
Chapter 8

Reusing Requirements in Global Software

Engineering

Juan Manuel Carrillo de Gea, Joaquı́n Nicolás, José Luis Fernández Alemán,

Ambrosio Toval, A. Vizcaı́no, and Christof Ebert

Abstract Knowledge sharing and reuse in global software engineering (GSE) are

challenging issues. Knowledge management (KM) is specifically impacted because

on top of distance, culture and language mismatches, there is also the perceived risk

of sharing something which could mean that others could take over some work.

Mistrust and protectionism are often the consequence, leading to insufficient reuse.

This is visible specifically in requirements engineering (RE), where all reuse should

start. In this chapter, we will look to reuse in RE with a detailed look on how to

improve knowledge sharing and collaboration in distributed environments. We first

look into the state of the practice. Then we present a lightweight, reuse-based,

global RE method called PANGEA (Process for globAl requiremeNts enGinEering
and quAlity), based on natural language requirements and software engineering

standards. Based on this method, we also build a prototypical tool, called

PANTALASA (PANgea Tool And Lightweight Automated Support Architecture)
which provides automated support for PANGEA. Its features are drawn from

PANGEA and the state of the practice commercially available RE tools. A proto-

type of PANTALASA was developed by using Semantic MediaWiki and Facebook

and applied to a case study in the domain of hotel management. We could show

with this method and prototype that collaboration and thus KM and reuse in RE are

improved.

J.M. Carrillo de Gea (*) • J. Nicolás • J.L. Fernández Alemán • A. Toval

Universidad de Murcia, Murcia, Spain

e-mail: jmcdg1@um.es; jnr@um.es; aleman@um.es; atoval@um.es

A. Vizcaı́no

Universidad de Castilla - La Mancha, Ciudad Real, Spain

e-mail: aurora.vizcaino@uclm.es

C. Ebert

Vector Consulting Services, Stuttgart, Germany

e-mail: christof.ebert@vector.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_8, # Springer-Verlag Berlin Heidelberg 2013

171

mailto:jmcdg1@um.es
mailto:jnr@um.es
mailto:aleman@um.es
mailto:atoval@um.es
mailto:aurora.vizcaino@uclm.es
mailto:christof.ebert@vector.com


8.1 Introduction

Brooks stated more than 20 years ago [1] that there are approaches in software

engineering (SE) that target the accidental complexity of software, while others are

targeted at its essential complexity. As regards this difficulty, and discussing the

role of requirements engineering (RE) in software development, Brooks considered

the refinement of requirements and rapid prototyping. Among the SE strategies

which attack the conceptual essence of the problem, he also mentions the idea of

buy versus build: in other words, he stated the need for software reuse. Software

reuse is for Meyer [2] “the ability of software elements to serve for the construction

of many different applications”. Meyer summarises the benefits of reusability: (1)

improved timeliness, in the sense of decreased time to market; (2) reduced software

maintenance efforts; (3) improved reliability, efficiency and consistency of the

developed software and (4) enhanced investment, through the preservation of the

know-how. Mili et al. [3] affirm that software reuse is “the (only) realistic approach

to bring about the gains of productivity and quality that the software industry

needs”.

There is a line of thinking within software reuse that considers that every

software artefact (asset) produced during the development process is reusable,

including system or product specifications, design, source code, test cases, project

plans, quality plans, etc. Since the mid-1990s, specifications and requirements reuse

are postulated by a number of authors as a promising path towards quality and

productivity in software development, a way that has been less explored than reuse

of source code or designs. There is some consensus, in that the higher the abstrac-

tion level and the more not only source code but also design and specifications are

reused, the greater the reusability benefits are [4, 5]. In this respect, Favaro [6]

affirms that “a well-formulated, measurable, reusable requirement [. . .] is every bit

as valuable as a reusable software module”. In addition, Robertson and Robertson

[7] claim that if the development starts with a set of requirements that were

specified for other projects or domains, the accuracy of the requirements specifica-

tion is improved, and the time to develop this specification is reduced. Cheng and

Atlee [8] also consider the identification of sets of reusable requirements for

particular domains or types of applications to be of interest. To the best of our

knowledge, Rine and Nada [9] are the first authors who demonstrated empirically

that the reusability level determines the effectiveness of improvements in produc-

tivity, quality and development time, concluding that greater benefits are obtained

when reusability is applied during the initial processes of the software development

life cycle.

Cheng and Atlee [8] highlighted globalisation and requirements reuse as two of
the more urgent needs and grand challenges in RE research and expected the

solutions to these issues to produce a great impact on both research and practice

in SE. Globalisation arises from growing and relatively new software needs, while

requirements reuse focuses on extending and maturing existing technologies.

Global software engineering (GSE) implies a paradigm shift towards globally

172 J.M. Carrillo de Gea et al.



distributed development teams [10], and it has become a business need for various

reasons: to decrease costs, capitalise on global resource pools owing to the scarcity

of resources, locate development closer to the customers, exploit around-the-clock

development to achieve cycle-time acceleration and cater to local markets [11].

In contrast, GSE leads to an increased risk of communication gaps, given the

temporal, geographic, cultural and linguistic nature of the distance imposed by

GSE [12], which might hinder collaborative activities that require stakeholders to

share a mental model of the problem and requirements [8]. Indeed, due to its

collaboration-intensive nature, RE presents several specific challenges and

difficulties when the stakeholders are distributed [13, 14]. Gallardo-Valencia and

Sim [15] are convinced that the success of a software product depends on the proper

understanding of requirements among stakeholders. Herbsleb [10], for his part,

emphasised that “getting the requirements right, and dealing with unstable

requirements” are notoriously difficult problems to address, even in a traditional,

collocated environment. A shared understanding of the requirements is even more

difficult to achieve in a GSE context, “both because of loss of context and loss of

communication”. As well as this, Herbsleb pointed out that research on eliciting
and communicating requirements has made substantial progress in addressing the

issues posed by globalisation, although impediments still exist.

Knowledge is considered to be one of the major resources of an organisation, and

this is further emphasised in organisations dedicated to software development.

SE and RE are knowledge-intensive activities [15, 16] and hence, the growing

interest of software development organisations in providing methods to help with

its appropriate management [17]. By means of knowledge management (KM),

software development organisations might obtain certain potential benefits:

decrease the development time and cost of software projects, avoid mistakes and

reduce rework, increase productivity through repetition of successful processes,

increase quality and make better decisions [18]. Thus, achieving good KM is very

important if competitive levels are to be maintained in an increasingly globalised

and demanding world. Nevertheless, challenges to KM increase when the develop-

ment activities are geographically distributed [16]. According to Ebling et al. [19],

proposals related to KM challenges in the field of RE in distributed software

development are needed; they encourage further research on these issues.

Both GSE and requirements reuse are therefore relevant approaches for the

software industry. As far as we know, however, there are no proposals which tackle

both GSE and requirements reuse together. Since one of the current problems in

GSE is the existence of knowledge which is not properly shared and reused, KM

and awareness in distributed settings is a challenging task [20] which might be

addressed by reusing, sharing and collaboration mechanisms in GSE. The proposal

which is presented here treats knowledge in the form of natural language

requirements and aims at laying out the basis for a reuse-based RE method for

GSE environments, named PANGEA (Process for globAl requiremeNts enGinEer-
ing and quAlity). It also includes PANTALASA (PANgea Tool And Lightweight
Automated Support Architecture), the automated support for the PANGEA method.

8 Reusing Requirements in Global Software Engineering 173



The rest of the chapter is organised as follows: Sect. 8.2 provides an overview of

the field. Current and relevant challenges for both RE and KM in GSE are studied in

Sect. 8.3. Section 8.4 includes our proposal for a method to address these issues.

Section 8.5 focuses on the tool architecture supporting this method. Section 8.6

reports on a preliminary evaluation of both method and tool. Finally, our

conclusions and future work are presented in Sect. 8.7.

8.2 Foundations

At this point, and in the context of this chapter, a brief description of KM,

architectural knowledge management (AKM) and KM as the basis for RE is

provided.

8.2.1 Knowledge Management

Al-Ani [21] cites a generally accepted definition for the term knowledge. It is
located at the top of a hierarchical structure, and this representational structure

sees information as standing above data and knowledge standing above of both.

In the model described, data is processed and transformed into information; infor-

mation is then interpreted and contextualised by individuals and transformed into

knowledge. In addition, the term KM suggests that knowledge is something tangi-

ble which is possible to manipulate. According to Ebert and De Man [22], KM is

“the process that deals with systematically eliciting, structuring and facilitating the

efficient retrieval and effective use of knowledge”.

In those organisations involved in GSE projects, an adequate KM is necessary to

mitigate those factors derived from the geographical, temporal and sociocultural

distance [23–25] that might hamper communication and relationships between

stakeholders. Indeed, knowledge changes quickly during software development,

and so all the knowledge generated in the project should be made as accurate,

complete and updated as possible. Furthermore, if software development is

distributed globally, many more people are involved in the development activities,

and thus organisations tend to have problems in terms of content, location and use

of knowledge that can make it difficult to take advantage of this knowledge.

Moreover, Al-Ani [21] states that ineffective KM can lead to disastrous

consequences, showing some examples and lessons learnt which illustrate ineffec-

tive KM practices and their aftermath.

During the activities of the software life cycle, knowledge which is important for

the subsequent activities is generated [26], and these are commonly carried out by

different people to those involved previously. It is important to ensure that this

knowledge is accessible for them. The software development process generates

documents and other software engineering artefacts. In this sense, KM plays a very

174 J.M. Carrillo de Gea et al.



important role, since this knowledge has to be captured, and it emerges from the

solution to problems encountered during the course of past and current projects.

However, some common issues in software development organisations are actually

problems in the flow of knowledge, e.g. lack of documentation [27]. To be success-

ful, organisations that apply KM techniques and processes should create an

organisational culture that fosters and promotes the dissemination and sharing of

knowledge among its employees, through encouraging them to document and store

their knowledge in a KM repository [18]. This is especially true in GSE settings,

where according to Ebert and De Neve [28], a relevant step towards creating such a

common culture is to choose a specific, common language to be used within the

organisation. However, these authors highlight that since “a common syntactical

language does not necessarily mean the same semantics and pragmatics”, team

members should rotate across locations to live within different cultures and gradu-

ally build mutual understanding. On the other hand, this issue might be also

addressed by means of ontologies, which formalise concepts and relationships

among them as well as enable automatic reasoning with knowledge [29].

8.2.2 Architectural Knowledge Management

According to Beecham et al. [30], AKM involves capturing, sharing and managing

the information resulting from the software architecture process, in the form of

knowledge of the problem domain, the solution domain and knowledge artefacts

used throughout the whole process. It supports the creation, storage and dissemina-

tion of all the knowledge used in defining and using the architecture, including the

requirements documentation [31] and the functional and non-functional

requirements [30]. In fact, there are similarities between requirements and archi-

tecture [32]. We could go even further; Clerc [33] notices “a close resemblance

between a set of requirements for a software system and a set of architectural

decisions taken for that software system: what one person regards as requirements

for a software system, another person may regard as architectural decisions”.

Architectural knowledge can serve to support the collaboration needs of

distributed software development organisations [31]. In addition, as was stated

above, KM is even more challenging in a GSE context [16], and exactly the same

situation occurs in the case of AKM [30, 31], which faces the same risks as RE in

GSE settings [33] (for a detailed study of threats and safeguards in RE for GSE

environments, see, e.g. [34]). There is a need to capture, share and manage

architectural knowledge, in particular in the form or requirements, among different

and distributed sites, but the related tasks become more demanding than in a

collocated setting. Thus, the challenges of GSE have to be addressed by the

members of globally distributed teams by relying on appropriate AKM practices;

Beecham et al. [30] identified that one important area to achieve AKM is

represented by KM practices for creating and disseminating architectural

knowledge.

8 Reusing Requirements in Global Software Engineering 175



In this context, Clerc [33] identified seven essential KM practices to achieve

effective AKM in GSE environments that build on the RE discipline. In summary,

these practices are (1) frequent interaction across sites, encouraging team members

to interact frequently with each other; (2) cross-site delegation, improving integra-

tion of distributed teams by means of mutual delegation of team members from a

local site to a remote site; (3) face-to-face project kickoff meetings, assisting the

establishment of initial relationships between and among teams; (4) urgent request,
identifying expert project members to collect information on a given topic quickly;

(5) collocated high-level architecture phase, creating a sound high-level architec-

ture efficiently; (6) clear organisation structure with communicating responsi-
bilities, maintaining clear lines of communication among stakeholders’ roles; and

(7) establishing of a repository for architecture artefacts, built to store architectural
knowledge. Moreover, Ebert and De Neve [28] emphasise that customer

requirements might be mapped to architectural units in order to cluster activities

and split a globally distributed project into different, collocated work teams. In this

way, each team assumes the responsibility for a set of functionally related customer

requirements, and teamwork is therefore reinforced.

According to Desouza et al. [35], there are three distinct strategies for AKM: (1)

codification, which refers to the use of a central repository for storing the architec-

tural knowledge; (2) personalisation, which alludes to stakeholders and the inter-

action between them to get the knowledge when they needed it; and (3) a hybrid
approach, in which there is a central knowledge repository shared among

stakeholders, addressing questions such as “when”, “how” or “who” in relation to

knowledge, in order to enable personalised knowledge sharing.

8.2.3 Knowledge Management for Requirements Engineering

Regarding reusability, there are various studies which have centred on applying

KM in software development organisations, most of which focus on the reuse of

experiences, such as best practices or lessons learned, in order to improve the

quality of processes and products or to facilitate the reuse of software artefacts

[36–38]. In this context, Rus and Lindvall [18] consider software reuse to be a KM

activity that supports software development. These authors affirm that repeated

implementation by programmers of the same or very similar solutions, along with

the rework resulting from this, might be avoided or reduced through establishing a

reuse repository, which would contain software previously submitted by others, and

“this same concept can apply to all software engineering artefacts”. This approach

requires a change in the software development process, since the first step would be

to search the repository for reusable parts developing the solution from scratch only

if nothing useful is found. Furthermore, information is often reused with high

redundancies or manual overhead, eventually leading to rework or even errors in

the product [22]. Thus, only reuse of information is not enough, and knowledge

176 J.M. Carrillo de Gea et al.



should be embedded into integrated workflows for specific tasks. This strategy

“generates immediate returns by making engineers more flexible”.

For Gallardo-Valencia and Sim [15], requirements knowledge is ideally captured in

a requirements specification document using a written format, although such written

knowledge is complemented by requirements knowledge that is shared in an informal

manner through conversations among and between stakeholders. Moreover, Maalej

et al. [39] affirm that it is necessary to capture and share tacit knowledge about

requirements and make it explicit, in order to be able to manipulate it, because (1)

reuse is enhanced, (2) traceability is enabled, (3) requirements evolution is supported

and (4) collaboration between participants in distributed projects is improved. Besides,

Ma et al. [40] have noted that the presence of tacit knowledge might have a negative

impact on communication through requirements documents; such knowledge should

therefore be properly managed with the intention of avoiding miscommunication,

misinterpretation and inappropriate contextualisation among stakeholders, especially

in the case of a GSE context [21]. Even though recent technologies and advancements

have boosted KM support within distributed software development teams [21], in

particular KM support to RE [39], usual technologies and infrastructures typically

focus only on addressing issues related to the management of explicit knowledge,

whereas they should capture, formalise and manipulate tacit or implicit knowledge

[21, 39]. Maalej et al. [39] demand improvements in RE processes and tools in order to

achieve better management of requirements knowledge, owing in particular to the

growing tendency towards agile methods and distribution in software development,

while “themajor constraint is to have a lightweight, usable, intelligent and personalised

capturing and sharing approach”.

Another key issue for achieving successful results in global RE is requirements

awareness. Informal communication is also important in global, distributed devel-

opment because it contributes to project awareness [41]. In a software development

setting, and in particular in RE, awareness happens if “a software developer working
in a project has knowledge of events, such as changes to a requirement suggested by

a customer, that occur in the project” [42]; this becomes even more essential in GSE

[13]. Kwan et al. [42] conducted an industrial study of twoGSE projects; one of them

is an example of offshore outsourcing, and the other project has outsourced

collocated development. These authors identified three main factors that produce

certain effects which might influence awareness: (1) the distributed development

reduces awareness, (2) the experience of the team members bridges awareness gaps

and (3) the centralised communication structure might prevent awareness problems.

All this being so, project members should keep abreast of any issues that take place

in the scope of the project. The lessons learned are (1) experienced team members

should be accessible; (2) a centralised communication structure can help new teams

to remain aware, whereas a decentralised structure decreases communication band-

width and improves response times; (3) frequent meetings improve awareness

among distributed sites and (4) each distributed team member should be assigned

to a set of stable requirements and an unstable requirement, in order to allow him or

her to experience minimal downtime when there are delays. In conclusion,

requirements awareness is neither a banal nor an easy issue, and a lack of awareness

can lead to problems with design, quality and cost within the distributed project [42].

8 Reusing Requirements in Global Software Engineering 177



8.3 Practical Challenges

Distance hinders KM and requirements management processes in GSE. Issues

concerning GSE have been given a lot of attention in literature in the last years.

To begin with, Cheng and Atlee [8] affirm that new or extended techniques are

needed to overcome the challenges posed to RE by globalisation; they are the

following: (1) obtain proper support to outsourcing of downstream software devel-

opment tasks (e.g. design, coding, testing, etc.), bearing in mind that distance

complicates the collaboration between the requirements and the development

teams, and (2) enable effective distributed RE activities, since analysts and geo-

graphically distributed stakeholders will work together and distributed software

development teams might work with in-house customers; practitioners therefore

need techniques to facilitate distributed requirements elicitation, modelling, nego-

tiation and management of distributed teams.

Ebling et al. [19] have conducted a systematic literature review of RE in

distributed software environments, concluding that the challenges identified in the

field of KM issues are related to inappropriate sharing of requirements information

with distributed stakeholders [10, 41], which eventually damages the interaction

between them [13]. Moreover, there are no available methods, models, techniques

or approaches to RE in GSE environments in relation to the KM challenges

identified [19].

Process mismatches, differing technical and domain vocabularies, incompatible

environments and conflicting assumptions can be particularly problematic in a GSE

context [43]. Cultural differences can also pose formidable challenges for achieving

a shared understanding of the requirements [44], and all these factors can hamper

discovery and integration of knowledge [10]. Knowledge transfer is “the transmis-

sion of general or project specific knowledge which is needed to understand and

execute the project requirements” [45]. It is also a challenging activity of KM in

GSE environments, because of the significant reduction in communication fre-

quency and speed among remote teams [46], which leads knowledge to become

fixed to locations in which it is produced, hindering the transfer of such knowledge

from one site to another [47].

Manteli et al. [16] classify the challenges of KM in GSE under three main

categories: communication, knowledge creation and storage and knowledge transfer.
The coordination of communication between remote teams is included in KM

[20, 23], but it is a fact that distance introduces barriers to both informal and face-to-

face communication in GSE. Project members have to rely on synchronous commu-

nication tools (e.g. chats, phone calls, videoconferences), or asynchronous ones (e.g.

discussion forums, emails), in order to collaborate [41]. Since communication speed

and frequency is relevant in a GSE context, any communication delay can slow

down or even detain the project course, producing delivery delays [16], so synchro-

nous communication is generally preferable in distributed environments [48], as it

boosts real-time, interactive communication and improves collaboration among

stakeholders. By means of synchronous communication tools, analysts can check

178 J.M. Carrillo de Gea et al.



each other’s work, see if certain features have been implemented the right way or

solve problems together and assist each other. Nevertheless, the most appropriate

communication media depend on the team member’s role [16]. It is also worthwhile

to reduce tasks by coupling as much as possible, since the interdependencies among

distributed tasks introduce important communication overload, thus affecting com-

munication speed and frequency between distributed sites [16].

The effectiveness of knowledge capture (the process of making it explicit), that

is, how knowledge is captured into software development artefacts and acquired by

other team members, is a critical success factor for projects [49]. Among the

distinct KM strategies for knowledge capture and management [35], codification
is pursued when knowledge is documented and stored in a central repository,

personalisation relies on the tacit knowledge of stakeholders and knowledge

sharing through person-to-person communications and the hybrid approach
combines the previous two, being the recommended strategy towards AKM in

GSE [50]. An important challenge for KM is found in personalisation strategies,

which are typical of agile development methods, in which employees are

encouraged to cooperate with each other, taking initiative and responsibility with-

out being constrained by strictly defined processes [16]. Furthermore, with this

approach, much of the knowledge remains tacit, and the explicit knowledge is not

always updated in the corresponding documents. However, documentation has an

important role [27], and it should consequently be updated; it ought to reflect what

distributed teams are working on, in order to keep requirements awareness [42].

According to Manteli et al. [16], the use of different repositories and tools for

storing and sharing documents is not recommended. The knowledge search through

all these resources to locate the right document and the up-to-date information is

complicated, leading in turn to the adoption of local codification strategies that

hamper knowledge sharing between sites. In addition, if no appropriate

mechanisms for storing and sharing documentation are provided, more communi-

cation between distributed project members is needed, decreasing stakeholders’

productivity.

Knowledge transfer was identified as a critical success factor for software

development projects with an onsite/offshore structure [45], since some

circumstances obstruct knowledge transferability across sites, including the use of

different working methods [51] or the differences in skills and expertise of remote

project members [30]. Manteli et al. [16] point out that when the greater part of a

software development project is developed at one site, most of the system-generic
knowledge (“the comprehensive knowledge of the entire system that teams are

working on”) resides only there, which causes knowledge to be fixed to that

location [47]. It thus takes additional effort for that knowledge to be transferred

to the remote sites, which only retain the unit-specific knowledge (“the particular

knowledge that the individual has, for the specific unit he or she is working on”).

Another challenge in knowledge transfer is “how” to locate the knowledge [16]; an

effective knowledge-sharing strategy should enable project members to know

“who”, in addition to providing the ability to know “what” and “where” knowledge

resides [52]. This approach is also known as transactive memory [51], and

8 Reusing Requirements in Global Software Engineering 179



according to Kotlarsky and Oshri [53], it constitutes a means of knowledge sharing

that contributes decisively to successful collaboration between and among remote

teams. A personalisation strategy in which people transfer more knowledge in a

person-to-person way leads to know “who” knows “what” more efficiently [16].

Tools help in managing requirements and are key success factors in GSE [28,

54]. Moreover, Ebert [54] affirms that change management is unmanageable

without automated tools in a GSE environment. Traceability facilitates change

management and must include horizontal and vertical dependencies – between

artefacts in the same and in different abstraction levels, respectively. Heindl et al.

[55] detected a lack of traceability and computer-aided requirements engineering

tools in RE for GSE (from now on, these will be referred to as CARE tools or

simply RE tools). Mistrı́k et al. [56] point out that a considerable number of recent

advances in collaborative SE are related to the development of supporting tools for

certain collaborative practices. Portillo-Rodrı́guez et al. [24] have conducted a

systematic literature review of GSE tools supporting the ISO/IEC 12207 processes,

concluding that the majority of the tools were developed within research groups or

labs. In addition, all the tools analysed included web-based or client–server access,

as well as communication and coordination features for globally distributed teams.

Herbsleb [10] highlighted that environments and tools are important areas of

research in GSE. This author affirms that awareness and communication are

relevant and interrelated issues, since the reduced communication bandwidth in

GSE makes it much more difficult to face the problem of understanding what other

project members are doing and thus coordinate effectively with them. This means

that synchronous and asynchronous communication features should be integrated

into RE tools, avoiding practices that might lead to low efficiency and productivity,

such as using e-mail instead of web-based tools or shared repositories to manage

requirements [57]. Besides the awareness and communication features, Herbsleb

[10] detected a need for collaborative capabilities to be integrated into the develop-

ment environment, as well as more “interoperable tools with standard data formats

and interaction protocols”. In this regard, software requirements should be suitable

for being imported from, or interfaced to, users, hardware and other software

systems. This being so, standard file formats are interesting features which should

be offered by RE tools. Since companies rarely work on the same requirements

repository and they usually do not work with the same RE tools, a generic format

for requirements information is needed. In this context, the Object Management

Group (OMG) standard ReqIF [58] is an emerging open, non-proprietary exchange

format that is a successful step towards satisfying the urgent industry need for

exchanging requirement information between different companies, without losing

the advantage of requirements management at the organisations’ borders and

allowing them to interact and collaborate efficiently.

180 J.M. Carrillo de Gea et al.



8.4 The Method

Although GSE has recently attracted great interest, to the best of our knowledge, an

RE method that specifically addresses GSE and knowledge reuse is lacking.

In response to this problem, a global, reuse-based RE method called PANGEA is

presented in the following paragraphs. PANGEA allows the sharing and reuse of

knowledge between distributed teams through a shared repository of requirements.

The PANGEA repository contains both reusable knowledge from earlier projects

and the requirements under development in the current one. A proper requirements

management is critical to maintaining awareness in any kind of development.

For the sake of applicability, PANGEA encodes knowledge in the form of natural

language requirements, which are the most widely used requirements in industry.

Industry experience demonstrates that a process model based on accepted best

practices that allows tailoring processes for the specific needs of a project

contributes to support GSE [28]. Therefore, to propose an RE method addressing

reuse and GSE, we have done the following: firstly, we have studied the state of the

art on the threats and their solutions identified in literature regarding RE and GSE,

through a systematic literature review [34]. Secondly, a repository of risks and

safeguards for the global RE has been compiled. Finally, based on this repository, a

global RE method called PANGEA, which encompasses all the proposed

safeguards, is put forward in the following pages.

PANGEA extends the SIREN (SImple Reuse of softwarE requiremeNts)
requirements reuse method [59], a practical way of dealing with requirements

reuse. SIREN is a method which is simple enough to be adopted easily by

organisations that are currently immature in relation to RE. It can improve produc-

tivity and quality of software processes and products, as well as affecting the

business positively – indeed, Sommerville and Ransom [60] have conducted an

empirical study which revealed that improvements in the RE process led to business

improvements. SIREN can be used on its own, as the first RE method adopted by a

software development organisation, but in addition, SIREN can be considered as a

kind of add-in whose goal is to extend, with reusability concerns, any RE method

based on natural language requirements. Moreover, Toval et al. [61] state eight key

issues that should be taken into account to achieve a practical reuse-based RE

method. These are based on the lessons learned from the application of SIREN in

the security and data protection fields [59, 62], as well as on other related

experiences closer to the domain analysis or audit [63, 64], together with the

analysis of related research and current RE tools. However, SIREN was conceived

as an RE method for collocated settings right from the beginning; in consequence, it

does not address the issues that should be considered when working in a global

environment. That makes it necessary to extend and adapt the SIREN method.

The PANGEA method is based on SIREN to a great extent, owing to the success

of the latter in practice. Nevertheless, the process model (new activities and new

tasks, along with a new set of roles responsible for carrying them out) and part of

the techniques (in particular, the requirements reference model, with new

8 Reusing Requirements in Global Software Engineering 181



requirements attributes and new attribute values, as well as new traceability

relations) have undergone modifications. As well as all this, another part of the

techniques, namely, the hierarchy for the requirements documents and the reusabil-

ity bases (the repository of requirements arranged into catalogues and the

requirements reuse guidelines), have been inherited unchanged from SIREN.

Thus, the remaining part of this section is devoted to the method resulting from

the process explained above, i.e. the method known as PANGEA. Furthermore,

having presented PANGEA, Sect. 8.5 goes on to explain the architecture of

PANTALASA, the automated support for PANGEA, given that it has evolved

along with the process model and the techniques for addressing the GSE issues.

8.4.1 Process Model

The process model proposed for PANGEA combines a set of initial sequential tasks

with other cyclical, iterative tasks. This approach therefore includes a spiral model

of software development (Fig. 8.1).

In Fig. 8.1, IRD 6, IRD 7, IRD 9 and IRD 10 tasks move from the original model

of SIREN, while IRD 1–5 and IRD 8 are brand new. The first five tasks serve as a

preparation for making the globally distributed method successful. For this reason,

they only have to be performed in the first iteration. The last five tasks make up the

effective execution of the RE method, and they are conducted on a cyclical basis for

as many iterations as necessary.

Before examining each task, it is necessary to introduce the roles involved in the

process model: coordinator (coordinates the work of all the project’s participants),

moderator (moderates the requirements negotiation meetings), team leaders
(represent their work team and speak in their name with the coordinator and

other team leaders), analysts (or requirements engineers), key users (know the

whole system or a part of it and give the necessary knowledge for the production

of the requirements documents) and users (know part of the system and give the

knowledge that is needed for the creation of the requirements documents). Each

role has specific responsibilities and a given participation in the tasks and subtasks.

8.4.1.1 IRD 1: Cultural Analysis

This task analyses the different cultures of the participants in the project, using

cultural indicators. The role responsible for conducting this study is the coordina-
tor, and the reports obtained become part of a catalogue of cultural descriptions, so

that they can be reused. The subtasks within this task are:

• IRD 1.1: Nationality identification. The nationalities of all the work teams

involved in the project are registered, considering the term nationality as the

182 J.M. Carrillo de Gea et al.



national culture in which people have grown and acquired their values scale.

If the work team is heterogeneous, individuals should be analysed.

• IRD 1.2: Report retrieval. The catalogue of cultural descriptions is consulted,

and existing reports on the cultures involved are obtained.

• IRD 1.3: Cultural reporting. Preparation of reports on the cultures that are not in

the catalogue of cultural descriptions. If they are already in it, review them with

the purpose of refining its descriptions and finding errors.

• IRD 1.4: Improvement of the catalogue of cultural descriptions. The reports

produced for the first time, along with those already existing and which were

improved, are included in the catalogue.

8.4.1.2 IRD 2: Face-to-Face Meeting

It is essential to hold at least one face-to-face meeting at the beginning of the

project, not only because it is a richer and more efficient form of communication

than any other but because it is needed if a trust relationship is to be established

between the participants in a distributed project.

• IRD 2.1: Face-to-face meeting. A meeting for all participants in the project is

organised by the coordinator. Attendance of at least one representative on behalf
of the customer is recommended. All members of all work teams should take

part in this meeting; if this is not possible, it will involve at least the team
leaders. The event should make it possible both to discuss the initial questions

about the project and to allow the participants to get to know each other a little,

at least.

Fig. 8.1 PANGEA process model with SPEM notation

8 Reusing Requirements in Global Software Engineering 183



8.4.1.3 IRD 3: Local Workshops

Cultural understanding is critical to establishing trust relationships.

• IRD 3.1: Local workshops. The team leaders organise workshops locally to

study the differences between the cultures of the other teams and their own, by

means of the indicators established in IRD 1. They are responsible for

disseminating the information within their team, the other team leaders and

the coordinator. When the analysts and the team leader of a team are aware of

the major cultural differences, the team leader has to report to the coordinator.
The task ends when the coordinator has received confirmation from all the team
leaders.

8.4.1.4 IRD 4: Previous Adjustments

This task aims to make final adjustments prior to elicitation of requirements.

• IRD 4.1: Key user identification. This problem is complicated in GSE, since the

distance and the inability to observe the users performing their regular work may

hinder proper identification of people playing the user and key user roles.
• IRD 4.2: Assignment of key users to work teams. A set of key users is assigned to

each work team to elicit requirements. They should be collocated whenever

possible. Otherwise, the elicitation techniques selected must be compatible with

electronic communication media. Only key users should collaborate in the

elicitation activity, but if this is not possible, then users can also be assigned.

• IRD 4.3: Selection of an official language. Although all roles can use the

language with which they feel most comfortable in informal social interactions,

the coordinator must establish an official language for the project. This is to be

used in formal requirements negotiation meetings or any situation involving

participants from different native languages.

• IRD 4.4: Compilation of a common vocabulary. The terms used in the project-

specific domain should be documented, but in GSE the language differences

may be substantial. Ontologies are thus useful to alleviate these problems.

At this point, a catalogue of ontologies is consulted, and a relevant ontology is

retrieved or built from scratch if there is not yet an ontology for the domain.

8.4.1.5 IRD 5: Schedule Periodic Check-Ups

The distance in GSE projects entails many problems, but also enables a follow-the-

sun or around-the-clock working model, achieving 24-h global workdays.

• IRD 5.1: Schedule periodic check-ups. The coordinator examines the location of

the work teams and their time differences, with the intention of scheduling daily

meetings. These meetings might be uncomfortable sometimes, but are necessary

for tracking the work of the other teams.

184 J.M. Carrillo de Gea et al.



8.4.1.6 IRD 6: Requirements Elicitation

Each work team can reuse and extract requirements locally or in a distributed

manner. In both cases, different groups of analysts extract requirements from a

repository of requirements and from different users. As a result, a mostly coherent

requirements documents hierarchy is obtained.

• IRD 6.1: Requirements reuse. Firstly, each work team selects the catalogues

of requirements related to the project from the repository of requirements.

Secondly, the team instantiates the parametrised requirements. Finally, the

team adds the requirements to the current requirements document. The

automated tool support should avoid most of the problems related to the multiple

sources of requirements (see Sect. 8.5). Inconsistencies that cannot be

confronted automatically should be added to the agenda of the next analysis

and negotiation meeting (IRD 7).

• IRD 6.2: Project requirements elicitation. The analysts within each work team

develop the requirements obtained from the users who are working with them

and add these to the current requirements document. The moderator reviews the
requirements included by the different work teams and adds all the

inconsistencies found to the agenda of the next analysis and negotiation meeting.

In addition, the analysts can add any other issue to the agenda that they need to

address, by creating a discussion thread.

8.4.1.7 IRD 7: Analysis and Negotiation

Starting from a requirements document with inconsistencies, in which there are

issues to discuss, the goal is to obtain a refined version of it in which all the

inconsistencies are resolved.

• IRD 7.1: Preparation of the meeting. The agenda, which should be available in

the automated tool support, should be read by all the participants involved in the

meeting.

• IRD 7.2: Development of the meeting. The discussion is initially carried out by

means of a structured, synchronous and textual communication system. The

moderator takes part in the discussion to impose order, to maintain the progress

of the meeting on a virtual blackboard and to use a vote utility if needed. Only

the team leaders are allowed to participate in representation of their teams.

A videoconference system can only be used later on; the reasons for doing it

this way are the following: (1) the participants have had enough time to study all

the information concerning the agenda, without the pressure of a synchronous

communication; (2) the discussion has been conducted so far by means of a

textual synchronous tool controlled by the moderator, which means that the

written interventions have had more chance of being well thought out; and

(3) the face-to-face communication allows the reactions of the participants to

be evaluated better and helps to solve any issue that still remains open.

8 Reusing Requirements in Global Software Engineering 185



• IRD 7.3: Extraction of conclusions. The moderator publishes the agreements of

the meeting in the automated tool support, including the conclusions reached and

the results of any voting carried out. The agreements will be given a unique code

to identify them in the project. A discussion thread will be linked to the

agreements, for the purpose of storing all the written discussions, the results of

the eventual votes and the changes in the requirements documents.

8.4.1.8 IRD 8: Redistribution of Requirements

The requirements documents contain information about the team which has elicited

each requirement. In this task, these assignments of requirements to work teams are

revised so that requirements can be allocated to different teams.

• IRD 8.1: Assignment proposal. The coordinator prepares a proposal for

assigning requirements to each work team, based on their most prominent skills,

current or expected workload, etc. Such a proposal is made available to all teams

through the supporting tool, and a meeting is convened with them to discuss it.

• IRD 8.2: Validation of the assignment. A virtual meeting involving all the team
leaders and the coordinator takes place to discuss the issues related to the

assignments. An analysis and negotiation meeting (IRD 7) is performed if

needed. Eventually, a validated requirements redistribution is obtained and

published in the supporting tool.

8.4.1.9 IRD 9: Documentation

We start from a requirements document that is coherent and without inconsistencies,

ideally, and which can be more or less detailed depending on the current iteration of

the method; the result is the establishment of such a document as a baseline.

• IRD 9.1: Formalisation of documentation. The coordinator creates a baseline

from a stable version of the documentation, stores it in a catalogue of releases

and exports it to a standard document format by means of the supporting tool.

8.4.1.10 IRD 10: Validation

This task is identical to that carried out in collocated development of software.

• IRD 10.1: Validation of requirements. The coordinator provides the document

output of IRD 9 to the customer, negotiates all the change requests and forwards

the information to the team leaders, through a list of changes published in the

supporting tool.

186 J.M. Carrillo de Gea et al.



8.4.2 Requirements Reference Model

There are different types of requirements in PANGEA, but all have the minimum

set of associated attributes shown below (the requirements that must be initialised

when created are marked as “compulsory”):

• Text (compulsory): natural language sentence that specifies the requirement.

• UniqueIdentificator (compulsory): identifier of the requirement in the project.

• Risk: relative risk of the requirement compared with the rest.

• Criticality: relative importance of the requirement for the customer.

• Priority: helps to establish an order for the development (set by the analyst).

• Rationale: reason why the requirement is included in the project.

• State: situation of the requirement (see Fig. 8.2).

• Source: origin of the requirement (if it was reused from the repository, then the

attribute reflects the catalogue and reusable requirement it comes from).

• ValidationCriteria: validation criteria needed to test the requirement (included

in the STS document).

• Responsible: person responsible for the implementation of the requirement.

• Section: document section in which the requirement is specified.

• VersionLog: historical record of all versions of the requirement (including

author, date, version number and text).

• RequestedBy (compulsory): user asking for the inclusion of the requirement

(particularly useful when the person who elicited the requirement is not in the

team in charge of implementing it).

• SourceTeam (compulsory): identifier of the team that elicited or reused the

requirement.

Fig. 8.2 State diagram of a requirement

8 Reusing Requirements in Global Software Engineering 187



• SourceAnalyst (compulsory): analyst who drew up or reused the requirement.

• DiscussionThread: link to the identifier of the agreements of the meetings in

which the requirement was discussed (empty until IRD 7).

• DestinationTeam: identifier of the team which has been assigned the require-

ment for refinement (empty until IRD 8).

PANGEA includes the concept of parametrised requirement. The parameter

allows us to specify a variation point in the requirements specification, i.e. when

it is necessary to choose between various alternatives in order to configure a specific

product. For instance, “the system shall make it possible to export to external files

for report generation in [Format]”, where the value of the parameter “Format”

would be comma-separated values (CSV) or Excel.

The traceability model defined in PANGEA includes a set of traceability

relations that enable different links to be established between requirements. Such

traces are described below:

• Parent–child: relationship describing a more general requirement by a sequence

of more specific requirements.

• Requires: directional dependency relationship between two requirements.

A Requires B means that the reuse of A necessarily involves the reuse of B.

• RelatedTo: bidirectional dependency relationship between two requirements.

A is RelatedTo B if (1) B refines or supplements A in some way, so that when

A is reused, then B should also be considered for reuse; or (2) A and B belong to

the same cluster of requirements.

• MutuallyExclusive: mutually exclusive relationship between two requirements.

A MutuallyExclusive B means that if A is present in the specification, then

B cannot be, and vice versa.

• Reifies: relationship between a requirement and an artefact of the development

process in which it materialises (e.g. class, module, component, etc.).

• DiscussionThread: relationship between a requirement and the negotiation

meeting in which it was discussed, recorded in the minutes of the meeting and

the object DiscussionThread that contains the complete record of the discussion,

together with the results of any vote taken.

A repository of reusable requirements arranged into catalogues for managing

requirements knowledge is included in PANGEA. These catalogues can be (1)

domains, “vertical” application domains (e.g. insurance or banking), or (2) profiles,
“horizontal” application domains (e.g. security or personal data protection). More-

over, they are organised in a hierarchy of requirements documents, which, in turn,

are structured according to standards (IEEE Std. 1233, IEEE Std. 12207.1, and

IEEE Std. 830).

With regard to the reuse of requirements, once the scope of the project has been

established, the requirements repository should be searched to find a domain

catalogue within that area. If so, the project probably corresponds with the devel-

opment of a particular product in the domain specified in the catalogue. In this case,

the searches in the repository might begin with the requirements with the highest

188 J.M. Carrillo de Gea et al.



value in the attribute Criticality in the domain catalogue. Since these requirements

are mandatory, they are part of any product for that domain, and as such all of them

should be reused. Their traces should be analysed to determine other non-

mandatory requirements which ought also to be part of the specification of the

current project. After the common specification of the product is established, new

searches should be defined, guided by the business requirements and the features or

system objectives identified. These guidelines may involve searching the same

domain catalogue or different profile catalogues. If, as a result of any of the

searches, a requirement is reused that has trace relations of type RelatedTo other

requirements, then a cluster of requirements is found. In this case, we should

consider the selection of the requirements within that cluster. In summary, reusing

the requirements selected involves the resolution of the variation points found in

them: (1) instantiation of the parameters of the parametrised requirements with

values appropriate to the current project; (2) resolution ofMutuallyExclusive traces;
(3) resolution of RelatedTo traces, which are optional; and (4) resolution of

Requires and Parent–child traces, which should normally be included.

8.5 The Tool Architecture

As is shown in Sect. 8.3, literature reflects the need for RE tools that support GSE.

In this respect, the PANGEA method is supported by PANTALASA (PANgea Tool
And Lightweight Automated Support Architecture), which is the underlying tool

architecture for the global RE processes and models. Current RE tools’ capabilities

[65] and the ISO TR 24766 [66] have been taken into account in its conception.

PANTALASA is responsible for managing the requirements knowledge in a

coherent way, giving a boost to reuse, automatising some repetitive tasks and, in

short, facilitating the distributed stakeholders’ activities carried out within the

framework of PANGEA. Among its features, PANTALASA allows multiple

users to edit the same requirements document simultaneously, so when a user

reuses a requirement from a catalogue of the requirements repository, the tool

automatically has to keep track of all the existing relationships, i.e. the tool will

check if the parent requirement has to be included, if other requirements are

involved or if the reused requirement or its dependencies violate any exclusive

relationship with any requirement previously added.

By means of these automated verification mechanisms, it is ensured that the

requirements are consistent at all times and that there is a single shared working

document for all stakeholders, promoting proper control and coordination of the

team members’ work. Moreover, if different analysts introduce the same

parametrised requirement and assign different values to the same parameter,

when the second analyst attempts to insert the troublesome requirement in the

requirements document, the tool will detect the inconsistency and will notify

the analysts involved about such a situation. These analysts can then discuss what

8 Reusing Requirements in Global Software Engineering 189



the correct value of the parameter is, and, if necessary, they can take the matter to

the agenda of the next requirements analysis and negotiation meeting (IRD 7).

With regard to specific technologies that might be particularly useful for

PANTALASA, we considered the use of semantic wikis and social networks,

because we believe that they turn out to be complementary. Semantic wikis are

organised around an ontology of requirements, so that the requirements repository

is structured more consistently than in a plain wiki, whereas social networks

leverage the communication strategies between project members. In this regard,

wikis were originally conceived for distributed collaborative content creation [67],

but it is possible to use them to capture requirements and domain knowledge

[67, 68] or even to support AKM in GSE [50], improving domain knowledge

reuse and tacit knowledge acquisition [68]. Furthermore, as a result of their

underlying information models, semantic wikis can provide support to reasoning

with the requirements knowledge [50, 69]. This is especially relevant for traceabil-

ity approaches and also enables automated information retrieval [50]. On the other

hand, Whitehead et al. [70] raised the possible application of new trends in

networking and social networks to improve formal and informal communication.

Following this trend, Lim et al. [71] at first proposed a social network system for

stakeholder analysis and later, an extension of this tool was developed to identify

and prioritise software requirements [72].

8.6 Prototype Implementation and Validation

We have recently developed an automated tool support proposal for PANGEA by

means of the integration of (1) a well-known social network like Facebook,1 which

integrates both synchronous and asynchronous communication, and that serves to

establish and strengthen trust relationships between distributed software develop-

ment teams, and (2) a semantic wiki like Semantic MediaWiki (SMW),2 which is

suitable for supporting the PANGEA requirements reference model and the

reusable-requirements repository, taking into account issues such as security, con-

currency and discussion threads. Some of the KM challenges previously identified

in Sect. 8.3, such as communication, knowledge capture and knowledge transfer

issues, are therefore addressed by relying on such collaborative and open source

technologies.

A block diagram of the prototype is shown in Fig. 8.3. Users connect with the

application in an automatic and transparent manner through Facebook. The appli-

cation serves as a connection bridge to SMW, where the requirements repository is

located. Figure 8.4 shows a SMW page in the Facebook interface for enabling

distributed stakeholders’ work.

1 http://www.facebook.com.
2 http://semantic-mediawiki.org.

190 J.M. Carrillo de Gea et al.

http://www.facebook.com
http://semantic-mediawiki.org


Facebook offers an application programming interface (API) to support the

execution of external applications. In addition, these applications have authentica-

tion mechanisms at their disposal, so it is possible to access personal data such as

name, email, friends list or even wall comments. If the user gives permission for the

external application, Facebook is able to send to our application the user informa-

tion needed. The aim is to provide a personalised experience, but a user

authorisation process must be carried out to make that possible.

This implementation of PANTALASA includes an external, go-between applica-

tion, whose main task is to communicate Facebook and SMW (see Fig. 8.3). Hence,

this piece of software allows us to perform the following duties in a transparent

manner, automatically: (1) gather the data of a Facebook user, (2) register Facebook

users in the SMW database, (3) authenticate users in SMW, (4) configure SMW in

order to adapt it to the use requested by PANGEA and (5) execute SMW under the

Facebook applications interface.

It is important to note that the validation of the prototype was conducted in an

academic environment by college students who worked with the application in a

distributed and collaborative way, encoding requirements catalogues in the proto-

type, reusing the requirements in a new project and taking advantage of the

Facebook capabilities for supporting communication between them. More detailed

information about the validation is provided below.

Fig. 8.3 Free-form architecture diagram of the prototype

Fig. 8.4 Graphical user interface (GUI) of the prototype

8 Reusing Requirements in Global Software Engineering 191



Two students participated in the study with the intention of validating the

prototype; this lasted for 2 weeks. They introduced three requirements catalogues

in the requirements repository. The catalogues were made up of both functional and

non-functional requirements. Two of these catalogues were profiles, as they

codified security requirements and personal data protection requirements based

on the respective original catalogues developed for SIREN [59, 62]. The other

catalogue, on the other hand, was a domain, since it included domain-specific

requirements extracted from a case study on the field of hotel management,

which was presented in a course on RE belonging to a degree programme on

computer science and engineering. The full case study was composed of approxi-

mately 150 requirements, and about 50 of these were inserted in the system.

Note that the mentioned catalogues are located in the SMW requirements reposi-

tory. All the requirements that make up these three catalogues are thus available for

reuse in new projects that can be created with the tool, following the proposed

method. In fact, the students created a new project in which specific requirements

were extracted from the catalogues listed above in order to check the reuse function-

ality of the tool. Such a project was aimed at the development of a software

application for a particular hotel. In this project, the different sections of the SRS

were generated, including the functional requirements of the project, which were

mostly reused from the functional requirements of the hotel industry catalogue.

The feedback after using the system was mainly satisfactory. However, some

difficulties in reusing the requirements from the catalogues in the new project were

reported; these problems come about from technical concerns related to SMW,

since the tool is still in an incipient stage. In addition, the students worked in a

distributed manner, but not in a global environment, since they were located in

different cities about 100 km apart. Moreover, they have reported neither commu-

nication nor concurrency problems.

From our point of view, the main limitation of the validation of the prototype is

the fact that it was conducted by students. Nevertheless, students play a very

important role in software engineering experimentation, because before performing

studies in industrial environments, which requires a lot of resources and time, it is

generally useful for researchers to carry out pilot studies with students in academic

environments [73, 74]. In addition, students are the next generation of professionals

[75], and under some conditions, there is not a great difference between students

and professionals. In situations in which the tasks which are to be performed do not

require industrial experience, experimentation with students is viable [76, 77].

Another relevant threat to the validity of the study is that the students were not

globally distributed. Nonetheless, this was to some extent mitigated by the fact that

they were not collocated, and even relatively small geographic distances between

offices profoundly affect the ability to collaborate [10]. Indeed, Allen [78] found

that there is a strong negative correlation between physical distance and frequency

of communication between sites and any distance greater than the critical threshold

of about 50 m led to a dramatic drop in spontaneous communication and collabora-

tion between individuals.

192 J.M. Carrillo de Gea et al.



8.7 Summary

Since one of the current problems in GSE is the existence of knowledge which is

not properly shared and reused, thus hampering awareness, KM in global,

distributed settings is a challenging task. It can be faced by improving reuse,

sharing and collaboration in global RE. To the best of our knowledge, there is no

proposal which tackles both GSE and requirements reuse. In this chapter, we have

presented PANGEA, a reuse-based RE method for GSE that specifies knowledge in

the form of natural language requirements. PANGEA encompasses a process

model, a requirements reference model and PANTALASA, the supporting tool

architecture. PANTALASA has been developed by means of (1) a semantic wiki, in

an effort to implement a reusable-requirements repository, and (2) a social network,

to improve communication issues. Before describing PANGEA and PANTALASA,

this chapter provides brief insights into the relationship between KM and (global)

RE, as well as the practical challenges concerning RE and KM in GSE.

Ebert and De Man [22] state that a software company or department is

confronted with many challenges that must be mastered through continuous

improvement, along the following axes: (1) consolidating, focusing on a few

essential products and maximising their business value; (2) industrialising, master-

ing projects, processes and knowledge by intelligent collaboration to improve

predictability, repeatability and affordability; and (3) globalising, depending on

the needs of the target market and the size of the company, but its success relies on

the other two axes. An approach has been presented in this chapter that leverages

this continuous improvement strategy by means of proper management of

requirements knowledge. Firstly, an organisation that usually develops products

in a domain eventually has enough expertise to generate high-quality requirements

catalogues dealing with common issues in that domain (consolidating). Secondly,

once such an organisation manages domain knowledge appropriately by means of

requirements catalogues, the entire software development process benefits and is

greatly improved in terms of cost, time and effort (industrialising). Finally, the

particularities of globalisation are taken into account and its demands materialised

in the RE process in order to be successful in a global environment (globalising).

Future work includes research on data mining techniques that can be applied to

requirements, the aim being to build prediction models and help developers make

better decisions on the subsequent stages of the software development process. We

are also interested in supporting project management issues by relying on RE, so

that project management and decision making processes within the organisation

could take advantage of explicit or derived requirements knowledge. Finally, an

academic case study between the University of Murcia (Murcia, Spain), the Uni-

versity of Castilla-La Mancha (Ciudad Real, Spain) and the University Mohammed

V – Souissi (Rabat, Morocco) is planned, with the intention of validating our

proposal in a nearshore environment. We are also planning to conduct a case

study in a real industry environment later on, in a subsequent stage of the validation.

8 Reusing Requirements in Global Software Engineering 193



Acknowledgments This work has been funded by the PEGASO/PANGEA project (TIN2009-

13718-C02-02), the ORIGIN Integrated Project (IDI-2010043 (1–5)) and the ENGLOBAS Project

(PII2I09-0147-8235).

References

1. Brooks FP Jr (1987) No silver bullet: essence and accidents of software engineering. IEEE

Comp 20:10–19

2. Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice-Hall, New York

3. Mili H, Mili F, Mili A (1995) Reusing software: issues and research directions. IEEE Trans

Softw Eng 21:528–562

4. Cybulski JL, Reed K (2000) Requirements classification and reuse: crossing domain

boundaries. In: Proceedings of the 6th international conference on software reuse: advances

in software reusability, Vienna, pp 190–210

5. Sommerville I (2004) Software engineering, 7th edn. Pearson Addison Wesley, Boston

6. Favaro J (2002) Managing requirements for business value. IEEE Softw 19:15–17

7. Robertson S, Robertson J (2006) Mastering the requirements process, 2nd edn. Addison-

Wesley, Upper Saddle River

8. Cheng BHC, Atlee JM (2007) Research directions in requirements engineering. In: Future of

software engineering, IEEE Computer Society, Minneapolis, USA, pp 285–303

9. Rine DC, Nada N (2000) An empirical study of a software reuse reference model. Inf Softw

Technol 42(1):47–65

10. Herbsleb JD (2007) Global software engineering: the future of socio-technical coordination.

In: Future of software engineering, IEEE Computer Society, Minneapolis, USA, pp 188–198

11. Damian D, Moitra D (2006) Global software development: how far have we come? IEEE

Softw 23:17–19

12. Noll J, Beecham S, Richardson I (2010) Global software development and collaboration:

barriers and solutions. ACM Inroads 1(3):66–78

13. Damian D (2007) Stakeholders in global requirements engineering: lessons learned from

practice. IEEE Softw 24:21–27

14. Sinha V, Sengupta B, Chandra S (2006) Enabling collaboration in distributed requirements

management. IEEE Softw 23:52–61

15. Gallardo-Valencia RE, Sim SE (2009) Continuous and collaborative validation: a field study

of requirements knowledge in agile. In: Proceedings of the 2nd international workshop on

managing requirements knowledge, IEEE Computer Society, Atlanta, USA, pp 65–74

16. Manteli C, van den Hooff B, Tang A, van Vliet H (2011) The impact of multi-site software

governance on knowledge management. In: Proceedings of the 6th IEEE international confer-

ence on global software engineering, IEEE Computer Society, Helsinki, Finland, pp 40–49

17. Aurum A, Jeffery R, Wohlin C, Handzic M (eds) (2003) Managing software engineering

knowledge. Springer, Berlin

18. Rus I, Lindvall M (2002) Knowledge management in software engineering. IEEE Softw

19:26–38

19. Ebling T, Nicolas Audy JL, Prikladnicki R (2009) A systematic literature review of

requirements engineering in distributed software development environments. In: Proceedings

of the 11th international conference on enterprise information systems,Milan, Italy, pp 363–366

20. Berenbach B (2006) Impact of organizational structure on distributed requirements engineer-

ing processes: lessons learned. In: Proceedings of the international workshop on global

software development for the practitioner, ACM, Shanghai, China, pp 15–19

194 J.M. Carrillo de Gea et al.



21. Al-Ani B (2010) Questions regarding knowledge engineering and management. In:

Proceedings of the 5th IEEE International conference on global software engineering, IEEE

Computer Society, Princeton, USA, pp 324–329

22. Ebert C, De Man J (2008) Effectively utilizing project, product and process knowledge.

Inf Softw Technol 50(6):579–594

23. Ågerfalk PJ, Fitzgerald B, Holmström H, Lings B, Lundell B, Conchúir EO (2005)

A framework for considering opportunities and threats in distributed software development.

In: Proceedings of the international workshop on distributed software development, Austrian

Computer Society, Paris, France, pp 47–61

24. Portillo Rodrı́guez J, Ebert C, Vizcaı́no A (2010) Technologies and tools for distributed teams.

IEEE Softw 27:10–14

25. Portillo Rodrı́guez J, Vizcaı́no A, Ebert C, Piattini M (2010) Tools to support global software

development processes: a survey. In: Proceedings of the 5th IEEE international conference on

global software engineering, IEEE Computer Society, Princeton, USA, pp 13–22

26. Edwards JS (2003) Managing software engineers and their knowledge. In: Aurum A, Jeffery R,

Wohlin C, Handzic M (eds) Managing software engineering knowledge. Springer, Berlin,

pp 5–27

27. Lethbridge TC, Singer J, Forward A (2003) How software engineers use documentation: the

state of the practice. IEEE Softw 20:35–39

28. Ebert C, De Neve P (2001) Surviving global software development. IEEE Softw 18(2):62–69

29. Mika P (2007) Social networks and the semantic web, Semantic web and beyond. Springer,

New York

30. Beecham S, Noll J, Richardson I, Ali N (2010) Crafting a global teaming model for architec-

tural knowledge. In: Proceedings of the 5th IEEE international conference on global software

engineering, IEEE Computer Society, Princeton, USA, pp 55–63

31. Ali N, Beecham S, Mistrı́k I (2010) Architectural knowledge management in global software

development: a review. In: Proceedings of the 5th IEEE international conference on global

software engineering, IEEE Computer Society, Princeton, USA, pp 347–352

32. Hall JG, Jackson M, Laney RC, Nuseibeh B, Rapanotti L (2002) Relating software

requirements and architectures using problem frames. In: Proceedings of the 10th anniversary

IEEE joint international conference on requirement engineering, IEEE Computer Society,

Essen, Germany, pp 137–144

33. Clerc V (2008) Towards architectural knowledge management practices for global software

development. In: Proceedings of the 3rd international workshop on sharing and reusing

architectural knowledge, ACM, Leipzig, Germany, pp 23–28

34. López A, Nicolás J, Toval A (2009) Risks and safeguards for the requirements engineering

process in global software development. In: Proceedings of the 4th IEEE international confer-

ence on global software engineering, IEEE Computer Society, Limerick, Ireland, pp 394–399

35. Desouza KC, Awazu Y, Baloh P (2006) Managing knowledge in global software development

efforts: issues and practices. IEEE Softw 23:30–37

36. Kucza T, Nättinen M, Parviainen P (2001) Improving knowledge management in software

reuse process. In: Proceedings of the 3rd international conference on product focused software

process improved, Kalserslautern, pp 141–152

37. Schneider K, von Hunnius JP, Basili V (2002) Experience in implementing a learning software

organization. IEEE Softw 19:46–49

38. Seaman CB, Mendonça MG, Basili VR, Kim YM (2003) User interface evaluation and

empirically-based evolution of a prototype experience management tool. IEEE Trans Softw

Eng 29:838–850

39. Maalej W, Thurimella AK, Happel HJ, Decker B (2008) Managing requirements knowledge

(MaRK’08). In: Proceedings of the 1st international workshop on managing requirement

knowledge, IEEE Computer Society, Barcelona, Spain, pp i–ii

40. Ma L, Nuseibeh B, Piwek P, Roeck AD, Willis A (2009) On presuppositions in requirements.

In: Proceedings of the 2nd international workshop on managing requirement knowledge,

IEEE Computer Society, Atlanta, USA, pp 27–31

8 Reusing Requirements in Global Software Engineering 195



41. Damian D, Zowghi D (2002) The impact of stakeholders’ geographical distribution on

managing requirements in a multi-site organization. In: Proceedings of the 10th anniversary

IEEE joint international conference on requirements engineering, IEEE Computer Society,

Essen, Germany, pp 319–330

42. Kwan I, Damian D, Marczak S (2007) The effects of distance, experience, and communication

structure on requirements awareness in two distributed industrial software projects. In:

Proceedings of the 1st international global requirements engineering workshop, Munich,

Germany, pp 29–35

43. Bhat JM, Gupta M, Murthy SN (2006) Overcoming requirements engineering challenges:

lessons from offshore outsourcing. IEEE Softw 23:38–44

44. Hsieh Y (2006) Culture and shared understanding in distributed requirements engineering.

In: Proceedings of the IEEE international conference on global software engineering,

IEEE Computer Society, Florianopolis, Brazil, pp 101–108

45. Betz S, Oberweis A, Stephan R (2010) Knowledge transfer in IT offshore outsourcing projects:

an analysis of the current state and best practices. In: Proceedings of the 5th IEEE international

conference on global software engineering, IEEE Computer Society, Princeton, USA,

pp 330–335

46. Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally

distributed software development. IEEE Trans Softw Eng 29:481–494

47. Szulanski G, Winter S, Grant R, Spender JC, Kogut B, Miner A, Ghoshal S (2000) The process

of knowledge transfer: a diachronic analysis of stickiness. Organ Behav Hum Dec Proc

82:9–27

48. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software

development. IEEE Softw 18:22–29

49. Correia FF, Aguiar A (2009) Software knowledge capture and acquisition: tool support for

agile settings. In: Proceedings of the 4th international conference on software engineering

advanced, IEEE Computer Society, Limerick, Ireland, pp 542–547

50. Clerc V, de Vries E, Lago P (2010) Using wikis to support architectural knowledge manage-

ment in global software development. In: Proceedings of the ICSE workshop on sharing and

reusing architectural knowledge, ACM, Cape Town, South Africa, pp 37–43

51. Oshri I, van Fenema PC, Kotlarsky J (2008) Knowledge transfer in globally distributed teams:

the role of transactive memory. Inf Syst J 18(6):593–616

52. Lee SB, Shiva SG (2010) An approach to overcoming knowledge sharing challenges in a

corporate IT environment. In: Proceedings of the 5th IEEE international conference on global

software engineering, IEEE Computer Society, Princeton, USA, pp 342–346

53. Kotlarsky J, Oshri I (2005) Social ties, knowledge sharing and successful collaboration in

globally distributed system development projects. Eur J Inf Syst 14:37–48

54. Ebert C (2012) Global software and IT: a guide to distributed development, projects, and

outsourcing. Wiley, Hoboken

55. Heindl M, Reinisch F, Biffl S (2007) Requirements management infrastructures in global

software development – Towards application lifecycle management with role-based in-time

notification. In: Proceedings of the international conference on global software engineering

(ICGSE), workshop on tool-supported requirements management in distributed projects

(REMIDI), Munich, Germany

56. Mistrı́k I, Grundy J, Van der Hoek A, Whitehead J (2010) Collaborative software engineering:

challenges and prospects. In: Mistrı́k I, Grundy J, Van der Hoek A, Whitehead J (eds)

Collaborative software engineering. Springer, Berlin/Heidelberg, pp 389–403

57. Laurent P (2010) Globally distributed requirements engineering. In: Proceedings of the 5th

IEEE international conference on global software engineering, IEEE Computer Society,

Princeton, USA, pp 361–362

58. Monteiro MR, Ebert C, Recknagel M (2009) Improving the exchange of requirements and

specifications between business partners. In: Proceedings of the 17th IEEE international

requirements engineering conference, IEEE Computer Society, Atlanta, USA, pp 253–260

196 J.M. Carrillo de Gea et al.



59. Toval A, Nicolás J, Moros B, Garcı́a F (2002) Requirements reuse for improving information

systems security: a practitioner’s approach. Requir Eng 6:205–219

60. Sommerville I, Ransom J (2005) An empirical study of industrial requirements engineering

process assessment and improvement. ACM Trans Softw Eng Methodol 14:85–117

61. Toval A, Moros B, Nicolás J, Lasheras J (2008) Eight key issues for an effective reuse-based

requirements process. Comp Syst Sci Eng 23:1–13

62. Toval A, Olmos A, Piattini M (2002) Legal requirements reuse: a critical success factor for

requirements quality and personal data protection. In: Proceedings of the 10th anniversary IEEE

joint international conference on requirement engineering, IEEE Computer Society, Essen,

Germany, pp 95–103

63. Martı́nez MA, Lasheras J, Fernández-Medina E, Toval A, Piattini M (2010) A personal data

audit method through requirements engineering. Comp Stand Interf 32:166–178

64. Nicolás J, Lasheras J, Toval A, Ortiz FJ, Álvarez B (2009) An integrated domain analysis

approach for teleoperated systems. Requir Eng 14:27–46

65. Carrillo de Gea JM, Nicolás J, Fernández Alemán JL, Toval A, Ebert C, Vizcaı́no A (2011)

Requirements engineering tools. IEEE Softw 28(4):86–91

66. ISO/IEC JTC 1 SC 7: ISO/IEC TR 24766 (2009) Information technology – systems and software

engineering – guide for requirements engineering tool capabilities, 1st edn. ISO, Geneva

67. Uenalan O, Riegel N, Weber S, Doerr J (2009) Using enhanced wiki-based solutions for

managing requirements. In: Proceedings of the 2nd international workshop on managing

requirement knowledge, IEEE Computer Society, Atlanta, USA, pp 63–67

68. Ugai T, Aoyama K (2009) Domain knowledge wiki for eliciting requirements. In: Proceedings of

the 2nd international workshop on managing requirement knowledge, IEEE Computer Society,

Atlanta, USA, pp 4–6

69. Liang P, Avgeriou P, Clerc V (2009) Requirements reasoning for distributed requirements

analysis using semantic wiki. In: Proceedings of the 4th IEEE international conference on

global software engineering, IEEE Computer Society, Limerick, Ireland, pp 388–393

70. Whitehead J, Mistrı́k I, Grundy J, Van der Hoek A (2010) Collaborative software engineering:

concepts and techniques. In: Mistrı́k I, Grundy J, Van der Hoek A, Whitehead J (eds)

Collaborative software engineering. Springer, Berlin/Heidelberg, pp 1–30

71. Lim SL, Quercia D, Finkelstein A (2010) StakeSource: harnessing the power of crowdsourcing

and social networks in stakeholder analysis. In: Proceedings of the 32nd ACM/IEEE interna-

tional conference on software engineering, ACM, Cape Town, South Africa, pp 239–242

72. Lim SL, Damian D, Finkelstein A (2011) StakeSource2.0: using social networks of

stakeholders to identify and prioritise requirements. In: Proceedings of the 33rd international

conference on software engineering, Waikiki, pp 1022–1024

73. Carver J, Jaccheri L, Morasca S, Shull F (2003) Issues in using students in empirical studies in

software engineering education. In: Proceedings of the 9th IEEE international symposium on

software metrics, IEEE Computer Society, Sydney, Australia, pp 239–249

74. Carver J, Jaccheri L, Morasca S, Shull F (2003) Using empirical studies during software

courses. In: Conradi R, Wang A (eds) Empirical methods and studies in software engineering,

Lecturer notes in computer science, vol 2765, Springer, Berlin/Heidelberg, pp 81–103

75. Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam KE, Rosenberg

J (2002) Preliminary guidelines for empirical research in software engineering. IEEE Trans

Softw Eng 28:721–734

76. Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments.

IEEE Trans Softw Eng 25:456–473

77. Svahnberg M, Aurum A, Wohlin C (2008) Using students as subjects – An empirical evalua-

tion. In: Proceedings of the 2nd ACM-IEEE international symposium on empirical software

engineering & measurement, ACM, Kaiserslautern, Germany, pp 288–290

78. Allen T (1977) Managing the flow of technology. MIT Press, Cambridge, MA

8 Reusing Requirements in Global Software Engineering 197


	Chapter 8: Reusing Requirements in Global Software Engineering
	8.1 Introduction
	8.2 Foundations
	8.2.1 Knowledge Management
	8.2.2 Architectural Knowledge Management
	8.2.3 Knowledge Management for Requirements Engineering

	8.3 Practical Challenges
	8.4 The Method
	8.4.1 Process Model
	8.4.1.1 IRD 1: Cultural Analysis
	8.4.1.2 IRD 2: Face-to-Face Meeting
	8.4.1.3 IRD 3: Local Workshops
	8.4.1.4 IRD 4: Previous Adjustments
	8.4.1.5 IRD 5: Schedule Periodic Check-Ups
	8.4.1.6 IRD 6: Requirements Elicitation
	8.4.1.7 IRD 7: Analysis and Negotiation
	8.4.1.8 IRD 8: Redistribution of Requirements
	8.4.1.9 IRD 9: Documentation
	8.4.1.10 IRD 10: Validation

	8.4.2 Requirements Reference Model

	8.5 The Tool Architecture
	8.6 Prototype Implementation and Validation
	8.7 Summary
	References


