 1.2.4). Then, if θ̄ (x,y) is the orientation of the closest edge to
(x,y) and σ̄(x,y) the distance of (x,y) from this edge, the projections of the level
curves of θ̄ (x,y) are orthogonal to C = ∂E and the ones of σ̄(x,y) are parallel to
C = ∂E (see figure 1.11). They propagate the edge C through wave-fronts parallel to
C (Huyghens model) and they are solutions of the eikonal equation of geometrical
optics we met in sections 1.2.4, 1.3.2 and 1.4.5.2.
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Fig. 1.11 Level curves of θ̄(x,y) (blue) and σ̄ (x,y) (red). The first ones are orthogonal to
C = ∂E and the second ones parallel to C = ∂E. (From Sarti et al. [116]).

The singularities of this “optical” propagation define what is called the “gener-
alised axis of symmetry” or “medial axis” S, or also “skeleton”, of the form E . For
a circle it is a point (the centre). For a contour it is generically a graph of dimen-
sion 1 constituted by pieces of lines Si connected by end points and triple points.
The fundamental perceptual role of this virtual structure associated to the contour
C has been underlined, after pioneering works by Harry Blum [19], by many great
geometers and specialists in vision as René Thom, David Marr, David Mumford,
Steve Zucker or James Damon because S allows canonical decomposition of C in a
set of cylinders Ci whose axes are the Si. Consequently, it is important to notice how,
as the illusory contours, the medial axes are constitutive of perceptual geometry and
have a neurophysiological reality even if they are not present in the sensorial inputs.
This is a consequence of the functional architecture of the primary visual areas, and
we can give a neurogeometrical explanation about it.

1.5.1.7 Coherent States and Harmonic Analysis

G. Citti and A. Sarti also examined in depth the idea that the link between neuroge-
ometry and signal analysis (e.g. wavelets) is given through the notion of a coherent
state.

1. We want to analyse signals considered as vectors of a Hilbert space H (here
L2 (V)).
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2. A locally compact group G is available (here the group SE(2)) which acts
irreducibly and unitarily on H through a representation π .

3. A receptive profile ϕ0 ∈H is also available, which is well localised both in
the position space and in the Fourier space.

4. We take the orbit
{

ϕg
}

g∈G of ϕ0 under the action of G and we suppose that ϕ0

is “admissible” in the sense in which
∫

G

∣

∣

〈

ϕg, f
〉∣

∣

2
dμ (g)< ∞ for any f ∈H , with

〈., .〉 the scalar product on H and dμ (g) the Haar measure on G. We then say that
the representation π is square-integrable and we get a coherent state.

5. We process the harmonic analysis of the signals f of H using these co-
herent states. This allows representation of signals as superpositions of elemen-
tary functions and this way, in our neurogeometrical context, to measure them
neurophysiologically. The general formula is f (x) =

∫

G Tf (g)ϕg (x)dμ (g), where
Tf (g) =

〈

f ,ϕg
〉 ∈ L2 (G) is the transform of f . We can notice the structure of this

formula. We want to analyse functions f (x) and we have receptive profiles ϕg (x)
parametrised by g ∈ G. The function f (x) is constructed as an integral on G con-
sidering that x is fixed, where the coefficients Tf (g) are the respective weights of
the receptive profiles ϕg (x) in the synthesis of f (x). The coherent state

{

ϕg
}

g∈G

allows to represent the f ∈H through transforms Tf (g) =
〈

f ,ϕg
〉 ∈ L2 (G), where

the
〈

f ,ϕg
〉

are the “measures” of the signal f given by the receptive profiles ϕg.
These works on coherent states are completed by a research on the optimal forms

of receptive profiles ϕg. We saw in section 1.4.2 that the statistics of natural images
imposes strong constraints to these profiles. Other converging works showed how
functional architectures and association fields, which materialise the Gestalt princi-
ple of good continuation, reflect the statistical properties of lines and edges in natural
images. For example in [120], Mariano Sigman et al. confirmed that “the geometry
of the pattern of interactions in primary visual cortex parallels the interactions of
oriented segments in natural scenes” (p.1939). Their experimental method consists
of measuring the correlation of the orientations of the edges between an origin 0
and a second point a on a corpus of N = 4.000 natural images. In his thesis [114],
Gonzalo Sanguinetti showed how the results by Sigman converge in a remarkable
way with the neurogeometrical models of good continuation.

Moreover, taking inspiration from the fact that Gabor functions have been intro-
duced in quantum mechanics as functions sufficiently well localised both in position
and in frequency in order to optimise Heisenberg uncertainty relations, Citti, Sarti,
and their PhD students Davide Barbieri and Sanguinetti showed that optimal recep-
tive profiles can be deduced from the structure of the group SE (2) (see [10]).

1.5.1.8 International Conferences, Seminars and Special Issues

These works have been associated with international symposia in neurogeometry
organised by G. Citti and A. Sarti. The first was held in Bologna (1-3 July 2004),
Mathematical Models in Visual Perception. Then came the symposium of the Scuola
Normale Superiore of Pisa (4-9 September 2006) Neuromathematics of Vision, then,
again in Bologna (31 August-4 September 2009) the conference Sub-Riemannian
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Geometry and Vision. Many scholars as, e.g., Paul Bressloff, Jack Cowan, Guy
David, Alain Destexhe, Olivier Faugeras, Yves Frégnac, Walter Gerbino, Jan Koen-
derink, Jean Lorenceau, Lamberto Maffei, Marc Mézard, Jean-Michel Morel, Scott
Pauls, Martin Reimann, James Sethian, Wolf Singer, or Steve Zucker gave their con-
tribution. We also edited together in 2009 a double special issue (103,1− 2) Neu-
romathematics of Vision of the Journal of Physiology, Paris. Since 2011, a seminar
Neuromathématiques et modèles de perception has been held at the Institut Henri
Poincaré of Paris.

1.5.2 The Geodesics of the VJ Model

We have seen in section 1.4.10 how to interpret illusory contours as sub-Riemannian
geodesics of the VJ model. Let us now give an idea of these geodesics, and empha-
sise that, as the metric is sub-Riemannian, they are extremely different from Rie-
mannian ones, even at the infinitesimal level.

As the distribution K of the contact planes Kv is bracket generating and satisfies
Hörmander condition, a celebrated theorem of Chow says that every pair of points
(v,v′) of VJ can be connected by an integral curve of K . If K is endowed with a
sub-Riemannian metric, we can compute the length of such integral curves and look
for geodesics, which are integral curves of minimal length. The problem of com-
puting geodesics is quite difficult to solve. The 1981 work of Brockett [29] Control
Theory and Singular Riemannian Geometry is a classic reference. Excellent other
references are the already cited books of Montgomery [88] and Strichartz [125] and
also Ge [57] and Hammenstädt [63]. One of the main difficulties is that, contrary to
the Riemannian case, there can exist “abnormal” geodesics, that is geodesics which
do not satisfy the differential equation canonically associated to the geodesic varia-
tional problem. Fortunately we will not meet this “abnormality” since our models,
even if they are non trivial, remain rather elementary.

Richard Beals, Bernard Gaveau and Peter Greiner who solved with explicit for-
mulas the geodesic problem for the (non polarised) Heisenberg group emphasised
( [11], p. 634): “how complicated a control problem can become, even in the sim-
plest situation.” It was a new mathematical result since in 1977 Bernard Gaveau still
said ( [56], p. 114) that the variational problem of minimising “the energy of a curve
in the base manifold under the Lagrange condition that its lifting is given in the fiber
bundle” seemed “not yet (...) studied.”

We adapted Beals, Gaveau and Greiner computations to the polarised
Heisenberg group VJ = J1(R,R) with coordinates (x,y, p = tan(θ )), product
(x,y, p).(x′,y′, p′) = (x + x′,y + y′ + px′, p + p′) and contact planes generated by
X1 =

∂
∂x + p ∂

∂y = (1, p,0) and X2 =
∂
∂ p = (0,0,1) with Lie bracket [X1,X2] =−X3 =

(0,−1,0) = − ∂
∂y . Following the approach of Agrachev-Sachkov [3] (see section

1.5.4), let us formulate the geodesic problem as a control problem. If Γ = {v(s)} is
a smooth parametrised curve in VJ , to say that it is an integral curve of the contact
structure is to say that v̇(s) = u1X1 + u2X2 for appropriate controls u1 and u2 or, in
other words, that ẋ = u1, ẏ = pu1, ṗ = u2, the integrability condition ẏ

ẋ = p being
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automatically satisfied. To find the geodesics for the chosen sub-Riemannian metric
SR with scalar product 〈., .〉SR and norm ‖.‖SR, one minimises the Lagrangian given
by the kinetic energy L = 1

2 ‖v̇‖2
SR along such curves. L is defined on the tangent

bundle TVJ . Using Legendre transform, it can be transformed into the Hamiltonian

h(v,ϖ) = 〈ϖ , v̇〉− 1
2
‖v̇‖2

SR

= ϖ (u1X1 + u2X2)− 1
2
‖u1X1 + u2X2‖2

SR

defined on the cotangent bundle T ∗VJ . If ϖ = ξ ∗dx+η∗dy+π∗d p = (ξ ∗,η∗,π∗)
is a 1-form on VJ , then

h(v,ϖ) = ξ ∗u1 +η∗u1 p+π∗u2− 1
2

(

u2
1 ‖X1‖2

SR + 2u1u2 〈X1,X2〉SR + u2
2‖X2‖2

SR

)

.

It is natural to choose a left-invariant metric namely the sub-Riemannian metric
SRJ making {X1,X2} an orthonormal basis of the contact plane Kv since {X1,X2} is
the left-invariant basis translating the standard Euclidean orthonormal basis of K0.
This metric is not the Euclidean metric 〈., .〉E , ‖.‖E since, due to non holonomy, Eu-
clidean metric is not left-invariant. By the way, even if ‖X2‖E = 1 and 〈X1,X2〉E = 0,
we have ‖X1‖E = 1 + p2 �= 1 if p �= 0: it is only on the (x,y) plane p = 0 that
the two metrics are the same. If we choose SRJ, then ‖X1‖SRJ

= ‖X2‖SRJ
= 1,

〈X1,X2〉SRJ
= 0, and

h(v,ϖ) = ξ ∗u1 +η∗u1 p+π∗u2− 1
2

(

u2
1 + u2

2

)

= ϖ (u1X1 + u2X2)− 1
2

(

u2
1 + u2

2

)

.

One can then apply a fundamental result of control theory called the Pontrya-
gin maximum principle, which generalises the classical method of variational cal-
culus using Euler-Lagrange equations and Lagrange multipliers (see Agrachev,
Gamkrelidze [4]) we employed in our first synthesis [101]. It says that geodesics
are projections on VJ of the trajectories of the Hamiltonian H having maximis-
ing controls u j,max. The maximisation conditions are ∂h

∂u1
= ϖ (X1)− u1 = 0 and

∂h
∂u2

= ϖ (X2)− u2 = 0 and therefore

H (v,ϖ) = u1ϖ (X1)+u2ϖ (X2)− 1
2

(

u2
1 +u2

2

)

=
1
2

(

u2
1 +u2

2

)

=
1
2

(

〈ϖ ,X1〉2 + 〈ϖ ,X2〉2
)

and in terms of coordinates:

H (x,y, p,ξ ∗,η∗,π∗) =
1
2

[

(ξ ∗+ pη∗)2 +π∗2
]

.

The structure of geodesics implies that the sub-Riemannian sphere S (the ends
of geodesics from 0 of sub-Riemannian length = 1, which are global minimisers)
and the wave front W (the ends of geodesics from 0 of sub-Riemannian length = 1,
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which are not necessarily global minimisers) are rather strange. In particular, the cut
locus of 0 (that is the ends of geodesics when they cease to be globally minimising),
and the conjugate locus or caustic of 0 (that is the singular locus of the exponential
map E integrating geodesics) are rather complex.

The Hamilton equations on T ∗VJ derived from the Hamiltonian H are

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ(s) = ∂H
∂ξ ∗ = ξ

∗+ pη∗

ẏ(s) = ∂H
∂η∗ = p(ξ ∗+ pη∗) = pẋ(s) (i.e. p = ẏ

ẋ = dy
dx , integrability condition)

ṗ(s) = ∂H
∂π∗ = π

∗

ξ̇ ∗(s) =− ∂H
∂x = 0

η̇∗(s) =− ∂H
∂y = 0

π̇∗(s) =− ∂H
∂ p =−η∗ (ξ ∗+ pη∗) =−η∗ẋ(s)

As H is independent from x and y, the derivatives ξ̇ ∗(s) = − ∂H
∂x and η̇∗(s) = − ∂H

∂y
vanish, and the momenta ξ ∗ and η∗ are therefore constant along any geodesic:
ξ ∗ = ξ ∗0 and η∗ = η∗0 . This fact simplifies the equations since ẋ(s) = ξ ∗0 + pη∗0 ,
ẏ(s) = p(ξ ∗0 + pη∗0), and π̇∗(s) = −η∗0 (ξ ∗0 + pη∗0). We emphasise the relations
p̈ = π̇∗ =−η∗ẋ and ẍ = η∗ ṗ, or (ẍ, p̈) = η∗ (ṗ,−ẋ), which means that in the (x, p)
plane the acceleration is orthogonal to the velocity and geodesics are circles whose
radius increases when η∗0 decreases (at the limit η∗0 = 0 the circle becomes a straight
line). By the way, H (x,y, p,ξ ∗,η∗,π∗) = 1

2

(

ẋ2 + ṗ2
)

since, by construction, the
Hamiltonian H is the kinetic energy of the projection of the trajectories on the (x, p)
plane.

Computations show how the (x, p) = z part of the geodesics from 0 to
(x1 = x(τ),y1 = y(τ), p1 = p(τ)) is given by the formulas:

⎧

⎪

⎨

⎪

⎩

x(s) =
sin( s

2η
∗
0)

sin( τ2η
∗
0 )

(

cos
(

(τ−s)
2 η∗0

)

x1− sin
(

(τ−s)
2 η∗0

)

p1

)

p(s) =
sin( s

2η
∗
0)

sin( τ2η
∗
0)

(

sin
(

(τ−s)
2 η∗0

)

x1 + cos
(

(τ−s)
2 η∗0

)

p1

)

which are effectively the equations of a circle

x2 + p2− x

(

x1 + p1 cot

(

η∗0 τ
2

))

− p

(

p1− x1 cot

(

η∗0 τ
2

))

= 0

passing through 0 and (x1, p1), with center

xc =
1
2

(

x1 + p1 cot

(

η∗0 τ
2

))

,yc =
1
2

(

p1− x1 cot

(

η∗0 τ
2

))

and radius

r2 =
1
4

(

x2
1 + p2

1

)

(

1+ cot

(

η∗0τ
2

))

=
1

4sin2
(

η∗0 τ
2

) |z1|2 .
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One verifies that the constant value of the Hamiltonian along a trajectory is:

H0 =
η∗20

8sin2
(

η∗0 τ
2

) |z1|2 = η∗20

2
r2 .

For y(s), computations are more involved. We get

y(s) =
1

8
(

cos
(

η∗0 τ
)− 1

) [−2η∗0 s
(

x2
1 + p2

1

)− 4x1p1 cos(η∗0 (s− τ))+

2
(

x2
1− p2

1

)

sin(η∗0 (s− τ))+
2x1 p1 cos(η∗0 (2s− τ))− (x2

1− p2
1

)

sin(η∗0 (2s− τ))+
2x1 p1 cos(η∗0 τ)+

(

x2
1− p2

1

)

sin(η∗0 τ)+

2
(

x2
1 + p2

1

)

sin(η∗0 s)] .

In terms of ξ ∗0 , π∗0 , η∗0 and τ the formula writes:

y(s) = ξ ∗20
2η∗0 s+ sin(2η∗0 s)

4η∗20

− ξ ∗20
sin(η∗0 s)

η∗20

+ ξ ∗0π
∗
0

sin2 (η∗0 s)

η∗20

−

ξ ∗0 π
∗
0

1− cos(η∗0 s)

η∗20

+π∗20
2η∗0 s− sin(2η∗0 s)

4η∗20

.

The key point is that these equations explain the origin of the striking multiplicity
of sub-Riemannian geodesics connecting two points. Let us indeed compute y1 =
y(τ). We find

y1 =
1
2

x1 p1 +
x2

1 + p2
1

4

⎡

⎣

(

η∗0 τ
2

)

sin2
(

η∗0 τ
2

) −
cos
(

η∗0 τ
2

)

sin
(

η∗0 τ
2

)

⎤

⎦ .

If we introduce the new variable ϕ =
η∗0 τ

2 , we see that we must solve the equation

4

(

y1− 1
2

x1 p1

)

= μ(ϕ) |z1|2

where μ(ϕ) is the function

μ(ϕ) =
ϕ

sin2(ϕ)
− cot(ϕ) .

It is the function μ(ϕ) which is the key of the strange behaviour of sub-Riemannian
geodesics. It is an odd function that diverges for ϕ = kπ (k �= 0) (i.e. η∗0 τ = 2kπ)
and presents critical points when ϕ = tan(ϕ). But when ϕ = tan(ϕ), we have
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Fig. 1.12 The function μ(ϕ) occuring in the construction of sub-Riemannian geodesics of
the polarised Heisenberg group VJ (the scale of the two axes are not the same)

μ(ϕ) =
tan(ϕ)
sin2(ϕ)

− cot(ϕ)

=
1− cos2(ϕ)

cos(ϕ)sin(ϕ)
= tan(ϕ) = ϕ ,

and the minima of μ(ϕ) are on the diagonal. The graph of μ(ϕ) is represented in
figure 1.12.

Let us compute the length of geodesics. Let γ be a geodesic starting at 0 and
ending at time τ at (x1,y1, p1) = (z1, p1). If L is its length, we have L =

∫ τ
0 �ds

with �2 = (ξ ∗+ pη∗)2 + π∗2 the squared norm of γ̇ in the contact plane endowed
with the orthonormal basis

{

X1 = ∂x + p∂y,X2 = ∂p
}

. But �2 = 2H = 2H0 since the
Hamiltonian is constant along its trajectories, and we know that

H0 =
η∗20

8
1

sin2
(

η∗0 τ
2

) |z1|2 .

So, with
η∗0 τ

2 = ϕ ,

L =
√

2

(

η∗0 τ
2

)

1
∣

∣

∣sin
(

η∗0 τ
2

)∣

∣

∣

|z1|=
√

2
ϕ

|sin(ϕ)| |z1| .

In the sub-Riemannian geometry of VJ , the sphere S and the wave front W (with
radius

√
2) are given by the fundamental equation

|z1|= |sin(ϕ)|
ϕ

.
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Fig. 1.13 A piece of the sub-Riemannian wave front W . The external surface is the sub-
Riemannian sphere S. The internal part is W − S. It presents smaller and smaller circles of
cusp singularities which converge to 0.

We get therefore

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x1 =
|sin(ϕ)|
ϕ cos(θ )

p1 =
|sin(ϕ)|
ϕ sin(θ )

y1 =
1
2 x1 p1 +

ϕ−sin(ϕ)cos(ϕ)
4ϕ2

= 1
2

sin2(ϕ)
ϕ2 cos(θ )sin(θ )+ ϕ−cos(ϕ)sin(ϕ)

4ϕ2

= ϕ+2sin2(ϕ)cos(θ)sin(θ)−cos(ϕ)sin(ϕ)
4ϕ2

We present in figure 1.13 pieces of S and W . The external surface is the sub-
Riemannian sphere S. It has a saddle form with singularities at the intersections
with the y-axis. The internal part is W −S. It presents smaller and smaller circles of
cusp singularities which converge to 0. Such a complex behaviour is impossible in
Riemannian geometry.

1.5.3 New Collaborations with Neurosciences and Psychophysics

In parallel to these mathematical developments, other enrichments of neurogeome-
try during the 2000s came from the continuation of the dialogue with the colleagues
of neurosciences and psychophysics we already cited.
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Fig. 1.14 In the left figure, Δxv represents the eccentricity of the distal retinal stimulus (the
white segment to the left) with respect to the stimulus localised in the MDF (the white seg-
ment to the right, in the grey rectangle). Δxc represents the cortical distance between the
neurons of V 1 activated by the two stimuli. Δxt is the time of latency induced by the propa-
gation along the horizontal connection. In the right figure, above we see the MDF (“minimal
discharge field” defined by the spiky responses) in the (x,y) plane and its temporal evolution
in the space (x, t). We see below the SIF (“synaptic integration field”) defined by the sublim-
inal activity. The SIF is distinctly more extended than the MDF. (From Frégnac et al. [55]).

1.5.3.1 The UNIC Lab of Yves Frégnac

The links with the laboratory UNIC of the CNRS (Gif-sur-Yvette) directed by Yves
Frégnac (my successor in 2010 at the Ecole Polytechnique) have been particularly
fruitful. We cite some results relevant for neurogeometry.

(i) The functional architecture of V1 leads to redefinition of the classic concept
of receptive field as a domain of the retinal field where localised stimuli elicit spiky
responses. This minimal discharge field (MDF) is narrow and does not takes into
account the fact that horizontal lateral connections induce strong contextual ef-
fects which are important for contour integration, surface perception, segmentation,
figure-ground distinction, etc. Figure 1.14 by Yves Frégnac et al. [55] schematises
the way in which the MDF widens, thanks to the propagation of cortical waves along
the horizontal connections, into a synaptic integration field (SIF).

(ii) Experimental advances allowed consideration of the response of visual neu-
rons not only to simple stimuli, as bars or gratings, but also to natural images whose
structure is much more complex. We already mentioned that in section 1.4.2. The
results of the UNIC team are really interesting, for example the replicability of the
fine structure of the trains of spikes emitted by an axon is far more strong.
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1.5.3.2 Entoptic Vision and the Ermentrout-Cowan-Bressloff-Golubitsky
Model

Furthermore, Yves Frégnac indicated to me some remarkable works of Bard Ermen-
trout, Jack Cowan, Paul Bressloff and Martin Golubitsky on visual hallucinations, in
particular in their 2001 article [28]. Visual hallucinations belong to entoptic vision,
in particular the purely geometric ones which show morphological patterns such as
tunnels and funnels, spirals, lattices (honeycombs, triangles), or cobwebs. They are
very interesting because they are completely virtual (without any input). They were
studied during the 1920s by Gestalt theoreticians such as Klüver (see [75]). They
are morphologies of phosphenes perceived after strong pressions on the eyeballs
(mechanichal stimulation), electro-magnetic stimulations (transcranial magnetic
stimulation, electrical stimulation via implanted micro-electrodes), exposures to a
violent flickering light, headaches, absorptions of substances such as mescaline,
LSD, psilocybin, ketamin, some alkaloids (peyote) (neuropharmaco stimulation),
or near death experiences (see Fregnac [54]). They depend upon an increased ab-
normal excitability of the photoreceptors and of V1. In the case of ingestion of a
substance, a qualitative explanation is that the substance shifts the balance of activ-
ity of the brain away from its ground state, by a vector representing the profile of
binding affinities at different receptors. The bifurcation of the brain state explains
the hallucination.

The key result of Bressloff et al. [28] is that these hallucinations can be deduced
from the encoding of the functional architecture of V1 into the Hopfield equations of
a neural net (see section 1.3.5). They work with the fibre bundle πS :VS =R

2×S1→
R

2 with coordinates v = (a,θ ) labelling the “simple” neurons. Let E(a,θ , t) be the
activity of V1. They look for the PDE governing the evolution of E using a standard
Hopfield equation:

∂E(a,θ , t)
∂ t

=−αE(a,θ , t)+
μ
π

∫ π

0

∫

R2
w
〈

a,θ |a′,θ ′〉σ (E(a′,θ ′, t))da′dθ ′+h(a,θ , t)

where σ is a non linear gain function (with σ(0) = 0), h an external input, and
w〈a,θ |a′,θ ′〉 the weight of the connection between the neuron v = (a,θ ) and the
neuron v′ = (a′,θ ′), α a parameter of decay (α can be taken = 1) and μ a parameter
of excitability of V1. The increasing of μ models an increasing of the excitability of
V1 due to the action of substances on the nuclei which produce specific neurotrans-
mitters (such as serotonin or noradrenalin).

Then the authors specify this general model by encoding the characteristic ge-
ometry of coaxial alignments into the synaptic weights, an hypothesis which we
interpreted as a fundamental link between neural nets theory and sub-Riemannian
neurogeometry. They impose (i) that the local “vertical” connections inside a
single hypercolumn must be of the form w〈a,θ |a′,θ ′〉 = wloc (θ −θ ′)δ (a− a′)
where δ (a− a′) is a Dirac distribution prescribing a = a′ and wloc (θ −θ ′) is a
given even function (in general a Gaussian centered at 0), while (ii) the lateral
“horizontal” connections between different hypercolumns must be of the form
w〈a,θ |a′,θ ′〉 = wlat (s)δ (a− a′ − seθ )δ (θ −θ ′) where the factor δ (θ −θ ′)
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prescribes parallelism θ = θ ′, the factor δ (a− a′ − seθ ) (where eθ is the unit vector
along the direction θ ) prescribes alignment, and wlat (s) is a given function depend-
ing only upon the distance. It is straightforward to verify that the synaptic weights
w are E(2)-invariant under the group E(2) = R

2
�O(2) and that the PDE is itself

E(2)-equivariant if h = 0.
If there exists no external input (h = 0) and if μ = 0, that is if the subject is

in the dark and sees nothing, then his V1 activity is in its “ground state” (which
can be very complex: endogeneous activity, spontaneous noise, etc.). In the model,
the “ground state” is the homogeneous state E ≡ 0. It is stable and the activity E
measures the shift of the V1 state away from the “ground state” when h = 0 but
μ �= 0. Now, the analysis of the PDE shows that, as the parameter μ increases, this
initial state E ≡ 0 can become unstable and bifurcate, for critical values μc of μ ,
towards new stable states presenting spatial patterns generated by an E(2) symmetry
breaking. The bifurcations can be analysed using classical methods: (i) linearisation
of the PDE near the solution E ≡ 0 and the critical value μc; spectral analysis of
the linearised equation; computation of its eigenvectors (eigenmodes); hypothesis
of periodicity with respect to a lattice Λ of R2. The last step is to reconstruct from
eigenmodes in V1 virtual retinal images using the inverse of the retinotopic map
between the retina and V1. The mathematical model fits extremely well with the
empirical data.

This model by Bressloff’s et al. [28] was later improved, for example in [27]. It
is fundamental for (at least) three reasons.

1. First, it is in resonance with the two main streams in modelling we previously
evoked: (i) brain dynamics, their attractors and bifurcations (section 1.2.6), (ii)
neural nets (section 1.3.5).

2. As much as neural nets are concerned, it is one of the first examples in which the
synaptic weights are not considered in a statistical way but as something which
encodes a functional architecture. The consequences are spectacular.

3. It offers a perfect example of the enormous gap separating, on one side, a phe-
nomenological lived-experience of perceptual geometry (to experience the hal-
lucinations) and, on the other side, a neural explanation. We can use it to test
the contemporary philosophical discussion between phenomenology and neu-
rosciences on “neural correlates of consciousness”, developed by colleagues as
David Chalmers, Alva Noë, Evan Thompson or Shaun Gallagher. It shows how,
in contrast to the beliefs of many philosophers, what Noë and Thompson call the
“structural coherence of perceptual experience” can be build up out of receptive
fields if we take into account neural functional architectures (see [105]).

(iv) Another important cooperation has been the organisation, with Jean
Lorenceau in 2003 in the Journal of Physiology-Paris, whose Editor-in-Chief is
Yves Frégnac, of a double special issue Neurogeometry and Visual Perception. The
interested reader will find, in addition to the articles of the three editors, texts by
Hess-Hayes-Field, Lee, Angelucci-Bullier, Kimia,.Zucker et al., Ermentrout et al.,
Bressloff-Cowan, McLaughlin-Shapley-Shelley, Wolf-Geisel, Morel et al., Leaci et
al., Tallon Baudry, Van Rullen, Sarti-Citti-Manfredini.
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Many other conferences (Valparaiso, Rome, Bolzano, etc.) played an important
role in these developments from 2000, as well as many working groups. First the
seminar “Géométrie et Cognition”, organised at the ENS of Paris by Giuseppe
Longo and Bernard Teissier. Then, from 2004, the research program NIM of the
CNRS (“Nouvelles Interfaces des Mathématiques”) on the “Neurogéométrie de V1”
which grouped colleagues from the LPPA of Alain Berthoz at the Collège de France
(Jacques Droulez, specialist in models of vision, Chantal Milleret, specialist of the
corpus callosum, Daniel Bennequin, specialist of contact structures and singulari-
ties), and of the UNIC of Yves Frégnac. In 2006, the annual day of the SMF (Société
Mathématique de France) has been dedicated to the topic Géométrie et Vision with
talks by Jean-Michel Morel, Stéphane Mallat and myself.

An important development on the “vertical” part of the models VJ and VS has
been introduced in 2006 by Olivier Faugeras and Pascal Chossat [34]. Their main
idea is that hypercolumns of V1 encode (of course at a given scale defined by the size
of the receptive fields) not only local features such as orientation or curvature but
the whole symmetric definite positive “structure tensor” T of the (smooth) stimulus
I(x,y). T is given by

T =

⎛

⎜

⎝

(

∂ I
∂x

)2 ∂ I
∂x
∂ I
∂y

∂ I
∂y
∂ I
∂x

(

∂ I
∂y

)2

⎞

⎟

⎠
.

As they claim: “a hypercolumn in V1 can represent the structure tensor in the re-
ceptive field of its neurons as the average membrane potential values of some of
its neuronal population”. Now, the space H of 2× 2 symmetric definite positive
matrices T is the 3D hyperbolic quotient space GL(2,R)/O(2) foliated in 2D
leaves by det(T ) (det = determinant). For det(T ) = 1, the leaf is the quotient
SL(2,R)/SO(2) which is isomorphic to the hyperbolic Poincaré disk D. An inter-
esting problem is then to add the spatial variables a and look at the bifurcations of
activity functions E(a,z, t) defined on the fibre bundle R

2×D with base space R
2

(group E(2)) and fibre D (group SU(1,1)).
In 2011, Olivier Faugeras, Paul Bressloff, Nicolas Brunel, Wulfram Gersmer

and Viktor Jirsa organised the first special trimester of the CIRM (Centre Inter-
national de Rencontres Mathématiques de Marseille-Luminy) dedicated to Theo-
retical, Mathematical and Computational Neuroscience. The program included a
course of neurogeometry as well as four conferences, among which one has been
organised by Paul Bressloff and Stephen Coombes and a second by Viktor Jirsa and
Gustavo Deco.

1.5.4 Neurogeometry and Control Theory (Agrachev’s Group)

We saw in section 1.5.2 how to compute the sub-Riemannian geodesics of the VJ

model. What about the VS model?
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1.5.4.1 The Geodesics of the VS Model

In 2006 a colleague of mine at CREA, Helena Frankowska, specialist in control
theory and in the Hamilton-Jacobi-Bellman equation, put me in contact with An-
drei Agrachev of the SISSA (International School for Advances Studies) in Trieste.
With A. Sarti and G. Citti, we organised a meeting with him at the IHP. He was
interested in our discussions on the use of sub-Riemannian geometry in problems
related to vision, and some fruitful cooperation quickly started with him, and with
some members of his group, in particular Jean-Paul Gauthier, Ugo Boscain and Yuri
Sachkov.

Andrei Agrachev rapidly found the formulas of the geodesics for VS = SE (2)
endowed with the sub-Riemannian metric making {X1,X2} an orthonormal basis
of Kv. The formulation of the problem in terms of control theory yields the differ-
ential system

{

ẋ = u1 cos(θ ) , ẏ = u1 sin(θ ) , θ̇ = u2
}

. Applying Pontryagin maxi-
mum principle, one gets the Hamiltonian on T ∗VS

H(v,ϖ) =
1
2

(

u2
1 + u2

2

)

=
1
2

(

〈ϖ ,X1(v)〉2 + 〈ϖ ,X2(v)〉2
)

=
1
2

(

ϖ2
1 +ϖ2

2

)

=
1
2

(

(ξ ∗ cos(θ )+η∗ sin(θ ))2 +ϑ ∗2
)

where {ϖ1,ϖ2,ϖ3} are the components of the covector ϖ in the dual basis of
{X1,X2,X3}. Hence the Hamilton equations:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ẋ = ∂H
∂ξ ∗ = ξ

∗ cos2 (θ )+η∗ cos(θ )sin(θ )
ẏ = ∂H

∂η∗ = η
∗ sin2 (θ )+ ξ ∗ cos(θ )sin(θ )

θ̇ = ∂H
∂ϑ∗ = ϑ

∗

ξ̇ ∗ =− ∂H
∂x = 0

η̇∗ =− ∂H
∂y = 0

ϑ̇ ∗ =− ∂H
∂θ = (ξ ∗ cos(θ )+η∗ sin(θ ))(−ξ ∗ sin(θ )+η∗ cos(θ ))

The sub-Riemannian geodesics are the projections on VS of the solutions. As
ξ ∗ = ξ ∗0 and η∗ = η∗0 are constant, if one writes them (ξ ∗0 ,η∗0 ) = ρ0eiβ0 , then ϑ̇ ∗ =
1
2ρ

2
0 sin(2(θ −β0)) and the constant Hamiltonian H = 1

2

(

ρ2
0 cos2 (θ −β0)+ϑ ∗2

)

yields the energy first integral ρ2
0 cos2 (θ −β0)+ϑ ∗2 = c (with c = 1 if H = 1

2 ) and
the ODE for θ̇ (c, ρ0 and β0 are constants) θ̇ 2 = ϑ ∗2 = c− ρ2

0 cos2 (θ −β0). For
β0 = 0 (which is allowed by rotation invariance), the equations become:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

ẋ = ρ0 cos2 (θ )
ẏ = ρ0 cos(θ )sin(θ ) = 1

2ρ0 sin(2θ )
θ̇ = ϑ ∗
θ̈ = ϑ̇ ∗ = 1

2ρ
2
0 sin(2θ )
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Fig. 1.15 The segments induce an illusory contour which can be perceived as a square or
a circle. In general, initial perception consists in a circle, but it can bifurcate after a certain
period of sight.

For ρ0 = 1, 2θ = π − μ , and μ = 2ϕ = π − 2θ , one gets a pendulum equation
μ̈ =−sin(μ) with first integral ϕ̇2 + sin2 (ϕ). As

dt =± 1√
c

dϕ
√

1− 1
c sin2 (ϕ)

the system can be explicitly integrated using elliptic functions.
A fundamental property of these geodesics is that, under certain conditions, when

the deviation from parallelism between the boundary conditions (a1,θ1) and (a2,θ2)
becomes too wide, they become singular and present some cusps. At the level of
the underlying pendulum equation, this corresponds to oscillating solutions. Yuri
Sachkov and Igor Moiseev [87] studied these cusps and explicitly constructed the
sphere, the wave-front and the cut locus of the sub-Riemannian geometry of SE (2).
Their complexity is remarkable.

These singularities are very interesting and can perhaps explain an intriguing as-
pect of illusory contours, namely their bistability. Let’s consider for example the
cross in figure 1.15. The segments induce (with the cooperation of V2 which in-
duces orientations orthogonal to the segments at their end points) an illusory con-
tour which can be perceived as a square or a circle. If we look at the image for a
sufficiently long period the percepts spontaneously and periodically bifurcates from
a case to the other one.

In the context of a variational explanation of illusory contours, this shows how
two models can compete: a geodesic model where the curvature is maximally
spread out and, on the other side, a piecewise linear model which concentrates all
the curvature in some angular points (the curvature is null everywhere except at
these points where it is infinite). In the case of an illusory contour between (a1,θ1)
and (a2,θ2), experimental data seem to show that, if the difference |θ1−θ2| exceeds
a certain threshold, the geodesic model is replaced by the piecewise linear model.
We can formulate the conjecture that this bifurcation of variational models occurs
when the geodesics become singular because of the emergence of cusps. In fact a
cusp occurs when a geodesic has a “vertical” tangent, i.e. a tangent to the fibre of the



1.5 Developments in Neurogeometry after 2000 73

fibration πS : VS = R
2×S

1→ R
2. But, in neurophysiological terms this means that

some “horizontal” excitatory connections between different hypercolumns must be
identified with “vertical” inhibitory connections internal to a single hypercolumn,
which is not possible. Bi-modality could then be caused by the fact that the period
of fixation “stresses” the selected model and allows its bifurcation.

1.5.4.2 Elastica Revisited

In section 1.3.3 we cited the elastica variational model [90] proposed in 1992
by David Mumford for illusory contours. It consists in minimising an energy
E =

∫

γ(ακ2 + β )ds where γ is a curve in R
2 with element of arc length ds. For

α = β = 1, its formulation as a control problem on the group G = SE (2) = VS

can be written
{

ẋ = cos(θ ) , ẏ = sin(θ ) , θ̇ = κ
}

where the derivatives are taken
with respect to the arc length s and where κ = dθ

ds is the curvature of γ . This
model is defined in the base plane R

2 with Euclidean metric, and not with re-
spect to the sub-Riemannian metric in G, because, in G, ds is not the element of
arc length. The element of arc length in G is dt =

√

1+κ2 (s)ds and the curvature

κG (s) = dθ(t(s))
dt = dθ

ds
ds
dt =

κ(s)√
1+κ2(s)

satisfies the pendulum equation (with respect to

s) κ̈G (s) = κG (s). Yuri Sachkov [110] investigated the elastica and compared them
to the sub-Riemannian geodesics. The problem is difficult because of the cusps.
He later deepened his investigation with Ugo Boscain, Remco Duits and Francesco
Rossi [23].

We also saw in section 1.3.3 how David Mumford gave a stochastic inter-
pretation of his elastica model by supposing that the curvature κ(s) of γ in
R

2 is a white noise and that the angle θ (s) is therefore a Brownian motion.
In terms of control theory, this is equivalent to consider the stochastic process
{

ẋ = cos(θ ) , ẏ = sin(θ ) , θ̇ ∼ N
(

0,σ2
)}

where θ̇ is now a normal random Gaus-
sian variable of mean 0 and variance σ2. This process has been studied by Gonzalo
Sanguinetti (in his thesis supervised by G. Citti and A. Sarti) and also by Remco
Duits and Markus van Almsick. It is no longer a mere diffusion but an advection-
diffusion mechanism described by a Fokker-Planck equation. The advection (the
drift) occurs along the X1 direction and the diffusion of θ occurs along the X2 direc-
tion. The fundamental solution of the Fokker-Planck equation being too complex in
the VS model, the authors come back to the first order approximation of G = SE(2)
(its tangent cone or nilpotentisation), that is to our VJ model based on the polarised
Heisenberg group. Let v0 = (x0,y0,θ0) = (a0,θ0) be an initial point in G and let us
follow a random walk starting at v0. Whithout noise, the trajectory is of course deter-
ministic and is a straight line satisfying the principle of strict coaxiality (without any
curvature): {θ = θ0,x = x0 + cos(θ0)t,y = y0 + sin(θ0)t}. If v = (x,y,θ ) = (a,θ )
is a generic element of G and if P(v, t) is the probability to find the random walk at
v at time t, the evolution equation for P with initial condition P0 (v) = P(v,0) is
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∂P
∂ t

(v, t) =−
(

cos(θ )
∂P
∂x

(v, t)+ sin(θ )
∂P
∂y

(v, t)

)

+
σ2

2
∂ 2P
∂θ 2 (v, t)

∂P
∂ t

(v, t) =−X1 (P(v, t))+
σ2

2
(X2)

2 (P(v, t)) .

For the VJ model where θ is small, θ ∼ tan(θ ) = p, the Fokker-Planck equation is
therefore

∂P
∂ t

(v, t) =−
(

∂P
∂x

(v, t)+ p
∂P
∂y

(v, t)

)

+
σ2

2
∂ 2P
∂ p2 (v, t)

The authors solve this equation and, to complete a contour with boundary conditions
v0 = (a0,θ0) and v1 = (a1,θ1), consider two direction processes, a forward process
starting at v0 and a backward process starting at v1. They compute the probability of
collision of these two random walks.

1.5.4.3 Sub-Riemannian Diffusion, Heat Kernel, and Noncommutative
Harmonic Analysis (Gauthier, Boscain)

We underlined in section 1.5.1.3 the importance and the difficulties of the sub-
Riemannian diffusion techniques. We evoked the works of some specialists and also
the neurogeometrical applications made by G. Citti and A. Sarti in this domain.
These techniques belong to the general theory of heat kernels on Riemannian and
sub-Riemannian manifolds. The specialised literature on them is enormous. We al-
ready cited Rothschild-Stein [109] and Nagel-Stein-Wainger [92]. Let us cite also
Davies [44], Varopoulos [136], Saloff-Coste [111], Kusuoka-Stroock [78], Coulhon-
Grigor’yan [40], and ter Elst-Robinson [127].

On their side, A. Agrachev, J-P. Gauthier, U. Boscain and their Ph.D. student F.
Rossi, following previous results by Hulanicki [71], gave an “intrinsic” formulation
of the sub-Riemannian Laplacian and proved in 2009 [5] a general theorem for the
unimodular Lie groups (i.e. whose Haar measures, invariant to the left and to the
right, are identical) of dimension 3 endowed with a left-invariant sub-Riemannian
geometry. They use the noncommutative generalised Fourier transform (GFT) de-
fined on the dual space G∗ of G (the set of irreducible unitary representations in
Hilbert spaces) to compute the heat kernel associated to the hypoelliptic Laplacian
ΔK = X2

1 +X2
2 , i.e. the sum of squares of the generators {X1,X2} of the distribution

K . The Laplacian is hypoelliptic due to the fact that K is bracket generating, i.e.
satisfies Hörmander condition.

The use of the Fourier transform on groups to compute heat kernels and fun-
damental solutions of diffusion equations has a long history. The interested reader
could consult the already cited pater of Geller [58], Christ et al. [35] and more
recently the book of Calin-Chang-Furutani-Iwasaki Heat Kernels for Elliptic and
Sub-Elliptic Operators [30].

In the case of the polarised Heisenberg Lie group VJ , we have seen in section
1.4.9.6 that, according to the Stone-von Neumann theorem, the non trivial unirreps
are group morphisms πλ from VJ to the group U (H ) of unitary automorphisms of
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the Hilbert space H = L2 (R,C), morphisms parametrised by a real scalar λ �= 0.
They are of the form (u(s) ∈H ):

πλ : VJ → U (H )
v �→ πλ (v) : H → H

u(s) �→ eiλ (y+xs)u(s+ p) .

There exists a measure on the dual sace V∗J , called the Plancherel measure, given by
dP(λ )= λdλ which enables making integrations. To compute the Fourier transform
of the sub-Riemannian Laplacian ΔK , one looks at the action of the differential of
the unirreps on the left-invariant vector fields X on VJ , which are given by the left
translation of vectors X (0) of the Lie algebra VJ of VJ . By definition,

dπλ : X → dπλ (X) :=
d
dt

∣

∣

∣

∣

t=0
πλ
(

etX)

and one gets the Fourier transform ̂Xi
λ
= dπλ (Xi) . Computations yield X1 (0) =

(1,0,0), etX1 = (t,0,0), πλ
(

etX1
)

u(s) = eiλ tsu(s),

̂X1
λ

u(s) = dπλ (X1)u(s) =
d
dt

∣

∣

∣

∣

t=0
πλ
(

etX1
)

u(s)

=
d
dt

∣

∣

∣

∣

t=0
eiλ tsu(s) = iλ su(s)

and X2 (0) = (0,0,1), etX2 = (0,0, t), πλ
(

etX2
)

u(s) = u(s+ t),

̂X2
λ

u(s) = dπλ (X2)u(s) =
d
dt

∣

∣

∣

∣

t=0
πλ
(

etX2
)

u(s)

=
d
dt

∣

∣

∣

∣

t=0
u(s+ t) =

du(s)
ds

.

The GFT of the sub-Riemannian Laplacian is therefore the Hilbert sum (integral on

λ with the Plancherel measure dP(λ ) = λdλ ) of the ̂ΔK
λ

with

̂ΔK
λ

u(s) =

(

(

̂X1
λ)2

+
(

̂X2
λ)2

)

u(s) =
d2u(s)

ds2 −λ 2s2u(s) .

This equation is nothing else than the equation of the harmonic oscillator.
The heat kernel is then

P(v, t) =
∫

V∗J
Tr

(

et̂ΔK
λ
πλ (v)

)

dP(λ ) , t ≥ 0 .

If the ̂ΔK
λ

have discrete spectrum and a complete set of normalised eigenfunctions
{

uλn
}

with eigenvalues
{

αλn
}

then
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P(v, t) =
∫

V∗J

(

∑
n

eα
λ
n t
〈

uλn ,πλ (v)
(

uλn
)〉

)

dP(λ ) , t ≥ 0 .

It is the case here. The eigenfunctions of the harmonic oscillator are well know and
satisfy:

d2uλn (s)
ds2 −λ 2s2uλn (s) = αλn uλn (s)

with αλn =− 2n+1
λ . They are essentially the Hermite functions scaled by λ :

uλn (s) =
(

2nn!
√
π
)− 1

2 λ
1
4 e−λ

s2
2 Hn

(√
λs
)

Hn being the n-th Hermite polynomial.
In the case of SE (2) = VS, A. Agrachev, J-P. Gauthier, U. Boscain, and F. Rossi

found explicit formulas for the heat kernel. The dual V∗S of VS is this time the set of
unirreps in the Hilbert space H = L2

(

S
1,C

)

. These unirreps are parametrised by a
positive real λ and are of the form:

X λ : VS → U (H )

v �→ X λ (v) : H → H
ψ (θ ) �→ eiλ (xsin(θ)+ycos(θ))ψ (θ +α) .

The Plancherel measure on V
∗
S is still dP(λ ) = λdλ . As we have previously ex-

plained it, we get X λ (etX1
)

ψ (θ ) = eiλ t sin(θ)ψ (θ ) and

̂X1
λ
ψ (θ ) = dX λ (X1)ψ (θ ) =

d
dt

∣

∣

∣

∣

t=0
X λ (etX1

)

ψ (θ )

=
d
dt

∣

∣

∣

∣

t=0
eiλ t sin(θ)ψ (θ ) = iλ sin (θ )ψ (θ )

and X λ (etX2
)

ψ (θ ) = ψ (θ + t) and

̂X2
λ
ψ (θ ) = dX λ (X2)ψ (θ ) =

d
dt

∣

∣

∣

∣

t=0
X λ (etX2

)

ψ (θ )

=
d
dt

∣

∣

∣

∣

t=0
ψ (θ + t) =

dψ (θ )
dθ

.

The GFT of the sub-Riemannian Laplacian is therefore the Hilbert sum of the ̂ΔK
λ

with

̂ΔK
λ
ψ (θ ) =

(

(

̂X1
λ)2

+
(

̂X2
λ)2

)

ψ (θ ) =
d2ψ (θ )

dθ 2 −λ 2 sin2 (θ )ψ (θ )



1.5 Developments in Neurogeometry after 2000 77

which is nothing else than the Mathieu equation. The heat kernel is

P(v, t) =
∫

V∗S
Tr

(

et̂ΔK
λ
X λ (v)

)

dP(λ ) , t ≥ 0 .

The ̂ΔK
λ

have discrete spectrum and a complete set of normalised eigenfunctions
{

ψλn
}

with eigenvalues
{

αλn
}

and therefore

P(v, t) =
∫

V∗S

(

∑
n

eα
λ
n t
〈

ψλn ,X
λ (v)

(

ψλn
)〉

)

dP(λ ) , t ≥ 0 .

The 2π-periodic eigenfunctions of the Mathieu equation satisfy:

d2ψ (θ )
dθ 2 −λ 2 sin2 (θ )ψ (θ ) = Eψ (θ )

and, as sin2 (θ ) = 1
2 (1− cos(2θ )), this means:

d2ψ (θ )
dθ 2 − λ

2

2
ψ (θ )−Eψ (θ )+

λ 2

2
cos (2θ )ψ (θ ) = 0

d2ψ (θ )
dθ 2 +(a−2qcos (2θ ))ψ (θ ) = 0, with a =−

(

λ 2

2
+E

)

and q =−λ
2

4
.

The normalised 2π-periodic eigenfunctions are known: they are even or odd and
denoted cen(θ ,q) and sen(θ ,q). The associated an(q) and bn(q) are called charac-
teristic values. There can exist parametric resonance phenomena (Arnold tongues)

when a =−
(

λ 2

2 +E
)

= n2.

The authors solved also the problem for SU (2), SL(2) and SO(3).
The sub-Riemannian diffusion is highly anisotropic since it is restricted to an an-

gular diffusion of θ and a spatial diffusion only along the X1 direction. It is strongly
constrained by the “good continuation” Gestalt law and its difference with classi-
cal (Euclidean) diffusion is spectacular. The figure 1.16, due to Jean-Paul Gauthier,
starts with the image of an eye masked by a white grid and applies sub-Riemannian
diffusion until the grid has vanished. In spite of this very important diffusion the
geometry of the image remains quite excellent.

During Fall 2014, U. Boscain and L. Rifford will organise a special Trimester at
the IHP in Paris on Geometry, Analysis and Dynamics on Sub-Riemannian Mani-
folds. Several geometers we have cited will be present: Montgomery, Bryant, Am-
brosio, Agrachev, Gauthier, Pansu, Bellaı̈che, and many others. A workshop on
Neurogeometry will be organised with G. Citti and A. Sarti.

1.5.5 Confluence between VJ and VS Models

We analysed two neurogeometrical models of V1, VJ and VS. It is interest-
ing to notice that one can easily construct an interpolation between the two
models. Mohammed Brahim Zahaf and Dominique Manchon [143] constructed
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Fig. 1.16 Sub-Riemannian diffusion in VS according to Jean-Paul Gauthier. The initial image
is an eye masked by a white grid. Sub-Riemannian diffusion is applied until the grid has
vanished.

such an interpolation given by a family of models V
α and studied the conflu-

ence of the corresponding differential equations in the Fourier space. The model
V
α can be summarised by the following table: Xα1 = cos(θ ) ∂∂x +

1
α sin(αθ ) ∂∂y ,

Xα2 = ∂
∂θ , Xα3 =−α sin(αθ ) ∂∂x + cos(θ ) ∂∂y , [Xα1 ,Xα2 ] =−Xα3 ,

[

Xα2 ,Xα3
]

= α2Xα1 ,
[

Xα1 ,Xα3
]

= 0, Vα = SEα (2) with S
1
α = R

2πα−1Z
, H = L2

(

S
1
α ,C

)

, Xα1 (ψ (θ )) =
iλα−1 sin(αθ )ψ (θ ), Xα2 (ψ (θ )) = ψ ′ (θ ), Δ̂ λ : ψ ′′ (θ ) − λ 2

α2 sin2 (αθ )ψ (θ ),

ψ ′′ (θ ) +
(

μ− λ 2

α2 sin2 (αθ )
)

ψ (θ ) = 0. For α = 1, V1 yields the VS model and

when α→ 0, for small θ denoted p, V0 yields the VJ model.

1.6 Conclusion

In this survey, we tried to situate the elements of neurogeometry in their context. We
summarised their principles both on the experimental neurophysiological plane and
on the mathematical one. We showed how neurogeometry connects two mathemati-
cal worlds: (i) the one of perceptual geometry, in reference to Thom, Zeeman, Berry,
Koenderink and Mumford, (ii) the one of neurogeometry in its proper sense, mod-
elling the functional architectures in terms of phase-dislocations, Lie groups, Carnot
groups, Cartan connections, sub-Riemannian geometry, wavelets, coherent states
and noncommutative harmonic analysis in reference to Citti and Sarti, Agrachev,
Faugeras and Mallat.

Everything remains to be done in this field. First to “go down” to the underlying
microphysical level of the individual neurons and their spikes, governed by equa-
tions of Hodgkin-Huxley type. In fact, Neurogeometry works at a meso-neuronal
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level. Then to “go up” to higher visual areas of the extrastriate cortex, from V2
to MT (we focused on the striate area V1). However, in spite of the very partial
character of these results, we hope we showed how we can start to understand the
constitution of an external and “transcendent” perceptual geometry from internal
and “immanent” neurogeometrical algorithms.

Sometimes we proposed a parallel with fundamental physics. It is more than a
vague analogy. We think that, as Gestalt theoreticians anticipated in a speculative
way, perception depends upon a “field theory” and we tried to present some mathe-
matical structures which enable to conceptualise and compute it.
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documents. Société Mathématique de France (2007)

47. Dennis, M.R.: Topological Singularities in Wave Fields. Thesis, H.H. Wills Laboratory,
University of Bristol (2001)

48. Doyon, B., Cessac, B., Quoy, M., Samuelides, M.: Chaos in Neural Networks with
Random Connectivity. International Journal of Bifurcation and Chaos 3(2), 279–291
(1993)

49. Duistermaat, J.J.: Oscillatory Integrals, Lagrange Immersions and Unfolding of Singu-
larities. Com. Pure Appl. Math., 207–281 (1974)

50. Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system:
evidence for a local “association field”. Vision Research 33(2), 173–193 (1993)

51. Fodor, J., Pylyshyn, Z.: Connectionism and Cognitive architecture: A critical analysis.
Cognition 28(1/2), 3–71 (1988)

52. Folland, G.B., Stein, E.M.: Estimates for the ∂b complex and analysis on the Heisen-
berg group. Communications on Pure and Applied Mathematics 27, 429–522 (1974)

53. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princeton Univer-
sity Press, Princeton (1982)
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Birkhäuser, Basel (1996)
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Chapter 2
Shape, Shading, Brain and Awareness

Jan Koenderink and Andrea van Doorn

Abstract. Shading is one of the generic “monocular depth (and shape) cues”. It is of
conceptual interest because it apparently implies “causal relations” between the ge-
ometry of the scene in front of the observer, the formal description of brain activity,
and the visual awareness of the observer. These are three disjunct ontological levels,
so the very notion of “causal connections” is problematic. Some silent assumptions
in current accounts indeed invoke “magic”, we identify internal and external local
sign as instances. We attempt an account of the shading cue that avoids at least some
of these pitfalls. We conclude that (for the human observer, machine vision has dif-
ferent objectives) the shading cue allows “direct perception” of surface shape.

2.1 Structure of the Scene in Front of an Observer: Radiometry

The radiometric problem of “Shape From Shading” is simple in principle, but fre-
quently intractable in practice [3, 7, 12, 16, 57]. Consider the simplest case.

In the simplest setting, one considers a surface being illuminated with a uni-
form, unidirectional beam. This constraint may obtain in real life, for instance,
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direct sunlight is a good approximation [18, 30, 43]. (However, it is the worst set-
ting for effective shading, overcast sky being much more useful, as any professional
photographer knows.) The surface is supposed to be uniform. This may obtain in
real life, at some reasonable scale. For instance, a blank piece of paper will do at the
millimeter scale. The BRDF (Bidirectional Reflectance Distribution Function [47])
is supposed to be constant. This is the so called “Lambertian assumption” [12, 41].
Although such surfaces don’t exist, the constant may obtain approximately, if the
range of surface spatial attitudes is not too large. For instance, a piece of blotting
paper is a good approximation for angles of incidence and observation not too far
from normality. Vignetting is supposed to be absent. “Vignetting” indicates occul-
tation of the source by parts of the object [27]. Thus, various parts of the object
are illuminated by mutually different ”effective” sources. An example is an apple
seen under overcast sky illumination. The constraint can be met in many cases, for
instance direct sunlight away from the attached shadow boundary. Multiple scatter-
ing is supposed to be absent. That constraint can only be met for convex objects,
which is very restrictive [27]. However, a surface that is fairly flattish yields a good
approximation [27].

Notice that these constraints are quite limiting in their totality. However, the con-
straints are automatically met if you sufficiently limit the region of interest (ROI).
Such a constraint serves to select approximately homogeneous and flattish surface
patches. However, the ”effective” source might well be quite different from the nom-
inal one. For instance, it could be modulated by vignetting and/or multiple scattering
effects. If one considers smaller ROIs the problem becomes simpler, but the effec-
tive direction of illumination becomes more variable.

This makes it likely that biological “shape from shading” [8–10, 45, 56] will be
limited to rather smallish ROI’s, and makes it likely that methods that do not explic-
itly require knowledge of the effective direction of illumination will be preferred.

2.1.1 Shading Geometry

In the simplest case, the radiance incident upon the eye is independent of the viewing
direction. It depends only on the structure of the incident beam. In the simplest case
we can summarize the incident beam by a “light vector”, which is a suitable average
over the directions represented in the beam [36–38, 46]. The radiance scattered to
the eye is proportional to the irradiance caused by the incident beam. If the BRDF is
approximately constant, the angle of incidence is crucial. The radiance scattered to
the eye is proportional to the illuminance, which is proportional to the cosine of the
angle of incidence. This implies that the scattered radiance as a function of location
is approximately proportional to the change of spatial surface attitude [28,29,31,33,
53]. Notice that there are numerous complicating factors whose influence we have
somehow ignored. The degree to which these approximations “work” depend all on
the size of the ROI. They also depend upon the form of the BRDF, vignetting, and
so forth, something we will ignore from here on, but should not be forgotten.
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2.1.2 Outline of the Paper

In order to proceed, we need to connect brain activity to scene geometry, to physics,
and to visual awareness. We will do this in steps. First we discuss the nature of the
relevant brain activity. Then we discuss the relevant nature of the “scene”, which
involves merely the local surface shape landscape. Then we have to connect these
(ontologically distinct) universes in some way. Finally, we need to establish the
relation to visual awareness. Needless to say, this is a very ambitious program, and
we are unlikely to succeed. The goal of the exercise is mainly to obtain a more
focussed conceptual grip on the problem.

2.2 Visual Front-End

Visual awareness is perhaps best understood as a “user interface” [25]. The user in-
terface depends mainly on templates of various sorts. Microgenesis tries templates
by running “reality checks” against the front end neural activity. As a result, such
“hallucinations” may gain any desired degree of objectivity.

The “reality checks” are against the activity of the “visual (“optical” would have
been more apt) front end”. It is hard to define the boundaries of the front end. Here
we simply talk of V1, the primary visual cortex. However, we are prepared to ex-
tend this definition when opportune, neuro-anatomy proper not being our primary
interest.

The visual front end is a volatile buffer, that is continually being overwritten by
the world (the radiance at the corneas). It is in many respects like the beach, which
“represents” footprints. Wet (but not too wet) beaches are better than dry beaches in
that respect. Likewise, the front end is optimized to retain useful structure, and dis-
card useless junk. Moreover, it has a number of limiting constraints. For instance, at
any location, the front end optimizes dynamic range by adjusting the local set point
and gain. These are not forwarded to more remote parts of the brain. The local set
point and gain are simply lost. Only in very local regions can one count on the gain
to be constant. An example might be a “column”, but we can’t be sure.

2.2.1 Brain Activity due the Optical Structure

One simple principle used by the front end is to prefer derivatives of some useful
degree over absolute values [24]. This is useful (at least in principle), because it
obviates the need for absolute calibration. The generic example is the Laplacean
(“Mexican hat receptive field”), which encodes the difference between a local re-
gion and a larger one. Another principle is to prefer ratios over absolute values.
The ratio of two values of a non-negative quantity is evidently independent of the
absolute calibration. A combination of these principles is to retain the “contrast gra-
dient”. The “contrast gradient” may also be defined as a “logarithmic derivative”
(same thing). For a retinal illuminant I(x,y) (Cartesian spatial coordinates {x,y}),
the contrast gradient is (defining I0 = I(x0,y0)):
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C(x0,y0) ∝
1
I0
∇I(x,y) = ∇ log I(x,y) (2.1)

Such a contrast gradient might be available in the visual front end, at least in regions
of limited extent. Over larger regions one runs into problems because the location
dependent gain factors cannot be assumed to be available.

The contrast gradient is a vector quantity. The front end represents it in terms
of an overcomplete basis of first order directional derivatives. The kernel of such a
derivative in the x-directions is [22]

E(x,y,s) = x
e−

x2+y2

2s2

2πs4 , (2.2)

where the parameter s parameterizes the scale of the derivative operator. In polar
coordinates {ρ =

√

x2 + y2,ϕ = arctany/x}, the derivative in the direction ϕ0 is

E(ρ ,ϕ ,s,ϕ0) = ρ cos(ϕ−ϕ0)
e−

ρ2

2s2

2πs4 (2.3)

The overcomplete basis is indexed by ϕ0, it is a “cortical column” of “edge detec-
tors”. The contrast gradient is represented through the total activity in the column. It
is the first Fourier component of the activity. All other Fourier components may be
ignored. They represent noise. The overcomplete basis has the advantage of yielding
a very robust representation, and not forcing you to decide on a fiducial coordinate
frame.

Notice that the edge detector kernel depends upon an additional parameter s. This
is a nonnegative quantity, that represents the scale. The edge detector yield exact first
order directional derivatives at some finite scale [22]. We assume that the brain has
a range of scales available. Thus, the topic of “scale space” is of basic importance.

Both the size of the ROI, and the scale of computation, will depend upon the
task at hand. The square of the ratio of ROI diameter and scale value represents
the number of degrees of freedom in the local representation. We expect it to be
typically limited, not exceeding a small “icon” (as familiar from computer desktops)
in complexity.

2.2.2 Representation of the Optical Structure

In the previous subsection we discussed the activity of the front end “at a point”.
This is obviously not sufficient for our goal. The contrast gradient (modulo gain) at
a point is useless. What is needed is the spatial variation over a region of (at least
approximately) constant gain. We need a contrast gradient field.
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2.2.2.1 Local Sign

The first problem one meets here is that of local sign. How do brain “algorithms”
take account of location? This is a fundamental problem, first noticed by Lotze [42],
that is conventionally ignored in contemporary accounts. Many people apparently
believe that somatotopy renders the problem a non-problem. This is naive. It is
enough to consider a thought experiment in which a super-surgeon carefully per-
mutes V1 cells, taking the utmost care to leave all mutual connections intact. Will
this produce a local deformation of the visual field? If you don’t count on magic,
your answer has to be no. The “machine” is still the same, but the somatotopy has
been destroyed.

There is one way to deal with local sign locally. One designs a complex receptive
field that implements the complete algorithm. This takes care of the problem. Local
sign has been “encapsulated”. An “edge detector” is the simplest instance [12]. It is
really a bilocal entitity, wrapped up into a purely local one.

In general, the local sign problem has never really been solved. The problem is
too hard to tackle in this paper. We will simply ignore it, but we will acknowledge
the problem, and use it to change our treatment to rather formal, and abstract, when-
ever the local sign issue arises. There seems to be little use in pretending to suggest
“neural implementations” when major basic problems are left open. Of course, our
formal treatment will be implementable in principle once ideas concerning local
sign take more rigid form.

2.2.2.2 The “Contrast Gradient Image”

The “contrast gradient image” is a formal description of the structure of V1 activity
that depends upon the local sign issue. Thus we treat it formally, instead of suggest-
ing some “neural network” implementation. We make the essential role of local sign
explicit.

The contrast gradient field is a map of part of the visual field (this is where local
sign comes in) to the space of possible gradient values. Both spaces are two-fold
extended. The patch of the visual field is a topological disk, say. A convex region
will be most convenient. The “gradient space” is a vector space, with a well defined
origin. We will mostly consider a disk centered on that origin. The diameter of the
region depends upon the dynamic range of the edge detectors.

The map is “from the plane into the plane” [58], thus its generic singularities will
be folds and cusps. Non-generic cases will no doubt occur, mostly of a degenerate
kind. For instance, a region of uniform illumination will map on the origin, thus the
map will collapse on a point. We will mainly be interested in the generic case.

The singular entities are curves (the folds) and points (the cusps) [1]. (See fig-
ure 2.1.) The configuration of singular elements alone suffices to characterize the
contrast gradient image in a qualitative (or, rather, semi-quantitative) way. We will
consider this contrast gradient image as the “representation of the optical structure”
in the visual front end. It contains all that is of relevance to the shading cue (“cue”
is a notion due to Berkeley [4]), and nothing else.
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Folds occur when the Jacobian of the image vanishes, that is to say

when ∂Cx
∂x

∂Cy
∂y − ∂Cx

∂y
∂Cy
∂x = 0. This implies IxxIyy− I2

xy = 0. This occurs on curves.
Cusps occur when the gradient of the Jacobian is tangent to the curve, they occur as
isolated points [1].

The contrast gradient image is a data structure that makes the spatial variation of
the local edge detector activities explicit. It is necessary, because the raw presence
of a distribution of edge detector activities in the brain only contains this structure
implicitly. Because of the retinotopic structure of the brain it is visible to an external
observer of V1. For instance, it might be revealed through some smart imaging
technique. However, it is not available to V1 itself, because V1 cannot “see itself”.
It is a sufficient summary of what might be “seen” (that is to say, made explicit as
some data structure) by some “higher” part of the brain.

The very concept of “contrast gradient image” depends upon the existence of
a local sign. The more primitive apparatus (the edge detectors) is simple and well
understood. The local sign is not. We will not speculate on the form the contrast
gradient image might take in terms of higher brain activity.

2.3 Local Shape

The description of “local shape” has nothing to do with the brain per se. It is a
geometry of certain aspects of the scene in front of the observer. It does not even
specify the optical structure impinging on the eyes directly. With local shape we
mean the “curvature landscape” of the boundary surfaces of environmental objects.
“Local” implies that we study the curvature in the neighborhood of a point. Of
course, a certain scale is always implied, since there exist no smooth environmental
surfaces if the scale is left unspecified. A local, smooth surface, is an entity that can
be described sufficiently well by way of a Taylor expansion up to some reasonable
order (say less than ten). This implies both a scale and an extent [23]. One typically
has a choice here. For instance, a treetop can be treated as a surface on one scale, but

Fig. 2.1 Examples of the generic singularities of the contrast gradient image. At left a fold,
at right a cusp. Near a fold gradient space is either covered zero or twice, near a cusp once
and thrice.
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not on the scale where individual leaves appear. This type of description has been
intuitively used in the visual arts for centuries.

A local surface element can be located by its visual direction and distance. It has
a spatial attitude that may be specified by its slant and tilt with respect to the visual
direction and the vertical. This specifies the surface element as a “planelet” in the
sense of Barrow. The deviations from the tangent plane may be denoted “surflets”.
In the lowest relevant order a surflet is described by its curvature, a “shapelet”. The
curvature varies from point to point, one has a “curvature landscape”. The formal
description is simply the classical differential geometry of Euclidean space as pio-
neered by Gauss.

Perhaps unfortunately, the classical theory is not particularly fit to describe the
geometry as relevant to a stationary, monocular observer. We develop the necessary
geometry in the next subsection.

2.3.1 The Geometry of “Pictorial Space”

When you look at a painting you are visually aware of a flat object, embedded
in Euclidean space (that is the “space you move in”), covered with pigments in
some simultaneous arrangement. When you look into the painting (we assume a
“realistic” rendering, say a generic late nineteenth century landscape painting), you
become aware of a “pictorial space”. This pictorial space is fully detached from the
space you move in. For instance, both your eye and the picture surface are in the
space you move in, but neither of them is to be found in pictorial space. The space
you move in and pictorial space don’t even meet in the picture surface (as the world
and the reflected world do in a mirror surface).

The geometry of pictorial space has been extensively researched, and formal ac-
counts with excellent predictive power exist [32–35]. We use this formalism here, as
it applies equally to pictorial space and to the visual space of a stationary, monocular
observer.

Pictorial space has the structure of a fiber bundle [17, 21, 33], namely the depth
domain over the visual field. For simplicity, we describe the visual field as a Eu-
clidean plane E

2. As a convenience, we fit it with a Cartesian coordinate frame, we
denote the coordinates r = {x,y}. The origin is arbitrary, for convenience we place
it at the center of the ROI. The depth domain (parameterized by the z–coordinate)
has the structure of the affine line A

1. There is no origin of the depth domain, since
“absolute depth” is a non-entity, and there is no preferred scale. Thus, pictorial space
has the structure E2×A

1. In the simplest cases depths on different fibers are coordi-
nated with a global, linear gauge field. The gauge can be geometrically represented
by two parallel, planar cross sections, one defining an arbitrary origin, the other
an arbitrary unit point, on each fiber. The gauges are idiosyncratic and often change
over time, even for a single observer. The group of similarities (“proper movements”
for η = γ = 1)
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Fig. 2.2 Action of similarities on spheres of the second kind in pictorial space. At left the
action of similarities of the second kind (parameter γ in eq. 2.4). At center and right the action
of isotropic rotations (parameters ρx, ρy in eq. 2.4).

x′ = η(xcosϕ− ysinϕ)+ τx, (2.4)

y′ = η(xsinϕ+ ycosϕ)+ τy, (2.5)

z′ = ρxx+ρyy+ γz+ τz, (2.6)

describes gauge transformations [33,49,54,59]. It is an 8-parameter group, whereas
the corresponding group in Euclidean E

3 is only 7-parameter. We will henceforth
set η = 1, ϕ = 0, and T = {τx,τy} = 0, that is to say, ignore the Euclidean trans-
formations in the visual field. The remaining transformations are a parabolic rota-
tion, parameterized by R= {ρx,ρy}, a “similarity of the second kind” parameterized
by γ , and a depth translation, parameterized by τz. (See figure 2.2.) The translation
merely shifts the gauge planes along the fibers, and is generally irrelevant. We ig-
nore it here. The parabolic rotation affects the spatial attitude of the gauge planes,
and the similarity affects their spacing.

A “(depth) relief” is a cross section of the fiber bundle. It can be specified as a
depth map {x,y,z(x,y)}. We will consider depth maps modulo arbitrary gauge trans-
formations. This describes the nature of pictorial reliefs in considerable quantitative
detail.

The geometry of pictorial space is no doubt due to the fact that the optical struc-
ture at the eye specifies the scene in front of the observer only partially. The gauge
transformations describe the generic ambiguity for many “depth cues”. Consider
the shading cue for instance. Suppose the ROI is filled with a uniform illuminance.
Could it be due to an illuminated surface in the scene? Sure, it could, although this
is not necessarily the case. Suppose it is, what may one infer with regard to the
shape of the surface? Well, if the illumination is uniform, then (in the generic case),
the surface has to be planar. Notice that any plane will do. Thus the set of possible
inferences is simply z(x,y) = 0, modulo arbitrary gauge transformations.
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2.3.2 Differential Geometry of Pictorial Space

The differential geometry of pictorial space is similar to, but different from, the fa-
miliar differential geometry of Euclidean space E

3 [20, 33, 49, 54, 59]. Consider the
metric of E2×A

1 induced by the gauge transformations. The Euclidean distance in
the visual field is conserved, it may be used as the metric of pictorial space. Notice
that this renders all points on a single fiber as coincident. The fibers are isotropic
(null-)directions. Two points on a single fiber can be assigned a “special distance”,
which is also conserved. However, the special distance applies only to such “parallel
points”. The angle measure in the visual field is elliptic, just the familiar (periodic)
Euclidean angle. In an isotropic plane, the angle measure is parabolic, thus not peri-
odic. It is measured as the arc length of a “unit circle of the first kind”. For instance,
in the plane y= 0, the unit circle with center at the origin consists of the lines x=±1.
Thus the slope of the line from {0,0,0} to {x,0,z} is simply z/x.

A regular plane is a planar cross section. Thus, it does not contain an isotropic
direction. The fibers meet this plane orthogonally, that is to say, the isotropic an-
gle is infinite. Thus the isotropic direction is the normal of any regular plane. The
implication for differential geometry is that the concept of “surface normal” can-
not play the dominant role as it does in the conventional treatments of Euclidean
differential geometry. One uses the tangent planes instead. The tangent planes can
be parameterized by their slopes, that is their depth gradient {zx,zy}. The map of a
cross section to its gradients, is the “gradient image” of the relief. It can be regarded
as the isometric stereographic projection of the “spherical image” of the relief. The
spherical image of a surface is a map of the surface on the “unit sphere of the second
kind” {x,y,(x2 + y2)/2} by parallel tangent planes. The stereographical projection
maps {x,y,(x2 + y2)/2} on {x,y,0} (the “center” of the sphere is {0,0,∞}). The
stereographical projection is evidently isometric, not just conformal. Notice that this
is analogue to the construction of the Gaussian normal spherical image in Euclidean
differential geometry. Gauge transformations simply translate and/or magnify the
spherical image. Thus, the relative metrical structure of the spherical image defines
the curvature landscape.

Near the origin we may transform any relief to the form

z(x,y) =
1
2!

(

axxx2 + 2axyxy+ ayyy
2)+O[x,y]3, (2.7)

by adopting a suitable gauge. This is the shapelet descrion we use in this chapter. The
differential invariants K = axxayy−axy and 2H = axx +ayy then define the Gaussian
and the mean curvatures [15, 23]. Notice that these expressions are much simpler
than the corresponding expressions for the Euclidean case. Reason is the absence of
“foreshortening”.

2.3.2.1 Shapelet Space

The deviation from planarity near a point is denoted the “surflet’ at that point, adapt-
ing Barrow’s formalism [5, 11]. (See figure 2.3.) The lowest non-trivial description
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Fig. 2.3 “Surflets” can be scaled and added. Here the umbilical surflet at left and the saddle-
shaped surflet at center are added so as to yield the cylindrical surflet at right.

is in terms of the second order terms in a Taylor expansion about the origin. In the
geometry of pictorial space that implies equation 2.7. A shapelet may be parameter-
ized by the coefficients {axx,axy,ayy}, and indicated as a point in “shapelet space”.
This is useful, because it allows us to regard “curvature landscapes” as surfaces
(maps of the visual field, thus immersions) in shapelet space.

The parameterization by {axx,axy,ayy} is not very useful, because referred to the
arbitrary Cartesian frame. One may do better by rewriting the form as

r
x2− y2

2
+ sxy+ t

x2 + y2

2
, (2.8)

where

r =
1
2
(axx− ayy) , (2.9)

s = axy, (2.10)

t =
1
2
(axx + ayy) , (2.11)

the point being that the shapelet (x2 + y2)/2 is rotationally invariant, whereas the
shapelets (x2− y2)/2 and xy transform as a pair under rotations of the Cartesian
frame. Thus, t and w=

√
r2 + s2 are differential invariants, whereas ϕ = 1

2 arctans/r
describes the “orientation of principal curvature” with respect to the Cartesian
frame. It may be called the “attitude” of the shapelet, whereas the ratio w : t de-
scribes its shape proper, and

√
t2 +w2 its amount of curvature.

The “Casorati curvature” [6] C =
√

r2 + s2 + t2 can be interpreted as the R.M.S.
deviation from planarity (simply defined through a suitable limiting process), or also

as its R.M.S. sectional curvature, or (again equivalently)
√

(κ2
1 +κ

2
2)/2, whereκ1,2

are the “principal curvatures”: in a frame rotated to set ϕ = 0 the shapelet is de-
scribed as (κ1x2 + κ2y2)/2. Vanishing planarity implies C = 0, thus for a proper
shapelet one has C > 0.

The parameter

σ = arctan
κ2 +κ1

κ2−κ1
= arctan

t
w
, (2.12)
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Fig. 2.4 The shape index series of quadric surflets. Notice that the umbilicals are at the end-
points. The symmetrical saddle at zero is congruent to its own mould. Shapes of opposite
signs are related as object to mould.

(where we use the convention κ1 ≥ κ2) is a pure shape descriptor, the “shape in-
dex” [23]. It assumes values in the range [−π/2,+π/2). (See figure 2.4.) At the
endpoints of the range the shapelet is “umbilical”, that is rotationally symmetric, so
the orientation ϕ is not defined. At σ = 0 the shapelet is a “symmmetrical saddle”,
meaning that its inverse (inverted depth) is congruent to itself. For non-zero shape
index the shapelet and its inverse are in the relation of a shape to its mold.

One has

t = C sinσ , (2.13)

r = C cosσ cos2ϕ , (2.14)

s = C cosσ sin2ϕ , (2.15)

thus {r,s, t} and {C,σ ,2ϕ} are natural Cartesian and polar coordinates of
“shape space”. The space is naturally polarized by the r-direction. The line r = s= 0
contains umbilicals, and the principal directions are undefined on it. The right cir-
cular cones of semi-top-angle π/4 with this line as axis are the locus of cylindrical
shapelets. Inside the cones one finds hyperbolical (saddle-like) shapelets, outside
elliptical ones (either like the outside, or like the inside of egg shells).

Because absolute size is largely irrelevant in vision, it is natural to define a Rie-
mann line element [52]

dr2 + ds2 + dt2

r2 + s2 + t2 = dμ2 + dσ2 + 4cos2σ dϕ2, (2.16)

(where μ = logC) as a natural metric for shape space. The geodesics are planar
logarithmic spirals in planes through the origin (of course only arcs contained in a
half-space are relevant). In this metric the shape index scale (for constant Casorati
curvature and orientation) is linear, so is the log-Casorati curvature (for constant
shape index and orientation) scale, and so is the orientation (for constant shape
index and Casorati curvature) scale. On spheres of constant Casorati curvature the
spherical distance scaled by log-Casorati curvature is a geodesic distance.

2.3.2.2 Curvature Landscapes

A “curvature landscape” is a field of shapelets. We can represent it as a map of
the ROI in the visual field into shape space. It will generically be an immersed
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Fig. 2.5 Examples of a “Whitney umbrella”. At left the surface, at right the curvature land-
scape in shape space.

Fig. 2.6 A triple point

surface. Such immersions tend to have only mild singularities (there is lots of room
in the space), generically they are Whitney umbrellas [14] (or cross-caps) (fig-
ure 2.5) and triple points (figure 2.6). Whitney umbrellas occur when two relations
between the cubic terms in the Taylor expansion are simultaneously satisfied, thus at
isolated points (the condition is (ax)xx(ax)yy− (ax)

2
xy = 0 ∧ (ay)xx(ay)yy− (ay)

2
xy =

0). Because shading is proportional with the slope of the surface in some direction,
it implies IxxIyy− I2

xy = 0, thus a point on a fold of the contrast gradient image, when
the surface is illuminated.

Notice that not just any immersed surface represents a curvature landscape, in
order to classify, the so called “integrability equations” (in the Euclidean case these
are the Codazzi-Mainardi equations) have to be satisfied. We are confronted with a
Pfaffian problem. For instance, it is evidently required that ∂axx/∂y = ∂axy/∂x, and
∂ayy/∂x = ∂axy/∂y. This means that there is a constraint on curvature landscapes,
and we cannot simply apply the generic taxonomy of singularities.

In one experiment we generated hundreds of high order, random polynomial sur-
faces. One finds Whitney umbrellas galore. Triple points are much harder to find, but
that is because one has to search over large regions, they are not local phenomena.
They certainly occur, because one may always start with three intersecting planes
and assemble them into a single surface.
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The notion of a “curvature landscape” is necessary if the local description stops at
the second order. Of course, similar notions will still be necessary if one includes the
cubic and quartic structure in the local description. The curvature landscape yields
a global data structure in terms of a map. This is similar to a geographic description
that mentions the relative locations of local features like mountains, lakes, and so
forth. (“Mountain range” being a simple example.) Without such a global map one
has only a bag of mutually unrelated features. In our case the “glue” is what might
be called “external local sign”, an awareness of the directions in the space external
to the eye corresponding to retinal locations.

2.4 The “Shape From Shading” Problem

The “Shape From Shading Problem” can be framed in a large variety of ways [12].
Most of the conventional settings are hardly relevant to human (or animal) vision [2,
4,26,30,40,43,48,50,51,53,55]. Here we impose the following a priori constraints
on the matter:

— the “data” are the contrast gradient image, based upon the edge detector activity
of the visual front end;
— the desired inference is a curvature landscape, that is the inverse of the image of
the ROI in shape space.

Shape space is not a brain activity, or anything like that, it is a formal construction
used in microgenesis.

The “microgenesis” of visual awareness is a hypothetical pre-conscious process
that generates awareness. From experimental phenomenology we know that micro-
genesis is a systolic process that regenerates awareness continuously, a single “beat”
taking less than a tenth of a second. The process generates hypotheses (or “halluci-
nates”) and runs reality checks against visual front end activity. In a single beat it
launches a volley of threads (representing different hypotheses), that may be novel,
but typically are diversified threads from the previous beat. Some threads from the
previous beats might be terminated. A competition between the threads leads to a fi-
nal “winner” that enters visual awareness. Thus, momentary awareness is the result
of an evolutionary process that runs on a very short time scale. In the generation of
each volley current situational awareness (“gist”) and goals (input from cognition
and emotional states) play a role, though the process is largely autonomous.

“Shape from shading” starts when the microgenetic process selects “shaded sur-
face” as a hypothesis. The same retinal illuminance may be interpreted in many
different ways. “Shaded surface” is just one. (For instance, “painted flat picture”
is another, “non-uniformly illuminated surface” yet another, and so forth.) It will
typically involve a number of mutually related hypotheses, some aimed at material
properties, others at the light field, etc. Here we concentrate on the “shaded sur-
face” hypothesis. The act of generating a “shaded surface” hallucination serves to
turn the front end structure into (meaningful) “data”. The meaning derives from the
hypothesis.
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2.4.1 Naive Radiometry

The microgenetic process may assume very little about the geometrical layout, and
physics of the scene. All it can do is assume an “uniformly illuminated surface”,
which involves a number of associated hypotheses, all of which might become fal-
sified in reality checks at a number of levels, from front end activity to reflective
thought. These include:

— the surface is a smooth Lambertian surface (no space-variant pigmentation, no
specularities inside the ROI);
— the illumination is oblique (no frontal illumination);
— the surface is illuminated throughout (no attached shadow terminator in the ROI).

Full analysis of these assumptions and their interrelations would take many pages,
we skip it here.

Notice that these are no detailed assumptions concerning surface attitude, nor
about the light field. The shading is subject to the well known “bas-relief ambigu-
ity”. What this all implies is that the magnitude of the contrast gradient cannot be
distinguished from the obliquety of the illumination. The structure of the contrast
gradient field depends upon the local shapelet and the tangential component of the
light vector over the surface (“surface illuminance flow”). Let the shapelet be pa-
rameterized as in equation 2.7, and let the direction of surface illuminance flow as
projected in the visual field be {cosϑ ,sinϑ} in the xy-plane.

In order to simplify the formalism we set (arbitrarly, but without loss of general-
ity) ϑ = 0. Then the contrast gradient will (to a good approximation) be proportional
with

C(x,y) ∝ {axx,axy}. (2.17)

The constant of proportionality depends on many things (spatial albedo or BRDF
variations, obliquity of the light vector, vignetting, . . . ). If the surface is signifi-
cantly corrugated, the contrast gradient will be mainly determined by the curvature
landscape though.

2.4.2 The Shape Cue Inference

Notice that the “data”, that is the contrast gradient image based upon the front end
edge detector activity, is a projection of the curvature landscape in {axx,axy,ayy}-
space obtained by dropping ayy, that is the second derivative of the depth in the di-
rection orthogonal to the illumination flow direction in the visual field. Since shape
space is a simple linear transformation of {axx,axy,ayy}-space, we find that micro-
genesis finds a projection of the shape image in the front-end data, and is not in need
of any further computation. (See figures 2.7 and 2.8.) There is even a check on the
viability of the hypothesis: simply find the curl of the gradient field, if it vanishes
the hypothesis can be upheld.

Notice that ayy = 0 implies r = t. Thus, the “view direction” of the view into
shape space subtends a π/4 angle with the axis of umbilicals.
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Fig. 2.7 An example of “Shape From Shading”. At top left the habitus of a surface. The other
subfigures show three views of the shape landscape in shape (that is rst-) space. This surface
has no singularities.

One might regard this as an example of “direct perception” as propagated by
Gibson [13], in his ecological approach to visual perception. What is conceptually
interesting is that the shape from shading problem becomes formally identical to the
“shape from movement” problem. One observes a two-dimensional projection of a
surface immersed in a three-dimensional space, and attempts to make inferences
about the immersed surface (e.g., its projections as viewed from other directions).
Only the space is different, it is the “space you move in” in the case of shape from
movement, and the space of shapes in the case of shape from shading. It is hard
to see that this should make much difference to the brain: these spaces are just
as “abstract” as seen from the brain’s perspective. Both play some role in certain
perception-action cycles.

The shape image has generically fold and cusp singularities. The projection
generically generates folds and cusps in the contrast gradient image. The latter might
be called “spurious”, since they depend upon the direction of the projection, whereas
singularities in the gradient image that derive from the singularities in the shape im-
age have intrinsic meaning.

Variation of the (relative) illumination direction will clear up such ambiguities.
Such variations could be due to movements of the light source (relatively rare), or
movements of the surface with respect to the source (common). The latter type of
variation can often be brought about by manipulation, thus opening a way to active
exploration.
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Fig. 2.8 The example from figure 2.7. At top three shadings of the surface for different il-
lumination directions. At bottom the corresponding contrast gradient images. Compare these
to the projections of the curvature landscape: they are the same, except for a cos π4 = 1

2

√
2

foreshortening.

A final point of some interest is the relation to the “Shape From Shading Prob-
lem” as it is usually framed in computer vision with the present setting. One
difference is that computer vision frames the problem in Euclidean terms, which in-
troduces some algebraic complications. More interestingly, in computer vision one
would not be satisfied with a curvature landscape, but would require an explicit rep-
resentation of a surface. In the case of the human observer the curvature landscape
should most likely be regarded as the end result (see below).

The difference is the need of an integration. One has a Pfaffian system of local
tangent quadrics and seeks for an integral surface. There will be a solution if the sur-
face integrability conditions are satisfied (the Codazzi-Mainardi equations), which
is never exactly the case if the field of quadrics is due to observations. The com-
puter vision methods differ primarily in the way they handle this problem, which
has nothing to do with the shading cue per se, it is just a problem of numerical
analysis. If one has clean data the integration poses no problem (for an N×N-pixel
image one has about 2N2 equations for N2 unknowns, it is mere matter to deal with
the ambiguity), things start to become interesting in case the data are “dirty”, which
they always are in real life. Again, this is not an issue of much biological interest.

2.5 The Shading Cue and Visual Awareness: Phenomenology

The shading cue has been studied extensively in experimental phenomenology.
The topic is closely related to that of pictorial space in general. How are pictorial
reliefs “represented”? We have been able to show empirically that the representation
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Fig. 2.9 Left: The Mach book may be the simplest “shading” stimulus ever invented. Many
observers see an open book, or two planar facets meeting in a common edge, subtending a
roughly right dihedral angle. Ernst Mach [44] interpreted this as a direct causal connection
between intensity and the awareness of spatial attitude. Right: The circular disk filled with
a linear gradient is the “canonical stimulus” that has been used for almost two centuries in
psychophysical shape from shading research [19,50,51]. Many observers become aware of a
spherical pictorial surface when viewing this stimulus. The contrast gradient image is degen-
erate (a point). The square contains the same gradient. Many observers see it as a cylinder.
Any quadric surface could yield this gradient, for instance, a symmetrical saddle is a perfectly
valid inference. It is never reported.

is not a depth map, but more likely a map of spatial surface attitudes (a depth gra-
dient field), or possibly (this issue is still open) a curvature landscape. The present
treatment of shape from shading fits perfectly in this general framework.

Most of the psychophysical work has been concentrated upon very singular cases.
The simplest instance is no doubt the “Mach book” (figure 2.9 left), but the most
widely used stimulus in shape from shading research is a linear illuminance gradient
limited to a circular disk. (See figure 2.9 right.) Thus the contrast gradient image is a
point that does not coincide with the origin. Thus, the corresponding curvature land-
scape would generically be a point. (A line in the direction of projection in the rst-
space being evidently non-generic.) Hence, the inference would be “any quadric”.
Observers report convex or concave elliptical shapes, which are indeed “solutions”,
albeit very specific ones. Hyperbolical shapes are never reported, although they are
equally valid inferences. Apparently microgenesis applies additional constraints. In
this case it is the shape of the outline (circular). If the outline is square (two edges
parallel to the gradient), observers report convex or concave cylindrical shapes (see
figure 2.9 right).

One would expect that the next round of empirical research would concentrate
on curvature landscapes that are degenerated to curves instead of points. However,
we know of no instances. So the next round should involve generic curvature land-
scapes. Unfortunately, we haven’t seen much activity on this topic either (except
from some work of our own). The problem of “shape from shading” is pretty much
open in the context of experimental phenomenology.
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2.6 Conclusion

We have presented a discussion of the shading cue that is decidedly different from
its conventional formulation in machine vision. The reason is that the present treat-
ment has been focussed upon the phenomenology of human visual awareness, and
upon an understanding of the brain “from the inside” as it were. We have refrained
from “representations” that are only available to an external observer. The result is
a description that renders the ”shape from shading problem” trivial. The inference
is essentially identical to the observation. Thus, we end up with a theory of “direct
perception”. This is not to say that the inference is complete, as it cannot be. The
resulting ambiguity is very simple in that one obtains a single perspective of the
curvature landscape in shape space. This is much like the visual projection itself:
you see only the fronts of objects in the scene in front of you.

The treatment requires the existence of both local sign (as defined by Lotze), and
external local sign [39]. None of these is well understood. There exist a number
of theories on the genesis of local sign, and mainly speculations on the origin of
external local sign. Recent empirical work has revealed that the structure of external
local sign in human observers is surprising, as already intuited by Helmholtz and
Kepler.

The connection of our treatment with the experimental phenomenology of human
visual awareness is still weak. The reason is mainly the lack of a solid body of
quantitative empirical results.
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Chapter 3
Why Shading Matters along Contours�

Benjamin Kunsberg and Steven W. Zucker

Abstract. Shape from shading is a classical inverse problem in computer vision.
It is inherently ill-defined and, in different formulations, it depends on the assumed
light source direction. In contrast to these mathematical difficulties, we introduce
a novel mathematical formulation for calculating local surface shape based on co-
variant derivatives of the shading flow field, rather than the customary integral min-
imization or P.D.E approaches. Working with the shading flow field rather than the
original image intensities is important to both neurogeometry and neurophysiology.
To make the calculations concrete we assume a Lambertian model for image forma-
tion, but we do not make global light source positional assumptions. In particular, for
smooth surfaces in generic position, we show that second derivatives of brightness
are independent of the light sources and can be directly related to surface proper-
ties. We use these measurements to define the matching local family of surfaces that
could result from a given shading patch. In total our results change the emphasis
from seeking a single, well-define solution to an ill-posed problem to characteriz-
ing the ambiguity in possible solutions to this problem. The result is relevant both
mathematically and perceptually, because we then show how the equations simplify
and the ambiguity reduces are certain critical points of intensity. We conclude with
a discussion of image reconstruction at these critical points.

3.1 Introduction

The inference of shape from shading information is so natural for us that the in-
herent difficulty in the problem seems paradoxical. Perceptually, when shape-from-
shading works, we see crisp surfaces and clear boundaries. However, as a classical
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Fig. 3.1 Classical methods attempt to go from pixel values of the image (A) to the surface
(C). In this work, we use the intermediate representation of the shading flow field, or the
tangent map to the isophote structure (B). This is both supported by biological mechanisms
and allows us to use the mathematical machinery of vector fields, transport, and differential
goemetry.

inverse problem it is clearly ill-posed, with the two-dimensional image providing
much less information than three-dimensional surface calculations require. Egyp-
tian artists took advantage of this inherent ambiguity by carving scenes with deep
apparent relief out of shallow stone. But this needs to be reconciled with the ideal for
computer vision systems: the exact recovery of unique surface descriptions. How are
we to make sense of the apparent contradiction between mathematical uncertainty,
perceptual crispness, and computer vision accuracy?

Mach [25], who first formulated the image irradiance equation in 1866, observed
that “many curved surfaces may correspond to one light surface even if they are
illuminated in the same manner”. Instead of working on the general problem, he
focused on cylinders. The modern shape-from-shading community seeks to resolve
the ambiguity by placing priors on the surface [1], in a sense following along the
lines set by Mach, or on the light source direction(s) [1,11] and albedo [1]. But these
priors are global and difficult to reconcile with physiology.

We propose an alternative approach: rather than attempting to resolve the ambi-
guity from the start using global priors, we suggest that the ambiguity can be char-
acterized and exploited. One part of this exploitation derives from neurobiology and
the other from mathematics, in particular differential geometry. Thus our goal in
this paper is to place the shape-from-shading inference problem in the context of
neurogeometry.

The first part of our approach is to build the surface inference process not from the
image, but from the manner in which the shading information could be represented
in visual cortex; see Fig. 3.1. This is called the shading flow field, and it has the
form of a vector field (plus discontinuities); in particular, it is the tangent map to
isophote contours. Formulating the shape inference then amounts to working out
the relationships between isophotes in the image and isophotes on the surface. The
differential geometry arises by formulating the problem in this fashion, and it opens
two rich projections back on to neurobiology.

The first of these projections has to do with reducing computations to neural
networks. As we show below, the shading flow field can be computed within a
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neurogeometric architecture of columns of cells tuned to different orientations, plus
connections between them (Fig. 3.3). Biologically these connections could be either
long-range horizontal connections within an area, or feedforward/feedback loops.
Mathematically these connections derive from transport operations, and we show
how to derive these transports in this paper. The result is a fibre bundle, and solu-
tions to the inference problem are given by sections through this bundle. In general
there are many, which corresponds to the ambiguity in the inverse problem, but we
shall have more to say on this momentarily.

The second projection onto neurobiology relates to the question of light source:
where, in the brain, might this be represented? How? Since there is no evidence that
it is represented in the early visual system, where the shading flow could arise, we
seek those image properties that are invariant to the direction of the light source.
We prove that ordinary second derivatives of the image irradiance do not depend
directly on the direction(s) of the light source(s), but rather only on the local surface
derivatives and image gradient properties. The image derivatives can then be used
to restrict the potential surfaces corresponding to a local shading patch, regardless
of the light source. This effectively “cancels out” the light source from the problem,
and is the second major aspect of our approach. It follows, of course, that the light
source can be calculated once the surface structure is known, which makes it a kind
of emergent property in some cases.

Finally, we return to the question of ambiguity. With our characterization we are
able to show how other cues, such as the apparent boundary, various highlight lines
or cusps, may be sufficent to effectively resolve them. In effect this provides a way
to anchor a solution from regions in the image that are clear, and build upon the
perceptual effect that the surface is crisp – but only around certain structures! See
Fig. 3.2. Understanding these structures and why they are important is the final focus
of this paper.

3.1.1 Motivation from Neurobiology

Because V1 is rich in orientationally-selective cells [13], we focus on understand-
ing how sets of orientations could correspond to surfaces. This suggests what at
first glance appears to be a small problem change: instead of seeking the map
from images to surfaces (and light sources), the image should first be lifted into
an orientation-based representation. This lift can be accomplished by considering
the image isophotes ( [17, 18]); the lift is then the tangent map to these isophotes.
This lift has been used earlier in computer vision, and is called the shading flow
field [2]. A significant body of evidence is accumulating that such orientation based
representations underly the perception of shape( [8,9]), but to our knowledge no one
has previously formulated the surface inference problem from it.

Since the shading flow field could be computed in V1 (Figure 3.3), we are devel-
oping a new approach to shape from shading that is built directly on the information
available in visual cortex. Thus it carries the constructions of neurogeometry from
contours to shading flows to surfaces. In the end theoretically our computations
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Fig. 3.2 Compare these two images: (Left) a shaded surface; (Right) reconstructed shading
values via a linear interpolation algorithm [5] using only the shading values at the highlights
and along the contours. Note that the 3D percept is nearly identical, even though the image
intensities are not always consistent. Although there are significant image intensity differ-
ences between these images, the surface “seen” at a rapid glance is hardly different. We
suggest that this is because shape-from-shading is mainly working around certain key image
regions. Our goal in this paper is to understand why these regions exist and how they might be
characterized.

Deep layers

Superficial layers

Layer IV

Cylindrical portion of orientation hypercolumn
embedded within the cortical tissue

x

y

12

Long range connections to compatible cells

abstracts V1 as R  x S
hypercolumns by retinotopic position

Rearrangement of orientation

Fig. 3.3 V1 mechanisms applied to the isophote curves result in a shading flow field. (left)
Visual cortex contains neurons selective to the local orientation of image patches. In a shading
gradient these will respond most strongly to the local isophote orientation; ie, it’s tangent. A
tangential penetration across V1 yields a column of cells. (middle) Abstracting the column of
cells over a given (retinotopic) position spans all orientations; different orientations at nearby
positions regularize the tangent map to the isophotes and reduce noise in local measurements.
(right) Illustrating the lift of the isophones into a V1 style representation. The mathematical
analysis in this paper extends this type of representation to the surface inference prolbem. As
such it could be implemented by similar cortical machinery in higher visual areas.

could be implemented by a combination of feedforward and feedback projections,
supplemented with the long-range horizontal connections within each visual area,
although we do not develop these connections in any detail here. Rather, we concen-
trate on the calculations and how how a crisp curvature structure emerges from the
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transport equations. As such it serves as the foundation of a model for understanding
feedforward connections to higher levels (surfaces) from lower levels (flows).

3.1.2 Overview

Our approach is summarized in Fig. 3.4. Rather than working globally and attempt-
ing to infer a full surface directly from the image and (e.g.) global light source
priors, we think of the surface as a composite of local patches (charts). Each patch
is described by its (patch of) shading flow, each of which implies a space of (sur-
face patch, light source) pairs. Much of the formal content of this paper is a way to
calculate them.

The story, of course, gets most interesting when we consider how to put the
patches together. Just as the orientations possible at a position define a fibre bun-
dle, the possible local surface patches define a “fibre” for each patch coordinate;
again, over the surface these fibres form a bundle. Conceptually the shape-from-
shading problem amounts to finding a section through this bundle. Once a section is
obtained, the light source positions emerge; i.e., can be calculated directly.

There are several advantages to this approach.

• Ambiguity now is a measure on these fibres, and it can be reduced by certain
(local) conditions, for example curvature at the boundary [27,28]. Thus it is con-
sistent with Marr’s Principle of Least Committment.

• The light source positions are essentially an emergent property rather than a prior
assumption.

• Mathematically our approach mirrors the composite nature of visual inverse
problems: there are those configurations in which solutions are nicely defined,
and there are others that remain inherently ambiguous. A powerful illustration
of this is provided by artists’ drawings: a single new stroke may change the im-
pression completely, such as the indication of a highlight, while others may be
lost in the cross-hatching of shading. This lead us to consider the shading flows
near critical points and contours as fundamental conditions for the global surface
perception.

We now briefly discuss the first stage to our approach – the shading flow field –
and follow this with the surface inference calculations.

3.2 The Shading Flow

Consider, from an abstract perspective, how a shaded image would be represented in
visual cortex. To start, we note that a smooth surface patch under diffuse Lambertian
lighting and orthogonal projection yields smooth image curves of constant bright-
ness. The shading flow derives from these level curves of image intensity I(x,y),
or isophotes ( [17, 18]). In particular, consider image cells with orientated receptive
fields tuned to low spatial frequencies: the strongest responses will be from those
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Fig. 3.4 Our approach to shape from shading. Instead of inferring surfaces directly from the
image, we impose two fibre bundles between them. The first is the lift of the image into the
shading flow, and the second defines the fibre of possible surface patches that are consistent
with a given patch of shading flow. We do not assume a light source position, but instead will
use assumptions on certain local features to restrict the ambiguity. This amounts to finding a
section through the bundle of possible local surfaces. The light source position(s) are then an
emergent property.

cells with their excitatory zones on brighter portions of the shading, say, and their
inhibitory zones on the darker ones. It is these cells that signal the isophone tangents.

To construct a vector field V (x,y), we quantize these curves by taking their
tangents over a predetermined image coordinate grid. We call this vector field of
isophote tangents the shading flow field and it arose earlier in the literature [2]. In
the limit, as the spacing of the grid points goes to zero, integral curves of the shading
flow are precisely the intensity level curves. Our goal is to use this 2D vector field
to restrict the family of (surface, light source direction) pairs that could have re-
sulted in the image (Fig. 3.7). We shall also require the complementary vector field
of brightness gradients. In the limit, these two vector fields of isophote tangents and
brightness gradients together encapsulate the same information as the pixel values
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of the image. For computational work on regularizing and calculating the shading
flow, see [2].

Working with the shading flow has a number of advantages over working with
the raw image intensities.

• Orientation-selective cells [13] could readily provide the lift for computing it as
early as V1 (Figure 3.3).

• The shading flow field is lower dimensional than a pixel representation and is
invariant to overall contrast changes.

• There exists psychophysical evidence for the use of oriented flow in surface per-
ception [8, 9] for textures.

• The shading flow is invariant across important transformations in both image
space and shape space.

• It allows for the use of machinery from vector calculus on surfaces. Although the
same calculus can of course be done point wise, the mathematical intuition and
equations are cleaner by working with vector fields.

We now expand on a few of these points.

3.2.1 Psychophysical Evidence

Fleming et al., among others, have focused on psychophysical work on orientation
fields [8,9]. He has shown that orientations are stable on specular surfaces and often
lie along directions of minimal second derivatives, regardless of the environment
map [9]. He then showed that “smearing” white noise via line-integral-convolution
can lead to 3D shape perception [8]. Thus, taking noise and adding in an orientation
structure yields a percept. Most importantly, it can be shown that 3D shape from
shading perception can be preserved even in the presence of certain non-monotonic
intensity transformations [10]. Orientation fields are thus a stable and basic structure
for shape perception.

3.2.2 Intensity Transformations

There are computational reasons to use the shading flow as a intermediate repre-
sentation rather than working directly with pixel values. First, it regularizes certain
errors due to noise in images [2]. Second, both the isophote tangents and curva-
tures are invariant under arbitrary monotonic transformations of the intensity [2,21].
These types of transformations include not only simple scalings (albedo changes),
but even complex transformations such as the ones in Fig. 3.5.

3.2.3 Surface Scaling

The previous paragraph illustrated invariances with respect to image transforma-
tions. But the shading flow is also stable under various surface transformations.
Here, we consider the case of a scaling in surface heights. See Fig. 3.6.



114 B. Kunsberg and S.W. Zucker

Fig. 3.5 These figures illustrate a shaded surface (left) and two monotonic transformations of
intensity (center, right). Although the intensity values change in each of these images, the 3D
shading percept remains essentially invariant. This provides some evidence that the surface
inference is based on the geometry of isophotes rather than image intensities.

To build intuition, we illustrate the relevant phenomenon mathematically using
the simplifying assumption that the light source is behind the viewer. Consider a sur-
face S(x,y) and various scalings of that surface defined by T : S(x,y)→ cS(x,y),c∈
R
+. The direction of the isophote tangent at point p is dependent on the second fun-

damental form II and the projected light source vector lt. (We will prove this in the
Analysis Section).

Thus, by considering the effects of the scaling on II and lt, we can understand
the scaling effect on the isophote tangents. The projected light source will lie along
the gradient of the surface. Thus, its direction will not change by any scaling trans-
formation.
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Fig. 3.6 These figures illustrate the isophotes of a shaded surface (left), a 150% scaling of it
(center), and a 200 % scaling (right). 15 isophotes have been shown for each surface. Note that
the curvature of the isophotes is generally stable throughout the scaling, with the exceptions
being due to the singularities of new highlights. Since our percept hardly changes over these
images, again this provides evidence that the surface inference is based on the geometry of
isophotes rather than image intensities.

Similarly, the second fundamental form – II – is defined by:

II =

[

N · fxx N · fxy

N · fxy N · fyy

]

=

⎡

⎣

fxx√
1+ f 2

x + f 2
y

fxy√
1+ f 2

x + f 2
y

fxy√
1+ f 2

x + f 2
y

fyy√
1+ f 2

x + f 2
y

⎤

⎦

Any scaling transformation multiplies the derivatives { fx, fy, fxx, fxy, fyy} by c.

Note that T will scale II by a factor of
c
√

1+ f 2
x + f 2

y√
1+(c fx)2+(c fy)2

. In fact, in the cases where

fx, fy ≈ 0 or fx, fy >> 1, the scaling of II is minimal.
Since both the projected light source and II are only scaled under the transfor-

mation T , the shading flow remains unchanged. Note that the magnitude of the
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Fig. 3.7 This figure represents the workflow going from image to shading flow to a set of
local surfaces. Each surface along the fiber needs a particular light source position to corre-
spond to the given shading flow.

brightness gradients will increase, however. (If we remove the light source behind
viewer assumption, it is possible for the shading flow to change, but not generically.)

3.2.4 Critical Curves

Regardless of the the image representation that is used to ground the computation,
the shape from the shading (flow) problem will remain ill-posed. This is a global
statement. However, at certain points on a surface, the ambiguities will collapse in
dimension, and we believe understanding which points these are is critical. For ex-
ample, along the boundary of a smooth object, the view vector lies in the tangent
plane [16]. Along a suggestive contour [4], the dot product of the normal vector and
the view vector is at a local minimum in the direction of the viewer. At a generic
highlight, the dot product of the light source direction and normal vector is at a
local maximum. All of these special types of points are identifiable in the image
and provide additional geometric information that reduces the shading inference
ambiguity locally. These points are also important perceptually. This leads us to a
novel plan for reconstruction: First, parametrize the shading ambiguity in the gen-
eral shading case. Then, locate the points where the shading ambiguity vanishes (or
reduces greatly) and solve for the local surface shape at those points. Finally, calcu-
late the more complex regions via a compatibility technique [14] or interpolation.
Understanding these critical points is one of the most important implications of the
analysis that we present next.

3.3 Geometric Analysis of Shape Inference

Our mathematical goal is to translate the problem into the local tangent plane and
then use the machinery of covariant derivatives and parallel transport to represent
image derivatives (see Fig. 3.9) as a function of the surface vector flows. A similar
use of this machinery was developed for shape from texture in [12].
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Fig. 3.8 A diagram explaining our defined surface properties

1. We write the brightness gradient and isophote as tangent plane conditions be-
tween the projected light source and shape operator.

2. We take the covariant derivative of the projected light source and show it is inde-
pendent of the direction of the light source.

3. We take the covariant derivative of the isophote condition and separate into the
differentiation on the projected light source and the differentiation on the shape
operator.

4. We separate the image derivatives into functions of the image and surface prop-
erties without reference to the light source direction.

The Lambertian lighting model is defined by:

I(x,y) = ρL ·N(x,y)

Consider a small image patch under Lambertian lighting from an unknown light
source. This image patch corresponds to a local surface patch. Using Taylor’s theo-
rem we represent this as S = {x,y, f (x,y)} with f (x,y) = c1x+ c2y+ c3x2 + c4xy+
c5y2 + c6x3 + c7x2y+ c8xy2 + c9y3.

Our goal is to understand the derivatives of intensity in terms of the coefficients
{ci}. It is essential that the order of the Taylor polynomial must be 3 since we shall
consider second derivatives of image intensity and intensity is already dependent
(via Lambertian lighting) on the first order derivatives of the surface. Other analyses
of SFS only consider 2nd order Taylor approximations [26].

For reference, we define our complete notation in the Table 3.1. The symbols
will be introduced throughout the analysis. V (x,y) is the shading flow field. We
normalize V (x,y) to be of unit length in the image, although the corresponding
surface tangent vectors have unknown length. We denote unit length vectors in the
image plane with a vector superscript, such as v. The corresponding vectors on the
surface tangent plane are defined by the image of v under the map composition of
the differential d f : R2 → R

3 and the tangent plane basis change T : R3 → Tp(S).
We will use the hat superscript to denote these surface tangent vectors, e.g. v̂.

Thus,
v̂ = T ◦ d f (v)

Because the computation is somewhat involved, we break it up into steps.
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Table 3.1 Notation Table

p a chosen point (x0,y0)
Ip(x,y) an image patch centered at p
∇I(x,y) the brightness gradient
Sp(x,y) the corresponding (unknown) surface patch
f (x,y) the Taylor approximation at p of S
{ci} the coefficients of the Taylor approximation f (x,y)
Tp(S) the tangent plane of S at p
L the light source direction
lt(p) the projection of the L onto the tangent plane
ei unit length standard basis vector in direction of coordinate axis i
N(x,y) the unit normal vector field of S
V (x,y) the vector field of isophote directions at each point (x, y)
v ∈ Tp(S) the image unit length tangent vector in the direction of the isophote at p
u ∈ Tp(S) the image unit length tangent vector in the direction of the brightness gradient at p
ŵ ∈ Tp(S) the tangent vector in direction w of unit length in the image, expressed in the surface tangent basis
u[V ] the directional derivative of the vector field V in the direction u
∇uV the covariant derivative (on the surface) of the vector field V in the direction u
DuV the directional derivative (on the image) of the vector field V in the direction u
G the first fundamental form (also called the metric tensor)
II the second fundamental form
H the Hessian
dN the differential of the Gauss Map, also called the Shape Operator

3.3.1 Calculating the Brightness Gradient

We derive the equations for the brightness gradient as a function of the light source
and the second fundamental form. Similar derivations (with different notation) ap-
pear in [17].

The brightness gradient ∇I can be defined as a linear 1-form having as input unit
length image vectors w and having as output a real number. The output is the change
in brightness along a step on the surface using ŵ. We write:

∇I ·w = ŵ [〈L,N〉] (3.1a)

= 〈(∇ŵL) ,N〉+ 〈L,(∇ŵN)〉 (3.1b)

= 0+ 〈L,dN(ŵ)〉 (3.1c)

= 〈lt,dN(w)〉 (3.1d)

= lT IIŵ (3.1e)

where the first term in equation (3.1b) is zero because the light source is fixed.

Proposition 3.1. The brightness gradient ∇I can be expressed as the vector lTt II.

Along an isophote surface curve α(t), the brightness is constant. Writing v =
α ′(0), we have 〈lt,dN(v)〉= lT IIv̂ = ∇I ·v = 0.

Thus, we conclude:

Proposition 3.2. Each isophote tangent vector v on S is a function of the normal
curvatures and light source and is defined by the equation
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〈lt,dN(v)〉= 0.

In addition, we calculate each component of the brightness gradient via dot product
with ei.

Ix = 〈lt,dN(e1)〉 (3.2)

Iy = 〈lt,dN(e2)〉 (3.3)

3.3.2 Calculating the Covariant Derivative of Projected Light
Source

One of the major advantages of our approach is that we do not need to assume a
known light source direction. In fact, using the covariant derivative described below,
we can calculate the change in the projected light source vector without knowing
where it is!

We briefly remark on the use of covariant derivatives for surfaces in R
2. We

consider “movements” in the image plane and syncronize them with “movements”
through the tangent bundle of the surface. The difficulty is that the image plane
vectors lie on a flat surface, whereas the vectors on the surface tangent planes “live”
in different tangent spaces: the surface tangent planes are all different orientations
of R

2 in R
3. Thus, to calculate derivatives via limits of differences, we need to

parallel transport nearby vectors to a common tangent plane, and this is done with
the covariant derivative. We think of the covariant derivative in two ways. The first
definition, which we use in this section, is the expression as the composition of a
derivative operator in R

3 and a projection operator onto a tangent plane. This is an
extrinsic definition – it is a definition that requires use of the ambient space. The
second definition, which we will use in the following section, will be in terms of
parallel transport.

We exploit the structure in lt : it is the result of a projection from a fixed vector L
down into the tangent plane Tp(S). Thus, the change in lt just results from changes
in the tangent plane, which is dependent only on the surface curvatures and not on L.
Importantly, we avoid having to represent L in our calculations by only considering
its projected changes. We now show this rigorously.

Lemma 3.1. The covariant derivative of the projected light source is only dependent
on the position of the light source through the observed intensity. Thus,

∇ult =−(L ·N)dN(u).

Proof. LetΠp0 be the projection operator taking a vector in 3-space onto the tangent
plane of S at p0. Recall that the covariant derivative of a tangent vector can be
expressed as the composition of a derivative operator and Π .
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P0

P1

P2

v

u

ß2(s)

ß1(t)

Fig. 3.9 A diagram explaining our use of the shading flow field. As we move on β1(t) in the
direction of the isophote v from P0 to P1, the flow field V (x,y) changes by∇vV . Similarly, we
may move in direction u along β2(s), which is perpendicular (in the image) to the isophote.
Then, our flow field changes by ∇uV . In Proposition 2, we relate these changes in closed
form to the curvatures of the surface and the light source direction.

∇ult =Πp0

(

dlt
dt

)

(3.4a)

=Πp0

(

d
dt
(L− (L ·N)N)

)

(3.4b)

=Πp0

(

dL
dt
− d

dt
[(L ·N)N]

)

(3.4c)

=Πp0

(

0− d
dt

[L ·N]N− (L ·N)
dN
dt

)

(3.4d)

=Πp0

(

−
[

dL
dt
·N+L · dN

dt

]

N− (L ·N)dN(u)
)

(3.4e)

=−(L ·N)dN(u) (3.4f)

The fact that this change in the projected light source only depends on sur-
face properties (along with the measurable image intensity) allows us to remove
the light source dependence from the second derivatives of intensity as defined by
{Dvv,Duv,Duu}.

3.3.3 Covariant Derivative of the Isophote Condition

We now use the changes in the brightness gradient and the isophote directions to
restrict our surface parameters. Let v be the unit length image vector in the direction
of the isophote at an arbitrary point p. Let u be the unit length image vector in
the direction of the brightness gradient at p. In the image, v ⊥ u but the projected
vectors v̂ and û may not be orthogonal on the tangent plane at p.
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In fact, considering these particular changes in u and v is equivalent to choosing
a basis. This will result in solving for equations of the three second derivatives
{Dvv,Duv,Duu}, although we could have considered the changes in {Ix, Iy} and
instead solved for {Ixx, Ixy, Iyy}. However, the equations simplify when choosing the
basis defined by the isophote and brightness gradient.

To emphasize the conceptual picture, we will derive the Dvv equation here. The
remaining equations can be found in [24].

We start by first calculating Iv and then taking the directional derivative of Iv in
the direction v. From Section 3.3.1, we can write:

0 = Iv = ∇I ·v = 〈lt,dN(v)〉 (3.5)

Applying the directional derivative with respect to v on both sides and using the
result from Equation 3.4f:

0 = v [〈lt,dN(v)〉] (3.6a)

= 〈(∇vlt) ,dN(v)〉+ 〈lt,∇vdN(v)〉 (3.6b)

= 〈−(L ·N)dN(v),dN(v)〉+ 〈lt,∇vdN(v)〉 (3.6c)

=−I〈dN(v),dN(v)〉+ 〈lt,∇v(dN(v))〉 (3.6d)

We now unpack 〈lt,∇vdN(v)〉 which requires a technical computation using par-
allel transport and tensor algebra. Due to space constraints, we will state the simpli-
fication rather than derive it. However, the derivation can be found in [24].

We recall the second definition of covariant differentiation here. We define it
intrinsically, that is, independent of the ambient space R

3. We will not go into the
derivations regarding connections or Christoffel symbols, which can be found in [7]
and [6]. We just summarize that parallel transport is a way to “equate” nearby
vectors in nearby tangent planes along a curve β (s). Using notation as in [7], we
will write the parallel transport in the forward direction of the vector field w(β (s))
as τ→s (w(β (s))). Conversely, the parallel transports backwards along the curve is
written τ←s (w(β (s))). Then, the covariant derivative can be defined intrinsically as:

∇β ′(0)w = lim
s→0

(

τ←s (w(β (s))−w(β (0))
s

)

Thus, covariant differentiation resolves the tangent plane orientation problem by
first transporting the vector w(β (s))∈ Tβ (s)(S) back to a “parallel” vector in Tβ (0)(S)
before doing the standard derivative subtraction.

Now, we will need to parallel transport the operator dN in addition to the parallel
transport of v. Luckily, we can use the fact that dN can be represented as a (1,1)
tensor. Thus, the parallel transport of dN can be represented as a sum of tensor
products of parallel transports on vectors and 1-forms. We use this in [24] in order
to obtain the following simplification.

Simplification of (3.6d) using parallel transport yields the following equation:

∇I ·Dvv =−(L ·N)||dN(v)||2 +∇IH−1(v[H]v)
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3.4 The Second-Order Shading Equations

We have now computed the covariant derivative of the vector v in the direction v.
For an arbitrary point p, let u be the image vector of unit length in the direction
of the brightness gradient. Then, we can repeat this calculation for the covariant
differentiation of v in the direction u. In addition, we can calculate the covariant
derivative of the vector u in the direction u. Both of these proofs are similar to
the one above. This gives us a total of three equations equating the second order
intensity information (as represented in vector derivative form) directly to surface
properties.

Theorem 3.1. For any point p in the image plane, let {u,v} be the local image
basis defined by the brightness gradient and isophote. Let I be the intensity, ∇I be
the brightness gradient, f (x,y) be the height function, H be the Hessian, and dN be
the shape operator. Then, the following equations hold regardless of the light source
direction:

∇I ·Dvv =−I||dN(v)||2 +(∇I) ·H−1(v[H]v) (3.7)

∇I ·Duu =−I||dN(u)||2− 2
||∇I||

√

1+ ||∇ f ||2 〈∇ f ,dN(u)〉+(∇I) ·H−1 · (u[H]u)

(3.8)

∇I ·Duv =−I〈dN(v),dN(u)〉− ||∇I||
√

1+ ||∇ f ||2 〈∇ f ,dN(v)〉+(∇I) ·H−1 · (u[H]v)

(3.9)

These equations are novel; we call them the 2nd-order shading equations. Note
that there is no dependence on the light source (except through measurable image
properties); thus, these equations directly restrict the derivatives of our local surface
patch.

3.5 Simplifications of the Shading Equations

In a generic patch, the second-order shading equations are highly complex and non-
linear. In addition, we have only three equations on the third order Monge patch,
which consists of 9 free parameters. Thus, there is a six dimensional local ambiguity.
For analysis in the generic case, see [24].

For this reason, we believe the shape from shading problem can – and should –
either be solved at certain points in the image (considered next) or should be com-
bined with other means for obtaining tangent plane information, such as a texture
flow. In the following section, we consider the above equations at critical points of
the intensity.
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3.5.1 Ambiguity Reduction at Critical Points

Much work has focused on the question: “Where should one draw lines on a sur-
face in order to give the best impression of the surface shape?” Recently, Decarlo
et al. [4] have considered “suggestive contours” and Judd et al. have suggested ap-
parent ridges [15]. How do we decide which feature lines are “better” [3]? Why are
certain curves so helpful in psychophysics? We believe that understanding shading
ambiguity can provide a useful metric for deciding between different definitions of
“shape representing contours.” We can also go the other way: we can use the dimen-
sion of the shading ambiguity to define contours (or sets of points) where the surface
information is mathematically more restricted by the shading than at a generic point,
key among these points are highlights and ridges [23], which we will define below.

Consider the points where the intensity is a local maximum or minimum, i.e.
∇I = 0. Koenderink et al. classified the local surface at these critical points [20]
in the case where the tangent plane was frontal-parallel and the principal curvatures
were known. By using our shading equations, we can generalize significantly. There
are two cases: the Gaussian curvature K �= 0 or K = 0. In the first case, we get
generic highlight points. The second case is even more interesting; we will use the
word “ridge” to denote contours consisting of these points.

3.5.2 Reconstruction from Critical Points

Let M be the map (under constant albedo) taking a surface to its respective image.
The shading equations define the inverse image M−1. Now, we are analyzing M−1 at
specific points in image space. In general, the image under M−1 will be high dimen-
sional and complex; however near ridges and highlights, we will see that the inverse
image is simply structured. It is possible the human visual system “understands”
these relationships at such special points and uses them to anchor the shape from
shading inference. For example, given a solution at the critical points interpolation
could be used to infer (or otherwise fill-in) the surface between them.

A necessary condition behind this hypothesis is that the image information at
critical points is (essentially) complete; that is, is sufficient to fill-in the remainder of
the image information. To test this we devised a simple reconstruction experiment.
Given a shaded image, we considered the shading flows only in the neighborhoods
of the highlights, ridges, and occluding contour. We then linearly interpolated [5]
between these critical points to gain the shading values on the rest of the surface.
See Figs. 3.10, 3.2.

By and large, the reconstructed image is very close to the original image in both
shape percept and intensities. This is evidence that shape from shading could be
done by just understanding the shading at critical points because (at least) the re-
maining image structure could be filled in. We conjecture that the same result holds
at the surface level. That is, we conjecture that the visual system may be able to
build a robust shape percept using just the simple relationships described below at
the highlight and ridge cases and then “filling in” between them in a consistent fash-
ion. As an aside, we find it hard to believe the visual system implements any of the
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Fig. 3.10 Left – a shaded surface. Center – shading values in 4x4 pixel neighborhoods sur-
rounding critical points. Right – reconstructed shading values via a linear interpolation algo-
rithm [5] using only the shading values in the center figure. Note that the 3D percept for both
Left and Right is nearly identical.

current computer vision shape from shading algorithms, due to the extreme com-
plexity and arbitrary priors used in many of them. Note that a linear interpolation of
intensity values can be achieved by a quadratic interpolation of normal vectors.

3.5.3 Highlights

We now analyze the two cases of critical points. First, consider the generic case
when the Gaussian curvature is not zero, so H−1 is well-defined. Since lT

t II = 0,
and II is not singular, lt = 0. This is the case of normal incidence of the light source.
Then our equations 3.7, 3.8 , 3.9 simplify:
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∇I ·Dvv =−(I)||dN(v)||2 (3.10a)

∇I ·Duu =−(I)||dN(u)||2 (3.10b)

∇I ·Duv =−(I)〈dN(v),dN(u)〉 (3.10c)

At these points, the second derivatives of intensity relate directly to the total
change in normal for a unit step in the image. This cursory analysis may explain
why highlight lines are so effective at revealing surface shape psychophysically: A
simple rule relates the image derivatives to the surface derivatives. Essentially, the
widths of the highlights are proportional to the appropriate surface curvatures. See
Fig 3.11. Although one does not gain information about the tangent plane, due
to the unknown light source(s), one has information about the curvatures as seen
from the surface. Once the tangent plane has been found, these equations tell us the
second order shape properties.

Fig. 3.11 Left – a shaded surface. Center – the green pixels represent the highlight points,
determined via the gradient of the image (∇I < ε). Right – green pixels represent points on
either an occluding boundary or a ridge, calculated via a Laplacian filter.
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3.5.4 Ridges

The next class of critical points are ridges. In this work, we use the term “ridge” as
an image contour of connected points that are all either local minima or maxima of
intensity. However, this time, we assume K = 0. Ridges are very salient points of
the image; they can often be isolated via a Laplacian filter. See the interior contours
in Fig 3.11. Along these contours, we get a simplification of the shading equations.

Let w ∈ TpS denote the unknown nonzero principal direction; w corresponds to
the major axis for the locally cylindrical Taylor approximation. For simplicity, we
can define a Frenet basis for the image contour and so express the surface deriva-
tives in that {u,v} basis. Let lt be expressed as {l1, l2} in this basis. Although w is
unknown, at highly foreshortened tangent planes (as is the case on the ridges in this
example), tangent vectors project to either {u,v}, up to the visual system’s resolu-
tion. Without loss of generality, suppose w≈ u. (The other possible approximation
w≈ u leads to analogous equations.) Then, the shading equations again reduce after
some algebra:

∇I ·Dvv =−(I)||dN(v)||2 + l2 fvvu
√

1+ ||∇ f ||2 (3.11a)

∇I ·Duu =
l2 fuuu

√

1+ ||∇ f ||2 (3.11b)

∇I ·Duv =
l2 fvuu

√

1+ ||∇ f ||2 (3.11c)

Thus, both Iuu and Iuv are proportional to the appropriate third derivatives of the
surface, once foreshortening has been accounted for. Note that the foreshortening of
the tangent plane and the light source make up the coefficient of proportionality. In
particular, the light source only affects Iuu and Iuv by scaling the necessary fuuu and
fvuu. Thus, the ambiguity for several of the coefficients of the Taylor approximation
is only a matter of scale. To gain some geometric intuition, see Fig 3.12. The in-
teresting equation is the ∇I ·Dvv one. It says we can trade off weighted versions of
||dN(v)|| and fvvu and keep the image properties the same.

We remark on the possibility of multiple light sources. Due to linearity, one can
simply sum the various image properties created from each light source. Thus,
additional light sources can only represent a change in the value l2 and often
these changes are on the order of a factor of 2 or so. However, the values of
{Dvv,Duv,Duu} are on the order of 103. Thus, these ridges tend to be remarkably
stable under addition of new light sources.

Although we do not claim that the shading outside the critical points is com-
pletely irrelevant, there is significant literature on how contours can “trump” shading
information [22,27,28]. In addition, it is clear that contours alone can lead to a rich
3D percept: simply view famous artists’ line drawings, etchings, etc! Finally, we
note that shape perception will also be ambiguous; the exact nature of the surface is
dependent on the task and the “beholder’s share” [19]. It is not possible and maybe
not even be desirable to calculate the precise depth values of the surface. Rather, a
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Fig. 3.12 Left – a portion of our shaded surface. The red line defines a normal plane, which
indicates a cross section (x-axis) in Center and Right. Center – The curves represent various
possible cross sections resulting in the same Iuu value. The arrows represent the necessary
light source. Note the tangent plane changes. Right – Various cross sections and associated
light sources. Here, the tangent plane stays fixed, but the projected light source changes.
These two types of transformations generate the possible cross sections.

preferred output representation may be the local quadric class [17, 28], which is a
more flexible and less precise representation. We believe studying the critical shad-
ing points will lead to mathematically natural ways to segment the surface according
to these quadric classes.

3.6 Conclusion

The differential invariants of surfaces are curvatures. Thus a natural framework for
formulating surface inferences is in terms of differential geometry. We here propose
such a framework, by lifting the image information to a vector field (the shading
flow field) and formulating the shape-from-shading problem on it. Our goal is to
find those (surface, light source) pairs that are consistent with a given shading flow.
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Working with simplifying assumptions, we develop the basic transport machinery
in closed form and calculate the full family of solutions.

On any image patch of a smooth surface, the curvatures of the shading flow re-
strict the possible local surfaces via these shading equations. However, the ambigu-
ous families are, in general, not easy to describe. Thus, we focused on understanding
the relationships between the shading flow and surface at critical points. On these
points, the geometric relationships are simplified. We propose that the visual system
may use the shading flows near these critical points and subsequent interpolation to
gain its “first pass” shape percept.

Finally, we close with a neurobiological point. It is known that the higher visual
areas are selective for surface properties, including their curvatures [29]. It is also
known that many different forms of orientation images, such as oriented texture
noise and glossy patterns (see references in [8]) are perceived as surfaces. To our
knowledge the calculations here are the first example of how this inference might
take place from the shading flow to surfaces. It thus serves as a common “language”
for formulating feedback, but also underlines the need for additional information.

Shape inferences are not done in a vacuum, and the rich interconnectivity of the
visual system should reflect the rich mathematical connectivity between surfaces
inferences from contour, shading, texture, stereo and motion. In our view thinking
of these in neurogeometric terms – vector and tensor fields, transport equations, and
differential geometry – may well be the research path to understand them.
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Chapter 4
From Functional Architectures to Percepts:
A Neuromathematical Approach

Giovanna Citti and Alessandro Sarti

Abstract. In this paper we will consider mathematical models of the functional
architecture of the primary visual cortex based on Lie groups equipped with sub-
Riemannian metrics. We will critically review and clarify our line of work, joining
together within an integrative point of view geometric, statistical, and harmonic
models. The neurogeometry of the cortex in the SE(2) groups introduced recalling
the original paper [12]. Amodal perceptual completion is reconsidered in terms of
constitution of minimal surfaces in the geometric space of the functional architec-
ture, and a new Lagrangian field model is introduced to afford the problem of modal
perceptual completion [14] of the Kanizsa triangle. The neurogeometric structure is
considered also from the a probabilistic point of view and compared with the statis-
tics of co-occurence of edges in natural images following [48]. Finally the problem
of perceptual units constitution is introduced by means of a neurally based non linear
PCA technique able to perform a spectral decomposition of the neurogeometrical
operator and produce the perceptual gestalten [52, 53].

4.1 Introduction

The pioneeristic work of Hubel and Wiesel in the seventies [32,33] allowed the dis-
covery of the modular structure of the mammalian visual cortex. Every module is
composed by many families of cells, every one sensible to a specific feature of the
image, either position, orientation, scale, color, curvature, velocity or stereo. Mod-
ules are spatially arranged in suitable maps always respecting retinotopy in such a
way that for every point (x,y) of the retinal plane there is a hypercolumn containing
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an entire set of cells sensitive to all feature instances. The functional architecture
of the visual cortex is the geometric machine underlying the processing of visual
stimuli, and it is defined in terms of hypercolumnar organization and its neural con-
nectivity. A particularly interesting framework to mathematically model the func-
tional architecture of the primary visual cortex has been introduced first by W.C.
Hoffmann in [30]. A differential geometry setting has been proposed to model the
hypercolumnar organization in in terms of a manifold equipped with a fiber bundle
structure. Steven Zucker in [61] followed a similar approach to model the action of
simple cells for orientation detection, introducing Frenet frames in a fiber bundle
structure to represent hypercolumns. Jean Petitot and Yannique Tondut in [46] in-
troduced in the fiber bundle structure a supplementary constraint, giving rise to the
so called contact structure. They propose for the first time the notion of neuroge-
ometry. The contact constraint is fundamental to take into account the anysotropic
pattern of connectivity between hypercolumns. Citti and Sarti proposed to repre-
sent the functional architecture in terms of Lie group structures equipped with sub-
Riemannian metrics, which better describe the symmetry of the cortex [12]. In their
model, the hypercolumnar structure is described in terms of the Lie symmetries of
the Euclidean group, equipped with the suitable sub-Riemannian metric for mod-
elling anysotropic connectivity. The integral curves of its generating vector fields
can also be considered as a mathematical representation of the association fields of
Field, Hayes and Hess [23]. The propagation in the sub-Riemannian setting allows
to perform amodal contour completion [12]. With similar instruments, both contour
and image completion have been achieved in the Lie group of affine transformation
in [49] and improved by introducing the hyperbolic plane in [50]. Analytical prop-
erties of the model [12] was further studied by R. Hladky and Pauls [29]. Finally we
recall the works of Duits, van Almsick, Franken, ter Haar Romeny [19] [20] [21]
who proposed new models in different Lie groups, with many applications to image
processing. The connectivity kernels resulting from the sub-Riemannian model of
the cortex are compared with the statistics of co-occurence of edges in natural im-
ages in [48], giving a possible explanation of their emergence. In [14] a Lagrangian
field model is introduced to couple the functional architecture of the Lateral Genic-
ulate Nucleus with the one of the visual cortex. The resulting model is able to afford
the problem of modal perceptual completion of the classical triangle of Kanizsa.
The problem of the constitution of perceptual units in the geometry of the func-
tional architecture is the very question to fill the gap between neurophysiology and
phenomenology of perception. In [52] and [53] a mechanism of grouping has been
proposed as extension of the model of visual hallucination proposed by Bressloff
and Cowan [7]. The model performs a non-linear Principle Component Analysis by
using the neurogeometrical kernels of the functional architecture.

In this paper we will critically review and clarify our line of work, joining to-
gether within an integrative point of view geometric, statistical and harmonic mod-
els previously presented. The paper is organized in six main parts. In section 4.2,
the functional architecture of the Lateral Geniculate Nucleus is presented, while in
section 4.3, the neurogeometry of the cortex is recalled following [12]. In section
4.5, a model of amodal perceptual completion is proposed in terms of constitution
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of minimal surfaces in the geometric space of the functional architecture. In sec-
tion 4.6, a Lagrangian field model is introduced to afford the problem of modal
perceptual completion [14]. In section 4.7, we will reinterpret the neurogeometric
structure from a probabilistic point of view and compare it with the statistics of co-
occurence of edges in natural images, following [48]. In section 4.8, we will afford
the problem of perceptual units constitution. By means of a sinlge neural population
model [8], we will construct the gestalten performing a spectral decomposition of
the neurogeometrical operator.

4.2 Functional Architecture of Lateral Geniculate Nucleus

4.2.1 Receptive Fields and Profiles of Thalamic Cells

A number of cells of visual areas elicit a spike response to a luminance signal ap-
plied on the retinal plane M ⊂ R

2. Every visual neuron is characterized by its re-
ceptive field (RF) that is classically defined as the domain of the retina to which
the neuron is sensitive. Note that in general neurons are not directly connected to
the retina. For example, cortical neurons are projecting from the retina to the cortex
through the lateral geniculate nucleus along the thalamic way.

The receptive profile (RP) of a visual neuron is defined on the domain marked by
the RF, and corresponds to the impulse response of the cell as a filter kernel. It is a
functionΨ(x,y) (where x,y are retinal coordinates)Ψ : M→R which is defined on
the retinal plane M and measures the response (ON / OFF) of the neuron to stim-
ulation at the point (x,y). When a visual stimulus I(x,y) : M ⊂ R

2→ R
+ activates

the retinal layer, the cells centered at every point (x,y) of M process in parallel the
retinal stimulus with their receptive profile. Reverse correlation techniques enable
the recording of the RPs in terms of the correlations of the inputs (generally flashes
of light and dark spot) with the outputs (spikes) [18]. The correlation of the inputs
with the outputs yields the transfer function of the neuron, namely the RP.

RPs of the retinal ganglion cells are usually modelled by Laplacians of Gaussians
[39],

Ψ0(ξ ,η) = ΔG(ξ ,η),

where G(ξ ,η) = e−(ξ 2+η2) is the Gaussian bell and Δ is the standard Laplacian.
The same receptive profiles are found also in the Lateral Geniculate Nucleus (LGN),
that is a copy of the retina but strictly in contact with the visual cortex. The size of
the retinal and LGN RPs vary with a scale parameter allowing an entire multiscale
analysis of the signal. For the purpose of this study, we will consider a fixed scale,
since the phenomena described are invariant with respect to size changes, up to a
rescaling.
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Fig. 4.1 On the left: a measured LGN cell RP (thanks to De Angelis [18]), on the right: a
LGN cell RP modelled as Laplacian of a Gaussian

4.2.2 Cell Response and Lateral Connectivity of LGN

The output of the cells in LGN in response to the visual signal is highly nonlinear,
and it rescales the visual input in a logarithmic way:

O(x,y)LGN = ΔG(x,y) ∗ logI(x,y).

The output of LGN cells is propagated via the lateral connectivity in LGN itself.
Since this connectivity is isotropic [57], it can be modelled by the fundamental
solution Γ (x,y) of the 2D Laplacian operator

Γ (x,y) =− log
√

x2 + y2.

LGN lateral connectivity with strength Γ (x,y) acts linearly on the output
O(x,y)LGN , giving a total contribution

φ(x,y) =
1
2

(

Γ (x,y)∗Δ log I(x,y)
)

. (4.1)

Note that the action of receptive profiles Δ log I(x,y) and the one of LGN lateral
connectivity Γ (x,y)∗ is dual in a differential sense.

4.2.3 The Retinex Algorithm as a Model of LGN Action

Eq. (4.1) corresponds to the Retinex algorithm in the version proposed by Horn
in [31], where the authors proposed a physically based algorithm, which recovers
the reflectance f of an image I as

Δ log f (x,y) = Δ log I(x,y), (4.2)

where I(x,y) is given. This is a Poisson equation with solution
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log f (x,y) =
1
2

(

Γ (x,y)∗Δ log I(x,y)
)

,

formally equivalent to eq. (4.1) provided that φ(x,y) = log f (x,y).
Let us recall that the Retinex algorithm has been introduced in [37,38] to explain

lightness perception, i.e. the phenomenon causing a gray patch to appear brighter
when viewed against a dark background and darker when viewed against a bright
background. Improvements and new models have been proposed by [35,43] among
others.

In particular in [43], it has been proved that the original Retinex algorithm can be
equivalently espressed by the Poisson equation (4.2), and in [26,27] a new interpre-
tation was given in terms of covariant derivatives and fiber bundles. Indeed setting

A(x,y) = ∇I(x,y)/I(x,y) (4.3)

equation (4.2) can be considered the Euler Lagrange equation of the functional

F̃(x,y) =
∫ |∇ f (x,y)−A(x,y) f (x,y)|2

f (x,y)2 dxdy. (4.4)

This functional is invariant with respect to the transformation

f → f I, A→ A+
∇I
I

so that the choice A(x,y) = ∇I(x,y)
I(x,y) is compatible with the transformations which

leaves the functional invariant. The quantity∇ f −A f can be interpreted as a covari-
ant derivative.

Here we can further notice that, setting

φ(x,y) = log f (x,y), h(x,y) = log I(x,y), (4.5)

equation (4.2) simplifies as

Δφ(x,y) = Δh(x,y) (4.6)

and setting as before: A(x,y) = ∇I(x,y)/I(x,y) = ∇h(x,y), the functional becomes

F(x,y) =
∫

|∇φ(x,y)−A(x,y)|2dxdy =
∫

|∇φ(x,y)−∇h(x,y)|2dxdy, (4.7)

while the transformations which leave the operator invariant become

φ → φ + h, A→ A+∇h.

The functional (4.7) has to be considered as the invariant energy underlying the
Retinex Poisson equation (4.2) solved by the action of the LGN connectivity repre-
sented by eq. (4.1).
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4.3 The Neurogeometrical Structure of the Primary Visual
Cortex

4.3.1 The Set of Simple Cells Receptive Profiles as a Lie Group

While LGN cells are fairly isotropic, simple cells of the primary visual cortex V1
are strongly oriented, and their RPs are interpreted as Gabor patches [17, 36] or
directional derivatives of Gaussians.

A first derivative of Gaussian models odd simple cell RPs (Fig. 4.2 right):

Ψ0(ξ ,η) = ∂ηG(ξ ,η). (4.8)

Fig. 4.2 Left: an odd simple cell RPs measured by reverse correlation techniques (thanks to
De Angelis [18]). Odd receptive profile modelled as Gabor filter (middle) and first directional
derivative of Gaussian (right).

The set of observed profiles can be obtained from the mother profile Ψ0(ξ ,η)
(see [36]) under the action of a Lie group.

The entire set of RPs of the same point (x,y) is then obtained by rotating the
mother profile, explicitly:

Ψθ =Ψ0

(

ξ cosθ +η sinθ ,−ξ sinθ +η cosθ
)

.

This structure enlightens the modular structure of the cortex. Each family of cells
acts on the same retinal basis but depends on different engrafted variables, and it is
described by different groups of symmetry.

We will describe the action of the affine group of rotation and translation on
vectors of R2, since the other two groups are subset of this one. The action Mx,y,θ
transforms every vector (ξ ,η) in a new vector (ξ̃ , η̃) as:

(ξ̃ , η̃) = Mx,y,θ (ξ ,η) =
(

x
y

)

+

(

cos(θ ) −sin(θ )
sin(θ ) cos(θ )

)(

ξ
η

)

. (4.9)
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The action of the group on the set of profiles will be:

L(x0,y0,θ)Ψ (x,y) =Ψ(M−1
(x0,y0,θ)

(x,y)). (4.10)

Then the whole set of receptive profile will be {Ψx,y,θ (ξ̃ , η̃) =L(x0,y0,θ)ψ(x,y)}.
After rotation of the axis of an angle θ , the derivative ∂η becomes

X3 =−sin(θ )∂ξ + cos(θ )∂η . (4.11)

Then the odd cell RP oriented in the direction θ is in general represented by

Ψθ = X3G(ξ ,η). (4.12)

Finally the expression of filters on different points is obtained by translation:

Ψx,y,θ (x̃, ỹ) =Ψθ (x− x̃,y− ỹ).

In Fig. 4.3 we visualize the set of odd simple cells.
Note that for simplicity we take Euclidean translations on the cortical plane ne-

glecting the conformal log-polar retino-cortical mapping, that can be easily taken
into account by introducing a Riemannian metric on the cortical layer. This feature
will not be implemented in the present study.

Fig. 4.3 The set of simple cells odd receptive profiles Ψx,y,θ (x̃, ỹ) represented in the space
(x,y,θ )

4.3.2 Simple Cells Response

If classical RPs are considered, the output u is given by linear filtering of the stimu-
lus h(ξ ,η) = log(I(ξ ,η)) by the set of RPs:
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u(x,y,θ ) =
∫

M
h(ξ̃ , η̃)Ψ(x,y,θ)(ξ̃ , η̃)dξ̃dη̃ (4.13)

and by eq. (4.12)

u(x,y,θ ) =
∫

X3G(ξ ,η)h(ξ̃ , η̃)dξ̃dη̃ =−X3G(ξ ,η)∗ h(ξ̃ , η̃) =−X3(θ )hs

(4.14)
where hs is a smoothed version of h,

hs = h ∗G(ξ ,η).

4.3.3 Non Maximal Suppression

For a fixed point (x,y) the output is a function just of the variable θ that attains its
maximum at the point

max
θ
||u(x,y,θ )||= ||u(x,y, θ̄ )||. (4.15)

This maximality condition can be mathematically expressed requiring that the
derivative of ||u|| with respect to the variables θ vanishes at the point (x,y, θ̄ ):

∂θu(x,y, θ̄ ) = 0. (4.16)

At the maximum point θ̄ the derivative with respect to θ vanishes, and we have

0 =
∂
∂θ

u(x,y, θ̄ ) =
∂
∂θ

X3(θ̄ )I =−X1(θ̄ )I =−〈X1(θ̄ ),∇I〉 (4.17)

where
X1(θ ) = cos(θ )∂ξ + sin(θ )∂η .

The condition (4.17) means that the vector (cos(θ̄ ),sin(θ̄ )) is orthogonal to the
gradient of h (and to the gradient of I) and then is tangent to its level lines. Then the
angle θ̄ maximizing the output indicates the direction of level lines of the stimulus
image.

Calling
ρ̄(x,y) = ||u(x,y, θ̄ (x,y))||, (4.18)

we can say that the point (x,y) is lifted to the point (x,y, θ̄ (x,y), ρ̄(x,y)) in the
cortical space (x,y,θ ,ρ). With the same procedure it is possible to lift all the level
lines of the 2D image I into 4D curves.

It is easy to check (see for example [12]) that the first 3 components of the lifted
curves are tangent to the plane generated by the vector fields

X1 = (cos(θ ),sin(θ ),0) X2 = (0,0,1). (4.19)
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Fig. 4.4 A level line of the image (in blue) and its 3D cortical lifting (in red). The tangent
vector to the blue curve is (cos(θ ),sin(θ )), so that the tangent vector to its lifting lies in the
plane generated by X1 = (cos(θ ),sin(θ ),0) and X2 = (0,0,1).

and visualized in Fig. 4.5. In Fig. 4.4 we depicted the 3D section with the plane
(x,y,θ ).

Let us notice that all admissible curves of the cortical space are tangent at ev-
ery point to the subspace generated by X1 and X2, which has dimension 2. In the
standard Riemannian setting, the number of generators of the tangent space equal
the dimension of the space, while in the geometrical model of cortical space the
dimension of the manifold is 3, and the admissible tangent space has dimension 2.
This endows the 3D space R2× S1 of the variables (x,y,θ ) with a sub-Riemannian
geometry. While no constraint is imposed on the last variable ρ , the vector field in
the ρ direction will be

X4 = (0,0,0,1).

The full 4D space will consequently be

R2× S1×R+,

with a sub-Riemnnian metric in the first 3 variables, and a standard metric in the last
variable. Since the geometry on the last component ρ is standard, we will describe
the geometry of the 3D space generated by the first 3 variables (x,y,θ ).

4.3.4 Association Fields and Integral Curves of the Structure

Field, Heyes and Hess in [23] have shown the existence of a perceptual field
connecting patches of position and orientation, see Fig. 4.6 left. This connectivity
pattern, called association field, is considered at the base of the constitution of
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Fig. 4.5 The bundle of subspaces of the tangent manifold generated by the fields X1(θ ) and
X2(θ )

boundaries in visual perception, implementing the gestalt law of good continuation.
We have shown in [13] that the association field is well modelled by the integral
curves of the vector fields X1 and X2, starting from a fixed point (x0,y0,θ0):

γ ′(t) = (x′(t),y′(t),θ ′(t)) = X1(x(t),y(t),θ (t))+ kX2(x(t),y(t),θ (t)) (4.20)

γ(0) = (x0,y0,θ0),

A fan of such integral curves by varying the parameter k is visualized in Fig. 4.6
right.

Fig. 4.6 The association fields of Fields, Heyes and Hess [23] (left) and the projected integral
curves with constant coefficients (right)
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Fig. 4.7 The constant coefficient integral curves of the fields X1(θ ) and X2(θ ), modeling the
local connectivity between points of the cortical space

4.3.5 Length of Lifted Curves and Geodesics

A 2D level line
γ̃ = (x(t),y(t))

parametrized by arc length t, has tangent vectors

(x′(t),y′(t)) = (cos(θ (t)),sin(θ (t)))

at every point, where θ denotes the direction of the curve at the point (x(t),y(t)).
We have seen that the action of simple cells lifts the level line into a 3D cortical
curve γ(t) = (x(t),y(t),θ (t)). Differentiating x and y we get

(x′′(t),y′′(t)) = (−sin(θ (t))θ ′(t),cos(θ (t))θ ′(t)) = (−y′(t),x′(t))θ ′(t)

so that the euclidean curvature can be computed as

k =
y′′x′ − x′y′′

((x′)2 +(y′)2)3/2
= θ ′

The length of the lifted curve is

L(γ(t)) =
∫
√

x′(t)2 + y′(t)2 +θ ′(t)2dt =
∫ √

1+ k(t)2dt,

considering that x′(t)2 + y′(t)2 = 1. Notice that the length of lifted curves depends
on the length of the 2D level line and on its curvature, analogous to the case of
the elastica functional

∫

(1+ k(t)2)dt, introduced by David Mumford in [44]. The
distance between two cortical points (x,y,θ ) and (x̄, ȳ, θ̄ ) is defined in term of the
length functional as
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d((x,y,θ ),(x̄, ȳ, θ̄ )) = inf{L(γ) : γ is an horizontal curve (4.21)

connecting (x,y,θ ) and (x̄, ȳ, θ̄ )},
see [13]. In other words the horizontal path on which the infimum is achieved is a
geodesic curve of the cortical space. As suggested by Petitot and Tondout in [46],
subjective contours can be computed as geodesics curves in a contact structure. Here
we can show (see Fig. 4.8) that subjective contours can be well represented by sub-
Riemannian geodesics in the SE(2) group, i.e. as minimizers of (4.21).

Fig. 4.8 A Kanizsa triangle with curved boundaries (left) and the subjective contours mod-
elled as geodesics of the cortical space (right). The geodesics are not rectilinear, since they
minimize the distance (4.21), which is a function of the curvature k.

4.4 The Cortical Implementation of the Neurogeometrical
Structure

4.4.1 Response of Simple Cells and Bargmann Transform

Daugmann in [17] first proved that the shape of the simple cells is intimately related
to their functionality. His crucial remark is the fact that simple cells try to localize
at the same time position (x,y) and frequency ω . Hence the set SE(2) can be inter-
preted as a real manifold of the phase space, with the frequency variables expressed
in polar coordinates:

SE(2)⊂ C
2 = {(x,y, |p|cos(θ ), |p|sin(θ ))}.

The classical uncertainty principle in the Heisenberg space asserts that it is not pos-
sible to detect with arbitrary precision both position and momentum (see [15]). The
principle also provides an explicit condition for functions that minimize uncertainty
with respect to the position and momentum operators. These minimizers are called
coherent states, and in the Heisenberg setting they are the Gabor filters. This is why
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these filters have been proposed in [17] as models for the shape of receptive profiles
(see Fig. 4.2 Middle). The complete set of coherent states can be obtained via the
action of the group (4.10) on a fixed mother stateΨ . Recall that, ifΨ is a coherent
state, the Bargmann transform of the function h is

BΨ (h)(x,y,θ ) =
∫

L(x,y,θ)Ψ(x̃, ỹ)h(x̃, ỹ)dx̃dỹ. (4.22)

Hence the response of the filters on an image defined in (4.13) can be interpreted as
a Bargmann transform (see [4] for the definition and [3] for this interpretation of the
cell response).

Fig. 4.9 A pinwheel map (left) and its spectral behavior (right). Figure extracted from [41].

4.4.2 The Activity Maps and the Pinwheel Structure

Even if the primary visual cortex shows the symmetries of SE(2), that is a 3-
dimensional group, its physical implementation is realized on the 2-dimensional
layer provided by the cortex. Orientation columns are radially arranged around sin-
gular points like the spokes of a wheel, that are called pinwheels (see Fig. 4.9). This
structure has been observed first with optical imaging techniques [6, 5] and more
recently by in vivo two-photon imaging proving their organization with single cell
precision. In [41] an empirical method was also introduced that is able to repro-
duce orientation map-like structures as a superposition of plane waves with random
phases. More recently, in [16], the activity in V1 has been reconstructed by measur-
ing cell responses to so called gratings. Activated regions depend on the orientation
at which they are presented so that if a family of gratings is presented to an observer,
the result is a family of real maps {uθ (x,y)} (see Fig 4.10). The pinwheel image has
been reproduced in Fig.4.10 (center) by performing a vector sum of the orientations

P(x,y) =
1
2

arg
∫ π

0
ei2θuθ (x,y)dθ . (4.23)
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Fig. 4.10 The original results obtained by [16] showing a set of gray level cortical maps uθ
acquired by optical imaging and the reconstructed color coded image at the center with the
well known pinwheel structure

4.4.3 An Uncertainty Principle on the Functional Geometry

In a recent paper [2] Barbieri, Sanguinetti and the authors of the present paper pro-
posed a model of the cortical activity and pinwheel structure based on an uncer-
tainty principle in the structure SE(2) of the visual cortex, which reproduces the
experiment in [16]. The image of the left-invariant vector fields (4.19) under the
differential of the action defined in (4.10) is defined as Yi = dL (Xi) and provides
the differential operators

Y1 = ∂ỹ, Y2 = ỹ∂x̃− x̃∂ỹ. (4.24)

Under the action of the Fourier transform, these vector fields (4.24) become respec-
tively

F (Y1 f ) = iξ2 f̂ , F (Y2 f ) = (ξ2∂ξ2
− ξ1∂ξ2

) f̂ .

Experimentally we see that the Fourier spectrum of the orientation maps is ap-
proximately concentrated on a circle (see Fig.4.9, right). On the other hand no
action is performed by the fields in the radial direction, allowing to restrict the
study to functions defined on the circle of radius ρ (see [55]). Since it is not pos-
sible to further reduce the set where to study these vector fields, the representa-
tion of these vector fields on the circle is called irreducible. In polar coordinates
(ξ1,ξ2) = ρ(cos(θ̃ ),sin(θ̃ )) they reduce to an even simpler representation:

Ŷ1 f̂ = iρ sin(θ̃ ) f̂ , Ŷ2 f̂ = ∂θ̃ f̂ . (4.25)
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Fig. 4.11 Top: A general function in the reduced Fourier plane, where only a circle is consid-
ered. The height of the graph represents the modulus, and the color represents the argument
of the function. Bottom: A coherent state in the reduced Fourier plane.

The uncertainty principle can be stated for any couples of noncommuting self-
adjoint operators on Hilbert spaces [24]. In terms of operators Ŷi it reads:

|〈Φ̂ ,ρ cos(θ̃ )Φ̂〉| ≤ 2‖ρ sin(θ̃ )Φ̂‖ ‖∂θ̃ Φ̂‖. (4.26)

Minimal uncertainty states can be computed by making use of an equation asso-
ciated to inequality (4.26), that in this case reads (see also [9])

(Ŷ2− iλŶ1)Φ̂(θ̃ ) = 0 (4.27)

where the scaling parameter λ represents frequency. Solutions to equation (4.27)
read, up to a normalization constant c = cρ(λ )

Φ̂(θ̃ ) = ceλρ cos(θ̃). (4.28)

The states (4.28) are the most concentrated functions in angular position and mo-
mentum, hence allowing optimal localization (from now on we will omit to write
the constant c for simplicity). Note that the bigger λ is, the sharper its localization
is: for large values of λ , that means λ � 1/ρ , it is maximally concentrated. Due to
the uncertainty inequality, the variance of d

dϕ grows to infinity, i.e. it is maximally

undetermined. On the other hand, for small values of λ , i.e. λ � 1/ρ , then Φ̂(ϕ)
approaches a constant, and the angular momentum is maximally concentrated.



146 G. Citti and A. Sarti

Fig. 4.12 The gray valued maps uΦ,θ (x,y) for different values of the orientation and in
center the color image obtained as a vector sum, to be compared with the experimental result
of [16], reproduced in Fig.4.10

4.4.4 Irreducible Bargman Transform, the Activity Maps and
Pinwheels

The notion of Bargmann transform in SE(2) has been introduced by Barbieri et
al. in [3]. In analogy with the classical expression in (4.22) it is expressed as the
operator associated to the coherent states. The action of the group on the coherent
states Φ is the Fourier transform of the action defined in (4.10):

L̂(x,y,θ)Φ̂(θ̃ ) = e−iρ0(xcos(θ̃)+ysin(θ̃))Φ̂(θ̃ −θ ).

Consequently, the irreducible Bargman transform reads:

BΦ(h)(x,y,θ ) =
∫

S1
L̂(x,y,θ)Φ̂(θ̃ )h(θ̃ )dθ̃ . (4.29)

Given a white noise W = W (θ̃ ) with values in [0,2π ], defined on [0,2π ], and such
that W (θ̃ +π) = −W (θ̃ ) we can consider the function BΦ(W )(x,y,θ ). We impose
the symmetries of the cortex to represent orientations. Namely we require that it is
π−periodic in θ and provides opposite response at orthogonal angles as is the case
for V1 cells:

uΦ ,θ (x,y) = Re
(

BΦ(W )(x,y,θ )−BΦ(W )(x,y,θ +π/2)
)

. (4.30)
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By definition this irreducible Bargmann transform is simply the transform in (4.22)
restricted to functions with constant frequency. Hence it expresses a response of the
cortex, which has been interpreted in [2] as a model of the activity maps measured
in [16](see Fig. 4.12). As in (4.23) we perform the sum

PΦ(x,y) = arg
(
∫ π

0
uΦ ,θ (x,y)e

i2θdθ
)

(4.31)

reproducing the original experiment. An important property of (4.31) is that it can
be represented as a sum of plane waves, with frequency ρ , and random phases in
accordance with the mechanism introduced in [41]. This model is indeed able to in-
terpret both the orientation activity maps and the pinwheel-shaped orientation maps
as interference figures.

4.4.5 Propagation in the Pinwheel Structure

Techniques of optical imaging associated to tracers allow a large-scale obser-
vation of neural signal propagation via cortico-cortical connectivity. These tests
have shown that the propagation is highly anisotropic and almost collinear to the
preferred orientation of the cell (see Fig. 4.13), confirming at neural level the phe-
nomenological results of Field, Heyes and Hess in [23] and the model of propaga-
tion curves developed in section 3. This experiment suggests to introduce not only
a propagation along curves but with a differential operator, which can propagate in
a neighborhood of a point. Even though the propagation is performed in the cortex
at the pinwheel level, we will describe the neural propagation in the 3D model of
R2×S1, which is formally simpler to handle, and from which it is possible to project
on the pinwheel structure.

Fig. 4.13 A marker is injected in the cortex, in a specific point, and it diffuses mainly in
regions with the same orientation as the point of injection
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4.5 Propagation in the Family of Simple Cells

4.5.1 Propagation along the Association Fields

Neural activity develops and propagates only along the integral curves of the struc-
ture. If γ is one of the curves in (4.20), the Lie derivative of a function f along the
curve γ is defined as

Xiu(ξ0) =
d
ds

(u ◦ γ)|s=0,

and on regular functions it coincides with the directional derivative. In analogy with
the Euclidean gradient, the sub-Riemannian gradient is defined by

∇Ru = (X1u,X2u).

Note that it does not contain derivatives in direction X3, which can be recovered by
commuting:

X3 = [X2,X1] = X2X1−X1X2,

see [12] for details. Hence X3 will play a role similar to a second derivative. In this
setting the divergence of a horizontal vector field ν = (ν1,ν2) is defined as

divRν = X1ν1 +X2ν2,

so that the sub-Laplacian operator becomes

ΔRu = divR(∇Ru) = X11u+X22u. (4.32)

The time dependent counterpart is the sub-Riemnnian diffusion operator:

∂t u = ΔRu, (4.33)

modelling a diffusive mechanism of propagation in the cortical space.

4.5.2 The Lifting Mechanism of the Whole Image: Regular
Graphs in R2×S1

The mechanism of non maxima suppression does not lift each level lines indepen-
dently, but the whole image is lifted to a surface. Condition (4.16) ensures that the
lifted surface is identified by a zero level set of the function

H(x,y,θ ) = ∂θu(x,y,θ ),

meaning that if we consider only strict maxima, the lifted surface becomes

Σ = {(x,y,θ ) : H(x,y,θ ) = 0,∂θH(x,y,θ )> 0}. (4.34)
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Fig. 4.14 The level lines of a 2D image (in blue), and their 3D lifting (in red)

Since the vector ∂θ is a horizontal vector, then Σ is a regular surface in the sub-
Riemannian metric.

In particular, we can define a horizontal normal to Σ , and denote with νR its
projection on the horizontal plane of the Euclidean normal:

νR =
(X1u,X2u)

√

(X1u)2 +(X2u)2
.

In analogy with the notion of Euclidean curvature, we define the sub-Riemannian
curvature as the R−divergence of the R−normal vector:

HR(Σ) = divR(νR),

4.5.3 Completion Model and Minimal Surfaces in the
Roto-translation Space

The two cortical mechanisms of sub-Riemannian diffusion (4.33) and non maximal
suppression (4.34) will be iteratively applied. The action of these two mechanism
can be formalized as a two step algorithm.

• The lifted surface Σ0 = Σ defined in (4.34) and the function ρ0(x,y) = ρ(x,y)
defined on it in (4.18) allow to define a measure ρ0δΣ0 concentrated on the sur-
face. Diffusing this measure, we define a function u1(x,y,θ , t) concentrated in a
neighborhood of the surface.

• The second step is a non maximal suppression, which performs a concentration
and allows recovering a surface Σ1 via the condition ∂θu = 0 and a new function
ρ1 = u|Σ1

.The surface Σ1 will be the graph of a function θ1 .

To the new surface we iteratively apply the same two step procedure.
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Fig. 4.15 The two step algorithm: the lifted surface generated by a concentration mechanism
(left), and its diffusion (right)

If we fix a time T and a discretization step h = T/m, we repeat m times the
algorithm. At a general step n we will have a surface Σn and a function ρn, defined
on Σn. We diffuse for an interval of time of length h:

{

∂t u = ΔRu in(R2× S1)\Σ0 t ∈ [nh,(n+ 1)h]

u(·,nh) = ρnδΣn .
(4.35)

At time t = (n+ 1)h we have a new function ρn+1 and a new surface defined as

ρn+1(·,(n+ 1)h) = u(·,(n+ 1)h) and Σn+1((n+ 1)h) = {∂θu = 0,∂ 2
θ u < 0}.

After m steps we have two sequences: ρm+1(·,T ) and Σm+1(T ). Letting m go to
+∞ we have:

ρ(T ) = limm→+∞ρm+1(T ), Σ(T ) = limm→+∞Σm+1(T )

The diffusion followed by a concentration in the normal direction leads to a purely
tangential diffusion of the surface giving rise to the surface Σ(T ) moving by curva-
ture, with initial surface Σ0. The function ρ(T ) coincides with the Laplace Beltrami
flow, with initial condition ρ0.

This mechanism is a generalization of the well known algorithm of Merriman,
Osher and Sethian in [42]. The convergence of the Euclidean version of this scheme
has been proved by Evans [22] and Barles, Georgelin [5]. The convergence of the
analogous flow in the sub-Riemannian setting has been first presented in [13] and
then formalized in [10].

For T →+∞ the surface Σ(T ) converges to a minimal surface Σ , and ρ(T ) tends
to the solution ρ(x,y) of the (time independent) Laplace Beltrami equation on the
surface.
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Fig. 4.16 An image with a missing part (left) is lifted to the 3D space (middle) and completed
with the previous described algorithm (right)

The algorithm gives rise to an amodal completion of the image. Indeed the initial
image (see Fig. 4.16), left) is lifted in the rotranslation space. The lifted surface is
completed by iteratively applying the algorithm until a minimal surface is generated.

4.5.4 Minimal Surfaces as Minima of the Area Functional

The minimal surface Σ can be expressed as a graph of a function θ . In addition,
if we project the vector fields defined in (4.19) on the x,y plane, we end up with a
unique vector field

X1θ = cos(θ (x,y))∂x + sin(θ (x,y))∂y = 〈∇,(cos(θ (x,y)),sin(θ (x,y)))〉 (4.36)

since the projection of the vector X2 on the same plane is 0. We explicitly note that
the vector X1θ here is only formally similar to the vector X1 in (4.19). Indeed θ (x,y)
in (4.36) is a function while in (4.19) θ was simply an independent variable of the
3D space.

The minimal surfaces equation can be expressed in terms of the function θ (x,y)
as follows:

X1θ

( ρ2X1θθ (x,y)
√|ρ2X1θθ (x,y)|2 + 1

)

= 0,

where θ coincides with θ̄ on the existing boundaries. Taking explicitly the deriva-
tive, the equation becomes

X1θ (ρ2X1θθ (x,y)) = 0. (4.37)

This equation can be interpreted as a second order directional derivative, in the
direction (cos(θ ),sin(θ )). Hence it is the Euler-Langrange equation of the Dirichlet
functional

∫

|X1,θθ (x,y)|2ρ2(x,y)dxdy.
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The function ρ satisfies the Laplace Beltrami equation, which is the Euler-
Langrange equation of the functional

∫

|X1,θρ(x,y)|2dxdy.

Summing these two terms we obtain
∫

|X1,θθ (x,y)|2ρ2(x,y)dxdy+
∫

|X1,θρ(x,y)|2dxdy. (4.38)

In order to take into account the graphs of the two functions θ and ρ we can
define a function

A(x,y) = ρ(x,y)(cos(θ (x,y)),sin(θ (x,y)).

In (4.18) we defined ρ as the modulus of the gradient and θ as its orientation. Then,
if we denote A = (A1,A2) the derivative X1 is expressed in terms of A as

X1,A =
A1

√

A2
1 +A2

2

∂x +
A2

√

A2
1 +A2

2

∂y,

and the functional in (4.38) can be expressed in terms of the function A as
∫

|X1A|2dxdy. (4.39)

Indeed
∫

|X1A1|2 =
∫

|X1(ρcos(θ ))|2 =
∫

(X1ρcos(θ )+ρsin(θ )X1θ )2 =

=
∫

(X1ρ)2cos2(θ )+ρ2sin2(θ )(X1θ )2 + 2ρX1ρcos(θ )sin(θ )X1θ
∫

|X1A2|2 =
∫

(X1ρ)2sin2(θ )+ρ2cos2(θ )(X1θ )2− 2ρX1ρcos(θ )sin(θ )X1θ .

Summing up we get
∫

|X1A|2 =
∫

(X1ρ)2 +ρ2(X1θ )2.

4.6 A Field Lagrangian for Perceptual Completion

4.6.1 The Full Lagrangian

In this section we will study the joint action of LGN cells and cells in V1, taking into
account feed-forward, horizontal and feedback connectivity. We propose a complete
Lagrangian, sum of three terms: a particle term corresponding to functional (4.7), a
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field term modelled by functional (4.39), and an interaction term coupling the two
terms as in the usual Lagrangian field theories.

The first term is
L1 =

∫

|∇φ(x,y)−∇h(x,y)|2dxdy (4.40)

and is directly inspired by the Retinex model, describing the reconstruction of the
image from image boundaries. It is considered here as the particle term of the La-
grangian, where φ(x,y) is the particle and h(x,y) is the stimulus forcing term.

The field term is the functional (4.38), in analogy with the classical fields theo-
ries:

L̃2 =
∫

|X1A|2dxdy.

It expresses the spatial propagation of the field A(x,y) where A denotes the pres-
ence of subjective contours. As we have seen in chapter 4.5, the propagation of level
lines (and then of subjective contours) is a strongly anisotropic process, and it is per-
formed with respect to a sub-Riemannian metric, hence the functional is expressed
in terms of the vector field X1.

The last term describes the interaction between the particle φ(x,y) and the field
A(x,y). In classical physics it is called ”minimal coupling” because it tries to mini-
mize the difference between the two terms:

L3 =

∫

|∇φ(x,y)−A(x,y)|2dxdy. (4.41)

The field A(x,y) codifies illusory contours. When A(x,y) is viewed as a forcing
term for φ(x,y), this second term is similar to the Retinex term (4.40) but driven
by subjective contour instead of existing ones, while when Φ(x,y) is viewed as a
forcing term for A(x,y), it drives the constitution of subjective contours.

The resulting functional L =L1 +L2 +L3 is then

L =
∫

|∇φ −∇h|2dxdy+
∫

|∇φ −A|2dxdy+
∫

|X1A|2dxdy (4.42)

where all the terms are functions of the coordinates (x,y).

4.6.2 The Euler Lagrange Equations

The Euler Lagrange Equations of the functional (4.42) are obtained by variational
calculus:

{

Δφ = 1
2 (Δh+ div(A))

ΔAA =−∇φ +A.
(4.43)

The first equation (particle equation) is clearly a generalized Retinex equation,
forced by the boundaries present in the stimulus Δh and by the subjective bound-
aries div(A). It performs a contrast invariant reconstruction of the image. Note that
the two terms L1 and L2 which generalize the Retinex functional give rise to this
unique particle equation.
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The second equation propagates boundaries in the sub-Riemmanian metric, and
allows to recover subjective boundaries. Note that A = (Ax,Ay) is a vector, hence
the first equality is indeed a system, and the sub-Riemannian Laplacian ΔA is the
directional Laplacian associated to the considered metric.

We explicitly remark that the equation of A is a non-linear sub-Riemannian equa-
tion, and can be solved by iterative linearization.

This means that we need to find an initial approximated solution A0. A natural
choice is the solution of the vector Laplace equation

ΔA0 = ∇φ .

Of course this is only an approximated solution A0, but we can recover a better one
A1 as a solution of

ΔA0 A1 = ∇φ ,

using the sub-Riemmannian operator associated to A0. From here we start an itera-
tion:

ΔA1A2 =∇φ , · · · ΔA j−1 A j = ∇φ .

At each step we get a better approximation of the solution, moreover the sequence
has a limit A = lim j→+∞A j. Passing to the limit in the previous expression, we will
get:

ΔAA = ∇φ ,

so that the limit provides a solution of the nonlinear equation.

Fig. 4.17 The x and y components of ∇h related to the Kanizsa triangle inducers
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4.6.3 Solution of Euler Lagrange Equations

We solve sequentially the coupled system of differential equations (4.43). We first
apply the Retinex equation to the initial image:

Δφ =
1
2
Δh (4.44)

and solve it by linear convolution

φ =
1
2

(

Γ (x,y)∗Δh
)

with the fundamental solution of the 2D Laplacian:

Γ (x,y) =− log |(x,y)|.

Then we solve the equation for boundaries propagation. In this first step, we
choose A = 0 in the right hand side, and the nonlinear equation reduces to

ΔAA = ∇φ .

As we explained in the previous section, this equation will be solved by lineariza-
tion, stopped after the first two steps:

{

ΔA0 = ∇φ
ΔA0A1 = ∇φ .

(4.45)

The first term is computed by convolution

A0 =
−→
Γ ∗∇φ ,

where
−→
Γ is the fundamental solution of the vector Laplacian

−→
Γ (x,y) = (− log |(x,y)|,− log |(x,y)|).

The second one is computed by approximating functions with centered differences
and by means of a standard linear solutor.

The first equation in (4.45) propagates ∇φ isotropically and generates a first ap-
proximated vector field A0. In fig. 4.18 the vector field A0 related to the Kanizsa
inducers is visualized. The second equation generates a better approximation A1 by
propagating ∇φ in the direction A0. In fig. 4.19 the components of the vector field
A1 related to the same inducers is shown. Inducers have been manually selected.

Since particle and field equations are coupled, we can now solve the complete
particle equation

φ =
1
2
Γ (x,y)∗

(

Δh+
1
2
(div(A1)

)
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Fig. 4.18 The field A0 generated by the Kanizsa triangle inducers

Fig. 4.19 The x and y components of the gauge field A1 related to the Kanizsa triangle
inducers. A1 is an approximation of the field A, solution of the gauge field equation.

again by convolution with the fundamental solution Γ . This is a version of the
Retinex equation able to reconstruct the original image together with the subjective
surface. In Fig. 4.20 (left) the forcing term 1

2 (Δh+div(A1)) of the particle equation
is visualized, while in Fig. 4.20 (right) the solution φ is shown.

4.7 Stochastic Neurogeometry

The phenomenological experiment conduced by Field, Heyes and Hess [23] shows
that the association field allows to perceive configurations of oriented patches prefer-
ably fulfilling a co-circularity condition. This result is well modelled by the integral
curves of equation (4.20). The experiment shows also that even if the co-circularity
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Fig. 4.20 Left: The forcing term 1
2 (Δh+div(A1)) of the particle equation. Right: The recon-

structed Kanizsa triangle as the solution φ of the particle equation.

Fig. 4.21 The association field of Field, Heyes and Hess showing that the co-circular config-
uration of patches is just the most salient among other possible configurations (double bars
in a circle).

condition induces a maximum perceptual saliency, all the configurations of patches
are perceived with a certain saliency.

To model the saliency of the entire set of perceptual configurations it is neces-
sary to leave the deterministic framework and introduce a stochastic setting that
constitutes the probabilistic counter part of the deterministic equation (4.20). David
Mumford first introduced a stochastic differential equation in [44] to model partially
occluded edges:

(x′(t),y′(t),θ ′(t)) = (cos(θ (t)),sin(θ (t)),N(0,σ2)),
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where N(0,σ2) is a normally distributed variable with zero mean and variance equal
to σ2. The equation has been further discussed by August-Zucker [1], Williams-
Jacobs [59], and Sanguinetti-Citti-Sarti [48] who outlined that it is naturally defined
in the SE(2) group structure

(x′(t),y′(t),θ ′(t)) = X1(θ (t))+N(0,σ2)X2. (4.46)

Indeed both systems (4.20) and (4.46) are represented in terms of left invariant
operators of the Lie group, the first one with deterministic curvature, the second
with normal random variable curvature. Equation (4.46) describes a random walk
with constant speed in a direction randomly changing. Let us denote p(x,y,θ , t)
the probability density to find a particle at the point (x,y) moving with direction
X1 at the instant of time t conditioned by the fact that it started from the point
(x(0) = 0,y(0) = 0,θ (0) = 0). After Ito integration, this probability density satisfies
a Kolmogorov Forward Equation or Fokker-Planck equation (FP):

∂t p(x,y,θ , t) = X1 p(x,y,θ , t)+σ2X22 p(x,y,θ , t) (4.47)

= cos(θ )∂x p(x,y,θ , t)+ sin(θ )∂y p(x,y,θ , t)+σ2∂θθ p(x,y,θ , t).

Let us notice that the equation (4.47) consists of an advection term in the direc-
tion X1 and a diffusion term in the direction X2, where the doubling of the index
expresses a second order derivation.

This equation has been largely used in computer vision and applied to perceptual
completion related problems. It was used by Williams and Jacobs in [59] to compute
stochastic completion field, by S. Zucker and his collaborators in [1] to define the
curve indicator random field, and more recently by R. Duits et Al. in [25] applying it
to perform contour completion, denoising and contour enhancement. In [48] it was
proposed to consider the stationary counterpart of (4.47) to model both the Fields,
Heyes and Hess association field and the probability of co-occurence of contours in
natural images. Both the phenomenon are indeed stationary.

For this purpose, we integrate eq. (4.47) in time, obtaining the stationary equation

X1 p(x,y,θ )+σ2X22 p(x,y,θ ) = δ (x,y,θ ). (4.48)

Equation (4.48) is strongly biased in direction X1, and to take into account the
symmetry of both association fields and edge cooccurences, the model for the proba-
bility density propagation has been symmetrized considering the backward FP equa-
tion in the opposite direction

−X1 p(x,y,θ )+σ2X22 p(x,y,θ ) = δ (x,y,θ ). (4.49)

The desired fundamental solution is then obtained by summing the Green functions
corresponding to forward and backward FP equations.

The fundamental solution has been computed numerically with standard Markov
Chain Monte Carlo methods. This is done by generating random paths obtained
from numerical solutions of the stochastic system and averaging their passages over
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Fig. 4.22 The sum of fundamental solutions of the stationary Fokker Planck equations (4.48)
and (4.49). An isosurface of intensity is visualized in red together with the integral curves of
the group eq. (4.20).

Fig. 4.23 The stochastic neurogeometry as fundamental solution of stationary Fokker Planck
equation. It is a ”fat” version of the deterministic structure visualized in Fig. 4.7

discrete volume elements. See [40] for a classical and complete description of the
technique. In Fig.4.22 the sum of fundamental solutions of the stationary Fokker
Planck equations (4.48) and (4.49) is visualized together with the integral curves
of the group eq. (4.20). Note that the kernel seems to be a thick version of the fan
(4.20). The value of the probability decays slowly along the integral curves and
quickly in the direction normal to the surface ruled by the integral curves. In Fig.
4.23 the entire set of fundamental solutions is visualized in the space (x,y,θ ). Notice
that it is a ”fat” version of the deterministic structure visualized in Fig.4.7.
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4.7.1 The Statistics of Edges in Natural Images

It can be of some interest to question the origin of the very specific shape of the
association field in its deterministic or stochastic version. An intriguing hypothesis
is that association fields have been learned by the visual stimuli and then that the
particular pattern comes from some statistical property of natural images.

Fig. 4.24 Geometric schemata of co-occurences of edges: a co-occurrence takes place when
two edges (xi,yi,θi) and (x j,y j,θ j) occur at the same time in the image. Only relative posi-
tions (Δx,Δy) and orientations Δθ are taken into account in the computation of histograms.

A specific study to assess the existence of this relation has been proposed in [48].
Research has been focused on the statistics of edges in natural images and par-
ticularly in the statistics of co-occurrence of couples of edges taking into account
its relative position and orientation. The statistics have been estimated analyzing a
number of natural images from which a multidimensional histogram of relative po-
sition and orientation of edges has been constructed. Images have been preprocessed
by linear filtering with a set of oriented edge detection kernels (Gabor filters) and
performing non maximal suppression. A list of pixels corresponding to edges with
their respective orientations has been obtained by thresholding and binarization. A
four dimensional histogram (Δx,Δy,θc,θp) has been computed by counting how
many times two detected edges with relative positions (Δx,Δy) have orientations
(θc,θp). Finally a 3D histogram (Δx,Δy,Δθ ) is obtained where the third coordi-
nate is the relative orientation Δθ = θp−θc.

4.7.2 Comparison between the Statistics of Edges and the
Stochastic Structure

A comparison between the estimated statistical distribution of edges and the com-
puted stochastic neurogeometrical model has been performed in [48]. In Fig. 4.27
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Fig. 4.25 Sections of the co-occurence maps (Δx,Δy) for different pairs of orientations Δθ
(left). Sections are piled up to build the 3D distributions (Δx,Δy,Δθ ) (right).

Fig. 4.26 The whole distribution of co-occurrence of edges in natural images in the space
(x,y,θ ). It can be interesting compare this distribution with the deterministic structure visu-
alized in Fig. 4.7 and the stochastic structure of Fig. 4.23.

the two distributions are visualized and compared. There are two degrees of freedom
in the model to match: the varianceσ of the Fokker Plank operator and a scale factor.
After performing the parameter identification, the relative difference between both
functions is less than 0.02, and the reported value for σ is 1.71, a very interesting
value since it estimates the variance of the co-occurrence random process.

We found that it is possible to recover the co-circularity pattern from both the
distributions with the following procedure. First we compute the surface of maximal
probability θ̄ (x,y), where
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Fig. 4.27 Comparison between the computed stochastic model (left) and the distribution of
edge cooccurrences in natural images (right). The percentual error between the two distribu-
tions is less than 2.

max
θ

p(x,y,θ ) = p(x,y, θ̄ ).

Secondly, the integral curves of the vector field (cos θ̄ (x,y),sin θ̄ (x,y)) are com-
puted. We found that in both cases curves present co-circularity. See Fig. 4.28
for a comparison. These comparisons strongly suggest that horizontal connectivity
modeled by the neurogeometry is deeply shaped by the statistical distributions of
features in the environment and that the very origin of neurogeometry as to be dis-
covered in the interaction between the embodied subject and the world.

Fig. 4.28 The co-circularity constraint in the neurogeometrical model, as the projection of
integral curves (left), and in the statistics of natural images as integral curves of the projected
vector field (right)
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4.8 A Harmonic Neurogeometrical Model

4.8.1 The Binding Problem and the Constitution of Perceptual
Units

The question of constitution of perceptual units is central in the entire body of study
of visual organization. The issue deals with the mechanism allowing the information
distributed in the visual areas to get bound together into coherent object represen-
tations. Electromagnetic radiations (photons) going from the physical world to the
eye are completely independent one to the other and do not contain any explicit in-
formation about the unitarity of objects. The visual areas are constituted in its turn
by million of cells. Along this path the unity of physical objects is completely lost,
but at the end of the chain the object shows up again at the perceptual level as a unit.
In which way is this reconstruction possible?

This process is known as “binding” or “perceptual grouping”, and it has been
extensively studied both from a phenomenological point of view by the experimen-
tal psychology of Gestalt [34] and from a neuro-physiological point of view aiming
to clarify its biological functionalities. Even if the mechanism of grouping is still
unknown there is a wide experimental evidence that the constitution of a perceptual
unit involves the response of a large number of neurons distributed over a large spa-
tial region. Different answers have been proposed to explain how these distributed
neural activities are integrated together to constitute a unit.

If excitatory-inhibitory neural populations are considered, the most accreditated
hypothesis is that binding is implemented with a temporal coding, meaning that
object segmentation is performed by the synchronization of oscillatory neural re-
sponses [28]. Many models have been proposed to explain phase locking of pop-
ulations of neural oscillators, see for example [56] for a review. In [11, 51] it has
been shown that a neurophysiological model of coupled neural oscillators in phase
locking tends in its continuous spatial limit to the phenomenological model of seg-
mentation of Mumford-Shah.

On the other hand, if single population models are considered, different mecha-
nisms for binding can arise. For example in [52] and [53] a mechanism of grouping
has been proposed as an extension of the model of visual hallucination proposed
by Bressloff and Cowan [7]. We will reconsider extensively this model in the fol-
lowing. Particularly we want to investigate what is the role of the neurogeometry in
the constitution of perceptual units, considering that a global integration process is
needed. As stated by the studies of Gestalt theory, perception is a global process.
Moreover visual perception acts as a differentiation process of the entire field of
view, performing first a differentiation between figure and ground, and continuing
in the segmentation of single objects. We will try to keep in mind these fundamental
points and to formalize them in a coherent model.
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4.8.2 The Population Model

As shown in [53], the Ermentraut-Cowan mean field population model in presence
of a cortical input stimulus h(x,y,θ ) provided by simple cells is

da(x,y,θ , t)
dt

=−αa(x,y,θ , t)+σγ
(

ω ∗ a(x,y,θ , t)+
h(x,y,θ )
α

)

(4.50)

where a(x,y,θ , t) is the neural activity of the population and α is the decay constant.

The kernelω
(

(x,y,θ ),(x′,y′,θ ′)
)

is the weight of connectivity between the pop-

ulation at the position (x,y) tuned at the orientation θ and the one at the position
(x′,y′) tuned at θ ′, and it can be modelled by the fundamental solution of the station-
ary Fokker-Planck equation (4.48). It takes into account the contribution of cortico-
cortical connectivity.

The function σγ is the transfer function of the population and it has the classical
sigmoidal behavior:

σγ (ξ ) =
1

1+ e−γ(ξ−χ)
− 1/2,

where χ is the threshold and γ is the gain. Notice that σ(χ) = 0 and this happens
when the input term h = αχ . For simplicity we will consider here a piecewise con-
stant input h= αχ in a domainΩ : {(x,y,θ ) : h(x,y,θ ) = αχ} and h = 0 elsewhere.
Note that in case of weak connectivity kernel, neurons outside Ω will stay constant
and under threshold in the dynamic of the system.

Then the activity equation becomes

da(x,y,θ , t)
dt

=−αa(x,y,θ , t)+ σ̃γ(ω ∗ a(x,y,θ , t)) (4.51)

for (x,y,θ ) ∈Ω , where
σ̃γ(ξ ) = σγ(ξ − h/α)

with the property σ̃γ (0) = 0. Let us outline that eq. (4.51) is formally equivalent
to the population equation studied by Bressloff and Cowan in [7] but defined in a
domain Ω instead of in the entire R

2 . We will study it with the same instruments
here.

4.8.3 Solutions of the Activity Equation

To compute stationary states of the activity equation (4.51), it is trivial to check that
since σ̃γ(0) = 0 then the homogeneous state a(x,y,θ , t) = 0 on the domain Ω is a
stationary solution.

The stability of the solution can be studied in terms of eigenvalues of the lin-
earized functional

La =−αa+ γω ∗ a

in the domainΩ where γ = σ ′(0). Eigenvalues λ verify the equation
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λa =−αa+ γω ∗ a,

that is equivalent to the eigenvalue problem

λ̃a = ω ∗ a

provided that λ̃ = (α+λ )
γ . Then the stability problem is reduced to the study of

eigenvectors of the connectivity kernel ω in the domain Ω , meaning the operator
K(a) = ω ∗ a in Ω . Since ω is the fundamental solution of the stationary Fokker
Planck equation (4.48), the convolution operator K(a) is compact, and its largest
positive eigenvalue is real. Moreover it has infinitely many eigenvalues, and the se-
quence of eigenvalues tends to 0.

This means that, when γ is small, zero is a stable solution, and it remains stable
until αa0

γ takes the value of the largest eigenvalue of K(a). While γ further increases,
the solution remains unstable.

(The eigenvectors of the operator K become marginally stable. Also note that the
corresponding eigen-space is of finite dimension since the operator K is compact.)

4.8.4 The Discrete Case

If the activity a(x,y,θ ) is approximated by a discrete distribution in terms of Dirac
masses

a =
h

∑
i=1

aiδ(xi,yi,θi),

then the convolution operator becomes

ω ∗ a =
n

∑
j=1

ω((xi,yi,θi)(x j,y j,θ j))a j = λ̃ai.

Note that in this case the eigenvalue problem on the activity a(x,y,θ ) reduces to the
spectral analysis of the matrix

Ai j = ω((xi,yi,θi)(x j,y j,θ j))

with usual linear agebra instruments.
This matrix can be considered as the equivalent of the affinity matrix introduced

by Perona in [45] to perform perceptual grouping.
Perona proposed to model the affinity matrix in term of a euristic distance

d(x,y,θ ), facilitating collinear and cocircular couple of elements

Ai j = e−d2((xi,yi ,θi)(x j ,y j ,θ j)).

In our case it is possible to prove that the distance d corresponds to the formal
Carnot Carathéodory distance dc, meaning the geometric sub-Riemannian distance
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induced by the horizontal connectivity, since the fundamental solution ω can be
approximated by:

ω((xi,yi,θi),(x j ,y j,θ j))� e−dc
2((xi,yi,θi),(xj,yj,θj)).

See [6] for a formal proof.

4.8.5 Dimensionality Reduction

In [45] the problem of perceptual grouping has been faced in terms of reduction of
the complexity in the description of a scene. The visual scene is described in terms
of the affinity matrix Ai j with a complexity of order O(N2) if N discrete elements
are present in the scene. The idea of Perona is to describe the scene by a point-wise
function pi of objects i taken one by one, rather than by a function Ai j of object
pairs (i, j). This way the complexity of the description will drop to O(N). A way to
reduce by one order of magnitude the complexity of the description is to consider
the best approximation of the affinity matrix

p = argminp̂

N

∑
i, j=1

(Ai, j− p̂i p̂ j)
2

where the term ppT is a rank one matrix with complexity order O(N).
Perona proved that the minimizer p of the Frobenius norm is the first eigenvector

v1 of the matrix A with largest eigenvalue λ : p = λ 1/2
1 v1.

Then the problem of grouping is reduced to the spectral analysis of the affinity
matrix Ai,i, where the salient objects in the scene correspond to the first eigenvectors
with largest eigenvalues. We just showed in the previous paragraphs that this eigen-
value analysis can be accomplished by the activity of neural populations connected
by means of cortico-cortical horizontal connectivity.

4.8.6 Constitution of Perceptual Units

The affinity matrix can be represented as a graph whose nodes are the active cells
and the links are the neural connectivities with a weight that is defined in terms of
the connectivity kernel ω((xi,yi,θi)(x j,y j,θ j)) (see Fig. 4.29).

Figure-ground articulation and the segmentation of different objects will corre-
spond to different eigenvectors ai. In Fig. 4.30 the three principle eigenvectors of
the neurogeometrical matrix associated to Fig. 4.29 are visualized in gray values,
showing the global emergence of perceptual units.

Let us note that this approach interprets the emergent figures in the image as
eigenstates of the neurogeometrical matrix Ai j. Mathematically it corresponds to
the singular value decomposition of the neurogeometrical graph previously defined.
Co-occurring features are mapped to the same eigenvector; features that do not co-
occur are mapped to different eigenvectors. The eigenvector linked to the highest
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Fig. 4.29 Some perceptual units are perceived as coherent structures out of a random distri-
bution of segments. In the image on the top the most salient features are the semicircle and a
vertical segment. Neurogeometry lifts every segment in the E(2) group and induces connec-
tivity weights between every couple of segments represented in colors (bottom). The affinity
matrix Ai j is constructed with the corresponding weights between couples of segments i− j.

singular value represents the most important vector in the data (i.e. the vector that
explains the most variance of the matrix); the singular vectors linked to the second
highest value represent the second most important vector (orthogonal to the first
one), and so on.

Models of image segmentation based on singular value decomposition and in
general on dimensionality reduction are largely used in contemporary computer vi-
sion (see for example [45], [54]), and we refer to [58] for a review of methods.
We have shown in this chapter how these sophisticated models of image segmen-
tation can be implemented at a neural level in terms of harmonic analysis of the
neurogeometry.
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Fig. 4.30 Eigenvectors of the affinity matrix are visualized mapping the intensity in gray
levels. The first ai eigenvectors correspond to the most salient perceptual units.
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Chapter 5
Cuspless Sub-Riemannian Geodesics within the
Euclidean Motion Group SE(d)

Remco Duits, Arpan Ghosh, Tom Dela Haije, and Yuri Sachkov

Abstract. We consider the problem Pcurve of minimizing
∫ �

0

√

β 2 + |κ(s)|2ds for a
planar curve having fixed initial and final positions and directions. Here κ is the
curvature of the curve with free total length �. This problem comes from a 2D
model of geometry of vision due to Petitot, Citti and Sarti. Here we will provide a
general theory on cuspless sub-Riemannian geodesics within a sub-Riemannian
manifold in SE(d), with d ≥ 2, where we solve for their momentum in the general d-
dimensional case. We will explicitly solve the curve optimization problem Pcurve in
2D (i.e. d = 2) with a corresponding cuspless sub-Riemannian geodesic lifted prob-
lem defined on a sub-Riemannian manifold within SE(2). We also derive the so-
lutions of Pcurve in 3D (i.e. d = 3) with a corresponding cuspless sub-Riemannian
geodesic problem defined on a sub-Riemannian manifold within SE(3). Besides
exact formulas for cuspless sub-Riemannian geodesics, we derive their geometric
properties, and we provide a full analysis of the range of admissible end-conditions.
Furthermore, we apply this analysis to the modeling of association fields in neuro-
physiology.

5.1 Introduction

Curve optimization plays a major role both in imaging and visual perception. In
imaging there exist many works on snakes and active contour modeling, whereas
in visual perception illusionary contours arise in various optical illusions [38, 42].
Mostly, such snake and active contour models involve curve optimization in R

d ,
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d ≥ 2, that rely on Euler’s elastica curves [24] (minimizing
∫

(|κ |2+β 2)ds) in order
to obtain extensions where typically external forces to the data are included, cf. [9,
12, 50–52] .

The elastica problem suffers from the well-known fact that not every station-
ary curve is a global minimizer, e.g. many local minimizers exist, cf. Figure 5.1.
Stationarity of a curve can be reasonably checked by the visual system using lo-
cal perturbations, whereas checking for (global) optimality [45, 46] is much more
difficult. Some visual illusions (e.g. the Kanisza triangle) involve corners requiring
abrupt resetting of initial and ending conditions, which are difficult to explain in
the elastica model. Another problem with elastica is that it is very hard to solve
the boundary value problem analytically [3, 4], and typically require (2d− 1)-dim.
shooting schemes. On top of that elastica curves relate to modes of the direction
process (for contour-completion [21, 23, 38, 50]) where the direction of an oriented
random walker is deterministic and its orientation is random. Such determinis-
tic propagation only makes sense when the initial orientation is sharply defined.
Instead Brownian motion with random behavior both in spatial propagation di-
rection and in orientation direction ( [2, 13, 19, 22]), relates to hypo-elliptic dif-
fusion on the planar roto-translation group. Such a Brownian motion models
contour enhancement [19] rather than contour completion [21], see [17] for a short
overview. The corresponding Brownian bridge measures [22, 57] (relating to so-
called completion fields in imaging [3, 21, 53]) tend to concentrate towards optimal
sub-Riemannian geodesics [7, 13, 20, 35, 37, 45]. So both elastica curves and sub-
Riemannian geodesics relate to two different fundamental left-invariant stochastic
processes on sub-Riemannian manifolds on the 2D-Euclidean motion group [21]
(respectively to the direction process and to hypo-elliptic Brownian motion).

In short, advantages of the sub-Riemannian geodesic model over the elastica
model are:

• If d = 2, every cuspless sub-Riemannian geodesic is a global minimizer [8, 15].
• The Euler-Lagrange ODE for momentum (including normalized curvature vector
κ/
√

|κ|2 +β 2) can be reduced to a linear one,
• The boundary value problem can be tackled via effective analytic techniques,
• If d = 2, the locations where global optimality is lost can be derived explicitly.
• Sub-Riemannian geodesics (in contrast to lifted elastica) are parametrization in-

dependent in the roto-translation group SE(d). Here we note in case d = 2, the
sub-Riemannian manifold (SE(2),Δ2,Gβ ) is encoded via a pinwheel structure of
cortical columns in the primary visual cortex [41].

However, the practical drawback of sub-Riemannian geodesics compared to elas-
tica is that their spatial projections may exhibit cusps and it is hard to analyze when
such a cusp occurs. Therefore, in this article we provide a complete analysis of such
sub-Riemannian geodesics, their parametrization, solving the boundary value prob-
lem, and we show precisely when a cusp occurs. See Figure 5.3 and see Figure 5.2.

A variant of the sub-Riemannian problem that ensures avoiding cusps is the fol-
lowing variational problem, which we will explain next.
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Fig. 5.1 Stationary curves of the elastica problem (
∫ �

0 κ2(s)+β 2ds→ min) do not need to
be global minimizers, cf. [44]. E.g. the non-dashed elastica is a global minimum (for β = 1),
whereas in dashed lines we have depicted a local minimum. This is in contrast to cuspless sub-
Riemannian geodesics in (SE(2),Δ2,Gβ ) where every stationary curve is globally optimal.

Fig. 5.2 An example of a smooth sub-Riemannian geodesic in (SE(2),Δ2,Gβ ) whose spatial
projection shows a cusp
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Fig. 5.3 Top left: example of a spatially projected sub-Riemannian geodesic without cusp
(i.e. a solution of Pcurve ). Top right: example of an elastica curve reaching points x < 0. Such
a (weak) connection is not possible with cuspless sub-Riemannian geodesics. Instead we
see in the bottom left figure a comparable example of a spatially projected sub-Riemannian
geodesic connecting the gin = (0,0,0) with g f in = (0,y f in,0) via two cusps. Bottom right: not
all points in x≥ 0 can be reached via a globally minimizing geodesic, here we have depicted
the set R of admissible end-conditions g f in = (x f in,y f in,θ f in) via black cones on half circles
with radius 1 and 2.

On the space of sufficiently regular curves in R
d , we define a functional E :

W 2,1([0, �],Rd)→ R
+, with � ∈ R

+ being the length (free) of the curves, by

E (x) :=
∫ �

0

√

κ(s)2 +β 2 ds. (5.1)

Here, s denotes the arc-length parameter of curve x and κ : [0, �]→ R
+ ∪{∞} de-

notes the absolute curvature ‖ẍ(·)‖ of the curve x at each arc-length, and β > 0 is a
constant.

The two dimensional case (i.e. d = 2) of this variational problem was studied
as a possible model of the mechanism used by the primary visual cortex V1 of the
human brain to reconstruct curves which are partially hidden or corrupted. The two
dimensional model was initially due to Petitot (see [40, 41] and references therein).
Subsequently, the sub-Riemannian structure was introduced in the problem by Pe-
titot [42] for the contact geometry of the fiber bundle of the 1-jets of curves in the
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plane (the polarized Heisenberg group) and by Citti and Sarti [13, 47] for the prin-
cipal bundle on SE(2) also considered in this article. The stationary curves of the
problem were derived and studied by Boscain, Charlot and Rossi in [7], by Duits
in [20], by Sachkov in [35] and their global optimality is shown by Boscain, Duits,
Rossi and Sachkov in [8, 15]. The two dimensional problem relates to a mechanical
problem completely solved by Sachkov [37, 45, 46]. It was also studied by Hladky
and Pauls in [32] and by Ben-Yosef and Ben-Shahar in [6]. Within Section 3 of this
article we will summarize only the main results from our previous works [8,15]. For
detailed proofs of these results, we refer the reader to [8, 15].

Many imaging applications such as DW-MRI require an extension to higher di-
mensions, see e.g. [14, 23, 27, 50], which motivates us to study the higher dimen-
sional curve optimization of the functional given by Eq. (5.1).

Let x0,x1 ∈ R
d and n0,n1 ∈ Sd−1 = {v ∈ R

d |‖v‖ = 1}. The goal is to find an
arc-length parameterized curve s �→ x(s) such that

x = arg inf
y ∈W 2,1([0, �],Rd), �,
y(0) = x0, ẏ(0) = n0,
y(�) = x1, ẏ(�) = n1

E (y). (5.2)

We shall refer to this curve optimization problem as problem P. We assume that the
boundary conditions (x0,n0) and (x1,n1) are chosen such that a minimizer exists.

Remark 5.1. Due to rotation and translational invariance of the problem P, it is
equivalent to the problem with the same functional, but with boundary conditions
(0,a) and (RT

n0
(x1− x0),RT n1), where a ∈ Sd−1 is a fixed axis, and with Rn0 is any

rotation that maps a fixed reference axis a to n0 ∈ Sd−1.

Remark 5.2. The physical dimension of parameter β is [Length]−1. From a physical
point of view it is crucial to make the energy integrand dimensionally consistent.
However, the problem with β > 0 is equivalent up to a scaling to the problem with
β = 1: The minimizer x of P with β > 0 and boundary conditions (x1,n1) relates
to the minimizer x of P with β = 1 and boundary condition (βx1,n1) by spatial
re-scaling, x(s) = β−1x(s).

Therefore, without loss of generality, we set (unless explicitly stated otherwise)

β = 1, x0 = 0, and n0 = ed

for the remainder of the article. Hence, the problem now is to find a sufficiently
smooth arc-length parameterized curve s �→ x(s) such that

x = arg inf
y ∈W 2,1([0, �],Rd), � ≥ 0,

y(0) = 0, ẏ(0) = ed ,
y(�) = x1, ẏ(�) = n1

E (y). (5.3)

We refer to the above problem as Pcurve.
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We stress that there are restrictions on the boundary conditions for problem P and
problem Pcurve to be well-posed [7]. For instance in case d = 2, one must have

(

R−1
nin
(xin− x f in),R−1

nin
n f in

)∈R, (5.4)

where in d = 2 we have n f in = (cos(θ f in),sin(θ f in))
T and where R denotes the

range of the exponential map [8,15]. Roughly speaking this means that the endpoint
in Pcurve must be chosen such that it can be connected with a stationary curve.

In the d-dimensional setting criterium (5.4) is necessary, but so far it is still
an open problem whether it is sufficient (for d > 2). Therefore, in this article we
will lift and extend problem Pcurve to a problem Pmec of finding sub-Riemannian
geodesics within SE(d), which is well-posed regardless the end-condition. Then
subsequently, we assume the end-condition in problem Pcurve is chosen such that
this end-condition gives rise to sub-Riemannian geodesic without cusps (i.e. ẋ(t) �= 0
at the interior of the curve). Criterium (5.4) is then satisfied. Before we can formally
introduce this problem Pmec we need some preliminaries.

5.1.1 Preliminaries and Notations

• The group of rotations in R
d equals SO(d) = {R∈R

d×d |RT = R−1,det(R) = 1}
• The special Euclidean motion group on R

d is given by the semi-direct product
SE(d) = R

d
� SO(d). Its group elements are denoted by g = (x,R) and it is en-

dowed with group product (x1,R1)(x2,R2) = (R1x2+x1,R1R2). Its unity element
equals e = (0, I) with I denoting the d×d identity matrix. The group SE(d) acts
on the set Rd× Sd−1 via

(x,R)(y,n) = (Ry+ x,Rn). (5.5)

• Let a ∈ Sd be a fixed element on the d-dimensional Euclidean sphere Sd := {x ∈
R

d | ‖x‖= 1}. We set a = ed , e.g. if d = 3 we set a = ez := (0,0,1)T , if d = 2 we
set a = ey := (0,1)T .

• Let d ≥ 2. The coupled space of positions and directions is defined as the Lie
group quotient

R
d
� Sd−1 := SE(d)/({0}× SO(d− 1)) (5.6)

where we identify SO(d− 1) with {R∈ SO(d) |Ra= a}. For simplicity elements
of Rd

� Sd−1 are denoted by (y,n) with y ∈ R
d and n ∈ Sd−1, where we keep

in mind that each element represents a left coset within SE(d). Such a left-coset
contains equivalent rigid body motions that map (0,a) to (y,n) via the rigid body
motion action (5.5):

(y,n) = (y,Rn)(0,a)

where Rn ∈ SO(d) denotes any rotation that maps a onto n ∈ Sd−1.
• The left-invariant vector fields considered as differential operators acting on

smooth functions φ : SE(d)→R are given by the push-forward of the left multi-
plication Lg : SE(d)→ SE(d) given by Lgh = gh:
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Ag = (Lg)∗Ae, i.e. Agφ =Ae(φ ◦Lg), (5.7)

where Ae ∈ Te(SE(d)), with Te(SE(d)) the tangent space at the unity element e.
• We choose1 a basis in Te(SE(d)), say {A1, . . . ,Ad}∪{Ad+1, . . . ,Ad(d+1)/2} with

vector fields A j =
∂
∂x j , j = 1, . . . ,d acting only on the spatial part2, and

{Ad+1, . . . ,Ad(d+1)/2} acting only on the SO(d) part. The matrix representations
of the spatial generators are given by

Ak =

(

0 ek

0 0

)

∈R
(d+1)×(d+1),k = 1 . . .d.

The matrix representations of these angular generators in Te(SE(d)) are given by

Ad(d+1)/2−i+1 =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(−En
n+1 +En+1

n 0
0 0

)

,
if i = n(n+ 1)/2
for some n ∈ {1, . . . ,d− 1},

(

Ei0
n+2−En+2

i0
0

0 0

)

,
if i = n(n+ 1)/2+ i0
with i0 ∈ {1, . . . ,n}
for some n ∈ {1, . . . ,d− 1}.

(5.8)

with Ei
j ∈ R

d×d a matrix with all zero elements except for a unity 1 in row i and
column j. In this way we have

span{Ad+1, . . . ,Ad(d+1)/2}≡ Te(SO(d))=so(d)= span{Ei
j−E j

i | 1≤ i< j≤ d}.

Furthermore, we observe that the angular generators are ordered such that

span{A2d, . . . ,Ad(d+1)/2} ≡ Te({0}× SO(d− 1)). (5.9)

So in view of Rd
� Sd−1, Eq. (5.6), the redundant directions in SE(d) (i.e. the

angular generators of the stabilizing sub-group of a, which is isomorphic to
SO(d− 1)) come at the end. To this end we note that

d(d+ 1)/2 = dim(SE(d)) = dim(Rd
� Sd−1)+ dim(SO(d− 1))

= (2d− 1)+ (d− 2)(d− 1)/2.
(5.10)

Via the push-forward (Lg)∗ of the left-multiplication, Eq. (5.7), this basis
{A1, . . . ,Ad(d+1)/2} provides us a moving frame of reference in the group SE(d).
This basis will be denoted by {A1, . . . ,Ad(d+1)/2} with

Ai|g = (Lg)∗Ai , for all i = 1 . . . ,d(d+ 1)/2,g ∈ SE(d), (5.11)

1 The main results (in contrast to the structure constants ck
i, j) in this article do not depend

on this choice of basis, one may choose a different basis with an ordering such that (5.9)
holds.

2 In previous works [19, 20] on SE(2), different ordering conventions are used in the Lie-
algebra, and we set a = ex instead of a = ey. In subsections 3.2–3.5 we will also adhere to
that convention.
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with Ai = Ai|g=e. The corresponding dual frame {ωk}k=1,...,d(d+1)/2 is given by

〈ωk
∣

∣

∣

g
,A j

∣

∣

g〉= δ k
j , for all k, j = 1, . . . ,d(d + 1)/2 and all g ∈ SE(d), (5.12)

where δ i
j are the usual components of the Kronecker tensor. Explicit formulas for

the frame of left-invariant vector fields and corresponding dual frame are derived
in [18, 20]. Note that the vector space of left-invariant vector fields forms a Lie-
algebra, with structure constants ck

i, j given by

[Ai,A j] =AiA j−A jAi =
d(d+1)/2

∑
k=1

ck
i, jAk. (5.13)

• Within this article we consider the sub-Riemannian manifold (SE(d),Δd,Gβ ),
with base manifold SE(d), and with distribution Δd , and metric tensor Gβ :
SE(d)×Δd×Δd→ R given by

Δd = span{Ad, . . . ,A2d−1},
Gβ
∣

∣

g

(

2d−1
∑

i=d
bi Ai|g ,

2d−1
∑

j=d
c j A j

∣

∣

g

)

= β 2bdcd +
2d−1
∑

i=d+1
bici,

(5.14)

for all b = (bi)2d−1
i=d ,c = (ci)2d−1

i=d ∈ R
d . So by construction the horizontal left-

invariant vector fields {Ai}2d−1
i=d form an orthonormal basis in Δd w.r.t. metric

tensor G1.

5.1.2 Lifting Problem Pcurve to Problem Pmec on (SE(d),Δd,Gβ )

Now we relate the problem Pcurve to a sub-Riemannian problem Pmec on the Lie
group quotient Rd

� Sd−1 given by Eq. (5.6). We define this sub-Riemannian prob-

lem by means of the left-invariant frame {Ai}d(d+1)/2
i=d , recall Eq. (5.11), and its

left-invariant co-frame {ω i}d(d+1)/2
i=1 given by Eq.(5.12). Within this frame, we will

consider the horizontal part only, where we recall that the d-dimensional distribu-
tion Δd is given by Eq. (5.14) where indices run from d to 2d−1. See Figure 5.4 for
a visualization of this left-invariant frame in case d = 3. We will define Pmec on the
sub-Riemannian manifold (SE(d),Δd ,Gβ ), with distribution Δd and metric tensor
Gβ given by Eq. (5.14), i.e.

Gβ = β 2ωd⊗ωd +
2d−1

∑
i=d+1

ω i⊗ω i.

In the geometric control problem Pmec on SE(d), we use the sub-Riemannian arc-
length parameter t. In Pmec, we aim for curves γ : [0,T ]→ SE(d), with prescribed
boundary conditions γ(0) = (0, I) and γ(T ) = (x1,Rn1), such that
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Fig. 5.4 Illustrations of the left invariant frame representing a moving frame of reference
along a curve on R

3
�S2, i.e. d = 3. The spatial velocity and the angular velocity are depicted

in the frame to highlight the constraints between the spatial and angular frame.

T
∫

0

√

Gβ |γ(t)(γ̇(t), γ̇(t))dt =
T
∫

0

√

β 2 (ud(t))2
+

2d−1
∑

i=d+1
(ui(t))2 dt

→minimize (with free T )

(5.15)

with

γ̇(t) =
2d−1

∑
i=d

ui(t)Ai|γ(t) =
2d−1

∑
i=d

〈ω i|γ(t), γ̇(t)〉Ai|γ(t)

where, ui ∈ L1([0,T ]) for i = d, . . . ,2d− 1 and Rn1 ∈ SO(d) is any rotation such
that Rn1a = n1. In particular, we only consider the stationary curves for which the
absolute curvature is L1 rather than L∞.

The existence of minimizers for the problem Pmec is guaranteed by the theorems
by Chow-Rashevskii and Filippov on sub-Riemannian structures [1]. We consider
those boundary conditions, for which a minimizer of Pmec does not admit an internal
cusp (i.e. an interior point with infinite curvature). Clearly, such minimizers are also
geodesics. We have the following important remarks about these minimizers.

Remark 5.3. • We have that for Pmec, there are no abnormal extremals. It follows
from the fact that any sub-Riemannian manifold with a 2-generating distribution
does not allow abnormal extremals (see Chapter 20.5.1 in [1]). This is the case,
since for Δd := {Ad, . . . ,A2d−1} we have dim(Δd + [Δd ,Δd ]) = d(d+ 1)/2 =
dim(SE(d)).

• Due to the non-existence of abnormal extremals, the minimizers are always ana-
lytic [1].
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Remark 5.4. Geodesics of Pmec may lose local and/or global optimality after the end
condition at a conjugate point, or global optimality at a Maxwell point. A Maxwell
point is a point γ(t) on a sub-Riemannian geodesic γ such that γ(t) = γ̃(t) for an-
other extremal trajectory γ̃ with initial condition satisfying γ̃(0) = γ(0). A conjugate
point on the other hand is a critical point of the exponential map underlying the ge-
ometric control problem (cf. Theorem 21.11 in [1]). Here the exponential map maps
each allowable pair (λ (0), �), with initial momentum λ (0) and length �, to the end-
point γ(�) of the corresponding cuspless sub-Riemannian geodesic s �→ γ(s) that
arises from integrating the canonical Euler-Lagrange or Hamiltonian equations (e.g.
obtained via the Pontryagin Maximum Principle). We will provide explicit tangible
formulas for this exponential map in case d ∈ {2,3}.
Remark 5.5. Throughout this article we will associate to a curve γ in
(SE(d),Δd ,Gβ ) a corresponding curve γ in R

d
� Sd−1 by setting

(SE(d),Δd ,Gβ ) � γ(s) = (x(s),R(s))→
γ(s) := (x(s),n(s)) ∈R

d
� Sd−1, with n(s) := R(s)a.

(5.16)

In the remainder of this article, we will write γ(s) both for curves in (SE(d),Δd ,Gβ )

and for its associated curve in R
d
�Sd−1 as it is clear from the context what is meant.

The energy functional in Problem Pcurve and Problem Pmec coincide for arc-length
parameterizable curves γ(·) = (x(·),R(·)) in (SE(d),Δd,Gβ ), as we have

2d−1
∑

i=d+1
|〈ω i

∣

∣

γ(s) , γ̇(s)〉|2 = ‖κ(s)‖2 = κ2(s),

〈ωd
∣

∣

γ(s) , γ̇(s)〉= ‖ẋ(s)‖ = 1,
(5.17)

where κ(s) = ẍ(s) denotes the curvature vector and κ(s) the curvature magnitude at
x(s) along the spatial part x of the curve γ .

Remark 5.6. Stationary curves of Problem Pcurve and the spatial part of stationary
curves of Problem Pmec coincide if the end-condition (x1,n1)∈Rd

�Sd−1 is chosen
such that it can be connected by a stationary curve of Pcurve (i.e. if the end condition
is contained within the range R of the exponential map of Problem Pcurve).
From now on, such end conditions will be called admissible end conditions. E.g. for
d = 2, we have shown [8] that for each admissible end condition, Problem Pcurve
is well-posed and there exists a unique stationary curve connecting the origin (0,a)
with (x1,n1) that is the global minimum of Problem Pcurve. Furthermore, in [15] we
have explicitly derived the set of admissible conditionsR. We will summarize these
results in Section 5.3.
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5.1.3 Structure of the Article

In Section 5.2, we will derive general results for (cuspless) sub-Riemannian
geodesics in (Rd

�Sd−1,Δd ,Gβ ). We apply the Pontryagin maximum principle and
we will show that for cuspless sub-Riemannian geodesics, the phase portrait of mo-
mentum reduces to a d-fold planar hyperbolic phase portrait. We express their mo-
mentum in terms of the initial momentum accordingly. We show that momentum is
parallel transported along the geodesics w.r.t. a Cartan connection, and we derive
a theorem allowing explicit integration to the sub-Riemannian geodesics from their
momentum. Finally, we show that cuspless sub-Riemannian geodesics are a good
model for association fields obtained in neurophysiology and neuropsychology.

In Section 3, we consider the special case d = 2, where we derive the unique
globally optimal cuspless sub-Riemannian geodesics and their properties. We also
carefully analyze the set R of admissible end conditions, which is contained in
x≥ 0, and for which we solve the boundary value problem associated with Problem
Pcurve via a semi-analytic method, allowing for a 1D numerical shooting algorithm
to solve the boundary value problem. We also obtain a description and computation
of the piecewise smooth boundary ∂R. From this description we deduce that the
extreme orientations per positions are given by endpoints of geodesics ending in a
cusp and/or departing from a cusp.

In Section 4, we consider the special case d = 3, where we explicitly derive the
stationary curves for admissible end conditions (allowing a connection via cusp-
less sub-Riemannian geodesics). We express their torsion and curvature in terms
of momentum, from which we deduce a wide range of geometrical properties.
E.g. we show that if the boundary-conditions are co-planar, we obtain the sub-
Riemannian geodesics with d = 2. Numerical computations show that the sub-
Riemannian geodesics are again contained within cones determined by endpoints
of those geodesics that end and/or depart from a cusp, supporting (together with
the co-planarity results) our conjecture that the exponential map of the geometric
control problem has similar homeomorphic and diffeomorphic properties as in the
case d = 2, leaving a challenging open problem for future research. Furthermore,
we show that the extreme sub-Riemannian geodesics departing from a cusp will be
contained entirely in the half-plane z≥ 0.

In Section 5 we consider the special case d = 4, where we explicitly derive mo-
mentum of the stationary curves.

5.2 Sub-Riemannian Geodesics in (Rd
�Sd−1,Δd,G1)

A general well-established tool to deal with geometric control problems, following
a Hamiltonian approach, is the Pontryagin Maximum Principle (PMP) [1, 43, 55].
In Appendix A, we formally apply the Pontryagin maximum principle to prob-
lem Pmec of finding sub-Riemannian geodesics in the sub-Riemannian manifold
(SE(d),Δd ,G1). There we also include techniques from theoretical mechanics, fol-
lowing a Lagrangian optimization approach as proposed by [10,11] which produces
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the same canonical equations, to simplify the canonical equations considerably. The
resulting equations are surprisingly simple and structured as we will show next. Let

λ (t) =
d(d+1)/2

∑
i=1

λi(t) ω i
∣

∣

γ(t) =
2d−1

∑
i=1

λi(t) ω i
∣

∣

γ(t)

denote the momentum along the sub-Riemannian geodesics (stationary curves t �→
γ(t) = (x(t),R(t))) expressed in sub-Riemannian arc-length t. Here,

λi = 0 for all 2d ≤ i≤ d(d+ 1)/2 = dim(SE(d)),

since momentum does not contain components in the redundant directions ω2d =
ω2d+1 = . . . = ωd(d+1)/2 = 0, recall Eq. (5.10) and Eq. (5.6). To this end we recall
that we are interested in connecting points in the Lie group quotient

R
d
� Sd−1 = SE(d)/({0}× SO(d− 1)),

and the d(d − 1)/2-dimensional Lie-algebra spanned by {A2d, . . . ,Ad(d+1)/2} is
precisely the Lie algebra of the SO(d − 1) subgroup (i.e. the Lie-algebra of the
stabilizer subgroup of our arbitrarily fixed a ∈ Sd−1). Then the canonical equations
are given by

γ̇(t) =
2d−1
∑

i=d
λi(t)Ai|γ(t) ,

λ̇i(t) =−
2d−1
∑

j=d

2d−1
∑

k=1
ck

i, jλk(t)λ j(t),
(5.18)

where the first equation relates to the horizontal part of PMP and the second equation
to the vertical part of PMP. These equations can be combined in a single equation
using a Cartan connection∇ on a cotangent bundle of the sub-Riemannian manifold
(SE(d),Δd ,Gβ ) that is derived from a Cartan-Maurer form on the underlying prin-
cipal fiber bundle (akin to [15, App.C] for d = 2 and [30, App.A] for d = 3). More
explicitly, it turns out that (as we shall prove in Theorem 5.2):

∇γ̇λ = 0⇔
2d−1

∑
i=d

(

λ̇i +
2d−1

∑
k=1

2d−1

∑
j=d

ck
i, j γ̇

jλk

)

ω i = 0.

with γ̇k := 〈ωk
∣

∣

γ , γ̇〉, which according to the first equality in (5.18) (i.e. the horizon-

tal part of PMP) is equal to λk. Computation of (5.18), where we omit the vanishing
structure constants, see (5.13), yields
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λ̇k(t) =−λd(t)λ2d−k(t)cd
k,2d−k for k = 1 . . . ,d− 1,

λ̇d(t) =−
d−1
∑

k=1
λk(t)λ2d−k(t)ck

d,2d−k,

λ̇k(t) =−λd(t)λ2d−k(t)c
2d−k
k,d for k = d+ 1, . . . ,2d− 1,

λ̇k(t) = 0 for k = 2d, . . . ,d(d + 1)/2.

(5.19)

Now, only for cusp-less sub-Riemannian geodesics γ of problem Pmec, we switch to
spatial arc-length parameter s, where we note that along such curves we have

t ′(s) =
√

|κ(s)|2 + 1 and s′(t) = λd(t) (5.20)

which follows from ‖ẋ(s)‖ = 1 and Eq. (5.18). On top of that, we use the cyclic
property on the structure constants that holds for structure constants of SE(d):

cd
k,2d−k = ck

2d−k,d , for k = 1 . . . ,d− 1,

and we obtain the following remarkably simple ODE system

λ̈ k(s) = λ k(s), for k �= d,

(λ d(s))λ̇ d(s) =−
2d−1
∑

k=d+1
(λ k(s))λ̇ k(s),

(5.21)

where λ k(s) := λk(t(s)) for k = 1 . . . ,2d−1. Then we use the fact (akin to [15,30])
that orbits in the augmented space of position and momentum are contained in the
co-adjoint orbits3 of SE(d), i.e.

d

∑
k=1

|λk(s)|2 =
d

∑
k=1

|λk(0)|2 =: c2, (5.22)

for all 0≤ s≤ smax, where smax will be computed later, and the fact that λ d is positive
(by Eq. (5.20)) to solve for momentum of cuspless sub-Riemannian geodesics:

λ k(s) = λ k(0)cosh(s)+ λ̇ k(0)sinh(s), for k �= d,

λ d(s) =

√

c2−
d−1
∑

k=1
|λ (s)|2. (5.23)

Remark 5.7. In the remainder of this article, we will just write λ (s) instead of λ (s).
When writing λ̇(s), we mean d

dsλ (s).

Remark 5.8. Besides preservation law (5.22), we deduce the preservation laws

2d−1

∑
i=d

|λi|2 = 1 and W (λi,λ j) := λiλ̇ j−λ jλ̇i = λi(0)λ̇ j(0)−λ j(0)λ̇i(0), (5.24)

3 Conservation law (5.22) can also be deduced from the second part of Eq.(5.21).
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where W denotes the (constant) Wronskian of λi and λ j for each pair i, j ∈
{1, . . . ,d− 1} with i �= j.

We represent the momentum co-vector λ (s) =
2d−1
∑

i=1
λi(s) ω i

∣

∣

γ(s) by storing its com-

ponents in a row-vector where we split spatial and angular part

λ = (λ (1),λd ;λ (2)),

with λ (1) = (λ1, . . . ,λd−1) (where the component index increases), λ (2) =
(λ2d−1, . . . ,λd+1) (where the component index decreases). Then Eq.(5.21) becomes

λ̇ (1)
(s) =Λλ (2)(s),

λ̇d(s) =−(λd(s))−1
d−1
∑

k=1
λk(s)λ2d−k(s)ck

d,2d−k,

λ̇ (2)
(s) =Λλ (1)(s),

where Λ = diag
(

{cd
k,2d−k}d−1

k=1

)

∈ R
(d−1)×(d−1) is a diagonal matrix whose diago-

nal elements are determined by the vector {cd
k,2d−k}d−1

k=1 whose elements are within

{−1,1}. Since Λ2 = I, it produces the solutions

λ (1)(s) = λ (1)(0)cosh(s)+Λλ (2)(0)sinh(s),

λd(s) =
√

1−‖λ (2)(s)‖2 =

√

c2−‖λ (1)(s)‖2,

λ (2)(s) = λ (2)(0)cosh(s)+Λλ (1)(0)sinh(s).

(5.25)

In turn, these formulas allows us to compute the arc-length towards a cusp

smax(λ (0)) = log

⎛

⎜

⎜

⎝

√

1+ c2 +

√

|1+ c2|2−‖λ (1)(0)+Λλ (2)(0)‖‖λ (1)(0)−Λλ (2)(0)‖
‖λ (1)(0)+Λλ (2)(0)‖

⎞

⎟

⎟

⎠

,

(5.26)
since at a cusp, we have λd(tcusp) = 0 and we have

lim
s↑smax

‖λ (2)(s)‖= 1⇔ lim
s↑smax

|λd(s)|= 0⇔ lim
s↑smax

κ(s)→ ∞,

recall Eq. (5.20), with tcusp = t(smax).
Let us summarize these results on sub-Riemannian geodesics in (SE(d),Δd ,G1)

in the following theorems.
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Theorem 5.1. Along the sub-Riemannian geodesics in (SE(d),Δd,G1), the follow-
ing canonical equations hold

γ̇(t) =
2d−1
∑

i=d
λi(t)Ai|γ(t) ,

λ̇i(t) =−
2d−1
∑

j=d

2d−1
∑

k=1
ck

i, jλk(t)λ j(t),
(5.27)

along cuspless sub-Riemannian geodesics (i.e. the sub-Riemannian geodesics that
allow parametrization by spatial arc-length s) in (SE(d),Δd,Gβ ). Momentum λ =
2d−1
∑

i=1
λiω i satisfies the simple ODE system Eq. (5.21), whose explicit solution is given

by Eq. (5.25). The spatial arc-length towards a cups is given by Eq. (5.26).

Proof. For Eq. (5.27), see Appendix A. The remainder of the proof follows by the
earlier derivations in between Eq. (5.19) and Eq. (5.26). �

Corollary 5.1. The momentum orbit s �→ λ (s) of a sub-Riemannian geodesic s �→
γ(s) is determined by a d-fold hyperbolic phase portrait, see Figure 5.5,

d
ds

(−ci
d,2d−iλ2d−i(s)
λi(s)

)

=

(

0 −1
1 0

)(−ci
d,2d−iλ2d−i(s)
λi(s)

)

for i = 1, . . . ,d,

and preservation law λd(s) =

√

1−
2d−1
∑

i=d+1
|λi(s)|2 for all s≤ smax(λ (0)).

Fig. 5.5 In momentum space, sub-Riemannian geodesics reduce to a d-fold hyperbolic phase
portrait, see Corollary 5.1

Theorem 5.2. • Horizontal exponential curves given by s �→ g0 Exp(s
2d−1
∑

i=d
ciAi),

with cd = 1, g0 ∈ SE(d), are the auto parallel curves (i.e.∇γ̇ γ̇ = 0) w.r.t. connec-
tion ∇̄ on the sub-Riemannian manifold (SE(d),Δd ,Gβ ) given by
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∇̄XA =
2d−1

∑
k=d

(

ȧk−
2d−1

∑
i, j=d

ck
i, j γ̇

ia j

)

Ak (5.28)

with X =
2d−1
∑

i=d
γ̇ iAi, A =

2d−1
∑

k=d
akAk.

• Along an exponential curve, the tangent vectors are covariantly constant,
whereas, along a stationary curve, one has covariantly constant momentum, i.e.

∇̄γ̇λ =
2d−1

∑
i=1

(

λ̇i +
2d−1

∑
j=d

2d−1

∑
k=1

ck
i, jλk γ̇ j

)

ω i = 0.

Proof. Define γ̇ i := 〈ω i
∣

∣

γ , γ̇〉. Then following the same approach as done in [20],
[15, App.C] (for the case d = 2) and done in [30, App.A] (for the case d = 3), the
Cartan connection on the tangent bundle is given by Eq. (5.28). From Eq. (5.28), it
is directly clear that the auto-parallel curves are horizontal exponential curves, since

∇̄γ̇ γ̇ = 0⇔∀i∈{d,...,2d−1}γ̈ i = 0⇔∀i∈{d,...,2d−1}γ̇ i = ci for some constants ci

⇔ γ(s) = γ(0)Exp

(

s
2d−1
∑

i=d
ciAi

)

.

and in order to ensure s to be the spatial arclength parameter we must have cd = 1.
Now the Cartan connection on the tangent bundle naturally imposes the following

Cartan connection formula on the co-tangent bundle given by

∇γ̇
2d−1

∑
i=1

λiω i|γ =
2d−1

∑
i=1

(

λ̇i +
2d−1

∑
j=1

2d−1

∑
k=1

ck
i, jλkγ̇ j

)

ω i
∣

∣

γ , (5.29)

which follows from Eq. (5.28) and d〈ωk|γ ,A j|γ〉 = 〈∇γ̇ωk|γ ,A j|γ〉 +
〈ωk|γ ,∇γ̇A j|γ 〉 = 0. For details see [30, Lemma A.11]. Now, by the horizon-
tal part of PMP (i.e. first equation in Theorem 5.1), we have

γ̇ i = λi for all i ∈ {d, . . . ,2d− 1},

so that the result follows by substituting this equality into Eq. (5.29). �
Now that we have computed momentum λ (s) in Theorem 5.1, we can integrate the
equation in Theorem 5.2 to find the sub-Riemannian geodesics.

Theorem 5.3. Let m : G→ Aut(R2d) denote the matrix group representation (see
Remark 5.9) such that

dλ |γ = λ |γ m(γ−1)dm(γ),

where we represent the covector field λ |γ =∑2d−1
i=1 λi ω i

∣

∣

γ along the geodesic γ(·) =
(x(·),R(·)), by a row-vector λ |γ = (λ1, . . . ,λ2d)|γ , where we note λ2d = 0. Then
along the sub-Riemannian geodesics in (SE(d),Δd,Gβ ) the following relation with
momentum applies
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λ (s)m(γ(s))−1 = λ (0)m(γ(0))−1.

Proof. Note that ∇γ̇(s) λ |γ(s) = 0 iff

d
ds
λ (s)|γ(s) + λ (s)|γ(s) m((γ(s))−1)

d
ds

m(γ(s)) = 0

for all 0≤ s≤ smax(λ (0)). The rest follows by

d
ds

(λ (s)(g(s))−1) =−λ (s)(g(s))−1γ̇(s)(g(s))−1 + λ̇(s)(g(s))−1 = 0 ,

with g(s) = m(γ(s)). The last equation must be multiplied with g(s) from the right
to obtain the result. �

Remark 5.9. For d = 2, this group representation m is given by Eq. (5.33). For d > 2
this group representation m is given by

m(x,R) =
(

R σxR
0 R

)

, (5.30)

where σx =
d
∑

i=1
xiAd+i ∈ so(d), with x =

d
∑

i=1
xiei and Ad+i ∈ so(d). Here, we have

σRx = RσxR−1 and thereby m(g1g2) = m(g1)m(g2) for all g1,g2 ∈ SE(d). Then

dλ = λm(γ−1)dm(γ) = λ
(

R−1dR σR−1dx
0 R−1dR

)

= λ
(

σ(ωd+1,...,ω2d)T σ(ω1,...,ωd)T

0 σ(ωd+1,...,ω2d)T

)

,

with short notation ω j = ω j
∣

∣

γ , λ = λ |γ , dλ = dλ |γ , and where we represent cov-

ector λ = ∑2d−1
i=1 λi ω i

∣

∣

γ by a row-vector λ = (λ1, . . . ,λ2d). Note that ω j
∣

∣

γ = 0 and

λ j = 0 for all j ≥ 2d along sub-Riemannian geodesics γ(·) = (x(·),R(·)).

5.2.1 Summary: The Exponential Map of Control Problem Pcurve

Now let us combine the results of Theorems 5.1, 5.2 and 5.3. Theorem 5.1 provides
us momentum λ (s) which is entirely determined by λ (0). This is not surprising
as by Theorem 5.2, one has covariantly constant momentum, as follows from the
canonical equations of the Pontryagin maximum principle. The structure of the Car-
tan connection can be employed to explicitly derive an admissible endpoint γ(�) of
a cuspless sub-Riemannian geodesic γ from a pair

(λ0, �) ∈D := {(λ0, �) ∈ C ×R
+ | �≤ smax(λ (0)) �= 0},

with C := {λ (0) ∈ T ∗e (SE(d)) |
2d−1
∑

i=d
|λi(0)|2 = 1} (5.31)
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consisting of momentum λ0 and length �, with the preservation law of Theorem 5.3.
The associated mapping

(λ0, �) �→ γ(�) =: ˜Exp(λ0, �)

is called exponential map4
˜Exp of Pcurve . It coincides with the exponential map for

Pmec when restricting to admissible end-conditions.
In the subsequent sections we apply this procedure to get an explicit formula

for the exponential map ˜Exp for the special cases of interest, respectively d = 2
and d = 3. We will also provide analysis and visualization of the range R :=
˜Exp(D) of the exponential map and show that it provides a reasonable group-
ing criterium to connect two points, say (0,a) and (x1,n1) within R

d
� Sd−1 :=

SE(d)/({0}× SO(d− 1)). This analysis of problem Pcurve (and Pmec for admissi-
ble end-conditions) is related to earlier neuro-psychological models of association
fields [26, 41].

5.3 The Case d = 2: Sub-Riemannian Geodesics in
(R2

�S1,Δ2,G1)

Let us first apply the results regarding sub-Riemannian geodesics within (Rd
�

Sd−1,Δd ,Gβ ) to the special case d = 2. Following our standard conventions, we
get

a := ey and furthermore
A1 = ∂x, A2 = ∂y, A3 = ∂θ ,
A1 = cosθ∂x + sinθ∂y, A2 =−sinθ∂x + cosθ∂y, A3 = ∂θ ,
ω1 = dθ ,ω2 = cosθdx+ sinθdy,ω3 =−sinθdx+ cosθdy,
Δ2 = span{A2,A3},
Gβ = ω3⊗ω3 +β 2ω2⊗ω2 where we set β = 1.

This produces the following canonical ODE-system for momentum λ =
3
∑

i=1
λiω i

along the sub-Riemannian geodesics:

λ̇1(t) = λ2(t)λ3(t), λ̇2(t) =−λ1(t)λ3(t), λ̇3(t) = λ1(t)λ2(t),

expressed in sub-Riemannian arclength parameter t. Along cuspless sub-
Riemannian geodesics, this ODE-system simplifies to

λ̇1(s) =−λ3(s), λ̇2(s) =− λ1(s)λ3(s)
λ2(s)

, λ̇3(s) =−λ1(s),

using the spatial arc-length parameter s, and we find preservation laws

λ 2
1 +λ 2

2 = c2 := λ 2
1 (0)+λ 2

2 (0), λ 2
2 +λ 2

3 = 1,

4 In our notation of the exponential map, we include a tilde to avoid possible confusion with
the exponential map Exp : Te(G)→ G from Lie algebra to Lie group.
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and solutions

λ1(s) = λ1(0)cosh(s)−λ3(0)sinh(s),
λ2(s) =

√

1−|λ3(s)|,
λ3(s) =

dθ
dt (t(s)) =

κ(s)√
κ2(s)+1

= λ3(0)coshs−λ1(0)sinhs,

where κ(s) denotes the curvature of the spatially projected curve s �→ (x(s),y(s)).
The maximum length towards a cusp is given by

smax(λ (0)) = log
1+ c

|λ1(0)−λ3(0)| , (5.32)

with c=
√

|λ1(0)|2 + |λ2(0)|2. Let m : SE(2)→ R
3×3 be given by

m(x,y,θ ) =

⎛

⎝

cosθ sinθ −x
−sinθ cosθ y

0 0 1

⎞

⎠ . (5.33)

Then along the geodesics we have

λ (s) m(γ(s)) = λ (0) m(γ(0)) = λ (0) for all s ∈ [0,smax(λ (0))),

which allows us to compute the endpoint γ(s) = (x(s),y(s),θ (s)) ∈ SE(2) of a cus-
pless sub-Riemannian geodesic from a pair (s,λ (0)) with s≤ smax(λ (0)).

5.3.1 Switching to the Case a = ex and Re-labeling of the
Lie-Algebra

So far we have applied the general formula for sub-Riemannian geodesics within
(Rd

� Sd−1,Δd ,G1) to the special case d = 2, where we kept track of consistency
with the case d ≥ 3.

However, in order to directly relate to previous works by the authors on sub-
Riemannian geodesics within the 2D-Euclidean motion group and orientation scores
[19, 20], we will in the remainder of this section switch to the case a = ex (instead
of a = ey), and we will re-label the Lie-algebra as follows:

A1 := ∂θ , A2 := cosθ∂x + sinθ∂y, A3 :=−sinθ∂x + cosθ∂y. (5.34)

The corresponding dual vectors are given by

ω1 := dθ , ω2 := cosθdx+ sinθdy, ω3 :=−sinθdx+ cosθdy, (5.35)

that we will use to represent the momentum covector λ =
3
∑

i=1
λiω i accordingly.
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5.3.2 Explicit Parameterizations of the Cuspless Sub-Riemannian
Geodesics and Their Properties

Let us explicitly compute the exponential map for the case d = 2 using spa-
tial arc-length parametrization which provides us an explicit formula for the sub-
Riemannian geodesics in (SE(2),Δ2,G1) (recall Remark 5.2). We will use the la-
beling/ordering conventions (5.34) and (5.35).

Theorem 5.1 directly provides us the linear ODE

λ̈1(s) = λ1(s)⇔ d2

ds2

(

κ(s)
√

κ2(s)+ 1

)

=
κ(s)

√

κ2(s)+ 1
,

which directly provides us with the curvature κ(s) of the cuspless sub-Riemannian
geodesics in terms of λ (0) = λ1(0)dθ + λ2(0)dx+ λ3(0)dy and spatial arc-length
s, with s ≤ smax(λ (0)), recall Eq. (5.32). Now instead of integrating a Frenet ODE
system, we apply an effective integration procedure via Theorem 5.3. We have

dλ̂ = λ̂ (m(γ))−1dm(γ)⇔ λ̂ (s)m(γ(s)) = λ̂ (0)m(γ(0)) = λ̂ (0), (5.36)

where we use short notation for the row-vector

λ̂ := (−λ3(s),λ2(s),λ1(s)) = (λ̇1(s),
1

√

κ2(s)+ 1
,

κ(s)
√

κ2(s)+ 1
) (5.37)

with m(γ) =

⎛

⎝

cosθ −sinθ x
sinθ cosθ y

0 0 1

⎞

⎠ the most common group representation of SE(2).

Lemma 5.1. Let c :=
√|λ2(0)|2 + |λ3(0)|2. There exists a unique h0 ∈ SE(2) such

that λ̂ (0)m(h−1
0 ) = (c,0,0). Consequently, we have for γ̃(s) := h0γ(s) that

(−λ3(s),λ2(s),λ1(s)) = λ̂(s) = (c 0 0) m(γ̃(s)). (5.38)

Proof. Follows by Theorem 5.3 and the fact that m is a group representation. �

Application of this lemma provides the following explicit formula for the
sub-Riemannian geodesics in (SE(2),Δ2,G1).

Theorem 5.4. The exponential map of Pcurve expressed in spatial arc-length
parametrization is given by

˜Exp

(

3
∑

i=1
λi(0) ω i

∣

∣

γ(0)=e , s

)

,

= γ(s) = (x(s),y(s),θ (s)),
(5.39)

for all s ∈ [0, �] with total spatial length � ≤ smax(λ (0)). The cuspless geodesics in
(SE(2),Δ2,G1) are given by γ(s) = h−1

0 γ̃(s), i.e.
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θ (s) = θ̃(s)−θ 0 ∈ [−π ,π ],
with cos(θ 0) =

−λ3(0)
c and θ0 ∈ [−π ,0],

x(s) = R
T
0 (x̃(s)− x0) ,

with R
T
0 =

(

cosθ 0 sinθ 0

−sinθ 0 cosθ0

)

= 1
c

(−λ3(0) −λ2(0)
λ2(0) −λ3(0)

)

(5.40)

with h0 = (x0,R0) ∈ SE(2), x0 = (−λ3(0)
c ,0)T . Here curve γ̃ = (x̃, ỹ, θ̃ ) is given by

x̃(s) = λ1(s)
c =

λ1(0)cosh(s)−λ3(0)sinh(s)
c ,

ỹ(s) =− 1
c

s
∫

0

√

1−|λ1(τ)|2 dτ,

θ̃ (s) = arg( ˙̃x(s)+ i ˙̃y(s))
= arg(−λ3(s)− iλ2(s)) ∈ [−π ,0],

(5.41)

with λ1(s) = λ1(0)coshs − λ3(0)sinhs, λ3(s) = λ3(0)coshs − λ1(0)sinhs and
where c=

√

|λ2(0)|2 + |λ3(0)|2 ≥ 0.

From these formulas one can directly deduce the following properties:

• If c ≤ 1, the curvature does not switch sign and we obtain U-shaped curves,
unless λ1(0) = λ3(0) = 0 in which case we get a straight line.

• If c > 1 and λ1(0)λ3(0) > 0, then the curve is an S-shaped curve with bending-

point at sB = log ‖λ1(0)+λ3(0)‖
‖λ1(0)−λ3(0)‖ .

• If c= 1 and λ3(0) = λ1(0) we have smax = ∞.
• The cuspless sub-Riemannian geodesics are monotonically increasing along the
λ2(0)ex +λ3(0)ey-axis:

− ˙̃y(s)≥ 0⇔ λ2(0)ẋ(s)+λ3(0)ẏ(s) ≥ 0,

and even if they tend towards a cusp where curvature tends to infinity, they do
not roll up and their sub-Riemannian length stays finite.

• The cuspless sub-Riemannian geodesics are contained within the half-space
x≥ 0 and the boundary x = 0 can only be reached with an angle (w.r.t. the posi-
tive x-axis) of π as formally proven in [15, Thm.7 and Thm.8].

5.3.3 The Set R and Its Boundary ∂R

Now that we have computed the exponential map, let us have a look at the range
R = ˜Exp(D), which according to the results in [8] coincides precisely with the
points for which Pcurve admits a global minimum. In fact, we have

Theorem 5.5. In Pcurve with d = 2, we set initial condition (xin,yin,θin) = e =
(0,0,0) and consider (x f in,y f in,θ f in) ∈ R

2
� S1. Then

• (x f in,y f in,θ f in) ∈R if and only if Pcurve has a unique minimizing geodesic which
exactly coincides with the unique minimizer of Pmec .
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• (x f in,y f in,θ f in) /∈R if and only if problem Pcurve is ill-defined (i.e. Pcurve does not
have a minimizer).

Corollary 5.2. Set gin = e. Then g f in is an admissible end-condition for Pcurve if
g f in ∈R.

According to the next theorem the exponential map has nice smoothness and
bijection properties and properly maps analytic trajectories in the hyperbolic
phase portrait in momentum space onto analytic sub-Riemannian geodesics in
(SE(2),Δ2,G1). For a visualization on how this is achieved physically, see Fig-
ure 5.6.

Theorem 5.6. Let D and R denote respectively the domain and range of the expo-
nential map of Pcurve defined on (SE(2),Δ2,G1). Then,

• ˜Exp : D→R is a homeomorphism if we equip D and R with the subspace topol-
ogy5.

• ˜Exp : D̊→ R̊ is a diffeomorphism.

Finally, the boundary ∂R is given by

∂R=SB∪ l ∪SR, (5.42)

with l := {(0,0,θ ) |−π ≤ θ ≤ π} the sphere above the spatial origin,

SB := {˜Exp(λ0,smax(λ0)) | λ0 ∈ C } (5.43)

the set of endpoints of geodesics ending at a cusp (the blue surfaces in Fig.5.6), and

SR :=
{

˜Exp(λ0,s) |λ0 ∈ C with λ3(0) =±1 and s ∈ (0,smax(λ (0))
}

(5.44)

the set of endpoints of geodesics departing from a cusp (the red surfaces in Fig.5.6).

Proof. See [15, App.F].

As a result the set R is a connected set with a piecewise smooth boundary
∂R given by Eq. (5.42). In fact, when taking the intersection with {(x1,n) | n ∈ S1}
with x1 = (x f in,y f in) ∈ R

2 fixed we get a cone in S1. Sometimes this cone is
bounded by a red and a blue surface and sometimes it is bounded by the blue
surfaces in Figure 5.6. Also see Figure 5.7.

Let us underpin this observation on the cone of reachable angles with a for-
mal theorem. To this end let θendcusp(x f in,y f in) denote the final angle (w.r.t. the
positive x-axis) of the geodesic ending in (x f in,y f in, ·) with a cusp and where

5 As D and R are not open w.r.t. standard topologies on the embedding spaces Te(SE(2))×
R
+ and R

2 × S1, these subspace topologies do not coincide with the induced topology
imposed by the embedding via the identity map. W.r.t. the subspace topologies the set D,
respectively R, are open sets and the homeomorphism ˜Exp : D→R is well-defined.



5.3 The Case d = 2: Sub-Riemannian Geodesics in (R2
�S1,Δ2,G1) 195

1 

 
 
 
 
  

Fig. 5.6 Plots (from 3 perspectives a), b) and c)) of the range R of the exponential map of
Pcurve . Red surface: endpoints of geodesics starting from cusps. Blue surface: endpoints of
geodesics ending in cusps. The black lines are the intersections of the blue plane with the red
plane. Green surface: critical surface (c = 1) with ż0 = −z0. Purple surface: critical surface
(c = 1) with ż0 = z0. The critical surface splits the range of the exponential map into four
disjoint parts C 1

1 , C 0
1 , C+

2 and C−2 that relate to the splitting of the phase space into C1
1 , C0

1 ,
C+

2 and C−2 in b) where we have depicted R viewed from the x-axis. In c) we have depicted
R viewed from the θ -axis.

θbegincusp(x f in,y f in) denotes the final angle of a geodesic ending in (x f in,y f in, ·) start-
ing with a cusp. In case there exist two geodesics ending with a cusp at (x f in,y f in),
we order them by writing

θ 1
endcusp(x f in,y f in)≤ θ 2

endcusp(x f in,y f in).

Theorem 5.7. Let (x f in,y f in,θ f in) ∈R. If

|y f in| ≤ −x f in iE

(

iarcsinh xf in
√

4−x2
f in

,
x2

f in−4
x2

f in

)

, and 0≤ x f in < 2. (5.45)

then we have

y f in > 0⇒ θ f in ∈ [θbegincusp(x f in,y f in),θendcusp(x f in,y f in)],

y f in < 0⇒ θ f in ∈ [θendcusp(x f in,y f in),θbegincusp(x f in,y f in)],
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otherwise (so in particular if x f in ≥ 2) we have

θ f in ∈ [θ 1
endcusp(x f in,y f in),θ 2

endcusp(x f in,y f in)].

Proof. See [15, App.E]. For a direct graphical validation of Theorem 5.7 see
Figure 5.6 (in particular the top view along the θ direction).

5.3.4 Solving the Boundary Value Problem

The inverse of the exponential map (λ0, �) �→˜Exp(λ (0), �) = γ(�) = g f in in Theo-
rem (5.4) can be computed analytically to a large extent. That is, �, λ2(0), λ3(0) can
all be analytically expressed in terms of −1 ≤ λ1(0)≤ 1, which leaves an accurate
and efficient one dimensional numerical shooting algorithm to find the final remain-
ing unknown λ1(0), as given by the following theorem. Note that recently proposed
numerical approaches in the literature [6, 35] rely on three dimensional numerical
shooting algorithms.

Theorem 5.8. Let g f in ∈ R. The inverse of the exponential map (λ0, �) �→
˜Exp(λ (0), �) = γ(�) = g f in in Theorem 5.4 is given by

Fig. 5.7 Sub-Riemannian geodesics (and their spatial projections in grey) obtained by our
analytical approach to the boundary value problem. We have kept (x f in,y f in) fixed and we
have varied θ f in to full range such that our algorithm finds solutions (with relative errors
less than 10−8). Left: (x f in,y f in) = (1,1.5), middle: (x f in,y f in) = (2,1), right: (x f in,y f in) =
(4,1). At the boundary of cones of reachable angles, the endpoints of the sub-Riemannian
geodesics are located on the cusp-surface ∂R. End-points of geodesics departing from cusps
are indicated in red and endpoints of geodesics ending at cusps are indicated in red (as in
Figure 5.6).
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λ (0) =
2
∑

i=1
λi(0)ω i,

�(λ (0),g f in) =

⎧

⎪

⎨

⎪

⎩

log λ1(0)
v , c= 1 and λ3(0) = λ1(0),

log v
λ1(0)

, c= 1 and λ3(0) =−λ1(0),
log v+w

λ1(0)−λ3(0)
, else

where v,w,c are given by
v = λ1(�) = λ1(0)− x f inλ3(0)+ y f inλ2(0),
w =−λ3(�) =−λ3(0)cosθ f in +λ2(0)sinθ f in,

c=
√|λ2(0)|2 + |λ3(0)|2.

(5.46)

Here λ2(0),λ3(0) are expressed as follows:

λ2(0) = χ2(λ1(0)) :=
√

1−|λ1(0)|2,
−λ3(0) = χ3(λ1(0),g f in) :=

−b+sign(g f in)
√

D
2a ,

with a = x2
f in + sin2(θ f in),

b = 2x f in(λ1(0)+ y f inλ2(0))−λ2(0)sin(2θ f in),

c = |λ2(0)|2(y2
f in− sin2(θ f in))+ 2y f inλ1(0)λ2(0),

D = b2− 4ac =: D(λ1(0),g f in),

and with sign function given by

sign(gfin) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 if g f in ∈ C+
2 ,

1 if g f in ∈ C 1
1 ∪C 0

1 is above V ,

−1 if g f in ∈ C 1
1 ∪C 0

1 is below V ,
−1 if g f in ∈ C−2 ,

(5.47)

with surface V ∈ SE(2) (corresponding to the solutions with λ3(0) = 0)

V =
{

˜Exp(z0ω1 +χ2(z0)ω2, �) | z0 ∈ [−1,1] and 0≤ �≤ smax(z0ω1 +χ2(z0)ω2)
}

.

Finally, λ1(0) denotes the unique root F(λ1(0)) = 0 of F : I→ R
+ defined on

I = {z0 ∈ [−1,1] |D(z0,g f in)≥ 0}

given by F(z0) = ‖˜Exp(z0ω1 + χ2(z0)ω2 + χ3(z0,g f in)ω3, �(z0,g f in) ) − g f in‖,
where ‖ · ‖ denotes the Euclidean norm on R

2× S1.

Proof. By Theorem 5.5, there is a unique stationary curve connecting e and g f in ∈R.
The exponential map of Pcurve is a homeomorphism by Theorem 5.6 and thereby
the continuous function F has a unique zero, since � and λ3(0) are already deter-
mined by λ1(0) and g f in. W.r.t the formula for �, Theorem 5.1 (for d = 2) implies
that:

λ1(�) = λ1(0)cosh�−λ3(0)sinh�, λ3(�) = λ3(0)cosh�−λ1(0)sinh�

from which e� can readily be obtained, noting that (by Theorem 5.4 for s = �):
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λ1(�) = λ1(0)− x f inλ3(0)+ y f inλ2(0), −λ3(�) =−λ3(0)cosθ f in +λ2(0)sinθ f in.

Finally, applying the preservation laws (recall Remark 5.8) |λ1(s)|2 + |λ2(s)|2 = 1
and |λ2(s)|2 + |λ3(s)|2 = |λ2(0)|2 + |λ3(0)|2 to the case s = � provides a quadratic
equation for λ3(0) from which the result follows. For details on the choice of the
sign in the solution of this quadratic equation and surfaceV , we refer to [15, Lem.8].

�

Remark 5.10. Theorem 5.8 allows for fast and accurate computations of sub-
Riemannian geodesics, see Figure 5.7 where the computed geodesics are instantly
computed with an accuracy of relativeL2-errors in the order of 10−8. For an example
of the application of Theorem 5.8 see Figure 5.8. Finally, we note that Theorem 5.6
implies that (our approach to) solving the boundary-value problem is well-posed,
i.e. the solutions are both unique and stable.

Fig. 5.8 The particular case where g f in = (2,1,π/6), where sign(g f in) = −1 and where
unique root of F(·,g f in), whose domain I is indicated in green, is approximatively λ1(0) ≈
0.749551 (and thereby λ2(0) =

√

1−|λ1(0)|2, λ3(0)≈−0.809740 and L≈ 2.26253).

5.3.5 Modeling Association Fields with Solutions of Pcurve

Sub-Riemannian geometry plays a major role in the functional architecture of the
primary visual cortex (V1) and more precisely its pinwheel structure, cf. [42]. In
his paper [42], Petitot shows that the horizontal cortico-cortical connections of V1
implement the contact structure of a continuous fibration π : R×P→ P with base
space the space of the retina and P the projective line of orientations in the plane. He
applies his model to the Field’s, Hayes’ and Hess’ physical concept of an association
field, to several models of visual hallucinations [25] and to a variational model of
curved modal illusory contours [33, 38, 54].

In their paper, Field, Hayes and Hess [26] present physiological speculations con-
cerning the implementation of the association field via horizontal connections. They
have been confirmed by Jean Lorenceau et al. [34] via the method of apparent speed
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of fast sequences, where the apparent velocity is overestimated when the successive
elements are aligned in the direction of the motion path and underestimated when
the motion is orthogonal to the orientation of the elements. They have also been
confirmed by electrophysiological methods measuring the velocity of propagation
of horizontal activation [29]. There exist several other low-level vision models and
neuro-physiological measurements that have produced similar fields of association
and perceptual grouping [31, 39, 58]. For an overview see [42, ch:5.5,5.6].

Subsequently, we discuss three models of the association fields: Legendrian
geodesics, cuspless sub-Riemannian geodesics and horizontal exponential curves.
W.r.t. the latter model, we recall that horizontal exponential curves [20, 48] in the
sub-Riemannian manifold (SE(2),Δ2,Gβ ), Eq.(5.14), are given by circular spirals

r �→ g0 er(c1A1+c2A2) =
(

x0+
c2

c1 (sin(c1r+θ0)−sin(θ0)),y0− c2

c1 (cos(c1r+θ0)−cos(θ0)),θ0+rc1
)

,

(5.48)

for c1 �= 0, g0 = (x0,y0,θ0) ∈ SE(2) and all r ≥ 0. If c1 = 0 they are straight lines:

g0erc2A2 = (x0 + rc2 cosθ0,y0 + rc2 sinθ0,θ0).

Clearly, these horizontal exponential curves reflect the co-circularity model [36].
To model the association fields from neuropsychology and neurophysiology Pe-

titot [42] computes “Legendrian geodesics”, [42, ch.6.6.4,eq.49] minimizing La-
grangian

√

1+ |y′(x)|2 + |θ ′(x)|2 under the constraint θ (x) = y′(x). This is directly
related6 to the sub-Riemannian geodesics in

((SE(2))0,Ker(−θ dx+ dy),dθ⊗ dθ + dx⊗ dx), (5.49)

where (SE(2))0 is the well-known nilpotent Heisenberg approximation ( [19,
ch:5.4]) of SE(2), which minimize Lagrangian

√

1+ |θ ′(x)|2 under constraint
θ (x) = y′(x). The drawback of such curves is that they are coordinate dependent
and not covariant7 with rotations and translations. Similar problems arise with B-
splines which minimize Lagrangian 1+ |θ ′(x)|2 under constraint θ (x) = y′(x) which
are commonly used in vector graphics.

To this end, Petitot [42] also proposed the “circle bundle model” which has the
advantage that it is coordinate independent. Its energy integral

∫ x f in

0

√

1+ |y′(x)|2 + |y′′(x)|2
(1+ |y′(x)|2)2 dx (5.50)

6 The dual basis in (SE(2))0 is equal to (dθ ,dx,−θ dx+dy) and thereby the sub-Riemannian
metric on (SE(2))0 does not include the |y′(x)|2 term.

7 The corresponding minimization problem (and induced sub-Riemannian distance) is left
invariant in (SE(2))0 and not left-invariant in SE(2).
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can be expressed as
∫ �

0

√
1+κ2ds, where s ∈ [0, �] denotes spatial arc-length

parametrization. So in case one restricts problem Pcurve to those admissible
endpoints that allow a cuspless sub-Riemannian geodesic which can be well-
parameterized by (x,y(x),θ (x)) with θ (x) = arctany′(x), this restricted problem
coincides with Petitot’s circle bundle model of finding sufficiently smooth curves
x �→ (x,y(x)) such that the functional in Eq. (5.50) is minimal.

In Figure 5.9, we have modeled the association field with sub-Riemannian
geodesics (β = 1) and horizontal exponential curves (Eq. (5.48) as proposed in
[5, 48]). Horizontal exponential curves are circular spirals and thereby rely on “co-
circularity”, a well-known principle to include orientation context in image analysis,
cf. [28, 36].

On the one hand, a serious drawback arising in the co-circularity model for asso-
ciation fields is that only the spatial part (x f in,y f in) of the end-condition can be pre-
scribed (the angular part is imposed by co-circularity), whereas with geodesics one
can prescribe (x f in,y f in,θ f in) (as long as the ending condition is contained within
R). This drawback is clearly visible in Figure 5.9, where the association field (see
a) in Figure 5.9) typically ends in points with almost vertical tangent vectors.

On the other hand, the sub-Riemannian geodesic model describes less accurately
the association field by Field and co-workers in the (much weaker) connections
to the side (where the co-circularity model is reasonable). One could improve the
modeling by varying β , but even then it is hard to approximate large circles: the
ODE z̈ = β 2z does not allow z to be constant and one can approximate large circles
by resigning to large β .

In the more aligned connections in the association field the sub-Riemannian
geodesics model the field lines remarkably well (in comparison to the exponential
curves), as can be observed in part b) of Figure 5.9. Moreover, the field curves of
the association field end with vertical tangent vectors, and these endpoints are very
close to cusp points in the sub-Riemannian geodesics modeling these field lines.
Following the general idea of Petitot’s work [42] (e.g. the circle bundle model) and
the results in this article on the existence set R, this puts the following conjecture:

Conjecture 5.1. The criterium in our visual system to connect two local orienta-
tions, say g0 = (x0,y0,θ0) = (0,0,0) and g f in = (x f in,y f in,θ f in) ∈ SE(2), could be
modeled by checking whether g f in is within the range R of the exponential map.

This conjecture needs further investigation by neuro-physiological experiments. In
any case, within the model Pcurve (coinciding with Petitot’s circle bundle model [42]
and the sub-Riemannian model by Citti and Sarti [13, 49]) a curve is globally opti-
mal if and only if it is stationary, by the results in [8] (summarized in Theorem 5).
Furthermore, the sub-Riemannian geodesics strongly deviate from horizontal ex-
ponential curves even if the end condition is chosen such that the co-circularity
condition is satisfied (see c) in Figure 5.9).

Remark 5.11. Regarding association field models, we discussed 3 different models:

1. The cuspless sub-Riemannian geodesic model Pcurve , cf. [6, 8, 13, 20, 32],
(extending Petitot’s circle bundle model [42, ch:6.6.5])
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2. The Legendrian geodesic model [42],
3. The horizontal exponential curve model in [48] given by Eq. (5.48).

These models relate as follows:

• The Legendrian geodesics follow from the cuspless sub-Riemannian
geodesic model by contracting (e.g. [19]) the sub-Riemannian manifold
on (SE(2),Δ2,Gβ ) towards its nilpotent approximation, cf. Eq. (5.49).

• The horizontal exponential curves keep the control variable in Pcurve constant
and they are rough local approximations of sub-Riemannian geodesics, see item
c) in Figure 7. We also recall Theorem 5.2: The discrepancy between horizon-
tal exponential curves and sub-Riemannian geodesics in (SE(2),Δ2,Gβ ) is also
intriguing from the differential geometrical viewpoint. Due to the presence of
torsion in the Cartan connection auto-parallel curves (i.e. the straight curves in
(SE(2),Δ2,Gβ ) satisfying ∇γ̇ γ̇ = 0) do not coincide with the sub-Riemannian
geodesics (i.e. the shortest curves in (SE(2),Δ2,Gβ ) satisfying ∇γ̇λ = 0).

Fig. 5.9 Modeling the association field with sub-Riemannian geodesics and exponential
curves, a) the association field [26, 42]. Compare the upper-right part of the association field
to the following lines: in b) we impose the end condition (blue arrows) for the SR-geodesic
model in black and the end condition (red arrows) for the horizontal exponential curve model
in grey; c) comparison of sub-Riemannian geodesics with exponential curves with the same
(co-circularity) ending conditions; d) as in b) including other ending conditions.

5.4 The Case d = 3: Sub-Riemannian Geodesics in
(R3

�S2,Δ3,G1)

In order to obtain momentum along cuspless sub-Riemannian geodesics in (R3
�

S2,Δ3,Gβ=1), we apply Theorem 5.1 to the case d = 3 with a = ez. We find
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λ1(s) = λ1(0)coshs−λ5(0)sinhs,
λ5(s) = λ5(0)coshs−λ1(0)sinhs,
λ2(s) = λ2(0)coshs+λ4(0)sinhs,
λ4(s) = λ4(0)coshs+λ2(0)sinhs,
λ3(s) =

√

1−|λ4(s)|2−|λ5(s)|2,

(5.51)

and by using the horizontal part of the PMP, we now find explicit formulas for
curvature and torsion of the spatial part of the sub-Riemannian geodesic:

κ(s) =
√
|λ4(s)|2+|λ5(s)|2

λ3(s)
=

√
1−|λ3(s)|2
λ3(s)

,

τ(s) =− (λ5(s)λ2(s)+λ4(s)λ1(s))
1−|λ3(s)|2 = W

1−|λ3(s)|2
(5.52)

where W denotes the Wronskian, recall Eq. (5.24), of λ5 = κ1√
κ2+1

and −λ4 =

κ2√
κ2+1

, where κ = (κ1,κ2) = κ1A1 + κ2A2 denote the curvature components of

the curvature vector-field ẍ = κ along the curve.
Consequently, we have

τ(s) =W
(

1+κ−2(s)
)

whenever κ(s) �= 0 for s < smax(λ (0)) and W the constant Wronskian.
Furthermore, we see that if torsion is absent in any part of the spatial part of a

sub-Riemannian geodesic it is absent everywhere, and we have

γ(s) is planar ⇔ τ = 0⇔W = 0⇔ the boundary conditions are co-planar .

The final equivalence, is non-trivial. For details on the proof, see [30, Cor.3.44].

Remark 5.12. The planar solutions Pcurve with W = 0 coincide with the unique
two dimensional sub-Riemannian geodesics connecting the corresponding points
in R

2
� S1 (see [8, 15]) discussed in the previous section. As a result, the set

{
(

x f in,Rn f in(x f in,θ f in)

)

| (x f in,θ f in) ∈R2}
with n f in(x f in,θ f in) = (sinθ f in

x f in
√

x2
f in+y2

f in

,sinθ f in
y f in

√

x2
f in+y2

f in

,cosθ f in)
T ,

where R2 denotes the set of admissible end conditions in SE(2) allowing a connec-
tion via a globally minimal sub-Riemannian geodesic in (SE(2),Δ2,G1), is a subset
of end conditions admitting a unique globally minimizing sub-Riemannian geodesic
in (SE(3),Δ3,G1). See Figure 5.11.

Remark 5.13. A sub-Riemannian geodesic is co-planar if W = −λ5λ2−λ4λ1 = 0,
i.e. if its angular momentum (λ4,λ5,0) ≡ λ4ω4 +λ5ω5 is orthogonal to its spatial
momentum (λ1,λ2,λ3)≡ λ1ω1 +λ2ω2 +λ3ω3.

Now in order to compute the exponential map ˜Exp(λ (0), �) = γ(�) = g f in ∈ SE(3),
one can substitute Eq. (5.52) into Eq. (5.51) while setting s = � and then integrate
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the well-known Frenet-Serret formulas for curves in R
3. However, the last step in

this procedure is somewhat cumbersome and here (again) Theorem 5.3 comes at
hand.

5.4.1 Explicit Parameterizations of the Sub-Riemannian
Geodesics

In order to integrate the Frenet-Serret formulas we apply Theorem 5.3 to the
case d = 3. This provides the following explicit formulas for the sub-Riemannian
geodesics, where we use the short notation λ (1) = (λ1,λ2) and λ (2) = (λ5,λ4) from
Section 5.2.

Theorem 5.9. Let the momentum covector be given by Eq. (5.51). Then the spatial
part of the cuspless sub-Riemannian geodesics8 in (SE(3),Δ3,G1) is given by

x(s) = R̃(0)T (x̃(s)− x̃(0)) (5.53)

where, R̃(0) and x̃(s) := (x̃(s), ỹ(s), z̃(s)) are given in terms of λ (1)(0) and λ (2)(0)
depending on several cases. For all cases, we have

x̃(s) =
1
c

s
∫

0

λ3(τ)dτ. (5.54)

For the case λ (1)(0) = 0, we have

R̃(0) =

⎛

⎝

0 0 1
0 1 0
−1 0 0

⎞

⎠ ∈ SO(3), (5.55)

(

ỹ(s)
z̃(s)

)

=
−1
c

(

λ4(s)
λ5(s)

)

. (5.56)

For the case λ (1)(0) �= 0, we have

R̃(0) =
1
c

⎛

⎜

⎜

⎝

λ1(0) λ2(0) λ3(0)

c
−λ2(0)

‖λ (1)(0)‖ c
λ1(0)

‖λ (1)(0)‖ 0
−λ1(0)λ3(0)

‖λ (1)(0)‖
−λ2(0)λ3(0)

‖λ (1)(0)‖ ‖λ
(1)(0)‖

⎞

⎟

⎟

⎠

∈ SO(3). (5.57)

For the case W = 0 along with λ (1)(0) �= 0, we have

(

ỹ(s)
z̃(s)

)

=
λ2(0)λ4(s)−λ1(0)λ5(s)

c‖λ (1)(0)‖

(

0
1

)

. (5.58)

8 which are the lifts of the stationary curves of Pcurve for appropriate boundary conditions
and which coincide with the solutions of Pmec for the same boundary conditions.
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While for W �= 0 along with λ (1)(0) �= 0 and

A(s) =
1

‖λ (2)(0)‖2− W 2

c2

(

λ2(s)λ4(s)−λ1(s)λ5(s) −W
c λ3(s)

W
c λ3(s) λ2(s)λ4(s)−λ1(s)λ5(s)

)

,

(5.59)
we have

(

ỹ(s)
z̃(s)

)

=
e

s
∫

0
A(s′)ds′

c2‖λ (1)(0)‖

(

Wλ3(0)
c(λ2(0)λ4(0)−λ5(0)λ1(0))

)

. (5.60)

Proof. From Theorem 5.3, we have

d(λm(γ)−1) = 0 (5.61)

with λ = (λ1, . . . ,λ6), the Lagrange multipliers which are already known by Theo-
rem 5.1, and with matrix representation m given by Eq. (5.30). Hence, as γ(0) = e,
we have that ∀s ∈ [0, �] the geodesic must satisfy

λ (s) = λ (0)m(γ(s)). (5.62)

To make calculations easier, we translate and rotate the curve and solve a slightly

easier equation and transform it back to the original curve. With m(g̃) =

(

R̃ σx̃R̃
0 R̃

)

,

we solve the system

λ (s) = (c,0,0,−W
c
,0,0)m(γ̃(s)) (5.63)

with γ̃(s) = γ̃(0)m(γ(s)) such that

λ (0) = (c,0,0,−W
c
,0,0)γ̃(0). (5.64)

Thus after having γ̃(s), we retrieve the geodesic by using the relation

γ(s) = γ̃(0)−1γ̃(s). (5.65)

For the most general case, assuming non-vanishing denominators throughout, we
see that choosing (5.57) and

x̃(0) :=
1

c2
√|λ1(0)|2 + |λ2(0)|2

⎛

⎝

0
Wλ3

c(λ2λ4−λ5λ1)

⎞

⎠ ,

(5.64) is satisfied. Then solving (5.63) for x̃, ỹ and z̃ we obtain x̃ and the following
system:

(

˙̃y(s)
˙̃z(s)

)

= A(s)

(

ỹ(s)
z̃(s)

)

.
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Noting that A(s) and A(t) commute for all pairs s and t, and hence using Wilcox
formula [56], we get the desired results.

Clearly, the formulas are not valid as the denominators in some of the expressions
become zero. Hence we do the whole procedure keeping in mind the special cases
right from the start and get the required results.

The matrix e
∫ s

0 A(s′)ds′ can be computed explicitly, for details see [30,

Cor.4.11]. One has e

s
∫

0
A(s′)ds′

=

√

‖λ (2)(s)‖2−W 2c−2

‖λ (2)(0)‖2−W 2c−2

(

cosφ(s) −sinφ(s)
sinφ(s) cosφ(s)

)

, with φ(s) =
s
∫

0

Wc−1λ3(s
′)

‖λ (2)(s′)‖2−W2c−2
ds′.

5.4.2 Explicit Definition of the Exponential Map of Pcurve

In this section, we provide the explicit definition of the exponential map which maps
the pair (λ (0), �) to the endpoint g f in =˜Exp(λ (0), �) of the corresponding cusp-less
sub-Riemannian geodesic in sub-Riemannian manifold (SE(3),Δ3,G1).

Definition 5.1. Using the arc-length parametrization and setting t = s (⇒ σ = 1),
we consider the canonical ODE system for Γ (s) = (g(s),κ(s),λ (s)) given by

Γ̇ (s) = F(Γ (s)) s ∈ [0, �]

Γ (0) = (e,κ(0),λ (0))

with unity element e = (0, I) ∈ SE(3) and with κ = (κ1,κ2)
T where κ1(0) =

λ5(0)√
1−(λ4(0)2+λ5(0)2)

and κ2(0) =
−λ4(0)√

1−(λ4(0)2+λ5(0)2)
where F denotes the correspond-

ing flow field given as

F(

(

R σxR
0 R

)

,κ(s),λ (s)) =
(

(

RK Rσez +σxRK
0 RK

)

,
λ2λ4−λ1λ5

λ 3
3

(

λ5
−λ4

)

− 1
λ3

(

λ1
λ2

)

,λ
(

K σez

0 K

)

)

(5.66)

where K = 1
λ3

⎛

⎝

0 0 λ5
0 0 −λ4
−λ5 λ4 0

⎞

⎠ . and σez ∈ R
3×3 such that σez x = ez× x.This ODE

has a unique solution

Γ (s) = Γ (0)esF s ∈ [0, �].

Recall the definition of D in Eq. (5.31) (for d = 3). On this set, we define ˜Expe :
D→ SE(3) by

˜Expe(λ (0), l) = π ◦ elF(e,κ(0),λ (0))

with π being the natural projection on SE(3). Note that this exponential map is
different from the Lie group valued exponential map defined on the Lie algebra.
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Fig. 5.10 A comparison of the possible end conditions of Pcurve for the two dimensional
and the three dimensional cases. Right: possible tangent directions are depicted of cuspless
sub-Riemannian geodesics in (SE(3),Δ3,G1) with initial position at the origin and the initial
direction along ez and the final positions at unit distance from the origin. Left: cones of pos-
sible end conditions of cuspless sub-Riemannian geodesics in (SE(2),Δ2,G1). According to
Theorem 5.7, these cones are obtained by considering the end conditions of sub-Riemannian
geodesics that either begin with a cusp point (shown in red) or end at a cusp point (shown in
blue). Figure 5.11 depicts the comparison in the special case when we set the end conditions
on a unit circle containing the z-axis.

Fig. 5.11 A comparison of the cones of reachable angles by the cuspless sub-Riemannian
geodesics in the two dimensional case as in [8, 15] (left) and those in the three dimensional
case (right). It represents the special case in Figure 5.10, of the end conditions being on a
unit circle containing the z-axis. The intersection of the cones in Figure 5.11 right with x = 0
coincides with the cones depicted in Figure 5.11 left.
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Fig. 5.12 An illustration of the spatial part of arbitrary cuspless sub-Riemannian geodesics
in (SE(3),Δ3,G1) and the cones of reachable angles as depicted in Figures 5.10 and 5.11.
The cuspless sub-Riemannian geodesics are always contained within the cones. We checked
this for many more cases, which supports our Conjecture 5.2.

5.4.3 The Range of the ˜Exp Map and Cones of Reachable Angles

There are various restrictions on the possible boundary conditions for which we can
get a cuspless sub-Riemannian geodesic of problem Pcurve, see Fig. 5.10. We present
some special cases which help us to get an idea about the range of the exponential
map of Pcurve. Note that this set coincides with the set of end conditions for which
Pcurve is expected to be well defined, as we have shown for the 2D-case (recall
Theorem 5.5). The next corollary gives us the possible final positions when the final
direction is anti parallel to the initial direction.

Corollary 5.3. Let (x1,n1) be the end condition of Pcurve with the initial condition
being (0,ez). Then, given that n1 = −ez, a cuspless sub-Riemannian geodesic of
problem Pcurve exists only for x1 · ez = 0. Moreover, this condition is only possible
for curves departing from a cusp and ending in a cusp.

Proof. Let x be a cuspless sub-Riemannian geodesic of problem Pcurve with
ẋ(0) = −ẋ(�) for some � ≤ smax. This means that going to the tilde coordi-
nates, we have ˙̃x(0) = − ˙̃x(�), which implies ˙̃x(0) = − ˙̃x(�). But this is possible
only if ˙̃x(0) = 0 = ˙̃x(�), which is possible only if ‖λ (2)(0)‖ = 1 and � = smax,
i.e., if the geodesic both starts and ends in cusp. !"
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Now we recall from Subsection 5.3.2, that in the 2D-case cuspless sub-Riemannian
geodesics in (SE(2),Δ2,G1) are contained in the half space x ≥ 0 and x = 0 can
only be reached with sub-Riemannian geodesics both departing from and ending
in a cusp. In the 3D-case one expects a similar result, as it is confirmed by many
numerical experiments, see e.g. Figure 5.12 and Figure 5.11. However, it turns out
to be hard to prove for all cases. At least we have the following formal result.

Corollary 5.4. If a cuspless sub-Riemannian geodesic departs from a cusp, then it
can never have a negative component along the z-axis. Moreover, it can meet the
z = 0 plane at non zero time only if s = smax and W = 0.

Proof. See [30, Lemma 4.13].

Based on our numerical experiments, we pose the following conjecture which
is analogous to a result in the two dimensional case of finding cuspless sub-
Riemannian geodesics in (SE(3),Δ3,G1) [8, 15].

Conjecture 5.2. Let the range of the exponential map defined in Definition 5.1 be
denoted by R and let D be as defined in Definition 5.1.

• ˜Expe : D→R is a homeomorphism when D and R are equipped with the sub-
space topology.

• ˜Expe : D̊→ R̊ is a diffeomorphism. Here S̊ denotes the interior of the set S.

The boundary of the range is given as

∂R=SB∪SR∪SL with (5.67)

SB = {˜Expe(λ (0),smax(λ (0)))|λ (0) ∈ C } and

SR = {˜Expe(λ (0),s)|λ (0) ∈ C and λ4(0)
2 +λ5(0)

2 = 1 and s > 0}
SL = {(0,Rn) ∈ SE(3)|n ∈ S2}.

This conjecture would imply that no conjugate points, recall Remark 5.4, arise
within R and problem Pcurve (5.3) is well posed for all end conditions in R.

The proof of this conjecture would be on similar lines as in Appendix F of [15].
If the conjecture is true, we have a reasonably limited set of possible directions
per given final positions for which a cuspless sub-Riemannian geodesic of problem
Pcurve exists. Then likewise the d = 2 case, we have that every end condition in R
can be connected with a unique minimizer of a well-posed problem Pcurve. More-
over, the cones determined by SB and SR provide the boundaries of the field of
reachable cones. Figure 5.11 shows the special case of the end conditions being on
a unit circle containing the z-axis. The final tangents are always contained within the
cones at each position. Numerical computations indeed seem to confirm that this is
the case (see Figure 5.12). The blue points on the boundary of the cones correspond
to SB while the red points correspond to SR given in Equality (5.67).
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5.5 The Case d = 4: Sub-Riemannian Geodesics in
(SE(4),Δ4,G1)

Let us apply the results regarding sub-Riemannian geodesics in (SE(d),Δd,Gβ=1)
to the special case d = 4. Here we will rely on the standard matrix group repre-

sentation of SE(4) given by M(g) =

(

R x
0 1

)

∈ R
5×5, for all g = (x,R) ∈ SE(4). In

matrix-form, the Lie-algebra elements spanning Te(SE(4)) are given by

Ak = Ak|e ≡
(

0 ek

0 0

)

for k = 1 . . .4, with (ek)
j = δ j

k , and

A5 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 1 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,A6 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 −1 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,A7 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0
0 0 0 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,

A8 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,A9 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 1 0 0
0 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

,A10 =

⎛

⎜

⎜

⎜

⎜

⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

The commutator table is given by

[Ai,A j]i, j=1...10 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0 0 A4 0 A3 A2
0 0 0 0 0 A4 0 −A3 0 −A1
0 0 0 0 −A4 0 0 A2 −A1 0
0 0 0 0 A3 −A2 −A1 0 0 0
0 0 A4 −A3 0 A8 −A9 −A6 A7 0
0 −A4 0 A2 −A8 0 A10 A5 0 −A7
−A4 0 0 A1 A9 −A10 0 0 −A5 A6

0 A3 −A2 0 A6 −A5 0 0 −A10 A9
−A3 0 A1 0 −A7 0 A5 A10 0 −A8
−A2 A1 0 0 0 A7 −A6 A9 A8 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

and the PMP produces the following ODE for the momentum components:

λ̇i(t) =−
7

∑
j=4

7

∑
k=1

ck
i jλ j(t)λk(t),

or more explicitly, using the fact that λ8 = λ9 = λ10 = 0 yields
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λ̇1(t) =−λ4(t)λ7(t), λ̇6(t) =−λ2(t)λ4(t),

λ̇2(t) =−λ4(t)λ6(t), λ̇7(t) =−λ1(t)λ4(t),

λ̇3(t) = λ4(t)λ5(t), λ̇8(t) = 0,

λ̇4(t) =−λ3(t)λ5(t)+λ2(t)λ6(t)+λ1(t)λ7(t), λ̇9(t) = 0,

λ̇5(t) = λ3(t)λ4(t), λ̇10(t) = 0.

Along cuspless sub-Riemannian geodesics, this ODE-system simplifies to

λ̇1(s) =−λ7(s), λ̇6(s) =−λ2(s),

λ̇2(s) =−λ6(s), λ̇7(s) =−λ1(s),

λ̇3(s) = λ5(s), λ̇8(s) = 0,

λ̇4(s) =−(λ4(s))
−1(λ3(s)λ5(s)+λ2(s)λ6(s)+λ1(s)λ7(s)), λ̇9(s) = 0,

λ̇5(s) = λ3(s), λ̇10(s) = 0,

which is indeed a special case of Eq. (5.21) with d = 4 and Λ = diag{−1,−1,1},
whose solutions are now given by Eq. (5.25) (again with d = 4 and Λ =
diag{−1,−1,1}).

Now the case d = 3 with (cuspless) sub-Riemannian geodesics on
(SE(3),Δ3,Gβ=1) studied in detail in the previous section, by omitting the A1, A7,
A9 and A10 directions and relabeling the indices of the Lie-algebra elements and
momentum components as follows: (2,3,4,5,6,8)→ (1,2,3,4,5,6).
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Appendix A: Derivation of the Canonical Equations for
Sub-Riemannian Geodesics in (SE(d),Δd,G1) Using the
Pontryagin Maximum Principle

Consider the sub-Riemannian manifold M = (SE(d),Δd,Gβ ) given by Eq. (5.14),
with β = 1. Consider geometric control problem Pmec given by Eq. (5.15).

There exists a standard PMP for L∞([0,T ]) controls and there exists a recently
generalized PMP for L1([0,T ]) controls [55] which in this case produces (by a
reparameterization argument) the same solutions, despite the fact that L∞([0,T ])⊂
L1([0,T ]). Here we note that Pmec is equivalent to the solutions γ : [0,T ]→ SE(d),
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with prescribed boundary conditions γ(0) = (0, I) and γ(T ) = (x1,Rn1), of the con-
trol problem

∫ T

0
L(ud(t), . . . ,u2d−1(t))dt→ minimize (with fixed T )

with

γ̇(t) =
2d−1

∑
i=d

ui(t)Ai|γ(t) =
2d−1

∑
i=d

〈ω i|γ(t), γ̇(t)〉Ai|γ(t)

where for i = 1,2,3, ui ∈ L1([0,T ]), and with Lagrangian

L(ud(t), . . . ,u2d−1(t)) =
2d−1

∑
i=d

|ui(t)|2.

Applying the standard PMP to this problem with fixed time T , we have that there
exists a Lipshitzian curve in the cotangent bundle given by [0,T ] � t �→ μ(t) =
(γ(t),λ (t)) �= 0 with λ(t) ∈ T ∗γ(t)(M) such that

μ̇ = H(μ(t))

H(μ) = max
u∈Rd

(

L(ud , . . . ,u2d−1)−
2d−1

∑
i=d

μi ui

)

where μ = (γ,λ ), and where the Hamiltonian is given by H(μ) ≡ H(λ ) =

1
2

2d−1
∑

i=d
|λi|2. The Hamiltonian vector field H given by

H =
2d−1

∑
i=1

α i ∂
∂λi

+β iAi (5.68)

is such that it preserves the canonical symplectic structure

σ =
2d

∑
i=1

dλi∧ω i =
2d−1

∑
i=d

dλi∧ω i

and hence, we have

σ(H, ·) =−dH =−
2d−1

∑
i=d

AiHω i +
∂H
∂λi

dλi. (5.69)

From Equations (5.68), (5.69), we obtain for i = d, . . . ,2d− 1 that

α i =−AiH and β i =
∂H
∂λi

= λi.
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Consequently, (noting that AiH = 0 for i = 1, . . . ,d and i = 2d, . . . ,d(d + 1)/2), we
have the Hamiltonian vector field

H(μ) =
2d−1

∑
i=d

β iAi−
2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkβ jω i

=
2d−1

∑
i=d

λiAi−
2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkλ jω i

So now let us consider the full canonical ODE in the PMP: μ̇ = H(μ).
Clearly, the horizontal part of PMP (where time derivatives are w.r.t. sub-

Riemannian arclength t) is given as

γ̇ =
2d−1

∑
i=d

λiAi|γ ⇒ λi(t) = 〈ω i|γ(t), γ̇(t)〉 for i = d, . . . ,2d− 1.

The vertical part of PMP gives

d
dt

2d−1

∑
i=1

λi(t) ω i
∣

∣

γ(t) =
2d−1

∑
i=1

λ̇i(t) ω i
∣

∣

γ(t) +λi(t)
d
dt
ω i
∣

∣

γ(t) =−
2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkλ j ω i

∣

∣

γ(t)

which is equivalent to

2d−1

∑
i=1

λ̇i ω i
∣

∣

γ +
d

∑
i=1

λi

(

2d−1

∑
k=d

d

∑
j=1

ci
j,kγ̇

k ω j
∣

∣

γ

)

=−
2d−1

∑
i=d+1

2d−1

∑
k=1

2d−1

∑
j=d

ck
i, jλkλ j ω i

∣

∣

γ

and therefore using the horizontal part of PMP we obtain

d
∑

i=1

(

λ̇i(t)+
2d−1
∑

k=d

d
∑
j=1

c j
i,kλk(t)λ j(t)

)

ω i
∣

∣

γ(t) = 0,

2d−1
∑

i=d+1

(

λ̇i(t)+
2d−1
∑

j=d

2d−1
∑

k=1
ck

i, jλk(t)λ j(t)

)

ω i
∣

∣

γ(t) = 0.

Now in the first equation above index j can as well run from 1 to 2d− 1, since if
i≤ d and k > d then for all j > d we have c j

i,k = 0. As a result we obtain

λ̇i(t) =−
2d−1

∑
j=d

2d−1

∑
k=1

ck
i, jλk(t)λ j(t), for all i ∈ {1, . . . ,2d− 1}.
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Chapter 6
Psychophysics, Gestalts and Games

José Lezama, Samy Blusseau, Jean-Michel Morel,
Gregory Randall, and Rafael Grompone von Gioi

Abstract. Many psychophysical studies are dedicated to the evaluation of the human
gestalt detection on dot or Gabor patterns, and to model its dependence on the pat-
tern and background parameters. Nevertheless, even for these constrained percepts,
psychophysics have not yet reached the challenging prediction stage, where hu-
man detection would be quantitatively predicted by a (generic) model. On the other
hand, Computer Vision has attempted at defining automatic detection thresholds.
This chapter sketches a procedure to confront these two methodologies inspired in
gestaltism.

Using a computational quantitative version of the non-accidentalness principle,
we raise the possibility that the psychophysical and the (older) gestaltist setups, both
applicable on dot or Gabor patterns, find a useful complement in a Turing test. In our
perceptual Turing test, human performance is compared by the scientist to the detec-
tion result given by a computer. This confrontation permits to revive the abandoned
method of gestaltic games. We sketch the elaboration of such a game, where the
subjects of the experiment are confronted to an alignment detection algorithm, and
are invited to draw examples that will fool it. We show that in that way a more pre-
cise definition of the alignment gestalt and of its computational formulation seems
to emerge.

Detection algorithms might also be relevant to more classic psychophysical se-
tups, where they can again play the role of a Turing test. To a visual experiment
where subjects were invited to detect alignments in Gabor patterns, we associated
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a single function measuring the alignment detectability in the form of a number of
false alarms (NFA). The first results indicate that the values of the NFA, as a func-
tion of all simulation parameters, are highly correlated to the human detection. This
fact, that we intend to support by further experiments, might end up confirming that
human alignment detection is the result of a single mechanism.

6.1 Introduction

Alan Turing advanced a controversial proposal in 1950 that is now known as the
Turing Test [35]. Turing’s aim was to discuss the problem of machine intelligence
and, instead of giving a premature definition of thinking, he framed the problem
in what he called the Imitation Game: A human interrogator interacts with another
human and a machine, but only in typewritten form; the task of the interrogator is
to ask questions in order to determine which of its two interlocutors is the human.
Turing proposed that a machine that eventually could not be distinguished from
humans by its answers should be considered intelligent. This influential suggestion
sparked a fruitful debate that continues to this day [29].

Our concern here is however slightly different. We are studying perception and
Turing precluded in his test any machine interaction with the environment other
that the communication through the teletype; he concentrated on the pure problem
of thinking and to that aim avoided fancy computer interactions, that anyway did
not exist at his time. Yet, machine perception is still a hard problem for which cur-
rent solutions are far from the capacities of humans or animals1. Our purpose is to
discuss a variety of perceptual imitation games as a research methodology to de-
velop machine vision algorithms on the one hand, and quantitative psychophysical
protocols on the other.

Human perceptual behavior has been the subject of quantitative experimentation
since the times of Fechner, the founder of Psychophysics. This relatively new sci-
ence investigates the relationship between the stimulus intensity and the perceived
sensation [33]. But this approach does not provide a perceptual theory in which
machine vision and an imitation game could be based.

The Gestalt school, Wertheimer, Köhler, Koffka, Kanizsa among others [8, 18,
21, 25, 42], developed from the twenties to the eighties an original modus operandi,
based on the invention and display to subjects of clever geometric figures [40, 41].
A considerable mass of experimental evidence was gathered, leading to the conclu-
sion that the first steps of visual perception are based on a reduced set of geomet-
rical grouping laws. Unfortunately these Gestalt laws, relevant though they were,
remained mainly qualitative and led to no direct machine perception approach.

1 It is a common practice in Internet services to use the so-called CAPTCHAs to ensure that
the interaction is made with a human and not an automatic program. A CAPTCHA, which
stands for Completely Automated Public Turing test to tell Computers and Humans Apart,
usually consists in a perceptual task, simple to perform for humans but hard for known
algorithms. This suggests that visual and auditive perception currently provides the most
effective Turing test.
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Since the emergence of the field of Computer Vision [24] about fifty years ago –
initially as a branch of the Artificial Intelligence working with robots and its artificial
senses – there have been many attempts at formalizing vision theories and especially
Gestalt theory [31]. Among them one finds models of neural mechanism [15], theo-
ries based on logical inference [9], on information theory [22], invoking minimum
description principles [45], or grammars of visual elements [16, 46]. Nevertheless,
only a small fraction of these proposals has been accompanied by systematic efforts
to compare machine and human vision. An important exception is the Bayesian
theory of perception [27] that has attracted considerable attention in cognitive sci-
ences, leading to several experimental evaluations [10,20]. A recent groundbreaking
work by Fleuret et al. [13] compared human and machine performing visual cate-
gorization tasks. Humans are matched against learning algorithms in the task of
distinguishing two classes of synthetic patterns. One class for example may contain
four parallel identical shapes in arbitrary position, while the other class contains the
same shapes but with arbitrary orientation and position. It was observed that hu-
mans learn the distinction of such classes with very few examples, while learning
algorithms require considerably more examples, and nevertheless gain a much lower
classification performance. The experimental design was more directed at pointing
out a flaw of learning theory, though, than at contributing to psychophysics.

Such experiments stress the relevance of computer vision as a research program
in vision, in addition to a purely technological pursuit. Its role should be comple-
mentary to explanatory sciences of natural vision by providing, not only descriptive
laws, but actual implementations of mechanisms of operation. With that aim, per-
ceptual versions of the imitation game should be the Leitmotiv in the field, guiding
the conception, evaluation and success of theories.

Here we will present comparisons of human perception to algorithms based on
the non-accidentalness principle introduced by Witkin, Tenenbaum and Lowe [23,
43, 44] as a general grouping law. This principle states that spatial relations are
perceptually relevant only when their accidental occurrence is unlikely. We shall
use the a contrario framework, a particular formalization of the principle due to
Desolneux, Moisan and Morel [6,7] as part of an attempt to provide a mathematical
foundation to Gestalt Theory.

This chapter is intended to give an overview of our research program; for this
reason we reduced the settings to the bare minimum, concentrating in one simple
geometric structure, namely alignments. The methodology however is general. By
using such a simple structure we will present two complementary aspects of the
same program, each one with specific imitation games: a research procedure in-
spired in the methodology of the Gestalt school and the use of online games for
psychophysical experimentation.

Gestaltism created clever figures in which humans fail to perceive the expected
structures, generating illusions. In the gestaltic game, as we shall call our first pro-
posed methodology, the experimenter tries to fool the algorithm by building a par-
ticular data set that produces unnatural results. This methodology is discussed in
Sect. 6.2, along with a brief introduction to the a contrario methods.
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The second part, in Sect. 6.3, is dedicated to a first attempt at a psychophysical
evaluation of the same theory. There is a difference with classic psychophysical
experiments in which detection thresholds are measured; here each stimulus will be
shown to human subjects but also to an algorithm, and both will answer yes or no to
the visibility of a given structure. In a second variation, both humans and machine
will also have to point to the position of the observed structure. This last variation
is proposed as an online game, used as a methodology to facilitate experimentation
and the attraction of volunteers.

Being the result of a work in progress, no final conclusion will be drawn. Our
overall goal is to advocate for new sorts of quantitative Gestalt and psychophysical
games.

6.2 Detection Theory versus Gestaltism

Here and in most of the text we shall call “gestalt” any geometric structure emerging
perceptually against the background in an image. We stick to this technical term be-
cause it is somewhat untranslatable, meaning something between “form” and “struc-
ture”. According to Gestalt theory, the gestalts emerge by a grouping process in
which the properties of similarity (by color, shape, texture, etc.), proximity, good
continuation, convexity, parallelism, alignment can individually or collaboratively
stir up the grouping of the building elements sharing one or more properties.

6.2.1 The Gestaltic Game

One of the procedures used by Gestalt psychology practitioners was to create clever
geometric figures that would reveal a particular aspect of perception when used in
controlled experiments with human subjects. They pointed out the grouping mech-
anisms, but also the striking fact that geometric structures objectively present in the
figure are not necessarily part of the final gestalt interpretation. These figures are
in fact counterexamples against simplistic perception mechanisms. Each one repre-
sents a challenge to a theory of vision that should be able to cope with all of them.

The methodology we propose in order to design and improve automatic geomet-
ric gestalt detectors is in a way similar to that of the gestaltist. One starts with a
primitive method that works correctly in very simple examples. The task is then
to produce data sets where humans clearly see a particular gestalt while the rudi-
mentary method produces a different interpretation. Analyzing the errors of the first
method gives hints to improve the procedure in order to create a second one that
produces better results with the whole data set produced until that point. The same
procedure is applied to the second method to produce a third one, and successive
iterations refine the methods step by step. The methodology used by the Gestalt
psychologist to study human perception is used here to push algorithms to be simi-
lar to their natural counterpart. Finding counterexamples is less and less trivial after
some iterations and the counter-examples become, like gestaltic figures, more and
more clever.
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We decided to render this process interactive by drawing figures in a computer
interface that delivers a detection result immediately. The exploration of counterex-
amples is in that way transformed into an active search where previous examples
are gradually modified in an attempt to fool the detection algorithm. The figures are
all collected to be later used at the analysis stage. The gestaltic game is at the same
time a method to produce interesting data sets, a methodology to develop new de-
tection algorithms and a collaborative tool for research in the computational gestalt
community. Each detection game will only stop when it eventually passes the Tur-
ing test, the algorithm’s detection capability becoming undistinguishable from that
of a human.

6.2.2 Dot Alignments Detection

For its simplicity, dot patterns are often used in the study of visual perception. Sev-
eral psychophysical studies led by Uttal have investigated the effect of direction,
quantity and spacing in dot alignment perception [36,37]. The detection of collinear
dots in noise was the target of a study attempting to assess quantitatively the mask-
ing effect of the background noise [34]. A recent work by Preiss analyzes various
perceptual tasks on dot patterns from a psychophysical and computational perspec-
tive [30]. An interesting computational approach to detect gestalts in dot patterns is
presented in [1], although the study is limited to very regularly sampled patterns. A
practical application of alignment detection is presented in [38].

From a gestaltic point of view, a point alignment is a group of points sharing
the property of being aligned in one direction. While it may seem a simple gestalt,
Fig. 6.1 shows how complex the alignment event is. From a purely factual point of
view, the same alignment is present in the three figures. However, it is only per-
ceived as such by most viewers in the first one. The second and the third figures il-
lustrate two occurrences of the masking phenomenon discovered by gestaltists [19]:

Fig. 6.1 Exactly the same set of aligned dots is present in the three images, but it is only
perceived as such in the first one. The second one is a classic masking by texture case and the
third a masking by structure one, often called “Gestalt conflict”.
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the masking by texture, which occurs when a gestalt is surrounded by a clutter of
randomly distributed similar objects or distractors, and the masking by structure,
which happens when the alignment is masked by other perceptually more relevant
gestalts, a phenomenon also called perceptual conflict by gestaltists [18, 26, 45].
The magic disappearance of the alignment in the second and third figures can be
accounted for in two very different ways. As for the first one, we shall see that a
probabilistic a contrario model [7] is relevant and can lead to a quantitative predic-
tion. As for the second disappearance, it requires the intervention of another more
powerful grouping law, the good continuation [17].

These examples show that a mathematical definition of dot alignments is required
before even starting to discuss how to detect them. A purely geometric-physical de-
scription is clearly not sufficient to account for the masking phenomenon. Indeed, an
objective observer making use of a ruler would be able to state the existence of the
very same alignment at the same precision on all three figures. But this statement
would contradict our perception, as it would contradict any reasonable computa-
tional (definition and) theory of alignment detection.

This experiment also shows that the detection of an alignment is highly depen-
dent on the context of the alignment. It is therefore a complex question, and must
be decided by building mathematical definitions and detection algorithms, and con-
fronting them to perception. As the patterns of Fig. 6.1 already suggest, simple
computational definitions with increasing complexity will nevertheless find percep-
tual counterexamples. There is no better way to describe the ensuing “computational
gestaltic game” than describing how the dialogue of more and more sophisticated
alignment detection algorithms and counterexamples help build up a perception
theory.

6.2.3 Basic Dot Alignment Detector

A very basic idea that could provide a quantitative context-dependent definition
of dot alignments is to think of them as thin, rectangular shaped point clusters.
In that case, the key measurements would be the relative dot densities inside and
outside the rectangle. The algorithm described in this section follows the a contrario
methodology [7, Sect. 3.2] according to which a group of elements is detectable as
a gestalt if and only if it has a low enough probability of occurring just by chance in
an a contrario background model.

We shall first introduce briefly the a contrario framework [4, 6, 7]. The ap-
proach is based on the non-accidentalness principle [5,32,39,44] (sometimes called
Helmholtz principle) that states that structures are perceptually relevant only when
they are unlikely to arise by accident. An alternative statement is “we do not per-
ceive any structure in a uniform random image” [7, p.31]. The a contrario frame-
work is a particular formalization of this principle adjusting the detection thresholds
so that the expected number of accidental detections is provably bounded by a small
constant ε . The key point is how to define accidental detections. This requires a
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Fig. 6.2 A schematic representation of the evaluated rectangle. In an image with N points,
there are (N(N−1)×W )/2 possible rectangles defined by two dots. In the case shown in this
figure, N = 49 and k(r,x) = 5.

stochastic model, the so-called a contrario model, characterizing unstructured or
random data in which the sought gestalt could only be observed by chance.

Consider a dot pattern defined on a domain D with total area SD and containing N
dots, see Fig. 6.2. We are interested in detecting groups of dots that are well aligned.
A first reasonable a contrario hypothesis H0 for this problem is to suppose that the N
dots are the result of a random process where points are independent and uniformly
distributed in the domain. The question is then to evaluate whether the presence of
aligned points contradicts the a contrario model or not.

Given an observed set of N points x = {xi}i=1...N and a rectangle r (the candi-
date to contain an alignment), we will denote by k(r,x) the number of those points
observed inside r. We decide whether to keep this candidate or not based on two
principles: a good candidate should be non-accidental, and any equivalent or bet-
ter candidate should be kept as well. The degree of non-accidentalness of an ob-
served rectangle r can be measured by how small the probabilityP

[

k(r,X)≥ k(r,x)
]

is, where X denotes a random set of N dots following H0. In the same vein, a
rectangle r′ will be considered at least as good as r given the observation x, if
P
[

k(r′,X)≥ k(r′,x)
]≤ P

[

k(r,X) ≥ k(r,x)
]

.
Recall that we want to bound the expected number of accidental detections. Given

that Ntests candidates will be tested, the expected number of rectangles which are as
good as r under H0, is about [7]

Ntests ·P
[

k(r,X)≥ k(r,x)
]

. (6.1)

The H0 stochastic model fixes the probability law of the random number of points
in the rectangle, k(r,X), which only depends on the total number of dots N. The
discrete nature of this law implies that (6.1) is not actually the expected value but an
upper bound of it [7, 14]. Let us now analyze the two factors in (6.1).

Here the a contrario model H0 assumes that the N points are i.i.d. with uniform
density on the domain. Under the a contrario hypothesis H0, the probability that one
dot falls into the rectangle r is

p =
Sr

SD
, (6.2)
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where Sr is the area of the rectangle and SD the area of the domain. As a consequence
of the independence of the random points, k(r,X) follows a binomial distribution.
Thus, the probability term P

[

k(r,X) ≥ k(r,x)
]

is given by

P
[

k(r,X)≥ k(r,x)
]

=B
(

N,k(r,x), p
)

(6.3)

where B(n,k, p) is the tail of the binomial distribution

B(n,k, p) =
n

∑
j=k

(

n
j

)

p j(1− p)n− j. (6.4)

The number of tests Ntests corresponds to the total number of rectangles that could
show an alignment, which in turn is related to the number of pairs of points defining
such rectangles. With a set of N points this gives N×(N−1)

2 different pairs of points.
The set of rectangle widths to be tested must be specified a priori as well. In the

a contrario approach, a compromise must be found between the number of tests
and the precision of the gestalts that are being sought for. The larger the number of
tests, the lower the statistical relevance of detections. However, if the set of tests is
chosen wisely, gestalts fitting accurately the tests will have a very low probability
of occurrence under H0 and will therefore be more significant.

At a digital image precision, the narrowest possible width for an alignment is 1
(taking the side of a pixel as length unit). The series of tested widths grows geo-
metrically until it achieves a maximal possible width, which can be set a priori as
a function of the alignment length. Since the number of tested widths depends on
the length of the alignment, we cannot predict a priori (before the dots have been
drawn) how many tests will be done. Fortunately the total number of widths can be
estimated as the number of widths tested in an average rectangle times the number
of evaluated rectangles. We call this quantity W . The impact of this approximation
in the detector results is insignificant [7]. The total number of tested rectangles is
then:

Ntests =
N(N− 1)×W

2
. (6.5)

We will define now the fundamental quantity of the a contrario framework, the
Number of False Alarms (NFA) associated with a rectangle r and a set of dots x:

NFA(r,x) = Ntests ·P
[

k(r,X) ≥ k(r,x)
]

=
N(N− 1)×W

2
·B
(

N,k(r,x), p
)

. (6.6)

This quantity corresponds, as said before (Eq. 6.1), to the expected number of rect-
angles which have a sufficient number of points to be as rare as r under H0. When
the NFA associated with a rectangle is large, this means that such an event is to be
expected under the a contrario model, and therefore is not relevant. On the other
hand, when the NFA is small, the event is rare and probably meaningful. A per-
ceptual threshold ε must nevertheless be fixed, and rectangles with NFA(r,x) < ε
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(a) (b) (c) (d)

Fig. 6.3 Results from the basic dot alignment detector. (a) and (c) are the input data, and
(b) and (d) are the corresponding results. Each detection is represented by a rectangle and its
color indicates the NFA value. In (b) the algorithm correctly detects the obvious alignment.
Notice that multiple and redundant rectangles were detected; this problem will be discussed
in Sect. 6.2.5. The data set (c) contains the same set of points in (a) plus added noise dots,
thus the aligned dots are still present. However, the algorithm handles correctly the masking
by texture or noise and produces no detection.

will be called ε-meaningful rectangles [5], constituting the detection result of the
algorithm.

Theorem 6.1 ( [7])

E

[

∑
R∈R

1NFA(R,X)<ε

]

≤ ε

where E is the expectation operator, 1 is the indicator function, R is the set of
rectangles considered, and X is a random set of points on H0.

The theorem states that the average number of ε-meaningful rectangles under the
a contrario model H0 is bounded by ε . Thus, the number of detections in noise is
controlled by ε and it can be made as small as desired. In other words, this shows
that our detector satisfies the non-accidentalness principle.

Following Desolneux, Moisan, and Morel [4, 7], we shall set ε = 1 once and for
all. This corresponds to accepting on average one false detection per image in the
a contrario model, which is generally reasonable. Also, the detection result is not
sensitive to the value of ε , see [7].

Figure 6.3 shows the results of the basic algorithm in two simple cases. The
results are as expected: the visible alignment in the first example is detected, while
no detection is produced in the second. Actually, the dots in the first example are
also present in the second one, but the addition of random dots masks the alignment,
in accordance with human perception. Note that the first example produces many
redundant detections; this problem will be handled in Sect. 6.2.5.

6.2.4 A Refined Dot Alignment Detector

Naturally, the simple model for dot alignment detection presented in the last section
does not take into account many situations that can arise and significantly affect
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(a) (b) (c)

Fig. 6.4 Local vs. global density estimation. In each example, only the most meaningful de-
tected alignment (the one with the lowest NFA) is shown for each algorithm. The algorithms
(a), (b), (c) use a background model with growing complexity to avoid wrong detections. (a)
global density estimation: the detected segment is not the most meaningful for our percep-
tion, but has nevertheless a high dot density compared to the average image density used as
background model. (b) here a local density estimation gives the background model, but the
local density is lower on the border of the big dot rectangle, hence the detection. (c) this last
problem is avoided by computing a local density estimation taking the maximum density on
both sides of the alignment.

the perception of alignments. For example: what happens if there are point clusters
inside the alignment? What if the background image has a non uniform density?
Should not the algorithm prefer alignments where the points are equally spaced?
These questions, among others, arise when subjects play the gestaltic game and try
to fool the algorithm with new drawings. There are two ways to fool the algorithm:
One is by drawing a particular context that prevents the algorithms from detecting
a conspicuous alignment. Inversely, the other sort of counterexample is a drawing
inducing detections that remain invisible to the human eye. As more counterexam-
ples are found, more sophisticated versions of the algorithm must be developed, and
each new version will become harder to falsify than the previous one.

Using this methodology, we produced several refined versions of the basic algo-
rithm. Here we will present the principal counterexamples that were found, and then
describe the last version of the algorithm which takes all of them into account. This
algorithm is therefore harder to fool. Ideally, the game should end when the Turing
test [29] is satisfied, namely when a human observer will be unable to distinguish
between the detections produced by a machine and by a human.

First, we noticed a deficiency in the detector when zones in the image have higher
dots density. This problem arises naturally from the wrong a contrario assumption
that the whole image has the same density of points. When it is not the case, the
global density estimation can be misleading and produces poor detection results, as
illustrated in Fig. 6.4 (a). The solution for this is to compute a local density estima-
tion with respect to the evaluated rectangle. The algorithm uses a local window with
size proportional to the width of the evaluated alignment.
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Fig. 6.5 In the refined version of the algorithm, the density of points is measured to each side
of the evaluated rectangle. The maximum of the densities in R1 and R3 is taken and this value
is used as an estimation of the dot density in both R1 and R3.

However, this local density estimation can introduce new problems such as a
“border effect”, as shown in Fig. 6.4 (b). Indeed, the density estimation is lower on
the border of the dot rectangle than inside it, because outside the rectangle there
are no dots. Thus, the algorithm detects on the border a non-accidental, meaningful
excess with respect to the local density.

In order to avoid this effect, the version of the algorithm used in Fig. 6.4 (c)
measures for the background model the maximum of the densities measured on both
sides of the alignment. In short, to be detected, an alignment must show a higher dot
density than in both regions immediately on its left and right. This local alignment
detector is therefore similar to classic second order Gabor filters where an elongated
excitatory region is surrounded by two inhibitory regions. The local points estima-
tion is calculated in the following way, see Fig. 6.5. The local window is divided in
three parts. R1 is the rectangle formed by the area of the local window on the left of
the alignment. R3 is the area of the local window on the right of the alignment, and
R2 is the rectangle which forms the candidate alignment. Note that the length of the
local window is the same as the alignment and that we can consider any arbitrary
orientation for it. Next, the algorithm counts the numbers of dots M1, M2, and M3 in
R1, R2 and R3 respectively. Finally the a contrario model assumes that the number
of dots in the local window R1∪R2∪R3 is

n(r,x) = max(M1,M3)× 2+M2, (6.7)

and that these dots are randomly distributed.
There is still an objection to this new algorithm, obtained in the gestaltic game

by introducing small dot clusters, as shown in Fig. 6.6 (a). The detected alignment
in Fig. 6.6 (b) seems clearly wrong. There is indeed a meaningful dot density ex-
cess inside the red rectangle, but this excess is caused by the clusters, not by what
could be termed an alignment. While the algorithm counted every point, the human
perception seems to group the small clusters into a single entity, and count them
only once. Also, as suggested in other studies [30, 34, 37], the density is not the
only property that makes an alignment perceptually meaningful; another character-
istic to consider is the uniform spacing of the dots in it, which the gestaltists call
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the principle of constant spacing. These objections have led to a still more sophis-
ticated version of the alignment detector. In order to take into account both issues
(avoiding small clusters and favoring regular spacing) a more advanced version of
the alignment detector was designed which divides each candidate rectangle into
equal boxes. The algorithm counts the number of boxes that are occupied by at least
one point, instead of counting the total number of points. In this way, the minimal
NFA is attained when the dots are perfectly distributed along the alignment. In addi-
tion, a concentrated cluster in the alignment has no more influence on the alignment
detection than a single dot in the same position.

The NFA calculation for this refined version of the algorithm is slightly different
than for the basic one. The event for which we are estimating an expected number
of occurrences in a background model is defined as follows. Given two points and
a number of boxes c, the question is: What is the probability that the number of
occupied boxes among the c is larger than the expected number under the a contrario
model? Let us start by computing the probability of one dot falling in one of the
boxes:

p0 =
SB

SL
, (6.8)

where SB and SL are the areas of the boxes and the local window respectively. Then,
the probability of having one box occupied by at least one of the n(r,x) dots (Eq. 6.7)
is:

p1 =B
(

n(r,x),1, p0
)

. (6.9)

We call occupied boxes the ones that have at least one dot inside, and we will denote
by b(r,c,x) the observed number of occupied boxes in the rectangle r divided into c
boxes. Finally, the probability of having at least b(r,c,x) of the c boxes occupied is

(a) (b) (c)

Fig. 6.6 Counting occupied boxes to avoid false detections from the presence of clusters. The
dot pattern shown in image (a) presents two dot clusters but no alignment. However, the basic
algorithm finds a thin rectangle with a high dot density, hence a false detection, as shown in
(b). Dividing the rectangle into boxes and counting the occupied ones, avoids this misleading
cluster effect, as seen in (c), where the occupied boxes are marked in red and no alignment is
actually detected.
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Fig. 6.7 Redundant detections. Left: dot pattern. Center: all significant alignments found by
the refined dot alignment detector described in Sect. 6.2.4. The color represents the relative
NFA value, where red is the most significant (smallest NFA value) and blue the least (highest
NFA value). Right: Result of the masking process.

B
(

c,b(r,c,x), p1
)

. (6.10)

A set C of different values are tried for the number of boxes c into which the rectan-
gle is divided. Thus, the number of tests needs to be multiplied by its cardinal |C |.
In practice we set |C |=√N and that leads to

Ntests =
N(N− 1)×W×|C |

2
=

N(N− 1)×W×√N
2

. (6.11)

The NFA of the new event definition is then:

NFA(r,x) =
N(N− 1)×W×√N

2
·min

c∈C
B
(

c,b(r,c,x), p1
)

. (6.12)

Figs. 6.4 (c) and 6.6 (c) show two examples of the resulting algorithm, and we
will show some more after discussing the masking problem.

6.2.5 Masking

As was observed in Fig. 6.3, all the described alignment detectors may produce
redundant detections. The reason is that a relevant gestalt is generally formed by
numerous elements and many subgroups also form relevant gestalts in the sense of
the non-accidentalness principle. Every pair of dots defines a rectangle to be tested.
Clearly, in a conspicuous alignment there will be many such rectangles that partially
cover the main alignment and are therefore also meaningful. This redundancy phe-
nomenon can involve dots that belong to the real alignment as well as background
dots near the alignment, that can contribute to a rectangle containing a large num-
ber of dots, as illustrated in Fig. 6.7. However, in such cases humans perceive only
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one gestalt. Indeed, one could expect that there is only one causal reason leading to
redundant detections and it makes sense to select the best rectangle to represent it.

A similar phenomenon is described in the Gestalt literature [19]. Most scenes
contain other possible interpretations that are masked by the global interpretation.
A simple example is shown in Fig. 6.8 where subsets of the grid of dots form a huge
quantity of gestalts, but are invisible because they are masked by the rectangular
matrix of dots. This fact is, after Vicario, called Kanizsa’s paradox [7].

A simple model for this masking process was proposed by Desolneux et al. [7]
under the name of “exclusion principle”. The main idea is that each basic element
(for example the dots) cannot contribute to more than one perceived group or gestalt.
The process is as follows: The most meaningful observed gestalt (the one with
smallest NFA) is kept as a valid detection. Then, all the basic elements (the dots
in our case) that were part of that validated group are assigned to it and the remain-
ing candidate gestalts cannot use them anymore. The NFA of the remaining candi-
dates is re-computed without counting the excluded elements. In that way redundant
gestalts lose most of their supporting elements and are no longer meaningful. On the
other hand, a candidate that corresponds to a different gestalt keeps most or all of its
supporting basic elements and remains meaningful. The most meaningful candidate
among the remaining ones is then validated and the process is iterated until there
are no more meaningful candidates.

This formulation of the masking process often leads to good results, removing
redundant detections while keeping the good ones. However, the gestaltic game
showed that it may also lead to unsatisfactory results as illustrated in Fig. 6.9. The
problem arises when various gestalts have many elements in common. As one gestalt
is evaluated after the other, it may happen that all of its elements have been removed,
even if the gestalt is in fact not redundant with any of the other ones. In the example
of Fig. 6.9, individual horizontal and vertical alignments are not redundant, but if
all the vertical ones have been detected first, the remaining horizontal ones will be
(incorrectly) masked. This example shows a fundamental flaw of the exclusion prin-
ciple: it is not sound to impose that a basic element belongs to a single perceptually
valid gestalt. There must be a global explanation of the organization of the basic
elements in visible gestalts which is at the same time coherent with each individual
gestalt (eliminating local redundancy) and with the general explanation of the scene

Fig. 6.8 A masking example by Kanizsa [19, p.155]: The “curve” in B is also present in the
grid of dots A; nevertheless, it is not visible as it is masked by the global matrix configuration



6.2 Detection Theory versus Gestaltism 231

in such a way that some basic elements can participate of several gestalts without
contradiction. The solution seems to be in a sort of relaxation of the exclusion prin-
ciple. The following definitions sketch a possible solution.

Definition 6.1 (Building Elements). We call building element any atomic image
component that can be a constituent element of several gestalts. Valid examples
of building elements are dots, segments, or even gestalts themselves, that can be
recursively grouped in clusters or alignments. From that point of view any gestalt
can be used as a building element for higher level gestalts.

Definition 6.2 (Masking Principle). A meaningful gestalt B will be said “masked
by a gestalt A” if B is no longer meaningful when evaluated without counting its
building elements belonging to A. In such a situation, the gestalt is not retained as
detected.

In short, a meaningful gestalt will be detected if it is not masked by any other
detected gestalt. The difference is that here a gestalt can only be masked by another
individual gestalt and not by the union of several gestalts as is possible with the
exclusion principle. Thus this masking principle is analogous to a Nash equilibrium,
in the sense that every gestalt remains meaningful when separately subtracting from
it the building blocks of any other gestalt. A procedural way to attain this result is to
validate gestalts one by one, starting by the one with smallest NFA; before accepting
a new gestalt, it is checked that it is not masked by any one of the previously detected
gestalts. The masking principle applies easily to point alignments.

Fig. 6.10 shows some dot alignment detection results when combining the
method of the previous section and the masking principle. The results obtained in
these examples are as expected.

Fig. 6.9 Examples of two alternative formulations of the masking process. Left: Set of dots.
Center: The Exclusion Principle as defined in [7], a validated gestalt prevents others from
using its dots. The vertical alignments (that were evaluated first) mask almost all the horizon-
tal ones. Right: The Masking Principle, described in the text, which solves the ambiguities
without forbidding basic elements to participate of two different gestalts. In this example, no
individual alignment can mask an individual one in another direction. Thus we get all oblique,
horizontal and vertical meaningful alignments.



232 J. Lezama et al.

6.2.6 Online Gestaltic Game

The gestaltic game allowed us to discover examples of dot arrangements that the
current algorithm is not able to handle correctly. The hardest ones we encountered
to date belong to the “masking by structure” kind, as those presented in the right
hand part of Fig. 6.1. Surely there are more cases than those discovered so far. To
facilitate the search we created an online interface where everyone can easily play
the gestaltic game inventing new counterexamples.2

Being interactive, the online gestaltic game is designed to be eventually published
in the IPOL journal. It allows users to draw their own dot patterns and to see the
output of the detection algorithm. Alternatively, the user can upload a set of dots,
or modify an existing one by adding or removing individual dots or adding random
dots. All the experiments are stored and accessible in the “archive” part of the site
and may help improve the theory.

Current work is focused on the conflict between different gestalts with the objec-
tive of handling the masking by structure problem.

6.3 Detection Theory versus Psychophysics

In this second part we leave the question of a quantitative gestaltism and go back
to more classic psychophysics. The question is whether a quantitative framework
like the a contrario detection theory can also become a useful addition for human
contour perception psychophysical experiments.

Fig. 6.10 Results of the final dot alignment detector, using the refined method described in
Sect. 6.2.4 in conjunction with the Masking Principle (Def. 6.2). The top row is the input
data; the bottom row shows the results.

2 http://dev.ipol.im/˜jlezama/dot_alignments

http://dev.ipol.im/~jlezama/dot_alignments
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Fig. 6.11 Left: An image extracted from Nygård et al. [28]. Right: Example of an alignment
detection experiment to be developed here.

Arrays of Gabor patches have become a classic tool for the study of the influence
of good continuation in perceptual grouping [12,28]. Gabor functions ensure a con-
trol on the stimuli spectral complexity and on the spatial scale of the contours. They
give a flexible and easy way for building a great variety of stimuli. It has been veri-
fied that the more aligned the Gabor patches are to the contour they lie on, the easier
their perceptual grouping into a shape’s outline [12, 28]. Fig. 6.11 (left), shows an
easy example where most subjects recognize a bottle. But the more freedom is left
to the Gabor orientation, the harder it is to distinguish such contours from the back-
ground. For the influence of other perturbations of the contour such as its motion or
its curvature on the object’s identifiability, we refer to a recent study [28].

Can we hope for a quantitative interpretation to this experimental framework,
namely a function of the stimuli parameters that would predict and explain the evo-
lution of the detection performance? Probabilistic approaches (mainly Bayesian)
exist for contour modeling from a perceptual point of view [2, 11], and have some-
times been compared experimentally to human visual perception [10]; but none of
these approaches proposed to compute a priori detection thresholds as functions of
the stimuli parameters.

The influence of experimental factors such as the length of the alignment, the
density of the patches, and the angular accuracy on human detection is a classic
subject of psychophysical inquiry. But the question of whether human performance
can be measured with only one adequate quantitative function of the parameters
is still open. We shall explore here if the NFA furnished by the a contrario the-
ory can play this role. Indeed, the NFA retains the remarkable property of being a
scalar function of the three psychophysical parameters generally used in this kind of
detection experiment. In classic experimental settings, these parameters are varied
separately and independently, and no synthetic conclusion can be drawn; only sep-
arate conclusions on the influence of each parameter can be reached. If a function
like the NFA could play the role of generic detectability parameter, the experimen-
tal parameters could for example be made to vary simultaneously in the very same
experiment. In short, if the hypothesis of a single underlying detection parameter
is validated, this would simplify the experimental setups and entail a new sort of
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quantitative analysis of the results, two stimuli being a priori considered as equiva-
lent in difficulty if their NFA are similar.

The underlying hypothesis, that the reaction of the subjects to varying stim-
uli might be predicted as a single scalar function of the stimulus’ parameters, is
equivalent to the classic hypothesis of a “single mechanism” for contour detec-
tion. More precisely, we shall explore if this single mechanism might obey the non-
accidentalness principle (the NFA being its probabilistic quantitative expression).

To keep the line of the previous section, this study will again focus on the same
simple gestalt: straight contours, that is to say alignments of Gabor elements, as
illustrated in Fig. 6.11 (right). The remainder of this section describes the patterns
used, the a contrario method, the experiment performed on humans, and the result
of the comparison.

6.3.1 The Patterns

Figure 6.12 shows three examples of the stimuli used in our experiments. All of
them consist of symmetric Gabor elements with varying positions and orientations
placed over a gray background. There are two kinds of stimuli: positive stimuli and
negative stimuli. Negative stimuli contain elements with random orientations sam-
pled in [0,π), e.g. Fig. 6.12 (c). Positive stimuli, see Fig. 6.12 (a) and (b), contain
a majority of random elements like in negative stimuli but also a small set of fore-
ground elements. The latter lie on a straight line and are uniformly spaced; their
orientations are randomly and uniformly sampled from an interval centered on the
alignment direction. The size of this interval gives a measure of the angular jit-
ter and will be noted by J. When the jitter is zero, the foreground elements have
the exact same orientation as their supporting line. Inversely, a jitter of π leads to
completely isotropic elements.

The experiment is designed to study how angular jitter affects visibility. Yet, a
natural question arises about the contribution to the detection of the accuracy of

(a) (b) (c)

Fig. 6.12 Three examples of stimuli used in our experiments. (a) A jitter-free alignment
with 10 elements. (b) A weakly jittered alignment with 10 elements. (c) A stimulus with no
alignment, containing only elements with random orientations.
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Fig. 6.13 Influence of stimuli position. Each dot represents the position where a Gabor el-
ement will be placed. The figure includes a perfectly regular and aligned set of dots, sur-
rounded by random placed elements, all generated by the GERT package. It is very difficult
to find the alignment, which shows that the position of the elements by itself conveys few cues
about the presence of the alignment. (For a comparison, see the same stimulus with Gabor
elements, Fig. 6.11 (right), where the alignment is easily spotted.)

the alignment and of the regular spacing of the aligned elements. All the stimuli
presented in this section were generated with the software GERT (v1.1) that includes
special algorithms for the generation of random placed and oriented Gabor elements
that mask as much as possible the aligned Gabor elements structure [3]. Figure 6.13
shows an example displaying only the elements position; even if there is in fact a set
of perfectly regularly aligned dots, it is very hard to spot them. This suggests that
the position of the elements carries few useful cues about the alignment.

6.3.2 The Detection Algorithm

Let us now present the alignment detection algorithm that will be matched to human
perception. The input to the algorithm is a set of Gabor elements g= {(xi,θi)}i=1...N ,
defined by the position and orientation of each element. We will further assume that
the total number of elements is a fixed quantity N.

A candidate to alignment is defined as a rectangle r, see Fig. 6.14 (left), and the
orientation of the Gabor elements inside it will determine whether the candidate
is evaluated as a valid alignment or not. The orientation of each Gabor element is
compared to the one of the rectangle and when the difference is smaller than a given
tolerance threshold τ , the element is said to be τ-aligned, see Fig. 6.14 (right). Two
quantities will be observed for each rectangle r: the total number of Gabor elements
inside it, n(r,g), and the number among them that are τ-aligned, kτ(r,g). The a
contrario validation is analogue to the one described in Sect. 6.2.3.

Due to the way the patterns are generated, the only relevant information to eval-
uate in an alignment is the orientation of the Gabor elements. Consequently, the a
contrario model H0 is defined with N random variables corresponding to the orien-
tation of the elements and satisfying the following two conditions:
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• the orientationsΘi are independent from each other;
• each orientationΘi follows a uniform distribution in [0,π).

Under these a contrario assumptions, the probability that a Gabor element be τ-
aligned to a given rectangle is given by

p(τ) =
2τ
π
. (6.13)

Notice that the symmetric Gabor elements are unaltered by a rotation of π rads. The
independence hypothesis implies that the probability term P[kτ(r,G) ≥ kτ(r,g)],
where G is a random set of Gabor elements following H0, is given by

P
[

kτ (r,G)≥ kτ(r,g)
]

=B
(

n(r,g),kτ(r,g), p(τ)
)

, (6.14)

where as before B(n,k, p) is the tail of the binomial distribution.
We still need to specify the family of tests to be performed. Each pair of dots

will define a rectangle of fixed width w, so the total number of rectangles is N(N−1)
2 .

Also, a finite number of angular precisions τi will be tested for each rectangle. Then,

Ntests =
N(N− 1)

2
·#T , (6.15)

where #T is the cardinality of the set T of precisions. The NFA of a candidate is
defined by

NFA(r,g) = Ntests ·min
τ∈T

B
(

n(r,g),kτ(r,g), p(τ)
)

. (6.16)

A large NFA value corresponds to a likely (and therefore insignificant) configura-
tion in the a contrario model; inversely, a small NFA value indicates a rare and
interesting event. The proposed detection method validates a rectangle candidate

Fig. 6.14 Left: A candidate to alignment, defined by a rectangle R. Right-Top: A Gabor
element whose angle with (ab) is larger than τ and thus it is not counted as an aligned point.
Right-Bottom: A detailed example where we see a total of five Gabor elements inside the
rectangle, n(r,g) = 5, being τ-aligned with (ab), i.e. kτ (r,g) = 4.
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NFA = 99.5 no detection

NFA = 10−5 detection

Fig. 6.15 Two examples of the proposed validation method for alignment of Gabor elements.
The rectangle in the first row has three elements inside, all of them aligned; that number is
nevertheless too small to produce a detection, as its NFA value is larger than one. In the
second example, all ten Gabor elements are aligned, giving an NFA of 10−5 and producing a
detection.

r whenever NFA(r,x) < ε . The following theorem shows that it satisfies the non-
accidentalness principle.

Theorem 6.2

E

[

∑
R∈R

1NFA(R,G)<ε

]

≤ ε.

where E is the expectation operator, 1 is the indicator function, R is the set of
rectangles considered, and G is a random set of Gabor elements on H0.

Once again we follow Desolneux et al. [4,7] and set ε = 1. In our experiments, we
use the NFA as an indication of the visibility of the gestalt according to the proposed
theory; a value considerably smaller than 1 is “non-accidental” and should imply a
conspicuous gestalt. A value larger than 1 can occur just by chance and should
therefore be associated to an irrelevant gestalt. Figure 6.15 shows two examples of
detection by this method.



238 J. Lezama et al.

6.3.3 Experiment

A psychophysical experiment was performed online by voluntary subjects using an
interactive web site3. Their task was to report on the visibility of the aligned Gabor
patterns. The online methodology was necessarily more flexible and less controlled
on various aspects than it would be in a laboratory: we had no reliable informa-
tion about the subjects, their visualization conditions in front of their computers
were not controlled, the comprehension of the task by the subjects might vary, etc.
Notwithstanding their uncontrolled essence, online experiments give access to a
larger number of subjects and bring a great experimental flexibility.

The data set used for this experiment is composed of over 14000 stimuli (negative
and positive) as the one described in Sect. 6.3.1. Each image has a size of 496×496
pixels and containing N = 200 elements. For positive stimuli, 9 levels of jitter (J ∈
{0, π5 , π4 , π3 , π2 , 2π

3 , 3π
4 , 4π

5 ,π}) and 8 different segment lengths were used, between 3
and 10 elements. During each session, the subject saw 35 of these images, one after
another. The first five images were training stimuli and no results were recorded at
this stage of the experiment. The following 30 images were randomly sampled over
the data set, with constraints that ensured a balance between negative, positive, hard
and easy stimuli. For each stimulus, the subject was asked to answer whether they
saw or not a “straight line”; the answer and response time were recorded. There
was no time limit to provide the answer but it was suggested to answer as soon as
the subject made up their mind. At the end of the session, a feedback was given on
false detections and on the consistency of the subject’s answer through an “attention
score”. This score rewarded the fact that the subject answered better on easy stimuli
than on hard ones and indicated if the task was well understood or not.

6.3.4 Results

In order to compare human and machine perception we precomputed the NFA for
each rectangle on all the images of the data set. Each image was associated to its
best (smallest) NFA. The hypothesis to be tested was that the NFA value should be
related directly to the visibility by humans; if this is true, the average score given to
an image by humans, namely the proportion of “Yes”, should be related to the NFA
of the most salient structure. In what follows we will analyze the data obtained from
7137 trials.

The NFA scale was divided into bins. To each bin were associated statistics on
the trials whose NFAs belonged to this bin. Figure 6.16 shows the average an-
swer rate and response times for nine log10(NFA) intervals. Note that NFA < 1
(or log10(NFA)< 0) means detection of the alignment by the algorithm.

The results significantly support the hypothesis that a single scalar function of
all parameters predicts the detectability. Indeed, the answer rate follows a sigmoid
shape roughly centered at log10(NFA) = 0. The second graph, plotting the response
time versus the NFA, also agrees with the hypothesis: the less visible the stimuli

3 http://dev.ipol.im/˜blusseau/aligned_gabors

http://dev.ipol.im/~blusseau/aligned_gabors
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are, the more time is spent searching for valid gestalts. Statistical tests confirm this
average tendency.

The experiment confirms the hypothesis that, at least in this restricted perceptual
environment (formed of three parameters, the number of Gabor patches, the length
of the alignment and its jitter on orientation), the value of NFA may account for the
human “detectability” of an alignment. Surprisingly, the human detection (attentive)
threshold is close to the best algorithm in this restricted environment. Indeed, align-
ments with NFA smaller than 1 were detected by a majority of subjects. Alignments
with NFA larger than one, which are likely to occur just by chance, were detected by
a minority of subjects. Furthermore, the detection curve is steepest when the NFA
crosses 1. The curve is not as steep for the mean response time as a function of NFA.
This can be simply explained by the fact that the patience of subjects undergoes a
rapid temporal erosion; they are not ready to look long for a needle in a haystack.

6.3.5 Consequence: An Online Game

Online experimentation opens new possibilities that need to be explored farther, and
in particular the use of computer games as an experimentation tool. A successful
game may attract the attention of subjects and if the resulting mass of results is
large enough, it could compensate for the lack of control on other aspects of the
experimental setting.

The player of a computer game is usually directed toward an objective and faced
with obstacles. To be attractive, a game cannot be too easy, but not too hard either; a
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Fig. 6.16 Comparison of the subjects’ responses to the NFA. Left: The average answer rate
is plotted relative to log10(NFA). Each point indicates the proportion of positive answers
to stimuli with best NFA in the corresponding bin. Right: The average response times in
seconds per bin. In both cases, the abscissa represents the scale of log10(NFA) divided into
9 bins; the first bin is defined by log10(NFA)<−5, the last one by log10(NFA)≥ 2, and the
other 7 bins by k ≤ log10(NFA)< k+1 for k =−5, . . . ,1. The error bars give approximately
95 % confidence about the mean values (each interval is defined as [x−2 s√

n
,x+2 s√

n
], where

x,s and n are respectively the mean, standard deviation and number of trials of the bin).
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good balance of this difficulty is the key to the popularity of the game. To use games
for psychophysical purposes, the player should be directed to detect some pattern,
the obstacles being the conditions that preclude this perception. Motivated players
will do their best effort, revealing the limits of human perception.

To go in this direction we created a prototype version of an alignment game.4 The
player is presented with Gabor stimuli as described before. Only positive stimuli
with variable difficulties are used. In this way one knows that there is an alignment
gestalt; but its position is unknown and the assignment of the player is to spot it.
The subject is asked to click in the image on any point of the straight line. The
distance between the clicked point and the actual line segment is recorded and a
score over 100 is computed as a function of this distance (the closer to the segment,
the better the score). When the stimulus is quite visible, all subjects are able to point
correctly to it; when it is not, the distance to the alignment becomes random. This
rash transition should permit to pinpoint the human detection threshold.

The presentation of the stimuli is divided into several sequences of ten images.
The first sequence is always supposed to be very easy (long segments with little
jitter). Then the difficulty of the following sequences change according to the per-
formance achieved on the previous one. The collected data will permit us to compare
a detection method to human performance in the way described before. The game
is still in a prototype phase but readers are invited to try it and provide feedback.

6.4 Conclusion

Needless to be said, the experimental devices and first results that we just described
are not sufficient to make any rash conclusion on the existence of quantitative pre-
dictions of human perception. They will need to be extended to other gestalts com-
monly used in psychophysics, such as for example contours (good continuation),
clusters, or symmetries. In the same way, the first described gestaltic game does not
furnish an end algorithm modeling what we could call the human notion of align-
ment. Finally, we did not deliver a detection algorithm directly usable on any image,
as required by the computer vision methodology. In short, this is work in progress,
and our goal was to raise the attention of psychophysical researchers and computer
scientists on the interest of introducing Turing tests in their methodology.
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Chapter 7
Remarks on Invariance in the Primary Visual
Systems of Mammals

Daniel Bennequin

7.1 Introduction

Poincaré observed that the perception of space is based on active movements, and
relies on the notions of invariance, covariation between sensors and environment,
and active compensation ( [179], [180], [181], [182]). The research of Piaget has
proved the importance of various kinds of geometrical invariance in cognitive and
behaviorial development ( [173], [177], [176]). To him intelligence is a form of
adaptation, the continuous process of using the environment for learning ( [174]).
Adaptation is a process that can happen at the scale of evolution, development
or functioning. In ecology, or in population biology and genetics, it means the
adjustment or change in behavior, physiology, and structure of an organism to
become more suited to an environment, thus better fitted to survive and passing
their genes on to the next generation (Darwin plus Mendel, [45]). In Neuroscience
it often means the decline in the frequency of firing of a neuron in response
to constantly applied environmental conditions, or more generally, any change
in the relationship between stimulus and response that is induced by the level
of stimulus (Laughlin, [121]). Adaptation is an ubiquitous essential property of
sensory and motor processing, allowing the living systems to sense and anticipate
what is changing in the world ( [27]). As we will see, invariance can contribute
to adaptation, and adaptation can create new invariance structures. Gibson gave
a precise formulation of invariance and adaptation in psychology, with special
emphasis on vision ( [71], [72], [73], [74]). From the formal point point of view,
the mathematical theory of groups, and its many extensions in algebra and analysis
(cf. 2.3 below for definitions), offer a clear mathematical basis for discussing
the notions of invariance ( [84]). About Gibson and symmetry groups, see Shaw,
McIntyre, and Mace [202]. For a general discussion of psycho-physics, groups and
adaptation, see Shepard 1994 [203]. The link between symmetry, groups, perceptual
invariance and a priori of the brain was discussed by J.Droulez and myself in [57].
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In the following notes, we give examples of invariance, and of its multiform
relation to adaptation, in the mammalian visual systems, in cases where the actions
of groups can be made explicit. Most of these examples concern the primary
cortical visual system of higher mammals: carnivores, scandentia (three shrew) and
primates. The text is assembled from a collection of unpublished studies conducted
during the years 2004 to 2012, mainly made in collaboration with students and
other researchers in the laboratory LPPA (Collège-de-France, Paris). The emphasis
is put on the mathematical equations.

The principle underlying these examples is that neurons and brain areas are
better understood by describing their structure of indifference, i.e. what they neglect
in the world for their function, and their structure of ambiguity, i.e. how they create
new entities from their inputs, allowing internal transformations. We have proposed
that group theory, in particular Galois theory, can be seen as an information theory,
in the same manner that probability theory subtends several kind of information
theories (Fisher, Shannon, Wiener, Kullback, Kolmogorov). The first mathematical
appendix is added to explain this point of view.

In order to modelize invariance and adaptation in one neuron or in a set of
neurons, we introduce a virtual space (that we propose to consider as a kind of
homology group, in the mathematical sense, cf. [61]), made by combinations of
equivalence classes of possible attractors of responses, modulated by relevant
stimuli, for categorization. The symmetry groups and the ambiguity groups are
acting on this virtual space (cf. 2.4. and Appendix 1 for the precise definitions). In
general this space I corresponds to a dimensional reduction of the input stimuli, it
is a skeleton of the rapid internal dynamics. In this model the possible responses
(of the neuron or the area) correspond to the coupling of virtual classes with
dynamical parameters of neurons or interactive sets of neurons. The space M of
these parameters can be seen as an unfolding in the sense of Thom ( [212]), which
introduces structural stability in the process. It contains intrinsic parameters and
preferences of the neurons, in general induced by connectivity or ambient activity.
Invariance acts both on I and M. Then, in some cases, adaptation is generated by
compensation of transformations in homology by transformations in the unfolding,
including bifurcations. We suggest that, in many cases, adaptation is a dynamic
on parameters that results from changing the attracting state. In turn this dynamic
induces a change in rapid dynamics.
This model permits to use at the same time a notion of receptive field (cf.
Marr [137]), with adaptable parameters, and a notion of affordance (Gibson), in the
form of invariant categorization, thus we can combine the notions of hierarchical
visual fields and the notions of sensori-motor loops for perception and action.

We propose that no meaning can emerge without some kind of invariance:
at each step of the neuronal sensory process, the neuronal activity is an act of
recognition, which, as every act of knowledge, either explicit or implicit, consists
in neglecting most of the individual aspects of the input for selecting the output,
combining a priori knowledge, novelties and inventions.
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The exposition starts with a general introduction to invariance from the perspec-
tive of groups an categories. Then we summarize several examples of invariance
in the visual system, mainly related to its adaptation to motions. The basic group
comes from Galilean relativity, and is implemented in the visuo-vestibular system.
However, the evolution of higher mammals, and specially carnivores and primates,
used other fundamental groups for vision and visual perception: phase space sym-
metries (i.e. symplectic transformations), internal affine symmetries of colors, affine
and projective symmetries of figures, diffeomorphisms of the visual plane, their ex-
tension by gauge transformations for colors, and so on. At the end of visual path, we
find in particular the Euclidian geometry realized in abstract spaces, and topology.

In section 2, we insist on the role of eye movements for invariant perception. In
section 3, we study affine invariance and adaptation in the color space. In 4.1 we de-
scribe models of the transformation from simple cells to complex cells and columns
in V1, with application to the ”energy model”. Here we see an intervention of special
functions theory. In 4.2 we prove that the principles of invariance and probability
explain the geometry of the cortical map of orientations in V 1. In 4.3 we put forward
a probabilistic model of optimal gluing of neuronal activities, with applications to
callosal connections and disparity. In 4.4 we study LGN and V1 in tree shrew, in
particular the structure of callosal connections and orientation maps. In this part
we give a review of the organization of the visual pathway from the retina to V1
through the LGN in mammals. In 5.1 we discuss the notion of general covariance
in V1. In 5.2 we describe the projective invariance of the optic flow, for application
to MT,MST . In this example we meet the classical invariant theory of linear group
representations. In 5.3 we review geometric cells in the para-hippocampal region.
In 5.4 we mention higher invariance in recognition. In 6 we briefly outline the way
a topology of information quantities, as developed in collaboration with Pierre Bau-
dot, could go deeper into the mechanisms of adaptation and formation of invariance
structure.

The original developments are 1) the formal definition of homology, periods and
adaptation, in 2.4; 2) the discussion in 3.2 of the affine structure on colors in LGN
and V1 and the description in 3.4 of color constancy in higher visual areas (inspired
from David Philipona and Kevin O’Regan); 3) the computations of non-linearities in
complex cells and superficial micro-columns of V1, through Abel transforms, in 4.1
(work with Simon Capern and Jacques Droulez); in the same subsection, we intro-
duce of a special class of non-linear pseudo-differential operators for transforming
field activities from one brain area to another by taking frequencies in account; 4)
the link between probability and invariance in the orientation map of V1,V2, in
4.2, implying that the map is a Brownian coefficient of a unitary irreducible rep-
resentation of the Euclidian group (inspired by F.Wolf, T.Geisel, and D.Barbieri,
Giovanna Citti, G.Sanguinetti, Alessandro Sarti); 5) the formulation of the gluing
of the two eyes and the two hemispheres by callosal connections, in 4.3 (work with
Luc Foubert, Jacques Droulez and Chantal Milleret); 6) the explanation of the im-
possibility for the tupaia to respect orientation preference in its callosal connection
(and the possibility for the cat to do that), in 4.4; 7) the hypothesis of general co-
variance in the area V1, in 5.1; 8) a suggestion for the nature of objects and images
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in 5.4, modeled on color constancy and using co-cycles; 9) the perspective offered
by information theory, in 6 (joint work with Pierre Baudot); 10) the link between
the three roads of information geometry given by Shannon (probabilities), Galois
(groups) and Thom (catastrophes) theories, in Appendix 1; 11) the general defini-
tion of invariant receptive fields, through coefficients of unitary representations of
Lie groups, in Appendix 2.

An excellent reference in Neuroscience more than sufficient for all the applica-
tions we will present is the encyclopedia in two volumes, ”The visual neuroscience”,
edited by L.M. Chalupa and J.S. Werner (MIT 2004); we will give in most subsec-
tion the related articles in this book, refereed as TVN or [44].

7.2 The Notion of Invariance

7.2.1 Mathematical Definition of Invariance

Given a set X (in applications the elements x of X can be things or events) and a set
G of partial transformations acting on X (i.e. a set of maps g : X ′ → X where X ′ is a
subset of X (in applications these transformations can be permutations but they also
can be deformations). We note x �→ g.x (or x.g) the effect of the map on the elements,
and we say that an element x0 of X is an invariant point of the action of G if, for each
g acting on x0 we have g.x0 = x0 (or x0.g = x0), i.e. x0 is a fixed point of the action.
When G is stable by composition of transformations, i.e. g,h ∈ G⇒ g ◦ h ∈ G, we
assume that for the operation g(h.x) = (gh).x (or (x.g)h = x.(gh) respectively). For
g.x we say that we have a left action of G, and for x.g we say that we have a right
action.

We need also the more general notion of co-variant: given two sets X and Y and
a set G acting by partial transformations of both X and Y , on the left for X and on
the right for Y , we say that a function f0 from X to Y is a co-variant function if
we have f0(g.x) = f0(x).g, when both terms are defined. In particular a function
x �→ f (x) of X to a set Y where the action of G is trivial (i.e. for any y ∈ Y one has
y.g = y), is a co-variant if and only if, for any g and x such that g.x is defined, we
have f (g.x) = f (x). In this last case we also say that f is an invariant function, or
simply an invariant; in fact it is an invariant point of the natural (right) action of G
on functions on X with values in Y : f g(x) = f (g.x).

Remark that covariance appears as a particular case of invariance when the trans-
formations g of Y are everywhere defined and invertible: denote by g−1 the inverse
operation of g, and consider the set F of all partially defined applications f from X
to Y , with the action of G on F given by f g(x) = g−1. f (g.x), then f0 is a co-variant
for the actions of G on X and Y if and only if f0 is an invariant point of the action of
G in F .

The main concept underlying invariance study is the concept of group G, that is
a set equipped with a neutral element e and an internal law (g,h) �→ gh satisfying
associativity g(hk) = (gh)k, neutrality ge = g = eg and invertibility (existence of
g−1 such that gg−1 = g−1g = e) (cf. section 2.3). For applications in Physics an
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important role is played by the theory of harmonic analysis, that is the study of
unitary linear representations of groups in Hilbert spaces (cf. Appendix 2). Note
that the definition we will suggest for invariance of a receptive field is based on
coefficients of unitary linear representations of a group, thus belongs to harmonic
analysis. However, for most applications in Biology we are forced to restrict the
action to a certain subset of G, which relies in general on the notion of groupuscule
(cf. [34]) or the notion of category with inverse of arrows, or groupoids ( [133]).

The theory of groups was invented by Galois to formalize invariance, symmetry
and ambiguity, that arize in the study of algebraic equations (cf. [70], [218]); Klein,
Lie and Cartan have shown that all of geometry, with its geometrical transforma-
tions and curvature notions, can be understood in this framework. And the notion of
groups has been extended by notions from categories, introduced by Eilenberg and
Maclane (cf. [133]).

In another direction, the notions of signal analysis, in particular Fourier transform
or wavelets transforms, have been extended to non-commutative groups, giving the
modern harmonic analysis (cf. [222]).

Note that several authors already insisted that invariance in visual recognition is
better understood through general Lie groups theory ( [64], [143], cf. [168]).

The theory of groups and that of their representations are recognized as fun-
damental for the description of physical and chemical systems, from Classical Me-
chanics to Quantum Field Theory through Quantum Mechanics. In order to be useful
in Biology these tools have to be adapted to the proper concepts of Biology, taking
into account the discrete nature of neuronal networks, and their inherent variability.
In particular, as was noticed by René Thom, the usual assumptions of analyticity are
not generally valid in Biology. The study of Vision is an ideal occasion to test and
adapt these ideas.

7.2.2 Invariance for Neurons or Brain Areas

Consider a set A of neurons a; the biological function of a neuron a is the transfor-
mation of an input into an output, thus the biological function of the set A is a vector
of transformations. For instance the output of a primary visual neuron a is a function
Fa(I;t), where t denotes the time of response and I denotes the past images before
t. By an image, here, we simply understand the local field of intensity of light cap-
tured in the retina. (For taking color in account, we must add a wavelength content,
and I must be a vector.) By a response here, we understand the spiking activity -that
is, a numerical function of time. However, in general, to understand the behavior of
the neuron a we must also take in account internal parameters (of the neuron or the
brain) and other inputs than the image (from other neurons or glial cells). Suppose
now that a group G acts on both the collection of input activity and the collection
of output activity, we say that the set A is co-variant for G if its biological function
ina �→ outa;a ∈ A is co-variant for the actions of G. Note that in most cases the ele-
ments g of G do not respect separately the activities of the units a, but they mix the
components of the vector activities.
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To be concrete let us give four examples of neuronal invariance in the visual in-
formation flow, from the retina to areas at the end of the visual path in the brain:
1) adaptation of light sensors to the intensity: here the transformation g is made by
global shift and scaling of the luminosity I �→ (I− I0)/I1, it involves a cascade of
chemical and electrical processes modifying the response of ganglion cells (cf. P.
Sterling in [44]); 2) view-co-variant recognition: there is a group of permutations
g of the cells in V1 such that, after any translation and rotation of a visual scene,
there is a permutation of the cells in V1 that gives a response equivalent to the re-
sponse for the initial scene (cf. G.C. DeAngelis, A. Anzai in [44]); 3) view-invariant
recognition: an individual cell in the human fusiform gyrus can be invariant under
the animated deformation of a face which is seen (cf. E.T. Rolls in [44]); 4) direc-
tion encoding: in the presubiculum of a rat, a head direction cell a is invariant by
translation of the head of the rat to a parallel direction, but the collection A of all
head direction cells in the presubiculum is co-variant under the group of rotations
of the head in the horizontal plane. In fact the response after a rotation corresponds
to a permutation in the population, moreover A is also co-variant for the group of
rotations of distant visual cues; in this case all the cells a rotate their preference by
the same angle (cf. [234]). In this last example, (that of the head direction cells),
we see the interest of considering at least two different groups, one acting on the
head, another one acting on the distant visual cues; this multiplicity of frames helps
to precise the notions of ego-centric and allo-centric reference frames.

Each neuron, each area, obeys to a first form of invariance, which is defined by
all the changes in the world or in the nervous system that have no influence on
its function. This invites to consider neurons and their assemblies from the point
of view of their indifference to the changes in the world. Based on this indifference,
neurons and areas can share a co-variance with their inputs, defined by all changes in
their function which can compensate changes in the world. This permits to consider
neurons and their assemblies as operators detecting certain changes in the world.

However, we will also present a dual point of view, that invariance and covari-
ance are first invented by the brain, from molecules to networks, by creating origi-
nal ambiguity groups in internal spaces. This gives geometrical structures on inner
spaces. These two kinds of operations, indifference and ambiguity, can be seen as
convergence of invariance and divergence of invariance respectively, as there exist
convergence and divergence in neuronal networks connectivity.

A basic example of divergence of invariance is given by inhibition: a given input
can generate two kinds of answers, one excitatory, another one inhibitory, creating
an involution in the brain exchanging excitation and inhibition. Remark that in re-
ality, the symmetry is not exact, in general there is more excitation than inhibition
(except some balanced cases), and in some brain systems inhibition largely domi-
nates (as the output of Purkinje cells in the cerebellum), but this symmetry between
excitation and inhibition gives a principle of organization, which explains part of
the functioning of the brain. For instance see M.M. Slaughter in [44].

A basic example of convergence of invariance is given by the ON-OFF cells in
the retina: opening or closing light, which are two different stimuli, generate the
same response of the so-called ON-OFF cells. Cf. R. Nelson, H. Kolb in [44].
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The groups underlying these two examples are isomorphic to the simplest non-
trivial group, with two elements; it is noted Z/2Z when considered additively, or
C2 = {+1,−1} when considered multiplicatively.

In general the invariance structure is neither pure convergence nor pure diver-
gence; the mixture must be described case by case. For instance global multiplica-
tion of intensity of light I by a positive non-zero number λ , has no effect on most
ganglion cells, by re-scaling, that is pure convergence; but the same light wave-
lengths composition can produce different responses of the CC-cells in V4, for de-
tecting reflectance of objects; this is a re-construction and constitutes a divergence.
Both are called adaptation; changes in the entries are compensated by changes in
the analysis to produce efficient signals.

We should note a great similarity between Quantum fields and neuronal functions
Fa(ϕ ;t), where ϕ denotes a general field input, not necessarily an image, before the
time response t and a denotes a cell in an area A. Each neuron at a given time is a
function of an extended function, in the same manner that a state of quantum field
is a function of all the classical fields, i.e. it is a function of functions. From one
area to another, we get an operator transforming these functions of functions into
other functions of functions, and symmetry groups act on these operators. In the
simplest regime, or in first approximation, the operator appears to be linear. In the
same manner interactions between fields are expressed in Quantum Field Theory
by a linear operators transforming the states. The coefficients of this operator are
the correlations (or amplitudes) between the states, input and output. More gener-
ally, considering a set of interacting areas A1, ...,An we can consider the correlation
coefficients

A(a1, t1,a2, t2, ...,an, tn) = 〈Fa1(ϕ1; t1)Fa2(ϕ2; t2)...Fan(ϕn; tn)〉, (7.1)

by taking the average over repetition of the events (cf. [96]).
It is known that the renormalization group is a necessary tool for giving a sense to

the locality of Quantum objects; according to Wilson and Kadanoff ( [235], [235])
this group describes the manner the injection of high momentum and high energy
levels at small scales influences the theory at all larger spatial scales. We will see
in the examples below that adaptation is something comparable: a change of the
parameters in the receptive fields that are induced by changing the scale, the frame
or the context. This subject is further developed in joint work with Pierre Baudot.

One of the first noticed visual adaptation was the tilt aftereffect of Gibson ( [71]):
when tilted lines are viewed, even during a short time, then a new set of viewed
lines appear tilted on the other side. A long time elapsed till, Dragoi, Schummers,
Sur et al. ( [56], [201], [200]) showed that in V1, near the pinwheels, there exists a
corresponding shift of orientation preference of cells.

Michael A. Webster ( [227]) remarks that Gibson himself ceased to accord im-
portance to this effect, because he got more and more interested in natural images.
However, later on, researchers got a better understanding of the general role of adap-
tation, underlying vision and all other sensory modalities, even for natural data.
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As other sensory systems, the visual system prepares future actions of the ani-
mal depending on the contexts. The paradigm of animal action is locomotion. The
primitive function of the visual system is to transform the captured light into in-
formation on the situation of the animal in its environment and its future direction
of displacement. Note that even protozoa can have eyespots (aggregation of light-
sensitive pigments) to help them for swimming. So the visual system completes
the vestibular system for sensing and controlling the translations and rotations of
the head the world (cf. [24]). This information is combined with all other sensory
modalities (in particular proprioceptive) for managing the invariance under the rel-
ativity group of the physical laws of movements in Euclidean space. This relativity
group was described by Galilée (at the birth of Physics); it was formalized into the
Galilean group (cf. J-M. Souriau [207]). The Galilean group has 10 dimensions; it
is made by the 6D groups of rotations and uniform translations, extended by the 4D
translations in space-time. Due to the principle of inertia, the last part, the change of
origin of the frame, needs vision (or somatic sensation) to be detected. This global
invariance is the first basic invariance to be controlled by vision from the point of
view of evolution, because it allows the animal to internalize what comes from its
action and what comes from the changes in the world. Cf. [11]. Galilean invariance
was first implemented in subcortical vestibular and visual systems, for instance in
the cerebellum, and it was further elaborated in the cortical system, for instance in
the vestibular cortex or the parietal cortex. Note that the divergence in Galilean in-
variance can sustain what has been named internal models (cf. McIntyre, Berthoz
and Lacquaniti [140]); a spectacular example is the separation of the gravity vector
from the linear acceleration in the vestibular system, which appears in the vestibular
cerebellum (cf. [245]).

The linear part of the Galilean group is isomorphic to the Euclidean group of 3D
rigid motions. Poincaré suggested that the general notion of object is issued from the
manipulation of rigid bodies, the rigidity property being defined by the possibility
to compensate the time evolution of the object by a change of Euclidean frame. For
Poincaré this compensation characterizes rigid motions, then the nature of ambient
space. This approach was recently developed again by D. Philipona, K. O’Regan,
J-P. Nadal et al. in the context of sensory-motor contingence with virtual robotic
systems ( [171]).

In the primary visual area V1, the simple cells form a system of co-variants under
the 2D+1 translation of an image (two coordinates for the visual plane and one co-
ordinate for the time), and the complex cells have responses that are invariant under
small translations (cf. section 4.1 below). This invariance was the reason invoked
by Hubel and Wiesel ( [88]) to explain the appearance of complex cells in V1; this
produces an information on images that is stable under small displacement. Fourier
analysis and its localization by wavelets permit to analyze the receptive fields in V1
from the point of view of 2D+ 1 translation invariance. However a more complete
invariance for all translations is achieved in the infero-temporal region (IT), cf. Rolls
et al. [188], [191])

Hubel and Wiesel ( [87], [88], [89]) also observed that the neurons in V1 of cats
and monkeys, have a preferred orientation of stimuli, which is constant in vertical
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columns of the cortex and varies continuously along the cortical surface. Thus an
action of 2D rotations in the visual plane is also implemented in V1. From the works
of F.Wolf, T.Geisel ( [238]), and D.Barbieri, Giovanna Citti, G.Sanguinetti, Alessan-
dro Sarti ( [16]), it appears that the organization of orientation maps results from the
invariance by the group of 2D Euclidean displacements, rotations and translations
together (see 4.2 below). In the same manner the disparity of binocular cells can be
studied from the point of view 3D+ 1 invariance (cf. Ohzawa, Freeman [159]).

A further function of the visual system is to document the brain on the content of
the environment, from the neighborhood of the body to the far landscape. However
this information flow is not a passive registration of photons, it results from an
active process. A variety of eye movements (saccades, smooth pursuit, VOR,
nystagmus, ...) and internal adaptations (accommodation, efferent copy, ...) helps
to stabilize space and objects perception during relative motions. In the following
lines we only want to give an idea of the complexity of the brain system (in humans
or monkeys) that helps to preserve space invariance during locomotion. We will see
that invariance is distributed over many areas, not only visual. As said by Alain
Berthoz in [27], this system intertwines motor and sensory information in such a
manner that it is preferable to abandon the distinction between them.

The basic compensation movements of the eyes to stabilize the image in the
retina when the head is moving, is the vestibulo-ocular reflex (VOR); it is composed
of a rotational reflex, the angular VOR (aVOR) and a translational reflex (tVOR).
To generate rapid (few ms) compensation, the aVOR is organized in the planes
of the semi-circular canals, which register rotation acceleration in the inner ear.
A wonderful example of adaptation for respecting geometry in space is given by
the way flatfishes reorganize the connection from canals to eyes muscles during
development ( [77]). For aVOR and tVOR a path of three neurons exists in all
vertebrates (first order afferent contacting hair cells in the labyrinth, second order
neurons in vestibular nuclei, neurons in ocular motor nuclei activating extraocular
muscle fibers), but many other brain centers in the brainstem and the cerebellum are
used to control and adapt the VOR (cf. [237], [75]). Moreover in natural situation,
this reflex must be counteracted by other eyes movements for visual exploration or
smooth pursuit or motion anticipation, that involve for instance the saccadic system
in the brainstem and the reticulate formation, the superior colliculus (SC), the basal
ganglia (BG), the thalamus, the cerebellum and the neocortex (cf. [27]).

The cerebral network concerned with eye movement control involves a very large
part of the brain, for instance in the cortex, it involves FEF (frontal eye field), SEF
(supplementary eye field, known for its role in motor programs), preSEF (for motor
learning), CEF (for motivation), MT+,V5 (visual areas concerned by image move-
ment), PEF (parietal eye field, in particular projecting to FEF), and intraparietal
areas IPA (for visuo-spatial integration), but also the dorsolateral prefrontal cortex
(DLPFC), involved in inhibition of saccades, visual prediction and short term spa-
tial memory, plus several areas involved in visuo-spatial attention (as SMG,SPL).
The three areas FEF , PEF and DLPFC have strong projection to the SC, the
projection of DLPFC being inhibitory. These areas are interconnected with the
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parahippocampal region PHC and the hippocampal formation HF , known to play
an important role in spatial memory, in the medium and long term. Cf. the re-
view in [178], and [27], [28]. It is also known that vestibular information reaches
PHC and HF ( [223]) and the intraparietal areas (VIP in monkeys, IPA in humans)
( [250]). Thus gaze behavior during locomotion, naturally influenced by visual and
vestibular information, modulates the spatial perception and spatial memory, in
particular through the interaction of the cortical network PEF,FEF,DLPFC with
PHC,HF . In addition there is a strong interaction of PEF,FEF,DLPFC with the
brainstem, SC and other sub-cortical nuclei (NRTP, OS,...). Moreover we cannot
underestimate the important role of the cortico-cerebellar loops in producing the
precise movements of the eyes during locomotion (cf. [12], [60], [51]).

An anticipation of the future visual scene is necessary for stable perception
(cf. [65]). It relies on an unconscious visual remapping (made by a subset of the
visual neurons) preceding the eye movement. In particular neurons in intra-parietal
LIP (for monkeys) or its homolog for humans, have activities modulated by the
future visual stimulus; in particular they are known to be informed by afference
copy of voluntary eye movements ( [244], [149]). Such remapping is also present in
FEF,SC, and extra-striate visual cortex. This system is known to be modulated by
attention. Studies in human primary visual areas have shown visual remapping in
the ipsilateral field (cf. [142]), that is a probable feedback from the parietal cortex
(normalized responses in visual areas are as follows: in hV4 71%, V3A 61%, V3
35%, V2 23%, V1 17%). Neurons in V3,V3A,V4 react to saccades directed to their
RFs (more than 20%, less than 24%), and even in V 1,V2 (respectively 12% and
14%). The cited authors verified that the remapping effect cannot be explained by
saccades effect, or by the apparition of the stimulus, or by the independent conju-
gation of both. (Note that in V1 of macaques, Nakamura and Colby ( [151]) found
less than one cell over 64 responding to remapping; this can be due to the small
size of RFs in V1 of macaques, inducing error on the stimulus position, or to the
difference between human and monkey for attentional effect.) In V4 (for monkeys
and humans) there are influences of covert attention and oculomotor information, or
stimulation of FEF .

On the interaction of motor and sensory systems in V1, we must also cite the ex-
perimental use of image movements that mimic the natural eye movements in cats
(Baudot et al. [19]): these movements have profound effects on the statistics of indi-
vidual activity of neurons, they modify the non-linearly in the RFs (mostly spiking)
and augment the mutual information with the stimulus. In this case, we see not only
compensation for stabilization but also adaptation of the RFs for constructing more
visual information.

For all the above matter see the chapter XI in TV N, which contains ten articles
on eye movements.

Object perception is the main subject in which ideas of invariance have been
applied (cf. Rolls, and Riesenhuber, Poggio in TVN, [44]). We will come back to
this vast subject in the last sections.

For a stable perception of space and objects, the visual system must compensate
transformations of stimuli. For far space this involves 2D-affine transformations in
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the visual plane. Note that this 2D-affine invariance is used to explain the dura-
tion of hand movement and locomotion [25], [169]). For nearer space 2D-projective
deformation occurs. Certainly the way the sensory-motor system works with this
extended affine and projective invariance plays a role in the learning of geometry by
children, so useful to act in the world (Piaget). Computer vision has made a great
use of affine and projective geometry, see Devernay, Faugeras [54] and Lowe et
al. [130], [131].

Koenderink et al. have established that the projective geometry of the visual plane
organizes the coherence of figure perception in space; cf. [114], [105], [163], [216].
For instance the Pappus theorem, and the Varignon theorem are implicitly used in
perceptual judgments. More generally, pictures deformed by projective transforma-
tions are recognized (sometimes with difficulty) as the same picture seen from an-
other place.

In the area MT (or V5) of primates neurons are sensitive to stimulus speed with
respect to the retina frame. In MT and part of MST (or 19 and 37 Broadmann’s
areas of humans), the so called complex MT+, the geometry of the optic flow is
exploited to give knowledge of the eyes (or body) position with respects to objects
(cf. [119], [147], [11]). For instance, projective geometry describes the optic flow of
one eye that appears when the subject moves in the Euclidean space E and looks at
pictures drawn on a fixed plane H in it (cf. section 5.2 below). The vector field on H
that describes the apparent movement of fixed points of H in the moving frame of the
eye, belongs to the special eight dimensional family of projective vector fields, i.e.
the infinitesimal transformations that generate the planar projective transformations.
Analysis of the invariant characteristics of the optic flow (the characteristics that
cannot be compensated by eye movements with respect to the head) relies on the
theory of linear representations of the 3D rotation group ( [115], [103]).

In the dorsal medial superior temporal area (MSTd) there are two types of vi-
sually responsive cells: 1) expansion/contraction cells, which selectively respond
either to an expansion or to a contraction; and 2) rotation cells, which selectively
respond either to a clockwise or to a counterclockwise rotation ( [210]).

Neurons in the area MST have responses correlated to speeds with respect to a
fixed frame in space, thus they compensate for smooth pursuit of the eye so as to
extract higher invariant information from relative information in MT (cf. [92]).

It has been suggested that V 1,V2 computations involve other Lie groups than the
Euclidean group: for instance 4D and 6D symplectic transformations in the descrip-
tion of the energy flow (cf. [18]), or the group of isometries of the hyperbolic plane
for analyzing edges and textures in the model proposed by Chossat and Faugeras
( [46]). See Petitot’s book [168] for a general discussion.

As we will see in 3.3 below the color space in LGN, and partly in V1,V2 and V4,
offers a good example of invariance constructed by the brain in order to work with
frequency of light and physical properties of objects; this invariance relies on affine
geometry in nD spaces (3D form most mammals because they are trichromatic).

A main subject in this text will be the general co-variance of V1: we suggest
that in V1 local deformations of the images are represented, to sense contours and
surfaces in motion. The invariance here relies on feed-forward connections from
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LGN, on horizontal connections in V1 and on feedback from higher areas. The local
deformations generate a group with an infinity of dimensions. However it is better
in this case to consider limited distortions, thus the considered transformations are
better represented by a category, not a group, which consists of open sets of the
visual plane (as objects) and diffeomorphisms from an open set to another one (as
morphisms), these diffeomorphisms being sufficiently close to the Identity, to insure
that they do not deform too much the objects.

Note that considering categories in order to extend the implication of geometry
in perception was suggested long time ago by Piaget ( [175]).

7.2.3 Categories and Groups

A nice introduction to categories, functors and their use is [133].
A category C is specified by a set C0 of objects a,b,c, ..., and for each pair

of objects (a,b) a set C (a,b) of arrows f ,g,h, ..., equipped with an operation of
composition

C (a,b)×C (b,c)→ C (a,c) (7.2)

( f ,g) �→ g ◦ f (7.3)

which satisfy the two following two axioms:

(i) for each a there is an element ea in C (a,a) such that whenever it has a meaning
g ◦ ea = g and ea ◦ f = f ;
(ii) whenever it has a meaning we have (h ◦ g)◦ f = h ◦ (g ◦ f ).

An arrow f ∈ C (a,b) is noted f : a→ b and is said to go from a to b, the object a
being its source and the object b being its target. Another name for arrow is mor-
phism. The axiom (ii) is expressed by saying that composition is an associative law.
The morphisms ea are called identity elements; the axiom (i) asserts they are neutral
elements for composition to the right and to the left respectively.

For each category C we can form the dual category C op: it has the same objects
but we decide that any arrow f : a→ b of C becomes an arrow f op : b→ a.

Consider two categories C ,C ′, by definition, a (covariant) functor F is the datum
of map a �→ F(a) from C0 to C ′0, and for each pair (a,b) of objects of C , of a map
from C (a,b) to C (F(a),F(b)), -usually denoted f �→ F( f )- such that whenever
possible we have F(g ◦ f ) = F(g)◦F( f ).
Note that, if F is a functor from C to C ′ and G is a functor from C ′ to C ”, the
composite maps form a functor from C to C ”. A sub-category D of a category C
is a category specified by a subset of C0 and subsets of morphisms, containing the
identity elements and closed under composition. The embedding from D to C is a
functor.

A functor F from C op to C ′ is called a contra-variant functor from C to C ′.
A natural transformation T between two functors F,G from C to C ′ is a set of

arrows T (a) : F(a)→G(a) defined for each object a of C , satisfying the following
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commutativity relation for each morphism f : a→ b in C : T (b) ◦F( f ) = G( f ) ◦
T (a). It is a natural equivalence when, for every a, the arrow T (a) is invertible. An
equivalence between two categories C ,C ′ is a pair of functors, F from C to C ′ and
G from C ′ to C such that there are natural equivalences T from F ◦G to IdC and T ′
from G◦F to IdC ′ .

Let C ,E be two categories, the set of contra-variant functors from C to E forms
the set of objects of a category whose arrows are the natural transformations. This
is named the topos of E -valued pre-sheaves on C ; we denote it by T (C ;E ). The
category C embeds naturally in this topos, if we associate to a the functor b �→
C (b,a). (In fact the complete notion of topos asks for a Grothendieck topology on
a category, and considers sheaves (cf. Grothendieck and Verdier, SGA4, [79]); here
we considered only the so called discrete topology.)

To any set X we can associate the category M (X) which has only one object, X
itself, and whose morphisms are the maps from X to X ; to any vector space V we
can associate the sub-category L (V ) with linear mappings as morphisms.

A left action of a category C on a set X is a functor F from C to the category
M (X); a linear representation of C on a vector space V is a functor F from C to
the category L (V ). A right action is a left action of C op. When nothing is specified
an action means a left action.

A group G is the set of arrows of a category C with one and only one object o,
such that, for every arrow f there is an arrow g with f ◦ g = g ◦ f = eo. In this case
g is unique (because if g′ satisfies the same equations, we have g′ = g′ ◦ ( f ◦ g) =
(g′ ◦ f )◦g = g), it is called the inverse of f and it is written g = f−1. It is traditional
to identify G with C (o,o), to forget o and to write eo = e. In general, the composition
g ◦ f is written as a product g f .

By definition a morphism of a group G in a group G′ is a functor from G to G′.
It is a map ϕ from G to G′ such that ϕ(eG) = eG′ and such that for any pair g,h of
elements of G we have ϕ(gg′) = ϕ(g)ϕ(g′).

Let H be a subgroup of G, two elements g,g′ in G are said to be equivalent to the
right modulo H if it exist an element h in H such that g′= gh. The set of equivalence
classes is denoted by G/H. The group G acts on this set by left multiplication.
According to Klein this constitutes the model of a geometry.

A Geometry on a set X is characterized by a group G of transformations of X
which acts transitively on points (i.e. for any pair x,x′ of elements of X there exists
an element g of G such that x′ = g.x), and a space for this geometry is characterized
by a sub-group of this group (Klein, Lie, Cartan), thus we are following the invita-
tion of Llinas and Pellionisz ( [166] [167]) to visit the brain as a geometric machine.
Let us stress that most of the involved geometries are not directly represented in
the external world, they act inside the brain on internal spaces, which are in general
dynamically distributed over many interacting brain areas.

Let us now set forth a scheme for such internal spaces.
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7.2.4 Adaptation and Co-homology

Cf. the appendix 1 for mathematical sources of the definitions below.
Individual neurons, denoted a, have functions Fa(ϕ ; t) that transform incoming

fields ϕ into numerical time functions, like electric potential or spiking time se-
quence or firing rate. In many cases it is possible to give precisions on the manner
Fa depends on ϕ . Inspired by the theory of singularities (Whitney, Milnor, Thom,
Arnold, cf. Appendix 1), we assume the existence of three sets Ma, Ia, and Ea, the
first one has a structure of smooth manifold, it describes the parameters of dynamics
of responses of the cell (and its preferences), the second one is discrete in nature and
describes the categorization made by the cell (and circuits around it), in particular
in relation with the external world, and the third one describes the internal context
(that we consider as a sort of boundary condition). We assume the existence of a
function σ which associates to any input field ϕ and context ε in Ea, an element
σ(ϕ ,ε) of Ia, called a vanishing cycle. This can be seen as a virtual state of the
neuron, a virtual attractor of the internal dynamics of the neuron, or a combination
of them, affected by signs plus or minus, as could be given by reentries. We also
assume the existence of a map ˜P (named the period map) which associates to any
μ in Ma a numerical function on Ia, that we name a co-cycle (and I∗a denotes their
space). Our first hypothesis on the (biological) functions of the neurons is that Fa

factorizes through σ and ˜P, i.e. the equation for Fa as a function on Ma×Ea is given
by

Fa(ϕ ,ε,μ ; t) = ˜P(μt)(σ(ϕ ,εt )) (7.4)

Commentary: each point in Ma represents a possible rapid dynamic of the cell; a
point in Ia represents a combination of attractors of the dynamics, a skeleton of the
dynamics which can represent memory or/and prediction and thus sustains ambigu-
ity; a point in Ea plays the role of an initial condition for the dynamics. The map
σ represents the manner the cell and the circuit around it, in particular feedback
loops and reentries, integrate the signal ϕ with the boundary condition, or context,
ε . We can imagine that rapid dynamics happens in a fixed set Xa and that Ia describe
combinations of stable attractors in Xa. For μ fixed, the function ˜Pμ generalizes the
notion of a probability law on the effective attractors. Cf. figure (7.1).

We consider Ma as the unfolding of the dynamics of the cell, in the sense of René
Thom [212]. Examples of characters of neurons underlying all the processes in the
brain were described by Rodolfo Llinas (cf. [125], [126]). Examples of unfolding
for neuronal function were given by Izhikevitch [97]. The categorization process,
underlying Ia in our model, is also a subject of study, for instance by Jean-Pierre
Nadal et al. ( [31]). At the level of evolution M, I,X ,E are changed, for instance
by coupling several systems. We can suppose that M, when fixed, is universal, in
the sense of universal unfolding, which implies structural stability of the system,
cf. [212].

For describing the role of invariance (or co-variance) in cell adaptation, we as-
sume the existence of a group ˜Ga which acts on Ma and Ia in such a way that, for
any μ ∈Ma, σ ∈ Ia, g ∈ ˜Ga, we have
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Fig. 7.1 The three dynamical spaces, the internal space X (with its variety of rapid dynam-
ics), the virtual space I (ideal homology, with rigid structures) and the unfolding space M,
equipped with a dynamics of adaptation.

˜P(g.μ)(σ) = ˜P(μ)(g.σ). (7.5)

This relation expresses the possibility to compensate a change of the state σ by a
change of the parameter μ . It is more a co-variance than an invariance. In such a
way a flow in M changing the parameters of the neurons can compensate a change
in the input, the context in E or their interpretations by co-cycles in I.

It is the main suggestion of the present exposition, that it can exist on the
unfolding M a dynamic induced by the dynamic in the internal space X of the cell,
when expressed by the virtual state in I. This dynamic on M subtends adaptation.

In most interesting examples, the action of ˜Ga on Ia corresponds to a set of
transformations of the input ϕ and the context ε . But it can happen that some
transformations exist only at the level of the cycles σ in Ia. This is the main trend of
generation of internal symmetries: new symmetries are generated by ambiguities.
We will see examples of both situations.
The action of ˜Ga on Ma may describe a structural homeostasis, but in general it
describes a structural variation, an evolution of the internal system. Moreover, in
reality it can happen that a change in context ε or in stimulus ϕ is not compensated.
In general the point μ does’nt change co-variantly, the equation (7.5) expresses a
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virtuality, not a necessity. For instance, in V1 of cats only the cells at pinwheels
follow the ambient change of orientation, not the other cells, cf. [200].
Importantly, a change in Ma can happen without corresponding changes in the
context or the stimulus, this change plays the role of an internal simulation. This
could be the basis of construction of ”internal models” (cf. [27]).

Commentary: the origin of symmetries ˜Ga on Ia is the inherent ambiguity of virtual
attractors, they are of Galois type; the existence of its compensatory action on Ma

expresses particular cases of dynamics of adaptation. In general these dynamics
are slow dynamics that describes the change in the nature of rapid dynamics, rapid
reactions. However, adaptation can be very quick, within milliseconds. A wonderful
example of that is given by hair cells rapid adaptation in the inner ear ( [59], [90],
[91]). In the particular case of spontaneous oscillations of hair cells in the bullfrog
sacculus the adaptation flow on M has been completely described ( [122]).

A guide for understanding this compensation is the dynamics of renormalization
in statistical mechanics: in this case the integration of higher frequency band is com-
pensated by a change in Lagrangian for leaving invariant the truncated correlations,
i.e. for respecting physics at low frequency scale (large distance). This process gen-
erates a semi-group converging to a family of Lagrangian functions that depends on
a frequency scale of observation; on this family the change of scale can be expressed
by a change in the strengths of interaction. Cf. [96], [235], [236].
There is a parallel between the invariance equation of a cell and the co-variance
equation of movement production suggested in [25]. In this paper it was described
how movements μ adapt their duration to the action of geometrical transformations
g of the space on trajectories σ :

(g.μ)(σ) = μ(g.σ), (7.6)

meaning that the movement in time μ(g.σ) on the transformed trajectory g.σ is
given by applying the transformation g to the movement μ on the initial trajectory
σ . The groups considered in [25] were the group of affine transformations of the
plane, the equi-affine group made by transformations preserving the area, and the
Euclidean group. In [24] the Galilean group is considered. Thus invariance in motion
production has the same form as invariance in perception; which is not surprising
in the above mentioned view that perception is nothing else that overturned action
( [27], [126]).

Let A be a brain area. Several cells a∈A form a vector or responses, where groups
can act linearly or not. On the union M of all Ma, the union I all Ia and the union E
of all Ea, there is a structure of bundle over A. A section μ of the bundle M→ A rep-
resents a collection of receptive fields in the area A, a section σ of I→ A represent a
collection of inputs and a section ε of E→ A a state of contexts as seen by the a in A.
However this point of view of bundles and sections is largely misleading, because it
neglects the possible interactions in A, the horizontal connections that give structure
to an area. What replaces Ma when we go to the area A is a much larger space MA

than the space of sections, in order to take into account the parameters of possible
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interactions of the dynamics between the cells a in A. For instance, consider two
cells a and b; the dynamical systems on the Cartesian product Xa×Xb of their inter-
nal spaces cannot be reduced to separate dynamics on Xa and Xb, we must consider
in addition a variety of couplings. We name the space MA the parametric space of
A. In the case of a finite number of neurons (sic) and finite dimensional spaces Ma

the dimension of MA approaches the product of the dimensions of the Ma, not the
sum, as would be the case for the product of the spaces Ma.

However, instead of Ia we consider the productIA of all Ia for a∈A and the same
for EA, the product of all Ea for a ∈ A; they are respectively the spaces of sections
of the bundles I → A and E → A. They will play the roles of the spaces of virtual
attractors and contexts for the area A; we name them the vanishing homology and
the boundary condition respectively.

Moreover we introduce here a vector space VA to take in account the dimensions
of the responses from A (they are the analog of primitive forms in Appendix 1). And
we assume the existence of a joint period mapping which associates to any element
μ of MA and any vector v of VA a numerical function on the product IA of the Ia.
Then, using the maps σa that associate to each input ϕ , each cell a and each context
εa, an element σa(ϕ ,εa) in Ia, we can form the element σ(ϕ ,ε) of IA, and we get
the amplitude of responses

Fv(ϕ ,ε,μ ; t) = ˜Pv(μt)(σ(ϕ ,εt )) (7.7)

If we assume linearity in σ and v, the applications ˜Pv define a mapping ˜P from MA

to I ∗A ⊗V ∗A (that is the space of co-cycles with multiplicity).
The numerical functions a �→ ˜Pv((μ)(a))(σ(a));v ∈ VA, represent the collection

of informative outputs of the area A.
If a stimulus ϕ and a context ε are given, we assume that a well defined cycle σ

results, and that we have the response:

ρv(μ ,ϕ ,ε) = ˜Pv(μ)(σ(ϕ ,ε)). (7.8)

The invariance in the area A is expressed by a group ˜GA that acts on the spaces
MA and IA and now VA in such a way that, for any μ ∈MA, σ ∈IA, g ∈ ˜G, v ∈VA

we have
˜Pg.v((g.μ))(σ) = ˜Pv(μ)(g.σ). (7.9)

This relation expresses the compensation of a change of the global state σ by a
change of the global parameter μ and the vector v, which can correspond to an
adaptation (in wide sense) at the level of the area A. In particular a flow in MA,
changing the parameters of the joint activity of the neurons a in A, may compensate
a change in the joint categorized input.

Take the example of orientation preferences of principal cells in V1: this preference
is described by an angular coordinate in Ma for each a. After exposition to an en-
vironment where orientations are biased with a certain angle α , some cells change
their preferred orientation by a turn of−α , this modification is understandable from
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the action of ˜GA. According to Dragoi, Schummers, Sur et al. ( [56], [201], [200])
this adaptation concerns the neurons near the pinwheels singularities, thus we can
consider that a separate subarea corresponds to pinwheel regions, with an invari-
ance structure different from the regular complementary area. However horizontal
projections inform the regular area of the changes in pinwheels integration.

If we rotate a given image by a rotation of angle α in the visual plane, there is
a shift in activity of the cells, without changing the preferences of these cells, and
this shift may produce no effect in certain higher areas; this can be interpreted as
the invariance of object after rotation in those areas. This happens for instance in IT
(cf. Tanaka et al. [209], [118]).

Remark that an enlargement of the above notions is certainly necessary to de-
scribe general covariance under diffeomorphisms; in this case we must replace
groups by categories with invertible arrows, i.e. groupoids.

We do not pretend that the above model can describe all kinds of adaptation.
For instance, at the level of evolution, adaptations invent new structures, or uses
old structures for new functions, thus, in our terminology, it appears new spaces
MA, IA,EA and groups ˜GA, and even new areas A (and new animal species). How-
ever, every adaptation seems to reflect an internalization of changing rules of in-
teractions between the organism and the external world, motor and sensory, then it
could be that an extended model of compensation can describe every adaptation:
we should replace the spaces MA, IA,EA by categories of spaces, parametric and vir-
tual, equipped with a functor of period maps, and we should replace the groups ˜GA

by sets of functors verifying equations of the type of (7.9), prescribing structural
variations from reaction dynamics.

7.3 The Affine Space of Color

(The two first subsections below are taken from talks I gave in Collège-de-France,
Paris, in 2005, as examples of co-homology operations in perception. The last one
in section 4, was inspired by the thesis of David Philipona, January 14 in 2008.)

A full chapter in TVN is dedicated to color; for our discussion, cf. in particular
the articles of Webster, Jacobs, Brainard, and De Valois.

7.3.1 The Subjective Manifolds of Color

Cones in the retina react more strongly for certain wavelengths of incoming light.
In many mammalian species several kinds of cones exist, allowing the detection of
several aspects of the distribution of wavelength. For each category of cones ci, the
detection is fairly well described by a scalar kernel Ki(λ ), where λ ∈ R

∗
+ denotes

the wave-length: when a composed light of density E(λ )dλ (called illuminance),
illuminates a surface of reflectance R(λ ) the model of the response of a cone ci is
given by

Ri =

∫

E(λ )R(λ )Ki(λ )dλ . (7.10)
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This means that its activity is a function of time proportional to Ri.
Note that the response of a cone can only take in account the photons that it

absorbs, thus everywhere in the following discussion we must have in mind that
the analysis is local in the retina and the efferent areas. In the retina the spatial
receptive field of cells that sense color is small (for instance in primate the cones are
concentrated in the fovea), but in V4 it is large (several tens of degrees).

Remark, dichromatic models take in account the position of the eye with respect
to the surface and the angle of incidence of the light beam on the surface, cf. Koen-
derink’s book [113].

In mammals, the number of kinds of cones varies between one and six (some-
times more, but rarely), see Jacobs (in TVN and [98]). In invertebrates (in particular
cephalopods) this number can be larger than ten. Nocturnal new-world monkeys for
instance have only one. Rodents, ferrets, cats, dogs and tree threw have two types of
cones. In general humans and old-world primates have three sorts of cones, they are
denoted S,M,L in accord with the wave-length they prefer, short, medium or long re-
spectively. However in humans a non-negligible proportion have only two, and some
other (in particular among females) have four sort of cones ( [100]). Consequently,
in what follows we consider animals having N sorts of cones, not necessarily 3. For
the interesting case of Cichlid fishes see [194].

Axiom 1: there exists a minimal number n ≤ N such that the set of responses in
LGN and V1 can be explained by n functions of the N cone responses.

The number n is called the chromatic dimension. The axiom 1 gives a relation of
equivalence between light compositions, each equivalence class is called a color.
No special set of n linear functions is preferable, as soon as they are linearly in-
dependent. In particular, the color space is a smooth contractible manifold C of
dimension n.

We speak of dichromatic animals when n = 2, this is the case for dogs and cats
for instance; we speak of trichromatic animals when n = 3, this is the case for most
old-world primates (or honeybees); and n = 4 is tetrachromacy. Tetrachromacy is
known to exist for certain primates, in particular for a certain proportion of humans
females ( [100]).
Let us describe the principle of the experiment which justifies the axiom 1; this
principle is attributed to the mathematician Grassmann (1853), which also invented
most of the elements of linear algebra (see [116]): A set of m compositions of light
Fi(λ ); i = 1, ...,m is chosen as reference, where m is a priori any natural number.
Now, to the same subject is presented a light whose composition is a fixed B(λ ),
and at the same time, another light whose composition A(λ ) is linear in the Fi, i.e.:

A(λ ) =∑
i

aiFi(λ ). (7.11)

For instance one light composition is presented at the left eye and the other one
at the right eye. Then the coefficients ai, i = 1, ...,m are varied, and the subject is
required to choose the set which gives the better fit between the effects of A and B.
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It is not true that positive numbers ai can always be found for a good fit. First
m can be too small, then we augment m until it works. But, in addition, to obtain a
good fit, experiment shows that it is necessary to introduce negative combination,
i.e. it is necessary to test similarities like

B(λ )+∑
i

biFi(λ )≈ A(λ ), (7.12)

with bi a priori larger than ai for some index i. Now the first experimental fact
is that a good fit always exists. And the second experimental fact is that, when m
grows after a certain number n (dependent on the subject and a priori on the Fi; i∈ I),
always smaller than N, no gain is obtained and ambiguities appear.

A remarkable fact is that n can be strictly less than N. For instance Jordan et al.
2010 ( [100]) have proved than for the women which are known to have at least four
sorts of cones, almost all are trichromatic. But they also have proved that tetrachro-
matic women exist. Very few animal species in the world are proved to have n≥ 4:
some shallow-water fishes, some birds (pigeons, budgerigars, ...), and insects (but-
terflies). However, even when n < N, the larger is N for a given subject, the better
is its discrimination between different colors, at least in some region of C. This was
established for monkeys ( [192]). On the other side, it is known that subjects having
less than the common N sorts of cones have deficits in color discrimination. For
instance a non-negligible proportion of humans cannot distinguish red from green,
due to the absence of separation between L and M cones. Note this red-green deficit
is also a notable characteristic of dog’s vision.

In colorimetry, specialists prefer to describe colors by positive coordinates, thus
they have chosen (CIE 1931), a set of linear combinations EX ,EY ,EZ of cone re-
sponses (or fundamental colors, like B,G,R for blue, green and red), such that all
detectable color have coordinates X ,Y,Z which are positives. This is a non-trivial
fact, but such a combination exists.

There is a beautiful curved and twisted curve H in C, made of the hues, which
represents the set of equivalence classes of pure wave-length spectra δ (λ = λ0), cf.
figure (7.2). Another curve G, which looks like an axis, represents light composition
without color, i.e. pure luminosity, made only with grays. In the case of dichromacy,
the curve H is planar and meets G (cf. Jacobs, study of dog vision.) In the case of
trichromacy, the curve H has a convex shape, surrounding G. The closure ̂H of H
by a straight segment in C appears in V1, not before, and realizes the colors circle
of Goethe. The segments issued from the particular white point of G and ending in
̂H are interpreted as saturation of hues, or washed colors. In tetrachromacy or more,
the curves H and G (and probably ̂H) continue to exist in the hyperspace C, but
saturation is multi-dimensional.

The way the space C is defined by similarities (7.12) among all light combina-
tions is typical of homological construction in Mathematics (cf. [61]).

The axiom 1 describes a subjective property, or the final effect in behavior of a
neural process which starts in the retina; we will see now one of the basis of this
process, at work in the thalamus.
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Fig. 7.2 The spectral curve in the color space is the locus generated by light of pure wave-
length at fixed energy (cf. [113]). It is curved and twisted and goes through 0. A central
projection of this curve gives the CIE triangle of colors; the line of purple joins the two
tangent lines that correspond to invisible infrared and ultraviolet respectively.

7.3.2 An Example of Covariance in the LGN

Ganglion cells send color information in the LGN by forming linear combinations
through excitation and inhibition of the different cones responses.

In case of three kinds of cones, the standard combinations are brightness (or
luminosity) S+L+M, the generator of red-green axis, L−M and the generator of
blue-yellow axis: S−L−M. We see the use of inhibition for introducing negative
coefficients, a proper brain’s algebra.

A more exact basis is given by a more complex 3× n matrix of real numbers.
Many different combinations exist for individual ganglion cells, and induce a variety
of responses in LGN.

In case of more or less than three cones, it seems that ganglion cells also form
n linear combinations of cones. We will consider generic choices of coordinates
(S1, ...,Sn) on C:

Sk(ER) =
n

∑
i=1

Si
kRi(ER). (7.13)
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Here E and R are varying illuminance and reflectance respectively, and Si
k are fixed

real numbers.

Axiom 2: In LGN there exists a subset of relay cells a ∈ A, named affine, and there
exists on C a canonical structure of affine space, such that for any choice of coor-
dinates Sk and any affine cell a ∈ A, the response to incoming light ER is given by

Aa(ER) = Ba +
k=n

∑
k=1

Ak
aSk(ER). (7.14)

Remark this axiom does’nt need axiom 1 to be formulated, thus it gives a stronger
statement, probably underlying axiom 1, restricted to LGN. However apparently
the affine structure has a strict sense only in LGN and V1 or V2, because it seems
not fully valid for perception. Only the dimension remains for perception, with a
more complex geometric structure on the space C, not flat. See [113].
For the affine structure on colors, and more, see [199].

Remark: the coefficients Ba,Ak
a can be modulated by the context and the corticotha-

lamic feed-back. Note that other cells exist in LGN, in particular there exists cells
which react non-linearly.

This axiom 2 is sustained by wonderful experimental results from the neuro-
physiology on monkeys (De Valois, Wiesel and Hubbel 1966, Derrington 1984,
Lennie, Krauskopf, ...) (cf. in particular [53], [124]): inside the infinite dimensional
vector space of local numerical continuous functions of (E,R), the set of possible
response functions of the element a in LGN forms, in first approximation, a linear
subspace of dimension n+ 1.

Definitions: An incident light E generate a marginal distribution ρ(c)dc of colors,
having a mean m(ρ), which is a point in C, and a covariance form Q(ρ), which is a
quadratic form on the vector space associated to C (isomorphic to C but centered in
m(ρ)). In particular the decomposition of sun light (or other natural light) introduces
a mean point, named 0, corresponding to the white, and an Euclidean metric Q0,
characterizing the decomposition of this light at the order two, which we name the
spectrum of sun light. Choosing this point 0 and this metric Q0 as references, the
space C becomes an Euclidean vector space that we denote by E0. Using this space,
which depends on a specific light, we can associate to every point m(ρ) a vector
Om and to every quadratic form Q a co-variance operator Σ which is a symmetric
endomorphism of E0. These data became a numerical vector and a symmetric matrix
respectively, when we choose in addition special linear coordinates Sk on C.

Note that in general experimenters prefer to introduce coordinates on C, giving
to C a linear structure and a basic quadratic metric. This is also a manner to define
a structure of Euclidean vector space on C. For example Von Kries suggested to
work in the coordinates given by the cone themselves, which gives three preferred
axis, and distinguishes the co-variance matrices that are diagonal. However, the only
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intrinsic structure of C is its affine structure, not the basis. The structure of the
adaptation of affine color cells in LGN is precisely based on this fact:

Axiom 3: When, around the receptive field of the cell a, and during a certain interval
of time, the ambient color distribution ρ(λ ) departs from the one of the sun light, we
get a mean vector m and a covariance Σ for ρ , then the responses of the cells a are
changed by an affine transformation τ of C, i.e. Ra becomes Ra ◦τ−1, to compensate
for the change of sun light in ρ .

More precisely, there exists a linear transformation R of E0 such that Σ is equal
to R∗.R, and the cell a which had the response Ra(c) (an affine function on C) is
transformed into the response τ∗(Ra)(c) = Ra(R−1(c−m)) (another affine function
on C). This has the effect to reproduce the world as if it were illuminated by the sun
light, at least at the second order of the moments. Then the compensation equation
is:

Ra(c) = τ∗Ra(m+Rc). (7.15)

Experimental justification of this axiom is given by Stiles 1959 [208], see Webster
in TVN. Cf. figure (7.3).

For τ negative coefficients are necessary. A remarkable fact, that we suggest to
be a common denominator of all co-homological constructions in the brain (in the
sense of 2.4), is that excitation and inhibition are used carefully to produce the
structure (here affine) and its transformations (here affinities) together.

Observe that a transformation of the moments of ρ is not sufficient to define
a unique element τ . Many other elements do the job, they differ by the rotations
preserving Q0 if we compose to the left or by the rotations preserving Q if we
compose to the right. A natural choice consists in taking for R the root

√
Σ , i.e. the

unique positive symmetric operator R such that R2
Σ = Σ , but we can also compose

this R by any rotation S i.e. take S
√
Σ . Thus the ambiguity after adaptation is an

orthogonal group. There is a possibility to use higher order statistical invariants of
ρ to better determine the adaptation, but I know of no experimental basis for that.

We see that color in LGN gives a perfect example of the general structure we have
introduced for describing invariance: In this case the parametric space M describing
the kind of response of affine color cells is the space of affine forms for each cell a,
and the affine group GC acts on M by affine change of variables. We have a special
point in M, which is 0, corresponding to the mean information on the world under
sun light. The vanishing co-cycles are the colors themselves, they form the space
C = I∗, and the Galois group GC acts in the obvious way.

Experiments show the effect of a continuous path of transformation, opposed to
sudden changes of color context. Then ˜P appears.

Remark that most affine cells behave under natural illumination as linear cells,
and undergo a translation after adaptation, plus a linear deformation. However
several cells (more found in V1 but also found in LGN) are better explained by
absolute values of affine functions on C ([53], [124]), which indicates the pertinence
of the n dimensional projective space associated to M.
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Fig. 7.3 Two ellipsoids for mean and variance of color distribution in the color space I or C;
adaptation can deform one into the other, cf. Webster in TV N.

7.3.3 Color in V 1 and V 2

The color representation in V1 is based on the same principles as in LGN, but in V1
there is less concentration of cells along special axis (Lennie et al, De Valois et al.,
cf. [44]). Remarkably the purple appears in V1, where it is even over-represented
for macaques. Cf. [225].

7.3.4 Color Constancy

More advanced areas introduce curvature in the color space, taking in account per-
ception, for instance personal and cultural dimensions. The Riemannian structure
on the color space is studied in [199]. In V4 context has large influence, cf. Zeki in
TVN. The responses become dependent of all other colors. In V8 a larger spaces for
color is introduced, which represents the distributions of illuminance and reflectance
separately.
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David Philipona and Kevin O’Regan ( [172], [99], [170]) reported a fundamental
experimental result for the coding of the relation between illuminance and surfaces
reflectance:

Axiom 4: For most homogeneous surface S, there exists a linear operator AS of C0

(C pointed in 0), such that for most illuminant E(λ ), the following relation holds
with very good accuracy

[SE] = AS[E], (7.16)

where [E] and [SE] denote the equivalence classes in C of the spectrum of a light
E(λ ), and of the same spectrum, once reflected by the surface of reflectance S(λ ),
i.e. S(λ )E(λ ).

The variance accounted by this linear law is larger than 90% for both Munsell
chips and natural surfaces ( [172]).

Philipona and O’Regan gave a clear justification for this law, following the ob-
servations of Judd et al. 1964 [101], and Dixon 1978 [55], that natural illuminants
are well explained linearly by three dimensions. Thus, if U denotes the operator
sending a basis E1,E2,E3 of this illuminant space to its representation in C0, and V S

denotes the matrix sending SE1,S2,SE3 in C0, the operator can be take as

AS =V SU−1. (7.17)

In fact Judd et al. [101] found a basis of spectra made by three or four vectors. Let us
observe that even if the illuminants where not well explained by three dimensions,
it would be possible to obtain a formula for AS by taking a pseudo-inverse, as soon
as we could assume a linear explanation for E . That is, we consider a generator
system E1, ...,EM;M ≥ 3, the operator UM sending it to C0 and the operator V S

M
sending SE1, ...,SEM;M ≥ 3 to C0, and we choose a pseudo-inverse U ′M of UM (i.e.
an operator from C0 to R

M , such that U ′MUMU ′M =U ′M and UMU ′MUM =UM) and we
put

AS =V S
MU ′M. (7.18)

Once normalized, the operator U ′M can be interpreted as an a priori probability for
each illuminant when the color is given.

Remark that with respect to reflectance, objects appear as transformations in the
space C. This invites us to suggest that more generally, objects, in the world for a
brain, are operators in (co)homology. This suggestion connects a circle of ideas of
David Philipona that we discussed during the preparation of his thesis.

Now we will use both the adaptation operator τ and the illumination transforms
AS to propose a formula for constancy.

A surface S is given. Let E0(λ ) be the composition of an ambient light, this
gives a reflected light S(λ )E0(λ ) defining a color [SE0]. A new illuminant E1(λ )
produces in an analog manner a color [SE1]. We also introduce the pure homology
classes [E0] and [E1]. As we saw before in subsection 3.2, the adaptation from LGN
to higher areas is realized by a linear operator R0

1 from C0 to C0 such that

[E0] = R0
1[E

1]. (7.19)
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Consequently

[SE0] = AS[E0] = ASR0
1[E

1] = ASR0
1(A

S)−1[SE1]. (7.20)

This gives the following result:

Theorem 3.4.1: The operator ASR0
1(A

S)−1 obtained by conjugating the adaptation
by the A transform of reflectance compensates the change of color induced by a
change of incident light.

A discussion of different matrix models underlying color constancy, along differ-
ent lines of thought, was made by Maloney-Wandell [135].

Our model is compatible with the result of Yang and Shevell [246], that the pres-
ence of two spatially separated illuminants in the scene has the effect of reducing
the color constancy. This is due to the fact that in the case of several illuminants, the
adaptation R0

1 cannot be formed.
Considering color distribution in complex natural images, the above formulas

can explain only little of the activity of cells and even less of the perception; for that
purpose non-linearities and higher correlations in the image have to be involved.
These aspects were the main subject of the thesis of P.Baudot (2006) [19], which
was the starting point of the research on information geometry and topology he has
developed with me, see section 6 below. However, the above linear computations
cannot be rejected without care, their existence in simplified situations is not here
by hazard. The same is true for the properties of primary visual receptive fields that
we will expose now; even if they explain a few percent of the responses of most
visual neurons, the fact they exist in simplified contexts is a main pillar for any
future theory; see also the section 5.4 on higher invariance.

From the point of view of mathematical education, it is admitted that linear alge-
bra is a good way for beginning. A second step should be differential calculus, as
we will encounter in the following section.

7.4 Covariance in V1

7.4.1 Simple Cells and Complex Cells

(This chapter is issued from works that grew around the thesis of Simon Capern,
Paris VI, September 29 in 2008, in particular it reflects discussions with Simon
Capern and Jacques Droulez during ACI NIM (2005-2009).)

Consider a neuron a; its receptive field is better understood as an operator, which
transforms a stimulus in a response, respecting causality. The incoming stimulus
is represented by a function ϕ(s,ω ,x) where s ∈]−∞, t] represents the time be-
fore t, ω ∈ Ω represents chance and x ∈ X represents variables in the external
world; the signal sent to other cells by the neuron a is a function ψa(t,ω ,y) of time,
chance and other parameters y ∈Y describing internal parameters of the brain. This
gives a transformation of functions into functions; in general this transformation is
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non-linear. The usual way to analyze such a transformation is a Wiener-Volterra
expansion:

ψa(t,y,ω ;ϕ) = fa(ω ,
∞

∑
n=0

ψa,n(t,ω ,y;ϕ)), (7.21)

where fa is a sigmoid function in the second variable and where, for each n,

ψa,n(t,ω ,y;ϕ)

=

∫

Xn
dx1...dxn

∫

Rn
ds1...dsnKa,n(ω ,y,x1, ...,xn,s1, ...,sn)

ϕ(t− s1,ω ,x1)...ϕ(t− sn,ω ,xn) (7.22)

for a certain function Ka,n, named the kernel of order n of the transformation. Cf. [1],
DeAngelis and Anzai in [44].

In the simplest model of simple cells in the primary cortical visual system, the
function ϕa(s,x) represents the normalized intensity of the image at time s and x
denotes a point in the visual plane, then the function ψa(t,y;ϕ) is the probability
of spiking at time t, and the variable y represents the internal context modulating
the response, for instance the eyes vergence. In the kernels appear the preferred
parameters of the cell, for example a preferred center xa, a certain disparity vector
δa depending on the eyes vergence, plus a 2D spatial frequency vector ξa and a time
frequency ωa. The kernel of order 1 is given by a Gabor wavelet

K1(ω ,y,x,s) = Ga(x− xa,s)e
−i(xξa+sωa+ϕa), (7.23)

where Ga localizes x−xa around 0 and depends on time, giving in particular a delay
τa where it is maximum and another delay τ ′a where inhibition occurs. In general
this distribution is elongated in the direction of frequency vector.

The fact that the Fourier transform of a Gaussian is a Gaussian with inverse vari-
ance implies that a strong localization of activity on xa or t is incompatible with
a strong precision on ξa or ωa; thus some cells give good information on the lo-
cal intensity of the image, while other cells give more information on its frequency
structure. Layers IV and V in V1 seem to belong to the first type, layers III and II
to the second type.

The direction selectivity, i.e. the fact that most cells in V1 for cats or monkeys
a.s.o. are selective for the direction of the stimulus motion, is well explained by
the spatio-temporal structure of the RF, named inseparability, i.e. the fact that the
vector (ξ ,η ,ω) and the phase ϕ form interferences which are not parallel to the
time axis, joined to the fact that the time axis is not a principal axis of the RF.
Prediction of this model were given for instance by Adelson and Bergen [3], and
confirmation is exposed for instance by DeAngelis and Anzai in TVN ( [44]). It
was also confirmed that the model of linearity followed by non-linearity (i.e. ”static
non-linearity”) explain a non-negligible part of data, see Albrecht, Geisler and Crane
in [44].
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This receptive field expresses the co-variance for translation in space and time:
For simple cells of V1, we can start with the group V2,1 = R

2×R of 2D+ 1 trans-
lations; it is an abelian group and the frequency co-vectors (ξ0,η0,ω0) parametrize
the irreducible unitary representations of this group. Cf. for instance [222]. Unitar-
ity comes from the reality of the frequency vector. These representations are all of
dimension 1, they are given by complex numbers of modulus 1:

χ0(x,y, t) = ei(x.ξ0+y.η0+t.ω0) (7.24)

so, they are pure changes of phases.
Let us choose a smooth function K0 on V2,1. By definition an image is a dis-

tribution I on the space V2,1, and a linear simple response of a cell, associated to
the kernel K0, is given by smoothing the real part of an imaginary virtual response
represented by

Ea(t) =
∫

e−i(x.ξ0+y.η0+s.ω0)K0(x− x0,y− y0,s− t0)I(x,y, t− s)dxdyds,

or equivalently, by using the standard notations,

Ea(t) = 〈χ0τ(x0,y0,t0)K0, It〉=F (τ(x0 ,y0,t0)K0.It)(ξ0,η0,ω0). (7.25)

It represents the element of response at the order one before non-linear rectification.
This is the starting point for all what follows: Ea(t) is given by the Fourier transform
of I.K0 at the point (ξ0,η0,ω0).

Moreover K0 localizes images I around the center (x0,y0, t0).
Thus the group of 2D+1 translations acts on the simple receptive fields by chang-

ing the phase, and the visual center.
An important property for Infomax is the orthogonality of characters (cf. [222]):

By definition, a character χ on a group G is a morphism form G to the circle group
U(1) of complex units. In the case of a finite commutative group, the characters
form an orthogonal basis of functions on the group; this is the precise statement of
orthogonality. In the present case, because V2,1 is an infinite group, then the char-
acters are not square integrable, however something remains of this property of the
characters, that is, when we compute the mean over space-time round domain of
volume N of scalar products of different characters, we have

1
N

∫

χ(x)χ ′(x)dx→ 0,

as N tends to ∞.
Three principles underline the form of the receptive field: 1) Observation of

space-time is local and causal; 2) Locality requires commutativity; 3) Elementar-
ity requires irreducibility.

Observe that the same analysis can be applied to all terms of the Wiener-Volterra
series, because I ⊗ I, I ⊗ I ⊗ I, ... are distributions on the commutative groups
obtained by Cartesian products V 2

2,1,V
3
2,1, ... respectively, and their irreducible
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representations are also given by one dimensional characters; they are parametrized
by multi-covectors (ξα1 ,ηα1 ,ωα1 , ...,ξαn ,ηαn ,ωαn).

Remark: The interpretation of the response formulas by harmonic analysis is not
new, it has its origin in Gabor, see Petitot ( [168]). Much of the work in this di-
rection were inspired by image analysis, or signal analysis. Several groups have
been used, the Heisenberg group ( [102]), the group of plane displacements E(2),
through its regular representation (Sarti, Petitot, Bressloff, ... cf. [16], and [168]), or
the hyperbolic group ( [46]) for taking textures into account. The wavelet aspect is
fundamental in these studies. It is known that wavelets have much to do with infor-
mation theory, their efficiency for optimal coding, or maximal compression is well
established (or well known); see for instance Atick with Redlich [14], or Dan, Reid,
Li Zhaoping, ..., cf. [251]) who explained the mexican hat of Ganglion cells. We
should also note that Olshausen and Field [161], [162], Nadal, Parga, Brunel [150]
have studied the Infomax principle at natural frequencies. Cf. [1].

In fact a more efficient model of RFs, when compared to experimental data,
is given by a finite sum over index j ∈ J of static-non-linear function u j (Naka-
Rushton, with sign + for excitation and − for inhibition) of kernels centered on
points x j,τ j , with spatio-temporal extension R j (non-separable co-variance), evalu-
ated on frequency ξ j,ω j with phase ϕ j. Cf. [217].

Ra(t) =∑
j
λ ju j(Re[e−iϕ jF (G jIt)(ξ0,η0,ω0)]) (7.26)

um(x) =C0
xm
+

1+C∞xm
+

; (7.27)

However things are not so simple, because experiment also shows that all the
parameters in (7.26) (except perhaps x j,ϕ j) depend in a non-linear way of the
whole image, through semi-local norms of I and its contrast C. Cf. [42], and
Albrecht et al. in [44]:

Lowering the contrast expands spatially the RF and the latency, augments the sat-
uration, and shifts the preferred time frequency to lower values. (Apparently there
is no effect on the preferred spatial frequency, and no effect also on the structure
of the cortical maps.) There is an advance in spatial phase when contrast aug-
ments. But orientation tuning or spatial frequency selectivity vary little with con-
trast, cf. [204], [8].

Remark that the measured spatial frequency seems higher than the one predicted
by Gaussian models, and the same holds for direction selectivity , orientation se-
lectivity and acuity; see Albrecht et al.in [44]. Remark that all these effects can be
attributed to interactions, and could theoretically be included in the higher order
kernels.

Remark: the shift to the right of time frequency with contrast augmentation can be
explained in part by a dilatation of the time difference t−τ: if contrast is multiplied
by λ , the transformation of t− τ into λα(t− τ) has the same effect on the response
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as the transformation of spatial frequency ωi into λαωi joined with a change of ϕi

into (λα)ϕi. By applying this time dilatation to the windows Gi we also obtain the
effect of scaling τi and the effect of scaling ui by a negative power λ−γ according to
Naka-Rushton formula.

The non-linearity u j, the frequency ξ j,ω j and the phase ϕ j could also depend
non-linearly of time course. For instance there is a general tendency from the first
ms to 200ms to shift the cells preference in the direction of higher spatial frequency.
There is also a reported shift to higher selectivity with time course which can be
explained by the greater expansion of spatial integration as time flows.

A dominant non-linearity comes from the curvature of the RF: starting from
the linear (or static-non-linear) RF we can apply a diffeomorphism of space time
(see Dali’s watches, and experimental figures of DeAngelis et al., cf. [44]); this in-
troduces shifts in frequency and phase and a change in Naka-Rushton exponents.
Moreover this diffeomorphism depends on the contrast in the image over larger and
larger domains when time flows. This can be described by the following formula at
the order one:

Rr
a(t) =∑

j
λ ju j(Re[e−iϕ jF ((G jIt)◦Φ j)(ξ0,η0,ω0)]);

where Φ j is a change of space-time variables.
All the above non-linearities describe a particular of adaptation. Thus, we can say

that in this case: invariance (given here by translation, and symplectic geometry of
light rays acting on the set of irreducible representations of the translations) imposes
the form of RF’s, and adaptation acts on this set of RF’s.

Complex cells can be seen as composition of several simple cells, with compara-
ble frequency preferences but a variety of phases. The same principle can explain in
part the response of columns that are seen in optical imaging.

To describe the effect of phase distribution, we consider first the case of uniform
distribution.

We introduce the hypothesis that among cells in the neighbor of a, we have cells
a′,a”, ...whose subunits possess the same characteristics (G j,u j) of a, with the same
(ξ0,η0,ω0), but where all angles ϕ between 0 and 2π are represented with the same
probability. References: Pollen and Ronner [183], DeAngelis et al. [49].

The cells form assemblies A with response

RA(t) =
∫ 2π

0
(u+(ρ+(t)cos(ϕ−ϕ+(t)))− u−(ρ−(t)cos(ϕ−ϕ−(t)))dϕ (7.28)

This integral is the difference between two integrals that can be simplified by
changes of variables ϕ �→ ϕ−ϕ+(t) and ϕ �→ ϕ−ϕ−(t) respectively, giving

RA(t) =
∫ 2π

0
(u+(ρ+(t)cos(ϕ))dϕ−

∫ 2π

0
u−(ρ−(t)cos(ϕ))dϕ (7.29)
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An essential role is played by the transformation u �→ A(u), which send the bounded
increasing continuous function u : R → [0,∞[ to the continuous function A(u) :
[0,∞[→ [0,∞[ defined by the formula:

A(u)(ρ) =
∫ 2π

0
u(ρ cosϕ)dϕ (7.30)

This transformation A is named the Abel transform.
The integral transform which was originally considered by Abel in 1823 (cf. [2])

is:

A0(u)(ρ) =
∫ ρ

0

u(r)dr
√

ρ2− r2
(7.31)

But A can be easily deduced from A0 through the change of variable x = cosϕ ,
followed by the change of variable r = ρx:

A(u)(ρ) = 2
∫ 1

−1

u(ρx)√
1− x2

dx

= 2
∫ ρ

−ρ
u(r)

√

ρ2− r2
dr

= 2
∫ ρ

0

u(r)
√

ρ2− r2
dr+ 2

∫ ρ

0

u(−r)
√

ρ2− r2
dr

then, denoting ǔ(r) = u(−r), we find A(u)= 2A0(u)+2A0(ǔ). Moreover in the cases
we examine, u(x) is identically zero for x≤ 0, and we simply find A(u) = 2A0(u).

This shows that the usual rectification Re+ made by simple cells is changed by
summation over phases into the modulus non-linearity. Then the most important
conclusion for us is:

Assertion: around the center of its receptive field, the response of a complex cell is
invariant by small translations.

This invariance of complex cells under small translation corresponds to what Hubel
and Wiesel had suggested in 1962 ( [88]). It is certainly useful in image inspection
during micro-saccades of the eyes.

The same result holds for the average of activity in a cortical column, where the
phase is uniformly represented.

Remark, in reality the distribution of phases integrated by complex cells is not
fully uniform; this gives them a residual phase.

If u(x) = xγ+, which annihilates for x ≤ 0 and coincides with xγ when x ≥ 0, we
have:

A(u)(ρ) = [2Iγ ]ργ+, (7.32)

where Iγ is given by the Wallis formula:
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Iγ =
∫ π

2

0
(cosϕ)γdϕ =

√
π

2

Γ ( 1
2 +

γ
2 )

Γ (1+ γ
2)

.

Here Γ denotes the Euler function:

Γ (z) =
∫ ∞

0
e−t tz−1dt

This also permits to obtain A(u) for the most-often-used non-linearities in neuro-
physiology, introduced by Naka and Rushton (1966):

um(x) =C0
xm
+

1+C∞xm
+

; (7.33)

where m is a strictly positive real number. A value which is justified by experiments
in V1 is m = 1,6 for simple cells, and m = 2,5 for complex cells. Thus m is not far
from half-integer value, 3/2 and 5/2 respectively.

We could also consider the following functions:

ũm(x) =C0
xm
+

(1+C1x2
+)

m
2

; (7.34)

their Abel transforms can be computed in terms of usual special functions. Note that
for m > 2, the functions um and ũm differ notably (cf. below).

The function um is analytic on ]0,∞[ given by a uniformly convergent series on

[0,C−1/m
∞ [:

um(x) =C0xm
∞

∑
k=0

(−1)kCk
∞xm(k+1);

thus, using (7.32) with γ = m(k+ 1), we deduce for ρ ∈ [0,C−1/m
∞ [:

A(um)(ρ) =C0

√
π

2

∞

∑
k=0

(−1)kCk
∞
Γ ( 1

2 +
m(k+1)

2 )

Γ (1+ m(k+1)
2 )

ρm(k+1) (7.35)

This expression furnishes a good approximation for A(um)(ρ) when ρ is small.
(This function A(um)(ρ) is a parent of the generalized hypergeometric series

studied by E.M. Wright ( [240], [241], [242]) when ρ goes to infinity).
Recall that Γ is log-convex, and satisfies the functional equation Γ (1 + x) =

xΓ (x); it follows that the coefficients Γ ( 1
2 +

m(k+1)
2 )/Γ (1+ m(k+1)

2 ) decrease when
k increases, they satisfy:

(
1
2
+

m(k+ 1)
2

)−1/2 ≤ Γ (
1
2 +

m(k+1)
2 )

Γ (1+ m(k+1)
2 )

≤ (
m(k+ 1)

2
)−1/2.
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From (7.31), we get another formula for A(um):

A(um)(ρ) = 2ρm
∫ 1

0

tm
√

1− t2

dt
1+ρmtm (7.36)

We can also start with (7.30), and make the change of variable t = tan(ϕ/2), this
gives:

A(um)(ρ) = 4C0ρm
∫ 1

0

dt
(1+ t2)

(1− t2)m

(1+ t2)m +C∞ρm(1− t2)m (7.37)

This can be integrated with elementary functions when m is integer and with elliptic
functions (associated to the lemniscate) when m is half-integer.

For m = 1 and C∞ρ < 1, we pose

κ(ρ) =

√

1−C∞ρ
1+C∞ρ

,

then the transform f1 = A0(u1) is given by:

f1(ρ) = 2
C0

C∞
[
π
2
− 2κ

1−C∞ρ
arctan(κ)]. (7.38)

Proof: we consider the function in two variables given by

g1(ρ ,ϕ) = ϕ− 2κ
1−C∞ρ

arctan(κ tan(ϕ/2));

Its derivative with respect to ϕ is

∂g1

∂ϕ
(ρ ,ϕ) = 1− 2κ

1−C∞ρ

1
2 (1+(tan(ϕ/2))2)

1+κ2 tan(ϕ/2)2

=
1−C∞ρ+(1−C∞ρ)κ2 tan(ϕ/2)2−κ2(1+(tan(ϕ/2))2)

(1−C∞ρ)(1+κ2 tan(ϕ/2)2)
.

By developing the numerator and denominator in function of C∞ρ and cos(ϕ) =
(1− tan(ϕ/2)2)/(1+ tan(ϕ/2)2) we get

∂g1

∂ϕ
(ρ ,ϕ) =

C∞ρ cos(ϕ)
1+C∞ρ cos(ϕ)

,

therefore

g1(ρ ,ϕ) =
∫ ϕ

0

C∞ρ cos(φ)
1+C∞ρ cos(φ)

dφ ,

and, by making ϕ = π
2 in this formula we obtain the desired result.
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If ρ tends to zero f1(ρ) also tends to zero. If C∞ρ tends to 1, f1(ρ) tends to
2 C0

C∞
(π/2−√2).

When C∞ρ > 1 we define κ as the square root of (C∞ρ−1)/(C∞ρ+1), a similar
computation shows that f1 = A0(u1) is given by

f1(ρ) = 2
C0

C∞
[
π
2
+

2κ
C∞ρ− 1

argtanh(κ)]. (7.39)

Now consider the functions ũm. For every positive value of m, we have

A(ũm)(ρ) = 2C0

∫ 1

0

ρmxm

(
√

1− x2)(1+C1ρ2x2)
m
2

dx. (7.40)

By putting t = x2 we get

A(ũm)(ρ) =C0ρm
∫ 1

0
t

m
2 − 1

2 (1− t)−
1
2 (1+C1tρ2)−

m
2 dt (7.41)

The hypergeometric function was introduced by Euler (in 1769) by the following
integral:

F(a,b,c;z) =
Γ (c)

Γ (b)Γ (c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt. (7.42)

This formula has a meaning for any a if we have Re(c)> 0,Re(b)> 0,z∈]−∞,+1[.

If we put z =−C1ρ2,a = m/2,b = m/2+ 1/2,c= m/2+ 1, we have

A(ũm)(ρ) =C0ρm√π Γ (
m
2 + 1

2 )

Γ (m
2 + 1)

F(
m
2
,

m
2
+

1
2
,

m
2
+ 1;−C1ρ2). (7.43)

The hypergeometric function was studied by Gauss (in 1823) by using series expan-
sions. he found in particular that A(ũm) is given by:

A(ũm)(ρ) =C0ρm
√
π

Γ (m
2 )

∞

∑
k=0

(−1)kΓ (
m
2 + k)Γ (m

2 + 1
2 + k)

Γ (m
2 + 1+ k)k!

Ck
1ρ

2k; (7.44)

which converges uniformly for ρ ∈ [0,C−1/2
1 ].

By using another formula of Euler we obtain the following formula of A(ũm):

A(ũm)(ρ) =C0C
−m

2
1

√
π
Γ (m

2 + 1
2 )

Γ (m
2 )

∫ C1ρ2

0
t

m
2 −1(1+ t)−

m+1
2 dt. (7.45)

When m takes integer values, explicit formulas for A(ũm) can be obtained easily
from this last formula. For instance if m = 1, from (7.45) we get:
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d
dρ

A(ũ1)(ρ) = 2C0(1+C1ρ2)−1

Which integrates to

A(ũ1)(ρ) =
2C0√

C1
arctan

√

C1ρ . (7.46)

When ρ tends to zero we verify that A(ũ1)(ρ) is equivalent to 2C0ρ , and when ρ
tends to infinity we see that A(ũ1)(ρ) tends to πC0/

√
C1, which is coherent with

the fact that the limit of ũ1(x) when x tends to infinity is equal to C0/
√

C1.

When m = 2, by putting C1 = C∞ we obtain ũ2 = u2, and in this case the formula
(7.45) gives

A(u2)(ρ) = π
C0

C1

∫ C1ρ2

0
(1+ t)−

3
2 dt.

Which can be computed as

A(u2)(ρ) = π
C0

C1
(1− (1+C1ρ2)−1/2). (7.47)

Let us assume that there is a constant C > 0, such that u/C is the repartition
function of a real positive random variable X (i.e. u is zero out of [0,∞[, positive,
increasing and bounded, and C is the limit of u(x) when x tends to +∞). Then the
same is true for A(u)/Cπ , it is the repartition function of a real positive random
variable R. However, it may happen that X has a finite expectation and R has not,
or that X has finite variance and R has not. This is the case in the examples we just
saw:

1)If X is uniform in [0,L], the function R has a density equivalent to C/(Lρ2), when
ρ tends to ∞, thus it has no mean value.
2) When u = um, with C0 =C∞ = 1 to simplify, we have u′(x) = mxm−1/(1+ xm)2,
thus X has a finite mean when m > 1 and a finite variance when m > 2. However
the derivative A(u)′(ρ) is larger than a multiple of ρ−m. For m = 1 the derivative
is equivalent to C′ρ−2 lnρ , and for m = 2 it is equivalent to C”ρ−2, (cf. (7.39) and
(7.47)). Then for 1 ≤ m ≤ 2 the expectation of R est infinite, and for 2 < m ≤ 3,
even if the mean of R exists, its variance is infinite.
3) When u = ũm, with C0 = C1 = 1 to simplify, the differences between X and R
are even more pronounced: the derivative of u in x is mxm−1(1+ x2)−1−m/2, then
X possesses a finite mean and an infinite variance. (This makes a deep difference
between ũm and um pour m > 2.) But, from (7.45) we see that the derivative of
A(ũm) is of order ρ−2 at +∞. Thus R never possesses a finite expectation.
All this can have non-negligible consequences on the kind of integration made by
the columns of V1, and even on the integration made by the complex cells when
the phase disappears.

Remarks: Abel had defined transformations of functions Aα generalizing A = A1/2
for real numbers α ∈]0,1[:
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Aα(u)(ρ) =
1

Γ (α)

∫ ρ

0
(ρ − t)α−1u(t)dt, (7.48)

These operators satisfy:
Aα ◦Aα ′ = Aα+α ′ . (7.49)

Hardy et Littlewood have proved that, for any p ∈]1,1/α[, if we write qα = p/(1−
α p), there exists a constant Cα ,p such that, for any function u defined on the interval
[0,N]:

‖Aα(u)‖qα ≤Cα ,p‖u‖p (7.50)

Under the same hypotheses Aα defines a compact operator from Lp(0,N) to
Lqα (0,N). In particular the original Abel transform A = A1/2 defines a compact

operator from L3/2(0,N) to L6(0,N).
When p > 1/α , the transform Aα becomes compact from Lp(0,N) to the Hölder

space Cα−1/p(0,N).
In particular A = A1/2 defines a compact operator from L3(0,N) into the space of

continuous function C0(0,N) equipped with the uniform norm.
More generally, the result of push-froward integration by columns in V1 is

described by summing the activities RA(t) of (7.29) on sets of cells with sev-
eral phase distributions. This corresponds to peculiar distributions of the pa-
rameters G±,u±,ξ0,η0,ω0, given by density functions D+(σ ,m,ξ ,η ,ω) and
D−(σ ,m,ξ ,η ,ω). Here we suppose that the various non-linearities are of the Naka-
Rushton type um (or ũm) and the kernels G± mostly vary with the variance σ2, with
comparable center (x0,y0); this gives the following formula for the responses in
optical imaging:

RC(I)(t) =
∫

D+(σ ,m,ξ ,η ,ω)dσdmdξdηdωA(um)(|̂ItGσ
+(ξ ,η ,ω)|)

−
∫

D−(σ ,m,ξ ,η ,ω)dσdmdξdηdωA(um)(|̂ItGσ−(ξ ,η ,ω)|). (7.51)

This gives a non-linear operator from tempered distributions I over plane-time to
continuous functions on this plane-time, which is a difference between two opera-
tors of the following type:

P(I)(x,y, t) =
∫

D(σ ,m,ξ ,η ,ω)dσdmdξdηdω

A(um)(|
∫

Gσ (X− x,Y − y,s)I(X ,Y, t− s)e−i(Xξ+Yη+sω)dYdY ds|) (7.52)

The preference of the column for an orientation and a spatial frequency corresponds
to a particular concentration of the density D in the vector (ξ ,η); there also exists
concentration for the temporal frequency ω .
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It is tempting to suggest that operators from a cortical area Ξ to another one ϒ
are of the same type, i.e. given by a non-linear pseudo-differential operator.

We could introduce, the places x and y in the area Ξ and ϒ respectively, the
frequency vectors of spatial activation λ and μ and importantly the time frequencies
ν and ω ; we would have kernels D(y,x,σ ,m,ν) non-necessarily positive, where σ
denotes the diffusion factor and m a parameter for non-linearity of functions fm :
C→ R, in such a way that for any activity ϕ(x,s) in the area Ξ , the impact of ϕ on
the activity inϒ is represented by the formula

P(ϕ)(y, t) =
∫

D(σ ,m,λ ,ω)dσdmdλdω

fm(
∫

Gσ (y,x,s)ϕ(x, t− s)e−i(xλ+sω)dxds) (7.53)

This operator has to be composed with an operator of the same type describing the
horizontal dynamics in ϒ , and a feedback from ϒ to Ξ , and so on, so we are face
with a graph of propagation. But even this graph is an oversimplification, because
quickly a set of areas should be treated as being in interaction, and we come back to
an operator from activity in the set of areas to activities in the same set, modulated
by external input.

However, we should remark that the dynamics cannot be fully reduced to such a
semi-local non-linear pseudo-differential operator, for a more fundamental reason:
contextual effects propagate to modify the parameters of the kernels in a non-linear
way. The simplest effect is the non-linearity due to contrast: it integrates the contrast
by semi-norms in the image, which modify m,σ , saturation and time delays. Thus,
at the level of complex operators, adaptation can be represented by a transformation
of the density D(σ ,m,λ ,ω).

To conclude this subsection, we come back to the original motivation of the above
work on Abel transform, which was the thesis of Simon Capern. We tried to under-
stand the remarkable phenomenon of invariance discovered by Basole, White and
Fitzpatrick 2003 ( [18]):

Basole et al. observed that several stimuli of different geometric designs, different
velocities (in speed and direction), different contrasts produced the same activity
of micro-columns in V1, as seen by optical imaging. They invoked a motion energy
model and suggested that the cortical maps do not represent distinct parameters (po-
sition, frequency, orientation, direction) but mixtures of them. However, in his thesis
Capern showed numerically that all the results of Basole et al. can be reproduced by
the model of columnar responses exposed in this subsection, with m=1.

Note that Mante and Carandini [136] established a similar result without giving
explicit formulas. In addition, let us note that these formulas are showing that the
results of Basole et al. 2003 are compatible with the existence of geometrically
independent maps, but this does’nt prove their independency.

In micro-columns of V1 and V2 the preferred orientation of neurons do not
change, and the same is true of the preferred spatial frequency (cf. [95], [184]),
but it seems that the preferred temporal frequency is not organized in the same way
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(cf. [109]), consequently the invariance of columns is not for 2D+1 translations but
for 2D translations only.

7.4.2 Orientation Maps, Probability, Co-variance and the
Number Pi

References: Wolf and Geisel ( [238], [239]), Kaschube et al. [106], Barbieri, Citti,
Sanguinetti, Sarti, 2011 ( [16]); Bednar ( [20]).

In this third example, we will use Euclidean geometry, probability (bivariate
Gaussian fields) and harmonic analysis (which in some sense unifies geometry and
probability).

I thank Antoine Grappin, Gaëtan Hadjeres, Adrien Laversanne-Finot, Etienne
Levilion, Viet-anh Nguyen and Alexandre Afgoustidis for their participation to this
study, and Alessandro Sarti for his explanations.

In V1 of all mammals the neurons have preferred orientation (and spatial and tem-
poral frequencies) of stimuli in the visual plane ( [87], [88], [89]). In carnivores and
primates these preferences are arranged in regular maps along the cortical surface
( [30]). Note this is not the case for all species of mammals, for instance rodents,
even squirrels which have a fine vision (and a large V1), do not have orientation
maps. See [248], [155], [156].

As frequently reminded by Alain Berthoz (cf. [27], [28]), Merleau-Ponty sug-
gested that ”To see is to palpate with gaze”, thus noticing the parallel between touch
and vision, and insisting on the active process that is used in vision as in touch. In the
case of the skin of fingers, we see lines in relief (named dermatoglyphes), forming
a foliation, which allows for instance to use prints for identification of humans. A
biological function of these lines is to help discriminate between touched textures.
In exactly the same manner we use small eye displacements (like microsaccades)
to vary the cortical input of images and we sense the image with a foliation of in-
scribed lines in V1 (or V2), whose tangent vectors are the preferred orientation of
the micro-columns. In both cases, fingertips and visual cortex, the singularities are
typical singular points of non-oriented fields of straight lines, i.e. either tripods or
caps. Cf. figure (7.4).

The singularities of the orientation map are named pinwheels (cf. [30], [168]).
Around these points there exist polar coordinates (ρ ,θ ) on the cortical surface such
that the preferred orientation is constant when θ is constant.

Following the suggestion of Wolf and Geisel ( [238], [239]), we consider that
the pinwheels in V1 are given by the zeros of a smooth complex function ψ on an
Euclidean plane E that represents the visual plane in the cortex.

Remark that orientations (or non-oriented directions) differ from directions of
oriented lines in the oriented Euclidean plane, one orientation corresponding to two
directions. If we choose in E a given oriented direction δ , the orientations are mea-
sured by a real number modulo π and the directions are measured modulo 2π . Thus,
given the complex map ψ , we decide that the preferred orientation at the place (x,y)
of E is the argument of the complex number ψω(x,y) divided by two.
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Fig. 7.4 Palping/Looking. The curves can represent dermatoglyphics of fingers tips or a map
of preferred orientations in V 1.

The modulus of the functionψ can represent the selectivity level (see for instance
[153]).

Taking into account the variability of animals, the variability of their develop-
ments and the variability of the map under translation on the cortical surface, we
can assume a priori that ψ is a random Gaussian field (cf. [4]), of class C1, on R

2

with values in C. Then the real part ξ (x,y) and the imaginary part η(x,y) of ψ(x,y)
as well as their derivatives with respect to x and y are continuous Gaussian fields.
In accordance with the data and analysis presented by Niebur and Wörgötter, [154],
Wolf and Geisel, as Barbieri et al. have assumed that ψ is stationary and isotropic,
and has a simple spectral structure.

By the spectral theorem (cf. [4]) we can write the complex field as a sum of
random waves:

ψ(x,y) =
∫

dμ(−→K )Rω(
−→
K )ei

−→
K .−→r +iΦω (

−→
K ); (7.54)

where−→r denotes the vector (x,y), where
−→
K denotes a dual vector, and μ a positive

bounded measure(the spectral measure of ψ), where Φω (
−→
K ) denotes a family of

random variables with values in [0,2π ], two by two independent with uniform laws,
and with random moduli Rω (

−→
K ), of expectation 1.
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It is remarkable that this hypothesis alone should be sufficient to estimate the
density of pinwheels d2. Berry and Dennis (2000, [26]), using a Kac-Rice formula
(cf. [4]), found that d2 = 4π/K2 where K2/2 is the variance of any one of the deriva-
tives ξx,ξy,ηx,ηy.

Now, in the particular case of monochromatic waves, i.e. when μ is a uniform
probability on the circle ΓK of fixed radius K0 = 2π/Λ centered on 0 in the dual
space V ∗, Berry and Dennis proved

d2 =
π
Λ2 , (7.55)

This is a consequence of the relation K2 = K2
0 .

Note that a similar result was written as soon as 1998 in the supplementary doc-
ument of [238], but a proof appeared in [239] after [26].

Remarkably this formula corresponds to the spectacular experimental results of
Kaschube et al. ( [106]) (cf. also the discussion in Science 2012).

The fact thatψ is monochromatic is essential to get π . It is also probably essential
for defining a precise scale in the map.

We should also remark that the monochromaticity could also come from con-
straints on the spontaneous activity during development, having fixed wave length
in each brain region dependent on the wiring. Note that the scale is different for V1
and V2, and depends on the animal studied ( [106]).

Consequently we get the following statement:

Proposition 4.2.1: The density π of the pinwheels with respect to the scale Λ of
approximate translation invariance, that is experimentally observed by Kaschube et
al., is a corollary of the three hypotheses: 1) the fact that the map comes from the
argument of a Gaussian field, 2) the invariance of the probabilistic law of the field
by Euclidean displacements, 3) the monochromaticity.

Note that Niebur and Worgotter (1994, [154]) gave arguments for the concentra-
tion of the spectral measure on an annulus, that were based on an hypothesis of local
correlation. When the field is not purely monochromatic the density becomes lower
than π ( [238]).

Barbieri, Citti, Sanguinetti and Sarti ( [16]) have suggested that the formula for
ψ , in particular the monochromaticity, should be justified by a principle of mini-
mization of uncertainty for two operators analog to conjugate observable quantities
in Quantum Mechanics. This principle expresses the fact that the orientation map is
optimal for discriminating between two rigid motions; thus it is closely related to
Euclidean invariance.
We can say that in this case adaptation is the adaptation of the cortical map for
maximal invariance and information, and that it is realized at the scale of evolution,
probably using development scale for complete installation (cf. [20]).

Let us give now a presentation of this work of Barbieri, Citti, Sanguinetti and
Sarti:

We start with the structure of invariance; thus we consider the natural action of E(2)
on the Hilbert space of L2 complex functions on the plane R

2. Then we choose
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an irreducible factor H of this representation ( [222]). Note that this irreducibility
will appear later as the origin of the monochromaticity. The elements ψ of H give
do not give probability densities on the plane; in this case they give probability
laws on the momentum space, after Fourier transform. This is analogous to what
happens with the representation of translations where pure waves are localized in
frequency, not in space. However the unitarity of the representation of E(2) in H
allows for correlation computations: If Y is an Hermitian endomorphism of H, i.e.
a real observable, the mean of Y in the state ψ is well defined as μ = 〈ψ |Yψ〉, and
the variance of Y in the state ψ is well defined by

σ2 = ‖(Y − μ)ψ‖2. (7.56)

The uncertainty principle in this framework is a theorem (not very difficult to
prove, see [48], [195]) that states that, if X ,Y are two observables, and if [X ,Y ]
denotes as usual their commutator X ◦Y −Y ◦X , we have

σ(X)σ(Y )≥ 1
2
σ2([X ,Y ]). (7.57)

Moreover this inequality becomes an equality if and only if there exists a real num-
ber λ such that

(Y − μ(Y ))ψ = iλ (X− μ(X))ψ . (7.58)

Let Y1 the infinitesimal operator associated to the translation in the y direction, and
Y2 the infinitesimal operator associated to the rotation around (0,0); we denote by
ψ̂ the Fourier transform of ψ and by ̂Y1, ̂Y2 the operators conjugated by the Fourier
transformation. Then the uncertainty principle implies that ψ gives the minimum of
the product of variances of Y1 and Y2 in state ψ , if and only if there exists a real
constant λ and a complex constant ζ , such that ψ̂ satisfies:

(̂Y2− iλ ̂Y1)ψ̂ = ζψ̂ (7.59)

which in our case, is equivalent to the differential equation:

∂ψ̂
∂θ
− iλ (iK sinθ )ψ̂ = ζψ̂ , (7.60)

where the vector
−→
K in the dual of R2 is described in polar coordinates K exp(iθ ). We

consider this equation on the universal covering of the dual plane minus the origin
in the usual plane of Cartesian coordinates K,θ . From the Cauchy theorem in dis-
tributions spaces we get the general solution depending on an arbitrary distribution
C(K):

û(λ ,ζ )(R,θ ) =C(K)eλK cosθ+ζθ . (7.61)

But u must be periodic in θ so ζ should be written i.n with n ∈ Z. Thus the solution
is

ûn(R,θ ) =C(K)eλK cosθ+inθ . (7.62)
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From harmonic analysis, C(K) must be a bounded measure, otherwise ψ cannot
belong to a factor of the standard representation on the plane.

But the irreducibility of H implies that C(K) = δ (K = K0), cf. [222]. This con-
centration of C(K) is equivalent to the monochromaticity of un.

If we replace the operators Y1,Y2 by another infinitesimal translation and another
rotation respectively we obtain in place of un the function

un(x,y;α,a,b) =
∫ 2π

0
dθeλK cos(θ−α)−in(θ−α)eiAK cos(θ−φ)eirK cos(θ−ϕ). (7.63)

adapted to the direction exp(iα) and the rotation around
−→
A = (a,b) = Aexp(iφ),

i.e. the change of variables transforming z into a+ ib+ zexp(iα).
Now we should realize that there is no deterministic functionψ which is invariant

by displacement and which is at the same time optimal for discrimination between
translation and rotation. However, as we will see, if we look for a random field with
these properties there do exist solutions. In particular there are solutions obtained
by summing functions un over an infinity of centers and phases:

Let us take a sum of an infinite number of independent random functions
un(x,y;α,a,b) associated to random vectors

−→
A k(ω). After integration over α , this

gives:

Ψn(x,y;ω) =∑
k

Fn(K,k)
∫

dθeirK cos(θ−ϕ)−iAk(ω)K cos(θ−φk(ω)). (7.64)

If we choose the
−→
A k(ω) to be independent uniformly distributed in the plane and

the series Fn(K,k) to be in l2, the central limit theorem implies the existence of a
constant Cn such that the renormalized sum, obtained by dividing Fn by Cn, con-
verges to a Gaussian random field of class C1, which is stationary and isotropic,
then we can apply the results of Berry and Dennis on d2.

Remark: we could as well take a random sum

Ψn(x,y;ω) =∑
k

CnFn(K,k)
∫

dθeλkK cos(θ−αk(ω)eirK cos(θ−ϕ)−iAk(ω)K cos(θ−φk(ω)),

(7.65)
where the αk are uniformly distributed with values in [0,2π ].

Now consider the irreducible unitary representation associated to the number K;
it is given by:

TK(α,a,b)(û)(θ ) = eiAK cos(θ−φ)û(θ −α); (7.66)

where as before a+ ib = Aexp(iφ) (cf. [222], see Appendix 2).
If v1,v2 are two square integrable functions on the unit circle, the associated

coefficient is

〈v1|TK(α,a,b)v2〉=
∫ 2π

0
dθv1(θ )eiAK cos(θ−φ)v2(θ −α). (7.67)
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Thus un(x,y;α,a,b) is the coefficient of TK associated to v1(θ ) = exp(irK cos(θ −
ϕ)) and v2(θ ) = exp(λK cosθ − inθ ). The function v2 obtained when n = 0 is the
Von-Mises density v(θ ) = exp(λK cosθ ) .
The final function of the Barbieri et al. model is also a coefficient of TK :

Ψn(x,y;ω) = 〈Cn(K)TK(0;x,y)V (ω)〉; (7.68)

The Gaussian field itself is given by the stochastic integral:

Φ(reiϕ ;ω) =
1

2π

∫ 2π

0
C(K)eirK cos(θ−ϕ)dZθ (ω). (7.69)

It is also a coefficient of TK :

Proposition 4.2.2

Φ(x,y;ω) = 〈Cn(K)TK(0;x,y)
dZ
dθ

(ω)〉, (7.70)

Remark, by using the Fourier expansion of a Brownian bridge Z, this gives

Φ(x,y;ω) =
iC(K)

2π

∫ 2π

0
dθeirK cos(θ−ϕ) ∑

n∈Z×
ζn(ω)√

2π
einθ , (7.71)

and by commuting the sum and the integral, which is justified in L2(Ω) for each
(x,y) = r exp(iϕ), we get

Φ(x,y;ω) =C′(K) ∑
n∈Z×

ζn(ω)
∫ 2π

0
dθeirK cos(θ−ϕ)+inθ . (7.72)

By taking the new integration variable θ − ϕ , and using the definition of Bessel
functions of integer indexes we find

Φ(x,y;ω) =C”(K) ∑
n∈Z×

ζn(ω)einϕJn(rK). (7.73)

Note that J−n(z) = Jn(−z).
We must remark that monochromaticity appeared independently from the

uncertainty principle. However irreducibility of the representation of isometries is
a natural hypothesis from the invariance point of view: it gives more coherence to
the visual area (as do characters for simple cells), and it gives a precisely defined
scale of translational invariance ( [154]). Also, it is remarkable that uncertainty
minimization is compatible with irreducibility; that is simply because the principle
of uncertainty can be enunciated abstractly, in every unitary representation of the
Euclidean group.
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7.4.3 Gluing, Two Eyes and Two Hemispheres

(From unpublished works that grew around the thesis of Luc Foubert, September
27 in 2007; see [68]. These works reflect discussions with Jacques Droulez, Luc
Foubert, Nathalie Rochefort and Chantal Milleret; thanks to ACI NIC 2003-2007.)

The Mathematics we shall use rely on differential topology, probability and
stochastic processes. Here, the invariance that comes into play is topological.

A necessary condition for successful action of an animal in the world is the co-
herence of the information flow in its brain that controls end effectors. We claim
that geometrical co-variance facilitates this coherence (cf. Pellionisz and Llinas
( [166], [167]). In fact the information flow follows disconnected routes from the
sensory end organs to the internal loops and the end effectors, and co-variance helps
to accord these routes. The example below concerns coherence between the left and
right hemispheres, for treating visual information coming from the four hemi-retina.
Cf. Bullier in TVN [44], [160], Olavarria in [165], [69].

In general visual systems divide the image-time in several pieces, and re-
construct a global invariance from there; wonderful examples are offered by the
facet eye of the common fly, or by the eight eyes of its enemy the spider (cf. [120]).
In mammals the two eyes see different but overlapping parts of the world, and in
most of them each retina is divided vertically in two overlapping parts sending the
left and right world to the right and left hemisphere respectively. Then the visual
areas have to combine these four pieces of information for a unified perception.
The bundle of neurons that join the right and left primary visual areas is the corpus
callosum. Its activity must be conjugated with ocular dominance to exploit the four
pieces of information in an optimal way.

Most primary sensory areas respect the right-left symmetry, i.e. the two corre-
sponding hemispheres are covariant for right-left symmetry. Note this is not neces-
sarily true for higher visual areas, for instance in birds or humans, at the end of the
visual system, the para-hippocampal region is known to have different functions in
the left and right hemispheres.

The invariance structures in visual areas depend on the gluing of information
between the left and right eyes and the left and right hemispheres. For instance
translations of the image from right to left (or the converse) cannot be analyzed in
a co-variant way without correct prolongation across the central vertical meridian.
Remark that the neurons of each subarea analyze all components in the image-time:
position, duration, time and space frequency, energy flow, colors; therefore all these
elements are a priori concerned by the re-combination. However the gluing can fail
sometimes, as we will see on the example of the tupaia (cf. 4.4), because it can
appear conflicts between different kind of invariance; these conflicts depend on the
manner invariance is implemented. The example we will develop in subsection 4.4
is ON-OFF symmetry and orientation geometry, as in 4.2, in the case of tupaia. In
the following discussion we will consider the role of horizontal connections for the
construction of invariance, and the adaptation subtending invariance will depend on
development, and on rapid adult adaptation.
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We now introduce a general abstract model that we name random gluing, which
aims at explaining how several brain areas can combine divergent information to
preserve invariance structures. In this model we take as a guide the definition of
manifolds by charts and gluing, the charts being identifications of pieces with certain
models, and gluing being smooth maps between these models (cf. for instance [211]
for the concept of charts and manifolds), but in our case the charts represent neu-
ronal functions, that are input-output transformations, and the gluing maps are also
stochastic operators supported by neurons. Everything here is described with ran-
dom variables. The resulting inner model E of the external world will be described
by parameters that modulate the neuronal activities.

Precisely, we assume the existence of sets Ei; i∈ I and random operatorsΦi which
transforms the elements ϕi of Ei in neuronal activities ψi of brain areas Xi; i∈ I. (For
random processes and operators kernels see [52].) We also assume the existence of
random internal operators Φ ji, supported by sets of neurons Xji, transforming the
activity ψi in Xi into an activityΨji(ψi) in Xj. The neurons in Xi j can be inter-area
or intra-area, and they can be feed-forward or feed-back or horizontal; examples are
commissural axons going from one hemisphere to the other, or back projection from
V1 to LGN, or inside LGN or pulvinar, or internal to V1, from layer IV to III and II
to V . Here we mainly consider callosal neurons between hemispheres and binocular
neurons in each hemisphere.

The input φ ji in Xj (coming from Xi) produces an output ψ ji, which can again be
transformed by Xk j for k ∈ I into another input ϕk ji of the set Xk, and so on.

The compatibility axioms for gluing are the following:

1) for each pair (i, j) there exist subsets Ei j and E ji in Ei and E j respectively such
that for each input ϕi ∈ Ei j there exists a unique input ϕ j ∈ E ji denoted by ϕ j =
Φ ji(ϕi) such that Φi(ϕi) andΨi j(Φ j(ϕ j)) have the same probabilistic laws;
2) for each triple (i, j,k) we have Φi j ◦Φ jk = Φik on the subset Eik j in Eik which
corresponds to both Ei j and E jk.

In particular, for each pair (i, j), we have Φi j ◦Φ ji = Id.
These axioms are saying, that in law the activities represent a coherent world E

made by gluing Ei j with E ji for all the pairs Ei,E j. Thus they are in the same spirit
than the hypothesis of invariance in law of the orientation map.

Importantly, the satisfaction of these compatibility axioms require in general an
active behavior, for example the convergence of the two eyes in the case of binocu-
larity. In fact the preceding axioms can be understood as a particular case of adapta-
tion, requiring that internal connectionsΨji are able to reproduce some activations
created by direct stimuli. This is a form of simulation (cf. [27]).

From that we can formulate the two principles of random gluing:

(i) the compatibility axioms insure that the random variables corresponding to dif-
ferent roads of information are compatible in law when conditioned by the stimuli;
(ii) given (i), the optimality of the gluing process is obtained by maximizing the
joint information.
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When the axioms are satisfied each area Xi benefits from several compatible entries
ϕi,ϕi j , and so on, but the information on a parameter ei transmitted by the waves ψi

and ψi j and so on is a priori larger than the information transmitted by each process
alone, so that the gluing can augment the information on the common output.

The fundamental property of information that underlies this fact is the possible
negativity of the 3 by 3 information of three random variables. A,B,C (for instance
A = ψi, B = ψi j, C = ei):

I(A;B;C) = I(A;C)+ I(B;C)− I((A,B);C). (7.74)

(Cf. [47], and section 6, Appendix 1 below.)
In fact I(A;B;C) ≤ 0 is interpreted (in Physics and in Information theory) as a

positive synergy between the two observables A,B over C (cf. [139]). For instance,
when A and B are two independent variables, it is easy to see that I(A;B;C)≤ 0. This
is a refinement of the well known fact that the variance of a mean of independent
variables is half of the sum of the variances of the two variables.

This relative independence implies the apparently paradoxical fact, that some-
thing presented to the central vertical meridian in the visual sphere is more accu-
rately detected with the two open eyes than with only one. In fact it can be twice
better, and not only

√
2 times, i.e. the variance on the position can be divided by

four, and not only 2, because, for this central region, we have in the brain (at least)
four independent observations of the event: by two eyes and two hemispheres. For
optimality of observation, the four pathways have to coincide in law and to be sta-
tistically independent when conditioned by the stimulus.

With respect to the general model, the set I of indexes i has four elements
(R,R),(R,L),(L,R),(L,L), the first letter for the eye, right or left, the second for
the hemisphere, right or left, cf. figure (7.5). They can be considered as the vertexes
of a tetrahedron. The internal processes Φ ji between two eyes come from vertical
connections inside the cortex, and between the two hemispheres they come from
the callosal connections, joining a zone of one hemisphere to a corresponding zone
of the contralateral hemisphere. Note that the central vertical meridian is not repre-
sented in the cortex exactly at the boundary of V1 and V2, but there is a transition
zone, named T Z, extending the representation over the meridian in the ipsilateral
visual field. Let us name V1-proper the complement of TZ in V1, then there ex-
ist neurons sending their axons through the corpus callosum from V1-proper to TZ
(contralateral to ipsilateral) and other sending their axons from T Z to V1-proper
(ipsilateral to contralateral). See [160], [165].

The uni-ocular hypothesis of Olavarria says that the guiding callosal projections
connects regions that mainly prefer the same eye. If this is true we see four domi-
nant gluing processes: two interhemispheric between (R,R) and (R,L), or between
(L,L) and (L,R), and two intra-hemispheric between (R,R) and (L,R), or between
(L,L) and (L,R). Moreover in majority, callosal projecting neurons are not direct
projections of callosal neurons. This arrangement permit to satisfy the first com-
patibility axiom for the edges ((R,R),(R,L)), ((L,L),(L,R)), ((R,L),(L,L)) and
((R,R),(L,R)) in the tetrahedron. (They form a so called Petrie polygon in the
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Fig. 7.5 Gluing. Left: the visual pathway form retinae to V1 through LGN, with interhemi-
spheric connections through the corpus callosum. Remark the division of the optical nerve.
Right: the symbolic tetrahedron for gluing two eyes and two hemispheres.

tetrahedron.) As those edges form a closed loop, there is one higher relation with
four terms to satisfy:

Proposition 4.3.1: A necessary and sufficient condition for the coherent gluing
along all edges, faces and volume of the tetrahedron made by two eyes and two
hemispheres is

((R,L),(R,R),(L,R)) ∼ ((R,L),(L,L),(L,R)) (7.75)

In fact, as soon as this relation holds, all the others follow: between (R,R) and (L,L)
or between (R,L) and (L,R), we conform to one of the two adjacent faces. This way
of satisfying all the constraints by satisfying only one is optimal.

Remark that (7.75) relies on an agreement between the two ipsilateral pathways
(R,R) and (L,L) that develop later than contralateral pathways (R,L) and (L,R),
so a natural conjecture on the development of ipsilateral connections is that it is
constrained by this relation and callosal activity. It is a kind of learning, probably
supervised. This hypothesis is in accord with the role of the corpus callosum in the
installation of binocularity (cf. [62]).

Another application of the gluing process is the relation between stereoscopy and
disparity. Cf. the four articles written by Freeman, Parker, Schor and Blake in TVN.

Disparity measures the difference between the field kernels of the left eye and the
right eye. (The callosal connections contribute to disparity too, but we will neglect
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this effect now.) Note that the binocular fusion of information cannot be a static
absolute gluing: The eye muscles adapt perception to a certain depth, by conver-
gence; this makes the phase and orientation of the stimulus change (more than the
modulus of frequency). Consequently it is not completely meaningful to speak of an
absolute disparity: depending on the position of the eyes in their orbits the parame-
ters change.

The rotation between the two eyes gives two projections of a 3D object on two
planes, which theoretically can be used to re-construct the 3D object. This will give
a 3D kernel:

G(x− xa,y− ya,z− za, t)e
i(xξ+yη+zζ+tω+ϕ) (7.76)

As a product of Gaussian densities is a Gaussian density and the product of exponen-
tial is the exponential of the sum, the simplest attempt for an interaction of kernels
is provided by multiplication before rectification of separate receptive fields. Note
this multiplication concerns the spatial part, not necessarily the time part. We define
the projections

XR−Xa
R = AR(x− xa)+BR(y− ya)+CR(z− za), (7.77)

YR−Ya
R = DR(x− xa)+ER(y− ya)+FR(z− za), (7.78)

tR = t− tR
a , (7.79)

XL−Xa
L = AL(x− xa)+BL(y− ya)+CL(z− za)), (7.80)

YL−Ya
L = DL(x− xa)+EL(y− ya)+FL(z− za), (7.81)

tL = t− tL
a . (7.82)

Then for the binocular cell we define

G(x− xa,y− ya,z− za, t) =

= G(XR−Xa
R,YR−Ya

R , tR)G(XL−Xa
L ,YL−Ya

L , tL). (7.83)

And we get the following assertion:

Proposition 4.3.2: If the receptive field of a binocular cell is obtained by multipli-
cation of two independent uni-ocular linear receptive fields, then the preferred 3D
frequency vector is given as a function of the Euler angles between the two eyes by
the following linear formulas:

ξ = ARξR +ALξL +DRηR +DLηL, (7.84)

η = BRξR +BLξL +ERηR +ELηL, (7.85)

ζ =CRξR +CLξL +FRηR +FLηL. (7.86)

In these formulas, we have four fixed frequencies, expressing disparity when the
eyes are parallel, and twelve parameters coming from six independent parameters
of rotations of the two eyes. Remark that multiplication of the complex waves added
the phases of the uni-ocular RFs; a more reasonable model would be provided
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by multiplication of the real parts, giving two components of frequency, one for
addition of the phases and the other one for substraction. Also, observe that this
simple multiplication of linear kernels would give ω = ωR +ωL, which is difficult
to justify.

More elaborate models, based on the same idea of non-linear composition of two
linear fields were studied by Ohzawa, DeAngelis and Freeman; see [157], [158].

Experiments have put in evidence cortical maps for disparity (ex. in area 18),
it would be nice if, in cats or macaques, they subtend a grouping by similar 3D
orientation, or at least an invariance under 3D displacements.

Remark: many examples of subcortical gluing exist for the visual system. For in-
stance ( [58]) in frogs each retina sends axons to the contralateral tectum only, and
there is no direct connection between the two parts of the tectum, but the nucleus
isthmi (IN) connects both tectal lobes (T). It receives from ipsilateral tectal lobe and
projects bilaterally. Remark: this is not the case in most species, where projection
from IN to T is ipsilateral only, for example most fishes (exception for electric fish)
and reptiles (exception turtle) and birds. In birds binocular information is already
present in the thalamus. There is an homolog in mammals: a bilateral projection to
the superior colliculus SC from the parabigeminal nucleus ( [78] for cats, [15] for
monkeys).

7.4.4 The Strange Gluing of the Tupaia

(This model was discussed during the ACI NIM (2005-2009) and profited in
particular of discussions with Chantal Milleret and Nathalie Rochefort.)

The question was: why do the callosal connections of the Tupaia disregard
orientation preference?

Tupaia, or three shrew, is a strange animal, which was considered a long time the
direct ancestor of primate (cf. [63]). Although it has laterally situated eyes, by
turning the retina inside the orbits it has developed a fine frontal vision, with a large
binocular domain, apparently useful to detect and select its smaller prays. Thus
we have here a strong example of adaptation, enforced by anatomy. The tupaia
has precise callosal connections respecting retinotopy. Its area V1, including TZ
(transition zones) has superb orientation maps, which are respected by numerous
intra-hemispheric horizontal connections.

However amazingly Bosking et al. [32] have shown that the callosal connections
of the tupaia do not set up any correspondence between the orientation maps in the
two hemispheres.

To the contrary the cat has no problem setting up this correspondence (Rochefort
et al. [186]).
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We will show now that this apparent neglect of invariance results from the insis-
tence of the tupaia to maintain a separation between the ON and OFF pathways in
the cortex. This can be seen as the preservation of another structure of invariance,
the symmetry between ON and OFF, which is a discrete structure, and which was
abandoned in the cortex by other animals, like cats and monkeys. We will show
that this ON/OFF structure blocks the callosal gluing of the action of translations
and rotations on the representation of orientation, which is a continuous invariance
structure on internal parameters.

Because the discussion is somewhat involved we give a summary of the argumen-
tation: (1) In the tupaia the ON/OFF division implies a contralateral ocular domi-
nance in the layers II/III; (2) the orientation preference and its selectivity rely on
parallel arrangements of axons of ON and OFF cells and horizontal connections;
from (1) and (2) it results that (3) at the time callosal connections are selected the
orientation preference is already stabilized in V1 proper and in T Z, thus (4) it is too
difficult for a callosal connection to respect both position and orientation.

Remarks: (1) means that the discrete symmetry between ON/OFF enters in conflict
with the binocular symmetry in adult animals; (2) relies on the connectivity under-
lying the emergence of the internal representation of orientations; (3) underlines
the role of time in development; (4) underlines possible competitions between two
continuous representations, here retinotopy and orientation. We saw in section (on
pi), that orientation maps has an invariance in law under planar displacements, here
we see the difficulty to extend this invariance for both hemispheres and both ocular
dominations. This shows that evolution had to fight for invariance.

(1) The organization of the visual systems of mammalian species lies on common
principles, but it also shows a number of variations. Cf. Casagrande and Xu in TVN.
One of the common principles is the division ON/OFF of the visual information
flow. Certain bipolar cells in the retina specialize to be center-ON (excited by light
in the center of the RF), others specialize to be center-OFF (excited when light is
absent in the center of the RF) (cf. Nelson and Kolb in TVN), then two informa-
tion pathways take birth: the ganglion cells, sending axons out of the retina, are
principally of three types: ON-cells, excited when the intensity of light augments in
the center (of RF), OFF-cells excited when the intensity of light diminishes in the
center, and ON-OFF-cells excited when light augments or diminishes in the center.
The first two sorts emit spikes as long as the intensity does’nt change, but the third
one emits spikes only when intensity varies in time. Another division superposes
to the ON/OFF division: ganglion cells can be tonic (permanent spiking) or pha-
sic (transient spiking); in carnivores (as cat, dog, ferret or mink) this corresponds
to X and Y cells respectively. There exists a third class, named W of smaller and
slower neurons. Note the homology with primates is difficult to precise, because X
and Y are large and quick as are the magnocellular M cells, and W cells correspond
to parvocellular P cells, however P and M neurons of primates have physiological
properties which correspond to the characters of X and Y respectively, and the K
cells (koniocellular) of primates are similar to W cells.
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On the road between retina and cortex, in the dorsal lateral geniculate nucleus of
the thalamus (dLGN) of most species of mammals, there exist layers (less precise
in small rodents but already visible in rats; they are six in the carnivores and two
in the rats), which continue to segregate ON, OFF or ON-OFF, and phasic or tonic.
However these layers are disposed differently according to the species. For instance
the LGN of cat has six layers A, A1, CM, C1, C2, C3 (plus a MIN and a Wing),
cf. [165] ch.I, and Sherman and Guillery in TVN; the three first ones are dorsally
situated containing X and Y cells, the three others (collectively named CP) are more
ventrally situated and containing W cells. The layer A receives both X and Y from
the contralateral eye, it has a gradient from X outside-dorsal to Y inside-ventral, A1
is homolog to A for the ipsilateral eye, CM is contralateral but receives only Y, the
CPs are all of type W: C1 ipsilateral, C2 contralateral and C3 binocular. From the
ON/OFF point of view (cf. [35]), there is in A and A1 a gradient in the Y-region
from Y-ON outside-dorsal to Y-OFF inside-ventral, and CM is dominated by OFF.
However most specialists consider that the division ON, OFF in the LGN of cats
is subtle. In ferret or mink the division is more pronounced, there exist two sub-
layers in A and in A1, a dorsal dedicated to ON and a ventral dedicated to OFF. In
macaques (as in known old world monkeys and probably in humans, but not in new
world monkeys) from dorsal to ventral the layers are denoted from 6 to 1; observa-
tions in macaques show that the layer 6 is contralateral and ON, the 5 is ipsilateral
and ON, the 4 is contralateral and OFF, the 3 is ipsilateral and OFF, the 2 is is ip-
silateral and mixed ON-OFF, the 1 is is contralateral and mixed ON-OFF ( [144]).
The layers 1 and 2 receive M and K ganglion cells and project to superficial regions
of layer IV in V1.

In cats and monkeys, when the information flow arrives in the cortex, it is difficult
to observe a separation between ON and OFF; in ferrets it is possible to discern
patches which are OFF (cf. [249]). But the tree shrew decided to maintain a strict
division between ON and OFF in LGN and to maintain this division in the cortex. In
this animal species the layers are organized as in primates from 6 to 1, but only the 6
(which is contralateral) presents a mixture ON-OFF, the 5 is ipsilateral and OFF, the
4 is contralateral and OFF, the 3 is ipsilateral and ON, the 2 is is contralateral and
ON, the 1 is is ipsilateral and ON. Thus 4 behaves as in primates but 3, 2, 1 behave
at the opposite. The layer 5 is OFF in tree shrew but ON in monkey; the mixing in
6 replaces the mixing in 2 and 1.

The primary visual cortex of the tupai is divided in many layers and sub-layers
(cf. Fitzpatrick [66]); the most external sub-layer in the layer IV, which is named
IVa, receives LGN axons from 1 and 2 which are exclusively center-ON (remark in
the macaque the homologous sub-layer receives also from 1 and 2 but these layers
are mixed ON-OFF), the sub-layer IVb receives from 4 and 5 which are exclusively
OFF (in the macaque the homologous sub-layer receives also from 4 and 5 but 4 is
OFF and 5 is ON thus the ON/OFF information is mixed). Consequently the tupai
is ON in IVa and OFF in IVb. Moreover the up of IVa and the bottom of IVb are
binocular, but the middle (bottom of IVa and up of IVb) is uni-ocular, exclusively
contralateral; this is due to the fact that 2 and 4 are contralateral (which is not the
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case in macaque, where 4 is contra and 2 is ipsi). And it is only at this frontier
between IVa and IVb that ON and OFF are mixing in tupai’s V1. Cf. figure (7.6).

(2) The origin of columns of orientation preference, even if not fully understood,
takes advantage on alignments of center-ON projections and center-OFF projec-
tions, as it was suggested initially by Hubel and Wiesel. Mooser, Bosking and
Fitzpatrick have proved in 2004 ( [146]) that orientation preferences in V1 of the
tupai are established inside the cortex, not at the arrival from LGN. This result is
compatible with the separation of ON and OFF until there. In tupai, the alignments
of ON and OFF are formed by horizontal connections in V1; they can exist only
higher than IVa, in sub-layers IIIb and higher, where the neurons of IVa (which
are ON) and IVb (which are OFF) project. Note that certain neurons in IV of the
tupai are selective for orientation, but the layer IV doesn’t contain long horizontal
connection. Moreover orientation selectivity is stronger in layers II/III than in IV
( cf. [66]). The long distance connections joining similar orientation columns are
mostly present in II/IIIa,b (Bosking, Fitzpatrick et al. [33]et al. and before them
Rockland and Lund, [187]). Note these results confirmed the important role of
horizontal connections for orientation selectivity. (Remark in the tupai the patches
of axonal terminations are preferentially aligned with the preferred orientation
( [76]), which is not sure in the cat or the macaque ( [134]).)

Fig. 7.6 Folding. The six layers of V1 of tupaia, with its vertical projection, according to
Fitzpatrick [66]. Remark the functional folds, invariant by the connections.

To summarize what we wrote until now, the choices made by the evolution for
the tree shrew have implied two consequences: (1) in the layers II/III the cortex is
strongly dominated (if not exclusively) by the contralateral eye; (2) the orientation
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selectivity is mostly present in these layers II/III (or in the symmetric layers V/VI),
which are also the layers where intra-hemispheric connections exist.

(3) The corpus callosum has its own developmental rules. Kretz and Rager ( [117])
have studied this development in the tupai; they found that, from P7 to P9 few cal-
losal connections appear in layer III but more appear in layer VI (where there is
minor orientation selectivity at that time), from P10 to P13 supra-granular connec-
tions grow, their extension attains a maximum around P13, then between P13 and
P15, 95% of these connections disappear! After this date the configuration is almost
the same as the one in adult animals. Most of the connections now are belonging
to III, they have disappeared from VI after P15, but the installation was driven by
the connections in layer VI. Note that in the infra-granular layer VI the information
on the place in visual plane and the orientation selectivity are installed between P7
and P17. At the end most callosal connections rely V1 (or 17) with the transition
zone T Z (or 17/18), but there is also in tupai, contrarily to what happens in the cat
and monkey, many heterotopic connections from T Z to 17 or 18, covering all the
binocular field. Thus retinotopical gluing is also a little perturbed in tupaia.

In cats the construction period of callosal connections is much longer (cf. [145],
[5]), but the principle is the same: elimination of exuberant connections which ap-
pear during the first days after birth (see [93]). In the first days after birth, callosal
connections (or better varicosities) appear in all layers I,...,VI ( [62]); then during
two months these connections regress and subsist only between T Z and V1 or re-
ciprocally. The same happens for the rat. In the case of ferret, inside the binocular
region, which is exceptionally large (20 degrees in the contralateral field), most
neurons are binocular but the ocular dominance has a patchy structure. The callosal
connections are also patchy ( [187]). There are more infra-granular callosal connec-
tions in ferrets than in cats ( [36]). In old world monkeys (as us) callosal connections
are formed before birth ( [108]). Note this is an elegant way to solve the gluing prob-
lem: make connections before you choose preferences for position and orientation,
and use these connections for coherence of preferences. Monkeys do that by estab-
lishing callosal connections before birth, and cats by forming the ipsilateral map by
copying the contralateral one through callosal connections with T Z.

(4) Thus, in V1 of the tupaia the inter-hemispheric connections connect cells al-
ready dedicated to a well defined place, respecting visuotopy (cf. Olavarria [160]),
however all these cells at that time have already chosen their preferred orientation,
thus the callosal connections have few chance to respect orientation if it respect
position.

The fact that orientation preference was prematurely determined is due to the
dominance of the area by the contralateral eye, which results from the logic of the
ON/OFF repartition.

So the impossibility of adaptation of connection for respecting orientation
implies a defect of invariance.

(5) Supplementary discussion: we examine now the link between what precedes and
the hypothesis that callosal connections are mainly driven by information coming
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from one eye. This driving is the uni-ocular hypothesis of Olavarria that we dis-
cussed in section 4.3.

At first sight this hypothesis seems to contradict the well established fact that
horizontal connections respecting the orientation preference exist between neurons
which different ocular dominance as frequently as between neurons with the same
ocular dominance (cf. [165]). However, in all species we are considering, the orien-
tation maps have began to form before the eyes are opening almost without visual
experience (cf. [233]), thus orientation maps begin to form in a cortex which is
dominated by the contralateral eye. Then the orientation map for the columns that
are dominated by the ipsilateral eye have to follow the contralateral map, extending
it by continuity, with a relative freedom for variability. Note this second map can
become dominant after occlusion of the contralateral eye.

A convincing explanation for the reinforcement of a synapse is the idea of Hebb,
that the synapse becomes stronger when the postsynaptic neuron is excited after
the presynaptic one was excited. According to Löwel and Singer, [132], cats which
undergone a unilateral resection of the medial rectus muscle between age P15 and
P21, are developing long range connections between domains which are controlled
by the same eye, and according to Schmidt et al. [198], in cats with strabismus,
the selectivity to orientation is not modified but the long range connections connect
domains with similar orientation preference.

The biochemical and genetical processes, involving cadherins, NMDA-NRs,
CREB, PKA,..., which are responsible of the stabilization of intra-cortical synapses,
are changing their expression with developmental time; the fact that horizontal con-
nections between opposite eyes arrive later than the ones between the same eye
could be a sufficient reason for a different chemical expression, not relying on coin-
cidence.

Before eye opening there exists a cortical activity which is modulated by vi-
sual stimuli and by natural motions ( [6]). Spontaneous activity happens in the
retina, in LGN and in the cortex (cf. [165]). For instance, in the LGN, it exist inter-
hemispheric correlations of activities (cf. [231]), however most of these correlations
should imply uni-ocular correlations and the pathway with same preference ON or
OFF. Importantly there exists a difference of activity that distinguishes between con-
tralateral and ipsilateral domination: there is more correlation for neurons informed
by the same eye, and even more in the case of contralateral eye, and they can group
ON or OFF separately or ON and OFF together; this activity can contribute to the
formation of orientation columns. After eye opening exchanges of information exist
between neurons of different ocular dominance: an ipsilateral map extends the con-
tralateral map, and hetero-ocular connections happen.

According to Weliky and Katz [230], studying the development of the ferret,
the horizontal connections begin to form at the moment where eyes are opening,
at a time where the contralateral eye dominates. After eyes opening the orientation
maps development becomes dependent on visual experience (NMDA regulation and
CREB expression).

In tupaias, the layers II/III in V1 are monocular, thus intra-hemispheric horizontal
connections are necessarily contralateral-contralateral, and inter-hemispheric con-
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nections are necessarily contralateral-ipsilateral, consequently they cannot be homo-
ocular and going from II/II to II/III. Casagrande and Condo ( [43]) have shown that,
after unilateral enucleation at birth, the LGN layers of the tupaia controlled by the
resting eye are preserved, but in the cat they are not; this indicates that the visual
system of the tupaia is more uni-ocularly driven than the visual system of the cat.
In cats and monkeys interaction between eye’s domination appears important for
normal development.

7.5 Higher Levels of Invariance

7.5.1 General Covariance in V1

(Prepared during ACI NIM 2005-2009, profited of many discussions with Jean Peti-
tot and Pierre Baudot, and in other contexts with Jean-Pierre Nadal and Alessandro
Sarti.)

Our main hypothesis about V1 is the presence of a continuous invariance, com-
patible with topological invariance. This invariance, at the opposite of a global in-
variance (as it happens for example in the fusiform gyrus for faces), has a local
character: it postulates that stimuli which can be deduced one from each other by
smooth deformations generate equivalent activities of different assemblies. For in-
stance, it is known that a static line of dots L with convenient orientations generate
a rebound activity s �→ A(s,L) of the neurons in V1; cf. [111]. And there is no evi-
dence that in V1 straight lines give more activation than curved lines, with not too
large curvature. Then our hypothesis is that, if ϕ is a sufficiently small and suffi-
ciently smooth homeomorphism of the visual plane, in particular not disturbing too
much the curvature, there exists a bijective remapping T (ϕ) of the V 1 subunits such
that the activity s �→ A(s,ϕ(L)) in V1 which is generated by the presentation of the
line ϕ(L), is (almost) equal to the activity s �→ A(T (ϕ)−1(s),L). The term ”almost”
here can be understood in a probabilistic sense, in accord with models by random
processes.

The movement of a dots line Lt (where t denotes the time coordinate) generates
an activity in time At , which cannot in general be deduced by just adding the above
functions A(Lt) (cf. [107]); our hypothesis in this case is the existence for any family
of small deformations ϕt in the visual plane, of a family of bijections Tt such that
for almost all s we get At(Tt(s),ϕt(Lt )) = At(s,Lt ). Another example is given by a
sequence in time, i.e. the dots are not presented all together but one after each other
in a certain order (cf. [129]). Here it is more convenient to speak of co-variance than
invariance.

In V1 we find an approximate symplectic co-variance; it correspond to the sym-
plectic group in dimension 2(2D+ 1) acting on the co-tangent space of the product
of the visual plane by the time axis, and it is extended to 2(3D+ 1) if we take in
account disparity. The parameters that are concerned are position and frequencies,
spatial and temporal; they form a vector in a space of dimension 8. These param-
eters are almost uniformly distributed; in fact there are two populations, one for
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for high spatial frequency and low temporal frequency, another one for the oppo-
site. But this symplectic repartition of receptive fields is not sufficient to explain
the diffeomorphism invariance; we need for that an organization of ensembles, for
instance a convenient map of preferences, and horizontal connections, lateral ex-
changes, non-linear excitation-inhibition, loops with the Thalamus and feed-back
return from the cortex. See Bullier and Van Essen in TVN. For instance V2 activity
commands illusory lines that can appear in V1. Cf. [123]. Remark that an orienta-
tion maps seems to be unnecessary for high discrimination, as shows the example
of the squirrel (cf. [219]).

Schematically, one can say that V1 (and probably V2) has a continuous horizon
for its functional invariance, and is aimed to construct a sort of differential topol-
ogy and differential geometry by itself, taking in account information of other areas.
This doesn’t exclude elaborate individual responses of neurons in V1, whom recep-
tive field take in account complex characteristics of natural images. Cf. P.Baudot
results ( [19]). To the contrary, a high dimensional covariance allows the computa-
tion of higher correlations (or higher mutual information) in images, for recognition
of complex forms. From its differential topology and differential geometry the area
V1 contributes to the recognition of discrete invariants.

The areas V1,V2 can be seen as vectors of operators acting on image-movements
(and transforming it into spikes fields), thus the more adapted pseudo-group for
them is not the pseudo-group of diffeomorphisms but its extension, the pseudo-
group of symplectomorphisms , acting on the cotangent space over space-time, by
respecting the natural symplectic structure (cf. [207], [228]). This is also the natural
symmetry of light rays bundles. As we suggested in 3.1 pseudo-differential opera-
tors represent function of assemblies in V1,V2, and the natural (pseudo)-group of
symmetry for them is made by symplectomorphisms ( [228]). In certain problems a
more natural choice could be the Contact transformations, i.e. homogeneous sym-
plectomorphisms; in this case the role of space is played by contact elements, i.e.
pairs of a point and a co-direction.

This general covariance in V 1 could also be extended to color information, a good
candidate for that being a pseudo-group of Gauge transformations over the symplec-
tomorphisms pseudo-group. Note this pseudo-group can be seen as a pseudo-group
of transformations that respect a Poisson structure. Cf. [229].

7.5.2 Projective Invariance in MT+

The invariance in areas MT,MST , which are interested by movements in the image,
is probably of high dimension, as in V1,V2; however in these areas it appears also
a finite dimensional invariance given by projective deformations that we want to
describe. It would be interesting to look at the possibility of a localization of this
projective geometry in MT or MST .

A simple model of linear summation of non-linear activities of V1, followed by
a static non-linearity is sufficient to explain how receptive fields in MT of primates
detect the speed of objects with respect to the retina (see [193]).
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Neurons in the MT complex (MT , MST ) integrate the optic flow.
Our presentation of the optic flow is inspired by Koenderink and VanDoorn [112],

[115] and Ken-Ichi Kanatani (IEEE 1988) [103].
We consider the Euclidean space E =R

3, I3 denotes the canonical frame, and G the
group of displacements (direct isometries).

The movement of an orthonormal frame is described by a smooth map R : I→G,
where I is an open interval in R. We note Ot the center of the moving frame, and
ρ(t) in SO3 the linear part of R(t). It is easy to show that the derivative of R in t0 ∈ I
can be written

DR(t0).s = sV (t0)+ sA(t0)ρ(t0), (7.87)

where V (t0) is a 3D vector, named the linear derivative of R en t0 and where A(t0)
is a 3× 3 antisymmetric matrix, named the angular speed of R in t0.

We introduce the 3D vectorΩ whose components in the fixed frame I3 are Ω1 =
−a23,Ω2 =+a13,Ω3 =−a12; then for every X ∈ R

3 we have:

A.X =Ω ×X , (7.88)

where the crux denotes the usual vector product.
This vector Ω is named the angular speed vector (viewed in the fixed frame).
An orthonormal base change P that transforms A into A′ = PAtP = PAP−1

changesΩ into Ω ′ = PΩ .
Let Q be a fixed point in E; denote by q(t) the trajectory of Q in the moving

frame R; we get
dq
dt

(t) =−v(t)−ω(t)× q(t); (7.89)

where R(t)v(t) =V (t) and ρ(t)ω(t) =Ω(t).

Proof: we have q(t) = R(t)−1Q, thus

dq
dt

(t0) =−R(t)−1DR(t)q(t) (7.90)

=−R−1(V +Aρq) (7.91)

=−R−1V −ρ−1Aρ . (7.92)

We finish by using the correspondence between A and Ω .
When Q is moving in I3, its trajectory Q(t) has a speed Q̇(t); we obtain

∂Q
dt

(t) =−V (t)+ Q̇(t)−Ω(t)×Q(t). (7.93)

This gives in the moving frame

dq
dt

(t) =−v(t)+R−1(t)Q̇(t)−ω(t)× q(t). (7.94)

We will write vq = v−R−1Q̇.
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We assume Q �= Ot = R(t)(O), then we define the proximity μ = 1/‖q‖, and
the visual point σ = μq. The norm of this vector is equal to 1, we consider it as a
moving point in the unit sphere Σ of Rt , it represents how appears Q for a cyclopean
observer in Ot with eye moving like ρ(t) with respect to the fixed reference frame I3.

Proposition 5.2.1: in the moving frame we have

dσ
dt

(t) = μ(t)(vq(t)×σ(t))×σ(t)−ω(t)×σ(t). (7.95)

Proof: the derivative of ‖q‖ is μq.q̇; then the derivative of μ is−μ3q.q̇, consequently

dσ
dt

=−μ3(q.q̇)q+ μ q̇ (7.96)

= μ((−σ .q̇)σ +(σ .σ)q̇). (7.97)

However, for any triple of vectors (a,b,c) we have

(a× b)× c= (a.c)b− (b.c)a. (7.98)

Thus

dσ
dt

= μ(σ × q̇)×σ (7.99)

= μ((vq +ω× q)×σ)×σ (7.100)

= μ(vq×σ)×σ+((ω×σ)×σ)×σ (7.101)

= μ(vq×σ)×σ−ω×σ . (7.102)

Observe that vq×σ)×σ is the projection of vq on the tangent plane of Σ .
By considering a point Q in each direction σ of Σ the formula of prop.1 gives a

vector field Φ , depending on time, tangent to the sphere Σ :

Φ(σ) = μ(σ)(v(σ)×σ)×σ)−ω×σ . (7.103)

It is this vector field which is called the optic flow.
In general Φ has discontinuities along the apparent contour of visible surfaces,

then it cannot be integrated in transformations of Σ . But we will consider a natural
case where where Φ is of class C1.
Remark that to compute with Φ it is better to project Σ on a plane attached to the
moving frame. This corresponds to the usual rules of optics: the gaze is directed
along e3 and the image is interpreted as a projection from Ot on a plane perpendic-
ular to e3.

Let ρ be the distance from Ot to this plane, and (x,y) the Cartesian coordinates of
the image of σ in a frame e1,e2 (fixed with respect to R(t)I3). Let us note v1,v2,v3

and ω1,ω2,ω3 the coordinates of v and ω respectively. If the coordinates of σ in
R(t)I3) are (x1,x2,x3), we have
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x = ρ
x1

x3
, y = ρ

x2

x3
. (7.104)

Then
dx
dt

=
ρ
x3

dx1

dt
− x

x3

dx3

dt
,

dy
dt

=
ρ
x3

dx2

dt
− y

x3

dx3

dt
. (7.105)

On another side Φ can be written in the coordinates xk as follows:

dx1

dt
= μ [(v.σ)x1− v1]−ω2x3 +ω3x2, (7.106)

dx2

dt
= μ [(v.σ)x2− v2]−ω3x1 +ω1x3, (7.107)

dx3

dt
= μ [(v.σ)x3− v3]−ω1x2 +ω2x1. (7.108)

Thus

dx
dt

= μ [(v.σ)x−ρ v1

x3
]−ρω2+ω3y (7.109)

− xμ [(v.σ)− v3

x3
]+

1
ρ
ω1xy− 1

ρ
ω2x2 (7.110)

dy
dt

= μ [(v.σ)y−ρ v2

x3
]+ρω1+ω3x (7.111)

− yμ [(v.σ)− v3

x3
]+

1
ρ
ω1y2− 1

ρ
ω2xy. (7.112)

or in other terms

dx
dt

= μ
xv3−ρv1

x3
−ρω2 +ω3y+

x
ρ
(ω1y−ω2x), (7.113)

dy
dt

= μ
yv3−ρv2

x3
+ρω1+ω3x+

y
ρ
(ω1y−ω2x). (7.114)

Here x3 is given by the formula

1
x3

=
√

1+ x2 + y2, (7.115)

which says that σ has norm 1.
A first use of the registering of an optic is for estimating the distance of the

subject (assimilated to Ot ) to objects in the space E . We simplify by considering
only N points Qi.

Theorem 5.2.1: Assume N ≥ 6, all σi distinct, and Ot does’nt displace in the direc-
tion of at least 6 of the Qi; then the optic flow equations allows to determine v,ω
and all the μi such that Ot does’nt displace in the direction of Qi.

This an application of the implicit function theorem.
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Now we consider the projective invariance hidden in the optic flow. For that pur-
pose we look at points Q that belong to a fixed plane Π of the space E . Then, for
each time, fro each point σ in Σ , the proximity μ(σ) is equal to the quotient δ (σ)/δ
of the distance δ (σ) of Ot to the plane Π(σ) that is parallel to Π containing σ , by
the distance δ from Ot to Π . (Just apply the Thalès theorem.)

But δ (σ) is a linear combination of the coordinates xk:

δ (σ) = αx1 +βx2 + γx3. (7.116)

By combining with the above equation of Φ in the coordinates x,y, this gives

dx
dt

=
1
δ
(xv3−ρv1)(αx+βx+ γ)−ρω2+ω3y+

x
ρ
(ω1y−ω2x), (7.117)

dy
dt

=
1
δ
(yv3−ρv2)(αx+βx+ γ)+ρω1+ω3x+

y
ρ
(ω1y−ω2x). (7.118)

We obtain an element of the eight dimensional family of vector fields that can be
written

dx
dt

= u+Ax+By+ x(Ex+Fy) (7.119)

dy
dt

= v+Cx+Dy+ y(Ex+Fy). (7.120)

This family has a simple geometrical interpretation: the projective group PGL(E)
(that is the quotient of the linear group GL(E) by the scalar multiplications) acts on
the set P(E) of straight lines through Ot in E . This set is a (non-orientable) manifold
of dimension 2. If we consider the coordinates x1,x2,x3 on E , an open set U3 of P(E)
is formed by the lines that meet the plane x3 = ρ , where x,y are coordinates. Every
matrix in SL3(R) (of determinant equal to 1) sufficiently near the identity can be
written exp(X) where X has trace zero, i.e. X ∈ sl3(R). Let us define

X =

⎛

⎝

a b c
d e f
g h k

⎞

⎠ (7.121)

The fact that X ∈ sl3(R) is expressed by k =−a− e.

Proposition 5.2.2: The derivative d(exp(εX))/dt in ε = 0 induces in U3 a vector
field of the preceding form.

Proof:

dx
dε
|(ε = 0) =

ρ
x3

dx1

dε
(0)− ρx1

x2
3

dx3

dε
(0) (7.122)

= ρ(ax+ by+ c)− 1
ρ

x(gx+ hy+ k). (7.123)
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dy
dε
|(ε = 0) =

ρ
x3

dx2

dε
(0)− ρx2

x2
3

dx3

dε
(0) (7.124)

= ρ(dx+ ey+ f )− 1
ρ

y(gx+ hy+ k). (7.125)

Remark: by taking in account the relation k =−a−e, and introducing ν = ρ+ρ−1,
we get

dx
dε

= ρc+(νa+ρe)x+ρby− x
ρ
(gx+ hy) (7.126)

dy
dε

= ρ f +ρdx+(ρa+νe)y− y
ρ
(gx+ hy) (7.127)

The above proposition tells that the optic flow for a fixed plane is the generator of a
projective transformation.

An orthonormal change of frame P transforms X ∈ sl3(R) into PXP−1 = PXtP;
this defines a linear action of SO3 on sl3, that is a vector space of dimension 8. This
linear representation is the direct sum of two irreducible representations, the first
one, of dimension 3, on the antisymmetric matrices, identified to the rotation speed
vectorω , the second one, of dimension 5, on the vector space of symmetric matrices
with trace zero. We will note them respectively E3 and E5, and we will denote by a
and B respectively their generic elements.

We also introduce the five following functions: f (a) = ‖a‖2, F(B) = ‖B‖2 =
Tr(B2), G(B) = Tr(B3), g(a,B) = a.Ba, h(a,B) = a.B2a. These functions are
smooth and invariant under the action of SO3. We will note ϕ = ( f ,F,G,g,h) the
map from sl3 to R

5.
Note there is a natural prolongation of the action of SO3 on E3⊕E5 to the full or-

thogonal group O3; this prolongation is the natural action of O3 on E3 and the action
by conjugation on E5; only this second one comes from the action by conjugation
of O3 on sl3. It is easy to show that O3 acts transitively on each fiber of the map ϕ
from sl3 to R

5. We deduce that all the fibers of ϕ are smooth submanifolds of sl3,
because they identify to homogeneous spaces O3/H. In general this manifold has
dimension 3. However there are points in sl3 where ϕ is singular (i.e. its derivative
is not surjective), for instance when a = 0 and B has a symmetry of revolution, in
this case the orbit is a 2D sphere, or when a = B = 0 where the orbit reduces to a
point.

Let W be the set of elements a,B of sl3 such that a,Ba,B2a are linearly inde-
pendent in R

3, and that the principal values λ1,λ2,λ3 of B are two by two distinct
and non-zero; then W is an open and dense subset of sl3, invariant under the action
of SO3, and in this open set all points are regular for ϕ = ( f ,F,G,g,h), thus the
application ϕ from W into R

5 defines a fibration.
Remark that in W there is a discrete invariant for the action of SO3 in addition

of the five functions f ,g,h,F,G; this is the orientation of E defined by the frame
a,Ba,B2a. This defines the two connected components of W . The existence of this
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discrete invariant implies that the fibers of ϕ are not orbits under SO3, and that
there exists smooth functions that are invariant under SO3 that are not functions
of f ,g,h,F,G. However it is easy to prove from restriction to W the following result:

Theorem 5.2.2: the smooth functions that are invariant under the action of O3 are
the C∞ function of the five fundamental invariant f ,g,h,F,G.

All that connects nicely invariance in vision with classical invariant theory (cf.
[232]).

7.5.3 Examples of Geometric Cells

The perception of position in space is organized by the group G of Euclidean dis-
placements. The geometric cells for this geometry are cells that gives an information
in a space G/H for a subgroup H of G (see Appendix 1). This sub-group describes
the changes in rigid spatial frames that let the cell indifferent.

The examples below are issued from studies in the para-hippocampal system
of rats, and rats have developed in their para-hippocampal region a system that is
adapted to horizontal displacements thus we will restrict ourselves to the group
formed by displacements in the horizontal plane, and we denote by G this group.
However primates, in particular humans, possess in the same region cells adapted to
displacements in the visual plane (Rolls, [189], and Eckstrom, Fried, cf. [148]), and
that bats have a complete 3D system ( [247]).

The para-hippocampal region stays at the end of the temporal visual pathway. It
also belongs to the limbic system, containing the entorhinal cortex (EC), the perirhi-
nal cortex (PRC) and nuclei of Amygdala and Septum. It is a set of areas implicated
in sentiment expression.

A very nice reference for this section is [10].
The first invariance that was proved experimentally is place invariance: the place

cells (PCs) were discovered by O’Keeefe and Dostrowski in 1971, in the Hippocam-
pus proper, CA1, CA3 et DG (dentate gyrus). Such cells exist also in the Subiculum,
but apparently not in the entorhinal cortex (EC). Here the group H of a cell depends
on a place P in the horizontal plane E , it is the subgroup of rotations around P.
The quotient G/H(P) identifies canonically with E , but this plane is marked with a
point. All the groups H(P) are conjugated in G. The translation from P to P′ give a
canonical isomorphism from H(P) to H(P′).

The second system is the direction invariance; here the indifference is the sub-
group T of translations. Cells with this invariance are called head direction cells
(HDCs), they were found first by Jim Ranck in 1985. Then Taube, Muller and Ranck
(1990) conducted a systematic study of HDCs. Such cells exist in the anterior dorsal
nucleus of the Thalamus (ADN), the lateral mamillary nucleus (LMN), the medial
dorsal entorhinal cortex (dMEC), in the parasbiculum (PaS) and the postsubiculum
(PoS), which is part of the presubiculum (PS). A node for the HDC formation is
the tegmental dorsal nucleus (DTN). Remarkably this node is at the intersection or
three rods of information: a) on proper movement (Habenula), b) on vestibular flow
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(medial nucleus), c) on visual information (via PoS). All the HDCs share the same
indifference group. The information quotient G/T is the circle of oriented directions
of the head in the horizontal plane; it is a group isomorphic to R/2πZ. Then this
case is Galoisian: the information itself forms a group. We suggest that this is the
reason why direction remapping is coherent, contrarily to the case of place cells:
when HDCs change their preferences, in general they change by the same angle
(there are exception in ambiguous cases where part of the population changes and
part does’nt), but when PCs change their preferences, in general there is no relation
between the new places of different cells.

Grid invariance is stranger; it was discovered in 2005 in dMEC by Torkel Haft-
ing et al. [80] in the laboratory of M-B.Moser and E.Moser in Trondheim. They
are also present in PaS and PoS. In this case the indifference groups of the grid
cells (GCs) are discrete subgroups of G, they are the groups HΓ of direct isometries
that fix an equilateral lattice Γ . The group HΓ is generated by a discrete subgroup
of translations TΓ and by the rotations whose angle are integer multiples of 2π/3
around the vertexes of Γ . The Galois information G/GΓ is a smooth oriented closed
3D manifold that fibers over a two dimensional torus of phases T/TΓ . Recent data
indicate that the directions in TΓ are the same for all GCs in the same hemisphere;
these directions undergo a coherent remapping after change in the environment, for
instance rotations of visual cues, but the phases change incoherently like places for
PCs.

Frame invariance also exists in the dMEC, PaS and PoS; in this case indifference
is reduced to the identity Id of G. The corresponding cells have a preferred place
and a preferred direction. There are also cells which prefer a grid and a direction;
we could call them Toric cells because the information content of the population
coincide with a torus T/TΓ ; for this population the life plane is periodic. (See [10].)

Topological invariance is represented by cells coding for coins, boundaries or
open sets; they were discovered by Trygve Solstad et al. [206], also in Trondheim
with M-B.Moser and E.Moser, in dMEC, PaS, PS. In this case we cannot continue to
work with the group of displacements as Galois group, we must start with the group
G of diffeomorphisms of the plane, and the indifference groups H are subgroups
that fix topological subsets, like coins or boundaries. Note the additional symmetry
ON−OFF for cells active on a boundary and cells active in the complementary set
of this boundary.

7.5.4 View-Invariant Recognition, Manifolds of Sections

In TVN ( [44]), many papers are concerned with this topic, for instance R.F. Hess
(p. 1043), C.E. Connor (p. 1080), E.T. Rolls (p. 11665), N. Kanwisher (p. 1179), L.
Spillman and W.H. Ehrenstein (p.1573), M. Riesenhuber and T. Poggio (p. 1640),
W. Singer (p. 1665), C. Koch and F. Crick (p. 1682).

A fundamental property of visual processing and visual perception is the exis-
tence of invariant recognition (cf. Bienenstock and Von der Malsburg [29], Wallis,
Rolls and Foldiak [226], Lowe [130], Riesenhuber and Poggio [185], Masquelier
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and Thorpe [138], ...): different views of an object (or a person or an event), give
rise to the perception of this object as a unit (or this person or this event respec-
tively), its identification as a specific entity. A related property is the recognition of
similarities between forms or objects. In particular in humans the performances in
recognition and detection of similarities are exceptionally good. A lot of researches
focused on modeling these invariance properties; the proposed mechanisms were
frequently based on temporal association (Foldiak), synchrony (Singer), or poly-
chrony (Tallon-Baudry), ..., cf. the collection edited by Von der Malsburg, Phillips
and Singer [224]. A multiplicity of factors are contributing here: compensation,
illusions, learning and so on. Most studies insisted on hierarchical processing (a
gradual emergence of view-invariant representation, by successive network’s com-
putations). Other studies insisted on the structure that prepares invariance in the
visual areas, and the variety of forms of invariance beyond (cf. in particular Rolls
and Stringer [191], Cadieu, Poggio et al. [41] and Lowe [130]).

In the following paragraphs we try to join our schema of (co-homological) adap-
tation (2.4) with the remarks we have made on general co-variance in V1, for
proposing a model of what could be a ”stable image” in the brain, and how it could
refer to ”stable objects”. Note we assume that ”images” are nothing else than collec-
tions of brain cells activities in visual (or multisensory) areas, and that the relations
of ”images” to ”objects” are co-activations with other brain areas, in the sense of
temporal association sequences, or at least coherent modulation.

The primary visual areas V 1,V2 are the reservoir of all images. It is established
that even for visual illusions, the primary areas become active. For poor stimuli,
the cells in V1,V2 behave according to a small number of parameters, but these
parameters are non-linearly modulated by horizontal and feedback connections,
taking in account larger part of the image. For complex stimuli, as natural images
in motion, the cells in V1,V2 behave differently, detecting more complex charac-
teristics in the image (cf. [19]). Thus, collectively, the primary activity is adapted
to a high dimensional invariance (practically infinite) that we have named general
covariance. However, the inner representation of a ”stable image of the world
around” seems to lack in V1,V2. In fact this representation can correspond to the
joint activity of higher visual areas, even without units cells for a total view. Note
that every image must be the ”image of something”. We suggest that the ”things”
in the image correspond to ”vanishing cycles”, in higher visual areas, in the sense
of the internal spaces of 2.4, equivalence classes of attractors combinations. The
following paragraphs try to further formalize this suggestion.

1) Let M denotes the manifold of functional parameters of all the cells in V1,V2.
Remind the parameters of each individual cell form an homogeneous space G/H,
for instance the product of the color space with the co-tangent space of a 3D model
vector space; the color space is homogeneous for the affine group (cf. 3), and
the co-tangent spaces made by the frequencies, temporal or spatial and position
(retinotopy), is homogeneous for the symplectic group of light rays; then the group
G can be taken as the product of these two groups. By retinotopy and disparity
(managing stereoscopic depth for binocular cells), the manifold M is fibered over
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the 3D ambient space E . This allows a mirror in the brain of localization of the
images and the objects in the world (cf. [19]). The trace of an image in V 1,V2 is
a mapping from V1,V2 to M, i.e. an element of the space of sections M (cf. 2.4).
By general co-variance the spaces of categories I and the space of contexts E for
V1,V2 are infinite dimensional in V1,V2. An example of element in I is a curved
contour.

2) Let A be a higher area, for instance V3,V4,V5,V6 or V8 or IT in the inferotem-
poral cortex. The cells in A have in general large receptive fields allowing them to
integrate correlations. Our hypothesis is that these cells can adapt their activity to
a specific global invariance structure described by a finite dimensional Lie groups.
For example this group can be the Euclidean group in area OT , the conformal group
in V 4,V8, IT or the projective group in V5,MT,MST . To express this hypothesis,
we introduce the sets MA that represent parameters of the activity of A (cf. 2.4). The
vector space VA describes the degrees of freedom of the response of the area. We
also introduce the sets Ia of characteristic cycles of dynamics and their product IA.
A priori the activities are functions on the product of MA×IA×VA, which is infi-
nite dimensional. However our hypothesis will ask that these activities depend only
on the projection to a finite dimensional quotient M′A×I ′A×V ′A. Moreover we will
require the existence of a Lie group G′A acting on M′A, I ′A and V ′A, and of a period
mapping ˜P′ satisfying the equation of adaptation (7.9) with respect to this group.
In particular the hypothesis implies a dimensional reduction in each higher visual
area. Remark that, to get sub-sets M′A,I

′
A,V

′
A and residual symmetries G′A, a nat-

ural procedure would consist to introduce systems of differential equations on MA

and IA, such that M′A, I ′A and V ′A are their solutions. These systems should express
”association rules” in A.

Note that reduction of invariance to a Lie group G′A can be accompanied by a
large indifference; an example is in the anterior temporal lobe, where certain cells
detect only topological aspects of figures (cf. [252].)

The ”image in A” itself corresponds to a vector valued function sA on M′A, rep-
resenting the response associated to the element in I ′A corresponding to the visual
input coming through the areas V1,V2, and a contextual modulation in EA. Such a
function on I ′A can be seen as a co-homology class for the space I that is associ-
ated to the primary areas.

We must also consider families of operators that relate different higher areas A
and B, to express how different areas interact. These operators are induced by non-
linear pseudo-differential operators (of the type introduced in section 2.1), and com-
patible with the invariance structures. They represent the internal work on the image
in the brain. In particular there contain feedback information from A to V1,V2; it is
known that, even at the first instants of analysis, the primary activations are modu-
lated by contextual effects, and higher recognition through feed-forward precision,
horizontal connections, inhibition and feed-back connections. (Cf. [164] for the rep-
resentation of curvature in V 4.)
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Example 1: in V4 or V8 a cell can represent a color in a region that takes in account
all the colors in I ; this resulting color is closer to sensation than the colors in I .

Example 2: in IT a cell can represent a set of parallel lines localized in a strip of the
horizontal plane.

Interestingly, the structure of variability in V1 and V4 are similar ( [205]).

3) The next step for modeling recognition consists in describing how the above
operators can define more abstract and stable equivalences classes, forgetting about
the details in the various representations sA and giving unity to the ”image”. We
suggest that this step needs a further co-homological construction. Note that the
result of this construction is not necessarily new information in other brain areas, it
could be that, but it could be more simply a sort of synergy between sensory areas
corresponding to a specific distribution of activities in these areas, as described by
Hebb (cf. [82], [224]).

An example from Mathematics for this second level of identification is given by
the concept of isomorphism classes of geometric objects. For instance for smooth
manifolds: at the first level, the notion of atlas on a set X is introduced, an atlas is
a covering by compatible charts, then a manifold is defined as an equivalence class
of atlases on X ; at the second level appear the isomorphism classes of manifolds.
But these classes can also be defined as elements in the first co-homology of a sheaf
over the category of open sets in numerical spaces with value in the pseudo-group
of local smooth isomorphisms; with this road, at first level are co-cycles, at second
level are co-homology classes.

A paradigm for the ultimate equivalence relation is the De Rham operator d
on differential forms over a smooth manifold (cf. [50]): in this case co-homology
classes are forms α verifying dα = 0 modulo forms which are dβ . The analog of
the condition dα = 0 should say that form is a good form, i.e. well formed in the
sense of Gestalt, the analog of quotient by the elements boundaries α = dβ should
say that perception consists in forgetting something. Note that in the usual case of
De Rham the general covariance and the naturality for all manifolds select the op-
erator d among all operators on differential forms. We shall hope that in the case of
images, also covariance and naturality would select the wanted ”operator d”.

Thus we suggest to consider the stabilization of an image as a class for a conve-
nient co-homology, as we have done for internal categorization spaces in section 2.4
(cf. Appendix 1). Consequently the stabilization of an image would appear as co-
homology of co-homology because the sets I ′A were already co-homology spaces.
The dimensional reductions to the I ′A in the higher areas and the final rules of se-
lection by d = 0 give together the expression in our model of the Gestalt rules of
good formation: symmetry, parallelism, smooth continuation, proximity, similarity
and closure. See Spillman and Ehrenstein in TVN, [44].

4) Finally for going to object recognition, we suggest to copy the relation of con-
stancy of colors in the Theorem 3.4.1:

[SI1] = ASRA−1
S [SI0] (7.128)



7.6 Perspective Today: Information Topology 309

But now [SI] denotes the equivalence class of the image of the object S, AS is the de-
formation operator telling how the object changes the image at the level of classes,
and is R the adaptation operator between classes of images, describing the invari-
ance.

However, for objects, there is a necessity to use all sensory modalities, not only
vision, and also many other modalities, like motor control. But the above model can
be extended to any representation-of-objects, not only visual images, for instance
sounds or odors, or motor plans:

Suggestion 5.4.1: 1) a representation-of-object is an equivalence class S in a co-
homology space of virtual dynamical attractors for a system of brain areas, it is sub-
ject to adaptation R in some invariance structure G; 2) an object-in-itself (perhaps
coming from a physical object in the external world) is an operator A of deforma-
tion of co-homology classes; 3) an object, as internalized entity, is an orbit for the
conjugate group ARA−1;R ∈ G.

7.6 Perspective Today: Information Topology

To understand better the nature of the internal spaces at works in the brain and the
invariance structures on them for adaptation, there is a need of principles for a pure
dynamic of information.

Several attempts were made in this direction (Barlow 1961, Von der Malsburg
1981, Rolls and Treves, Bialek 1992, Amari, Shompolinski, Nadal, Sejnowski, Fris-
ton et al. 2007, 2009, ... see Olshausen in TVN). These works started with the re-
search of Schrödinger, ”What is life”, on negentropy.

An attractive principle is Infomax, postulating that mutual information between
the brain and the external world I(S;E) is maximized. However (see Baudot thesis)
this principle has to be complemented with an over-complete basis representation in
order to account for the sparseness of the code usually observed in the cortex.

One hope is to find evolution rules for the joint probability of neurons that depend
on the set of all multiple information quantities (or higher order mutual information,
see [47]).

A first step in this direction is to understand the structures that emerge from
the distributions of multi-information on a family of probabilities and a compatible
family of random variables.

This is what we explored with Pierre Baudot in a series of papers ”to be submit-
ted”, but exposed in several seminars. Without pretending we solved the problem of
writing dynamical equations for adaptation, I indicate in what sense our work could
be relevant. Note the cited thesis of Pierre Baudot contained most of the questions
and ingredients for this joint work. This thesis linked the theoretical approach with
impressive experimental results of Baudot et al. showing the adaptation of probabil-
ity of responses in V1 to higher information in images, for instance the decrease of
spike variability for natural images and natural eye motions (also unpublished result
in other form than the thesis, but frequently exposed).
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Note that many recent works contain similar results, for instance [40], [39], [81],
[85].

We found a way to define a kind of geometry and a kind of topology for a set
of probability laws and a compatible set of variables. The first idea was to put on
an equal footing random variables and probability laws forming the pairs (X ,P).
The second ingredient was a definition of multi-information quantities; this was
achieved by a co-homology theory inspired by the co-homology of groups. Ex-
amples of co-cycles are Shannon higher information quantities. Examples of non-
zero co-homology classes are furnished by entropy and Kullback-Leibler distance.
The third ingredient is the study of convexity-concavity properties of binary multi-
information functions.

Most of our computations dealt with probabilities on finite sets, where the prob-
ability space is a standard affine simplex, and the set of variables corresponds to a
set of partitions of the simplex.

Remark in special cases it is also possible to decompose the Kolmogorov entropy
of a conservative dynamical system into higher information quantities. This extends
the point of view of higher correlations, in relation to Lyapounov exponents.

In our opinion, the most notable theorem on the distribution of information quan-
tities (close to our approach), was established by Hu Kuo Ting ( [215]). It allows
to associate already known topological forms to specific information distribution;
for instance standard Borromean links are associated to the (negative) minimum of
the third order mutual information (Matsuda [139]). Standard Markov chains do not
give rise to non-trivial link ( [215]).

This constitutes our point of departure: by considering only the information quan-
tities a geometry appears on the set of probability laws. This geometry is organized
locally by special subsets of variables (like generalized Borromean links), repre-
senting local attractors of the information distribution in the simplex.

Let M denotes a variety of probabilities. The main phenomenon we describe is
the appearance of ”topological forms” on the collection of random variables, that
are stable configurations of part of the variables having singular distributions of
information, reminiscent of the Gestalt rules. These forms depend on the probability
laws, thus we obtain a kind of geometry on M, given by the change of forms of
observation.

We propose that the multiple information quantities of a probability law provide
its Gestaltic-shape description. Then special configurations of information distribu-
tion, like Borromean links, correspond to the expression of Gestalt rules (as it must
be for co-cycles).

Let us come back to the nervous system, or a subsystem, for instance the visual
system of mammals.

We must distinguish (as before in the text) between the family of stochastic pro-
cesses more or less deterministic that constantly exchange energy and information
between the system and the world and inside the system, and the family of laws
of these processes μ ∈ M. Thus we propose to identify M with a set of proba-
bilities on the attractors of the neuronal dynamics. This is not so original Cf. Ol-
shausen, [161], [162], Sejnowski [21], [197]. The fact that parameters of activity
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of neurons identifies to a space of probability laws is essential in the approach of
Amari (cf. [243]); accordingly this gives a differential geometry of information that
is related to the geometry of forms of mutual information when statistical methods
for large samples are considered, cf. [38]. And we consider the dynamics of adap-
tation on M. We assume that knowledge on μ comes only from certain variables
X ,Y, .... These variables have a specific structure (a category of commutative alge-
bras) which describes the possibility of observation. Then the discussion of ”forms
of information” applies. The ideal space I represents special events, or past events
that could be doubtful, or future events with ambiguity; they correspond to observ-
able functions, i.e. random variables. The virtual attractors that are represented in I
coincide with the special configurations of the observable variables. It is important
to remark that they correspond to physical flows in the brain.

To link this approach with Galois information, or with the compensation equa-
tion between M and I that we exposed in this text, we need a natural group G (or
a category) acting on the co-cycles. We do not exclude that the probabilistic infor-
mation structure is sufficient to generate this Galois actions, but we do not know.
It could also happen that Galois theory and probability theory belong to a common
wider theory. (Note that Quantum probability introduces naturally Lie groups of
symmetries as subgroups of the unitary group, and that ordinary finite probability
plays with finite subgroups of the symmetric group.) However, in the case of neu-
ronal systems, the one-dimensional scaling semi-group must act on I; it contracts
space and dilates frequency. We shall assume that this semi-group expends the local
entropies of the joint probability of signals expression, and that it is compensated
by adaptation on M.

7.7 Appendix 1: Invariance, Catastrophes and Information

7.7.1 Groups and Information

Group theory can be seen as a genuine theory of information, with the same rights as
the Shannon theory, for describing structures of ambiguity. This fact would deserve
a complete exposition (a text with Martin Devautour is in preparation), however a
few words can help to understand the general co-variance appearing in V1 and some
higher areas. Our aim is to explain how the point of view of groups and geometry
(Galois, Riemann, Grothendieck) relates to statistical information theory (Shannon,
Fisher, Wiener) and dynamical systems (Thom, Milnor, Smale).

Evariste Galois considered group theory as part of a general theory of ambiguity,
which continues to inspire mathematicians today. The main idea of Galois is simple:
let a problem to solve be given, then it is often more useful to understand the form of
the ambiguity between the possible solutions, than to try to solve by force the equa-
tion. Galois considered the case of algebraic equations E in one unknown and he
defined a group G of permutations of the solutions, attached to a set of known num-
bers S (representing the a priori knowledge). The definition of G relies on a basic
lemma: the functions F(x1,x2, ...,xn) of the solutions of E which can be determined
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from the data in S are exactly the functions which are invariant under the action of
a certain group G. Thus G measures the ambiguity on the solutions of E , given S.
Moreover, Galois described how the group behaves when S is changed: the addition
of new data, for instance the knowledge of a solution of an auxiliary equation E ′,
transforms G into a subgroup H of G, reducing the ambiguity. The choices of other
solutions of E ′ change H into conjugate groups gHg−1. Thus we can say that the
quotient set G/H describes the information, in the sense of Galois, produced by the
auxiliary problem E ′. The Galois correspondence associates to each subgroup H of
G the set of numbers KH , generated from the solutions of E , which are fixed by H;
it establishes a bijection between the subgroups of G and the subfields of K contain-
ing the field of numbers k generated by S. It can happen that G/H itself possesses
a structure of group, this occurs when H is a normal (or invariant, or distinguished)
subgroup, which means that for every g ∈ G we have gHg−1 = H; in this case we
have gH.g′H = gg′H. In this case, named Galoisian, we can consider G/H as the
ambiguity structure of a new problem.

Poincaré (La science et l’hypothèse, and other books) explained the sensorimotor
origin of the group G of the Euclidean displacements: G can be seen as the Galois
group of a joint system made by a moving subject S and its environment E .

By definition, in ordinary Galois theory the Galois group G” of a joint KK′ of two
number fields K,K′ of respective Galois groups G,G′, over a basis field k, can be
identified with the group of pairs (g,g′) where g∈G and g′ ∈G′ act on K∩K′ in the
same manner (cf. Bourbaki, Algèbre VII). Thus, in our case it is natural to pretend
that the Galois group corresponds to pairs of one transformation g of the sensations
in S that are induced by motor action and one transformation g′ in E , which can
compensate reciprocally. As Poincaré said, from the experiment we see that G” is
the group of displacements G. The Galois mutual information of S and E is defined
by the quotient GS×GE/G. Note that, in the same way as two random variables X
and Y are independent in the probabilistic sense if and only if I(X ;Y ) = 0, the two
fields are linearly independent (i.e. KK′ is isomorphic to the tensor product K⊗K′)
if and only if G” = G×G′.

This approach of Poincaré was implemented on a virtual robot by Philipona et al..
To deduce the Euclidean space E from its isometry group Poincaré invoked specific
sensors, like finger tips, whose ambiguity is a rotation group. For the visual space
we can do the same, using vergence and accommodation, the properties of visual
cells sensing a light spot in a place P; their ambiguity inside the group G is the
subgroup HP of rotations around P. Thus the Galois information of the cell is the
quotient G/HP, which is an exemplar EP of E . The existence of translations inside
G guarantees the existence of canonical isomorphisms between two exemplars EP

and EQ. This is the origin of an objective space around us.
As we see, continuous groups, not only discrete groups, can appear as Galois

groups; this is not exceptional in the infinite dimensional setting, for instance in
physical Field Theory, seen as generalization of a theory of singularity (as in the
study of phase transition). We can expect that every symmetry from a certain point
of view becomes Galoisian.
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Information theory and ambiguity theory are synonymous: the information mea-
sures the reduction of ambiguity.

Aside from Galois theory there exist other theories of information, in particu-
lar the well known theory of Shannon, which is based on probability theory. For
Shannon the measure of the ambiguity contained in a probability law P on a set Ω
is given by the entropy H(P), which, when Ω is discrete, is the expectation of the
function− logP(ω). Then the knowledge that can be expected from a random vari-
able X is given by the entropy H(X) of the image probability X∗P. If Y is another
random variable, Shannon defined the mutual information of X and Y by I(X ,Y ) =
H(Y )−H(Y |X) where H(X |Y ) denotes the average over y of the entropy of the
conditional laws X∗P|(Y = y). We also have I(X ;Y ) = H(X)+H(Y)−H(X ,Y). For
Gaussian laws the entropy is a constant multiple of logDetσ , where σ is the co-
variance matrix and Det the determinant (more intrinsically, Detσ = DiscQ, where
Q is the co-variance quadratic form). Therefore the mutual information is given by
the norm of the cross-correlation matrix.

The theorems of Shannon (cf. Khinchin 1957) show that the structures of possible
codings of a message rely on entropy computations.

The theories of Galois and Shannon are directly connected when a group G acts
on the considered set of probabilities on Ω , for instance if it acts on Ω itself. In
general, the higher is the symmetry of the law P (the subgroup fixing P), the larger
the entropy.

There exist other theories of information based on probability, for instance the
theory of Fisher (1925, the first in date), studying statistical metrics, the theory of
Wiener (1948) studying prediction. All these theories are related to the entropy or
its generalization, the Kullback-Leibler distance between two probabilities P,Q on
the same set:

H(P,Q) =−EP(log
Q

P
). (7.129)

This is not a true metric because it is not symmetric in P and Q. But when the con-
sidered probability laws depend smoothly on the points in a manifold M, and when
P,Q become close; this formula can be normalized to give a (possibly degenerate)
Riemannian metric on M, the ”Fisher information metric”. In fact this metric was
defined in general by Rao (1945): At any point of a statistical manifold of probabil-
ity laws Pξ it is the tensor

Fξ = Eξ (d ln(Pξ )⊗ d ln(Pξ )); (7.130)

As we see it is independent of coordinate choices in M, and this general invariance
is its main virtue for statisticians. In a coordinate system θi; i = 1, ...,m on M the
coefficients of the Fisher-Rao metric F are given by

gi j = Eθ (∂i ln(pθ )∂ j ln(pθ )). (7.131)

The inverse matrix defines a canonical metric on the co-tangent bundle T ∗(M),
which appears as a lower bound in the Cramer-Rao inequality for any testΦ : H→R

of a given function ϕ : M→R, at any point ξ ∈M:
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Eξ (|Φ−ϕ(ξ )|2)≥ (1+ |dξ (Eξ (Φ)−ϕ(ξ ))|2)F−1
ξ (dξϕ ,dξϕ). (7.132)

Remark that when the test is unbiased, i.e. when for each point ξ we have Eξ (Φ) =
ϕ(ξ ), the inequality is a universal lower bound on the variance of Φ:

Eξ (|Φ−Eξ (Φ)|2)≥ F
−1
ξ (dξϕ ,dξϕ). (7.133)

Thus F appears as a limit of possible precision for a measurement. It has been
widely used in Neuroscience (Amari, Nadal). In problems with large sets of data,
for instance many independent but cooperative neurons, it appears that maximizing
mutual information is equivalent to maximizing the Fisher metric (Nadal, ...).

A remarkable fact is that traditional families of probabilistic laws possess large
invariance groups. In fact all classical Lie groups appear as symmetry groups for
Fisher-Rao metrics (unpublished folklore, but cf. Amari book).

Example: With the natural coordinates x = μ ,y = σ2 of a normal law in one di-
mension the matrix F is diagonal and its diagonal coefficients are y−1 and (1/2)y−2)
respectively. This is a model of the hyperbolic plane of Gauss, Bolyai and Lo-
batchevski; its isometry group is the unimodular group PSL2(R). For Gaussian fam-
ilies in higher dimensions we find the family PSLn(R).

It is not astonishing that the whole theory of statistics is traversed by the concept
of invariance (cf. Lehmann).

Hartley (1928), and Kolmogorov (1933), have proposed that the whole theory of
probabilities can be seen as a theory of ambiguity. As Bayes and Boole anticipated,
probability furnishes the basis of a general theory of knowledge. We can say the
same thing of the group theory, cf. Souriau ”The grammar of the world”.

However a third mathematical view on ambiguity is given by the study of the
dynamics of competition. René Thom held that fundamentally, all information is
of topological nature: to him every information is a form and ”the meaning of a
message is a relation of topological nature between the form of the message and the
characteristic forms of the receptor (i.e. the forms able to generate an excitation of
the receptor) ...” ( [212] p. 156)”. We shall show that this view completes the two
other views, for applications in Neuroscience and especially for the visual system.

Catastrophe theory puts forward a science of morphologies. Its principle is sim-
ple: every form expresses a conflict. More precisely, every phenomenon in the world
takes place in a manifold W (perhaps of high dimension, including time), and for
each point p in W there is a dynamical system D(p) (for rapid evolution) in an
auxiliary space X(p) (varying smoothly with p as a fiber bundle), which decides
what happens over p. For us, who are interested by neuronal systems, D(p) will
represent the rapid neural activity, contributing to the emergence of a form in the
brain for the phenomenon at p. (We admit the existence of several time scales of
neuronal activity: a rapid one generating spikes for instance and a slower one for
modulating the rapid one; note that at the molecular level also, such a dichotomy
holds frequently between the rapid dynamics of pathways and the slower dynamics
of gene expression.) The visible forms in W are generated by the catastrophe locus
K, which is the set of points p where the dynamics D(p) bifurcates. According to
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Thom, only forms that correspond to generic bifurcations having some sort of sta-
bility can be identified. For certain dynamics D(p0) there exists a canonical family,
the unfolding of D(p0), parameterized by a finite dimensional manifold U , in which
all accidents deforming D(p0) can be found. We shall consider only this kind of dy-
namics. Examples are given by some gradient flows on X , their unfolding describes
the possible forms of competition between a finite number of attractor points. For
instance, if X = R, the potential ϕ(x) = x3 + ux represents the birth or the death of
an attractor, depending on the sign of u, U has dimension 1 and the set K is the point
u = 0. The potential ϕ(x) = x4 + ux2 + vx represents the competition between two
attractors, and in this case the set K is a cuspidal curve in the plane U . Cf. figure ....

The competition between attractors is a model of ambiguous situation. A simple
link with probability theory can be obtained, by choosing a positive measure of the
sizes of the basins of the attractors; once normalized by the total sum, this gives a
probability law P(p) on the finite set Ω(p) of attractors of D(p), for each p ∈U ;
this quantifies the ambiguity.

Let us consider the richer variant where the value of the potential ϕ is taken
into account; for instance, if X = R, we consider ϕ(x) = x3 + ux+ c, or ϕ(x) =
x4 + ux2 + vx+ c; then we replace the space U by the extended space Λ = U ×R.
For λ ∈Λ we define Xλ as the subset of X where ϕλ (x) = 0. The discriminant Σ is
the subset ofΛ where Xλ is singular. Now suppose we consider all that over complex
numbers, i.e. replace everywhere real coefficients by complex numbers, and work
over the complexification ΛC of Λ (cf. [13]). Then each non-singular level Xλ is
retractable on a bouquet of μ spheres that are named the vanishing cycles, where
μ is an integer called the multiplicity or Milnor number. Thus the homology of Xλ
is a lattice I(λ ) in a vector space IR(λ ) (resp. IC(λ )) over the real (resp. complex)
numbers. Arnold et al. in [13] discuss the case where μ is constant. Now, choose
an analytic family of volume forms ωλ on Xλ , the integrals of ωλ on the tubes
generated by the vanishing cycles can be defined along paths in ΛC; this gives a
period map ˜P from the universal covering M×

C
of the complementΛ×

C
of the complex

discriminant ΣC inΛC to the space I∗
C

of linear maps from I to C (cf. [127], [221]). If
we now take into account the real structure, depending on the connected component
of the point λ in Λ× (the complement of the real discriminant Σ in the real basis
Λ ), certain vanishing cycles are real other while others are complex conjugates. For
convenient forms ω , the image of the real part Λ× by ˜P describes a real vector
subspace IR in IC ( [128]). In particular, every generic minimum of ϕ defines a real
vanishing cycle, which is a regular level near the minimum. For some λ the period
map for the minima of ϕ , once normalized, coincides with a probability law Pλ .

The following picture is due to Looijenga [127] for simple singularities (i.e. when
the unfolding contains only a finite numbers of inequivalent functions) and to Saito
[196] and Varchenko [220] in general. First suppose X of odd dimension and the
singularity simple; then the ambiguity of ˜P, i.e. the existence of different values
for different paths joining the same points, is given by a finite group G (Looijenga,
cf. [13], [22]). Moreover, the quotient of ˜P by G gives an analytic morphism from
M×

C
to the quotient of IC by G: this morphism corresponds to an isomorphism from

ΛC to IC/G, sending the discriminant ΣC onto the quotient by G of the set HC made
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by the cycles which have non-trivial isotropy under G (i.e. which are invariant by
some g �= Id). Thus the discriminant is isomorphic to the quotient a finite union
of hyperplanes. Finally in the simple case, Looijenga proved that each component
of the complement of the real discriminant Σ in the real extended unfolding Λ
corresponds to a finite union of real copies of IR disposed inside IC; these real copies
correspond to linear combinations of minima equipped with special phases.

In the general case of the universal deformation of an holomorphic function with
isolated singularity, Saito (cf. [196]) defined the notion of primitive form ωλ , and
for such forms established that the period mapping extends to a surjective morphism
also generically one to one from M×

C
to I∗

C
. Note that the space of primitive forms

for a joint sum of simple singularities has finite dimension; in general the dimension
of the space V of primitive forms behaves additively under joins. Thus the best thing
in the general case is to consider not only one period mapping but a vector of period
mappings, i.e. ˜P;v ∈V .

Remark: the origin of the above theory was in theorems of Brieskorn, Grothendieck,
on the equations of maximal unipotent orbits of simple Lie groups, showing that
continuous groups are also related to the picture.

7.7.2 Homological Forms

Based on these results, showing the compatibility of the points of views of Galois,
Shannon and Thom on what is called ambiguity, and information, we suggest a
generalized picture for neuronal systems:

Let A be a brain area; a real smooth manifold MA (playing the role of the covering
M×

C
or a subset that corresponds to reality conditions) is used for parameterizing

the stable joint receptive fields in the area A, i.e. the way the activity in the area is
prepared to change under the influence of the external world or the afferent areas,
taking in account the intrinsic properties of neurons in A and their interactions (for
instance through interneurons or glial cells). Thus a point μ in MA represents a
certain dynamical system ξμ in an internal space XA (giving a model of the possible
responses of A, from molecular events to spikes). Boundary conditions are described
by an auxiliary space EA.

The complete details of the dynamics of the assembly of neurons are not essential
to give a definite form in the brain for the external phenomena; for each μ only a
stable skeleton Iμ issued from ξμ does matter. We assume that all the topological
information in ξμ is coded by the set Iμ , which we shall call the vanishing homology
(or simply the homology), whose elements we name the vanishing cycles. The ho-
mology Iμ represents the way A categorizes the responses when it is in the state μ .
This skeleton is defined up to deformation; it has a discrete nature, thus we assume
that over MA it is possible to follow Iμ and identify it with a fixed set IA.

The set Iμ is issued from a subsetΩμ it contains, which collects possible attractor
regimes of ξμ and from memory or context or anticipation, providing ambiguity.
We can think to an element of Iμ as a virtual attractor with a phase, like inhibited
regimes; only a subset of the phases gives real attractors, belonging to Ωμ .
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The output signal going from A depends on a σ ∈ IA and a μ ∈MA. A family of
probability laws Pμ is assumed to be given on Ωμ , for describing the law of spiking
activity in A. Let us denote by I∗ the space of numerical functions on I, and name it
the vanishing co-homology (or simply the co-homology); when we want to specify
the coefficients of functions we note I∗

R
or I∗

C
. And let us denote by V ∗ the space

which parameterizes the output dimensions (it plays the role of the dual vector space
of the the space V of primitive forms of Saito). We assume the existence of a map
˜P from M to I∗

C
⊗V ∗, such that, for any μ and ω ∈ Ω we have P(μ)(ω) = Pμ(ω).

We name ˜P the period map.
Now a group ˜G acts on M, and also acts on I, in such a manner that, for any

μ ∈M, σ ∈ I, g ∈ ˜G, we have

˜P(g.μ)(σ) = ˜P(μ)(g.σ). (7.134)

This relation expresses the compensation of a change of the parameter μ by a change
in the internal state σ . This compensation corresponds to an adaptation: a flow in
M changing the parameters of the neurons to compensate a change in context.

Note that the brain area A can be composed of many neurons a, each of them has
dynamics ξa,μ parameterized by a manifold Ma and having homological skeleton
Ia,μ ; the manifold MA associated to A is a sub-manifold of the joint of the Ma over
all the cells a, the space IA is the product of the Ia, and the vanishing co-homology
I∗ is embedded in the tensor product of the I∗a,μ over a. In general the group G acts
on I∗ but not on the individuals I∗a,μ . Let us nor forget that M is much larger than the
set of union of the Ma over a; it parameterizes the interactions between dynamics
and not only marginal dynamics.

The response of the area A to a stimulus ϕ is assumed to be given by the value of
˜P at a cycle σ that depends on ϕ and the context ε:

ρ(μ ,ϕ ,ε) = ˜P(μ)(σ(ϕ ,ε)). (7.135)

It depends on time t through ϕ and ε and μ . Note that ρ is a vector in V ∗A ; to get
scalars we must consider v ∈ VA and take the bracket 〈ρ ,v〉. This is an important
point because the output of a brain area is a field of responses of neurons, in general
not reducible to a scalar function.

The group ˜G describes the ambiguity of the period map on the quotient M/ ˜G. Its
action on I∗ defines the Galois group G of the system. We see that, for each v in VA,
the map ˜P induces a map from the quotient M/ ˜G to the quotient I∗/G. To conform
with catastrophe theory we can require the inverse of this correspondence to extend
to a bijection from I∗/G to a completion Λ of M/ ˜G.

With respect to the inputs, the space I∗ creates an internal space with a new
geometry, described by G. This space represents the external world, but at the same
time, it invents the observable properties of this world.

The intelligible forms according to Thom come from the prolongation to the set Σ
of unstable dynamics; this corresponds in I∗ to the subset Δ where the isotropy, de-
scribing the structure of indetermination, is non-trivial. The full dynamics of X ,Λ , I∗
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permits to give precision an intriguing observation of René Thom about the human
brain ( [212] XIII.3). ”... in the human brain was realized a dispositive simulator
of the self-reproducing singularities of epigenesis, which permits, in presence of a
catastrophe of internal space Y and unfolding U, to send the unfolding U in the
internal space Y, realizing the confusion between internal and external variables.”
(See also [214]) What we have suggested in the present text, is that, first this con-
fusion is not reserved to humans, but it appeared in all living entities, and second,
this confusion is ambiguous, in the sense that the correspondence between neural
processes and thoughts contents is multi-valued; the ambiguity structure being the
place where symmetries are invented.
The homological skeleton adds ambiguity to the output with respect to the input.

The prototype of ˜G is the group of rigid motions, it first appears as a Galois
group, describing the ambiguity between what moves in the world and what results
from body’s movements, then it is imposed as a geometry on the world, for isotropy
and homogeneity, that do not exist in reality, but help perception. An example of
a system where this group appears explicitly in the entry is the parahippocampal
region cf. section 5.3.
To summarize the invariance expressed in a given area A, we start with the group
collecting the transformations of the environment E that have no effect on the re-
sponses in A; this is the indifference group written G(E). Next we have a group G(I)
acting on the quotient I = E/G(E) representing categories in A, and a group G(M)
acting on the set M of parameters describing the possible dynamics M; a subgroup
˜G of the product G(I)×G(M) is made with the transformations that have no effect
on the response; from the above discussion we could name it the ambiguity group,
or the adaptation group. The full group G(I)×G(M) acts on the response space R,
thus the notion of co-variance of the response applies to this group.

7.8 Appendix 2: Unitary Representations

Harmonic analysis permits to describe how discrete units can work with continuous
symmetries.

References: [222], [110], [83].

Suppose G is a Lie group and choose a left invariant measure on G (named Haar
measure).

A unitary representation is a morphism g �→Uλ (g) from G to the group Uλ of
bijective isometries of a complex Hilbert space Hλ ; the representation is said to be
irreducible when any invariant subspace of Hλ is {0} or Hλ itself. See [110].

Definition: For any integrable function φ : G→ C we define the Fourier-Plancherel
transform by the equation

̂φ(λ ) =
∫

G
Uλ (g)φ(g)dg (7.136)
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where λ describes the set ̂G of unitary representations of G. Then ̂φ(λ ) is an oper-
ator, an element of Uλ .

In what follows we assume that the Haar measure dg is also invariant by right
translations in G. When such a measure exists the group is said to be unimodular.
Any compact group, any discrete group, any commutative group is unimodular. The
affine group (see 2.1), is non-unimodular. The Lie groups of interest for us, the
Euclid group (displacements) and the Galilean group are non-compact but they are
unimodular. Other non-compact examples are semi-simple Lie groups (cf. [83]), or
nilpotent Lie groups (cf. [110]).

The Plancherel Theorem, valid for any unimodular Lie group, asserts the exis-
tence of a measure dπ(λ ) on ̂G, such that for any square integrable function φ on
G, which is also integrable, we have

∫

G
|φ(g)|2 =

∫

̂G
Tr[̂φ (λ )∗ ̂φ (λ )]dπ(λ ), (7.137)

and the inversion formula holds true:

φ(g) =
∫

̂G
Tr[U∗λ (g)̂φ(λ )]dπ(λ ) (7.138)

The proof of this theorem for finite groups is due to I.Schur, for compact Lie groups
to H.Weyl, and the general case of unimodular separable locally compact groups(in
particular Lie groups) is due to Mautner and Segal (cf. [37]). The coefficients of the
irreducible unitary representations have strong orthogonality properties (cf. [83]),
but they rarely form a generating system of square integrable functions on G; for
compact groups they do.

We suggest that the coefficients of unitary representations of a group G are good
candidates for describing the receptive fields of neurons that are modulated by tra-
jectories in G. This requires a definition of ”windows in the groups”, generalizing
domains in the visual plane that can generate spikes.

Given a distribution μ on G depending on time t, and a smooth function φ on G,
we define the translation operation on distributions by

〈τt (μ),φ〉(s) = 〈μ ,φ〉(s− t),

and the inversion operation on distributions by

〈μ∨,φ〉 = 〈μ ,φ ◦ ς〉,

where ς(φ)(g) = φ(g−1).We also write ς(φ) = φ∨.
The first ingredient of a simple window c is a pair (σc,Kc) of one sigmoidal

function from R to R, and one C∞ function on G, such that activity of c at time t
induced by a stimulus μ is (at least in part) explained by the formula

Rt(μ) = σc[Kc ∗ (τtμ)∨]. (7.139)
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In general we will suppose that Kc respects causality, implying that Rt depends on
the restriction of μ to values of s before t. When μ is a function we obtain

Kc ∗ (τtμ)∨ =
∫

G
dhK0

c (hg−1
0 ,s)μ(h−1)(t− s).

In the case of a unimodular group, this also gives

Kc ∗ (τtμ)∨ =
∫

G
dhK0

c (g0h−1,s)μ(h)(t− s).

In the hope of maximizing invariance and information together, we take a function
K0(s), like a Gaussian density, centered on the identity element of the group G, and
we choose an irreducible unitary representation λ (s), and two vectors ψ1(s),ψ2(s)
in the Hilbert space Hλ (s). The function K0 gives the size to the window, the repre-
sentation λ generalizes the preferred frequency, and the vectors ψ1,ψ2 generalize
the phase. Then we define

K0
c (g,s) = K0(g,s)〈ψ1(s)|Uλ (s)(g)|ψ2(s)〉,

so we obtain the following generic formula for the elementary linear operators un-
derlying the receptive fields:

Kc ∗ (τtμ)∨ =
∫

R

ds
∫

G
dhK0(g0h−1,s)〈ψ1(s)|Uλ (s)(g0h−1)|ψ2(s)〉μ(h, t− s)

The corresponding receptive fields could be named harmonic receptive fields.

In [24], we suggested that the elementary windows associated to the Galilean group
are well adapted to describe non-linear receptive fields of the vestibular system.
A subgroup G0 of the Galilean group is isomorphic to the Euclid group, E(3) of
displacements in 3D Euclidean space. The unitary representations of G0 were de-
termined by the induction method of Mackey (1958). See also Thoma (1958), Ito
1952,1953, Mackey 1952,1953, 1958.

The sequel of this work, aimed at studying the grouping of the harmonic receptive
fields, is the current thesis of Alexandre Afgoustidis.

Example: In two-dimension, for the Euclid group E(2), the representations come
in two families. First, the special representations are described by a relative integer
number N, they are of dimension 1 and see only the rotation part in g.
Second, the generic representations are classified by a positive real number ρ , the
Hilbert space is the space of square integrable functions on the circle; the trans-
formation g(a,α), whose parameters are the rotation of angle α around 0 and the
gliding of velocity a of modulus r and argument ϕ , is represented by

Uρ(g)( f )(θ ) = eiρr cos(θ−ϕ) f (θ −α) (7.140)

The coefficients in this case are associated to the canonical Fourier basis exp inθ ;
they give the following functions on G
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t(g) = 〈ψ1|U(g)|ψ1〉 (7.141)

That are
tρmn(g) = im−ne−i(nα+(m−n)ϕ)Jm−n(ρr) (7.142)

See [222].
In this model we obtain the following formula for describing the response to a

periodic stimulus ω in a direction θ :

R(t) =
∫

k0(s)dscos(m(θ −θ0))Jm(ρ0 cos(ω(t− s)); (7.143)

where Jm denotes the Bessel function with integer index m.

Definition: in general the Bessel function of index t in R is given by

Jt(z) =
∞

∑
0

(−1)n(z/2)2n+t

n!Γ (n+ t+ 1)
. (7.144)

It is a solution of the Bessel equation

d2y
dz2 +(1+

1− 4t2

z2 )y = 0 (7.145)

At the first order approximation in ρ0 this gives:

R(t) = ρ0

∫

k0(s)dscos(m(θ −θ0))cos(ω(t− s)). (7.146)

When k0 is of Dirac type Dirac, δ (t− t0), we find the classical model:

R(t) = ρ0 cos(m(θ −θ0))cos(ω(t− t0)). (7.147)

However, when k0 is a real Riemann-Liouville derivative of order D0, we find a
”dynamical response”:

R(t) = ρ0ωD0 cos(m(θ −θ0))cos(ω(t− t ′0)). (7.148)

We recover the known characteristics of a central vestibular cell, which are the gain
ρ0, the phase delay t ′0 and the dynamical index D0.

In the 3D space, for the generic series, the Hilbert space is a convenient subspace
Hλ of the space H of square integrable functions on the orthogonal group O(3).
We fix a number ρ , and a vector −→e0 of norm 1; then, if g is the composition of the
rotation R centered in 0 withe Galilean gliding of constant velocity −→v , we define

Uρ(g)( f )(S) = eiρ−→v .S(−→e0) f (R−1S) (7.149)

Cf. [222].
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The modification of the response due to space effects consists in replacing the
circular function cos(m(θ − θ0)) by a spherical harmonic and the Bessel function
of integer index by a Bessel function with semi-integer index.

Acknowledgments. I thank Alessandro Sarti and Giovanna Citti for their invitation to con-
tribute to this book, and for their infinite patience. They also contributed to my understanding
of the subject. The works that are presented could not have been made without a part of
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thesis, Université Pierre et Marie Curie-Paris VI (2007)

69. Foubert, L., Bennequin, D., Thomas, M.-A., Droulez, J., Milleret, C.: Interhemispheric
synchrony in visual cortex and abnormal postnatal visual experience. Frontiers in Bio-
science: A Journal and Virtual Library 15, 681 (2010)
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H. Poincaré, Physique Théorique 59, 201–236 (1993)

103. Kanatani, K.-I.: Transformation of optical flow by camera rotation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 10(2), 131–143 (1988)

104. Kanizsa, G.: Organization in vision: Essays on Gestalt perception. Praeger, New York
(1979)

105. Kappers, A.M.L., Todd, J.T., Oomes, S., Koenderink, J.J.: The intrinsic geometry of
perceptual space: its metrical, affine and projective properties. In: Proceedings of the
Fifteenth Annual Meeting of the International Society for Psychophysics, pp. 169–174.
Arizona State University, Department of Psychology & Industrial Engineering (1999)



References 327
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Universitaires de France (1948)
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Chapter 8
Hebbian Learning of the Statistical and
Geometrical Structure of Visual Input

James A. Bednar

Abstract. Experiments on the visual system of carnivorous mammals have revealed
complex relationships between the geometry and statistical properties of the visual
world, and the geometry and statistical properties of the primary visual cortex. This
review surveys an extensive body of modelling work that shows how a relatively
simple set of general-purpose neural mechanisms can account for a large fraction of
this observed relationship. The models consist of networks of simple artificial neu-
rons with initially unspecific connections that are modified by Hebbian learning and
homeostatic plasticity. Given examples of internally generated or visually evoked
neural activity, this generic starting point develops into a realistic match to observa-
tions from the primary visual cortex, without requiring any vision-specific circuitry
or neural properties. We show that the resulting network reflects both the geomet-
rical and statistical structure of the input, and develops under constraints provided
by the geometrical structure of the cortical and subcortical regions in the model.
Specifically, the model neurons develop adult-like receptive fields and topographic
maps selective for all of the major local visual features, and realistic topographically
organized lateral connectivity that leads to systematic surround modulation effects
depending on the geometry of both the visual input and the cortical representations.
Together these results suggest that sensory cortices self-organize to capture the sta-
tistical properties of their inputs, revealing the underlying geometry using relatively
simple local rules that allow them to build useful representations of the external
environment.
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8.1 Introduction

Over the past half-century, experiments on the visual system of carnivorous mam-
mals have revealed complex relationships between the geometry and statistical prop-
erties of the visual world, and the geometry and statistical properties of the visual
cortex. For instance, an oriented line projected onto the back of the eye will evoke
responses in a topographically mapped region of the primary visual cortex (V1),
but in a discontinuous fashion grouped locally by orientation preference rather than
retinotopic location. Figure 8.1 illustrates this mapping for V1 in a tree shrew, a
primate-like species where the geometrical relationships are clearer because it lacks
the fovea/periphery distinctions common to humans and other primates. Figure 8.1
shows that tree shrew V1 is organized much like the retina, with location on the
retina mapping to corresponding locations in V1. But overlaid on this retinotopic
map is an orientation map [Blasdel(1992b)], with different patches of V1 neurons
responding within the retinotopically mapped area, depending on the orientation of
the input.

This patchy pattern of activity and orientation preference has been un-
derstood as the result of a dimension-reduction process [Durbin and Mitchi-
son(1990), Carreira-Perpiñán et al.(2005)Carreira-Perpiñán, Lister, and Goodhill,
Ritter et al.(1992)Ritter, Martinetz, and Schulten], wherein the many dimensions
in which a small patch of visual input could vary are mapped continuously onto
the two-dimensional surface of the cortex. If the cortex had as many geometrical
dimensions as the ways in which the input varied, this mapping could be straight-
forward. E.g. if the input varied only in retinal location (X ,Y ), a simple retinotopic
map onto the cortical surface would suffice. Instead, the various combinations of
retinotopic position and other features like orientation are flattened onto the cortical
surface in a way that achieves good coverage of the inputs while maintaining lo-
cal continuity [Swindale et al.(2000)Swindale, Shoham, Grinvald, Bonhoeffer, and
Hubener, Miikkulainen et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh, Ritter
et al.(1992)Ritter, Martinetz, and Schulten]. Figure 8.2 illustrates this folding and
flattening process for the case of ocular dominance (OD), with a cortical ocular
dominance pattern interpreted as a two-dimensional view of preferences that cover
a three-dimensional (X ,Y,OD) space.

Cortical OR and OD maps illustrate geometric relationships between input and
output spaces, but the relationships also take statistics into account. Specifically, the
area of the cortical maps devoted to each feature value reflects the frequency of oc-
currence of that feature [Sengpiel et al.(1997)Sengpiel, Sen, and Blakemore,Tanaka
et al.(2006)Tanaka, Ribot, Imamura, and Tani]. Figure 8.3 shows examples of this
phenomenon in cat visual cortex, for kittens reared with special goggles that blur
non-vertical patterns. Similar effects occur for the OD map, when input from one
eye is disrupted [Wiesel(1982)]. These results raise the possibility that the observed
geometrical relationships could at least in part be the result of an underlying pro-
cess of adaptation to the statistics of the input, where the input geometry constrains
the possible input samples and the cortex organizes around the patterns seen on its
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Fig. 8.1 Retinotopic and orientation map in V1. Given a particular fixation point
(marked with a red + symbol above), the visual field seen by an animal can be
divided into a regular grid, with each square representing a 1◦×1◦ area of visual
space. In cortical area V1 of mammals, neurons are arranged into a retinotopic map,
with nearby neurons responding to nearby areas of the retina. As an example, the
image on the right shows the retinotopic map on the surface of V1 of a tree shrew for
an 8◦×7◦ area of visual space (adapted from [Bosking et al.(2002)Bosking, Crow-
ley, and Fitzpatrick]; scale bar is 1mm). A stimulus presented in a particular loca-
tion in visual space (such as the thick black bar shown) evokes a response centered
around the corresponding grid square in V1 (6◦,2◦). Which specific neurons respond
within that general area, however, depends on the orientation of the stimulus. The
V1 map is color coded with the preferred orientation of neurons in each location;
e.g. the black bar shown at left will primarily activate neurons colored in purple in
the corresponding V1 grid squares. Similar maps could be plotted for this same area
showing preference for other visual features, such as motion direction, spatial fre-
quency, color, disparity, and eye preference (depending on species). Other cortical
areas are arranged into topographic maps for other sensory modalities, such as touch
and audition, and for motor outputs.

inputs [von der Malsburg(1973), Miikkulainen et al.(2005)Miikkulainen, Bednar,
Choe, and Sirosh, Ritter et al.(1992)Ritter, Martinetz, and Schulten].

Although the basic dimension-reduction and folding idea is now widespread, the
links between dimension reduction, input statistics, and the actual machinery and
circuits in the visual cortex remains obscure. This review surveys results from a
large family of closely related mechanistic models of V1 development, which show
how the observed map patterns can arise from plausible approximations to the mech-
anisms present in the subcortical visual pathways and in V1. Unlike other models of
the map patterns, the resulting systems can then process actual visual images, and
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(a) Macaque OD map (b) Model preferences in (X ,Y,OD) (c) Model OD

Fig. 8.2 Retinotopic and ocular dominance maps. (a) Just as for orientation, eye prefer-
ence (ocular dominance; OD) is represented within the overall retinotopic map, with both
of the possible eye preferences represented near any particular cortical location (here visual-
ized across the cortical surface with black for one eye and white for the other eye); data for
macaque V1 from [Blasdel(1992a)]. This pattern can be understood as a 2D projection onto
the cortical surface of an underlying set of preferences in 3D: for X, Y, and ocular dominance.
(b) shows the results of a self-organizing map (SOM) model of this organization, visualizing
the 3D preference of each neuron (model from Ritter et al. [Ritter et al.(1991)Ritter, Ober-
mayer, Schulten, and Rubner], [Ritter et al.(1992)Ritter, Martinetz, and Schulten]; figure and
data from [Miikkulainen et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh]). The 2D sheet
of neurons has covered the 3D input space (delineated by the box outline) by folding in the
third dimension, such that every value of (X ,Y,OD) is well approximated by some neuron.
The resulting pattern is a type of Peano (space-filling) curve. (c) When the OD preference
is plotted in grayscale for each neuron in their cortical locations, projecting this 3D pattern
space down to the 2D cortical space, the resulting pattern is similar to animal OD maps,
suggesting that animals do a similar process of representing input spaces by folding in the
non-retinotopic dimensions to fill a multidimensional input space, and that cortical feature
maps are the result.

can thus be used to relate the map patterns, connectivity within the underlying net-
works, and observed visual and physiological phenomena. The models suggest that
a wide and diverse range of observations about the visual cortex can be explained
by a small set of general-purpose mechanisms. These mechanisms are not specific
to vision, and should be applicable to most cortical regions.

Section 8.2 outlines the basic principles of these mechanistic models. Section 8.3)
presents an implementation of a simple GCAL (Gain Control, Adaptive, Laterally
connected) model [Stevens et al.(2013)Stevens, Law, Antolik, and Bednar], and de-
scribes both how it relates to earlier models on which it is based, and how it relates
to a more realistic but more complex variant that covers all the phenomena reported
here. Section 8.4 surveys results from GCAL and related models. Section 8.5 ex-
plores implications of the model, and areas for further work.
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(a) Normal cat (b) Goggle-reared cat

Fig. 8.3 Maps reflect input statistics. Comparison between orientation maps for (a) cats
raised in a normal environment and (b) cats reared wearing goggles that blur non-vertical
orientations shows that the distribution of orientation preferences reflects the input statistics.
Thus the relationship between input and output is not merely geometrical, but is based on the
statistical structure of the inputs.

8.2 GCAL Model Overview

The models considered in this chapter are each based on the following biologi-
cally grounded principles and mechanisms (description follows [Bednar(2012),Bed-
nar(2013)]):

1. Single-compartment (point neuron) firing-rate (i.e., non-spiking) retinal ganglion
cell (RGC), lateral geniculate nucleus (LGN), and V1 model neurons (see figure
8.4),

2. Hardwired subcortical pathways to V1, including the main LGN or RGC cell
types that have been identified,

3. Initially roughly retinotopic topographic projections from the eye to the LGN
and from the LGN to V1, connecting corresponding areas of each region,

4. Initially roughly isotropic (i.e., radially uniform) local connectivity to and be-
tween neurons in layers in V1, connecting neurons non-specifically to their local
and more distant neighbors,

5. Natural images and spontaneous subcortical input activity patterns that lead to
V1 responses,

6. Hebbian (unsupervised activity-dependent) learning with normalization for
synapses on V1 neurons,

7. Homeostatic plasticity (whole-cell adaptation of excitability to keep the average
activity of each V1 neuron constant), and

8. Various modeller-determined parameters associated with each of these mecha-
nisms, eventually intended to be set through self-regulating mechanisms.
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ON

V1

OFF

Photoreceptors

Fig. 8.4 Basic GCAL model architecture. In the simplest case, GCAL consists of a
grayscale matrix representing the photoreceptor input, a pair of neural sheets representing
the ON-center and OFF-center pathways from the photoreceptors to V1, and a single sheet
representing V1. Each sheet is drawn here with a sample activity pattern resulting from one
natural image patch. Each projection between sheets is illustrated with an oval showing the
extent of the connection field in that projection, with lines converging on the target of the pro-
jection. Lateral projections, connecting neurons within each sheet, are marked with dashed
ovals. Projections from the photoreceptors to the ON and OFF sheets, and within those sheets,
are hardwired to mimic a specific class of response types found in the retina and LGN, in this
case monochromatic center-surround neurons with a fixed spatial extent. Connections to and
between V1 neurons adapt via Hebbian learning, allowing initially unselective V1 neurons
to exhibit the range of response types seen experimentally, by differentially weighting each
of the subcortical inputs (from the ON and OFF sheets) and inputs from neighboring V1
neurons. Reprinted from [Bednar(2013)].

Properties and mechanisms not necessary to explain the phenomena considered in
this chapter, such as spiking, spike-timing dependent plasticity, detailed neuronal
morphology, feedback from higher areas, neuromodulation, reinforcement learning,
and supervised learning, have all been omitted, to clearly focus on the aspects of
the system most relevant to the observed phenomena. The overall hypothesis is that
much of the complex structure and properties observed in V1 emerges from inter-
actions between relatively simple but highly interconnected computing elements,
with connection strengths and patterns self-organizing in response to visual input
and other sources of neural activity. Through visual experience, the geometry and
statistical regularities of the visual world become encoded into the structure and con-
nectivity of the visual cortex, leading to a complex functional cortical architecture
that reflects the physical and statistical properties of the visual world.

At present, many of the results have been obtained independently in a wide va-
riety of separate projects performed with different collaborators at different times.
However, all of the models share the same underlying principles outlined above,
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and all are implemented using the same simulator and a small number of underlying
components. See [Bednar(2012)] for an overview of each of the different models
and how they fit together; here we present details for a simple but representative
model simulating the development of orientation preferences and orientation maps
for a single eye (figure 8.4), and describe a more complex but still incomplete “uni-
fied model” [Bednar(2012)] covering the other phenomena, so far published only
in separate models [Bednar(2012), Antolik(2010), Ball and Bednar(2009), Ramto-
hul(2006), Palmer(2009), Bednar and Miikkulainen(2006)].

The goal for each of these models is the same — to explain how a cortical network
can start from an initially undifferentiated state, to wire itself into a collection of
neurons that behave, at a first approximation, like those in V1. Because such a model
starts with no specializations (at the cortical level) specific to vision and would
organize very differently when given different inputs, it also represents a general
explanation for the development and function of any sensory or motor area in the
cortex.

8.3 GCAL Architecture

All of the models whose results are presented here are implemented in the To-
pographica simulator, and are freely available along with the simulator from
www.topographica.org. Both the basic and unified models are described
using the same equations shown below, previously presented in refs. [Stevens
et al.(2013)Stevens, Law, Antolik, and Bednar, Bednar(2012)]. The model is in-
tended to represent the visual system of the macaque monkey, but relies on data
from studies of cats, ferrets, tree shrews, or other mammalian species where clear
results are not yet available from monkeys.

8.3.1 Sheets and Projections

Each Topographica model consists of a set of sheets of neurons and projections
(sets of topographically mapped connections) between them. A model has sheets
representing the visual input (as a set of activations in photoreceptor cells), sheets
implementing the transformation from the photoreceptors to inputs driving V1 (ex-
pressed as a set of ON and OFF RGC/LGN cell activations), and sheets representing
neurons in V1. The simple GCAL model (figure 8.4) has 4 such sheets, while the
complete unified model described in [Bednar(2012)] has 29, each representing dif-
ferent topographically organized populations of cells in a particular region.

Each sheet is implemented as a two-dimensional array of firing-rate neurons. The
Topographica simulator allows parameters for sheets and projections to be specified
in measurement units that are independent of the specific grid sizes used in a par-
ticular run of the simulation. To achieve this, Topographica sheets provide multiple
spatial coordinate systems, called sheet and matrix coordinates. Where possible,
parameters (e.g. sheet dimensions or connection radii) are expressed in sheet co-
ordinates, expressed as if the sheet were a continuous neural field rather than a
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finite grid. In practice, of course, sheets are always simulated using some finite ma-
trix of units. Each sheet has a parameter called its density, which specifies how
many units (matrix elements) in the matrix correspond to a length of 1.0 in con-
tinuous sheet coordinates, which allows conversion between sheet and matrix co-
ordinates. When sizes are scaled appropriately [Bednar et al.(2004)Bednar, Kelkar,
and Miikkulainen], results are independent of the density used, except at very low
densities or for simulations with complex cells, where complexity increases with
density [Antolik and Bednar(2011)]. Larger areas can be simulated easily [Bed-
nar et al.(2004)Bednar, Kelkar, and Miikkulainen], but require more memory and
simulation time.

A projection to an m×m sheet of neurons consists of m2 separate connection
fields, one per target neuron, each of which is a spatially localized set of connec-
tions from the neurons in one input sheet that are near the location corresponding
topographically to the target neuron. Figure 8.4 shows one sample connection field
(CF) for each projection, visualized as an oval of the corresponding radius on the
input sheet (drawn to scale), connected by a cone to the neuron on the target sheet
(if different). The connections and their weights determine the specific properties
of each neuron in the network, by differentially weighting inputs from neurons of
different types and/or spatial locations. Each of the specific types of sheets and pro-
jections is described in the following sections.

8.3.2 Images and Photoreceptor Sheets

The basic GCAL model (figure 8.4) has one input sheet, representing responses of
photoreceptors of one cone class in one retina. The full unified GCAL model of all
the input dimensions includes six input sheets (three different cone types in each
eye; not shown here). For the full unified model, inputs were generated by choosing
one calibrated-color image randomly from a database of single calibrated images,
selecting a random patch within the image, a random direction of motion transla-
tion with a fixed speed (described in ref. [Bednar and Miikkulainen(2003)]), and a
random brightness difference between the two eyes (described in ref. [Miikkulai-
nen et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh]). These modifications are
intended as a simple model of motion and eye differences, to allow development
of direction preference, ocular dominance, disparity, and color maps, until suitable
full-motion stereo calibrated-color video datasets of natural scenes are available.
Simulated retinal waves can also be used as inputs, to provide initial receptive-field
and map structure before eye opening, but are not required for receptive-field or map
development in the model [Bednar and Miikkulainen(2004)].

8.3.3 Subcortical Sheets

The subcortical pathway from the photoreceptors to the LGN and then to V1 is
represented as a set of hardwired subcortical cells with fixed connection fields
(CFs) that determine the response properties of each cell. These cells represent the
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complete processing pathway to V1, including circuitry in the retina (including the
retinal ganglion cells), the optic nerve, the lateral geniculate nucleus, and the optic
radiations to V1. Because the focus of the model is to explain cortical develop-
ment given its thalamic input, the properties of these ON/OFF cells are kept fixed
throughout development, for simplicity and clarity of analysis.

Each distinct ON/OFF cell type is grouped into a separate sheet, each of which
contains a topographically organized set of cells with identical properties but re-
sponding to a different topographically mapped region of the retinal photoreceptor
input sheet. Figure 8.4 shows the two main different spatial response types used in
the GCAL models illustrated here, ON (with an excitatory center) and OFF (with an
excitatory surround). All of these cells have Difference-of-Gaussian (DoG) recep-
tive fields, and thus perform edge enhancement at a particular size scale. Additional
cell classes can easily be added as needed for spatial frequency (with multiple DoG
sizes) or color (with separate cone types for the center and surround Gaussians)
simulations.

For the ON and OFF cells in the unified model, there are multiple copies with
different delays from the retina. These delays represent the different latencies in the
lagged vs. non-lagged cells found in cat LGN [Saul and Humphrey(1992),Wolfe
and Palmer(1998)], and allow V1 neurons to become selective for the direction of
motion. Many other sources of temporal delays would also lead to direction prefer-
ences, but have not been tested specifically.

8.3.4 Cortical Sheets

Unless otherwise stated, the simulations reported in this chapter use only a single
V1 sheet for simplicity, but in the full unified model, V1 is represented by multi-
ple cortical sheets representing different cell types and different V1 layers [Bed-
nar(2012),Antolik(2010)]. In this simplified version, cells make both excitatory and
inhibitory connections (unlike actual V1 neurons), and all cells receive direct input
from LGN cells (unlike many V1 neurons). Even so, the single-sheet V1 can demon-
strate most of the phenomena described above, except for complex cells (which
can be obtained by adding a separate population of cells without direct thalamic
input [Antolik and Bednar(2011)]) and contrast-dependent surround modulation ef-
fects (which require separate populations of inhibitory and excitatory cells [Anto-
lik(2010), Law(2009)]).

The behavior of the cortical sheet is primarily determined by the projections
to and within it. Each of these projections is initially non-specific other than the
initial rough topography, and becomes selective only through the process of self-
organization (described below), which increases some connection weights at the
expense of others.
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8.3.5 Activation

The model is simulated in a series of discrete time steps with step size δ t = 0.05
(roughly corresponding to 12.5 milliseconds of real time). At time 0.0, the first im-
age is drawn on the retina, and the activation of each unit in each sheet is updated for
the remaining 19 steps before time 1.0, when a new pattern is selected and drawn
on the retina (and similarly until the last input pattern is drawn at time 10,000).
Each image patch on the retina represents one visual fixation (for natural images) or
a snapshot of the relatively slowly changing spatial pattern of spontaneous activity
(such as the well-documented retinal waves [Wong(1999)]). Thus the training pro-
cess consists of a constant retinal activation, followed by recurrent processing at the
LGN and cortical levels. For one input pattern, assume that the input is drawn on
the photoreceptors at time t and the connection delay (constant for all projections)
is defined as 0.05. Then at t + 0.05 the ON and OFF cells compute their responses,
and at t+0.010 the thalamic output is delivered to V1, where it similarly propagates
recurrently through the intracortical projections to the cortical sheet(s) every 0.05
time steps. A much smaller step size of δ t = 0.002 allows replication of the detailed
time course of responses to individual patterns [Stevens(2011)], but this relatively
coarse step size of 0.05 is more practical for simulations of long-term processes like
neural development.

Images are presented to the model by activating the retinal photoreceptor units.
The activation valueΨi,P of unit i in photoreceptor sheet P is given by the brightness
of that pixel in the training image.

For each model neuron in the other sheets, the activation value is computed
based on the combined activity contributions to that neuron from each of the sheet’s
incoming projections. The activity contribution from a projection is recalculated
whenever its input sheet activity changes, after the corresponding connection delay.
For each unit j in a target sheet and an incoming projection p from sheet sp, the
activity contribution is computed from activations in the corresponding connection
field Fjp. Fjp consists of the local neighborhood around j (for lateral connections),
or the local neighborhood of the topographically mapped location of j on sp (for a
projection from another sheet); see examples in figures 8.4. The activity contribu-
tion Cjp to j from projection p is then a dot product of the relevant input with the
weights in each connection field:

Cjp(t + δ t) = ∑
i∈Fjp

ηi(t)ωi j,p (8.1)

where Xis is the activation of unit i on this projection’s input sheet sp, unit i is taken
from the connection field Fjp of unit j, and ωi j,p is the connection weight from i
to j in that projection. Across all projections, multiple direct connections between
the same pair of neurons are possible, but each projection p contains at most one
connection between i and j, denoted by ωi j,p.

For a given cortical unit j, the activity η j(t + δ t) is calculated from a rectified
weighted sum of the activity contributions Cjp(t + δ t):
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η jV (t + δ t) = f

(

∑
p
γpCjp(t + δ t)

)

(8.2)

where f is a half-wave rectifying function with a variable threshold point (θ ) de-
pendent on the average activity of the unit, as described in the next subsection, and
V denotes one of the cortical sheets.

Each γp is an arbitrary multiplier for the overall strength of connections in pro-
jection p. The γp values are set in the approximate range 0.5 to 3.0 for excitatory
projections and -0.5 to -3.0 for inhibitory projections. For afferent connections, the
γp value is chosen to map average V1 activation levels into the range 0 to 1.0 by
convention, for ease of interconnecting and analyzing multiple sheets. For lateral
and feedback connections, the γp values are then chosen to provide a balance be-
tween feedforward, lateral, and feedback drive, and between excitation and inhibi-
tion; these parameters are crucial for making the network operate in a useful regime.

ON/OFF neuron activity is computed similarly to equation 8.2, except to add
divisive normalization and to fix the threshold θ at zero:

η jL(t + δ t) = f

(

∑p γpCjp(t + δ t)

γSCjS(t + δ t)+ k

)

(8.3)

where L stands for one of the ON/OFF sheets. Projection S here consists of a set
of isotropic Gaussian-shaped lateral inhibitory connections (see equation 8.6, eval-
uated with u = 1), and p ranges over all the other projections to that sheet. k is a
small constant to make the output well-defined for weak inputs. The divisive inhi-
bition implements the contrast gain control mechanisms found in RGC and LGN
neurons [Antolik(2010), Felisberti and Derrington(1999), Bonin et al.(2005)Bonin,
Mante, and Carandini, Alitto and Usrey(2008)].

Each time the activity is computed using equation 8.2 or 8.3, the new activity
values are sent to each of the outgoing projections, where they arrive after the pro-
jection delay. The process of activity computation then begins again, with a new
contribution C computed as in equation 8.1, leading to new activation values by
equation 8.2 or 8.3. Activity thus spreads recurrently throughout the network, and
can change, die out, or be strengthened, depending on the parameters.

With typical parameters that lead to realistic topographic map patterns, initially
blurry patterns of afferent-driven cortical activity are sharpened into well-defined
“activity bubbles” through locally cooperative and more distantly competitive lateral
interactions [Miikkulainen et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh].
Nearby neurons are thus influenced to respond more similarly, while more distant
neurons receive net inhibition and thus learn to respond to different input patterns.
The competitive interactions “sparsify” the cortical response into patches, in a pro-
cess that can be compared to the explicit sparseness constraints in non-mechanistic
models [Olshausen and Field(1996), Hyvärinen and Hoyer(2001)], while the local
facilitatory interactions encourage spatial locality so that smooth topographic maps
will be developed.
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As described in more detail below, the initially random weights to cortical neu-
rons are updated in response to each input pattern, via Hebbian learning. Because
the settling (sparsification) process typically leaves only small patches of the corti-
cal neurons responding strongly, those neurons will be the ones that learn the current
input pattern, while other nearby neurons will learn other input patterns, eventually
covering the complete range of typical input variation. Overall, through a combina-
tion of the network dynamics that achieve sparsification along with local similarity,
plus homeostatic adaptation that keeps neurons operating in a useful regime, plus
Hebbian learning that leads to feature preferences, the network will learn smooth,
topographic maps with good coverage of the space of input patterns, thereby de-
veloping into a functioning system for processing patterns of visual input without
explicit specification or top-down control of this process.

8.3.6 Homeostatic Adaptation

For this model, the threshold for activation of each cortical neuron is a very im-
portant quantity, because it directly determines how much the neuron will fire in
response to a given input. Mammalian neurons appear to regulate such thresholds
automatically, a process known as homeostatic plasticity or homeostatic adapta-
tion [Turrigiano(1999)] (where homeostatic means to keep similar and stable). To
set the threshold automatically, each neural unit j in V1 calculates a smoothed ex-
ponential average of its own activity (η j):

η j(t) = (1−β )η j(t)+βη j(t− 1) (8.4)

The smoothing parameter (β = 0.999) determines the degree of smoothing in the
calculation of the average. η j is initialized to the target average V1 unit activity
(μ), which for all simulations is η jA(0) = μ = 0.024. The threshold is updated as
follows:

θ (t) = θ (t− 1)+κ(η j(t)− μ) (8.5)

where κ = 0.0001 is the homeostatic learning rate. The effect of this scaling mech-
anism is to bring the average activity of each V1 unit closer to the specified target.
If the average activity of a V1 unit moves away from the target during training, the
threshold for activation is thus automatically raised or lowered in order to bring it
closer to the target.

8.3.7 Learning

Initial connection field weights are random within a two-dimensional Gaussian en-
velope. E.g., for a postsynaptic (target) neuron j located at sheet coordinate (0,0),
the weight ωi j,p from presynaptic unit i in projection p is:

ωi j,p =
1

Zω p
uexp

(

−x2 + y2

2σ2
p

)

(8.6)
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where (x,y) is the sheet-coordinate location of the presynaptic neuron i, u is a scalar
value drawn from a uniform random distribution for the afferent and lateral in-
hibitory projections (p = A, I), σp determines the width of the Gaussian in sheet
coordinates, and Zω p is a constant normalizing term that ensures that the total of all
weights ωi j,p to neuron j in projection p is 1.0, where all afferent projections are
treated together as a single projection so that their sum total is 1.0. Weights for each
projection are only defined within a specific maximum circular radius rp; they are
considered zero outside that radius.

Once per input pattern (after activity has settled), each connection weight ωi j

from unit i to unit j is adjusted using a simple Hebbian learning rule. (Learning
could instead be performed at every simulation time step, but doing so would re-
quire significantly more computation time.) This rule results in connections that
reflect correlations between the presynaptic activity and the postsynaptic response.
Hebbian connection weight adjustment for unit j is dependent on the presynaptic
activity ηi, the post-synaptic response η j , and the Hebbian learning rate α:

ωi j,p(t) =
ωi j,p(t− 1)+αη jηi

∑k

(

ωk j,p(t− 1)+αη jηk
) (8.7)

Unless it is constrained, Hebbian learning will lead to ever-increasing (and thus
unstable) values of the weights. The weights are constrained using divisive post-
synaptic weight normalization (denominator of equation 8.7), which is a simple and
well understood mechanism. All afferent connection weights from ON/OFF sheets
are normalized together in the model, which allows V1 neurons to become selective
for any subset of the ON/OFF inputs. Weights are normalized separately for each of
the other projections, to ensure that Hebbian learning does not disrupt the balance
between feedforward drive, lateral and feedback excitation, and lateral and feedback
inhibition. Subtractive normalization with upper and lower bounds could be used in-
stead, but it would lead to binary weights [Miller and MacKay(1994),Miller(1994)],
which is not desirable for a firing-rate model whose connections represent averages
over multiple physical connections. More biologically motivated homeostatic mech-
anisms for normalization such as multiplicative synaptic scaling [Turrigiano(1999)]
or a sliding threshold for plasticity [Bienenstock et al.(1982)Bienenstock, Cooper,
and Munro] could be implemented instead, but these have not been tested so far.

Note that some of the results below use the earlier LISSOM model [Miikkulai-
nen et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh], which follows the same
equations but lacks gain control and homeostatic adaptation (equivalent to setting
γS = 0 and k = 1 in equation 8.3 and κ = 0 in equation 8.5). Without these automatic
mechanisms, LISSOM requires the modeller to set the input strength and activation
thresholds separately for each dataset and to adjust them as learning progresses.
As long as these values have been set appropriately, previous LISSOM results can
be treated equivalently to GCAL results, but GCAL is significantly simpler to use
and describe, while being more robust to changes in the input distributions [Stevens
et al.(2013)Stevens, Law, Antolik, and Bednar], so only GCAL is described here.
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8.4 Results

In the following sections, we review a series of model results that account for
anatomical, electrophysiological, imaging, psychophysical, and behavioral results
from studies of experimental animals. Each of the results arises from the neural
architecture and self-organizing mechanisms outlined in the previous section, oper-
ating on the statistical properties of the inputs, which reflect geometrical properties
both of the world and of the visual system itself.

8.4.1 Maps and Connection Patterns

Figure 8.5 shows the pattern of orientation selectivity that emerges in the basic
GCAL model from figure 8.4, whose subcortical pathway consists of a single set of
non-lagged monochromatic ON and OFF LGN inputs for a single eye. This model
robustly develops orientation maps, when given training inputs that have elongated
patterns. In the model, the maps emerge as the consequence of the series of activity
bubbles in response to each input pattern, which cause different regions of the cortex
to learn weights corresponding to different input patterns.

Over the course of development, initially unspecific connections thus become
selective for specific patterns of LGN activity, including particular orientations.
Hebbian learning ensures that each afferent connection field shown represents the
average pattern of LGN activity that has driven that neuron to a strong response;
each neuron prefers a different pattern at a specific location on the retinal surface.
Preferences from the set of all V1 neurons form a smooth topographic map covering
the range of orientations present in the input patterns, yielding an orientation map
similar to those from monkeys [Blasdel(1992b)]. For instance, the map shows iso-
feature domains, pinwheel centers, fractures, saddle points, and linear zones, with
a ring-shaped Fourier transform. As in animals [Sclar and Freeman(1982)], orien-
tation selectivity is preserved over a very wide range of contrasts, due to the effect
of lateral inhibitory connections in the LGN and in V1 that normalize responses to
be relative to activation of neighboring neurons rather than absolute levels of con-
trast [Stevens et al.(2013)Stevens, Law, Antolik, and Bednar].

Figure 8.6 shows that the specific map pattern observed is a consequence not of
the initial random weight patterns, but of the series of randomly chosen inputs over
time. The overall properties of each map will be the same for any inputs drawn from
the same distribution, but the specific map pattern depends crucially on the arbitrary
location and order of inputs received during self-organization. The overall type of
organization primarily emerges from geometric constraints on smoothly mapping
the range of values for the indicated feature, within a two-dimensional retinotopic
map [Miikkulainen et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh, Kaschube
et al.(2010)Kaschube, Schnabel, Löwel, Coppola, White, and Wolf].

The map patterns are also affected by the relative amount by which each fea-
ture varies in the input dataset, how often each feature appears, and other aspects of
the input image statistics [Bednar and Miikkulainen(2004)]. For instance, orienta-
tion maps trained on natural image inputs develop a preponderance of neurons with
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Fig. 8.5 Orientation maps trained on abstract stimuli (color figure). These plots show
the orientation preference measured for each model neuron before (top row, iteration 0) and
after self-organization (bottom row, iteration 10,000) based on artificially generated two-
dimensional oriented Gaussian patterns. Each neuron in the map is colored according to the
orientation it prefers, using color key (e). (a) The preferences are initially random (top).
Through self-organization, the network developed a smoothly varying orientation map (bot-
tom). Apart from the overall retinotopic mapping that was enforced at initialization, the map
contains local geometric features found in maps from experimental animals, such as pin-
wheels (two are circled in white in a and black in b), linear zones (one is marked with a
long white or black rectangle), and fractures (one between green and blue/purple is marked
with a white or black square). (b) Before self-organization, the selectivity of each neuron
for its (random) preferred orientation is very low (black in b, top). In contrast, nearly all
of the self-organized neurons are highly selective for orientation (white in b, bottom). (c)
Overlaying the orientation and selectivity plots shows that regions of lower selectivity in the
self-organized map tend to occur near pinwheel centers and along fractures. Histograms of
the number of neurons preferring each orientation are shown in (d), and are essentially flat be-
cause the initial weight patterns were unbiased and subsequent training inputs represented all
orientations equally. These plots show that LISSOM (with GCAL getting essentially identical
results as well; [Stevens et al.(2013)Stevens, Law, Antolik, and Bednar]) can develop real-
istic orientation maps through self-organization based on abstract input patterns. Reprinted
from [Bednar(2002)].

horizontal and vertical orientation preferences, as seen in ferret maps and in natural
images [Bednar and Miikkulainen(2004),Coppola et al.(1998)Coppola, White, Fitz-
patrick, and Purves]. Figure 8.7 shows results from maps trained first on a model of
spontaneous retinal activity (to account for maps present at eye opening in ferrets
and cats), and then on natural images from different datasets. For natural image
inputs, the map’s histogram of orientation preferences will no longer be flat as it
was for the artificial inputs in figure 8.5; instead it reflects the statistics of orienta-
tions present in the image dataset. Figure 8.7 shows that the model has successfully
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Fig. 8.6 Input stream determines map pattern (color figure). This figure shows that the
self-organized orientation map patterns (e.g. in figure 8.5) do not depend on the random initial
values of the weights. They are instead driven by the stream of input patterns presented during
training. Using a different stream of random numbers for the weights results in different
initial orientation maps (a and b), but has almost no effect on the final self-organized maps
(compare g to h). In (g-i), the lateral inhibitory connections of one sample neuron are outlined
in white, and are not affected by changing the weight stream. The final result is the same
because lateral excitation smooths out differences in the initial weight values, and leads to
similar large-scale patterns of activation at each iteration. (Compare maps d and e measured
at iteration 100; the same large-scale features are emerging in both maps despite locally
different patterns of noise caused by the different initial weights.) In contrast, changing the
input stream produces very different early and final map patterns (compare e to f and h to i),
even when the initial weight patterns (and therefore the initial orientation maps) are identical
(b and c). Thus the input patterns are the crucial source of variation, not the initial weights.
Reprinted from [Bednar(2002)].
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prenatal training

(c) 2500: During
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(d) 10,000: End of
postnatal training

Fig. 8.7 Postnatal training makes orientation map match statistics of the environment
(color figure). Each row shows results from a network trained for 1000 iterations on a model
of internally generated activity [Bednar and Miikkulainen(2004)], then trained for 9000 fur-
ther iterations using natural images [Shouval et al.(1996)Shouval, Intrator, Law, and Cooper]
to model postnatal visual experience. The orientation map plots (b-d) show selectivity as a
brightness level, so that the postnatal improvement in selectivity will be visible. (a) and (b)
are the same in each row. The top row shows the effect of postnatal training on natural images.
With these images, more neurons become sensitive to horizontal and vertical contours, and
the overall selectivity increases. However, the overall map shape remains similar, as found in
laboratory animals ( [Chapman et al.(1996)Chapman, Stryker, and Bonhoeffer]; compare in-
dividual blobs between maps right to left or left to right). The postnatal changes when trained
on a different database consisting primarily of landscape images are similar but much more
pronounced. With these images, the network smoothly develops strong biases for vertical and
horizontal contours, within the pre-determined map shape. These results show that postnatal
learning can gradually adapt the prenatally developed map to match the statistics of an ani-
mal’s natural environment, as shown in figure 8.3, while explaining how an orientation map
can be present already at eye opening. Reprinted from [Bednar(2002)].
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0◦ 45◦ 90◦ 135◦ 180◦
(a) GCAL/LISSOM model

0◦ 45◦ 90◦ 135◦ 180◦
(b) Adult ferret

Fig. 8.8 Training on natural images gives matching orientation histograms. Looking
more closely at the histogram for the network trained postnatally on images of natural
scenes [Shouval et al.(1996)Shouval, Intrator, Law, and Cooper] shows that the resulting
histograms are a close match to those found in adult ferret V1 (reprinted from [Coppola
et al.(1998)Coppola, White, Fitzpatrick, and Purves]; copyright National Academy of Sci-
ences, U.S.A.). The model and animals both model trained on natural images have more
neurons representing horizontal or vertical than oblique contours, which reflects the statistics
of the natural environment. However, the natural images were chosen specifically to exclude
manmade contours, while the ferrets were raised in a laboratory environment that presum-
ably had many long edges and sharp corners, and so it may be surprising to find such a close
match for these images. Work is ongoing to identify the actual pattern of first and second
order statistics in natural and laboratory environments so that these results can be interpreted
clearly. Reprinted from [Bednar(2002)].

extracted the horizontal and vertical biases of natural image databases, developing
many more horizontal-selective cells when trained on images with a preponderance
of horizons and other horizontal patterns. This increase occurs within the context
of the map already established at eye opening, with areas responding to horizon-
tal growing larger over time, as they are activated more often than the neighboring
stimuli that activate nearby regions. Figure 8.8 shows that the histogram of orien-
tation preferences obtained in response to close-up natural images is a good match
to that obtained for ferrets, which is intriguing because the ferrets have presumably
been raised in a laboratory environment different from the forest and nature images
used to train the model.

Figure 8.9 shows the color, motion direction, ocular dominance, spatial fre-
quency, and disparity preferences and maps that develop when appropriate informa-
tion is made available to V1 through additional ON/OFF sheets [Bednar(2012),Ball
and Bednar(2009), Palmer(2009), Ramtohul(2006)]. As described in the original
source for each model, the model results for each dimension have been eval-
uated against the available animal data, and capture the main aspects of the
feature value coverage and the spatial organization of the maps [Miikkulainen
et al.(2005)Miikkulainen, Bednar, Choe, and Sirosh,Palmer(2009)]. The maps sim-
ulated together (e.g. orientation and ocular dominance) also tend to intersect at right
angles, such that high-gradient regions in one map avoid high-gradient regions in
others [Bednar and Miikkulainen(2006)]. Each neuron becomes selective for some
portion of the multidimensional feature space, and together they account for the
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Fig. 8.9 Model maps for other feature dimensions. Imaging results for 4mm×4mm of
model V1 from the LISSOM models of retinotopy (X,Y), orientation (OR), ocular domi-
nance (OD), motion direction (DR), spatial frequency (SF), temporal frequency (TF), dis-
parity (DY), and color (CR). For each spatial dimension (TF has not yet been analyzed),
the model develops maps that are a close match to the experimental results. All of the maps
share a property of local smoothness, which results from the short-range lateral connections
in the model, but the overall patterns differ with each feature depending on how those features
varied during training for that simulation. Reprinted from references indicated.

variation across this space that was seen during self-organization [Bednar and Miik-
kulainen(2006)].

In animals, the only large-scale information available about neural properties
is from imaging techniques at the map level. In the model, it is possible to see
what connectivity patterns systematically lead to the observed map preferences.
Figure 8.10 shows these connectivity patterns for a GCAL OR map simulation
with simple and complex cells, illustrating how the neurons achieve coverage of
the various possible input feature values. Lateral connections, in turn, store pat-
terns of correlation between each neuron that represent larger-scale structure and
correlations. Figure 8.11 shows the pattern of lateral connectivity for a neuron em-
bedded in an orientation, ocular dominance, and motion direction map. Because the
lateral connections are also modified by Hebbian learning, they represent correla-
tions between neurons, and are thus strong for short-range connections (due to the
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(a) LGN ON→V1 L4 (b) LGN OFF→V1 L4

(c) V1 L2/3→V1 L2/3

(d) L2/3 OR
domain

(e) L2/3 OR
pinwheel

Fig. 8.10 Self-organized projections to V1 L2/3. Unlike purely geometric models where
the maps are represented directly in the model, the maps plotted in the previous figures are
just summaries of the properties conferred on neurons by their connectivity patterns. These
plots show the underlying connectivity patterns that lead to an orientation map, from a simu-
lation with separate V1 L4 and L2/3 regions allowing the emergence of complex cells. (a,b)
Connection fields from the LGN ON and OFF channels to every 20th neuron in the model L4
show that orientation preferences are reflected in the afferent connectivity to the neurons in
that area. (c) Long-range excitatory lateral connections to those neurons preferentially come
from neurons with similar OR preferences. Here strong weights are colored with the OR pref-
erence of the source neuron. Strong weights occur in clumps (appearing as small dots here)
corresponding to an iso-orientation domain (each approximately 0.2–0.3mm wide); the fact
that most of the dots are similar in color for any given neuron shows that the connections
are orientation specific. Comparison of corresponding plots from (c) and (a) or (b) shows
that the OR preferences of the afferent and lateral CFs are very similar. (d) Enlarged plot
from (c) for a typical OR domain neuron that prefers horizontal patterns and receives connec-
tions primarily from other horizontal-preferring neurons (appearing as blobs of red or nearly
red colors). (e) OR pinwheel neurons receive connections from neurons with many different
OR preferences, because they are less selective in their responses and thus correlated with
a wide range of orientation preferences. Overall, the lateral connectivity patterns reflect the
patterns of co-occurrence statistics of each pair of neurons over time, due to Hebbian learn-
ing; these patterns then lead to phenomena such as orientation-specific surround modulation
(figure 8.12). Reprinted from [Antolik(2010)].
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(a) OR+lateral [Bed-
nar and Miikkulai-
nen(2006)]

(b) OD+lateral [Bed-
nar and Miikkulai-
nen(2006)]

(c) DR+lateral [Bed-
nar and Miikkulai-
nen(2006)]

(d) Tree shrew;
[Bosking
et al.(1997)Bosking,
Zhang, Schofield,
and Fitzpatrick]

Fig. 8.11 Lateral connections across maps. LISSOM/GCAL neurons each participate in
multiple functional maps, but have only a single set of lateral connections. Connections are
strongest from other neurons with similar properties, respecting each of the maps to the de-
gree to which that map affects correlation between neurons. Maps for a combined LISSOM
OR/OD/DR simulation are shown above, with the black outlines indicating the connections to
the central neuron (marked with a small black square outline) that remain after weak connec-
tions have been pruned. Model neurons receive connections from other model neurons with
similar orientation preference (a) (as in tree shrew, (d)) but connections even more strongly
respect the direction map (c). This highly monocular unit also connects strongly to the same
eye (b), but the more typical binocular cells have wider connection distributions. Reprinted
from refs. [Bednar and Miikkulainen(2006), Bosking et al.(1997)Bosking, Zhang, Schofield,
and Fitzpatrick] as indicated.

shared retinotopic preference of those neurons) and between other neurons often
coactivated during self-organization (e.g. those sharing orientation, direction, and
eye preferences). The lateral connections are thus patchy and orientation and direc-
tion specific, as found in animals [Bosking et al.(1997)Bosking, Zhang, Schofield,
and Fitzpatrick, Sincich and Blasdel(2001), Roerig and Kao(1999)]. Neurons with
low levels of selectivity for any of those dimensions (e.g. binocular neurons) re-
ceive connections from a wide range of feature preferences, while highly selective
neurons receive more specific connections, reflecting the different patterns of corre-
lation in those cases. These connection patterns represent predictions, as only a few
of these relationships have been tested so far in animals. The model strongly predicts
that lateral connection patterns will respect all maps that account for a significant
fraction of the response variance of the neurons, because each of those features will
affect the correlation between neurons.

Overall, where it has been possible to make comparisons, these models have
been shown to reproduce the main features of the experimental data, using a small
set of assumptions. In each case, the model demonstrates how the experimentally
measured map can emerge from Hebbian learning of corresponding patterns of sub-
cortical and cortical activity. The models thus illustrate how the same basic, general-
purpose adaptive mechanism will lead to very different organizations, depending on
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the geometrical and statistical properties of that feature. Future work will focus on
showing how all the results so far could emerge simultaneously in a single model
(as outlined in ref. [Bednar(2012)]).

8.4.2 Surround Modulation

Given a model with realistically patchy, specific lateral connectivity and realis-
tic single-neuron properties, as described above, the patterns of interaction be-
tween neurons can be compared with neurophysiological evidence for surround
modulation—influences on neural responses from distant patterns in the visual field.
These studies can help validate the underlying model circuit, while helping under-
stand how the visual cortex will respond to complicated patterns such as natural
images.

For instance, figure 8.12 shows how the response to a sine grating patch can
be modulated by a surrounding annulus. In animals, complicated patterns of in-
teraction with the surround are seen depending on orientation and contrast [Seng-
piel et al.(1997)Sengpiel, Sen, and Blakemore, Jones et al.(2002)Jones, Wang, and
Sillito]. The model reproduces these patterns due to the orientation-specific self-
organized lateral connection patterns, accounting not only for the most commonly
reported and analyzed effects, but also a variety of other effects depending on the
location of the neuron in the map (which affects its pattern of lateral connectivity as
shown in figure 8.10). The model thus accounts both for the typical pattern of orien-
tation contrast interactions, and explains why such a diversity of patterns is observed
in animals. The results from these studies and related studies of size-dependent ef-
fects [Antolik(2010)] suggest both that lateral interactions may underlie many of
the observed surround modulation effects, and also that the diversity of observed
effects can at least in part be traced to the diversity of lateral connection patterns,
which in turn is a result of the various sequences of activations of the neurons during
development.

Although the preceding results all focused on the primary visual cortex, the
mechanisms involved in these models are general purpose, based only on processing
statistical regularities in input patterns to reveal the underlying geometry and prop-
erties of the external world. As a demonstration, figure 8.13 shows that the same
model can be applied to a completely non-visual input modality, rodent whiskers.
The same principle of activity-bubble formation due to local cooperation and more
distant competition leads to very different results for this type of input, with pin-
wheels that develop in a strictly aligned global organization, unlike the scattered
pinwheels seen in model V1 maps. But again the results are a good match to animal
data, suggesting that these general principles apply across the sensory cortex, and
potentially to other cortical and subcortical regions that process patterned stimuli.
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Fig. 8.12 Orientation-contrast tuning curves (OCTCs). For the OR model whose connec-
tion fields are shown in figure 8.10, the effect of the orientation-specific lateral connections
can be tested using center-surround annulus stimulus like the example at the bottom right.
Here the center patch is chosen to be a good match to the afferent RF of a specific V1 model
neuron, and then responses are collected as the orientation of the surround is varied. In each
graph A-F reprinted from ref. [Antolik(2010)], red is the orientation tuning curve for the given
neuron (with just the center grating patch), blue is for surround contrast 50%, and green is
for surround contrast 100%. Top row: typically (51% of model neurons tested), a collinear
surround is suppressive for these contrasts, but the surround becomes less suppressive as
the surround orientation is varied (as for cat [Sengpiel et al.(1997)Sengpiel, Sen, and Blake-
more], G and macaque [Jones et al.(2002)Jones, Wang, and Sillito], H). Middle row: Other
patterns seen in the model include high responses at diagonals (D, 20%, as seen in ref. [Sen-
gpiel et al.(1997)Sengpiel, Sen, and Blakemore]), strongest suppression not collinear (E, as
seen in ref. [Jones et al.(2002)Jones, Wang, and Sillito]), and facilitation for all orientations
(F, 5%). The relatively rare pattern in F has not been reported in existing studies, and thus
constitutes a prediction. In each case the observed variability is a consequence of the model’s
Hebbian learning that leads to a diversity of patterns of lateral connectivity, rather than noise
or experimental artifacts.
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(a) Whisker inputs (b) Barrel inputs (c) Direction map (d) Connections

(e) Time course of activation

Fig. 8.13 Rodent barrel cortex direction map. The V1 model in GCAL and LISSOM is
completely general, and contains no vision-specific components or assumptions. As a demon-
stration, this figure shows results from a GCAL-based model of the rat barrel cortex, which
is a primary sensory area driven by the thalamus, like V1, but with inputs ultimately from
rodent whiskers instead of photoreceptors (reprinted from [Wilson et al.(2010)Wilson, Law,
Mitchinson, Prescott, and Bednar]). The model has a 5×5 array of whiskers that can be
deflected in any direction with different strengths; (a) shows a typical assumed pattern of
deflection, with whiskers deflected roughly in the direction perpendicular to a moving edge
(e.g. an obstacle encountered by the whiskers). The corresponding thalamic input to the bar-
rel cortex is shown in (b), computed using hard-wired cosine-shaped RFs analogous to the
ON and OFF channels of the LGN; bright colors indicate high activation for a unit with that
direction preference. The cortical response to this pattern is initially broad (e), as for visual
stimuli to model V1, but within a few settling iterations converges into a stable pattern of
activity bubbles. Due to the geometrical arrangement of the activated whiskers, the bubbles
reliably form on the leading edge of the activity pattern, which causes an immediate and
strong correlation between the input patterns and the neurons that respond in barrel cortex.
The result is the robust emergence of globally aligned pinwheel patterns, one per whisker
barrel (c), which is very different from the arbitrary pinwheel patterns observed for V1 de-
velopment. These patterns are a close match to experimental data from rats ( [Andermann
and Moore(2006)]; see small map next to (c), showing how the map pattern emerges from
the geometrical arrangement of the input stimuli and their receptors. Just as for the visual
cortex models, the long-range lateral connections come from neurons with similar direction
preference, due to Hebbian learning; see example for the neuron marked with a * in (d). For
any modality, the model results reflect the geometric and statistical properties of the input,
subject to constraints from the initial wiring of the cortex.
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8.5 Discussion and Future Work

The results reviewed above illustrate a general approach to understanding the large-
scale development, organization, and function of cortical areas, illustrating how the
geometry and statistics of the external inputs interact with the geometry and ar-
chitecture of the cortical architecture to determine the observed organization and
operation of the visual cortex. The models show that a relatively small number of
basic and largely uncontroversial assumptions and principles may be sufficient to
explain a very wide range of experimental results from the visual cortex. Even very
simple neural units, i.e., firing-rate point neurons, generically connected into topo-
graphic maps with initially random or isotropic weights, can form a wide range of
specific feature preferences and maps via unsupervised normalized Hebbian learn-
ing of natural images and spontaneous activity patterns. The resulting maps consist
of neurons with realistic spatial response properties, with variability due to visual
context and recent history that explains significant aspects of surround modulation.
Combining the existing models into a single, runnable visual system is very much
a work in progress, but the results so far suggest that doing so will be both feasible
and valuable. The simulator and example simulations are freely downloadable from
www.topographica.org, allowing any interested researcher to build on this
work.

It is important to note that many of the individual results found with GCAL can
also be obtained using other modelling approaches, which can be complementary to
the processes modeled by GCAL. For instance, it is possible to generate orientation
maps without any activity-dependent plasticity, through the initial wiring pattern be-
tween the retina and the cortex [Ringach(2007), Paik and Ringach(2011)] or within
the cortex itself [Grabska-Barwinska and von der Malsburg(2008)]. Such an ap-
proach cannot explain subsequent experience-dependent development, whereas the
Hebbian approach of GCAL can explain both the initial map and later plasticity, but
it is of course possible that the initial map and the subsequent plasticity occur via
different mechanisms. Other models are based on abstractions of some of the mech-
anisms in GCAL [Yu et al.(2005)Yu, Farley, Jin, and Sur, Farley et al.(2007)Farley,
Yu, Jin, and Sur, Obermayer et al.(1990)Obermayer, Ritter, and Schulten, Wolf and
Geisel(2003)], operating similarly but at a higher level. GCAL is not meant as a
competitor to such models, but as a concrete, physically realizable implementation
of those ideas.

As discussed throughout, the main focus of this modelling work has been
on replicating experimental data using a small number of computational prim-
itives and mechanisms, with a goal of providing a concise, concrete, and rela-
tively simple explanation for a wide and complex range of experimental find-
ings. A complete explanation of visual cortex development and function would
go even further, demonstrating more clearly why the cortex should be built in this
way, and precisely what information-processing purpose this circuit performs. For
instance, realistic receptive fields can be obtained from “normative” models em-
bodying the idea that the cortex is developing a set of basis functions to rep-
resent input patterns faithfully, with only a few active neurons [Olshausen and
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Field(1996), Bell and Sejnowski(1997), Hyvärinen and Hoyer(2001), Rehn and
Sommer(2007)], maps can emerge by minimizing connection lengths in the cor-
tex [Koulakov and Chklovskii(2001)], and lateral connections can be modelled
as decorrelating the input patterns [Barlow and Földiák(1989), Dong(1995)]. The
GCAL model can be seen as a concrete, mechanistic implementation of these ideas,
showing how a physically realizable local circuit could develop receptive fields with
good coverage of the input space, via lateral interactions that also implement spar-
sification via decorrelation [Miikkulainen et al.(2005)Miikkulainen, Bednar, Choe,
and Sirosh]. Making more explicit links between mechanistic models like GCAL
and normative theories is an important goal for future work. Meanwhile, there are
many aspects of cortical function not explained by current normative models. The
focus of the current line of research is on first capturing those phenomena in a
general-purpose mechanistic model, so that researchers can then build deeper ex-
planations for why these computations are useful for the organism.

8.6 Conclusions

The GCAL model results suggest that it will soon be feasible to build a single model
visual system that will account for a very large fraction of the visual response prop-
erties, at the firing rate level, of V1 neurons in a particular species. Such a model will
help researchers make testable predictions to drive future experiments to understand
cortical processing, as well as determine which properties require more complex
approaches, such as feedback, attention, and detailed neural geometry and dynam-
ics. The model suggests that cortical neurons develop to cover the typical range of
variation in their thalamic inputs, within the context of a smooth, multidimensional
topographic map, and that lateral connections store pairwise correlations and use
this information to modulate responses to natural scenes, dynamically adapting to
both long-term and short-term visual input statistics.
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