
Walid Maalej
Anil Kumar Thurimella Editors

Managing
Requirements
Knowledge

Managing Requirements Knowledge

ThiS is a FM Blank Page

Walid Maalej • Anil Kumar Thurimella

Editors

Managing
Requirements
Knowledge

Editors
Walid Maalej
University of Hamburg
Department of Informatics / MOBIS
Hamburg
Germany

Anil Kumar Thurimella
Harman Becker Automotive Systems GmbH
Munich
Germany

ACM Computing Classification (1998): D.2, K.6, I.2

ISBN 978-3-642-34418-3 ISBN 978-3-642-34419-0 (eBook)
DOI 10.1007/978-3-642-34419-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013940938

Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts
in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being
entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication
of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from
Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.
Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The Story

This book synthesizes the work of the managing requirements knowledge (MARK)

community during the last 5 years. The first idea to organize a workshop on this

topic came to our minds in winter 2007. We were both working on our Ph.D.

projects at the Technische Universität München (TUM) under the supervision of

Bernd Brügge. Anil was focusing on software product lines, while Walid was

looking at the application of ontologies and machine learning to collaborative

software engineering, in particular during bug fixing and API reuse. Our fields of

interest seemed divergent at first glance. However, after a couple of discussions –

also with colleagues from industry – we found that some of the problems we were

trying to address are very similar. Valuable experiences and knowledge gained in

the course of software projects, in particular during the work with requirements,

remain tacit in the mind of people. The same problems in understanding and

implementing requirements occur again and again.

We were convinced about the need for a new perspective on requirements –

considering them as a knowledge asset in software organizations – in addition to the

engineering and lifecycle perspectives. We were convinced about the huge

potentials of recent trends such as ontologies, wikis, Web 2.0, recommendation

systems, and data mining, to the requirements engineering community.

In the last years, the MARK workshop successfully took place in Barcelona,

Atlanta, Sydney, and Trento. It has been one of the most successful workshops at

the IEEE International Conference on Requirements Engineering that is based on

submission and registration statistics, as well as the feedback of the participants.

The achievements are remarkable. Novel approaches such as “recommending

features and stakeholders by analyzing requirements repositories” or “using seman-

tic wikis to represent and reason about requirements” have found their way to main

conferences and journal in the field. Some of the tools are already being used in

practice.

v

With this book, we hope to present a baseline for the community discussion,

enabling more people to join and contribute. We also hope to bring more research

questions and initiate even more discussions. Managing requirements knowledge is

a new evolving field. Its requirements and its knowledge are evolving as well. We

invite you to contribute. Enjoy reading!

The Structure

In addition to the introduction and conclusion chapters, which motivate the field,

introduce the foundations and definitions, overview the approaches proposed so far,

and discuss the road ahead, the rest of this book is structured into five parts.

Part I. Identifying Requirements Knowledge shows the importance of identifying

and externalizing tacit knowledge about requirements such as rationale and

presuppositions. It covers theoretical frameworks to model tacit knowledge, empir-

ical studies to investigate mining requirements knowledge from project artifacts, as

well as pragmatic and practical discussion on what is requirements knowledge in

practice and how to manage without introducing additional overhead.

Part II. Representing Requirements Knowledge for Reuse introduces techniques
such as patterns and ontologies to represent requirements knowledge for both

humans and machine, enabling an efficient knowledge access for various

stakeholders. We focus on techniques which support reuse of knowledge within

and between software projects.

Part III. Sharing Requirements Knowledge is about people, i.e., requirements

stakeholders, and the exchange of knowledge among them. This part discusses

knowledge-sharing tools such as social media and Web 2.0 for requirements as well

as methodologies such as agile requirements and question asking.

Part IV. Reasoning About Requirements discusses how to reason about the

interdependencies of requirements and their knowledge. The goal is to check

consistency and derive new knowledge. Also the integration of requirements

knowledge into other software engineering knowledge is discussed.

Finally, Part V Intelligent Tool Support focuses on the tool perspective, and on

how to apply novel techniques such as recommendation systems, experience-based

tools, as well as integrated development environments to deal with the information

overload, and the huge amount of knowledge related to requirements in large,

complex, distributed projects.

The Audience

There are no special prerequisites to read this book. We tried our best to address the

needs of the following target groups:

vi Preface

• Researchers from the area of knowledge management with interests on

requirements engineering

• Researchers from the area of requirements engineering with interests on knowl-

edge management

• Industrial practitioners involved in requirements engineering and outsourcing

projects

• Lecturers, students, and practitioners interested in the state of the art of

requirements engineering

Preface vii

ThiS is a FM Blank Page

Acknowledgments

This work would not have been possible without the great support of many

individuals. First, we would like to greatly thank the MARK community, including

all authors, attendants, reviewers, and the other co-organizers for all the

contributions and the great constructive discussions. In particular, we would like

to thank the authors of the book chapters, whose names are listed in the author list at

the end of this book. Thanks to these authors for writing the chapters, reviewing

other chapters, their commitments, and all the hard work and iterations to bring our

book vision into reality.

We would also like to thank our external reviewers, namely, Barbara Paech,

Rick Rabiser, Yang Li, Pete Sawyer, Smita S Ghaisas, Dennis Pagano, and

Zardosht Hodaie, for their detailed and constructive feedback.

Heidi Oskarsson helped with formatting matters. Ralf Gerstner and Viktoria

Meyer of Springer gave invaluable advice for management and publishing issues.

Finally, we can hardly thank enough our families for their patience when we were

spending our nights editing this book and for their constant love.

November 2012 Walid Maalej

Anil Kumar Thurimella

ix

ThiS is a FM Blank Page

Contents

1 An Introduction to Requirements Knowledge 1

W. Maalej and A.K. Thurimella

Part I Identifying Requirements Knowledge

2 Unpacking Tacit Knowledge for Requirements Engineering 23

V. Gervasi, R. Gacitua, M. Rouncefield, P. Sawyer, L. Kof, L. Ma,

P. Piwek, A. de Roeck, A. Willis, H. Yang, and B. Nuseibeh

3 Mining Requirements Knowledge from Operational Experience . . . 49

R. Lutz, M. Lavin, J. Lux, K. Peters, and N.F. Rouquette

4 DUFICE: Guidelines for a Lightweight Management

of Requirements Knowledge . 75

W. Maalej and A.K. Thurimella

Part II Representing Requirements Knowledge for Reuse

5 Constructing and Using Software Requirement Patterns 95

X. Franch, C. Quer, S. Renault, C. Guerlain, and C. Palomares

6 Using Ontologies and Machine Learning for Hazard Identification

and Safety Analysis . 117

O. Daramola, T. Stålhane, I. Omoronyia, and G. Sindre

7 Knowledge-Assisted Ontology-Based Requirements Evolution 143

S. Ghaisas and N. Ajmeri

Part III Sharing Requirements Knowledge

8 Reusing Requirements in Global Software Engineering 171

Juan Manuel Carrillo de Gea, Joaquı́n Nicolás, José Luis Fernández

Alemán, Ambrosio Toval, A. Vizcaı́no, and Christof Ebert

xi

9 Performative and Lexical Knowledge Sharing in Agile

Requirements . 199

S.E. Sim and R.E. Gallardo-Valencia

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its

Application in Ten Industrial Projects . 221

S.L. Lim, D. Damian, F. Ishikawa, and A. Finkelstein

Part IV Reasoning About Requirements

11 Resolving Inconsistency and Incompleteness Issues in

Software Requirements . 245

R. Sharma and K.K. Biswas

12 Automated Verification of Variability Model Using

First-Order Logic . 265

A.O. Elfaki

13 Model-Based Requirements Engineering Framework for Systems

Life-Cycle Support . 291

A. Soffer and D. Dori

Part V Intelligent Tool Support

14 An Overview of Recommender Systems in Requirements

Engineering . 315

A. Felfernig, G. Ninaus, H. Grabner, F. Reinfrank, L. Weninger,

D. Pagano, and W. Maalej

15 Experience-Based Requirements Engineering Tools 333

E. Knauss and S. Meyer

16 The Eclipse Requirements Modeling Framework 353

M. Jastram

17 Managing Requirements Knowledge: Conclusion and Outlook . . . 373

A.K. Thurimella and W. Maalej

About the Editors . 393

Index . 395

xii Contents

List of Contributors

Nirav Ajmeri Tata Consultancy Services, Mumbai, India

K.K. Biswas IIT Delhi, Delhi, India

Juan M. Carrillo De Gea Universidad de Murcia, Murcia, Spain

Daniela Damian University of Victoria, Victoria, BC, Canada

Olawande Daramola Covenant University Nigeria, Ota, Nigeria

Dov Dori Technion, Haifa, Israel

Christof Ebert Vector Consulting Services, Stuttgart, Germany

Abdelrahman Elfaki Management and Science University, Shah Alam, Malaysia

Alexander Felfernig Graz University of Technology, Graz, Austria

Jose L. Fernández Alemán Universidad de Murcia, Murcia, Spain

Anthony Finkelstein University College London, London, UK

Xavier Franch Universitat Politècnica de Catalunya, Barcelona, Spain

Ricardo Gacitua Lancaster University, Lancaster, UK

Rosalva Gallardo-Valencia University of California, Irvine, CA, USA

Vincenzo Gervasi University of Pisa, Pisa, Italy

Smita S. Ghaisas Tata Consultancy Services, Mumbai, India

Harald Grabner Graz University of Technology, Graz, Austria

Cindy Guerlain Centre de Recherche Public Henri Tudor, Kirchberg,

Luxembourg

Fuyuki Ishikawa National Institute of Informatics, Chiyoda-ku, Japan

xiii

Michael Jastram Formal Mind/University of Düsseldorf, Düsseldorf, Germany

Leonid Kof Technische Universität München, Munich, Germany

Eric Knauss Leibniz Universität Hannover, Hannover, Germany

Milton Lavin Jet Propulsion Lab/Caltech, Pasadena, CA, USA

Soo Ling Lim University College London, London, UK

Robyn Lutz Iowa State University, Ames, IA, USA

James Lux Jet Propulsion Lab/Caltech, Pasadena, CA, USA

Lin Ma The Open University, Buckinghamshire, UK

Walid Maalej University of Hamburg, Hamburg, Germany

Sebastian Meyer Leibniz Universität Hannover, Hannover, Germany

Joaquı́n Nicolás Universidad de Murcia, Murcia, Spain

Gerald Ninaus Graz University of Technology, Graz, Austria

Bashar Nuseibeh The Open University, Buckinghamshire, UK; Lero, Limerick,

Ireland

Inah Omoronyia University of Glasgow, Glasgow, Scotland

Dennis Pagano Technische Universität München, Munich, Germany

Cristina Palomares Universitat Politècnica de Catalunya, Barcelona, Spain

Kenneth Peters Jet Propulsion Lab/Caltech, Pasadena, CA, USA

Paul Piwek The Open University, Buckinghamshire, UK

Carme Quer Universitat Politècnica de Catalunya, Barcelona, Spain

Florian Reinfrank Graz University of Technology, Graz, Austria

Samuel Renault Centre de Recherche Public Henri Tudor, Kirchberg,

Luxembourg

Anne de Roeck The Open University, Buckinghamshire, UK

Nicolas Rouquette Jet Propulsion Lab/Caltech, Pasadena, CA, USA

Mark Rouncefield Lancaster University, Lancaster, UK

Pete Sawyer Lancaster University, Lancaster, UK

Richa Sharma IIT Delhi, Delhi, India

Susan Elliott Sim University of California, Irvine, CA, USA

Guttorm Sindre NTNU, Trondheim, Norway

xiv List of Contributors

Avi Soffer ORT-Braude College of Engineering, Karmiel, Israel

Tor Stålhane NTNU, Trondheim, Norway

Anil Kumar Thurimella Harman Becker Automotive Systems GmbH, Munich,

Germany

Ambrosio Toval Universidad de Murcia, Murcia, Spain

Aurora Vizcaı́no Universidad de Castilla – La Mancha, Cuenca, Spain

Leopold Weninger wsop, Vienna, Austria

Alistair Willis The Open University, Buckinghamshire, UK

Hui Yang The Open University, Buckinghamshire, UK

List of Contributors xv

Chapter 1

An Introduction to Requirements Knowledge

W. Maalej and A.K. Thurimella

Abstract Requirements represent a verbalisation of decision alternatives on the

functionality and quality of a system. Engineering, planning, and implementing

requirements are collaborative, problem-solving activities, where stakeholders

consume and produce considerable amounts of knowledge. Managing requirements

knowledge is about efficiently identifying, accessing, externalising, and sharing this

knowledge by and to all stakeholders, including analysts, developers, and users.

This chapter introduces five foundations of managing requirements knowledge,

which are discussed in the book parts. First, identifying requirements knowledge

aims at externalising tacit knowledge such as rationale or presuppositions. Second,

representing requirements knowledge targets an efficient information access and

artefact reuse within and between projects. Third, sharing requirements knowledge

improves stakeholders’ collaboration and ensures that their experiences do not get

lost. Fourth, reasoning about requirements and their interdependencies aims at

detect inconsistencies and deriving new knowledge. Finally, intelligent tool support
reduces the overhead to manage requirements knowledge.

1.1 What Is Requirements Engineering?

We use the term requirements in the context of systems engineering, which is the

discipline concerned by designing, developing, deploying, and maintaining systems.

A system is an organised set of communicating parts designed for a specific purpose

W. Maalej (*)

University of Hamburg, Department of Informatics/MOBIS, Vogt-Kölln-Str. 30, 22527 Hamburg,

Germany

e-mail: maalej@informatik.uni-hamburg.de

A.K. Thurimella

Harman Becker Automotive Systems GmbH, Moosacher Str. 48, 80809, Munich, Germany

e-mail: anil.thurimella@gmail.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_1, # Springer-Verlag Berlin Heidelberg 2013

1

mailto:maalej@informatik.uni-hamburg.de
mailto:anil.thurimella@gmail.com

[1]. For example, a mobile phone composed of a display, a battery, an antenna,

a microphone, a speaker, and a processor is designed to enable users to make calls,

while they are on the go. In this book we target software engineering, which is a

subdiscipline that focuses on engineering software-intensive systems. Bruegge and

Dutoit characterise software engineering as a modelling and problem-solving

activity, which is knowledge intensive and rationale driven [1].

Participants in a software engineering project create formal and informal models

to (a) reason about software systems, (b) communicate about them, and (c) document

their properties. These might be functional models, object models, dynamic models,

or feature models. A functional model, for example, a use case diagram, describes the

functionality of a system, for instance, dialling a number or terminating a call. An

object model, for example, a class diagram, describes the structure of a system in

terms of components, objects, attributes, and operations. A dynamic model, for

example, a sequence diagram, represents the interactive behaviour of the system or

of its parts, for instance, how the user interacts with the keyboard to dial a number or

how the antenna interacts with the processor to send signals. The high-level descrip-

tion of a system is often communicated to clients and end users in terms of features,

which are prominent or distinctive visible characteristics or qualities of a system [2].

For example, an mp3 player and a multitouch interface are two features of a modern

mobile phone.

The term requirement is similar to the term feature but has a larger scope and

a more technical focus. The IEEE standard glossary of software engineering

terminology defines a requirement [3] as “a statement of what the system must

do, how it must behave, the properties it must exhibit, the qualities it must possess,

and the constraints that the system and its development must satisfy [4]”.

Requirements engineering (RE) is the branch of systems engineering concerned

with the desired properties and constraints of software-intensive systems, the goals

to be achieved in the software’s environment, and assumptions about the environment

[5]. In another frequently cited definition, Sommerville and Sawyer state that

requirements engineering is the activity that emphasises the utilisation of systematic
and repeatable techniques that ensure the completeness, consistency, and relevance

of requirements [6]. We call this the engineering view of requirements. Nuseibeh and

Easterbrook [7] define requirements engineering as the process of discovering the

purpose of the system being developed, by identifying stakeholders and their needs

and documenting these in a form that is amenable to analysis, communication, and

subsequent implementation. We call this the life cycle view of requirements. Finally,

Aurum and Wohlin consider requirements as verbalisation of decision alternatives
regarding the functionality and quality of a system [8]. Requirements engineering can

then be considered as the complex task of dealing with, making, and documenting

these decisions. We call this the decision or the knowledge view of requirements.

Requirements engineering is considered as one of the most critical phases in

software projects [9]. Poorly implemented requirements engineering is a major risk

for projects failure [10]. Today’s software projects still have a high probability to be

cancelled or to significantly exceed available resources [11]. For example,

Leffingwell [12] found that 40 % of the total project costs are associated with

rework triggered by low-quality requirements.

2 W. Maalej and A.K. Thurimella

Requirements engineering rarely receives more than 2–4 % of the overall project

effort [13], even if more effort in getting the requirements right results in signifi-

cantly higher project success rates. A recent Gartner report [14] states that

requirements defects are the third most significant source of product defects after

coding and design but are the first source of delivered defects (i.e. defects delivered

to the user). Fixing a defect in production is approximately 200 times more

expensive for a software project than fixing it during requirements engineering,

Gartner says. The damage and costs caused to the customers and their users when

delivering a defect are excluded from this calculation and cannot be truly quantified

since it depends on the domain and the business. Improving the quality of

requirements and the efficiency requirements engineering can reduce the overall

cost of software, improve its quality, and dramatically shorten the time to market.

1.1.1 Requirements Engineering Activities

Requirements engineering covers several activities, including requirements elicitation,

analysis, specification, verification, and management [15]:

• Requirements elicitation is the process of discovering, reviewing, documenting,

and understanding the user’s needs and constraints for a system.

• The process of refining the user’s needs and constraints is called requirements

analysis.

• Requirements specification is the process of documenting the user’s needs and

constraints clearly and precisely.

• Ensuring that the system requirements are complete, correct, consistent, and

clear is done as a part of requirements verification.

• Scheduling, negotiating, coordinating, and documenting the requirements

engineering activities are called requirements management.

Requirements engineering overlaps with planning. A project plan, including work

packages, releases, iterations, or milestones, is created by analysing requirements.

Later, the plan is detailed further. Tasks and action items are created and assigned to

the project participants. The delivery of requirements is committed to the customer

based on the project plan.

Requirements evolve over time. Change requests are often used to refer to changes

on requirements. Change requests might originate from customers after the initial

requirements elicitation phase, as well as from other sources such as regulators,

development, testing, or marketing. Change requests are decided by analysing

corresponding change impacts on the system. A well-implemented requirements

elicitation often reduces the number of change requests in a project. Similarly,

a large number of change requests are an indicator for poor requirements engineering.

Requirements engineering can also be performed for a product family (or a

family of related systems) for systematically reusing artefacts and assets that are

shared across multiple systems such as requirements, decisions, activities, and

1 An Introduction to Requirements Knowledge 3

processes. Such a product family (e.g. a particular generation of mobile phones

such as data phones or smart phones) is called a software product line.

Clements and Northrop define a software product line (SPL) as a set of software-
intensive systems that share a common, managed set of features satisfying the

specific needs of a particular market segment or mission and that are developed

from a common set of core assets in a prescribed way [4]. Product line engineering

uses variability as an abstraction to deal with customisation and reuse [2, 16].

SPLs offer several benefits such as improved reuse, quicker time to market, and

decreased defect rates, in particular, for manufacturing and mass customisation

companies. These benefits have been reported in the form of experiences and best

practices, for example, in the product line hall of fame [17]. On the other hand,

SPLs need large upfront investments, in particular, when systems have been in

place over decades or in IT service industry where the customers’ needs,

infrastructures, and constraints drive the projects.

1.1.2 Requirements Artefacts

Requirements engineering involves various artefacts and document types. Business

and marketing stakeholders, for instance, typically conduct negotiations with

customers in the early project phases based on customer requirements and feature

catalogues. Detailed requirements can be captured in natural language text, mathe-

matical models, visual models such as UML, or using multimedia. A mathematical

model represents the requirements formally, for example, using the Z specification

language [18] and is used if, for example, the correctness of the system behaviour is

critical. For instance, errors while making an emergency call can cost human lives.

The behaviour of the system should be formally specified and validated in such

cases – in particular if regulators mandate this. UML use case diagrams, sequence

diagrams, and activity diagrams can be used to model requirements semiformally.

For instance, these diagrams might show, respectively, use cases provided by a

phone; interactions between the phone, its user, and its environment (e.g. an

operator network or a Bluetooth device); and the overall process flow from dialling

to getting the invoice.

More recently, the requirements engineering community started exploring and

using multimedia requirements [19], including images (e.g. pictures of a typical

hand positions during a call), drawings (e.g. mock-ups of the screen), or videos (e.g.

showing a typical scenario of a mobile user in the metro). In industry, requirements

are often documented in unstructured or semi-structured natural language

documents [20], called requirements specification documents.

Requirements are classified into functional and non-functional requirements.

A functional requirement expresses functionality (or a functional property) of a

system and is specified based on inputs, outputs, and a process or a functional

behaviour. An example for a mobile phone functional requirement is “the user shall

be able to send and receive SMS to other users of mobile phones”. A functional

requirement can be decomposed into several sub-requirements.

4 W. Maalej and A.K. Thurimella

A non-functional requirement (NFR) also called a quality requirement should

express measurable properties of the system [79]. For example, “when switched on,

the user should be able to dial a number within 3 s”, which constrains the perfor-

mance of the system. Other categories of NFRs include usability, availability,

safety, security, privacy, and maintainability.

Requirements are documented and handled based on their types. Functional

requirements are often described in use case documents or mock-ups, while NFRs

are captured using text documents, in change requests, or as comments in source

code. Different NFRs are handled differently. For instance, safety is often handled

by specifying additional requirements to address hazards and misuse cases

identified by safety engineers.

1.1.3 Stakeholders, Collaboration, and Decisions

Requirements engineering involves people with different backgrounds including

business, marketing, law, project management, design, development, and testing.

These people are called stakeholders. They perform relevant tasks in a requirements

engineering process depending on their backgrounds and collaborate to capture

requirements and make decisions about them and their priorities.

Making decisions is about choosing between alternative solutions for an issue

[21]. An issue can be, for example, which authentication feature should the phone

provide? The alternatives are a username and password, a pin code, a lock screen

pattern, or face recognition. Effective decision-making occurs when stakeholders

select the best choice based on the knowledge available at the time [22].

Rationale is the reasoning behind decisions, that is, the answer to the why question.
Rationale can be described in natural language text or can be structured based on

alternatives, reasons, and justifications. Kunz and Rittel introduced a rhetorical model

to mange rationale called IBIS (issue-based information systems) [23]. IBIS uses

abstractions like issue, option, argument, and resolution. An option is a potential

solution for an issue. An assessment is a stakeholder argument that supports or hinders

an option. A resolution contains a set of options that solve an issue. IBIS allows the

expression of interdependencies between issues, which can lead to complex issue

networks. QOC [24] extends IBISwith criteria, for example, the cost of implementing

the authentication option, or its usability. Dutoit [25] introduced QOC to requirements

engineering by modelling QOC criteria as goals or non-functional requirements,

supporting decision-making in product management meetings.

Research has shown that rationale knowledge is useful inmanyways. For example,

it may be helpful to assess changes [26]. Alternative solutions and arguments

documented in rationale may be used to forecast potential changes. Furthermore,

rationale may be reused when similar issues are raised or when changes in previous

decisions occur. However, rationale is barely managed systematically and often

remains in the mind of people. When people leave the organisation, this knowledge

gets lost [27]. In practice, rationale is found sporadically across documents, emails,

or discussion threads [27].

1 An Introduction to Requirements Knowledge 5

As software projects are getting more distributed and the development cycles are

getting shorter, stakeholders are often located in different places [28], sometimes

even without having the resources to get to know each other in a face to face

meeting. For example, the clients and the users might be in an Asian country with

special regulations and infrastructures for communication systems and where

people present certain habits and preferences in how they use their phones. The

requirements engineers and the developers might be at the development site in a

different country, speaking a different language, knowing different laws, and

having different habits and preferences. Distributed development settings introduce

additional collaboration challenges for stakeholders to understand each other, reach

a common understanding of requirements, and make effective decisions.

1.2 What Is Managing Requirements Knowledge?

We introduce the terms “knowledge”, “knowledge management”, and “requirements

knowledge” and motivate the need for managing requirements knowledge.

1.2.1 What Is Knowledge?

Knowledge is a popular term used in our everyday language as well as in several

disciplines such as philosophy, management science, and computer science.

According to the Oxford Dictionary, the term knowledge refers to facts, informa-

tion, and skills acquired by a person through experience or education. It also refers
to the awareness or familiarity gained by experience of a fact or situation.

In philosophy the study of knowledge is called epistemology. Plato gave one of

the oldest and most famous definitions for knowledge as justified true belief [29].
However, there exists a large and still active debate between philosophers about

Plato’s definition and about the term knowledge and associated concepts [30].

In computer and management science, the term knowledge is often mixed with

data and information. According to Theirauf [31]: “data represents the unstructured
facts and figures, which has the least impact for the typical manager. [. . .] At the
next level information is structured data that is useful to the manager in analysing

and resolving critical problems. [. . .] At the next level there is knowledge, which is

obtained from experts based upon actual experience. While information is data

about data, knowledge is basically information about information”.

In the late 1990s and beginning of the 2000s, a new field called knowledge
management emerged and has become popular amongst people from academia and

industry. Wikipedia defines knowledge management as a range of practices used by
organisations to identify, create, represent, and distribute knowledge for reuse,
awareness and learning across the organisation [32]. In this book we adopt

Hansen’s definition [33]:

6 W. Maalej and A.K. Thurimella

Def. 1. Knowledge management is the dual process of accessing (searching

for and identifying) and sharing (capturing and transferring) knowledge across

organisational subunits.

Knowledge transfer as an aspect of knowledge management has always existed in

one form or another, for example, through on-the-job peer discussions, formal

apprenticeship, corporate libraries, professional training, and mentoring programmes.

However, since the late twentieth century, additional theories and technologies have

been applied to this task, such as knowledge bases, expert systems, and knowledge

repositories. Knowledge management initiatives attempt to manage the process of

creation or identification, accumulation, and application of knowledge or intellectual

capital (i.e. the intangible assets of a company which contribute to its valuation)

across an organisation.

1.2.2 What Is Requirements Knowledge?

Requirements knowledge can be any kind of knowledge, which emerges during

requirements engineering or more generally while working with requirements:

Def. 2. Requirements knowledge consists of the implicit or explicit information

that is created or needed while engineering, managing, implementing, or using

requirements, and that is useful for answering requirements-related questions in any

phase of a software project.

Requirements knowledge is diverse, because requirements affect different engi-

neering activities (including design and implementation) and because requirements

engineering involves different stakeholders. We distinguish between five types of

requirements knowledge:

• Domain knowledge refers to common knowledge in a particular area or a

specialised discipline. This is usually the domain, for which a system should

be developed. Domain knowledge includes a vocabulary, standards used in the

domain (e.g. telecommunication or banking standards), and business rules (i.e.

domain constraints, standards, and regulations to be satisfied when designing or

using the system).

• Engineering knowledge includes requirements “content”, such as the

requirements specifications, dependencies between requirements, as well as

other artefacts needed to understand and implement the requirements such as

models, test cases, or system architecture. Also informal notes and personal

comments typically annotating artefacts such as models, requirements, or plans

might include useful engineering information.

• Management knowledge includes quality measures, templates, and properties of

requirements such as status, priority, and stakeholder preferences. Moreover,

emerging requirements-related issues, decisions, and action items are part of this

1 An Introduction to Requirements Knowledge 7

knowledge. For example, during a requirement review, open issues, decisions,

and action items on requirements might be identified, discussed, and planned.

• Collaboration knowledge includes information about people, their interactions,

discussions, argumentation chains, and presuppositions. Discussions include

information exchanged or shared between different stakeholders on various

problems related to requirements. Discussion might also include requirements

rationale or the reasoning behind the requirements, a crucial piece of knowledge

to understand and implement requirements especially when people leave the

projects. Finally, presuppositions are assumptions for realising a requirement.

The lack of common understanding of presuppositions often leads to misunder-

standing of requirements [34].

• How-to Knowledge includes information on tools, methods, and processes to be

used for a particular situation while engineering and managing requirements.

Organisation or vendor guidelines include information on how to perform

requirements engineering activities or how to use a tool.

Requirements knowledge does necessarily exist in the form of information or

data. A considerable amount of requirements knowledge such as rationale behind

decisions or domain assumptions is tacit and remains in the heads of people. For

example, aspects of the system that seems trivial such as the performance, usability,

or localisation of a mobile phone might not be captured and discussed explicitly

during the requirements engineering work.

Def. 3. Managing requirements knowledge is about efficiently identifying,

accessing, externalising, and sharing all types of requirements knowledge by and

to all stakeholders, including analysts, developers, and users.

Managing requirements knowledge aims at externalising tacit knowledge and

solving requirements-related issues by using the dual process of accessing and

sharing knowledge (see Def. 1). For example, during requirement elicitation a

requirements analyst might spend weeks to access (i.e. searching and identifying)

privacy regulations and laws about mobile telephony. The analyst might then share

this knowledge to other stakeholders such as architects, managers, or users by

capturing and communicating summaries and links to the regulations that are

relevant for the envisioned system.

1.2.3 Why Managing Requirements Knowledge?

Requirements engineering, management, and implementation are complex,

knowledge-intensive activities. Working with requirements involves many

stakeholders from different backgrounds working in different phases and activities.

To make, document, refine, or understand the requirements decisions, stakeholders

need diverse information from diverse sources. For example, requirement analysts

need information on the domain for defining correct and complete requirements.

Change requesters need information on the processes followed for tracking the

8 W. Maalej and A.K. Thurimella

status of their requests. Architects need information on the technologies used in

order to assess the requirements feasibility [35].

Moreover, software engineering is a field where constant changes take place,

making the work of stakeholders extremely dynamic. New problems are discovered

(e.g. users do not want to use an extra pen to enter information to the mobile

phones), new solutions are designed (e.g. new multitouch technology which enable

tracking multiple fingers at same time), and experiences are made (e.g. users prefer

simple user interfaces or that the operator infrastructure API only allows for a

certain error tolerance) on a daily basis. The requirements knowledge in software

projects is diverse and its proportions immense and continuously expanding. Thus,

a systematic way of managing and treating the knowledge and its owners as

valuable assets could help organisations leverage the knowledge they possess.

The need for systematic knowledge management in requirements engineering

has its root in the following:

• Acquiring knowledge about the application domain. This is one of the major

challenges in software engineering, since this discipline supports diverse

industries such as telecom, health care, insurance, or gaming. Many software

vendors are discovering more and more the importance of “mastering” domain

knowledge as a way of distinction from competitors. Knowing programming

languages, application programming interfaces, engineering tools, and

techniques is one half of the assets of a software vendor. The other half is to

know the domain, its customers, and its users.

• Capturing and using process and product knowledge. While process knowledge

describes how particular tasks should be achieved and how to handle certain

issues, product knowledge rather focuses on the work product itself, what it does

and how it does it. Capturing and using process and product knowledge allows

for shortening the time and cost for developing software systems and for

increasing the quality of the delivered software.

• Acquiring knowledge about new technologies, which often affect not only the

design of the system but also its goal and behaviour. New technologies can set

trends and change the behaviour of users and customers and then the goal of the

system itself. For example, modern hardware changed the purpose of a mobile

phone from communication to a personal computing device used for work,

entertainment, and communication.

• Knowing who knows what. Since software organisations get more and more

distributed, this aspect becomes more and more relevant. Software projects are

rarely conducted in an isolated manner and from the scratch. Even small projects

carried on by a few developers often reuse open-source frameworks with

complex functionality, where numerous stakeholders were involved. People

get to know each other due to informal talks in the coffee hall [36]. A colleague

might then report to the others about issues encountered, how they were solved,

and which experiences were gained. Informal knowledge sharing and knowing

“who knows what” becomes difficult in distributed settings [37, 38].

1 An Introduction to Requirements Knowledge 9

Unfortunately, managing requirements knowledge is often pushed to the

extreme, that is, either formalised for the purpose of validation and completeness

or considered as a “second class” citizen, creating requirements documents just

because someone ordered that this task must be done. Our vision of requirements

engineering and managing its knowledge is different. We think that requirements
engineering is a knowledge access and sharing activity. In addition to the valida-
tion, completeness, and formality of requirements, there must be a second dimen-
sion of efficiently capturing this knowledge and sharing it with the right people in
the right context. Managing requirements knowledge is therefore crucial to both

requirements engineers and analysts as well as other stakeholders. Examples of the

questions that should be answered are who needs this information? What exactly

should be implemented in this feature? Why is requirement important? Which

restrictions must be considered? What does this concept mean?

Systematically managing requirements knowledge brings several advantages:

• Improved understandability of requirements [39, 40] and reduced mismatch

between requirements and their implementations [41]

• Identification of new requirements from the knowledge that is captured in the

previous projects [42]

• Solving repetitive problems that occur in requirements engineering by

systematising experiences and guiding stakeholders [43]

• Speeding up decision-making by sharing relevant information [40]

• Increased requirements reuse [44] and hence components reuse in general

• Improved evolvability of requirements by providing rationales helpful to decide

on future changes [26, 45]

• Improved traceability by capturing implicit links [46] and identifying hidden

interdependencies

These advantages are discussed in detail in the following chapters of this book.

1.2.4 Knowledge Management in Software Engineering

Over the last two decades, software engineering researchers have given special

attention to studying developers’ knowledge needs and to suggesting approaches

and tools, which improve the access and sharing of software engineering knowledge

[47, 48]. Some of the popular and early approaches include rationale management

[27], design patterns [49], the experience factory [50], the knowledge dust-to-pearls

approach [51], the personal software process [52], the team software process [53],

and process-based knowledge management support for software engineering [54].

Except rationale management these approaches have been paid little attention to

requirements engineering, focussing on design, implementation, and maintenance.

For example, unlike architecture patterns there has been little research on systemati-

cally collecting, managing, and using requirements patterns, despite their wide usage

in practice.

10 W. Maalej and A.K. Thurimella

Also recent empirical studies on the knowledge needs in software engineering

barely focussed of requirements stakeholders. For instance, Ko et al. [36] studied the

information needs of source code developers at Microsoft and identified 21 questions

such as “What is the programme supposed to do” or “What code could have caused

this behaviour”. Similarly, Sillito et al. [55] observed developers and identified 44

questions specific to software maintenance tasks. Robillard [56] studied obstacles

faced by developers when reusing components. We are unaware of studies on the

knowledge needs of stakeholders and questions encountered while capturing or

implementing requirements. Such studies are essential for understanding the nature

of stakeholders’ work and providing effective tool support.

Finally, knowledge management tools such as document management systems

[57], information retrieval and search tools [58], ontology-based repositories [59],

wikis [60], and recommendation systems [61, 62] are getting more popular in the

software engineering and more recently, also in the requirements engineering

community, as the following chapters of this book show.

1.3 Foundations of Managing Requirements Knowledge

Managing requirements knowledge involves tasks, methods, and tools, which are

scattered across all phases of a software engineering project. We see it as an

integrated, continuous process, which includes two main activities as introduced in

Def. 1: accessing and sharing knowledge [63]. There are however at least five main

foundations for this process, which we introduce below and which correspond to the

parts of this book. These are identifying requirements knowledge, representing

requirements knowledge for reuse, sharing requirements knowledge, reasoning

about requirements, and intelligent tool support. These foundations correspond

roughly to the main research topics of this emergent field.

1.3.1 Identifying Requirements Knowledge (Part I)

The first goal of managing requirements knowledge is the identification of relevant

knowledge, in particular, in its tacit form, answering the following questions:

• What is requirements knowledge and what are its forms and types?

• How can requirements knowledge be identified, extracted, and externalised

systematically?

Identifying tacit requirements knowledge is a complex task. In projects which

evolve over a long period of time, or which reuse existing frameworks and libraries,

information related to requirements remains “unknown” or undocumented for

“historical reasons”. A mobile phone is, for example, developed over decades,

and new generations are based on features of older generations. Often several

1 An Introduction to Requirements Knowledge 11

questions remain in the minds of people or “somewhere” in a non-updated

requirements document: What exactly does this system or this component do and

what it does not? Why is this functionality or quality provided? What are

stakeholders’ preferences? Or who knows more about this requirement? In contrast,

design and engineering questions can at least be partly answered by studying the

source code.

Moreover, requirements engineering tasks are often based on assumptions and

presuppositions [34]. Customers assume that the developers know the domain,

while the developers assume that the customers will tell them about everything

that should be implemented – a vicious circle.

Also identifying requirements knowledge in documents and artefacts is not a

trivial task. The various stakeholders might have different understanding on what is

relevant knowledge, where it should be documented, with which level of detail, and

how. As a result, requirements knowledge can easily get scattered across different

sources including requirements documents, emails, websites, marketing brochures,

contractual documents, and technical documentation. Thus, identifying requirements

knowledge is also about identifying which types of information can be captured and

found where.

In recent years, researchers paid more attention to the importance of (tacit)

requirements knowledge and suggested novel approaches to understand, identify,

externalise, and extract this knowledge. This book will discuss some of these

approaches such as using machine-learning techniques to extract requirements

knowledge [64] from bug repositories or formally capturing requirements using

predicate logic to deduce tacit knowledge. Chapter 2 provides a theoretical founda-

tion for tacit knowledge by considering multidisciplinary views of tacit knowledge.

Chapter 3 reports on an empirical study on how recording knowledge about defects

aids identification of requirements for SPLs. Chapter 4 introduces guidelines to

identify and manage requirements knowledge in practice, for example, by drawing

a knowledge landscape, interacting with external communities, and establishing

a knowledge culture.

1.3.2 Representing Requirements Knowledge for Reuse (Part II)

Knowledge representation is a key issue in successfully applying any knowledge

management programme in an organisation. Representing requirements knowledge

includes two main challenges: (a) the efficient access by all stakeholders and (b) the
support of reuse in case similar issues arise.

Several requirements-related tasks are repetitive, time consuming, and require

a lot of human involvement [39]. For example, requirements analysis for safety

critical systems may include hazard and operability analysis or failure mode and

effect analysis tasks in order to identify potential system hazards and risks and to

mitigate them to acceptable levels before a system is certified. Another example of

repetitive time-consuming tasks can be found in large contract-based projects.

There, requirements elicitation typically includes the creation of a requirements

12 W. Maalej and A.K. Thurimella

http://dx.doi.org/10.1007/978-3-642-34419-0_2
http://dx.doi.org/10.1007/978-3-642-34419-0_3
http://dx.doi.org/10.1007/978-3-642-34419-0_4

specification document, which is used as a contractual document. Large IT service

providers, which conduct similar projects in the same domain, typically spend

valuable time on creating separate requirements specification documents for each

project – with copy and paste as the only reuse instrument if at all. Requirements

knowledge should be represented in a way that allows for reuse to cope with the

repetitive tasks.

There are different approaches to represent requirements knowledge, each with

advantages and disadvantages:

• Natural language: This is perhaps the most widely used approach to capture

requirements knowledge because it is the most convenient for stakeholders. No

tools need to be installed or new techniques learned. The disadvantage is that

both querying and reuse are difficult. A promising approach from the social

computing paradigm is to annotate text with tags (e.g. #screen, #version4,

#issue), which can be either predefined or freely defined and refined by the

stakeholders. Over time a folksonomy of tags emerge [65], which can be used to

easily browse and find particular information related to a tag. One other impor-

tant strength of tagging and folksonomies is that they “directly reflect the

vocabulary of users” [65]. On the other hand, tags might be ambiguous and

allow redundant synonyms.

• Models: Even if the software engineering community has not explicitly considered

modelling as a knowledge representation approach, we think that it provides a

toolkit for externalising, formalising, and communicating knowledge about

complex and manifold software systems. One particular type of requirements

knowledge is rationale to decisions. Researchers have suggested different decision

models such as “Issue-Based Information System”, “Question, Option, and

Criteria”, “Decision Representation Language”, and “NFR Framework” and

identified similarities between them. These models enable the representation of

rationale knowledge but are rarely used in practice, due to the overhead needed to

create them.

• Patterns: Generally speaking, patterns are solution templates to recurring

problems. Patterns can be used in requirements to, for example, guide the

capturing of specific types of requirements (e.g. patterns to capture use cases

or NFRs). Their potential, however, are not yet exploited such as in design or

management. Recurrent business rules, domain-specific issues, user tasks, or

preference conflicts are just a few examples where patterns can be used to

provide solution templates.

• Cases: Capturing requirements as issues with their context enables reuse by

analogy, so-called case-based reasoning. Also machine-learning, heuristics, or

pattern-matching techniques can be used to identify similar requirements

knowledge for the purpose of reuse [64, 66].

• Ontologies: These are formal, explicit specification of shared conceptua-

lisations, which can be understood by both machines and humans. Since the

emergence of the Semantic Web standards, ontologies have become a popular

alternative for representing reusable knowledge, also in requirements engineer-

ing. Several researchers have suggested ontology-based tools and methods to

1 An Introduction to Requirements Knowledge 13

capture and reason about requirements knowledge [67, 68]. This book includes

an experience report on such approaches in Chap. 7.

• Formal approaches: Formal approaches have been studied for decades to capture

and validate requirements. This knowledge representation approach focuses on

the computer rather than on humans as its correctness is typically high but its

usability and understandability is low. These approaches are especially used in

to develop safety critical systems.

This book includes three chapters on representing requirements knowledge for

reuse. Chapter 5 focuses on eliciting, documenting, and reusing requirements based

on patterns. Chapter 6 presents an approach that combines case-based reasoning,

natural language processing, and ontologies to systematise the representation

of NFR knowledge, in particular security and safety. Chapter 7 presents a similar

approach based on ontologies and Web 2.0, focussing on reusing domain know-

ledge between projects within the same domain.

1.3.3 Sharing Requirements Knowledge (Part III)

Sharing requirements knowledge forms the bridge between capture and reuse. This

activity is of particular importance in large distributed projects, where the means for

informal exchange “during the coffee break” or “quickly asking questions to the

neighbour colleague” are limited.

Methods such as agile include instruments, which systematically encourages

knowledge sharing. For instance, the daily stand-up meetings in Scrum enforce

people to share the problems they have encountered and the solutions they used.

Other methods such as code reviews also enforce knowledge sharing but focussing

on design knowledge.

Unfortunately, software engineering processes and tools do not give enough

room for sharing requirements knowledge. Most knowledge sharing occurs in

meetings and during discussions or at best by delivering requirements documents

between stakeholders, which might include hundreds of pages. Distributed settings,

lack of domain knowledge, different vocabularies and background, as well as the

complexity of requirements knowledge frequently lead to misunderstanding of

these documents. It is then more about sharing data and at best information, then

sharing knowledge.

Collaborative approaches such as wikis or social media bring new potentials for

tightening requirements knowledge sharing. Several authors have suggested the use

of wikis to capture and share requirements and related knowledge. For example,

Uenalan et al. [69] argue that traditional features of requirements engineering

such as projects, folders, specification modules, traceability, and baselines may be

provided by simple extensions of wikis. Lohmann et al. [68, 70] introduce a

promising approach based on semantic wikis, which enables all stakeholders to

14 W. Maalej and A.K. Thurimella

http://dx.doi.org/10.1007/978-3-642-34419-0_7
http://dx.doi.org/10.1007/978-3-642-34419-0_5
http://dx.doi.org/10.1007/978-3-642-34419-0_6
http://dx.doi.org/10.1007/978-3-642-34419-0_7

collect and semantically annotate requirements. Underlying ontologies enable

reasoning about various properties of requirements.

This book includes three chapters on sharing requirements knowledge amongst

stakeholders. Chapter 8 focuses on global distributed project and introduces a new

knowledge-sharing method and tool called PANEGA. Chapter 9 reports on an

empirical study about requirements knowledge sharing in agile projects,

distinguishing between performative knowledge, which occurs through actions

such as question asking, gestures, or informal speeches, and lexical knowledge

sharing, which occurs through inscribed texts. Chapter 10 introduces a Web 2.0

approach for identifying and prioritising stakeholders (i.e. who should know what)

and reports on a large empirical evaluation of the approach.

1.3.4 Reasoning About Requirements (Part IV)

Reasoning about requirements means considering the requirements as a set rather

than single entities, analysing their interdependencies to derive a new knowledge

and discover inconsistencies.

Reasoning about requirements and their interdependencies is essential in particular
for consistency and compatibility management as well as for requirements

prioritisation and release planning [71]. Requirements planned for a certain release

should be compatible. Incompatibilities can be triggered by not having enough time

for consistency checking or by stakeholders’ different perceptions and goals. Karlsson

et al. [72] indicate that requirements prioritisation and planning approaches have to

support handling the interdependencies. Requirements should not be treated indepen-

dently: Choosing a low-cost–high-priority requirement may also entail the need to

include a low-priority–high-cost requirement.

A pairwise comparison of requirements becomes infeasible for larger projects.

Ramesh and Jarke [73] point out that traceability maintenance then becomes an

issue and that stakeholders should focus on the traceability maintenance for the

critical requirements. A common problem of traceability tools is that they do a good

job in storing the relationships, but they do not provide clear semantics for the

concepts used, which would enable to reason about the basic properties of a given

set of requirements. Therefore, it is important to provide a means to identify the

most critical dependencies [74].

Especially for informally defined requirements, the complete automation of

consistency management is unrealistic [75], but semiautomated tools can help to

keep the efforts acceptable. For example, Göknil et al. [76] introduce a requirement

meta-model and formalise its language elements. Based on this formalisation,

the authors show how to detect inconsistencies in a given instantiation of the

meta-model (concrete set of requirements and their interdependencies).

A recent promising approach to reason about requirements uses semantic wiki

technologies, enabling all stakeholders (especially in large, distributed settings) to

collect and semantically enrich requirements [68]. In order to establish a conceptual

1 An Introduction to Requirements Knowledge 15

http://dx.doi.org/10.1007/978-3-642-34419-0_8
http://dx.doi.org/10.1007/978-3-642-34419-0_9
http://dx.doi.org/10.1007/978-3-642-34419-0_10

foundation, Lohmann et al. [68] have developed the SoftWiki ontology for RE

(called SWORE [70]). This ontology defines major RE modelling concepts, such as

goal, scenario, or textual descriptions. Furthermore, different types of dependencies

between requirements such as “requirement A1 details requirement A” or “require-

ment A is in conflict with requirement C” are taken into account. Requirements are

associated with stakeholders who define and maintain them. Stakeholders discuss

the requirements and positively or negatively evaluate them [70]. The dependency

types enable the definition of the relationships between requirements and also to

reason about different properties. For example, can requirements A, B, and C be

part of the same release? Existing semantic wiki-based environments applied in RE

require a huge set-up overhead and are limited in the way stakeholders are

supported [77].

This book includes three chapters on reasoning about requirements. Chapter 11

suggests a courteous logic-based approach to resolve inconsistency and

incompleteness issues. Chapter 12 presents a rule-based approach for detecting

dead features and defects in variability. Chapter 13 discusses how reasoning about

requirements and their interdependencies should also be propagated to the other

activities such as design and implementation.

1.3.5 Intelligent Tool Support (Part V)

Requirements knowledge can become huge and scattered across different sources.

Much effort is needed to identify and retrieve relevant information in requirements

repositories. This would entail an overhead of capturing, maintaining, and

accessing requirements knowledge.

To address these problems, researchers started investigating techniques like data

mining, social network analysis, and recommendation technologies and developing

information retrieval tools to enable efficient capture, access, and sharing of

requirements knowledge.

Recently, traditional requirements databases have been enhanced such that data

is modelled and stored in a way that allows learning and querying. Furthermore,

researchers have started investigating how recommendation technologies [64, 78]

can be applied to existing requirements infrastructures and tools.

Intelligent tool support is crucial for the implementation of any requirements

knowledge management programme. Thereby intelligent does not only mean

the ability of the tool to reason about knowledge, derive new knowledge, or deal

with incomplete and scattered knowledge. Intelligent also means integrated and

pragmatic solutions, which neither require additional learning effort, nor impose

heavyweight processes and workflows, nor introduce new interruptions to the

stakeholders workflows, for example, by having to switch back and forth between

tools.

This book includes three chapters on intelligent tool support for managing

requirements knowledge. Chapter 14 introduces various recommendation technologies

16 W. Maalej and A.K. Thurimella

http://dx.doi.org/10.1007/978-3-642-34419-0_11
http://dx.doi.org/10.1007/978-3-642-34419-0_12
http://dx.doi.org/10.1007/978-3-642-34419-0_13
http://dx.doi.org/10.1007/978-3-642-34419-0_14

and relevant discusses visionary scenarios of applying them to support stakeholders’

tasks. Chapter 15 proposes the use of experience-based tools to improve the quality of

software requirements specification by learning from previous experiences. Finally,

Chap. 16 introduces the requirements modelling framework, which is integrated into

the Eclipse Development Environment allowing a traceability of different types of

knowledge such as natural language requirements and formal models.

1.4 Summary

In this chapter, we reviewed the concepts of requirements engineering from the

knowledge management perspective. We discussed the needs for establishing a

new field for managing requirements knowledge and defined its key concepts.

Finally, we introduced five foundations for this field: identifying requirements

knowledge, capturing requirements knowledge for reuse, sharing requirements

knowledge, reasoning about requirements, and intelligent tool support. These

foundations are discussed in detail in the corresponding parts of the book.

Acknowledgements We are grateful to Pete Sawyer, Smita S Ghaisas, Yang Li, and Zardosht

Hodaie for their constructive reviews.

References

1. Bruegge B, Dutoit A (2010) Object-oriented software engineering using UML, Patterns,

and Java, vol 3. Prentice Hall, Upper Saddle River

2. Kang K, Cohen S, Hess J, Nowak W, Peterson S (1990) Feature-oriented domain analysis

(FODA) feasibility study. Technical report, CMU/SEI-90-TR-21. Software Engineering

Institute, Carnegie Mellon University, Pittsburgh

3. Institute of Electrical and Electronic Engineers (1990) IEEE standard glossary of software

engineering terminology (IEEE Std 610.12-1990). Institute of Electrical and Electronics

Engineers, New York

4. Clements P, Northrop L (2006) A framework for software product line practice-version 4.2

(2006). Carnegie Mellon, Software Engineering Institute, Pittsburgh. http://www.sei.cmu.edu/

prodvolnuctlines/framework.html. Last visited Nov 2012

5. Davis A (2003) The art of requirements triage. IEEE Comput 36(3):42–49

6. Sommerville I, Sawyer P (1997) Requirements engineering: a good practice guide. Wiley,

New York

7. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of

the conference on the future of software engineering (ICSE’00). ACM, New York, pp 35–46

8. Aurum A, Wohlin C (2003) The fundamental nature of requirements engineering activities as

a decision-making process. Inf Softw Technol 45(14):945–954

9. Pohl K (1996) Process-centered requirements engineering. Wiley, New York

10. Hofmann H, Lehner F (2001) Requirements engineering as a success factor in software

projects. IEEE Softw 18(4):58–66

1 An Introduction to Requirements Knowledge 17

http://dx.doi.org/10.1007/978-3-642-34419-0_15
http://dx.doi.org/10.1007/978-3-642-34419-0_16
http://www.sei.cmu.edu/prodvolnuctlines/framework.html
http://www.sei.cmu.edu/prodvolnuctlines/framework.html

11. Yang D, Wu D, Koolmanojwong S, Brown A, Boehm B (2008) Wikiwinwin: a wiki based

system for collaborative requirements negotiation. In: Proceedings of the HICCS, p 24,

Waikoloa

12. Leffingwell D (1997) Calculating the return on investment from more effective requirements

management. Am Program 10(4):13–16

13. Firesmith D (2004) Prioritizing requirements. J Object Technol 3(8):35–47

14. Gartner Group (2011) Hype cycle for application development: requirements elicitation and

simulation. Gartner Group

15. Dorfman M, Thayer RH (1997) Software requirements engineering. IEEE Computer Society

Press, Los Alamitos

16. Pohl K, Böckle G, van der Linder F (2005) Software product line engineering foundations,

principles, and techniques. Springer, New York

17. Software Engineering Institute (2012) Product line hall of fame. http://www.sei.cmu.edu/

productlines/plp_hof.html

18. Smith G (2000) The object-Z specification language, Advances in formal methods series.

Kluwer, Boston

19. Creighton O, Software Cinema (2006) Employing digital video in requirements engineering.

Dissertation, Technische Universtät München

20. Neill CJ, Laplante PA (2003) Requirements engineering: the state of the practice. IEEE Softw

20(6):40–45, IEEE CS

21. Peterson M (2009) An introduction to decision theory. Cambridge University Press,

Cambridge/New York

22. Cooke S, Slack N (1984) Making management decisions. Prentice Hall, Englewood cliffs

23. Kunz W, Rittel H (1970) Issues as elements of information systems. Working paper no. 131.

University of California at Berkeley, Institute of Urban and Regional Development, Berkeley

24. MacLean A, Young RM, Bellotti VME, Moran TP (1991) Questions, options, and criteria:

elements of design space analysis. Hum Comput Interact 6(3):201–250

25. Dutoit AH (1996) Rationale management in requirements engineering. Ph.D. dissertation,

Carnegie Mellon University

26. Dutoit A, Paech B (2003) Eliciting and maintaining knowledge for requirements evolution. In:

Aurum A, Jeffery R, Wohlin C, Handzic M (eds) Managing software engineering knowledge.

Springer, Berlin

27. Dutoit A, McCall R, Mistrik I, Paech B (2006) Rationale management in software engineering.

Springer, Berlin

28. Damian D, Zowghi D (2003) Requirements engineering challenges in multi-site software

development organizations. Requir Eng J 8:149–160

29. Chisholm RM (1982) The foundations of knowing. The University of Minnesota Press,

Minneapolis

30. Resher N (2003) Epistemology: an introduction to the theory of knowledge. State University of

New York Press, Albany

31. Thierauf RJ (1999) Knowledge management systems for business. Praeger

32. Wikipedia, the free encyclopaedia (2012) http://en.wikipedia.org/wiki/Knowledge_management.

Last visited in Nov 2012

33. Hansen MT (1999) The search-transfer problem: the role of weak ties in sharing knowledge

across organization subunits. Adm Sci Q 44(1):82–111

34. Ma L, Nuseibeh B, Piwek P, De Roeck A, Willis A (2009) On presuppositions in requirements.

In: 2nd international workshop on managing requirements knowledge, MaRK’09 IEEE,

Atlanta, USA, pp. 27–31

35. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints:

a framework for integrating multiple perspectives in system development. Int J Softw Eng

Knowl Eng 2–1:31–57

36. Ko AK, DeLine R, Venolia G (2007) Information needs in collocated software development

teams. In: Proceedings of the 29th international conference on software engineering,

Minneapolis, USA, pp 344–353

18 W. Maalej and A.K. Thurimella

http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/productlines/plp_hof.html
http://en.wikipedia.org/wiki/Knowledge_management

37. Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally-

distributed software development. IEEE Trans Softw Eng 29(6):481–494

38. Milewski AE, Tremaine A, Egan R, Zhang S, Kobler F, O’Sullivan P (2008) Guidelines

for effective bridging in global software engineering. In: Proceedings of the 2008 I.E.

international conference on global software engineering, pp 23–32. IEEE Computer Society,

Washington, DC

39. Daramola O, Stålhane T, Omoronyia I, Sindre G (2013) Using ontologies and machine

learning for hazard identification and safety analysis. In: Managing requirements knowledge.

Springer

40. Ghaisas S, Ajmeri N (2013) Knowledge-assisted ontology-based requirements evolution.

In: Managing requirements knowledge (Chapter 7 in this volume). Springer, Heidelberg

41. Soffer A, Dori D (2012) Model-based requirements engineering framework for systems

lifecycle support. In: Managing requirements knowledge (Chapter 13 in this volume).

Springer, Heidelberg

42. Lutz R, Lavin M, Lux J, Peters K, Rouquette NF (2013) Mining requirements from operational

experience. In: Managing requirements knowledge (Chapter 3 in this volume). Springer,

Heidelberg

43. Franch X, Quer C, Renault S, Guerlain C, Palomares C (2012) Constructing and using software

requirements patterns. Springer

44. Carrillo de Gea JM, Nicolás J, Alemán JLF, Toval A, Vizcaı́no A, Ebert C (2013) Reusing

requirements in global software engineering. In:Managing requirements knowledge (Chapter 8

in this volume). Springer, Heidelberg

45. Thurimella AK, Bruegge B (2012) Issue-based variability management. Inf Softw Technol

54(9):933–950

46. Narayan N, Delater A, Paech B, Bruegge B (2011) Enhanced traceability in model-based

CASE tools using ontologies and information retrieval. In: Proceedings of the 4th international

workshop on managing requirements knowledge (MaRK’11), Trento

47. Bjørnson FO, Dingsøyr T (2008) Knowledge management in software engineering: a systematic

reviewof studied concepts, findings and researchmethods used. Inf SoftwTechnol 50:1055–1068

48. Lago P, van Vliet H, Babar MA, Dingsoyr T (eds) (2009) Software architecture knowledge

management: theory and practice, 1st edn. Springer

49. Gamma E, Helm R, Johnson R, Vlissides J (1995) Design patterns: elements of reusable

object-oriented software. Addison-Wesley, Reading

50. Basili VR, Caldiera G, Rombach DH (1994) The experience factory, Encyclopedia of software

engineering – 2 volume set. Wiley, New York, pp 469–476

51. Basili V, Costa P, Lindvall M, Mendonca M, Seaman C, Tesoriero R, Zelkowitz M (2001)

An experience management system for a software engineering research organization.

In: Proceedings of the 26th annual NASA Goddard Software engineering workshop.

Greenbelt, Maryland, USA

52. Humphrey WS (2005) PSP: a self-improvement process for software engineers. Addison-

Wesley, Reading. ISBN 03213054931

53. Humphrey WS (1999) Introduction to the team software process. Addison-Wesley, Reading.

ISBN 0-201-47719-X

54. Holz H (2003) Process-based knowledge management support for software engineering.

Doctoral dissertation. University of Kaiserslautern, dissertation.de Online- Press

55. Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions during a program-

ming change task. Trans Softw Eng 34:434–451

56. Robillard MP (2009) What makes APIs hard to learn? Answers from developers. IEEE Softw

26:27–34

57. Rus I, Lindvall M, Sinha SS (2001) Knowledge management in software engineering: a state-

of-the-art-report. Fraunhofer Center for Experimental Software Engineering Maryland and the

University of Maryland for Data and Analysis Center for Software, Department of Defence

58. Bajracharya S, Lopes C (2009) Mining search topics from a code search engine usage log.

In: Proceedings of the 2009 6th IEEE international working conference on mining software

repositories (MSR’09). IEEE Computer Society, Washington, DC, pp 111–120

1 An Introduction to Requirements Knowledge 19

59. Happel H-J, Maalej W, Seedorf S (2010) Applications of ontologies in collaborative software

development. In: Mistrı́k I, Grundy J, van der Hoek A, Whitehead J (Hrsg.) Collaborative

software engineering. Springer, Berlin/Heidelberg. ISBN 978-3642102936

60. Aguiar A, Dekel U, Merson P (2009) Wikis4SE’2009: Wikis for software engineering.

ICSE companion 2009, pp 480–481

61. Happel H-J, Maalej W (2008) Potentials and challenges of recommendation systems for

software development. In: RSSE’08: proceedings of the 2008 international workshop on

recommendation systems for software engineering, ACM

62. Robillard MP, Walker RJ, Zimmermann T (2010) Recommendation systems for software

engineering. IEEE Softw 27(4):80–86

63. Maalej W, Thurimella A (2013) DUFICE – guidelines for a lightweight management of

requirements knowledge. In: Managing requirements knowledge. Springer

64. Dumitru H, Gibiec M, Hariri N, Cleland-Huang J, Mobasher B, Castro-Herrera C,

Mirakhorli M (2011) On-demand feature recommendations derived from mining public

product descriptions. ICSE 2011, pp 181–190

65. Mathes A (2004) Folksonomies: cooperative classification and communication through shared

metadata. In: Computer mediated communication – LIS590CMC http://www.adammathes.

com/academic/computer-mediated-communication/folksonomies.html

66. Jürgens E, Deissenboeck F, Feilkas M, Hummel B, Schätz B, Wagner S, Domann C, Streit J

(2010) Can clone detection support quality assessments of requirements specifications?

ICSE (2): 79–88

67. Ajmeri N, Vidhani K, Bhat M, Ghaisas G (2011) An ontology-based method and tool for cross-

domain requirements visualization. In: Fourth workshop on managing requirements knowl-

edge, MaRK11, pp 22–23, Trento

68. Lohmann S, Heim P, Auer S, Dietzold S, Riechert R (2008) Semantifying requirements

engineering – the softWiki approach, I-SEMANTICS, Graz, pp 182–185

69. Uenalan O, Riegel N, Weber S, Doerr J (2008) Using enhanced wiki-based solutions for

managing requirements. First international workshop on managing requirements knowledge

(MARK), Barcelona, Spain, pp 63–67

70. Lohmann S, Riechert T, Auer S (2008) Collaborative development of knowledge bases in

distributed requirements elicitation. Software engineering (workshops): agile knowledge shar-

ing for distributed software teams, Munich, Germany, pp 22–28

71. Ruhe G, Saliu M (2005) The art and science of software release planning. IEEE Softw

22(6):47–53

72. Karlsson J, Olsson S, Ryan K (1998) Improved practical support for large-scale requirements

prioritization. Require Eng J 2(1):51–60

73. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE Trans

Softw Eng 27(1):58–93

74. Dahlstedt A, Persson A (2003) Requirements interdependencies – moulding the state of

research into a research agenda, REFSQ’03, Klagenfurt, pp 71–80

75. Iyer J, Richards D (2004) Evaluation framework for tools that manage requirements inconsis-

tency. In: 9th Australian workshop on requirements engineering (AWRE’04). Adelaide,

Australia

76. Göknil A, Kurtev I, and van den Berg K (2008) A metamodeling approach for reasoning about

requirements. In: 4th European conference on model driven architecture – foundations and

applications, Berlin. LNCS, vol 5095, pp 310–325, Berlin

77. Hoenderboom B, Liang P (2009) A survey of semantic wikis for requirements engineering.

Technical report RUG-SEARCH-09-L03, University of Groningen

78. Mobasher B, Cleland-Huang J (2011) Recommender systems in requirements engineering.

AI Mag 32(3):81–89

79. Glinz M (2007) On non-functional requirements. In: 15th IEEE international requirements

engineering conference, New Delhi, 15–19 Oct 2007, pp 21–26

20 W. Maalej and A.K. Thurimella

http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html
http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html

Part I

Identifying Requirements Knowledge

“Knowing yourself is the beginning of all wisdom.”

— Aristotle

Walid Maalej. Printed with permission

Chapter 2

Unpacking Tacit Knowledge for Requirements

Engineering

V. Gervasi, R. Gacitua, M. Rouncefield, P. Sawyer, L. Kof, L. Ma, P. Piwek,

A. de Roeck, A. Willis, H. Yang, and B. Nuseibeh

Abstract The use of tacit knowledge is a common feature in everyday communi-

cation. It allows people to communicate effectively without forcing them to make

everything tediously and painstakingly explicit, provided they all share a common

understanding of whatever is not made explicit. If this latter criterion does not hold,

confusion and misunderstanding will ensue. Tacit knowledge is also commonplace

in requirements where it also affords economy of expression. However, the use of

tacit knowledge also suffers from the same risk of misunderstanding, with the

associated problems of anticipating where it has the potential for confusion and

of unravelling where it has played an actual role in misunderstanding. Thus, the

effective communication of requirements knowledge (whether verbally, through a

document or some other medium) requires an understanding of what knowledge is

and isn’t (necessarily) held in common. This is very hard to get right as people from

different professional and cultural backgrounds are typically involved. At its worst,

V. Gervasi (*)

University of Pisa, Pisa, Italy

e-mail: gervasi@di.unipi.it

R. Gacitua • M. Rouncefield • P. Sawyer

Lancaster University, Lancaster, United Kingdom

e-mail: r.gacitua@lancaster.ac.uk; m.rouncefield@lancaster.ac.uk; p.sawyer@lancaster.ac.uk

L. Kof

Technische Universität München, Munich, Germany

e-mail: leonid.kof@googlemail.com

L. Ma • P. Piwek • A. de Roeck • A. Willis • H. Yang

The Open University, Milton Keynes, United Kingdom

e-mail: l.ma@open.ac.uk; p.piwek@open.ac.uk; a.deroeck@open.ac.uk; a.g.willis@open.ac.uk;

h.yang@open.ac.uk

B. Nuseibeh

The Open University, Milton Keynes, United Kingdom

Lero, Limerick, Ireland

e-mail: Bashar.Nuseibeh@lero.ie

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_2, # Springer-Verlag Berlin Heidelberg 2013

23

mailto:gervasi@di.unipi.it
mailto:r.gacitua@lancaster.ac.uk
mailto:m.rouncefield@lancaster.ac.uk
mailto:p.sawyer@lancaster.ac.uk
mailto:leonid.kof@googlemail.com
mailto:l.ma@open.ac.uk
mailto:p.piwek@open.ac.uk
mailto:a.deroeck@open.ac.uk
mailto:a.g.willis@open.ac.uk
mailto:h.yang@open.ac.uk
mailto:Bashar.Nuseibeh@lero.ie

tacit requirements knowledge may lead to software that fails to satisfy the

customer’s requirements. In this chapter, we review the diverse views of tacit

knowledge discussed in the literature from a wide range of disciplines, reflect on

their commonalities and differences and propose a conceptual framework for

requirements engineering that characterises the different facets of tacit knowledge

that distinguish the different views. We then identify methodological and technical

challenges for future research on the role of tacit knowledge in requirements

engineering.

2.1 Introduction

In a celebrated US Department of Defense press briefing, Donald Rumsfeld

identified three classes of knowledge. In order of difficulty of acquisition, these

were known knowns, known unknowns and unknown unknowns. Although

Rumsfeld was talking about military intelligence, the three knowledge classes

map surprisingly well onto requirements knowledge. To illustrate this statement,

consider two of the roles in requirements engineering (RE): those of requirements

analyst and customer. Further, assume that the customer holds all the knowledge

that the analyst needs to elicit in order to formulate the customer’s requirements.

The analyst and customer are just used here for illustration. Bear in mind that there

are other roles in RE and that knowledge resides not only in people’s heads but also

in documents and other media.

Known knowns represent knowledge that the analyst has elicited successfully

from the customer so now, they both know it. A known unknown is an item of

knowledge that the analyst has not successfully elicited from the customer. How-

ever, the analyst knows the knowledge is held by the customer and can thus direct

his or her attention to eliciting it from the customer. An unknown unknown is an

item of knowledge that the analyst has not successfully elicited from the customer,

but in this case, the analyst is unaware that it exists. Thus, the analyst will never

elicit the knowledge unless something happens to make them aware that it exists.

Interesting though, these categories of knowledge are, the focus of this chapter is

on what Rumsfeld missed, an additional and, for RE, particularly pertinent cate-

gory: unknown knowns. An unknown known is knowledge that a customer holds

but which they withhold from the analyst. Thus, the customer knows it and the

analyst doesn’t. The interesting point is that there is a range of possible reasons why

the customer withholds the knowledge from the analyst. The customer may with-

hold the knowledge deliberately, perhaps for some perceived personal advantage.

They may withhold it accidentally, perhaps not realising the value of their knowl-

edge. They may strive to share the knowledge but end up withholding it because

they are unable to articulate it. Or it may be knowledge they don’t even realise they

hold. Unknown knowns therefore fit at least one of several definitions that exist of

tacit knowledge (TK).

24 V. Gervasi et al.

The study of tacit knowledge has its roots in Polanyi’s seminal work [1] and is

inherently interdisciplinary, although much of the work is rooted in linguistics. In

RE, TK has long been recognised to pose a problem since eliciting knowledge from

a customer can be confounded by any of the factors listed above. However, TK is

also essential to RE, as it is at every stage of the software process (and probably to

every other enterprise). This is because of the simple economy of expression it

affords actors who share an understanding of the TK that forms part of their domain

of interest.

Our interest in this chapter is in deconstructing TK as it applies to RE and

characterising its different facets to help understand it. The chapter makes three

primary contributions. First, in Sect. 2.2, we look to philosophy, linguistics, man-

agement science and requirements engineering to provide a wide-ranging critical

review of the diverse, multidisciplinary views of tacit knowledge that exist. Sec-

ondly, from the review and our analysis of TK exemplars, Sect. 2.3 describes our

synthesis of a framework to help identify TK and other forms of hard-to-elicit

requirements knowledge. Thirdly, in Sect. 2.4 we identify what we believe to be the

outstanding remaining challenges for understanding and dealing with TK in RE,

before summarising the chapter in Sect. 2.5.

2.2 Review

Tacit knowledge has been defined in a number of ways, as knowledge that we know

we have but can’t articulate or knowledge that we don’t know that we have but

nevertheless use. In our everyday life and work, we rely on tacit knowledge to

communicate effectively: we do not, we need not and we probably cannot make

every assumption we hold explicit; instead, we focus on the essence of what we

know and wish to communicate. For example, when ordering a cup of tea from a

cafeteria, we do need to ask for the water to be boiled before pouring it into the

teapot, unless we believe that the person serving the tea does not know that using

boiling water is a necessary precondition for a good cup of tea.

Despite considerable interest in tacit knowledge and a general recognition of its

importance, there remains some considerable interdisciplinary dispute as to both

what tacit knowledge is and how we might reasonably recognise it or measure its

effects. In part this is because ideas about tacit knowledge are frequently

conceptually confused and generally methodologically weak. There seems to be

some agreement on its general importance but considerable disagreement

concerning exactly how it might be defined and how we might go about finding it

on any particular occasion and mitigate its effects. In this section, we go about

‘unpacking’ tacit knowledge, pointing to some of the conceptual and disciplinary

issues involved in defining and differentiating tacit knowledge and suggesting some

of the methodological problems involved in the process of identifying tacit knowl-

edge as part of the requirements process.

2 Unpacking Tacit Knowledge for Requirements Engineering 25

The notion of tacit knowledge was first extensively explored by Polanyi in ‘The

Tacit Dimension’ [1], and current notions of tacit knowing, or tacit knowledge

generally, draw on Polanyi’s famous distinction between tacit and explicit knowing

as epitomised in the phrase ‘we can know more than we can tell’ [1]. At the heart of

the debate was Polanyi’s concern to understand the precise character of scientific

work, much of which appears to be hidden, and hence his argument that much of

human knowledge is tacit, difficult to articulate and dependent on different forms of

skill and know-how acquired through experience. As Collins writes: ‘The signifi-

cance of tacit knowledge (for science) is that it shows that much of what passed, in

traditional philosophy (of science), as formal, logical and calculative is really

deeply invested with the taken-for-granted, the unspoken and the unspeakable.

These are things that can be known only through living the collective life (of

science) in specific expert communities, not as universal, immutable, articulated

truths, knowable by anyone, or anything, anywhere’ [2].

Since Polanyi’s work, tacit knowledge has been described and defined in a

variety of (slightly different) ways as skills [3], know-how [4], implicit knowledge

[5] and uncodifiable knowledge [6] and more. These apparently small differences

crucially reflect important disciplinary differences and motivations, for example,

between philosophy, linguistics, business and management science and

requirements engineering. Each of these disciplines has rather different approaches

to tacit knowledge, reflecting various uncertainties over how tacit knowledge

should be defined and operationalised. So, for example, philosophical and disci-

plinary differences can emerge over whether we are talking about problems of

defining knowledge or problems of communicating knowledge or whether we are

adopting a performative or a container-like view of ‘knowing’, knowledge and

knowledge management.

While explicit and tacit knowledge may rarely appear as easily separated or

distinguished in practice, there are important differences between them in terms of

codifiability, storage and transfer. These differences essentially concern whether

tacit knowledge (commonly seen as skill or ‘know-how’) can be put in proposi-

tional form, abstracted and stored. For example, the readily available procedural

organisational operating manuals observable in most companies testify to the

capacity of explicit knowledge to be codified, stored and transferred. In contrast,

tacit knowledge, however, needs close personal interaction and trust, since it is

generally acquired through practical experience, through some form of ‘learning by

doing’. These two forms of knowledge therefore differ in both their potential for

aggregation and in modes of appropriation. Explicit knowledge can be aggregated,

it can be recorded and learned and it can be ‘written down, encoded, explained, or

understood’ [7]. But because tacit knowledge is personal and contextual, it cannot

easily be written down, formalised or aggregated. Since tacit knowledge cannot be

expressed propositionally, exactly how particular work tasks are accomplished and

any decision rules that may underlie any skilled performance cannot easily be

provided. In these circumstances eliciting requirements obviously becomes very

difficult.

26 V. Gervasi et al.

2.2.1 Tacit Knowledge and Business and Management

Despite the acknowledged methodological difficulties in researching tacit knowledge,

sometimes the existence and importance of tacit knowledge is clearly observable in

everyday work. In fields as different as air-traffic control [8], banking [9] or steel-plate

rolling [10], participants often refer to their decisions as being based on tacit knowl-

edge interpreted as some form of ‘gut instinct’ or what Goodwin might call ‘profes-

sional vision’. Our own ethnographic studies of everyday work in different domains

contain frequent references to the existence and importance of tacit knowledge of

various kinds. For example, these recorded comments from a steel worker in a rolling

mill looking at a slab of white-hot steel that needs rolling into a steel plate [9] ‘. . .
sometimes you can sit here and look at it and think, “that one’s going to be a bastard”’

or these comments from a bank manager ‘You usually find that the decision you make

from your gut is the one you go with’ [11] all point to the importance of a range of tacit

skills without, of course, giving much insight into what exactly those skills are or how

they might be transferred or taught. Our interviews with software developers suggest

this is perhaps especially obvious in software development for legacy systems; ‘then as

the project went ahead we’d send them back prototypes saying we’ve got something

that pulls the data out. . . is this what it should look like?. . . and they’d say “no”,

because we’d expect to see X, Y and Z. . . so we’d scratch our heads and look at the

database and discover more weird anomalies. . . there was this hidden task. . . to
unravel 5 years of lost knowledge and mess. . . whenever we are doing legacy integra-
tion there is nearly always that scope for ambiguity and tacit knowledge. . .’
(abbreviated MaTREx ethnographic fieldwork notes).

Because tacit knowledge is a notable feature of working life, understanding its

business and economic relevance has been a particular focus of research. For some

‘sceptical’ economists, the very notion of tacit knowledge is anathema [12] ‘The

concept of the inextricable tacitness of human knowledge forms the basis of

arguments. . . against. . . every construction of rational decision processes as the

foundation of modeling and explaining the actions of individual human agents’

[13]. However, while for some economists, for requirements engineers and for

software developers tacit knowledge can be seen as a source of problems, in
business terms, tacit knowledge can sometimes be considered as a critical, if

intangible, resource and a source of competitive advantage, as Nonaka [14] and

others [5, 15] have argued. Nonaka and Takeuchi further distinguish between two

types of tacit knowledge that appear important in business and may prove similarly

important in requirements: technical tacit knowledge and cognitive tacit knowl-

edge. Technical tacit knowledge is that displayed by skilled craftsmen as a product

of repetitive action over time and can be hard to articulate. As Polanyi writes, ‘the

aim of a skilled performance is achieved by the observance of a set of rules which

are not known as such to the person following them’ [1]. Cognitive tacit knowledge

is internalised by exposure to knowledge, such as in written instructions, and is

socially acquired and shared within a group. This can make it hard both to recognise

and to explain, perhaps leading a stakeholder to fail to reveal information they

mistakenly assume is ‘common knowledge’.

2 Unpacking Tacit Knowledge for Requirements Engineering 27

For business and management science, tacit knowledge can be considered a

resource and confer competitive advantage to a company – indeed it might be

considered one of the key sources of competitive advantage. This is because while

tangible resources such as equipment, land or stock can simply be purchased or, if

necessary, copied, the particular, idiosyncratic character of tacit knowledge means

that it cannot [7]. Tacit knowledge is unique, imperfectly mobile and difficult to

copy, imitate or substitute. One cannot start up a new company by simply copying

the procedure manual of another because the tacit knowledge that lies behind those

procedures, the knowledge that makes the procedures work in particular

circumstances, with particular customers or particular products, is missing. That

tacit knowledge remains ‘in the heads’ of the workers in the original company.

Consequently when a company turns to automating or modernising its systems and

procedures, it seems an essential part of the requirements process to try and capture

such tacit knowledge in order to maintain competitive advantage since obviously

failure to do so means that competitive advantage is lost (though the extent to which

such knowledge is codifiable is disputed [13, 16, 17]). Other researchers identify

other aspects of tacit knowledge that confer business advantage as a key to

managerial success [18] and strategic thinking [19]. While managers are taught

the rational or analytical method of management and strategic planning, experience

reveals the importance and effectiveness of tacit knowledge in decision-making.

Tacit knowledge also becomes relevant as businesses seek to improve their man-

agement and organisational support processes through various forms of technology,

in particular forms of ‘organisational memory’ [20, 21] involving the capturing and

codification of tacit knowledge and skills into automated, programmed operations.

2.2.2 Tacit Knowledge and Requirements Engineering

The importance of tacit knowledge in requirements engineering is widely acknowl-

edged, since the inability to surface and codify tacit knowledge can contribute to

both loss of business opportunities and possible systems failure. However, tacit

knowledge appears a problematic phenomenon that is rarely systematically pursued

and, at best, tends to be handled in an ad hoc manner when discovered or, rather,

chanced upon, in the requirements elicitation process. Because tacit knowledge is

so poorly understood, it remains a problem for software development. Developing a

deeper understanding of it has the potential to lead to tangible improvements in

requirements elicitation, analysis and management practice [11, 22]. Consequently,

developing a systematic means to both discover and manage tacit knowledge poses

a challenging research problem.

In requirements engineering, there is a strong need to get requirements right since

errors in requirements can produce systems that fail, either because they do not

function as desired or because they do not match the real needs of users and other

stakeholders. In terms of requirements engineering, if people as Polanyi puts it ‘know

more than they can tell’, then clearly sometimes they are not telling all that they

28 V. Gervasi et al.

know, and this may prove important when eliciting requirements. If stakeholders

cannot or will not articulate their objectives, the emerging requirements will appear

incomplete, and possible conflicts will be missed threatening failure. The failure to

surface tacit knowledge also appears to be implicated in a common range of causes

associated with software project failures, such as lack of user input, incomplete

requirements, changing requirements, unclear objectives and time frames and so on

although their relationship to tacit knowledge is not always clear.

Similarly, when critical knowledge, goals, expectations or assumptions of key

stakeholders remain hidden or unshared, then poor requirements and poor systems

are a likely, and costly, consequence. Even with good elicitation practice, there may

be missing requirements or requirements may be unclear or ambiguous because the

analysts lack the context needed to interpret them correctly. As analysts depend on

knowledge synthesis from a problem domain in order to derive a requirements

specification, it is plausible that the presence of tacit knowledge may adversely

affect the resulting requirements specification. For instance, failure to explicate the

reasoning behind a tacit knowledge-based process will result in an incomplete

requirements specification. An incomplete description of a process requires that

readers must use their intuition to arrive at a description possibly producing

ambiguity.

Other benefits accruing from the successful identification of tacit knowledge

include improvements to the requirements process itself. Finkelstein [23], for

example, suggests that tacit knowledge particularly impacts on the ability of

requirements engineers to accurately and clearly define a system’s boundary.

Finkelstein comments that ad hoc decisions are then made as to the required

scope of the requirements elicitation process. If many of the system processes are

held as tacit knowledge, then defining a reasonable system boundary can never take

place, unless this tacit knowledge is somehow exposed, that is, is dependent on

appropriate methods for elicitation.

2.2.3 Tacit Knowledge and Talking Through Requirements

Linguistic notions of tacit knowledge suggest that communication takes place

against a set of shared background beliefs and that efficient communication effec-

tively depends on such ‘common ground’ since it avoids endless instances of ‘what

do you mean by. . .?’ Clark [24] uses the term ‘common ground’ to refer to the

shared assumptions and knowledge of people in conversation. Unfortunately in

requirements elicitation, such ‘common ground’ cannot, and probably should not,

be simply assumed since the requirements engineer and the stakeholders may

possess very different ideas about how processes are performed and what particular

phrases are supposed to mean. Unfortunately, experience and our own interviews

with software developers as part of the MaTREx project suggest that such common

ground is not easily established, even among experienced software teams:

2 Unpacking Tacit Knowledge for Requirements Engineering 29

(Software developer A) ‘We were thinking about a requirement the other

day. . .relating to a particular aspect of the implementation. . .. We both had

different ideas as to what was implied. . .. We wanted multiple plug-in

windows. . ..’
(Software developer B) ‘In fact the low-level ticket says “it would be nice to have

multiple plug-in windows”. “Multiple plug-in windows” was what we had written

down. . . and (B) understood by that multiple windows by multiple plug-ins. . .. So
each plug-in would have multiple windows. . . and I understood by it multiple

plug-ins each with its own individual window. . . a slightly smaller step. . ..’
(Software developer A) ‘To be fair I don’t know whether I had actually solidly

internalised the requirement and was interpreting it incorrectly. . . or if there was
an element of “this is what I thought we must have meant by that”’. . . because it
was my own mental image. . .. ‘I think most of our requirements I ever come

across are under-specified. . .. If you specify everything that could be specified in
an unambiguous way. . . you’d run out of ink. . . maybe I’m just being

pessimistic. . .. They are always pitched at a level where there is a certain amount

of tacit knowledge. . .. When you say FU should do BA you need to understand

what FU is and why BAness is worth doing. . .. It’s not feasible to explain all that
in every context. . ..’ (abbreviated MaTREx ethnographic field notes)

Sutcliffe [25] uses Brennan and Clark’s [26] common ground framework to

evaluate the affordances of different representations in requirements such as

scenarios, storyboards and models suggesting that this approach enables the

participants to see the world from each other’s viewpoint and provides useful

criteria to compose the requirements process enabling stakeholders to choose

representations to suit the particular circumstances: ‘Common ground in RE

involves integrating the abstract and concrete sub-spaces. Juxtaposing abstract

(models) and concrete presentations (scenarios, sketches, storyboards) helps to

bridge the gap’ [25].

A number of other techniques have been developed for uncovering such

instances of linguistic tacit knowledge. Maiden and Rugg [22], for example,

distinguish between tacit and semi-tacit knowledge where semi-tacit knowledge

includes knowledge that is hard to recall without cues, such as the set of functions

offered by a large software library, and taken-for-granted knowledge. Such taken-

for-granted knowledge can be problematic when the holder of the knowledge

assumes wrongly that it is held by others as well. Stakeholders immersed in their

problem domain often fail to understand the extent to which their knowledge and

expertise is not shared with those working outside the domain, such as an analyst

new to the domain, and the effective discovery of semi-tacit knowledge is acutely

sensitive to the use of appropriate elicitation techniques – tacit knowledge presents

a methodological as well as a conceptual challenge.

There are other developing approaches that can be used to prompt the elicitation

of tacit knowledge. For instance, Rugg et al. [27] have used laddering as an aid to

tacit knowledge elicitation, in particular for eliciting information about

organisational practices and culture. Similarly, Stallinger and Grunbacher [28]

30 V. Gervasi et al.

have extended WinWin to create EasyWinWin [11], a requirements elicitation

technique that seeks to identify instances of tacit knowledge in the problem domain.

EasyWinWin is designed to identify, refine and reach consensus on the

requirements for a system over a series of steps. EasyWinWin uses prompts and

the staged revelation of stakeholders’ requirements and priorities to help tease out

concealed knowledge. Both the laddering and EasyWinWin techniques are

designed to guide the questioning of analysts and in the case of EasyWinWin, to

help the negotiation process that occurs whenever conflict arises. Laddering and

EasyWinWin are designed to be used during the elicitation phase, as they assume

that direct answers from stakeholders, or multiple stakeholders in the case of

EasyWinWin, are available. However, Eraut [29] indicates some of the problems

surrounding tacit knowledge elicitation using these approaches: highlighting how

elicitation exercises are social interactions whose outcome may be influenced by a

range of personal, social, organisational and political factors. Consequently, we are

most likely to remember ‘memorable’ rather than common events, and our

preconceptions and personal constructs shape behaviour.

The use of requirements documents as the basis for client-contractor agreements

means that requirements capture and formulation still need to be carried out as a

distinct, initial exercises, and a range of social science techniques have been

employed in the requirements process, most notably ethnographic techniques

[30]. Ethnographic studies have provided a number of empirical instances of tacit

knowledge at work. Ethnography can provide an informed sense of what the work is

like in a way that can be useful for designers in scoping their design and providing a

better sense of the setting and its work, without necessarily suggesting a rigorous,

methodical approach to the surfacing of tacit knowledge. There are, as yet, no

formal and rigorous methods for relating the materials obtained through ethnogra-

phy to orthodox requirements definition. With ethnography, the discovery of tacit

knowledge is not guaranteed, far less its translation into explicit knowledge, and so

the methodological challenges of surfacing tacit knowledge remain.

2.3 A Systematic Framework for TK

When we reflect on the diverging understanding of what tacit knowledge is, as it

appears in the literature, we can isolate a small number of properties whose compo-

sition gives rise to the different definitions. Although this has been attempted before,

as in Collins’ [12] distinction between ‘relational’, ‘somatic’ and ‘collective’ tacit

knowledge, these distinctions offer little practical help to the hard-pressed

requirements engineer. In this section, we propose a novel framework which aims

to systematise the subject matter and use it to show how several phenomena com-

monly occurring in RE practice can be understood as manifestations of TK at work.

2 Unpacking Tacit Knowledge for Requirements Engineering 31

2.3.1 Knowledge, Information and Documents

Central in our framework is the concept of mental state of a subject. We denote with

k a desire, intention, judgement, belief, fact, reasoning rule or algorithm, which is

held by a person or conveyed by a document. In other words, any information held

by a subject, and any procedure the subject uses in reasoning on that information, is

a k in our model.

It is often the case that a given k is amenable to being recorded into a communi-

cable form, usually by being written down in a document. We will consider a

documented bit of information d as any k that has been expressed by a subject,

encoded in some form of language and made permanent and transferable among

subjects by rendering it in a concrete physical form, which is perceivable by another

subject. A book, an email, the video recording of an interview, an equation on a

blackboard and the plumbing drawings of a building are all forms of d according to
our definition.

While k and d are both pieces of information, their nature is substantially

different. For example, in requirements engineering, requirements (as goals or

desires of a customer) are a k, whereas software requirements specifications

(SRS) are a d. The process of turning interesting pieces of k into a d is what is

commonly called, in this particular context, elicitation.
It is worth observing that while ds are normally, in some form, tangible objects

(and we include electronic documents in this category), ks are not. There is no way

to inspect and examine directly what is contained in someone’s head; so, the next

best option is to hypothesise it based on their communication and behaviour. In the

classical example, if we observe a person riding a bicycle, we can hypothesise that

the information about how to ride a bicycle is available to him, without need of

further communication.

2.3.2 Stakeholders and Their Goals

The definitions of k and d given above refer to the existence of certain subjects who
are the ones that possess and use information. We use s to indicate one such subject.
At this stage, we are not interested in the various roles that subjects can serve in a

communication, rather just in the fact that they are an involved party. For example,

in a software development project, the customer, the analyst and the developer will

be considered stakeholders.

It would be an error to consider that in some way, communication patterns

among stakeholders are linked to their role. On the contrary, while the main flow of

information is traditionally thought to go from customer to analyst and to

developers, each exchange is actually made up of a large number of individual

communication acts. For example, in an interview with customers, an analyst can

use his or her own k to formulate a question and communicate it to the customers

32 V. Gervasi et al.

by articulating it verbally. Then the customers can use their respective k to

formulate an answer and articulate it; the analyst would then interpret the answer

in light again of his or her k. In each and every of these passages, tacit knowledge

could (and usually does) play a role.

The common goal of a given group of stakeholders is to obtain some final results

in the interest of all participants. We will call such a goal the project in which

stakeholders are participating. The notion of project (which we will denote by p)
provides both purpose and scope to our reasoning. In fact, individual stakeholders

are likely – almost certain – to be involved in several projects at a time, probably

multiple ones at work, as well as in their personal and social lives. Different projects

will thus have different sets of stakeholders associated with them; we will indicate

with Sp the set of stakeholders for project p. Moreover, a project implies the notion

of a goal to be reached – essentially, the successful performance of the task

embodied by the project. In software development, this final goal often coincides

with the final delivery of a product. A significant project will always require a

concerted effort by multiple participants (we ignore here the solipsist programmer

working for his or her own pleasure). The existence of a project does not imply in

any way that each stakeholder can have different, and possibly conflicting, goals for

the project. The common goal in such a case is to be part of the project and seeing it

to completion – but what the final product should be, or even if a successful

completion or rather a failure to deliver is more desirable, is still open to each of

the stakeholders.

We will not investigate in detail the granularity at which a project should be

considered. For example, in developing a software product line, we could consider

a larger project concerning the whole product line and smaller projects for each

member of the family, as well as micro-projects for the various phases and steps of

the development of each member. Similarly, in bespoke development, signing the

initial contract could be considered a separate project from the development proper

(e.g. company lawyers would not want to be involved in the programming), but at

the same time the entire customer-developer relationship, until final acceptance and

sign-off, would constitute another project of its own.

As we will see in the following, our analysis about the nature of tacit knowledge

happens mostly at a categorical level and is not affected, in principle, by the

particularities of each different project. The only important features we ask of

p are that there exists a common project and that the project defines a common

goal, scope and set of stakeholders. In practical use, of course, categorical reasoning

will have to be tempered with the specific circumstances of the project.

2.3.3 Writing It Down

Having clarified the scope of our framework, we can define a number of properties

(in the form of predicates) that characterise the context in which tacit knowledge

can emerge.

2 Unpacking Tacit Knowledge for Requirements Engineering 33

In the following, we will use a few symbols from standard predicate logic,

namely,) (for implication, a) b means that b is true if a is true), ∧ (for

conjunction, a ∧ b is true if and only if both a and b are true) and ⌝ (for negation,
⌝a is true if and only if a is false).

A unit of information k is said to be expressible by a stakeholder s, denoted
expressibles(k), if s is able to commit it to a documented form d. This is a predicate
of potential, not of act. For example, a given stakeholder can be unable to express

some information he possesses for lack of an appropriate language (e.g. inability to

write a musical score for a known tune) or because he does not have sufficient

understanding of his own knowledge (e.g. inability to express precisely a given

colour in words, lacking in-depth knowledge of the concepts of hue, saturation,

luminance). It is important to remark that the same bit of information can be

available to several stakeholders, but not equally expressible to them. For example,

a businesswoman and an economist can have the same knowledge about some facet

of the market economy, but only the latter will be able to express it via a set of

differential equations, whereas the former will rely on her ‘gut feeling’ of

customers’ behaviour. When a k is expressible by all s 2 Sp, we will simply write

expressible(k) dropping the subscript.

A bit of information committed to transferable form is said to be articulated. We

will write articulateds,d(k) to mean that stakeholder s has articulated a given unit k into
a document d. As usual, we will omit subscripts where they are obvious by the context:

for example, articulatedd(k) means that k is in d, and we don’t care about the author.

The ability to express something and the ability to actually articulate it are

different concepts (and as we will see in Sect. 2.3.4, their confusion is one of the

causes of differing views of tacit knowledge). In other words, expressibles(k) is a

potentiality (meaning that the stakeholder s has the ability to express k), whereas
articulateds,d(k) is an actuality (meaning that the stakeholder s has performed an

action to record k in d). Generally, articulateds(k)) expressibles(k), but it might well

be that a k is expressible but not articulated (i.e. because the stakeholder has forgotten
to mention it, or actively wants to conceal the information), which is formally written

expressibles(k)∧ ¬articulateds(k), or that a k is not expressible for a given stakeholder
s, but he or she still tries to articulate it, ending up with something different being

communicated (formally, ¬expressibles(k) ∧ articulateds(k
0) ∧ k 6¼ k0).

We will denote by accessibles(k) the fact that k is accessible to s in reasoning or

acting, or some form of decision-making. To avoid getting into the speculative, we will

consider that a k is accessible to s only upon proof that s has used k in performing some

task (reasoning or otherwise). In other words, we will not discuss information that

could be accessible, but is never accessed. Also, there is no notion of introspection in

accessible(k): a stakeholder might know something and not realise that he knows it

(although he might use k continuously, but unconsciously). Again, in the normal case,

we have that expressibles(k)) accessibles(k), but also in this case, as above, it might

happen that a stakeholder tries to express and even articulate something he cannot

access – for example, in trying to ‘fill in’ holes about someone else’s knowledge. The

result of such an effort would be, most probably, nonsensical or plain wrong.

34 V. Gervasi et al.

Finally, to express the scope of the project, we use the predicate relevantp(k) to
express that k is a unit of knowledge that is relevant for p to reach its goal. Different
stakeholders might have different views of what is relevant for their own subtasks,

but this distinction is already incorporated in our notion of project. For example, the

programmer’s knowledge of a given programming language might be relevant for

the success of the implementation subproject, whereas the same knowledge appears

irrelevant to the customer (who does not care about which language will be

selected, as long as the system delivers what he needs).

Among these four predicates (expressible, articulated, accessible, relevant), a

complex web of relationships exists, some of which are illustrated in Table 2.1. We

cannot present a full analysis here, but two points are worth highlighting.

First, we are not concerned with whether any specific k is true or not, whether plans
formulated according to them will lead to successful completion of the project or

whether a certain document is the right place to store information. We focus instead on

each single communication act and how it can be influenced by tacit knowledge; the

overall management of a software project is better left to other studies.

Second, while we treat the various properties above as boolean predicates, in

practice situations can be more nuanced. So, for example, being expressible is not a

black and white property, but rather a matter of effort needed to express something:

when trying to express which colour she would like to have, Ann could take one

year off and devote it to studying colorimetry, then come up with a set of tristimulus

curves subtly deviating from the CIE 1964 10� standard observer model. . . but the
effort needed would be incompatible with the goals of the project; hence, we could

assume that for all practical purposes, the colour is not expressible for Ann. This is

consistent with the notion of ‘modicum effort’ in the economic view of tacit

knowledge. To represent this notion, we can imagine using a fuzzy logic instead

of predicate calculus, in handling our properties. We spare the reader the formal

details in this chapter.

2.3.4 Tacitness

With the definition above, we can now describe our understanding of tacit knowl-

edge succinctly:

tacitsðkÞ ¼ accessiblesðkÞ ^ :expressiblesðkÞ (2.1)

which closely mimics the definition by Polanyi [1]. But we can also express clearly

the other views mentioned in Sect. 2.2. For example, the competitive advantage
idea in (2.1) is

relevantpðkÞ ^ accessiblesðkÞ ^ :accessiblecðkÞ (2.2)

2 Unpacking Tacit Knowledge for Requirements Engineering 35

T
a
b
le

2
.1

D
if
fe
re
n
t
si
tu
at
io
n
s
in

R
E
p
ra
ct
ic
e
an
d
h
o
w

th
ey

ar
e
ch
ar
ac
te
ri
se
d
b
y
o
u
r
fr
am

ew
o
rk

(N
.B

em
pt
y
ce
ll
s
re
pr
es
en
t
‘d
on

’t
ca
re
’
va
lu
es
)

#

C
us
to
m
er

A
n
al
ys
t

D
es
cr
ip
ti
o
n

A
ct
io
n

ac
ce
ss
ib
le
c
(k
)

ex
p
re
ss
ib
le
c
(k
)

ar
ti
cu
la
te
d
c
,i
(k
)

ac
ce
ss
ib
le
a
(k
)

ex
p
re
ss
ib
le
a
(k
)

ar
ti
cu
la
te
d
a
n
t(
k)

1
Y
es

Y
es

N
o

N
o

Y
es

M
is
si
ng

or
co
nc
ea
le
d

in
fo
rm

at
io
n:

th
e

cu
st
o
m
er

h
as

th
e
n
ee
d
ed

in
fo
rm

at
io
n
,
w
h
ic
h

is
re
le
v
an
t
fo
r
th
e

d
ev
el
o
p
m
en
t

p
ro
je
ct
,
an
d
co
u
ld

ar
ti
cu
la
te

it
Š
b
u
t
it

h
as

n
o
t
b
ee
n

ar
ti
cu
la
te
d
y
et
.T

h
is

is
th
e
m
o
st

co
m
m
o
n
ca
se

w
h
en

d
o
in
g
el
ic
it
at
io
n

D
o
m
o
re

el
ic
it
at
io
n
,

as
k
q
u
es
ti
o
n
s

2
Y
es

N
o

Y
es

Y
es

Y
es

Y
es

D
om

ai
n
kn
ow

le
dg

e:
th
e
an
al
y
st
’s

d
o
m
ai
n
k
n
o
w
le
d
g
e

av
o
id
s
th
e
cu
st
o
m
er

h
av
in
g
to

st
at
e

ev
er
y
th
in
g

V
al
id
at
e
an
y

re
q
u
ir
em

en
ts

d
er
iv
ed

fr
o
m

th
is

d
o
m
ai
n
k
n
o
w
le
d
g
e

w
it
h
th
e
cu
st
o
m
er

to
m
ak
e
su
re

th
e

cu
st
o
m
er

an
d
th
e

an
al
y
st
sh
ar
e
th
e

sa
m
e
u
n
d
er
st
an
d
in
g

3
Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

Y
es

D
oc
um

en
te
d

re
qu

ir
em

en
ts
:
th
e

cu
st
o
m
er

h
as

co
m
m
u
n
ic
at
ed

th
e

in
fo
rm

at
io
n
in

su
ch

a
w
ay

th
at

th
e

an
al
y
st
co
u
ld

u
n
d
er
st
an
d
it
;
th
e

an
al
y
st
in

tu
rn

h
as

Jo
b
co
m
p
le
te
d
,
w
el
l

d
o
n
e!

36 V. Gervasi et al.

ar
ti
cu
la
te
d
(q
u
it
e

p
o
ss
ib
ly
,
in

a

d
if
fe
re
n
t
fo
rm

)
it
in

a
U
R
D
fo
r
la
te
r
u
se

4
Y
es

Y
es

Y
es

N
o

N
oi
se
:
th
e
cu
st
o
m
er

is

te
ll
in
g
st
u
ff
w
h
ic
h

is
n
o
t
re
le
v
an
t
fo
r

th
e
p
ro
je
ct
.
T
h
e

an
al
y
st
’s

ta
sk

is
to

Ņ
fi
lt
er

o
u
tÓ

su
ch
k,

so
th
at

it
d
o
es

n
o
t

p
o
ll
u
te

th
e

re
q
u
ir
em

en
ts

F
il
te
r
o
u
t
ir
re
le
v
an
t

st
u
ff

5
Y
es

N
o

N
o

Y
es

(2
.1
)

T
ac
it
kn
ow

le
dg

e:
th
e

cu
st
o
m
er

h
as

so
m
e

in
fo
rm

at
io
n
,
ca
n

u
se

it
,
b
u
t
d
o
es

n
o
t

k
n
o
w

h
o
w
to

ex
p
re
ss

it
.
T
h
e

an
al
y
st
d
o
es
n
’t

h
av
e
th
e
sa
m
e

k
n
o
w
le
d
g
e:

ri
sk

in
co
m
p
le
te
n
es
s

F
in
d
o
r
in
v
en
t
a

co
m
m
u
n
ic
at
io
n

m
ed
iu
m

so
th
at

K

b
ec
o
m
es

ex
p
re
ss
ib
le

in
th
at

m
ed
iu
m

(e
.g
.:

v
id
eo

re
co
rd
in
g
o
f

o
p
er
at
io
n
s)

6
Y
es

N
o

Y
es

Y
es

Y
es

Y
es

(2
.1
)

T
ac
it
kn
ow

le
dg

e:
co
m
m
o
n
g
ro
u
n
d
o
r

ac
ti
o
n
ta
k
en

in
ca
se

5
m
ak
es

k
ac
ce
ss
ib
le

to
th
e

an
al
y
st
,
w
h
o

ar
ti
cu
la
te
s
it
in

th
e

fo
rm

o
f
a

re
q
u
ir
em

en
t
an
d

ra
ti
o
n
al
e

A
d
d
ra
ti
o
n
al
e

fo
rm

u
la
te
d
fo
r
th
e

d
er
iv
ed

re
q
u
ir
em

en
t
to

th
e

su
m

o
f
d
o
m
ai
n

k
n
o
w
le
d
g
e

(f
o
rm

in
g
an

o
rg
an
iz
at
io
n
al

m
em

o
ry
)

7
Y
es

Y
es

Y
es

N
o

Y
es

D
om

ai
n
ja
rg
on
:
th
e

cu
st
o
m
er

is
te
ll
in
g

im
p
o
rt
an
t

C
al
l
fo
r
h
el
p
,
a
d
o
m
ai
n

ex
p
er
t
m
ig
h
t
ac
t
as

Ņ
b
ri
d
g
eÓ

so
th
at

(c
o
n
ti
n
u
ed
)

2 Unpacking Tacit Knowledge for Requirements Engineering 37

T
a
b
le

2
.1

(c
o
n
ti
n
u
ed
)

#

C
u
st
om

er
A
na

ly
st

D
es
cr
ip
ti
o
n

A
ct
io
n

ac
ce
ss
ib
le
c
(k
)

ex
p
re
ss
ib
le
c
(k
)

ar
ti
cu
la
te
d
c
,i
(k
)

ac
ce
ss
ib
le
a
(k
)

ex
p
re
ss
ib
le
a
(k
)

ar
ti
cu
la
te
d
a
n
t(
k)

in
fo
rm

at
io
n
,
in

a

w
ay

th
at
th
e
an
al
y
st

ca
n
n
o
t
u
n
d
er
st
an
d
.

P
ro
b
ab
ly
,
th
e

an
al
y
st
d
o
es

n
o
t

k
n
o
w
en
o
u
g
h
ab
o
u
t

th
e
d
o
m
ai
n
to

ac
ce
ss

(m
ea
n
in
g
:

u
se

in
h
is
o
w
n

re
as
o
n
in
g
)
th
at

in
fo
rm

at
io
n

th
e
an
al
y
st
ca
n

ex
tr
ac
t
k
fr
o
m

i

8
Y
es

Y
es

Y
es

Y
es

N
o

Y
es

L
os
t
in
fo
rm

at
io
n:

th
e

an
al
y
st
g
o
t
v
al
u
ab
le

in
fo
rm

at
io
n
b
y
th
e

cu
st
o
m
er
,
b
u
t

so
m
eh
o
w
Ņ
fo
rg
o
tÓ

to
d
o
cu
m
en
t
it
in

a

p
ro
p
er

re
q
u
ir
em

en
ts

d
o
cu
m
en
t

U
se

ef
fi
ci
en
t
re
co
rd
in
g

(e
.g
.
o
n
-t
h
e-
fi
el
d

el
ic
it
at
io
n
w
it
h

m
o
b
il
e
d
ev
ic
es
;

in
te
rv
ie
w

tr
an
sc
ri
p
ts
;
q
u
ic
k

ca
rd
s,
et
c.
)

9
N
o

N
o

Y
es

W
ro
ng

st
ak
eh
ol
de
r:
th
e

cu
st
o
m
er

d
o
es

n
o
t

h
av
e
th
e
so
u
g
h
t
k.

H
en
ce
,
h
e
ca
n
n
o
t

se
rv
e
as

a
so
u
rc
e

fo
r
it

F
in
d
th
e
ri
g
h
t

st
ak
eh
o
ld
er

fo
r
th
at

p
ie
ce

o
f
k
n
o
w
le
d
g
e

1
0

N
o

Y
es

Y
es

Y
es

B
ab

bl
in
g
:
th
e
cu
st
o
m
er

is
te
ll
in
g
ab
o
u
t

th
in
g
s
s/
h
e
d
o
es
n
’t

k
n
o
w

ab
o
u
t

P
ro
b
ab
ly

th
e
cu
st
o
m
er

is
tr
y
in
g
to

ac
t
as

p
ro
x
y
fo
r
so
m
eo
n
e

el
se
;
g
o
to

th
e

so
u
rc
e

38 V. Gervasi et al.

(where the stakeholder c represents the competition and p is the product or service

they are competing on). Here, the focus is on having k hard to access by c, but
whether this is due to difficulties in expressing it or to explicitly not articulating it

(e.g. secrets of the trade) is irrelevant for the competitive advantage. Also in (2.1),

the notion of important but difficult to purchase or copy is

relevantpðkÞ ^ :expressiblesðkÞ (2.3)

whereas the organisational memory which is of interest to capture for automation is

relevantpðkÞ ^ :articulatedsðkÞ (2.4)

Then of course, we could have parts of organisational memory which are

difficult to articulate because they are not expressible, which would be tacit

according to definition (2.1), and others that simply nobody bothered to write

down yet, which would not be tacit according to definition (2.1) but is tacit

according to (2.4).

Finkelstein’s comments in Sect. 2.2.2 on using TK to define system boundaries

and scoping could be expressed as suggesting a way to infer relevantp(k) by

analysing explicit knowledge (i.e. information that has been articulated) and

observing that tacit knowledge (according to definition (2.4)) makes inferring

relevantp(k) difficult.
Common ground between two stakeholders a and b (as discussed in Sect. 2.2.3)

can be defined by:

accessibleaðkÞ ^ accessiblebðkÞ (2.5)

When common ground is simply assumed (which is deemed risky in RE),

additionally ¬articulateda,b(k) holds. On the other hand, if ¬expressiblea,b(k)
holds, then just assuming that there is common ground, and that it is shared between

stakeholders, is the normal course (and justified when common professional back-

ground or previous experiences allow).

Also in Sect. 2.2.3, the whole problem of requirements elicitation can be

formalised (in an idealised, perfect form) in our framework as follows: given a

set of pre-existing documentsD about a project p, then create a further document d*
(our SRS) such that

8k s:t: relevantpðkÞ; 8 d 2 D;:articulateddðkÞð Þ) articulatedd�ðkÞ (2.6)

Of course, creating d*might imply finding the right stakeholder to contribute the

information; for example, finding s 2 Sp such that accessibles(k)∧ expressibles(k)
for each of the k that needs to be articulated in d* per our previous definition. If no

such s can be found in Sp, then we are dealing with tacit knowledge according to

definition (2.1).

2 Unpacking Tacit Knowledge for Requirements Engineering 39

Finally, what ethnographic studies can contribute (Sect. 2.2.3) is identifying if

accessibles(k) holds for a certain stakeholder s. In fact, in these studies, we can

witness s using k on his or her own, acting and decision-making. Their usefulness

lies in the fact that once we witness k being accessed, we can start investigating

whether it is expressible (e.g. by asking a direct question to s), and if so recording its
articulated form, or otherwise at least gaining the knowledge that some tacit

knowledge (per definition (2.1)) exists. Take, for example, these abbreviated field

notes from an ethnographic study of air-traffic control:

11.17 SA [Sector Assistant]: “Chief, there’s this he wants” [a neighbouring sector control-

ler requesting a plane’s deviation from its planned course]

Chief [Chief Controller]: “all levels are blocked through there” (Spends a moment

thinking).

Chief: “no, he’s a slow one there’s no way he’ll be clear then so we’ll take him through

Liffy”

Note that the aircraft’s unique ‘call sign’ is never articulated. Tacit knowledge is
being used. Formalising what the ethnographer (a) observed of the controller (c),

accessiblecðkÞ ^ :articulatedðkÞ ^ :accessibleaðkÞ ^ relevantðkÞ

Subsequent interviewing of the Chief revealed in outline how he knew what to

do. He realised that the coordination had been done by the Assistant Sector

Controllers. It involved an airplane coming from a neighbouring sector of airspace,

and from the flight strips and/or radar, he was able to tell which plane must have

made the request. Such teamwork is an aspect of the control room members’ tacit

knowledge that is not normally explicitly expressed except on the occasions when

‘normal and routine’ working breaks down.

2.3.5 Application of Our Framework to RE

Tacit knowledge can be at work in each communication path in requirements

engineering. Whenever two or more stakeholders have an exchange of information,

the existence of tacit knowledge can impede, or improve, their communication

ability.

Lacking space for a full analysis, in this chapter we discuss only a few cases for

one of the most recognisable relationships in RE: an elicitation meeting for a project

p between a customer c and an analyst a, with c, a 2 Sp . We know from our

framework that the predicates expressible(), articulated() and accessible() apply to

each of the two stakeholders, whereas relevant() is unique throughout the project.

Moreover, the customer will probably articulate his k orally or via short text notes,

during the interview (let’s call this document i), whereas the analyst will articulate
the requirements in written form in a SRS (let’s call this document t). The main flow

of information will thus start with the customer articulating in i the information he

40 V. Gervasi et al.

has about the project goals. The analyst will recover information from i, integrate it
with his or her own k and finally articulate the resulting requirements in t.

It is useful to point out that we are not especially concerned with cases of

misunderstandings, that is, when the customer articulates some information k and

the analyst erroneously understands a different bit of information k0. In our analysis,
we will model this situation as the composition of two cases: articulatedc,i(k) ∧
¬accessiblea(k) (i.e. the customer has articulated k, but the analyst has not under-

stood it) and ¬articulatedc,i(k0)∧ accessiblea(k
0) (i.e. the analyst has understood a k0

which was not articulated by the customer).

With three predicates for each of two subjects, plus the relevant() predicate for

the whole project, we have a total of 128 different communication patterns, most of

them expressing pathological cases. In addition, we might consider different pairs

of subjects (e.g. analyst-developer when the SRS is used to design and implement

the system, analyst-tester when the tests are being planned, tester-developer when

the results of running tests are returned, analyst-technical writer for preparing a user

manual, technical writer-user when such a manual is read by the final user). Clearly,

a complete analysis is out of scope, and would likely be of relatively little interest, if

performed abstractly. We advocate instead that our framework be applied in

concrete cases and mostly when there is evidence of difficulty caused by tacit

knowledge.

To give an impression of the kind of situations that can be described, we refer to

Table 2.1, where each row represents a situation and empty cells express ‘don’t

care’. For each situation, the table provides a description and some (very coarse)

advice about which action to perform in the given situation.

Notice how most of the situations described do not involve tacit knowledge in

sense (2.1) – which is in our opinion the most interesting facet of the concept to be

used in RE – but would be considered to so involve TK according to alternative

definitions of TK used in different disciplines.

2.4 Challenges and Research Agenda

Given our definition of tacit knowledge, it poses three fundamental challenges.

These are identifying its presence and, once its presence has been discovered,

discerning whether it needs to be articulated and ensuring that the knowledge that

needs to be articulated.

Challenge 1. Identifying the presence of tacit knowledge1 is a difficult problem;

how can we find something that isn’t there? If the knowledge needs to be made

accessible to the analyst but isn’t, then damaging effects will eventually surface – in

the worst case, as rejection of the system by a customer or users or as in-service

1Here, we mean the presence of tacit knowledge to mean that there is knowledge that is not

accessible to anyone except the actor who holds the knowledge.

2 Unpacking Tacit Knowledge for Requirements Engineering 41

failure. At this stage, it does not matter whether the knowledge is tacit or whether it

is missing information, missing domain knowledge or lost information. Effective

mitigation requires that the absence of the knowledge is detected as early as

possible, ideally during the requirements elicitation and analysis phase. We need

to find clues to its presence. For example, there should be a clear rationale for every

requirement. Rationale is itself requirements knowledge and may be crucial for

understanding the requirement or for informing trade-offs, so missing rationale may

mean that it is tacit. Similarly, a requirement may presuppose knowledge on the part

of the reader, perhaps by reference to some domain entity that is not defined. Here,

the presupposition is knowledge that isn’t expressed, and it may be because there

are elements of this knowledge that are hard to articulate.

Of course some knowledge may not be known, knowable or articulated until a

system is up and running. It is therefore increasingly accepted that systems may

need to be instrumented in ways that allow stakeholders to provide at runtime

knowledge that is missing [31]. Indeed Ali et al. [32] argue that in this way, systems

can elicit (‘sense’) tacit social knowledge. Such systems need to be designed to

allow users to monitor and communicate social knowledge at runtime and the

system can then adapt as necessary.

Challenge 2. Knowing that there is some knowledge that is accessible to the

customer but not to the analyst is only part of the problem. The other element is

discerning whether the knowledge needs to be made accessible to the analyst so that

they can articulate it. Note that this is not the same as ¬articulated(k) ∧ relevant(k)
because not all relevant knowledge needs to be articulated if it can be confidently

assumed that it is shared by all the actors who need to use it. Thus, for example, it

should not be necessary to specify that a car has a steering wheel. That the car has a

steering wheel is clearly relevant and we might need to specify properties of the

steering wheel (such as that it holds the stereo controls), but it is reasonable to

presuppose the existence of a steering wheel without first needing to articulate its

existence. Thus, the problem is knowing what is relevant but should not be

presupposed.

Clarke’s theory of common ground [24] offers a way of understanding how two

actors may be able to tolerate tacit knowledge without its lack of articulation

proving problematic for them. However, characterising the common ground that

two actors hold is very hard. Shared domain knowledge may serve as a proxy and

go some way towards building confidence in mutual comprehension. However,

even if the customer and analyst share a deep understanding of the problem domain,

the actors downstream in the development process may not, and so the analyst faces

the problem of knowing what needs to be articulated. This may be a particular

problem for outsourced development where lack of personal contact between

developers and analysts may make the level of shared understanding hard to

gauge, perhaps complicated further by different cultural norms.

The above two challenges assume that there is a body of elicited requirements

knowledge for which we seek to improve our understanding by finding the tacit

knowledge and articulating the bits that would otherwise remain inaccessible.

42 V. Gervasi et al.

Challenge 3. There is a third challenge (or rather, set of challenges) to do with

ensuring the knowledge is always articulated where it needs to be. In other words,

designing requirements processes that by the use of appropriate techniques helps

ensure that all knowledge that is relevant, and needs to be articulated, is documented.

Note that this applies to missing information (Table 2.1), domain knowledge and lost

information, as much as it does to tacit knowledge. However, our definition of tacit

knowledge, and the expressible property in particular, is inherently linguistic; just

because a customer cannot write what they know down or articulate it verbally, it

does not necessarily mean that their knowledge is inaccessible to an analyst. The

analyst may not need the knowledge to be expressed if they are able to discern the

knowledge for themselves, perhaps by using nonlinguistic means of elicitation, such

as observation of the customer in their work setting. Thus, further research is needed

to understand the extent to which different elicitation techniques are able to reliably

discern tacit knowledge. Ethnography is often mooted as a means to do this [30], but

ethnographic fieldwork may miss key events, the handling of which may require tacit

knowledge on the part of the actors involved.

In our own work, we are developing tools both to find clues to the presence of

the tacit in requirements knowledge and to help ensure that what needs to be is

articulated. These tools use a variety of natural language processing techniques to

identify domain abstractions [33] to help set the universe of discourse

{k relevantp(k)} for requirements discovery and to help inform presupposition analy-

sis. Detection of ambiguity [34] is also being investigated, since ambiguity may be a

side effect of obfuscation that is itself a product of trying to express ¬accessible(k).
To illustrate why we believe tool support is important to helping with the tacit

knowledge problem, consider the specification of a new admissions’ support system

for a UK university [35]. The requirements were expressed in several documents: a

high-level document describing the system’s motivation and goals and five low-

level documents that concretised the system goals as sets of envisioned scenarios.

In the implementation, some requirements were misinterpreted or even overlooked.

Our specific interest was in tracing, to link rationale from the high-level document

to scenarios. However, there were several instances where there was too little

shared vocabulary between the documents for the information retrieval techniques

used for automatic link generation [36] to identify when the requirements implicit

in a scenario contributed to satisfaction of a high-level goal. Our analysis was that

these trivial linguistic inconsistencies contributed to a failure to mitigate the lack of

common ground between developer and admissions officer. Without access to the

rationale for the low-level requirements that existed but was not explicit in the high-

level document, the developers lacked the means to correctly interpret or

prioritisation of the requirements. This failure of documentation can be plausibly

characterised as TK; there was requirements knowledge that was elicited from the

admissions officers which was accessible to the analysts (a) but not (adequately)
expressible by the analysts and so not accessible to the programmers (p):

accessibleaðkÞ ^ :expressibleaðkÞ ^ :accessiblepðkÞ

2 Unpacking Tacit Knowledge for Requirements Engineering 43

But there are knowledge elicitation techniques that render almost any accessible

knowledge expressible, so the expressible property is at least partially contextual.

In the context of the admissions system project and from the viewpoint of the

programmers, key knowledge was inaccessible. Such situations are common, and

tool support, along with deployment of appropriate elicitation techniques, can help

(e.g. concept mapping techniques [35]).

Challenge 4. Our framework, as we have formulated it in Sect. 2.3.3, does not

consider the time dimension. This is acceptable when considering the situation at a

given point in time, or during a short time interval (e.g. a round of interviews with

stakeholders), but would be a serious limitation for studying the evolution of

knowledge and abilities of stakeholders (and analyst) during a long-running

process.

In fact, it is often the case that during a development effort, the analyst’s

knowledge of the domain is increased by the very effort of adequately eliciting

requirements; at the same time, the stakeholders’ ability to express their knowledge

is increased by the pressure put on them by the elicitation, so that knowledge that

was previously tacit could, for example, become expressible upon acquiring a

sufficiently sophisticated language on both parts. Indeed, this learning effect is
one of the positive outcomes of any development project – even of failed ones!

It is our experience that the passing of time does not have necessarily a

monotonic effect. While one could expect that knowledge and communication

improve with time, it may also happen that conflicts, budget or time pressure or a

varying political agenda might induce stakeholders to withhold knowledge that they

were willing to share previously. Another time-related phenomenon comes into

play when the set of stakeholders change during the project (e.g. because a key

stakeholder leaves the company).

The model we have presented in this chapter is essentially static (in keeping with

our explicit focus on modelling single communication acts, rather than processes)

but constitutes groundwork for a more in-depth future analysis of the dynamics of

tacit knowledge.

2.5 Conclusions

Evidence suggests that tacit knowledge of various kinds appears to be a significant

factor in systems failure and loss of business opportunity. Incorrect identification of

requirements is a significant source of both customer dissatisfaction and system

failures. However, the identification of tacit knowledge is a difficult process for

which there is no known all-encompassing methodology, and consequently elicita-

tion of tacit knowledge is rarely pursued in any organised or systematic fashion.

Developing a systematic means to discover and to make explicit, tacit knowledge,

and to ameliorate its possible effects or at least, to recognise that there is tacit

knowledge at work, poses an important and challenging research problem. This

challenge is twofold: conceptual and methodological. It is methodological in the

44 V. Gervasi et al.

need to develop empirical techniques for eliciting tacit knowledge in the

requirements process. It is conceptual in that first we need to understand exactly

what it is that we are looking for when seeking to unearth tacit knowledge as part of

the requirements process.

This chapter has outlined some of the important conceptual issues in understand-

ing tacit knowledge, in order to arrive at a workable and useful definition – useful,

that is, in terms of shaping or influencing the requirements engineering process. We

have mapped out the different ways in which the notion of tacit knowledge is used

in a range of disciplines, particularly those linked to requirements engineering, and

worked to develop a logical and, importantly, workable definition.

The aim of our current work is to improve our understanding of how tacit

knowledge is manifested in requirements engineering and to develop tools and

techniques to provide effective support for mitigating its negative effects. Currently

we are investigating the practical impact of tacit knowledge and ambiguity in a

number of case studies. Armed with this empirical knowledge of the types of tacit

knowledge that manifest themselves in requirements and the extent to which they

can be made explicit, we will develop a set of tools that can mitigate the effects of

TK in the requirements engineering process. Such tools will not, of course, elimi-

nate tacit knowledge, since tacit knowledge is essentially unavoidable and since

requirements elicitation is anyway a ‘satisficing’ process performed by a stressed

and careworn requirements engineer and the various stakeholders, rather than a

potentially never ending story performed by analysts with unbounded command of

domains, languages and notations. In the end, we must learn to live with some

aspects of tacit knowledge – the goal of this chapter has been to make some inroads

into understanding what exactly it is that we might have to live with.

Acknowledgements The work described in this chapter formed part of the MaTREx (Making
Tacit Requirements Explicit) project, which was funded by EPSRC grants EP/F069227/1 and EP/

F068859/1

References

1. Polanyi M (1966) The tacit dimension. RKP, London

2. Collins H (2007) Bicycling on the moon: collective tacit knowledge and somatic-limit tacit

knowledge. Organ Stud 28(2):257–262

3. Nelson R, Winter S (1982) An evolutionary theory of economic change. Belknap, Cambridge

4. Kogut B, Zander U (1992) Knowledge of the firm: combinative capabilities, and the replica-

tion of technology. Organ Sci 3(3):383–397

5. Spender J (1994) Organizational knowledge, collective practice and Penrose rents. Int Bus Rev

3(4):353–367

6. Hu Y (1995) The international transferability of the firm’s advantages. Calif Manag Rev 37

(4):73–88

7. Sobol M, Lei D (1994) Environment, manufacturing technology and embedded knowledge. Int

J Hum Factor Manufact 4(2):167–189

2 Unpacking Tacit Knowledge for Requirements Engineering 45

8. Bentley R, Hughes J, Randall D, Rodden T, Sawyer P, Shapiro D, Sommerville I (1992)

Ethnographically-informed systems design for air traffic control. In: Proceedings of

CSCW’92, Toronto, Canada, pp 123–129

9. Harper R, Randall D, Rouncefield M (2000) Organizational change in retail finance: an

ethnographic perspective (Routledge studies in money and banking). Routledge, London/

New York

10. Hartswood M, Procter R, Rouncefield M, Slack R, Voss A (2003) ‘Repairing’ the machine: a

case study of evaluating computer aided detection tools in breast screening. In: Proceedings of

the ECSCW, 2003, Helsinki, Finland, pp 375–394

11. Grunbacher P, Briggs R (2001) Surfacing tacit knowledge in requirements negotiation:

experiences using EasyWinWin. In: Proceedings of the HICSS’01, Hawaii

12. Collins H (2010) Tacit and explicit knowledge. University of Chicago Press, Chicago/London

13. Cowan P, David P, Foray D (2000) The explicit economics of knowledge codification and

tacitness. Ind Corp Chang 9:211–253

14. Nonaka I (1991) The knowledge-creating company. Harv Bus Rev 69(6):96–104

15. Grant J, Gnyawali D (1996) Strategic process improvement through organizational learning.

Strategy Leadersh 24(3):28–33

16. Nightingale P (2003) If Nelson and Winter are only half right about tacit knowledge, which

half? A Searlean critique of ‘codification’. Ind Corp Chang 12(2):149–183

17. Johnson B, Lorenz E, Lundvall B (2002) Why all this fuss about codified and tacit knowledge?

Ind Corp Chang 11(2):245–262

18. Sternberg R (1994) Tacit knowledge and job success. In: Anderson N, Herriot P (eds)

Assessment and selection in organizations. Wiley, London, pp 27–39

19. Brockmann E, Anthony W (1998) The influence of tacit knowledge and collective mind on

strategic planning. J Manag Issues 10:204

20. Walsh JP, Ungson GI (1991) Organizational memory. Acad Manag Rev 16(1):57–91

21. Ackerman M (1996) Definitional and contextual issues in organizational and group memories.

Inform Technol People 9(1):10–24

22. Maiden N, Rugg G (1996) ACRE: selecting methods for requirements acquisition. Softw Eng J

11(3):183–192

23. Finkelstein A (2005) Unsolved problems in requirements engineering – a presentation to the

British Computer Society’s Requirements Engineering Specialist Group Imperial College,

London

24. Clark H (1996) Using language. University Press, Cambridge

25. Sutcliffe A (2010) Collaborative requirements engineering: bridging the gulfs between worlds.

In: Nurcan S et al (eds) Intentional perspectives on information systems engineering. Springer,

Berlin/Heidelberg, pp 353–374

26. Clark H, Brennan S (1991) Perspectives on socially shared cognition. In: Resnick L, Levine J,

Teasley S (eds) Perspectives on socially shared cognition, American Psychological Associa-

tion, Washington, DC, USA, pp 127–149

27. Rugg G, McGeorge P, Maiden N (2000) Method fragments. Expert Syst 17(5):248–257

28. Stallinger F, Grunbacher P (2001) System dynamics modelling and simulation of collaborative

requirements engineering. J Syst Softw 59(3):311–321

29. Eraut M (2000) Non – formal learning and tacit knowledge in professional work. Br J Educ

Psychol 70(1):113–136

30. Sommerville I, Rodden T, Sawyer P, Bentley R (1993) Sociologists can be surprisingly useful

in interactive systems design. In: Proceedings of the conference on people and computers VII,

pp 342–354, York

31. Maalej W, Happel H-J, Rashid A (2009) When users become collaborators: towards continu-

ous and context-aware user input. In: Proceedings of the 24th ACM SIGPLAN conference

companion on object oriented programming systems languages and applications (OOPSLA

09), Orlando

32. Ali R, Solis C, Salehie M, Omoronyia I, Nuseibeh B, Maalej W (2011) Social sensing: when

users become monitors. In: Proceedings of the 19th ACM SIGSOFT symposium and the 13th

46 V. Gervasi et al.

European conference on foundations of software engineering(ESEC/FSE’11), Szeged, pp

476–479

33. Gacitua R, Sawyer P, Gervasi V (2010) On the effectiveness of abstraction identification in

requirements engineering. In: Proceedings of the 18th IEEE international conference on

requirements engineering (RE 10), Sydney, pp 5–14

34. Yang H, de Roeck A, Gervasi V, Willis A, Nuseibeh B (2010) Extending nocuous ambiguity

analysis for anaphora in natural language requirements. In: Proceedings of the 18th IEEE

international conference on requirements engineering (RE 10), Sydney, pp 25–34

35. Kof L, Gacitua R, Rouncefield M, Sawyer P (2010) Concept mapping as a means of

requirements tracing. In: Proceedings of the third international workshop on managing

requirements knowledge (MaRK’10), Sydney, Australia, pp 22–31

36. Huffman Hayes J, Dekhtyar A, Sundaram SK (2006) Advancing candidate link generation for

requirements tracing: the study of methods. IEEE Trans Softw Eng January:4–19

2 Unpacking Tacit Knowledge for Requirements Engineering 47

Chapter 3

Mining Requirements Knowledge from

Operational Experience

R. Lutz, M. Lavin, J. Lux, K. Peters, and N.F. Rouquette

Abstract This chapter reports results from two recent studies of how operational

experience with mission-critical product lines can enhance knowledge management

for use with their future products. The challenge was how to propagate new

requirements knowledge forward in a product line in ways that projects will use.

In the first product line, the concern was capture and retention of requirements

knowledge exposed by defects that occurred during operations. This led to two

mechanisms not traditionally associated with requirements management – feature

models extended with assumption specifications (formal) and structured anecdotes

of paradigmatic product-line defects (informal). In the second product line, the

traditional notion of binding time in a product line did not accurately reflect the

timing of project decisions. This led to a definition of product-line binding times

that better accommodates the varying requirements of the different missions using

the product line. It appears that the practical techniques reported here to build

requirements knowledge into software product lines in the spacecraft domain also

are useful in other product-line developments.

3.1 Introduction

This chapter reports results from recent studies of two mission-critical product

lines: a spacecraft flight software product line and a family of software-defined

radios for spacecraft. In both cases certain types of knowledge gained while

R. Lutz (*)

Iowa State University, Ames, IA, USA

e-mail: rlutz@iastate.edu

M. Lavin • J. Lux • K. Peters • N.F. Rouquette

Jet Propulsion Lab/Caltech, Pasadena, CA, USA

e-mail: milton.l.lavin@jpl.nasa.gov; james.p.lux@jpl.nasa.gov; kenneth.peters@jpl.nasa.gov;

nicolas.rouquette@jpl.nasa.gov

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_3, # Springer-Verlag Berlin Heidelberg 2013

49

mailto:rlutz@iastate.edu
mailto:milton.l.lavin@jpl.nasa.gov
mailto:james.�p.lux@jpl.nasa.gov
mailto:kenneth.peters@jpl.nasa.gov
mailto:nicolas.rouquette@jpl.nasa.gov

operating in-flight or in-flight-like test beds (here, jointly called operational experi-

ence) were not being captured for use with future products. In both cases changing

this so that the missing information was available to the projects was likely to

improve quality and efficiency of their future products. The goal of our studies was

to find ways to better propagate this additional requirements knowledge forward to

new products in the product line in forms that the projects considered to be

convenient.

An earlier description of the first study was published in the MaRK’09 workshop

[1]. This chapter revises it and describes it in the context of more recent product-

line experience, as reported in the second study.

The first study considered a product line of flight software for spacecraft,

previously used on seven missions managed by Jet Propulsion Lab with two more

missions in development. We examined flight software defects reported during

integration and testing for two earlier members of the product line that were

considered by the project to be most relevant to a new member.

We found four types of requirements knowledge revealed by the software defect

reports. Store-and-retrieve-based requirements management is insufficient to avoid

recurrence of these types of defects on upcoming members of the product line. We

thus propose the use of two mechanisms not traditionally associated with

requirements management, one formal and one informal, to improve communica-

tion of these types of requirements knowledge to developers of future products in

the product line. We show how the two proposed mechanisms, namely, feature

models extended with assumption specifications (formal) and structured anecdotes

of paradigmatic product-line defects (informal), can together improve propagation

of the requirements knowledge exposed by these defects to future products in the

product line.

We then selected for in-depth analysis defects associated with the Electra family

of software-defined radios (SDRs). Discussions with the lead developer of the

initial Electra revealed that subsequent versions shared many components – both

design and code – and were in effect an emerging product line. To support

definition and design of new Electra radios, we conducted a second study to identify

product line commonalities/variabilities and examine the associated binding times.

In this second study we found that the traditional notion of binding time in a

product line did not accurately reflect the timing of actual project decisions for the

Electra SDRs. These SDRs are used on a wide variety of spacecraft. Traditionally,

binding time is the point in time at which a decision is made as to which option,

among the alternatives available in the product line, will be selected for a new

product. We found that we needed to explicitly extend product-line binding times to

the requirements phase to describe when the requirements decisions for a new

Electra should be made. We show how, by defining binding times as intervals rather

than points in time, we can identify and relax some overly stringent binding times

for the Electra product-line requirements. This allows different Electra projects to

decide which features they need at somewhat different points in time and better

accommodates the varying mission requirements of the different spacecraft using

Electras. We also added information to the specification of the binding times so that

50 R. Lutz et al.

constraints that temporally order the binding times can be better understood and

checked later during application engineering. More generally, it appears that the

practical techniques reported here to build requirements knowledge in the space-

craft domain also may be useful in other product-line developments.

In describing each study, we start with a problem definition (Sects. 3.2.1 and

3.3.1), then review previous work or context (Sects. 3.2.2 and 3.3.2), outline the

study approach (Sects. 3.2.3 and 3.3.3), describe the results (Sects. 3.2.4 and 3.3.4)

and examples of using the results (Sects. 3.2.5 and 3.3.5), and end with related work

(Sects. 3.2.6 and 3.3.6). A final conclusion summarizes the key ideas from both

studies (Sect. 3.4).

3.2 Using Operational Defect Reports to Build Requirements

Knowledge in Product Lines

Product-line engineering is successful due to systematic reuse of product-line assets

for a family of similar products as indicated, for example, by the hall of fame for

product lines [2]. The cost advantages of adopting a product-line approach have

been widely reported [3–5]. Claims of higher quality are harder to demonstrate but

appear to have merit [5]. As a product line matures, the developers’ increasing

familiarity with the set of product-line artifacts and their growing understanding of

the product-line domain assist in the construction of high-quality products. With

careful management, requirements knowledge in a product line thus promises to be

both incremental and cumulative. We are interested in how this accumulating

requirements knowledge can be used to prevent requirements-related defects in

product lines. The intent is to avoid repeating in future products the mistakes made

in previous products. Thus, two projects that plan to use the product line have

encouraged this investigation and helped out with additional domain expertise.

The development of a product line is typically divided into two phases, domain
engineering and application engineering. In the first phase, domain engineering, the

product-line assets are developed. In the second phase, application engineering, the

product-line assets are reused to build the new product. The most important of these

assets are the software requirements, the shared software architecture, and the

reusable components and test suites. The requirements are defined by means of a

commonality and variability analysis (CVA) that identifies the common

requirements, called commonalities, that are shared by all members of the product

line and the variable requirements, called variabilities, that some but not all

products have. An example of a commonality from the spacecraft domain is the

requirement that all spacecraft have software fault protection to respond to power

loss. An example of a variability is the selection of the reaction wheels used to

control spacecraft attitude (i.e., position) for a specific mission. The specific option

or alternative selected is a variation.

3 Mining Requirements Knowledge from Operational Experience 51

3.2.1 Using Operational Defect Reports: Problem Definition

We report experience from an effort to use defect reports from previous product-

line members to improve the quality of future members by reducing their

requirements-related defects. We show that the requirements knowledge available

in defect reports of previous products goes far beyond simply avoiding similar

mistakes in the future. Capture of tacit requirements knowledge implicated in such

reports supports incremental improvement of the product line as described below.

To this end, we suggest adding defect reports as another key product-line asset.

We focus on requirements-related defect reports because requirements defects

are difficult to detect and costly to correct in the completed product [6]. This is

primarily because requirements-related defect reports often involve missing or

incorrect requirements discovered during operational experience about the environ-

ment or subtle interactions among the subsystems (often timing-related or resource

dependencies). These missing or incorrect requirements often stem from undocu-

mented assumptions.

We describe results from an analysis of defects reported during integration and

testing for two earlier members of a spacecraft flight software product line to

uncover tacit requirements knowledge for the benefit of an upcoming new product.

Our analysis suggests opportunities for the defect reports to serve as a richer source

of information for mining tacit requirements knowledge for future product-line

members. Although these data are available, their role in the product line is yet to be

defined. Historically, the focus has been on avoiding recurrence of defects in the

current product rather than on using this knowledge to improve future products.

In pursuing this investigation, we faced two challenges:

1. How to capture relevant product-line requirements knowledge from the defect
reports. This involves acquiring access to members’ defect reports from previ-

ous product-line applications (nontrivial, as some of these belonged to other

organizations), analyzing them and deciding how to filter out information that

was not relevant to future products (e.g., one-time variations). We describe

below how we identify relevant defect reports and how we use Orthogonal

Defect Classification (ODC) [7] to identify requirements-related patterns in the

defect data. We also describe an extension to the feature model to capture tacit

assumptions.

2. How to proactively communicate the new requirements-related information to
developers of future product-line members. Initially, we concentrated on deter-

mining how to specify and store the information so that it could be retrieved

readily by future projects. However, after reviewing our preliminary results with

a domain expert who had many years of project experience [8], we realized that

making the requirements knowledge available to future product-line developers

took us only halfway toward our objective of propagating information forward to

new product-line members. It is insufficient merely to make previous defects

available for retrieval by future developers (a “pull” mechanism for querying

stored information). In addition, it is necessary to provide a “push” mechanism

52 R. Lutz et al.

so that the requirements knowledge that could have prevented the defects in

previous product-line applications will be remembered in future product-line

applications.

We introduce below the concept of a Product-Line Analysis Defect Paradigm

(PLA-DP) (extending Petroski’s design paradigm [9]) to propagate forward

requirements knowledge gained through product-line analysis of recurring patterns

of requirements-related defects. Essentially, we identify a small set of representa-

tive anecdotes where a serious defect involving a failure or near failure occurred

that could have been prevented by additional requirements knowledge unavailable

at the time.

This anecdotal approach to “remembering old lessons learned” (as the domain

expert put it) is compatible with the culture of an organization such as ours that

builds high-dependability systems. Such anecdotes command the attention of future

developers because of their concrete descriptions of subtle interactions and

dependencies of the software requirements on hardware idiosyncrasies and envi-

ronmental rare events.

Addressing the first challenge involves an activity to incorporate defect reports

from previous products into the set of product-line assets. Addressing the second

challenge involves an activity to make it easy to reuse the defect-report information

for the next product in the product line. We hope that this combination of “pull”

mechanisms (storing and querying defect reports as product-line assets) and “push”

mechanisms (telling stories via PLA-DPs) will help improve the management of

requirements knowledge derived from defect reports in product lines.

3.2.2 Using Operational Defect Reports: Previous Work

To the best of our knowledge, this work represents the first attempt at using defect

analysis to incrementally improve the requirements knowledge for a product line.

There have been multiple efforts to use defect reports to measure quality (e.g., bugs

remaining) [10, 11], improve the organization’s development process [6, 12–15],

and predict future fault occurrences [7, 16], but these efforts have not addressed

product-line improvement.

By capturing the missing or tacit requirements knowledge in prior systems, we

seek to reduce requirements-related defects in future systems. We use Kruchten,

Lago, and van Vliet’s definition of tacit knowledge as knowledge that is essential

but not documented [17]. Historically, requirements-related defects (e.g., missing

requirements, incorrect requirements, or misunderstood requirements) have caused

the most problems in terms of time-consuming debugging and nonlocalized fixes.

3 Mining Requirements Knowledge from Operational Experience 53

3.2.3 Using Operational Defect Reports: Analysis

The operational defect data used in this analysis to inform the GRAIL project came

from two earlier spacecraft –MRO (Mars Reconnaissance Orbiter) and ODY (Mars

Odyssey). The GRAIL project launched twin spacecraft in 2011 to perform gravity

mapping of the moon. GRAIL has approximately 3,000 low-level software

requirements textually documented in the DOORS requirements management

toolset. A subcontractor developed the GRAIL flight software by using the assets

of a mature product line. GRAIL has significant reuse of the MRO flight software, a

previous instance of the subcontractor’s product line. MRO launched in 2005 and is

currently orbiting Mars on a 5-year mission. We analyzed software defect reports

from MRO and from an earlier spacecraft in the flight software product line, ODY.

ODY launched in 2001 and is currently operational on an extended science mission.

It is also well known for its role in conveying transmissions from the two Martian

rovers to Earth.

Because GRAIL was in development at the time this analysis was done, GRAIL

had the opportunity to benefit from insights and concerns from systematic study of

the MRO and ODY defect reports. Figure 3.1 shows an overview of this process. On

the left we see a sequence of spacecraft in the product line going from top to bottom

down the page. The curved arrows indicate that each inherits the shared (common)

software base. In the middle, the horizontal arrows show how each of these projects

produces a set of Problem/Failure Reports (PFRs) that is recorded in the institu-

tional, problem-reporting database. The dotted line focuses on MRO and GRAIL.

The curved arrow on the right-hand side of the figure represents our goal: to build

requirements knowledge from defect reports for previous product-line members

(MRO and ODY) in order to reduce defects on the new product-line member

(GRAIL).

The dataset for the analysis consisted of the 69 MRO and 24 ODY PFRs

classified as flight software-related in the Jet Propulsion Laboratory (JPL)

problem-reporting database. The online PFRs filled out by the project consist of

three parts. The first part describes the problem and is filled out by the tester when

the problem occurs. The second part is filled out by the analyst assigned to

investigate the problem. The third part is filled in later with a description of the

corrective action that was taken to close out the problem. We looked at all the MRO

and ODY software PFRs, even for features that would not be used by GRAIL, since

subsequent spacecraft in the product line might require those features. Many of

these features involve more extensive redundancy and fault protection than GRAIL

(a relatively inexpensive mission) could afford.

We analyzed the MRO and ODY PFRs using a variation of ODC (Orthogonal

Defect Classification) [7]. ODC is a technique that we have previously used to

analyze both PFRs and postlaunch anomalies on spacecraft [14]. It provides a way

to “extract signatures from defects” [7] and to correlate the defects to attributes of

the development process. ODC differs from causal analysis, another widely used

54 R. Lutz et al.

defect analysis technique, which employs a manual, in-depth search for root cause,

usually of a subset of defects.

The ODC analysis used a script to extract the relevant fields from the PFR

database and then classified each PFR in terms of Cause, Target, Problem Type, and

Subsystem. The Cause was extracted from the PFR cause field, for example,

“Software design” or “Support equipment (software).” The Target described the

entity that was fixed or changed to avoid the problem in the future. It was extracted

from the PFR disposition field. The Problem Type characterized the fix. It was

manually classified from the textual description of the problem/failure in the PFR

form, for example, “Algorithm” or “Timing.” We also extracted and recorded the

MRO subsystem for which the fix/change was made, as well as some other

information to help with follow-on analyses.

3.2.4 Using Operational Defect Reports: Results

Summary results from the defect analysis are shown in Fig. 3.2. The tall bars at the

back of Fig. 3.2 show Algorithms as the most frequent PFR problem for flight

software (totaling 34), followed by Configuration PFRs (11), Hardware Design

PFRs (8), and Timing PFRs (7) in bars near the foreground of the figure.

Requirements-related PFRs are common, but requirements was rarely selected as

the primary cause once code existed. Thus, although no PFRs on MRO and only 6

PFRs on ODY had requirements listed as their cause, we will see that many of the

algorithm and timing problems were, in fact, caused by undocumented tacit

requirements.

Fig. 3.1 Product-line

approach to building

requirements knowledge from

defect reports [1]

3 Mining Requirements Knowledge from Operational Experience 55

The investigation showed that requirements-related defects do recur in the

product line. For example, ODY had problems related to managing the mode of

operation for the spacecraft’s attitude control system and its devices, including

reaction wheels. In MRO, the problem of managing the mode of operation for the

spacecraft’s attitude control system became more difficult, for example, due to

additional redundancy in the power system for the reaction wheels. GRAIL has

common features with ODY and MRO (including attitude control via reaction

wheels) but variation in the amount of redundancy and in the configuration of

devices for attitude control. There is thus a need to ensure that GRAIL will not have

a repeat of problems regarding the management of mode of operation for the

spacecraft’s attitude control system.

The analysis found four types of requirements-related knowledge in the MRO

and ODY software-related PFRs:

1. Newly discovered requirements. These defect reports describe missing or incom-

plete requirements where the knowledge needed to identify the requirement

surfaced only during testing. Consistent with our earlier studies on some space-

craft not in a product line [14], these new requirements often involved compli-

cated interface issues between software variabilities or between hardware and

software variabilities. Several of the incomplete requirements involved fault

protection, which is of special concern in high-dependability systems such as

these. Many of these newly discovered requirements will also be needed in some

future systems in the product line.

Fig. 3.2 ODC analysis of MRO defect reports (Adapted from [1])

56 R. Lutz et al.

2. Unexpected requirements dependencies. A closely related knowledge type was

the uncovering during testing of unexpected dependencies among existing

variability requirements. These usually involved new knowledge about coordi-

nation constraints and were often revealed as inconsistent states. In some cases

the unexpected, latent requirements dependency involved an incorrect assump-

tion. This new or corrected knowledge about requirements dependencies will be

needed by future systems in the product line to avoid recurrence. A potential

concern is whether some dependencies were resolved by one-time workarounds

that may not carry over to the next product.

3. Tacit requirements rationales. These undocumented rationales, that is,

“justifications of decisions” [18], contributed to defect occurrences, either

because the rationale was not sufficiently documented or because it was incor-

rect. This information was not available to the tester regarding why a require-

ment had to be the way it was. These rationales often involved the hardware or

environment. Sometimes the new knowledge involved an idiosyncrasy that was

known but not explicitly documented. This kind of requirements knowledge is

especially useful to future developers during evolution of the product line, as it

captures potential, unintended impacts of changing requirements. The impor-

tance of requirements rationales was underlined in a recent NASA investigation

of risks associated with the growth in complexity of flight software. This NASA

investigation’s second recommendation in order of importance was “emphasize

requirements rationale” [19].

4. Misunderstood requirements. Some defect reports were caused by requirements

or requirements-related information that was in some sense documented, but in

such a manner that it confused the developer or the tester. Often this occurred

because the documentation was partial or ambiguous. Such gaps in requirements

understanding often surface when the software behavior is accurate but surprises

the testers, leading them to initiate a defect report. In previous work we found

similar cases where the software behaved correctly but unexpectedly [14]. It

seems likely that, in a product line, a similar phenomenon will occur.

Requirements-related information that confuses developers on one member of

the product line, if not clarified, can confuse developers of subsequent product-

line members. This suggests that in a product line, improving the communication

of requirements knowledge can help preclude making the same mistake on later

products.

3.2.5 Using Operational Defect Reports: Use of the Results

Earlier in the chapter (Sect. 3.2.1) we described two challenges to using the

requirements knowledge gained from defect analysis of individual product-line

members to improve the requirements of subsequent product-line members. The

first challenge has to do with preserving the new requirements-related knowledge

captured from defect reports so that it can be reused across the product line as part

3 Mining Requirements Knowledge from Operational Experience 57

of the domain-engineered product-line assets. The second challenge has to do with

conveying the new requirements knowledge to developers of a future project for use

in its application engineering.

We now describe how we tried to address these two challenges through the use

of mechanisms not normally associated with requirements management, namely:

1. To formally preserve new requirements-related knowledge, we extend feature
models with assumption specifications.

2. To informally convey the new requirements knowledge, we use structured
anecdotes of paradigmatic defects.

Together, these two mechanisms appear to help build and propagate the four

types of requirements knowledge exposed by the PFRs for use in future products in

the product line.

3.2.5.1 Preserving New Requirements Knowledge by Extending the Feature

Model

Associating new requirements knowledge with the features in a product line

provides a natural way to preserve this information for future product-line

applications. A feature model describes the common and variable requirements of

a product line by showing the structural relationships (aggregation and generaliza-

tion) and dependencies (e.g., required, excluded) among the features [3, 20]. To

incorporate new requirements knowledge, we build on Lago and van Vliet’s

approach to modeling tacit assumptions in an architecture-based product-line

feature model [21].

To document an assumption, one first identifies the features directly influenced

by the assumption and then defines the dependencies between the assumption and

the feature model. The feature model specifies which features are potentially

impacted by an assumption, as well as on which assumptions a feature depends.

Architectural modules and interfaces implement each feature.

3.2.5.2 Application of the Extended Feature Model: MRO Transponder

The transponder is the spacecraft receiver/transmitter used for telecommunications.

During system testing on MRO, a false assumption regarding the transponder was

discovered, resulting in new requirements knowledge. It was assumed that the

transponder state always reflected the state of the carrier, that is, locked or

unlocked. However, it was found in system testing that these values could be

temporarily out of synchronization when the carrier detection was transitioning

between locked and unlocked. The consequence was that the flight software

requirement for fault-protection checking of the transponder telemetry had to be

revised. New timing-related software requirements arising from the asynchronous

carrier lock had to be captured. Moreover, since the transponder was a product-line

58 R. Lutz et al.

asset, the new knowledge needed to be preserved for other product-line members.

Figure 3.3 shows a simplified diagram of how the corrected assumption is preserved

by incorporating it into a product-line feature model.

To date we have avoided scalability concerns by proposing to record only those

assumptions implicated in defect reports in the feature model. This decision is

consistent with the scope of our current effort to use knowledge about defects in

past systems to improve future systems in the product line. Because defect reports

are systematically tracked to closure, it appears practical to maintain these defect-

related assumption links in the feature model as the product line evolves. However,

it is an open question and beyond the scope of this effort whether it would be

feasible, or even desirable, to record in a feature model all the many assumptions

for complex systems such as the spacecraft. By instead focusing on the historically

troublesome assumptions, the extended feature model remains readable and

compelling.

3.2.5.3 Capturing New Product-Line Requirements by Constructing

PLA-DPs

To capture tacit requirements knowledge from past defect reports for use in future

products in the product line, we use Product-Line Analysis Defect Paradigms

(PLA-DPs). PLA-DPs are stories or anecdotes of failures or near failures on

previous products. They are concrete instances of a pattern of defects found via

the product-line analysis of the defect reports. These anecdotes make the tacit

requirements knowledge manifest and more actively involve the developer in

scrutinizing previous product-line experience for requirements-related information

relevant to the current product. The documentation of anecdotes helps ensure that

lessons learned on early instances of the product line do not become lessons lost on

later instances.

The PLA-DPs extend Petroski’s design paradigms [9] to requirements. A design

paradigm is a case study “capable of being presented as a fresh and memorable

story” that embodies “a general principle of design error” that can also arise in

new situations. It both improves understanding and alerts developers to common

Fig. 3.3 Feature model

extended with assumption [1]

3 Mining Requirements Knowledge from Operational Experience 59

pitfalls [9]. For example, Petroski describes the collapse of the Tacoma Narrows

Bridge, subtitling it “a paradigm of the selective use of history” and describes the

risk of design myopia that prolonged success can bring.

The PLA-DP is a good fit with product lines because product-line requirements

have a high degree of commonality. Explicit and sustained attention to past

anomalies characterizes spacecraft design projects, most especially when the

spacecraft inherit components from each other or form part of a product line.

For example, Bayer [22] has described 14 MRO postlaunch anomalies in detail,

including the story of each problem as it unfolded (often from the perspective of the

operator) together with recovery attempts, the causal chain and contributing factors,

root causes, safety nets used, corrective actions, and the lessons learned.

Presentations to subsequent projects and lunchtime seminars help propagate the

memory of those anomalies.

One recommendation arising from our study was to explicitly include PLA-DP

accounts in the domain-engineered product-line repository. By associating them

with the defect reports whose lessons they generalize, PLA-DP accounts can be

automatically extracted and distributed (i.e., pushed) to each new project. Since the

intent is to make the PLA-DPs not only accessible but also notorious, each textual

account is best accompanied by a graphic-rich slide set that visually presents the

story of the failure or near-miss together with the insights for future systems in the

product line. Dudley Herschbach, a Nobel Laureate in chemistry, has similarly

described the use of compelling stories as a way to teach the habit of “actively

scrutinizing evidence and puzzling out answers” and has urged emphasis on the

“human adventure of intellectual exploration, replete with foibles and failures but

ultimately achieving wondrous insights” [23]. The PLA-DPs are intended to convey

a similar excitement and insight.

3.2.5.4 Application of the PLA-DP: MRO Reaction Wheel

We next give a simplified version of an example PLA-DP from MRO experience,

followed by an explanation of its consequence for subsequent spacecraft in the

product line.

During integration testing of MRO, the electrical power subsystem reported an

unexpected software state. Analysis showed that this was due to a race condition

that could occur if the reaction-wheel subsystem (responsible for aiming the

spacecraft) was powered off and then back on within 5 min. In this case an uplinked

sequence of preprogrammed software commands had turned the reaction wheels

off. A minute later the onboard fault-protection software had commanded the

reaction wheels back on. This caused the power software to be “confused” about

what state the wheels were in. The fix entailed a new software requirement to

disable a schedule-verification function whenever the reaction wheel was being

commanded.

This anecdote identifies additional requirements-related information regarding

time-related constraints on the allowable interactions between the software

60 R. Lutz et al.

sequence and the fault-protection software in this product line. This is important

information not only for the software developers on this project but also for the

developers on the other spacecraft in this product line. This anecdote also records a

rationale for why the flight software sometimes disables the schedule-verification

function. More generally, this anecdote alerts the developer to identify which

commands in this product line can be issued (thus, can compete) by different

software systems (here, fault protection and sequences) to the same hardware

component. This is especially important as timing-related defects, such as this

race condition, are probably more expensive to fix than function defects, according

to a recent study [15].

3.2.6 Using Operational Defect Reports: Related Work

The analysis presented here draws together work in requirements management of

dependencies, rationales, and assumptions with work in defect analysis and applies

those to product lines. Most discussion of knowledge management in software

development has described architectural knowledge [17] rather than requirements

knowledge. Where requirements have been considered, the authors usually address

the elicitation of tacit requirements [24, 25] rather than requirements maintenance

over the lifetime of a product line. An exception is Stoiber and Glinz’s description

of how knowledge about component dependencies in a product line is often tacit

and distributed across an organization. They propose explicit modeling using

decision tables and aspect modeling [26]. Savolainen and Sajaniemi described a

structured feature model that provided a very detailed specification for each feature,

including error behavior [27]. They described the need to capture complex feature

interactions and to make feature behavior conditional on the presence and absence

of other features. However, unlike our work, they did not consider information from

defect reports.

Dutoit and Paech included the use of rationales in use case and scenario-based

modeling [28]. They defined rationale to be the justification of system or process

decisions, including description of options. Their work surveyed rationale manage-

ment methods and described a process to elicit, document, and maintain rationale

using web-based tool support for a two-column table, where requirements appear in

the left column and rationales in the right column. However, unlike the work

described here, they considered a single system rather than a product line and

provided no discussion of defects.

As described above, Lago and van Vliet showed how assumptions about the

execution environment can be incorporated into a graphical feature model by

adding assumption nodes and links to the set of features influenced by the assump-

tion [21]. They found that they had to add new features to the model (i.e., make

implicit decisions explicit) in order to characterize the assumptions, that

assumptions could crosscut features, and that the dependencies among features

and assumptions could be complicated. They recommended the explicit modeling

3 Mining Requirements Knowledge from Operational Experience 61

of assumptions both to enhance understanding and traceability and to explore the

effect of changing assumptions.

Jirapanthong and Zisman advocated using traceability relations in product-line

engineering [29]. They described the automatic generation of traceability relations

among feature-based documents. However, they did not include defect reports

among the eight types of documents that they considered.

Defect analysis during testing has been used to evaluate the readiness of soft-

ware for release and to estimate the reliability of the software [7]. Fenton and

Ohlsson have described the problems in using such defect analysis results to

measure the quality of deployed software [10]. Dalal, Hamada, Matthews, and

Patton have used ODC to guide prerelease process improvement [12]. Ostrand

and Weyuker compared pre- and post-release faults in an investigation of module

fault density and fault proneness components [11].

While many authors have described the use of defect mining to improve the

quality of a single project or of the development process, there has been little work

that uses defect analysis results to improve or manage the requirements knowledge

needed for a product line. One exception is Maalej and Happel’s suggestion of

providing a hierarchical schema for classifying errors in order to enable finding

similar situations for which experience already exists [30]. Mohagheghi, Conradi,

Killi, and Schwarz studied reused components and found that they had lower defect

density than non-reused ones but more defects with highest severity [31]. At the

architectural level, Trew used root cause analysis of 900 problem reports to identify

and package rules to reduce integration errors in a product line [32].

Defect analysis has shown that misunderstanding of requirements and their

underlying rationales frequently cause defects. Lauesen and Vinter, for example,

looked at 200 of the 800 defect reports available a few months after a product’s

release. They found that about half of the defect reports involved requirements

defects, with missing requirements being the most frequent cause [13]. Similarly, in

an early study of testing defects in the spacecraft domain, we found that the most

common causes of critical software defects were misunderstanding the software’s

interfaces with the system and discrepancies (e.g., omissions or inaccuracies)

between documented requirements and actual requirements [6]. Van Lamsweerde

and Letier’s classification of common information-related obstacles to achieving

requirements goals (e.g., Information unavailable, Information not in time, and

Wrong belief) [33] can also be used to describe requirements defects.

3.3 Using Operational Experience to Build Requirements

Knowledge of Product-Line Binding Times

We next report experience with product-line binding times on a family of software-

defined radios (SDR) called Electras, developed at Caltech’s Jet Propulsion Labo-

ratory (JPL). Electra SDRs are used for communication among spacecraft, for

example, between a Mars orbiter and a rover on the surface.

62 R. Lutz et al.

Binding time in a product line is the point at which alternative or optional features

are selected for a new product [5, 34–37]. In this section we describe difficulties we

faced with regard to feature binding times for the Electra SDR product line; the

solutions we developed, together with their advantages and shortcomings; and how

we think these solutions can be useful more generally in other product lines. We

illustrate the discussion with examples from Electra SDR products.

In a software product line, the products share a common set of mandatory

features but are differentiated one from the other by their variant features. Each

feature carries an increment of functionality for the system [38]. We recently

performed a product-line commonality and variability analysis (CVA) of features

for the Electra SDR product line [39]. Many of the features are commonalities

shared by all Electra products. Examples of common features are that an Electra

shall provide nonvolatile memory, that an Electra shall provide conversion between

analog signals and digital data streams, and that an Electra shall provide File

Storage Management. Other features are variabilities (optional or alternative

features) that are required in some but not all Electra SDR products. Examples of

Electra features that are optional are that a new Electra may or may not provide

error detection and retransmission, may or may not support two-way Doppler

ranging, and may or may not provide Kalman filtering of the signals. Examples

of Electra features that are alternative are the telemetry encoding choices, the

ranging algorithm(s) choices, and the waveform (signal processing) applications

choices that are to be provided by a specific Electra SDR product.

3.3.1 Product-Line Binding Times: Problem Definition

A step that gave us trouble in the CVA was determining and documenting the

appropriate binding times of the features. Deciding when to bind is not an easy

problem. Krueger describes the choice of the right variation binding time as “often

one of the most critical, most contentious and least well understood issues for

Software Product Line organizations” [40]. Related works in the literature

acknowledge the difficulty of binding, but give limited, pragmatic guidance for

developers. In fact, as described below, there is not even a consensus on what are

the available binding times. To develop binding times for the Electra SDR product

line, we needed more guidance than is available in the literature. More specifically,

we discovered that project decisions impact the timing of the bindings for feature

variations in a new Electra.

3.3.2 Product-Line Binding Times: Study Context (Software-
Defined Radios (SDRs))

Before we delve into binding times, it may be useful to describe the context in

which this work was done – namely, a software-defined radio (SDR) called Electra.

3 Mining Requirements Knowledge from Operational Experience 63

An SDR is a telecommunications device that uses software to implement function-

ality traditionally implemented in hardware, such as signal processing. For deep

space missions to other planets, the flexibility and adaptability available with

software implementation is advantageous. Such spacecraft often need to communi-

cate with different types of vehicles and radio protocols and may need to be

maintained or enhanced over long lifetimes to complete their missions.

The Electra SDRs use a JPL-designed baseband processor module (BPM)

containing a CPU, reconfigurable FPGAs, and the analog/digital conversion cou-

pled to an analog RF Module, RF power amplifier, and power supplies. Unlike

previous transponders [41], the hardware is developed by a vendor, but the digital

design and software intellectual property are developed and tested at JPL. The term

“software,” as used by the Electra product line, includes the code for specifying the

behavior of FPGAs.

Electras are used on a variety of current and future spacecraft, including orbiters

(MRO, the Mars Reconnaissance Orbiter that launched in 2005; Maven, the Mars

Atmosphere and Volatile EvolutioN orbiter to be launched in 2013; the 2016

ExoMars Trace Gas Orbiter), landers, rovers (the Electra-Lite on the Mars Science

Laboratory’s rover launched in 2011), and the JPL-SDR CoNNeCT (NASA’s

Communications, Navigation and Networking re-Configurable Testbed, to be

launched to the International Space Station in 2012). A next-generation deep

space transponder being built by NASA, called the UST (Universal Space Tran-

sponder), will also use an Electra SDR.

3.3.3 Product-Line Binding Times: Analysis

The binding times for variabilities are determined in the domain engineering phase

as part of the CVA. To keep the documentation easy to read and update by the

Electra SDR projects, we used a tabular decision model to record the set of

decisions that have to be made to build a new product in the product line [5].

Each decision assigns a legal value to a parameter of variability. The binding time

associated with each parameter of variability imposes a partial order on the set of

decisions. For example, the memory size must be decided before the waveform

(signal processing) applications are decided, but the memory size and the frequency

bands that will be supported can be decided in any order, since they have no effect

on each other. The decision model, produced in the domain engineering phase,

functions as an instruction sheet for building a new product in the application

engineering phase.

To help make the CVA complete and correct, we employed usage scenarios

derived from use cases. These verified that the core common features and expected

variant features were identified, given past experience and our knowledge of the

roles that Electra SDRs are likely to play in future missions.

Discussion of the draft CVA with internal customers revealed several groups of

potential users, with each group having distinct interests and needs. The project

64 R. Lutz et al.

formulation team is primarily interested in high-level functionality that is respon-

sive to mission requirements, plus rough costing rules of thumb. Those involved in

requirements and preliminary design are primarily interested in trade-offs that

support make-or-buy decisions, the use of legacy hardware and software, and

more detailed costing rules for implementation effort. Detailed designers and

implementers make decisions about such things as the amount of RAM, the

configuration of FPGAs, selection of available utilities to support error detection

and correction, and the extent of fault recovery. To obtain better insight into these

decisions, we created an activity model of the overall design and development

process and focused our attention on the choices that were being made at each stage.

3.3.4 Product-Line Binding Times: Results

Experience with the Electra SDR application engineering showed that the typical

decision gets made in a preliminary way in an early activity, gets rethought and

refined as development proceeds, and becomes firm (committed to implementation)

at a certain point in the process. In short, the binding of variabilities often does not

occur at a point in time but is instead a process that extends over several develop-

ment activities and may, in some instances, span two or more project phases.

This observation led us to make three enhancements to the traditional product-

line binding times, as described in the next three subsections. The goal of these

enhancements was to better align the documentation of feature binding times to the

reality of the timing of the project decisions.

3.3.4.1 Extending Binding Times to the Requirements Phase

The first enhancement we made to traditional binding time documentation was to

explicitly extend product-line binding times to the requirements phase. This was

done to better reflect and guide the preliminary, feature binding time decisions that

are made during the requirements phase of the application engineering of a new

Electra SDR product.

Projects usually begin selecting the features for a new Electra SDR early, during

the requirements phase. In the literature, some authors describe early-phase binding

times (e.g., Clements et al. describe possible binding times as including design,

compile, link, and runtime [18]), while other authors describe only binding times

that occur later (implementation and runtime) or describe the binding time as the

point at which the feature is “physically included” or incorporated into a product

[36]. Svahnberg et al. list product architecture derivation, compilation, linking, and

runtime, as possible binding times, but explicitly exclude design and implementa-

tion, as they require the selection to be done by the compiler, linker, or runtime

system [37]. The problem we encountered was how to reconcile the way the

3 Mining Requirements Knowledge from Operational Experience 65

projects work (requirements-time binding of features) with the implementation bias

in the literature regarding product-line binding.

There are several advantages to preliminary, requirements-phase binding of

features that explain why projects do it. Some features are determined early because

they are essential to the mission and/or are contractual in nature. For example, many

fault protection and adaptability features need to be built into an Electra for a

Martian orbiter because it will be in service for many years, supporting a variety of

scientific missions. The requirements for the next Electra SDR may also be driven

by the availability of new technology. An example would be providing the capabil-

ity to perform data compression of images. This is an innovative feature of an

Electra SDR that is specified as a variation, not yet implemented, and may be

needed for a future mission. If so, that project would select the data-compression

feature at requirements time, in order to ensure its availability at integration time.

We also found in the Electra SDR product line that variations that could cause

resource contention tended to be bound early (e.g., features that involve memory,

bandwidth, or power). Variations that could have an impact outside the Electra SDR

box, such as external interfaces, also tended to have early binding to avoid system

integration problems.

3.3.4.2 Recognizing that Binding Time Can Be an Interval

The second enhancement we made was to define the binding time as an interval.

This was done to avoid imposing overly stringent binding times on feature

decisions. As noted above, what we saw in the Electra SDR projects was that

decisions were often made in a preliminary way in the requirements phase but were

reconsidered later in development. We wanted to support this flexibility where it

was appropriate by capturing in the documentation both the feature decisions that

were made during the requirements phase and the interval of time during which it

was still possible to revise the decision.

In order to avoid overly stringent binding times, which can cause unnecessary

rework, complexity, and cost, we define a time interval during which the decision is

made as to which choice, among the alternative or optional features available in the

product line, will be selected for a new product. We document for each parameter of

variation: (1) the earliest possible time at which it makes sense to decide and (2) the

last time at which the decision can be made (the project event by which point the

decision had to be made). For example, several decisions can be made at any point

up until the board is sent for fabrication. At that point, the discussion is closed.

For ease of use by the project, these endpoints in time are tied to standard project

development-phase milestones, as defined by the organization. Binding times may

be documented in a table (Table 3.1 shows a segment of such a table for illustration)

where each variation is a row and each of the seven binding times (project

milestones) is a column. This alignment of binding times with project milestones

during application engineering provides clear guidance to a new project building an

Electra SDR using a familiar vocabulary and timeline.

66 R. Lutz et al.

The flexibility of representing binding time as an interval lessens some of the

risks of too early binding. A recent NASA study noted that developers often do not

realize the “cascade” of increased downstream complexity entailed by their local

decisions [19]. Representing binding time as an interval acknowledges the reality

that different Electra SDR products will bind the same variation feature in some-

what different phases.

We found that, contrary to the notion of binding at a point in time for all products

in a product line, different Electra SDRs needed slightly different binding times.

Many features available on future Electra radios are expected to be waveform

applications for signal processing bought from third party vendors. Sometimes it

is not known early in the development process exactly which waveform

applications will be needed. Having a binding time interval that can accommodate

this type of uncertainty helps reduce the risk of expensive rework to accommodate

the desired waveform. In addition, most such decisions can appropriately be made

during an interval of time. This is especially true for software, such as the different

signal-processing waveform applications or ranging algorithms that will be avail-

able on different Electras.

Handling binding time as an interval is also useful for the Electra SDR product

line because requirements for a particular product often evolve both during devel-

opment and after launch. Indeed, delivery commitments of a new Electra SDR are

sometimes made even before the requirements for the mission are finalized.

Table 3.1 Sample segment of binding time table

Legend
X: An initial design decision is made now, but it will/could be refined later (there may be
 multiple times where design decisions are commonly made/refined)

B: Bound ¯ design choices can not be altered after this time (without major rework)
B(HW): Bound for the hardware components only
B(SW): Bound for software components only (Arrows added in two rows to indicate binding
intervals more clearly)

Binding time

Feature

Proposal Flight
system
design

Subsystem
design

HW
procure-
ment and
build

SW
feature
selection
/buy

SW
implemen
tation

Operations

Internal
visibility for
test and diagnosis

¯¯

¯ ¯

¯¯

¯ ¯

¯ ¯

¯ ¯

¯ ¯

¯

¯

¯

X B (SW)

Frequency
selection

X B (HW) X B (SW)

Operational
scheduling/
sequencing

X X B (SW)

Host spacecraft
control and data
interface

X B (HW)

3 Mining Requirements Knowledge from Operational Experience 67

Moreover, having a binding time interval is useful in knowing whether the feature

decision still can be revised when something unforeseen comes up late in

development.

Cost considerations also play a role, in that it is easier to defer decisions on

desirable but nonessential features until the development budget is better under-

stood. The alternative, that is, selecting features early and later removing them, can

entail costly redesign or modification. Similarly, since the cost of an

unimplemented option may not be accurately predicted, making an early decision

to use such an option is more likely to be reversed than later decisions. In sum,

because evolution of requirements on a particular Electra is expected, having an

interval during which binding is allowed is advantageous.

3.3.4.3 Reflect Temporal Dependencies Among Binding Decisions

The third enhancement we made to the binding time process was to add additional

information to the binding time specifications to describe temporal dependencies

among the decisions. We especially wanted to give the projects an easy way to see

which hardware decisions related to a feature had to be made before the software

decision regarding that feature could be made. Developers identified these temporal

constraints among decisions as an area that needed be better understood and

described. The effort was to make the ordering of related hardware/software

decisions easier to identify and check when new Electras were built.

The binding times of variations are, in accordance with reality, partially ordered

in the CVA. This means that most decisions can be made independently of each

other but that some decisions constrain other, subsequent decisions. This partial

ordering is expressible in the decision model [5]. The dependencies among the

decisions prevent inconsistent, infeasible, or undesirable combinations of choices

from being made. In general, earlier decisions (e.g., hardware manufacture) are

those that are likely to change less often than the later ones (e.g., software

waveform applications).

3.3.5 Product-Line Binding Times: Use of the Results

Table 3.1 (above) illustrates some binding time characterizations in a typical

Electra development cycle. Note that for the Electra product line, the software

variations that can be selected often depend on prior hardware decisions. For

example, the decision as to which frequency channels will be selectable by software

in a new Electra SDR product is limited by the decision as to which frequency band

will be supported by the radio frequency hardware. This is why it is so useful for the

CVA table to distinguish binding times for feature-related hardware decisions from

binding times for software feature decisions.

68 R. Lutz et al.

When a decision is made during application engineering (i.e., when a new

Electra is being built), two checks are run: that the decision was made within the

prescribed time period (binding time interval) and that all decisions that should

have been made before it were made (ordering constraints). More formally, the

intervals and constraints impose a topological ordering on the decisions. The goal is

not to find an optimal sequence of decisions, nor a schedule, nor a critical path,

although the information could be used for all of these. Instead, the goal is to check

that the new Electra project’s sequence of decisions will not cause problems.

Currently projects choose to do this manually, but automation of this check is

feasible [35, 42].

To summarize, in the domain engineering phase, we represented the decisions as

to which features to include in a new Electra SDR as a set of intervals. In the

application engineering phase, where the decisions are made for a new Electra

SDR, we use the binding times for the decisions to show (1) which decisions should

be made in that interval, (2) which decisions must be made by the endpoint

milestones (usually a formal review), and (3) which decisions must have been

made before this decision and (4) to check that any decisions made at this point

are within the intervals specified for them by the decision model.

Interestingly, we found that the single greatest value of the binding time docu-

mentation for the projects was not to verify a new Electra project’s decisions but to

give the project guidance ahead of time as to which decisions had to be made by

what deadlines. That is, the primary use of our results is in providing a checklist for

the project.

In response to suggestions by a telecommunications manager, we also added

information regarding whether or not each variation feature had flown previously.

This was important information because features that have flown tend to be better

understood, with change and defect logs that provide additional insight into their

interfaces and operational profile, and consequently are considered to be lower risk.

Associating this additional information with binding times makes the feature

binding documentation in the CVA more useful to the Electra SDR projects.

3.3.5.1 Product-Line Binding Times: Illustration from MRO

An MRO operational anomaly described in [22] illustrates how difficult and how

important it is to bind the right alternative at the right time. In this case the project

had to reverse an earlier binding decision regarding the parameter-update feature

for the Mars Reconnaissance Orbiter (MRO) Electra. At the time the MRO Electra

SDR was built, there were two choices for updating parameter values during

operations. The first alternative was parameter updating of stopped threads only.

This selection meant that to change operational parameters (such as the telemetry

heartbeat generation interval) during flight, the thread was stopped, new parameters

were passed in, and then the thread was restarted. Parameters changed only when

the thread was not running. The second alternative was to allow parameters to be

updated while the threads were running.

3 Mining Requirements Knowledge from Operational Experience 69

Early in the Electra design for MRO, the decision was made to use the first

alternative, allowing parameter updating only to those threads that were stopped,

rather than to support parameter updating of running threads. An unintended side

effect of the early binding of this decision was that it was later found to be

incompatible with the selection and usage model of the real-time operating system.

Specifically, when a thread was restarted after a parameter update, it could cause

other threads to not release all their resources (e.g., semaphores).

MRO was launched in 2005 and had an extended and successful science mission.

It also provided relay service for Phoenix, a spacecraft that landed on the surface of

Mars in 2008. MRO transmitted commands from Earth ground operations down to

Phoenix, and science data up from Phoenix and on to Earth scientists.

During operations, a critical anomaly occurred. The MRO Electra, after sending

repeated “hail” signals to Phoenix, stopped updating the heartbeat telemetry to the

spacecraft computer. In response to the absent heartbeat, the MRO spacecraft

powered off its Electra as expected, and Phoenix switched to using another space-

craft for relay support. Investigation following the anomaly revealed a root cause to

be inadequate semaphore analysis. The anomaly caused the project to reverse the

original design decision to update only stopped threads. Instead, the other alterna-

tive (supporting parameter updates of running threads) was included in the space-

craft software. The change was made by uplinking the modified software to the

spacecraft.

In this case, the side effects of the early binding included the rework and risk

associated with updating operating software. If the consequences had been under-

stood at the time that the binding decision was made, or if the decision had been

made later, the second alternative would have been selected. This experience from

MRO shows the importance of two of the results described above: extending the

consideration of binding time to requirements definition and recognizing that

binding may occur during a time interval.

3.3.6 Product-Line Binding Times: Related Work

There are few studies of binding time during development. Niu, Savolainen, and Yu

describe how to represent and tolerate inconsistency in viewpoints to support late

binding [43]. Czarnecki, Helsen, and Eisenecker show how the choices available at

each phase can be represented by separate feature models [34]. Dolstra, Florijn, and

Visser describe in two case studies variation points that can be bound at more than

one point in the development cycles [44]. Other studies of binding time have

focused on runtime binding as an alternative to static binding. For example,

Rosenmüller et al. describe flexible binding times that can occur either at compile

time or runtime [45]. This differs from the binding times we describe here, which

occur within a defined interval during development, but may occur at any time

within the interval. In general, runtime binding is fairly rare on spacecraft since

postlaunch software changes are risky.

70 R. Lutz et al.

3.4 Conclusion

This chapter examined two different approaches to improving the engineering of

product-line requirements and illustrated how each has been used in designing and

developing spacecraft. The results seem to be applicable to other product lines, as

well.

In the first approach, a study of defect reports from operational product-line

members, we identified four kinds of requirements knowledge that can be mined

from these reports: (1) newly discovered requirements, which describe missing or

incomplete requirements; (2) unexpected requirements dependencies, which often

involve new knowledge about coordination constraints; (3) tacit requirements

rationales, which are essential to alert future developers to possible unintended

consequences of requirements changes; and (4) misunderstood requirements caused

by incomplete, ambiguous, or inconsistent documentation. This study identified

two enhancements to the engineering of product-line requirements:

• Portray new requirements knowledge by using an extended feature model to

show structural relationships and dependencies.

• Capture new knowledge via Product-line Analysis Defect Paradigms, which

comprise anecdotes or stories about prior anomalies or failures.

In the second approach, a study of binding times in a family of software-defined

radios, we showed that the typical decision gets made in a preliminary way in an

early phase, gets rethought and refined as development proceeds, and becomes firm

at a certain point in the process. This study identified three enhancements to

standard binding times in order to better align them with the development of a

product line:

• Explicitly extend product-line binding times to the requirements phase to better

reflect and guide the preliminary decisions.

• Define the binding time as an interval to support changes in requirements,

interfaces, or component availability during the development process and bug

fixes or enhancements during operations.

• Add information about ordering constraints on the decisions, most especially

about hardware decisions that have to occur before software variations are

selected.

Acknowledgments The authors thank Michel Ingham and Margaret Smith for insightful feed-

back on an early version of this report. The research described in this chapter was carried out in

part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the

National Aeronautic and Space Administration and funded by NASA’s OSMA Software Assur-

ance Research Program. The first author’s research is supported in part by NSF grant 0916275.

Part of this work was performed while the first author was on sabbatical at Caltech and the Open

University, UK.

3 Mining Requirements Knowledge from Operational Experience 71

References

1. Lutz R, Rouquette N (2009) Using defect reports to build requirements knowledge in product

lines. In: Proceedings of the 2nd international workshop on managing requirements knowledge

(MaRK09), Atlanta, 1 Sept 2009, pp 12–21

2. Software Engineering Institute. Product line hall of fame. http://www.sei.cmu.edu/

productlines/plp_hof.html

3. Kang KC, Lee J, Donohoe P (2002) Feature-oriented product line engineering. IEEE Softw

9(4):58–65

4. Pohl K, Bockle G, van der Linden F (2005) Software product line engineering: foundations,

principles and techniques. Springer, Heidelberg

5. Weiss D, Lai C (1999) Software product line engineering: a family-based software develop-

ment process. Addison-Wesley, Reading

6. Lutz R (1993) Analyzing software requirements errors in safety-critical, embedded systems.

In: Proceedings of the IEEE international symposium on requirements engineering, IEEE CS

Press, pp 126–133

7. Chillarege R, Bhandari IS, Chaar JK, Halliday MJ, Moebus DS, Ray BK, Wong M-Y (1992)

Orthogonal defect classification – a concept for in-process measurements. IEEE Trans Softw

Eng, pp 943–956

8. Rasmussen R (2009) Thinking outside the box to reduce complexity in NASA flight software,

App. H. In: Dvorak D (ed) NASA Study on flight software complexity. http://oceexternal.nasa.

gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf

9. Petroski H (1994) Design paradigms: case histories of error and judgment in engineering.

Cambridge University Press, Cambridge/New York

10. Fenton NE, Ohlsson N (2000) Quantitative analysis of faults and failures in a complex

software system. IEEE Trans Softw Eng 26(8):797–814

11. Ostrand TJ, Weyuker EJ (2002) The distribution of faults in a large industrial software system.

In: Proceedings of the international symposium on software testing and analysis, in Software

engineering notes, Roma, Italy, pp 55–64

12. Dalal S, Hamada M, Matthews P, Patton G (1999) Using defect patterns to uncover

opportunities for improvement. In: Proceedings of the international conference on applications

of software measurement, San Jose, CA

13. Lauesen S, Vinter O (2001) Preventing requirements defects: an experiment in process

improvement. Requir Eng J 6:37–50

14. Lutz R, Mikulski IC (2003) Requirements discovery during the testing of safety-critical

software. ICSE 2003, Portland, OR, pp 578–585

15. Shull R, Basili V, Boehm B,Winsor Brown A, Costa P, Lindvall M, Port D, Rus I, Tesoriero R,

Zelkowitz M (2002) What we have learned about fighting defects. In: Proceedings of the

8th IEEE symposium on software metrics, Ottawa, CA, pp 249–258

16. Leszak M, Perry DE, Stoll D (2002) Classification and evaluation of defects in a project

retrospective. J Syst Softw 61(3):173–187

17. Kruchten P, Lago P, van Vliet H (2006) Building up and reasoning about architectural

knowledge. In: QoSA 2006, Lecture notes in computer science, vol 4214, Västerås, Sweden,

pp 43–58

18. Clements P et al (2011) Documenting software architectures, views and beyond, 2nd edn.

Addison Wesley, Upper Saddle River

19. Dvorak DL (ed) (2009) Final report: NASA study on flight software complexity. http://

oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf. Accessed 5

Mar 2009

20. Cho H, Lee K, Kang KC (2008) Feature relation and dependency management: an aspect-

oriented approach. In: SPLC 2008, Limerick, Ireland, pp 3–11

21. Lago P, van Vliet H (2005) Explicit assumptions enrich architectural models. ICSE’05,

St. Louis, MO, pp 206–214

72 R. Lutz et al.

http://www.sei.cmu.edu/productlines/plp_hof.html
http://www.sei.cmu.edu/productlines/plp_hof.html
http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf
http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf
http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf
http://oceexternal.nasa.gov/OCE_LIB/pdf/1021608main_FSWC_Final_Report.pdf

22. Bayer TJ (2008) Mars reconnaissance orbiter in-flight anomalies and lessons learned: an

update. IEEE aerospace conference, Big Sky, pp 1–11

23. Herschbach D (2003) The impossible takes a little longer. In: Marshall SP, Scheppler JA,

Palmisano MJ (eds) Science literacy for the twenty-first century. Prometheus, Amherst

24. Grunbacher P, Briggs RO (2001) Surfacing tacit knowledge in requirements negotiation:

experiences using EasyWinWin. In: Proceedings of the 34th HICSS, Maui, Hawaii,

pp 1062–1069

25. Stone A, Sawyer P (2006) Identifying tacit knowledge-based requirements. IEE Proc Softw

153(6):211–218

26. Stoiber R, Glinz M (2009) Modeling and managing tacit product line requirements knowledge.

In: Proceedings of the 2nd international workshop on managing requirements knowledge,

Atlanta, GA, pp 60–64

27. Savolainen P, Sajaniemi J (2008) Improving knowledge sharing in embedded software pro-

duction line. In: Proceedings of the 1st international workshop on managing requirements

knowledge (MARK’08), Barcelona, Spain, pp 68–72

28. Dutoit A, Paech B (2000) Rationale management in software engineering. In: Chang SK (ed)

Handbook of software engineering and knowledge engineering. World Scientific Publishing,

River Edge, pp 787–816

29. Jirapanthong W, Zisman A (2005) Supporting product line development through traceabilility.

In: APSEC’05, Taipei, Taiwan, pp 506–514

30. Maalej W, Happel H-J (2008) A lightweight approach for knowledge sharing in distributed

software teams. In: Proceedings of the 7th conference on practical aspects of knowledge

management. Lecture notes in computer science, vol 5345, Yokohama, Japan, pp 14–25

31. Mohagheghi P, Conradi R, Killi OM, Schwarz H (2004) An empirical study of software reuse

vs. defect-density and stability. In: ICSE 2004, Edinburgh, Scotland, pp 282–292

32. Trew T (2005) Enabling the smooth integration of core assets: defining and packaging archi-

tectural rules for a family of embedded products. In: SPLC 2005, Rennes, France, pp 137–149

33. van Lamsweerde A, Letier E (2000) Handling obstacles in goal-oriented requirements engi-

neering. IEEE Trans Softw Eng 26(10):978–1005

34. Czarnecki K, Helsen S, Eisenecker UW (2005) Staged configuration through specialization

and multilevel configuration of feature models. Softw Process Improv Pract 10:143–169

35. Dehlinger J, Lutz R (2011) Gaia-PL: a product-line engineering approach for efficiently

designing multi-agent systems. TOSEM 20(4):1–27

36. Lee J, KangKC (2004) Feature binding analysis for product line component development. In: van

der LindenF (ed) PFE2003, Lecture notes in computer science, vol 3014, Siena, Italy, pp 250–260

37. Svahnberg M, van Gurp J, Bosch J (2005) A taxonomy of variability realization techniques.

Softw Pract Exper 35:705–754

38. Batory D, Benavides B, Ruiz-Cortes A (2006) Automated analysis of feature models:

challenges ahead. CACM 49(12):45–47

39. Lux J, Lavin M, Lutz R (2010) Commonality and variability analysis of Electra product line.

JPL, 30 Sept 2010

40. Krueger CW (2004) Product line binding times: what you don’t know can hurt you. In: SPLC.

Lecture notes in computer science, vol 3154, Boston, MA, pp 305–306

41. Koski E, Linn C (2006) The JTRS program: software-defined radios as a software product line.

In: SPLC, Baltimore, MD, pp 182–191

42. Padmanabhan P, Lutz R (2005) Tool-supported verification of product line requirements.

Autom Softw Eng J 12:447–465

43. Niu N, Savolainen J, Yu Y (2010) Variability modeling for product line viewpoints integra-

tion. In: COMPSAC, Seoul, South Korea, pp 337–346

44. Dolstra E, Florijn G, Visser E (2003) Timeline variability: the variability of binding time of

variation points. In: van Gurp J, Bosch J (eds) Workshop on software variability management

(SVM’03), Groningen, pp 119–122

45. Rosenmüller M, Siegmund N, Apel S, Saake G (2011) Flexible feature binding in software

product lines. Autom Softw Eng 18(2):163–197

3 Mining Requirements Knowledge from Operational Experience 73

Chapter 4

DUFICE: Guidelines for a Lightweight

Management of Requirements Knowledge

W. Maalej and A.K. Thurimella

Abstract Working with requirements is a knowledge-intensive task. During the

elicitation, comprehension, or management of requirements, practitioners often

consume and produce additional information such as domain knowledge, rationale,

requirements dependencies, “who knows what”, or how-to’s. However, current

requirements engineering processes and tools lack a systematic support for the

management of knowledge about requirements. This makes it difficult for

practitioners to capture and share such knowledge.

This chapter summarises our experience on implementing a lightweight, prag-

matic approach to capture and share requirements knowledge. We recommend

practitioners to Draw a knowledge landscape, Use lightweight tools, Follow a

simple iterative process, Interact with external communities, Capture tacit knowl-

edge, and Establish a knowledge culture. We introduce these guidelines, report on

motivating examples, and discuss how they can be applied successfully in practice.

4.1 Introduction

Engineering, managing, or implementing requirements are knowledge-intensive

activities, which need diverse information from diverse sources. For example,

requirement analysts need information on the application domain for defining

correct and complete requirements. Change requesters need information on the

W. Maalej (*)

University of Hamburg, Department of Informatics/MOBIS, Vogt-Kölln-Str. 30, 22527 Hamburg,

Germany

e-mail: maalej@informatik.uni-hamburg.de

A.K. Thurimella

Harman Becker Automotive Systems GmbH, Moosacher Str. 48, 80809, Munich, Germany

e-mail: anil.thurimella@gmail.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_4, # Springer-Verlag Berlin Heidelberg 2013

75

mailto:maalej@informatik.uni-hamburg.de
mailto:anil.thurimella@gmail.com

processes followed for tracking the status of their requests. Architects need infor-

mation on the technologies used in order to assess the requirements feasibility [1].

Specific aspects of knowledge management such as documenting decisions [2]
or collecting how-to’s [3] are partly implemented by requirements tools and used in

practice. However, conventional requirements engineering (RE) processes focus on

eliciting, analysing, and validating requirements but rarely on how to gather and

share supplementary information [2, 4]. Organisations often set a low priority for

knowledge management due to its long-term and hard-to-measure return on invest-

ment [5]. Available resources are rather spent on engineering tasks.

This chapter presents practical guidelines for a lightweight management of

requirements knowledge. The guidelines are derived from our experience while

working with six organisations, as well as the discussions, which took place during

the last four international workshops on Managing Requirements Knowledge

(MaRK) [6]. Table 4.1 briefly introduces the referred organisations: two large

companies (LC), two medium-sized companies (MC), one small company, and one

small consortium (SC). At least one of the authors has worked with these organisations

for one or more years, either as an employee, as a consultant, or as a collaboration

partner in more than two projects. During this work, we were involved in diverse RE

activities and were able to observe the processes, practices, success, and failure stories.

We did not intend to scientifically study the knowledge management practices in these

organisations from the beginning. Instead, we synthesised in a post-mortem manner

our observations into a list of guidelines, which we discussed and refined during the

MARK workshop series [6].

The goal of synthesising the guidelines is twofold. First, we aim at helping

practitioners to implement means for managing requirements knowledge with a

minimal effort. Second, we want to increase the awareness for the importance of

this issue. Our long-term vision is to build a community of practice that collects and

exchanges guidelines, best practices, and tools for a lightweight management of

requirements knowledge. We do not believe that knowledge management in

Table 4.1 Organisations from which we derived our guidelines

Organisation Size Short description

Observation

period

LC1 >100,000

employees

Global technology provider designing

transportation, telecom, medical, and energy

systems

4 years

LC2 >100,000

employees

Global outsourcing and IT service provider, in the

banking, health care, and insurance domains

1.5 years

MC1 5,000–10,000

employees

Global company developing infotainment systems

in particular for the automotive industry

3.5 years

MC2 5,000–10,000

employees

European hi-tech company in the field of

telecommunication, radars, and security

2 years

SC1 50–100

employees

Small company designing and customising content

management and internet marketing solutions

4 years

SC2 50–100

people

Project-based consortium of 10 European

organisations, for a large software engineering

project

3 years

76 W. Maalej and A.K. Thurimella

software projects should become a goal on its own. Instead, it should be regarded as

a means for coping with the complexity of requirements engineering work.

We structure our recommendations along six guidelines, which we callDUFICE:
Draw a knowledge landscape (Sect. 4.2), Use lightweight tools (Sect. 4.3), Follow
an iterative process, (Sect. 4.4), Interact with external communities (Sect. 4.5),

Capture tacit knowledge (Sect. 4.6), and Establish a knowledge culture (Sect. 4.7).

In each of these sections, we introduce the guideline and its rationale. Then, we give

recommendations how to implement the guideline in practice with examples from

our experience. We then conclude the chapter and discuss next steps (Sect. 4.8).

4.2 Draw a Knowledge Landscape

A knowledge landscape is an evolving collection of information types, which are

needed for a particular activity. Organisations should draw their knowledge

landscapes on requirements and make them explicit. Drawing includes three actions:

defining, structuring, and publishing. Defining means identifying and labelling

artefacts types, which contain knowledge relevant for working with requirements.

Structuring means developing a simple taxonomy for the artefacts, which helps

practitioners navigate and remember the landscape. Publishing means listing the

artefact types in a visible, accessible place, for example, in a poster near the coffee

machine or a frequently accessed intranet page.

Drawing a landscape raises awareness and creates a common understanding

of requirements knowledge. It also reminds where to access relevant information.

A landscape acts as an index or a navigation map for requirements knowledge and

enables an informal evaluation of “what we have and what not”. For example, MC2

introduced a new requirements engineering tool, starting with similar pilot projects in

three departments. After several months, the team in one department placed a poster

in the kitchen with relevant information for requirements engineering and where to

find it (in which tool). After 1 year, we observed that the members of this team were

overall more satisfied with their requirements engineering than the other teams. The

new tool was used more frequently and consistently. We also observed that this team

consistently documented more knowledge types than in the other two departments.

4.2.1 How in Practice

Figure 4.1 shows an example of a knowledge landscape, organising artefacts

along domain knowledge, engineering, management, collaboration, and how-to

knowledge.

Domain knowledge refers to common knowledge in a particular area or a

specialised discipline. This is usually the domain, for which a system should be

developed. Domain knowledge includes a vocabulary, standards used in the domain

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 77

(e.g. telecommunication or banking standards), and business rules (i.e. domain

constraints to be satisfied when designing or using the system). Vocabularies

(also called glossaries) provide common understanding and definitions of the

terms used in the domain. Apart from the domain terminology, a vocabulary can

also define process- and project-specific terms or keywords from the solution

domain, which help to understand the requirements. The lack of a common vocab-

ulary is often a source for ambiguity [7]. For example, SC2 involved stakeholders

from different backgrounds including programming, system administration, scien-

tific computing, business consulting, and information management. For over 1 year,

the stakeholders had different understandings of simple terms like “software engi-

neering” or “scenarios”. This made the discussions and decision-making very

difficult. Only clearly defining these terms in a shared Wiki with examples helped

getting a more focused discussion, and later a common opinion as well as a detailed

specification and implementation of the requirements.

Engineering knowledge includes requirements “content”, such as the

requirements specifications, dependencies between requirements, as well as other

artefacts needed to understand and use the requirements such as models, test cases,

or system architecture. Also informal notes and personal comments [8] typically

annotating artefacts such as models, requirements, or plans might include useful

information. For example, in SC1 key developers often wrote source code comment

such as “This feature should be supported only for the platform XX. It should be

given highest priority for release YY. See customer request ZZ”. This information

was useful for requirements planning and prioritisation.

Management knowledge includes quality measures, templates, and properties of

requirements such as status and priority. Moreover, issues, decisions, and actions are

part of this knowledge. During a requirements review, open issues, decisions, and

action items on requirements might be identified and discussed. High-level decisions

include strategic decisions on requirements, process decisions, or decisions in prod-

uct management meetings and change control board meetings.

Collaboration knowledge includes information about people, their interactions,

discussions, argumentation chains, and presuppositions. Knowing “who knows

what” is an important piece of requirements knowledge, because people might

have different experiences about different problems. In LC1 and LC2, we observed

Fig. 4.1 Landscape of requirements knowledge: an illustrative example

78 W. Maalej and A.K. Thurimella

that getting to the right person who can answer a question to a requirement often

requires asking 4–5 people. Discussions include information exchanged or shared

between different stakeholders on various problems related to requirements.

Discussion might also include requirements rationale or the reasoning behind

the requirements, a crucial piece of knowledge to understand and implement

requirements especially when people leave the projects. Finally, presuppositions

are assumptions for realising a requirement. The lack of common understanding of

presuppositions often leads to misunderstanding of requirements [9].

How-to knowledge includes information on tools, methods, and processes to be

used for a particular situation while engineering and managing requirements.

Organisation or vendor guidelines include information on how to perform

requirements engineering activities or how to use a tool. We observed that such

how-to’s were collected and maintained both by a central department and the separate

teams in LC1, MC2, and SC1. These how-to’s were especially useful for us when

joining these organisations, since tools and processes used were internally customised.

Also the Capability Maturity Model Integration (CMMI) encourages guidelines [10].

The knowledge landscape is an evolving document, which depends on the

project and organisation context. For example, specific projects might give a

particular importance to defect reports, management reports, or other artefacts

required by the customer (such as a specific database to be maintained). In LC2,

large projects specified in the project contract what requirements-related informa-

tion should be maintained where. Overall, the objective of such a landscape is to

collect, visualise, and remember where requirements-related information can and

should be found, rather than to define a requirements engineering taxonomy.

4.3 Use Lightweight Tools

We recommend using lightweight tools to access and share knowledge. A light-

weight tool includes a minimal set of features, that is, searching, navigating,

capturing, and sharing information. Lightweight tools should be integrated into

main working tools, such as requirements management tools, bug trackers, email

clients, and development environments. They should run in the background as

much as possible and avoid interrupting the workflow of stakeholders.

Knowledge management tools should be easy to learn and to use. Complex tools

dedicated for knowledge management with numerous, partly unneeded features

enforce new formal processes and roles. This would increase the overhead and

decrease the acceptance by stakeholders. Moreover, a tight integration decreases

fragmentation of information and workflows. This reduces the barriers to, for

example, annotate a requirement with a “thought” or link two requirements. We

observed in LC1 and MC2 a large resistance against tools that were introduced as

“separate islands” to manage requirements and related information such as release

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 79

plans and release notes. Teams often tried to create workarounds to manage

requirements knowledge such as action items or rationale in tools they are used to.

4.3.1 How in Practice

Different companies use different requirements management tools. For example,

medium and large companies such as LC1, MC2, and MC1 use commercial tools

to support requirements management, whereas small companies such as SC2 and

SC1 use Wikis and web-based tools. Therefore, it is difficult to give “one-size-

fits-all” recommendation. However, our experience showed that the following

recommendations worked well for most types of projects:

• Use Wikis and maintain its structure carefully [11]. Wikis were used in all

observed organisations either officially or unofficially. Wikis enable an iterative,

collective distillation of knowledge [12]. Their entry barriers are low, since

(a) their syntax is simple, (b) they run in a web browser, and (c) they are informal

without any imposed structure. When a concept gets mature (e.g. a decision with

arguments), a new page can be easily created and linked from other pages.

Moreover, formal requirements as well as other system models can be linked to

Wiki pages, since most tools have a URIs for their internal resources.

However, due to their flat and changing structures, Wikis can become

overloaded and information not easily accessible. We observed, for example,

in SC1 and SC2, that, when knowledge grows and the Wiki becomes bigger and

bigger, people start creating subpages and move links which were previously on

the start page. After a while, a Wiki becomes a deep tree, and the only way to

find information is to search for keywords. New employees joining projects

often compared the Wiki start pages in these organisations with “an information

jungle”. For this reason, it is important to define a main structure for the Wiki

(e.g. as reported in [11]) and maintain it regularly and carefully.

• Use integrated search engines like Lucene [13] or Teamweaver [14]. Such

engines maintain an index of different types of artefacts, including emails,

requirements, requests, Wiki pages, and code. They enable stakeholders to

search for information and navigate to it from a single place. These engines

typically offer simple, keyword, Google-like user interfaces. We observed in all

organisations that stakeholders frequently used keyword search to access

requirements-related information. When the tools did not index this information,

stakeholders used other tools or global search engines for the file system.

Middleton and Baeza-Yates compare several open-source search engines in [15].

• Consider using intranet tools such as news, forums, or polls to publish release

notes or a survey on a relevant technology. We observed that MC2 and SC1

heavily used such tools to create awareness. Employees reported to use these

tools during “their low-concentration times and still learn something useful”.

80 W. Maalej and A.K. Thurimella

• Annotation tools enable the addition of semi-structured metadata. This allows

for an evolutionary structuring of knowledge and advance searches to satisfy

complex information needs. SC2 successfully used Semantic MediaWiki, which

allows annotating Wiki pages with “semantic keywords”. We observed that

stakeholders who used this feature, for example, to generate all requirements

pages relevant to a specific component or a release, reported less problems with

coping with the complexity of the requirements.

• Integrate knowledge management tools into working tools to reduce duplication,

increase reuse, and reduce capturing effort. Many open-source communities

offer plug-ins for commercial tools and vice versa. For example, Eclipse and

OpenOffice provide plug-ins for Enterprise Architect and vice versa. It might be

a good idea to integrate two commercial tools by using a third open-source tool

supported by them.

• Design lightweight tools to run as a background application rather than a main

tool. When it starts, it should neither display an application window nor include

an entry in the tool list. Instead, the system tray can be used as entry point,

similar to wireless network tools, backup managers, or system clock tools.

• Main functionality such as searching or annotating should be accessible via a

shortcut at any point in time in the workflow. This reduces the intrusiveness of

such tools and enables the user to concentrate on their main working tools.

• Gadgets and widgets might inspire the interface design of lightweight knowl-

edge management tools [16]. Views might have a uniform, distinguishable,

semi-transparent background, which makes the views easy to identify. This

also emphasises that such tools run “in parallel” to main applications.

Finally, intelligent tools such as recommendation systems [17] (e.g. “other

stakeholders also used this requirement”) as well as mining tools can extract

knowledge by systematically analysing artefacts and stakeholders behaviours. For

instance, Lutz and Rouquette [18] reported on their experience with continuously

developing and maintaining defect reports in the Jet Propulsion Lab. The defect

reports are extracted from sources such as integration and testing artefacts. The

defect reports helped to identify requirements rationales, new requirements, unex-

pected requirements dependencies, and misunderstood requirements. Juergens et al.

also describe [19] a similar experience of applying clone detection techniques on

requirements, which leads to useful information on requirements quality and

dependencies. Lim et al. [20] suggested to use social networking and crowdsourcing

techniques to identify and prioritise stakeholders. Chapter 14 [21] and Chap. 15 [22]

discuss intelligent tools for requirements engineering in more detail.

4.4 Follow an Iterative Process

We recommend organisations to follow a simple, iterative process to manage

requirements knowledge. Figure 4.2 depicts such a process as the “dual problem

of accessing (searching for and identifying) and sharing (capturing and transferring)

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 81

http://dx.doi.org/10.1007/978-3-642-34419-0_14
http://dx.doi.org/10.1007/978-3-642-34419-0_15

knowledge across organisational subunits” [23]. This process mediates between

two roles: the knowledge consumer, who benefits in a specific situation, and the

knowledge provider, who contributes to the teams’ experience. A requirements

engineering stakeholder could be a knowledge provider, a knowledge consumer,

or both.

The process should be iterative because knowledge (both tacit and explicit) is

continuously evolving. New experiences, people joining, and milestones achieved

change the level of knowledge. The process should reflect the incomplete nature of

knowledge and enable an open world assumption [24]. That is, in addition to true or

false statements, the process should also explicitly allow for unknown or not yet

known. Moreover, organisations should minimise the process overhead of knowl-

edge management. Complex, formal processes would increase resistance of

practitioners as we observed in LC1 and LC2, in particular since the primary

work goal is to engineer requirements rather than to manage knowledge. For

example, LC2 invested a large amount of effort (several man years) to develop an

in-house knowledge management system for project and requirements knowledge.

This system was, however, tightly coupled to a formal elaborate process. While

rolling out the system into the development teams, the main feedback was about the

lack of flexibility and the complexity of the process. While the teams agreed that

they would like to have a systematic way to manage their requirements knowledge,

they claimed that it is unrealistic to adopt formal processes given the high overhead

and the time pressure to deliver work products.

4.4.1 How in Practice

Knowledge should be captured, transferred, and accessed incrementally. This is

similar to agile and lean methodologies [25] (e.g. SCRUM or Crystal Clear).

Fig. 4.2 An iterative knowledge management process (Adopted from [23])

82 W. Maalej and A.K. Thurimella

For example, we observed in MC1 that a typical project involves domain experts

and a requirements manager. Both reviewed requirements over few months. The

review was iterative and included regular status meetings, which covered

experiences, problems encountered, and possible solution strategies. Requirements

themselves and other information were documented and refined iteratively.

Further, knowledge management should be tightly integrated into other pro-

cesses. Instead of “specifying knowledge”, the goal of documenting requirements

knowledge should be to provide required information to relevant stakeholders when

needed as early and efficiently as possible. For example, Gallaro-Valencia

described a practice where requirements knowledge is captured within various

forms, for example, embedded in user stories, acceptance tests, and personal

notes [26].

In addition to drawing the knowledge landscape, an iterative knowledge man-

agement process can be supported by defining templates for capturing the various

artefacts. For example, action items obtained from a requirements review can be

presented using the following template, as we observed in MC1:

Action: Requirement XX should be clarified with N. David

Priority: high

Responsible: B. Bob

Deadline: 25 March 2011

Finally, we recommend identifying users for the specific knowledge artefacts.

This allows implementing a need-driven process. For example, at MC1 information

quality was adjusted depending on the users. Reports with annotated requirements

to be communicated to customers or managers had a higher quality and were more

formal than information to be used within a team.

4.5 Interact with External Communities

We recommend a strong interaction with external communities to exchange knowl-

edge and solve problems that occur in practice. External communities are open-

source communities, requirements working groups, universities, research institutes,

online communities, and other organisations.

Interacting with external community enables knowledge sharing on requirements

engineering practices and simplifies the implementation of particular steps. For

example, we observed twice that employees of MC2 and MC1 used web discussion

forums to learn about experiences in using database management systems for

projects with a very large number of requirements (e.g. > one million). Input from

external communities opens new horizons, brings new ideas into the organisation,

and allows for being up to date with the state of the art.

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 83

4.5.1 How in Practice

We observed that the small organisations SC1 and SC2 benefited much more from

interacting with external communities than large organisation such as LC1 and

LC2. Employees from SC1 and SC2 use to answer their questions on tool usage

and how-to’s in online communities. They also tried to reuse complete sets of

requirements from open-source projects whenever applicable. Overall, stakeholders

typically give a lower priority to such interaction due to time pressure and the focus

on “everyday’s business”. Nevertheless, we recommend implementing at least one

of the following measures:

• Learn from open source. That is, use public “open-source” community knowl-

edge. In many cases, features that you are planning to develop have already been

implemented by open-source or research communities at least prototypically.

Even most innovative features with complex and unique requirements (as we

observed in MC2 for military projects) include rather common sub-features such
as manipulating data or real-time communication. Looking at how open-source

projects solved particular problems and implemented particular requirements

would help to reduce risks and save useful resources.

• Join social networks, including user forums and social networks such as

RE-newsletter [27], Re-online [28], or DXL forum [29]. Post questions on

these forums and continuously browse posts (e.g. once a week). Advise other

colleague to join these networks. Examples of RE communities and social

networks are Requirements Working Group, Seilevel message board [30],

RE-Wissen [31], LinkedIn Group IBM Rational DOORS, RESG groups, and

other groups at LinkedIn, Facebook, Yahoo, Planet, and Twitter. For example, we

observed that requirements engineers working with DOORS in LC1, LC2, MC2,

and MC1 have been benefiting from the DOORS eXtension Language (DXL)

forum within IBM developer works. These companies extend the tool using the

DXL as other companies do. Working with DXL involves dealing with undocu-

mented APIs and limited development environment (e.g. no debugger). Several

hundreds of issues have been solved in the DXL forum. Recently Q&A websites

such as Stack Overflow emerged as a huge and very efficient knowledge source

for software engineering projects, with questions answered after 11 min on

overage [32]. These pages mostly focus on low-level development knowledge.

However, they also contain a significant amount of requirements knowledge such

as framework functionality, how-to’s, domain-specific languages, or interopera-

bility requirements.

• Plan sending employees to events at least once each 6 months. Events include

tool conferences (e.g. Atlassian, Sparx Systems, IBM user conferences), as well

as scientific conferences such as IEEE RE or REFSQ. In addition local events

such as round discussion tables and democamps represent a low-cost informal

initiative. Examples include the GI requirements engineering working groups,

the Eclipse Democamp, and Zurich Knowledge Café. If you are unable to find

84 W. Maalej and A.K. Thurimella

local events, consider organising one. Typically, all what you need for this is a

meeting room, drinks, some snacks, and access to the “right” mailing list or

a forum to announce the event.

4.6 Capture Tacit Knowledge

Knowledge such as decision rationale and presuppositions is often kept implicit in

the head of stakeholders [4, 9]. If captured, tacit knowledge can be shared and

reused. For example, captured presuppositions can be reused by future projects in

the same domain. This is particularly useful for outsourcing organisations focussing

on specific industries, as we observed for LC2.

Moreover, captured tacit knowledge can be referenced and allocated when

people leave [33]. New stakeholders joining the project can better understand

decisions on what the system does or how it does it. Therefore, we recommend

capturing tacit knowledge – as much as possible. Previous contributions, for

example, Ma et al. [34] and Dutoit et al. [4], discussed means to capture such

tacit knowledge. Chapter 2 of this book [35] introduces a formal framework on how

to capture and reason about tacit knowledge.

4.6.1 How in Practice

Tacit knowledge can be documented in plain texts, in structured natural language, or

in forms. Several researchers suggested using model-based approaches such as

Questions, Options, and Criteria (QOC) [36], Issue-based Information Systems

(IBIS) [37], and Decision Representation Language (DRL) [34] to capture decisions.

These models are similar as they all define detailed information models to capture

and reuse issues, alternatives, decisions, and rationale. For a detailed comparison,

we refer the reader to [4].

The main problem of capturing tacit knowledge is the justification of the effort
needed. We recommend therefore that the amount of effort and level of granularity

for documenting decisions should depend on the context, the priority, and the

complexity of the decision-making problem. Decisions on fine-grained requirements

are locally made within small teams. In case of high-level issues, decision-making

involves several key stakeholders and is performed over a long period of time.

Therefore, we recommend a non-monolithic approach. Table 4.2 summarises four

approaches and our recommendations on their applications.

The simplest approach is to document decisions in unstructured natural lan-

guage. This is only recommended to document low-level decisions. IBIS is a simple

approach, which requires identifying issues, proposals, argument, and decision.

We recommend IBIS for documenting decisions if different proposals should

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 85

http://dx.doi.org/10.1007/978-3-642-34419-0_2

be evaluated. The advantage of documenting alternatives is that at long term,

the alternatives could be reconsidered for future decisions. Furthermore, similar

issues could appear and knowledge captured could be reused [38].

QOC differs from IBIS at the process level. While IBIS captures arguments as

they occur, QOC reflects the current state of the discussion [4]. QOC has been used

by scientific community to support various activities in requirements engineering

such as decisions in product management meetings [39], rich traceability [40], and

variability management [41]. QOC is recommended when a rich argumentation is

required based on selection criteria.

QOC or IBIS can be combined with a formal decision-making process. For

example, a decision-making process based on QOC includes the collection and

prioritisation of issues, creation of proposals, identification of selection criteria,

collection of assessments, and formal meetings (e.g. weekly) to take decisions.

With the increase of stakeholder mobility and project distribution, we observed

in all organisations, in particular, in LC1, LC2, and MC1 that stakeholders

exchange emails to discuss issues and therefore knowledge related to requirements.

These emails typically externalise a significant amount of tacit knowledge. Often

decisions are taken within email threads. This trend has large potentials in

“digitalising” tacit knowledge but also has several disadvantages. Information in

discussions often remains private, not accessible to stakeholders, and not linked to

respective requirements. If stakeholders need to refer to the rationale (e.g. in case of

similar issues), they have to search emails, which might have been deleted.

We recommend two lightweight alternatives for using “pure” emails to capture

tacit knowledge. The first option is to capture the issues and alternatives in a Wiki

or a bug tracker and to use the automatic notification features of these systems to

send emails with links to the respective pages. The second option is to annotate the

sentences in the emails with tags such as <issue>, <option>, and <decision>.

Pieces of information can then be extracted from the emails and shared in a

common repository.

Finally, since tacit knowledge is subjective [33], it is relevant to know who had

this tacit knowledge and in which time context. We recommend to record history,
for example, by using a version control system or simple annotation with

timestamps. For example, a team in MC1 maintains requirements within different

Table 4.2 Recommendations on approaches to document decisions

Approach When to use Decision process

Unstructured Recommended only for documenting

personal low priority decisions

No explicit process

required

Simple

structure

Recommended. A “tag-based” template should be

used to document issues and decisions

No explicit process

required

IBIS Recommended when various proposals

are evaluated

A decision-making process

should be defined

QOC Recommended when proposals are evaluated

against goals and non-functional requirements

A decision-making process

should be defined

86 W. Maalej and A.K. Thurimella

excel sheets. Each sheet is owned by an expert and is shared in a public folder. One

of the experts suddenly discovers a new requirement in his sheet. If no history is

recorded, the expert will encounter major difficulties for requesting clarifications on

this requirement. Recording history helps solving such issues. If the tool used does

not record history or if information is entered for another person, the name of the

person and the date should be documented, as in the following example:

Bob, 12.01.2011: Requirement R should be also supported on LINUX.

4.7 Establish a Knowledge Culture

Organisation should harvest a knowledge culture by convincing practitioners to

value the managing and sharing of requirements-related information. A knowledge

culture encourages collecting best practices that cover tools, approaches, and

processes. Such a culture also accepts incomplete, evolving knowledge and

encourages collective contributions.

Knowledge management is a cross-cutting concern. It is affected by how people

collaborate, work, organise themselves, and put extra effort to improve the produc-

tivity and to mitigate risks for organisations. Therefore, it can be ensured only if a

culture is established within the organisation. If stakeholders get convinced with the

value of this activity, they will practice it and convince others as well.

4.7.1 How in Practice

This guideline is probably the hardest to implement. We observed in all six

organisations, in particular in the large- and medium-sized, that it is very difficult

to change the culture of the teams. This process is long lasting and requires a lot of

convincing argumentation and personal experiences. In several cases, we heard “why

should we change a running system?” when we, for example, suggested a particular

practice to improve managing the requirements knowledge. We therefore recom-

mend considering at least one of the following measures, whenever applicable:

• Develop incentive methodologies to encourage quality contributions. For exam-

ple, we observed in MC2 that publishing best practices across the organisation

including the names of the authors motivates contributors to ensure a high quality

and creates a “healthy” competition between experts. We also observed that using

requirements knowledge explicitly in requirements training programmes and

citing best practices within newsletters represent valuable incentives for

contributors. A good incentive is to quantify the produced and consumed knowl-

edge, for example, with a simple metric on the number of accessed/viewed

rationale, how-to’s, or presuppositions.

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 87

• Identify experts, champions, and mentors for various aspects of requirements

engineering and assign them to project newcomers. This ensures informal face-

to-face knowledge sharing and a feedback culture.

• Create discussion groups and workshops on sensitive issues of knowledge man-

agement. These are mainly “knowledge is power”, “not my job”, and “I don’t

have time”. These issues present typical blockers for knowledge sharing in

organisations. We observed that knowledge providers often assume that

organisation knowledge interests are conflicting with personal knowledge

interests. This theory should be discussed and arguments falsifying it should be

collected and shared.

• Create a feedback culture, enabling learning from mistakes and learning by

doing. This can be done, for example, by conducting brief retrospective

meetings and identifying, discussing, and if possible documenting lessons

learned from each project, including what worked well and what not. This is

particularly valuable, for example, when new tools are piloted, a prioritisation

strategy is tested, or new means for capturing rationale are used.

• If possible, identify and quantify the return on investment of lightweight knowl-

edge sharing. For example, estimate time saved in a requirements engineering

activity because information is reused easily from the Wiki, and communicate.

• Maintain your knowledge landscape continuously, and encourage continuous

small contributions.

4.8 Conclusion

When applied to requirements engineering, formal, process-based knowledge man-

agement tools and practices introduce an additional overhead, which is difficult to

justify to the management and to the stakeholders. The return on investment is in the

long term and difficult to measure. However, systematically managing requirements

knowledge allows for saving time to find information and share experiences. We

suggest building a community of practice on managing requirements knowledge.

We summarised six major guidelines inspired from our experience with six different

organisations.

We argued how drawing a knowledge landscape helps visualising the different

types of artefacts and establishing a common understanding among stakeholders on

where to access and share which information. Using lightweight tools reduces the

workflow interruptions and information fragmentation and therefore the overhead of

knowledge management. Following an iterative process supports stakeholders deal-

ing with the incomplete evolving nature of requirements and reducing the contribu-

tion barriers. Interacting with external communities ensures the incorporation of the

state of the art and exchange of experiences. Capturing tacit knowledge allows

for reusing it and for being independent from individuals. Finally, establishing a

knowledge culture enables to deal with the social issues of knowledge management.

88 W. Maalej and A.K. Thurimella

We created an online platform to share such guidelines on www1.cs.tum.edu/

mark/community.We will further collect experiences and case studies and link this

community to the scientific workshop International Workshop on Managing

Requirements Knowledge. One successful example is e20cases.org, which does

the same for social software in professional organisations.

Acknowledgments We thank Barbara Paech, Dennis Pagano, and Yang Li for the constructive

and detailed reviews. We are also grateful to all MaRK’08–’10 participants and to our colleagues

from the referred companies for the fruitful discussions and the feedback on early versions of this

chapter. This work has been supported in part by the FastFix project and TEAM project, which are

funded by the 6th and 7th Framework Programmes of the European Commission, Grant Agree-

ment No. FP6-35111 and FP7-258109.

References

1. Finkelstein A, Kramer J, Nuseibeh B, Finkelstein L, Goedicke M (1992) Viewpoints: a

framework for integrating multiple perspectives in system development. Int J Softw Eng

Knowl Eng 2–1:31–57

2. Alenljung B, Persson A (2005) Decision-making activities in the requirements engineering

decision processes: a case study. In: ISD 2005, Karlstad, pp 707–718

3. Mavin A, Wilkinson P, Harwood A, Novak M (2009) Easy approach to requirements syntax

(EARS). In: Requirements engineering conference, 2009, RE ’09, 17th IEEE international,

Atlanta, USA, pp 317–322

4. Dutoit AH, McCall R, Mistrik I, Paech B (2006) Rationale management in software engineer-

ing: concepts and techniques. In: Rationale management in software engineering. Springer,

Berlin, pp 1–48

5. Rus I, Lindvall M, Sinha SS (2001) Knowledge management in software engineering a state-

of-the-art-report. Fraunhofer Center for Experimental Software Engineering Maryland and the

University of Maryland for Data and Analysis Center for Software, Department of Defence,

Maryland

6. Maalej W, Thurimella AK (2010) Managing requirements knowledge. International workshop

on 2008–2010, IEEE. http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber¼
5611788

7. Kiyavitskaya N, Zeni N, Mich L, Berry DM (2008) Requirements for tools for ambiguity

identification and measurement in natural language requirements specifications. Requir Eng 13

(3):207–239

8. IEEE Standard 1063–2001 (2001) IEEE standard for software user documentation, ISBN:

0-7381-3099-0

9. Ma L, Nuseibeh B, Piwek P, De Roeck A, Willis A (2009) On Presuppositions in requirements.

In: Proceedings of 2nd international workshop on managing requirements knowledge,

MaRK’09 IEEE, Atlanta, USA, pp 27–31

10. CMMI DEV, CMMI for development v1.3 (2010) http://www.sei.cmu.edu/reports/10tr033.

pdf

11. Decker B, Ras E, Rech J, Jaubert P, Rieth R (2007) Wiki-based stakeholder participation in

requirements engineering. In: IEEE software, vol 24-2, pp 28–35

12. Maalej W, Panagiotou D, Happel HJ (2008) Towards effective management of software

knowledge exploiting the semantic wiki paradigm. In: Software Engineering, GI- LNI,

Munich, Germany, vol 121, pp 183–197

13. Lucene Homepage (2012) http://jakarta.apache.org/lucene/

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 89

http://www1.cs.tum.edu/mark/community
http://www1.cs.tum.edu/mark/community
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5611788
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5611788
http://www.sei.cmu.edu/reports/10tr033.pdf
http://www.sei.cmu.edu/reports/10tr033.pdf
http://jakarta.apache.org/lucene/

14. Teamweaver Homepage (2012) http://www.teamweaver.org/

15. Middleton C, Baeza-Yates R (2007) A comparison of open source search engines, TR.

Universitat Pompeu Fabra, Department of Technologies. http://wrg.upf.edu/WRG/dctos/

Middleton-Baeza.pdf

16. Udell S (2009) Pro web gadgets for mobile and desktop. Apress, Berkely

17. Maalej W, Thurimella AK (2009) Towards a research agenda for recommendation systems in

requirements engineering. In: MaRK’09, IEEE, Atlanta, USA, pp 32–39

18. Lutz R, Rouquette N (2010) Using defect reports to build knowledge in product lines. In:

Proceedings of 3rd international workshop on managing requirements knowledge, IEEE,

Sydney, Australia, pp 12–21

19. Juergens E, Deissenboeck F, Feilkas M, Hummel B et al (2010) Can clone detection support

quality assessments of requirements specifications? In: Proceedings of ICSE’10, ACM, Cape

Town, South Africa, pp 79–88

20. Lim SL, Damian D, Ishikawa F, Finkelstein A (2013) Using web 2.0 for stakeholder analysis:

StakeSource and its application in ten industrial projects. In: Managing Requirements Knowl-

edge, Springer

21. Felfernig A, Ninaus G, Grabner H, Reinfrank F, Weninger L, Pagano D, Maalej W (2012) An

overview of recommender systems in requirements engineering. In: Managing Requirements

Knowledge, Springer

22. Knauss E, Meyer S (2013) Experience-based requirements engineering tools. In: Managing

Requirements Knowledge, Springer

23. Hansen MT (1999) The search-transfer problem: the role of weak ties in sharing knowledge

across organization subunits. Adm Sci Quart 44(1):82–111

24. Drummond N, Shearer R (2006) The OpenWorld Assumption – or Sometimes its nice to know

what we don’t know, The University of Manchester. http://www.cs.man.ac.uk/~drummond/

presentations/OWA.pdf

25. Poppendieck T, Poppendieck M (2003) Lean software development: an agile toolkit. Addison-

Wesley Professional, Boston

26. Gallaro-Valencia R, Sim S (2009) Continuous and collaborative validation: field study of

requirements knowledge in agile. In: Proceedings MaRK’09, Atlanta, USA

27. Newsletter der Fachgruppe Requirements Engineering (2012) https://mail.gi-ev.de/mailman/

listinfo/re-newsletter

28. Requirements Engineering Online Discussion Forum (2012) http://discuss.it.uts.edu.au/mail

man/listinfo/re-online

29. DXL forum (2012) http://www.ibm.com/developerworks/forums

30. Seilevel message board (2012) www.seilevel.com/messageboard

31. RE Wissen (2012) http://www.re-wissen.de/

32. Mamykina, L, Manoim B, Mittal M, Hripcsak G, Hartmann B (2011) Design lessons from the

fastest Q&A site in the west. In: Proceedings of the SIGCHI conference on human factors in

computing systems CHI ’11, ACM, Vancouver, Canada, pp 2857–2866

33. Gacitua R, Ma L, Nuseibeh B, Piwek P, de Roeck AN, Rouncefield M, Sawyer P, Willis A,

Yang H (2009) Making tacit requirements explicit. In: Proceedings MaRK’09, Atlanta, USA,

pp 40–44

34. Lee J (1991) Extending the Potts and Bruns model for recording design rationale. In:

Proceedings of the 13th international conference on software engineering (ICSE”13), IEEE

Computer Society Press, Los Alamitos, pp 114–125

35. Gervasi V, Gacitua R, Rouncefield M, Sawyer P, Kof L, Ma L, Piwek P, Roeck A, Willis A,

Yang H, Nuseibeh B (2013) Unpacking tacit knowledge for requirements engineering. In:

Managing Requirements Knowledge, Springer

36. MacLean A, Young RM, Bellotti VME, Moran TP (1991) Questions, options, and criteria:

elements of design space analysis. Hum Comput Interact 6(3–4):201–250

37. Kunz W, Rittel H (1970) Issues as elements of information systems, vol 131. University of

California at Berkeley, Institute of Urban and Regional Development, Berkeley

90 W. Maalej and A.K. Thurimella

http://www.teamweaver.org/
http://wrg.upf.edu/WRG/dctos/Middleton-Baeza.pdf
http://wrg.upf.edu/WRG/dctos/Middleton-Baeza.pdf
http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf
http://www.cs.man.ac.uk/~drummond/presentations/OWA.pdf
https://mail.gi-ev.de/mailman/listinfo/re-newsletter
https://mail.gi-ev.de/mailman/listinfo/re-newsletter
http://discuss.it.uts.edu.au/mailman/listinfo/re-online
http://discuss.it.uts.edu.au/mailman/listinfo/re-online
http://www.ibm.com/developerworks/forums
http://www.seilevel.com/messageboard
http://www.re-wissen.de/

38. Thurimella AK, Bruegge B (2007) Evolution in product line requirements engineering:

a rationale management approach. In: RE 07, New Delhi, pp 254–257

39. Dutoit AH (1996) Rationale management in requirements engineering. Ph.D. dissertation,

Carnegie Mellon University

40. Hull E, Jackson K, Dick J (2004) Requirements engineering. Springer, London

41. Thurimella AK, Bruegge B, Creighton O (2008) Identifying and exploiting the similarities

between rationale management and variability management. In: Proceedings 12th interna-

tional software product line conference (SPLC 2008), Limerick, pp 99–108

4 DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge 91

Part II

Representing Requirements
Knowledge for Reuse

“Reuse Reduce RECYCLE!

Save the world, no need to be superman.

I bring what I can to the table.”

— Margaret Irvine

Walid Maalej. Printed with permission

Chapter 5

Constructing and Using Software Requirement

Patterns

X. Franch, C. Quer, S. Renault, C. Guerlain, and C. Palomares

Abstract Software requirement reuse strategies are necessary to capitalize and

reuse knowledge in the requirement engineering phase. The PABRE framework is

designed to support requirement reuse through the use of software requirement

patterns. It consists of a meta-model that describes the main concepts around the

notion of pattern, a method to conduct the elicitation and documentation processes,

a catalogue of patterns, and a tool that supports the catalogue’s management and

use. In this chapter all these elements are presented in detail making emphasis on

the construction, use and evolution of software requirement patterns. Furthermore,

the chapter includes the construction of a catalogue of nontechnical software

requirement patterns for illustration purposes.

5.1 Introduction

Requirement elicitation is the process of acquiring system requirements from

system stakeholders. The quality of this process is critical to make information

technology (IT) projects a success.

When a company runs many elicitation processes over time, it is often the case

that a significant proportion of requirements is recurrent and belongs to a relatively

small number of categories, especially in the case of nonfunctional [1] and non-

technical [2] requirements. Capitalizing on knowledge acquired in previous

projects seems in this way an adequate strategy to improve the quality of

requirements and then increase the changes of project success, as well as to increase

X. Franch (*) • C. Quer • C. Palomares

Universitat Politècnica de Catalunya, Barcelona, Spain

e-mail: franch@essi.upc.edu; cquer@essi.upc.edu; cpalomares@essi.upc.edu

S. Renault • C. Guerlain

Centre de Recherche Public Henri Tudor, Luxembourg, Luxembourg

e-mail: samuel.renault@tudor.lu; cindy.guerlain@tudor.lu

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_5, # Springer-Verlag Berlin Heidelberg 2013

95

mailto:franch@essi.upc.edu
mailto:cquer@essi.upc.edu
mailto:cpalomares@essi.upc.edu
mailto:samuel.renault@tudor.lu
mailto:cindy.guerlain@tudor.lu

the efficiency of the requirement elicitation process. This chapter proposes an

application of the concept of software requirement pattern as a means to capture

and capitalize requirement knowledge in the context of IT systems and services

procurement projects. Specifically it presents this concept in the mark of the

PABRE framework making emphasis on the construction, use, and evolution of

software requirement patterns.

The chapter is structured as follows. Section 5.2 presents the context of our

work. Then in Sect. 5.3, we summarize the state of the art on software requirement

patterns. We present the main elements of our PABRE approach in Sect. 5.4, and in

Sect. 5.5 we describe the patterns and catalogue structure as well as their construc-

tion process. In Sect. 5.6, we detail our experience in building a catalogue of

patterns for nontechnical requirements. Finally, Sect. 5.7 presents some conclusions

and future work.

5.2 Context

The work presented in this chapter stems from the needs of the Public Research

Centre Henri Tudor (TUDOR) at Luxembourg when conducting IT procurement

projects over time. Since 2004, TUDOR works in collaboration with freelance and

independent consultants. These consultants are federated in a business network that

we refer as CASSIS. They are trained to innovative methods produced by research

projects, and they use these methods in industrial contexts. TUDOR monitors their

activity to ensure that they do not deviate over the time. One of the main

methodologies delivered to consultants is a requirement engineering method used

to design software requirement specification (SRS) documents for IT procurement

projects in small- and medium-size companies [3].

Consultants work in collaboration with customers to help them in identifying their

needs for a new IT system supporting their business activities and then selecting the

most relevant system accordingly to their needs. In this particular context, require-

ment engineers’ consultants define SRS for external customers and not for their

internal purpose. Consultants’ customers are usually looking both for an IT system

and for its implementation. In other words, they have requirements towards an IT

system and towards additional services. For this reason, the scope of the SRS often

encompasses functional, nonfunctional, and nontechnical requirements.

The initial goal of the SRS is to serve as a basis for a competitive procurement

process. So their primary use is for IT sales managers to understand the needs of

the customer and to propose a commercial bid. Only when this process is achieved,

the SRS is used in second intend as source for the design or the customization of the

selected IT system.

So far, consultants and TUDOR have performed more than 40 projects in

compliance with the methodology. The initial approach for capitalizing require-

ment knowledge among the consultants was quite basic. It consisted in reusing

fragments of a former SRS as a basis to build the new SRS. This approach was

96 X. Franch et al.

simple to use but required to be aware of the former projects, which was not easy for

the consultants due to their decentralized organization in a business network.

The second TUDOR approach to capitalize requirement knowledge was to

design SRS’ templates based on existing SRS with similarities. This approach no

longer requires the consultants to be aware of all former projects. However, the

SRS’ templates remained unstructured as domain experts built them both on their

own knowledge and on assumptions of similarities found in existing SRS but

without any underlying meta-model.

The limitations of these reuse approaches led us to the adoption of a more

elaborated framework for requirement reuse.

5.3 Patterns in Requirement Engineering

As in any other software engineering discipline, reuse has been a matter of research

in requirement engineering. Reviewing the literature, we may find different

approaches for implementing a reuse program within the context described in

Sect. 5.2, i.e., facilitating the process of requirement elicitation and also improving

the quality of the resulting SRS. We may classify these approaches depending on

the structure of capitalized knowledge, the language in which the requirements are

expressed, the classification and browsing capabilities of the repository, and the

existence of a method for building, evolving, and exploiting the requirement

knowledge repository. From these aspects, in this chapter we focus on the first

one, the structure of the capitalized information using patterns.

In the context of engineering, the term “pattern” was introduced by the architect

Christopher Alexander that proposed them to improve the quality of the buildings’

construction. In his view, “each pattern describes a problem which occurs over and
over again in our environment, and then describes the core of the solution to that
problem, in such a way that you can use this solution a million times over, without
ever doing it the same way twice” [4]. This formulation is so generic that fitted well

in other engineering domains and in particular, software engineers adopted it in

several contexts, remarkably related with software design (being software design

patterns [5] and software architectural patterns [6] the most representative

approaches) but also in other software development phases. In particular, several

approaches have proposed the use of patterns as a reuse strategy in the requirement

engineering phase, which can be roughly classified as follows:

• Specific pattern-based approaches. We group here those approaches whose

patterns cannot be applied in every project but just in those that are compliant

to some property. Examples are:

– Artifact-oriented patterns. Patterns that apply to a particular type of model or

diagram. For instance, use case patterns propose use cases to be included in the

specification of a system to ensure some properties or achieve some goals [7].

5 Constructing and Using Software Requirement Patterns 97

– Domain-oriented patterns. Based upon the notion of variability proposed in

domain engineering. While common requirements are necessary in any

system of the domain, other requirements can be chosen or not for a specific

system [8]. In some of these proposals, rules are provided to establish

dependencies among variable parts of the requirement specifications.

• Refinement-oriented pattern-based approaches. They establish how the attain-

ment of certain goals can be achieved in a certain system. They usually adopt a

goal-oriented modeling language as i* [9] or KAOS [10]. Requirement

engineers are guided in the process of deciding which requirements are neces-

sary to implement in a system to satisfy certain goals.

• Template-oriented pattern-based approaches. They propose templates with some

additional information about when to use them. The ultimate goal of these

approaches is to produce an SRS:

– In their simplest form, they do not follow any structure, or this structure is

very basic even if enriched with some search facilities [11, 12]. In these cases,

they promote direct reuse (i.e., copy and paste) of templates as requirements,

which are written as natural language sentences usually compliant to a

language grammar [13].

– More elaborated approaches include additional information about the context

where they can be applied that guides the requirement engineer during the

requirement elicitation process [14, 15]. Usually these proposals are general

purpose in terms of domain although others are specific (e.g., [16, 17] for real-

time patterns). Most of them still keep natural language as preferred notation

for expressing the requirements, but we may find some that use other

notations (e.g., UML [16]) or even combine two (this is the case of [17]

that combines natural language with real-time temporal logics).

In the rest of the chapter, we present our PABRE template-oriented approach to

conduct pattern-based requirement elicitation. It consists of a meta-model that

describes the main concepts around our notion of pattern [18], a method to conduct

the elicitation process [19], a catalogue of patterns classified according to some

schema, and a tool that supports its management and use [20]. The main result of

the application of PABRE is an SRS whose requirements are written in natural

language.

5.4 Software Requirement Patterns in PABRE

In this section we describe the notion of software requirement pattern (SRP) as used
in PABRE. We present the structure of patterns through a meta-model (see Fig. 5.1)

and an example, the economic information pattern (see Fig. 5.2), that illustrates the
SRP structure and helps to understand the meta-model behind them.

98 X. Franch et al.

An SRP is a pattern that, when applied, produces software requirements related

to the objective (goal) of that pattern. Giving an analogy with the context-problem-

solution Alexander’s definition of patterns, goals correspond to problems to be

solved by applying the SRP. Applying the economic situation SRP, we may

produce requirements related to the goal of assessing the economic situation of
the supplier that procures a software system.

In our analysis of SRS, we have observed that a goal can be achieved in different

ways. To deal with this situation, we define an SRP as consisting of several forms,
each one representing a different solution for achieving the goal. In the economic
situation SRP, its goal can be attained by asking the supplier the relevant economic

information (economic situation information form) or by setting conditions or

prerequisites on the economic situation that the supplier should have (economic
situation prerequisites form).

Nevertheless, even considering a form, we may find variations in the way they are

detailed in different specifications. We have therefore organized a form into parts,
each of them being a template. Each form is characterized by a fixed partwhich states
the minimal requirement that always applies when applying that form and some

extended parts which may be applied or not in each occurrence in a project.

The fixed part always becomes a requirement when an SRP is applied with this form.
Extended parts are only used if more precise information is required in the specification.

Due to this nature, the fixed part is usually quite generic and hardly measurable. For

instance, the first form of economic situation is the supplier shall provide economic

Parameter

Metric

Parameter
Relationship

Pattern Item

template
Fixed Part Extended Part

Pattern Form

Requirement Pattern

Basic Classifier

type

Form
Relationship

*

** 1*

*

1 1

*1

1

1

1..*

*
1..*

{ord}

goal

**

Relationship

Pattern
Relationship

Part Relationship

type

*

*

*
inv

Compound Classifier

Classifier

/ Root

Classification Schema

1..*

2..*

11..*

*

*

*

1

Part Constraint

constraint

1..*

1

Fig. 5.1 Meta-model for software requirement patterns

5 Constructing and Using Software Requirement Patterns 99

information of its company, while the two extended parts identify the type of informa-

tion required (company’s turnover or net income) and the period of time.

In general, fixed and extended parts must conform to some part constraint
represented by means of a regular expression that may involve some predefined

operators (e.g., for declaring multiplicities or dependencies among parts, as

excludes and requires). In the economic situation SRP, each part of the forms

may be used just once in a specification project, and there are neither excludes
nor requires dependencies among them.

From a syntactic point of view, both fixed and extended parts are similar,

therefore an abstract superclass pattern item is included in the meta-model. Their

templates are composed by the text to be used as a requirement and optionally some

parameters to be instantiated when applying the pattern. Parameters establish their

metric, eventually a correctness condition inv, and also may be related to other

parameters (belonging to other patterns) such that they must have the same value.

The second form in the economic situation SRP declares two extended parts that

identify additional conditions on this form. For example, the second extended part

allows stating prerequisites on the net supplier incomes (by assigning values to the

� Fixed : The supplier shall fulfill
some economic situa�on
prerequisites.

� Extended 1: The supplier's company
shall have a minimum turnover
amount currencyUnit on the last
amountOfTime �meUnit.

� Extended 2: The supplier's company
shall have a minimum net income of
amount currencyUnit on the last
amountOfTime �meUnit.

Req. Pa�ern : Economic Situa�on
Goal : Assessing the economic situa�on of the supplier

� amount, amountOfTime: integer > 0
� �meUnit: domain {years, months, …}
� currencyUnit: domain {USD, EUR, GBP, JPY,....}

Re
qu

ir
em

en
t

pa
rt

s

� Fixed : The supplier shall provide
economic informa�on of its
company.

� Extended 1: The supplier shall
provide informa�on of its
company's turnover on the last
amountOfTime �meUnit.

� Extended 2: The supplier shall
provide informa�on of its
company's net income on the last
amountOfTime �meUnit.

Does the client require any specific condi�on on the economic situa�on of the supplier?

Re
qu

ir
em

en
t

pa
rt

s

� Fixed part cannot be applied more
than once.

� Extended 1, Extended 2 parts
cannot be applied more than once.

Co
ns

tr
ai

nt
s

� Fixed part cannot be applied more
than once.

� Extended 1, Extended 2 parts can be
applied more than once if they are
applied with different values of the
(amount, currencyUnit) parameters.

Co
ns

tr
ai

nt
s

Economic Situa�on Informa�on Form Economic Situa�on Prerequisites Form

Fig. 5.2 The economic situation software requirement pattern

100 X. Franch et al.

parameters amount and currencyUnit, e.g., 1M EUR) for a certain period of time

(by assigning values to the parameters number and timeUnit, e.g., 2 years). The

metrics of these parameters are detailed at the bottom of the figure.

SRP are not isolated units of knowledge; instead there are several types of

relationships among them. In the PABRE approach, we identify three types of

relationships:

– Pattern relationship. The most general relationship that implies all the forms and

all the forms’ parts of the related patterns.

– Form relationship. A relationship at the level of forms implies all the parts of the

related forms.

– Part relationship. The relationship only applies to these two parts.

In any case, if A is related to B and A is applied in the current project, the need of

applying or avoiding B must be explicitly addressed. The types of relationships are

not predetermined in the meta-model to make it more flexible. The superclass

relationship includes an attribute to classify each relationship.

5.5 A Catalogue for Software Requirement Patterns

The existence of patterns by themselves does not ensure an efficient implementa-

tion of requirement reuse. It is necessary to set up an infrastructure able to support

the analyst to organize and apply them. In the PABRE framework, we are coping

with this aspect through a catalogue of SRP.

5.5.1 Structure of the Catalogue

PABRE’s catalogue stores the collection of SRP identified so far. A fundamental

issue is the need of classifying them over some criteria for supporting their search.

In fact, it is important to observe that different contexts (organizations, projects,

standards, etc.) may, and usually do, define or require different classification
schemas. History shows that trying to impose a particular classification schema

does not work. For this reason, PABRE decouples SRP from classification schemas

(see Fig. 5.3): the latter just impose different structuring schemas on top of the

former. SRP are bound to basic classifiers, while compound classifiers just impose

the usual hierarchical structure of any classification schema. Several roots for a

classification schema are allowed.

The meta-model (Fig. 5.1) shows that an SRP may be bound to several classifi-

cation schemas and even to more than one basic classifier in a single classification

schema. In other words, we do not impose unnecessary constraints that could lead to

rigidness. For instance, a classification schema may not cover all existing SRP (i.e.,

some SRP may not be classified).

5 Constructing and Using Software Requirement Patterns 101

5.5.2 SRP Catalogue Construction

The current PABRE SRP catalogue was built as a result of analyzing the SRS of a

certain number of projects in which TUDOR was involved. These SRS are usually

broken down into three distinct parts: functional requirements, nonfunctional

requirements (NFR), and nontechnical requirements (NTR). Our previous experi-

ence in quality models [21] and in requirement engineering projects and the

analysis of TUDOR SRS showed us that nonfunctional requirements and nontech-

nical requirements have higher reuse frequency than functional requirements. Then,

our aim for the first version of the catalogue was to represent those SRP whose

application leads to NFR that appear in the mentioned SRS [22]. From the experi-

ence gained, we recently finished the second version of the catalogue in which we

added the SRP corresponding to the NTR, as presented in Sect. 5.6.

In both cases, the steps (Fig. 5.4) were:

1. Alignment. First, the requirements of the different SRS are consolidated and

aligned according to their type. This corresponds to the identification of the

departing requirements in the SRS. To make this alignment more reliable, it is

convenient to identify the concepts addressed by requirements. As part of the

process, requirements need to be leveraged, which usually requires decomposing

complex requirements into simpler ones. As a result, this step delivers a set of

requirement types.

2. Analysis. For each of these types, a study of their adequacy as an SRP is

performed. The main criterion of course is repetition that identifies high

ISO/IEC
9126-1
Classification
Schema

TUDOR
Classification
Schema

Other
Classification
Schema SRP Catalogue

Fig. 5.3 Software requirement pattern classification schemas

102 X. Franch et al.

probability of reuse: those requirements that appear in most or all of the SRS are

clear candidates. But this is not the only condition. A requirement appearing in a

few, even just one, SRS may also be considered adequate as SRP. In this step,

expert assessment is the cornerstone, since experts are the only ones that may

say, e.g., that a requirement appearing in just one SRS could in fact have

appeared in all of them, in other words that its absence is a flaw. As a result,

this step restricts the former set to a subset with all the types that may be

considered patterns’ seed or SRP candidates. The different requirement types

are converted into SRP candidates mainly by means of abstraction, but also a

consistency analysis and grammatical improvement are applied.

3. Formulation. The selected SRP candidates are converted into SRP. Not every

candidate is necessarily converted into a different SRP, since some of them may

be considered close enough as to be integrated in the same pattern. As a result,

the final structure of the patterns, their forms, their parts, and parameters,

emerges. In the process, again with expert assessment, the final structure of

every SRP may be slightly different than the corresponding requirements in the

SRS, since experts may consider that for future projects these differences could

be useful. For the templates, syntactical conventions may be enforced.

4. Catalogue construction. Finally, the patterns evolve from individual artifacts

into an articulated structure of knowledge, stored in the catalogue. Two things

need to be done. First, the SRP need to be classified according to the existing

classification schemas. Second, the relationships among SRP are established, as

well as those (less frequent) among parameters.

SRS

Requirement types

SRP candidates

SRP SRP catalogue

SRS

irement types

SRP candidates

Alignment

Analysis

Formula�on
Catalogue
construc�on

Fig. 5.4 Software requirement pattern catalogue construction process

5 Constructing and Using Software Requirement Patterns 103

5.5.3 The SRP Catalogue Use

The SRP catalogue is used during the requirement elicitation phase of IT systems

and services procurement projects. During this use, requirement engineers select

SRP from the catalogue that apply to the particular project and convert them into

the real requirements that finally configure the SRS. The complete PABRE method

is detailed in [7]. In a nutshell, it converts requirement elicitation into a process of

search in, and pick-up from, the SRP catalogue (Fig. 5.5).

During elicitation, the catalogue is explored according to the following

procedure:

• Pattern exploration. The requirement engineer selects the next applicable pattern

according to some criteria (e.g., the classification schema, the SRP

relationships). Based on an explanation and with continuous support from the

engineer, the customer decides whether the pattern applies in the project or not.

• Form exploration. For each selected pattern, the requirement engineer explains

the different forms. Then the customer chooses the form that suits his/her

situation and moves to the next step. If no form meets the customer

requirements, the requirement engineer elaborates the requirement(s) and

moves to the requirement creation step.

• Part exploration. For each selected form, the requirement engineer explains the

different extended parts. If it is necessary, the consultant skims over the parameters

and gives example of possible values, in order to improve understanding of the

parts. The customer chooses the extended parts that considers necessary for his/her

project. As well as in the previous steps, if no extension fits completely into the

customer needs, it is necessary to elicit the missing bits separately.

At this point, the requirement may be defined in different ways. Figure 5.6 shows

the three types or requirement subclasses and their relationships regarding the SRP
meta-model:

• Applied pattern. For the selected parts, the requirement engineer gives more

details about the parameters that apply (e.g., details on possible correctness

Pa�ern
explora�on

Form
explora�on

Part
explora�on

Requirement
applica�on

Requirement associa�on

Catalogue evolu�on

PABRE method

SRS
document

Feedback
repository

Pa�ern
catalogue

Requirement
crea�on

Fig. 5.5 Overview of the PABRE method

104 X. Franch et al.

conditions, dependencies to/from other parameters) and presents the list of

values for each parameter. Then the customer chooses the values for the

parameters. The requirement engineer turns the customized part(s) into a

requirement. The requirement engineer needs to check consistency,

dependencies, and correctness of the selected parts. When the requirement

engineer detects a conflict or an inconsistency, he/she warns the customer and

they try to solve the conflict. The resulting requirement is represented with the

applied pattern subclass.

• New requirement or associated requirement. Sometimes, the requirement engineer

needs to create a new requirement from scratch because the restriction expressed

by the requirement cannot be defined as application of any SRP. We distinguish

one particular case: if the new requirement is related with an existent pattern, since

it has its same goal, but it is not its direct application, this new requirement is an

associated requirement. An associated requirement consists of partial and small

changes of the pattern or the forms (its part’s text or parameters).

5.5.4 The SRP Catalogue Evolution

Catalogue evolution allows capitalizing the different projects and keeping the SRP

catalogue up-to-date. The requirement experts identify the patterns, forms,

extended parts, and parameters which are the most and less used. According to

their feedback, different actions can be undertaken to evolve the catalogue.

Pattern Item

template
Fixed Part Extended Part

Pattern FormRequirement Pattern

*

1 1

1

1

1..*

SRP catalogueSRP use

Parameter Metric11..*

inv

1

{ord}*

Applied Pattern

Value
Associated

Requirement

New Requirement

Requirement

Project

1

*

{disjoint, complete}

1

*

1*

1*

{incomplete}

**

1 1

application of

form associated

pattern associated

0..10..1

*

*

Fig. 5.6 Use of software requirement patterns

5 Constructing and Using Software Requirement Patterns 105

The feedback is obtained by having the real numbers of SRP applications, the

associated requirements to patterns or forms, and the new requirements, over time:

• The number of applications of a pattern versus the number of associations to that

pattern can be used by the requirement engineer as a guarantee of the validity of

the SRP. If the number of applications is low regarding its associations, maybe the

requirement engineer has to check the associated requirements in order to find out

if there is some problem with the definition of the requirement. On the other hand,

the number of applications is a confirmation of the validity of the pattern.

• The associated requirements have to be analyzed because they can correspond to

forms or parts of a pattern that have never been identified before, and that would

be helpful for the requirement analysts to have them as parts of the pattern.

• In the case of new requirements, it has to be analyzed if there has been an error in

defining them as new or if in fact the requirement analyst is right and there is no

goal corresponding to the new requirements represented by any SRP of the

catalogue. In the first case, the new requirement is analyzed as an associated

requirement, and in the second case, the new requirement is considered for being

added as an SRP following the lasts steps presented in Sect. 5.2.

5.6 A Software Requirement Pattern Catalogue for

Nontechnical Requirements

The goal of this section is to illustrate the process of construction of a set of SRP

presented in Sect. 5.5.2. We describe the construction of the SRP catalogue part

corresponding to NTR applicable to TUDOR’s projects. NTR are those

requirements that do not refer directly to the intrinsic quality of software, but to

the context of the system under analysis. They include economic, political, and

managerial issues. This type of requirements is highly independent of the software

domain and, for this reason, good candidate for our work. The complete catalogue

of NTR patterns (NT SRP for short) is available in the PABRE website (http://

www.upc.edu/gessi/PABRE/index.html).

5.6.1 Preliminaries

We used six SRS as starting point of the process, which is distilled next in terms of

the different steps enumerated in Sect. 5.5.2.

In these six SRS documents, specific sections were supposed to contain sepa-

rately NFR and NTR. However, when building the previous catalogue of SRP for

NFR, we discovered that this separation was not clear, since some NTR were

discovered in the NFR section. As a result, besides the 29 NFR patterns, we already

identified three patterns that became the initial set of NT SRP.

106 X. Franch et al.

http://www.upc.edu/gessi/PABRE/index.html
http://www.upc.edu/gessi/PABRE/index.html

The requirements in the SRS were written in French. However, the biggest core

of knowledge on requirement engineering is available mainly in English. Also, for

dissemination purposes, we had the goal of producing the pattern templates in

English too. Therefore, before the alignment process, we translated the

requirements into English. The translation was supervised by the TUDOR team

since French is their native language, but they are also fluent in English.

5.6.2 Alignment

Next, we undertook the alignment looking for requirements expressed differently in

each of the SRS but addressing the same concept. Table 5.1, first three rows, shows

three requirements appearing in different SRS but related to the concept, namely,

maintenance period.
On the other hand, some SRS requirements were broken into several simple

requirements. For instance, the two last rows of Table 5.1 show two requirements

that appeared in an SRS as one single complex requirement.

5.6.3 Analysis

In this step it was necessary to consider the requirements that address the same

concept to be joined, by means of abstraction, consistency analysis, and improve-

ment of the grammatical form, in requirement types.

Table 5.2 shows the list of candidate SRP for the requirements presented above

in Table 5.1. The first one corresponds to the abstraction of the three first

Table 5.1 Examples of aligned requirements

Concept Requirement Keywords

Maintenance

period

The solution should be maintained for three (3) years

from the expiration of the warranty period

Maintenance period

Warranty

Maintenance

period

The proposed solution must be maintained for at least 1

year from the date of expiry of the warranty period

Maintenance period

Warranty

Maintenance

period

From the date of expiry of the warranty period, the

contractor agrees to provide, at the explicit request

of the client, ongoing maintenance services for a

minimum period of 1 year

Maintenance period

Warranty

Audits The customer reserves the right to conduct audits of the
provider and its production during the project

Audits

Provider

Project production

Audits These audits will focus on the specific development

(product code, development methodology,

documentation), the treatment of the reported

anomalies, and quality procedures

Audits

Specific development

Reported anomalies

Quality procedures

5 Constructing and Using Software Requirement Patterns 107

requirements in Table 5.1. The requirement was abstracted in order to allow the

statement of different periods of maintenance after the end of the warranty. This

example shows a usual way to implement abstraction, namely, substituting specific

aspects related to one project by parameters with some associated metric (which of

course allows the generation of the abstracted requirements).

Also, some grammatical rules on the SRP templates were enforced. Examples

are the following: requirements were written in an active voice; requirements were

written in third person and with use of the modal verb shall suitable for legal

requirements or statements.

To ensure catalogue consistency, we built and maintained a glossary of terms and

metrics. Since we started from the previous state of the catalogue which contained

nonfunctional SRP, metrics as timeUnit and terms as supplier and systemwere already

therein. This last term was used to substitute the solution in the SRS. Also other terms

were substituted for the same reasons as project production by project deliverables.
Also consistency among requirements was checked. For example, we found two

requirements at the same SRS: “at each steering committee meeting, a statement of

progress will be prepared and signed by the parties” and “the report will be prepared

by the provider and approved by the customer, if necessary after the required

updates” related to the steering committee meetings requirements. As can be seen,

in the two requirements, a different term is used to refer the meeting reports

(statement in the first requirement), and inconsistencies among the report approval

process are present in them. Therefore clarification was needed to ensure consistency.

5.6.4 Formulation

The requirement types corresponding to SRP candidates were processed iteratively,

considering at each iteration one type of candidates addressing the same concept. At

each iteration, the considered types were compared to the set of the already

approved SRP, in order to decide their treatment: approval as a new SRP,

incorporation as parts of existing SRP, or discard.

We illustrate the formulation with a particular NT SRP. The requirement types

related to audits (see Table 5.2) were included in the catalogue as just one SRP

Table 5.2 Examples of requirement types

Concept Requirement Keywords

Maintenance

period

The supplier shall maintain the system for number
timeUnit from the expiration of the warranty period

Maintenance period

Warranty

Audits The customer shall do audits of the supplier or the project

deliverables if it is considered necessary

Audits

Supplier

Project deliverables

Audits The audits shall focus on the quality aspects Audits

Specific developments

Reported anomalies

Quality procedures

108 X. Franch et al.

since they address the same concept. When all the SRP candidates aligned to audits
were considered, we observed that there are two different groups: one constraining

audits for assessing the quality of the supplier in a general way and the other that

constraints audits conducted according to a certain quality standard. Therefore, the

resulting SRP was structured into two alternative forms: general quality assessment
form and quality standard-based assessment form (see Table 5.3). In the first form,

the most general requirement type has been selected as the fixed part of the form

while the other becomes an extended part, since this second type of requirement

will not appear in a project without including the first one.

The process above was iterated for the rest of requirement types. Eventually, we

found some special situations. On the one hand side, some requirement types were

restricting the delivered documents of the project. When the glossary was browsed,

this term was found as the name of an existing nonfunctional SRP. Therefore, these

types were analyzed with respect to this SRP: some types were found redundant

regarding to the existent pattern, while others were used to constitute a new pattern.

The nonfunctional SRP delivered documents address the statement of requirements

on the content of delivered documents, and the NT SRP document characteristics
allow constraining the characteristics of the documents (i.e., their language, elec-

tronic format, metadata to include, etc.). Finally both patterns were considered as

related to NT aspects, although the first one is also nonfunctional due to its

relationship with the maintenance and understandability of a system and therefore

may appear also classified under this perspective.

On the other hand, some of the requirement types dealt with one restriction on

the concept source code. Specifically they were about the need of documenting the

source code. In this case, they were added as extended parts of the already existent

source code NT SRP.

As already mentioned, during this step and the previous one, expert assessment

was crucial. Validation was done by requirement engineers from TUDOR with

wide experience in requirement elicitation. Some relevant observations follow.

First of all, the experts provided a general observation about the focus of the

forms. For instance, for those SRP referring to suppliers, most were asking for

information about the supplier, instead of restricting how the supplier should be or

should behave. They proposed to formulate improved forms of the SRP in a more

prescriptive way. For instance, this was done in the case of the SRP supplier
workforce, whose goal was initially formulated as “having information about the

supplier workforce” and whose only form’s fixed part was “the supplier shall

provide workforce information about the company.” After the expert’s assessment,

the goal was transformed into “assessing the workforce of the supplier” and a new

form was added establishing a restriction of the supplier workforce with the fixed

part “the supplier shall fulfill some workforce requirements.” Both forms have

extended parts to establish different aspects of the workforce information to obtain

or to restrict respectively.

Experts also suggested restructuring some SRP while iterations progressed.

Examples of actions are the following: SRP merged during the process due to

redundancy, extended parts upgraded into fixed parts, and even reallocation of

extended parts from one SRP to another. For instance, the installation SRP was

5 Constructing and Using Software Requirement Patterns 109

Table 5.3 Quality assessment nontechnical software requirement pattern

Quality assessment

Goal: Stating the customer’s right of performing quality assessment

Requirement form Part constraints

General quality
assessment

Fixed part cannot be applied more than once

Review focus cannot be applied more than once

Quality criteria agreements cannot be applied more than once

Fixed part

Form text If the customer considers it necessary during the

system implementation project, s/he shall be allowed to assess

the quality of the process or the projectDeliverables

Parameters

projectDeliverables is a non-empty set of the different

products delivered during the system implementation

project

Metrics

ProjectDeliverables = Set(ProjectDelive-rable)

ProjectDeliverable = Domain (hardware, software, data and

documents provided or paid by customer as project

deliverables, etc.)

Extended part Review Focus

Form text The customer shall focus the quality assessment on

the qualityAspects

Parameters

qualityAspects is a non-empty set of the different quality

aspects to be assessed

Metrics

QualityAspects = Set (QualityAspect)

QualityAspect = Domain (specific development, treatment of

the reported abnormalities, quality procedures, etc.)

Extended part Quality criteria agreement

Form text The customer shall agree with the supplier on the

level of quality expected for the various project deliverables

Requirement form Part constraints

Quality standard- based
assessment

Fixed part cannot be applied more than once

Process quality assessment cannot be applied more than once

Deliverables quality assessment can be applied more than once,

only if it is applied for different values of the

projectDeliverables and qualityStandard parameters

Quality criteria agreement cannot be applied more than once

Quality criteria establishment cannot be applied more than once

Fixed part

Form text If the customer considers it necessary during the

system implementation project, s/he shall be allowed to assess

the quality of the process or project deliverables taking into

account a quality standard

Extended part Process quality assessment

Form text The quality of the process shall be assessed taking

into account the qualityStandard quality standard

(continued)

110 X. Franch et al.

subsumed by the implementation planning SRP, since in this SRP it is already

established the planning of the different activities, being installation just a particu-

lar case. Also, changes in the vocabulary and abstraction from specific contexts of

application were continuously performed. For instance, in the case of the SRP about

audits, the experts suggested to change in the SRP body the action “audit” by

“assess of the quality.”

After the validation step, we arrived to 38 NT SRP.

5.6.5 Catalogue Construction

The created NT SRP were stored in the PABRE catalogue. As already mentioned,

the catalogue already contained three NT SRP identified in the previous version of

the catalogue: help desk, crash response, and source code documentation.

Table 5.3 (continued)

Parameters

qualityStandard: represents the identifier of the quality

standard that shall be used to assess the quality

Metrics

QualityStandard = Domain (IEEE830, IEEE829, IEEE1016,

ISO/IEC9126, ISO/IEC 15504-5, etc.)

Extended part Deliverables quality assessment

Form text The quality of the projectDeliverables shall be
assessed taking into account the qualityStandard quality

standard

Parameters

projectDeliverables as above

qualityStandard as above

Metrics

ProjectDeliverables as above

QualityStandard as above

Extended Part Quality criteria agreement

Form text The customer shall agree with the supplier on the

level of quality expected for the project deliverables

Extended part Quality criteria applied

Form text The customer shall establish the subset quality

standard criteria to be applied timePreposition date

Parameters

timePreposition represents the relationship with respect to a

date

date: is a time point representing the date in which the quality

standard criteria shall be established

Metrics

TimePreposition = Domain (on, before, after, at, by, etc.)

Date = TimePoint

5 Constructing and Using Software Requirement Patterns 111

T
a
b
le

5
.4

N
T
S
R
P
ex
te
n
d
ed

IS
O
/I
E
C
9
1
2
6
–
1
cl
as
si
fi
ca
ti
o
n

C
la
ss
ifi
er

B
as
ic

cl
as
si
fi
er

N
T
S
R
P

N
T
S
R
P
g
o
al
s

1
.
S
u
p
p
li
er

1
.1
.
O
rg
an
iz
at
io
n
al

st
ru
ct
u
re

S
u
p
p
li
er

ad
m
in
is
tr
at
iv
e
in
fo
rm

at
io
n

B
ei
n
g
ab
le

to
co
n
ta
ct

th
e
su
p
p
li
er

S
u
p
p
li
er

o
rg
an
iz
at
io
n

U
n
d
er
st
an
d
in
g
th
e
su
p
p
li
er
’s

o
rg
an
iz
at
io
n

S
u
p
p
li
er

h
is
to
ry

B
ei
n
g
aw

ar
e
o
f
th
e
h
is
to
ry

o
f
th
e
su
p
p
li
er

co
m
p
an
y

1
.2
.
P
o
si
ti
o
n
in
g
an
d

st
re
n
g
th

S
u
p
p
li
er

ec
o
n
o
m
ic

in
fo
rm

at
io
n

A
ss
es
si
n
g
th
e
ec
o
n
o
m
ic

si
tu
at
io
n
o
f
th
e
su
p
p
li
er

S
u
p
p
li
er

w
o
rk
fo
rc
e

A
ss
es
si
n
g
th
e
w
o
rk
fo
rc
e
o
f
th
e
su
p
p
li
er

1
.3
.
R
ep
u
ta
ti
o
n

S
u
p
p
li
er

b
u
si
n
es
s
ex
p
er
ie
n
ce

A
ss
es
si
n
g
p
ro
je
ct
’s

ex
p
er
ie
n
ce

S
u
p
p
li
er

q
u
al
it
y
ce
rt
ifi
ca
ti
o
n

A
ss
es
si
n
g
q
u
al
it
y
ce
rt
ifi
ca
ti
o
n
o
f
th
e
su
p
p
li
er

1
.4
.
S
er
v
ic
es

o
ff
er
ed

T
ra
in
in
g

S
ta
ti
n
g
th
e
tr
ai
n
in
g
th
e
su
p
p
li
er

sh
al
l
p
ro
v
id
e
ab
o
u
t
th
e

im
p
le
m
en
te
d
sy
st
em

1
.5
.
S
u
p
p
o
rt

M
ai
n
te
n
an
ce

p
ro
ce
d
u
re

A
ss
es
si
n
g
th
e
su
p
p
li
er
’s

m
ai
n
te
n
an
ce

p
ro
ce
d
u
re
s

T
y
p
e
o
f
m
ai
n
te
n
an
ce

S
ta
ti
n
g
th
e
sp
ec
ifi
c
ty
p
es

o
f
m
ai
n
te
n
an
ce

fo
r
th
e
sy
st
em

im
p
le
m
en
te
d
th
e
su
p
p
li
er

sh
al
l
p
ro
v
id
e

2
.
B
u
si
n
es
s

2
.1
.
L
ic
en
si
n
g
sc
h
em

a
S
o
u
rc
e
co
d
e
li
ce
n
se
s

S
ta
ti
n
g
th
e
so
u
rc
e
co
d
e
li
ce
n
se
s

2
.2
.
O
w
n
er
sh
ip

In
te
ll
ec
tu
al

p
ro
p
er
ty

ri
g
h
ts

S
ta
ti
n
g
th
e
ri
g
h
ts
o
f
u
si
n
g
as
se
ts
re
su
lt
o
f
th
e
p
ro
je
ct

2
.3
.
G
u
ar
an
te
es

W
ar
ra
n
ty

S
ta
ti
n
g
th
e
w
ar
ra
n
ty

th
at

sh
al
l
b
e
ap
p
li
ed

o
v
er

th
e

im
p
le
m
en
te
d
sy
st
em

2
.4
.
C
o
st
s

C
o
st
b
re
ak
d
o
w
n
st
ru
ct
u
re

S
ta
ti
n
g
th
e
st
ru
ct
u
re

o
f
th
e
g
lo
b
al

co
st
o
f
th
e
sy
st
em

to
b
e

im
p
le
m
en
te
d

3
.
P
ro
je
ct

3
.1
.
B
u
si
n
es
s
sc
h
ed
u
li
n
g

S
y
st
em

im
p
le
m
en
ta
ti
o
n
sc
h
ed
u
li
n
g

S
ta
ti
n
g
th
e
sc
h
ed
u
li
n
g
o
f
th
e
sy
st
em

im
p
le
m
en
ta
ti
o
n

P
ro
je
ct

p
ro
g
re
ss

co
n
tr
o
l

H
av
in
g
o
r
st
at
in
g
th
e
in
d
ic
at
o
rs
fo
r
as
se
ss
in
g
th
e
p
ro
g
re
ss

o
f

th
e
p
ro
je
ct

P
ro
je
ct

m
an
ag
em

en
t
m
et
h
o
d

S
ta
ti
n
g
th
e
m
et
h
o
d
u
se
d
fo
r
p
ro
je
ct

m
an
ag
em

en
t

F
in
al

ac
ce
p
ta
n
ce

S
ta
ti
n
g
th
e
ti
m
e
an
d
co
n
d
it
io
n
s
fo
r
th
e
fi
n
al

ac
ce
p
ta
n
ce

o
f

th
e
im

p
le
m
en
te
d
sy
st
em

R
el
ea
se

S
ta
ti
n
g
th
e
ti
m
e
an
d
co
n
d
it
io
n
s
w
h
en

th
e
im

p
le
m
en
te
d

sy
st
em

sh
al
l
b
e
re
le
as
ed

A
n
al
y
si
s
st
ag
e
ac
ti
v
it
ie
s

S
ta
ti
n
g
th
e
ac
ti
v
it
ie
s
to

ta
k
e
d
u
ri
n
g
an
al
y
si
s
st
ag
e

D
at
a
m
ig
ra
ti
o
n

S
ta
ti
n
g
th
e
n
ec
es
si
ty

o
f
m
ig
ra
ti
n
g
d
at
a

112 X. Franch et al.

D
ev
el
o
p
m
en
t
ac
ti
v
it
ie
s

S
ta
ti
n
g
th
e
ac
ti
v
it
ie
s
to

ta
k
e
d
u
ri
n
g
d
ev
el
o
p
m
en
t
st
ag
e

A
cc
ep
ta
n
ce

te
st
s

S
ta
ti
n
g
th
e
ty
p
e
o
f
te
st
s
fo
r
th
e
sy
st
em

im
p
le
m
en
ta
ti
o
n

ac
ce
p
ta
n
ce

3
.2
.
S
u
p
p
li
er

re
la
ti
o
n
sh
ip
s

S
te
er
in
g
co
m
m
it
te
e

S
ta
ti
n
g
th
e
st
ee
ri
n
g
co
m
m
it
te
e
o
rg
an
iz
at
io
n

M
ee
ti
n
g
s
o
rg
an
iz
at
io
n

S
ta
ti
n
g
sy
st
em

im
p
le
m
en
ta
ti
o
n
m
ee
ti
n
g
s
o
rg
an
iz
at
io
n

A
cc
es
s
to

cu
st
o
m
er

p
re
m
is
es

S
ta
ti
n
g
th
e
ru
le
s
fo
r
su
p
p
li
er

ac
ce
ss

to
cu
st
o
m
er

p
re
m
is
es

P
ri
v
ac
y

S
ta
ti
n
g
th
e
p
ri
v
ac
y
ru
le
s
am

o
n
g
cu
st
o
m
er

an
d
su
p
p
li
er

P
ro
je
ct

p
ro
g
re
ss

co
n
tr
o
l

H
av
in
g
o
r
st
at
in
g
th
e
in
d
ic
at
o
rs
fo
r
as
se
ss
in
g
th
e
p
ro
g
re
ss
o
f

th
e
p
ro
je
ct

Q
u
al
it
y
as
se
ss
m
en
t

S
ta
ti
n
g
th
e
cu
st
o
m
er
’s
ri
g
h
t
o
f
p
er
fo
rm

in
g
q
u
al
it
y

as
se
ss
m
en
t

P
ay
m
en
t
p
ro
ce
d
u
re

S
ta
ti
n
g
th
e
p
ay
m
en
t
sc
h
ed
u
le

S
et
tl
em

en
t
o
f
d
is
p
u
te
s

S
ta
ti
n
g
h
o
w

th
e
d
is
p
u
te
s
b
et
w
ee
n
cu
st
o
m
er

an
d
su
p
p
li
er

sh
al
l
b
e
so
lv
ed

S
u
p
p
li
er

p
eo
p
le

as
si
g
n
ed

to
th
e
p
ro
je
ct

A
ss
es
si
n
g
th
e
p
ro
fi
le

o
f
th
e
p
eo
p
le

as
si
g
n
ed

to
th
e
p
ro
je
ct

H
el
p
d
es
k

H
av
in
g
ac
ce
ss

to
a
te
ch
n
ic
al

su
p
p
o
rt
se
rv
ic
e
fo
r
th
e
sy
st
em

fo
r
in
fo
rm

at
io
n
an
d
as
si
st
an
ce

C
ra
sh

re
sp
o
n
se

S
ta
ti
n
g
th
e
re
q
u
ir
ed

le
v
el

o
f
se
rv
ic
e
fo
r
su
p
p
li
er

su
p
p
o
rt
in

ca
se

o
f
cr
as
h

4
.
P
ro
d
u
ct

4
.1
.
H
is
to
ry

P
ro
d
u
ct
s
h
is
to
ry

A
ss
es
si
n
g
th
e
h
is
to
ry

o
f
th
e
m
ai
n
p
ro
d
u
ct
s
th
at

w
il
l
b
e
p
ar
t

o
f
sy
st
em

to
b
e
im

p
le
m
en
te
d

C
o
m
m
u
n
it
y
su
p
p
o
rt

A
ss
es
si
n
g
th
e
ex
is
te
n
ce

o
f
a
co
m
m
u
n
it
y
th
at

co
u
ld

g
iv
e

su
p
p
o
rt
o
n
th
e
im

p
le
m
en
te
d
sy
st
em

4
.2
.
D
el
iv
er
ab
le
s

D
el
iv
er
ed

d
o
cu
m
en
ts

S
ta
ti
n
g
th
e
d
o
cu
m
en
ta
ti
o
n
th
at

sh
al
l
b
e
d
el
iv
er
ed

S
o
u
rc
e
co
d
e
d
o
cu
m
en
ta
ti
o
n

S
ta
ti
n
g
th
e
so
u
rc
e
co
d
e
li
ce
n
se
s

4
.3
.
P
ar
am

et
er
iz
at
io
n
an
d

cu
st
o
m
iz
at
io
n

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

5 Constructing and Using Software Requirement Patterns 113

The NT SRP were classified in terms of the two classification schemas

incorporated into PABRE so far: the ISO/IEC 9126–1 standard [23] and the

classification schema defined by the TUDOR center. In this section we illustrate

the classification using the ISO/IEC 9126–1 standard.

ISO/IEC 9126–1 does not include nontechnical features. However, in previous

works we enlarged this standard with NT features [21], and we use this extension

(called NT-ISO/IEC 9126) in the PABRE catalogue, which adds three

characteristics (supplier, business, and product) and 15 subcharacteristics to the

standard. Before classifying the NT SRP according to this schema, some changes

had to be done to take into account some differences on the use of the catalogue.

On the one hand, during the process of classification, we found 19 patterns that

did not correspond to any subcharacteristic in NT-ISO/IEC 9126. The reason is that

initially that catalogue was created to include the criteria to assess the quality of a

final software product, whereas the NT SRP state requisites for the procurement of a

system (probably by gluing or adapting several products). This is the reason why we

needed to add a new characteristic to group the SRP about the implementation

project: the project characteristic, decomposed into two subcharacteristics – busi-
ness scheduling and supplier relationships.

On the other hand, some related subcharacteristics were merged into just one.

Specifically, they were those related to the cost of the business. The original

subcharacteristics were too static: licensing costs, platform costs, implement
costs, and network costs, but the new subcharacteristic integrates all these costs in

a cost breakdown structure allowing the flexibility to add new ones.

Also relationships among the SRP were investigated. With this aim, we took into

account the keywords stated for each SRP (obtained during their construction) and

also the metrics of the parameters of the different SRPs. For the quality assessment
SRP, taking into account the parameter ProjectDeliverables (Table 5.3), we

identified a dependency with the delivered documents SRP that also has a parameter

with the same metrics. The relationship is that the documents for which a quality

assessment is done must be deliverable documents.

In Table 5.4, the 38 SRP are classified taking into account the extended NT ISO

classification schema updated to include the new identified characteristics and

subcharacteristics.

5.7 Conclusions

In this chapter we have presented the PABRE framework for reusing requirement

knowledge following a pattern-based approach. The different components of

PABRE have been introduced: its meta-model, the processes supported, and the

catalogue of patterns. For illustration purposes, we have described the construction

of the first version of a set of 38 nontechnical requirement patterns that follow the

structure stated in the PABRE meta-model. Requirement engineering experts from

the TUDOR research center have been collaborating in this construction.

114 X. Franch et al.

Future work spreads over several dimensions:

• Validation of the adequacy of PABRE in other types of IT projects beyond the

procurement projects targeted so far

• Adoption of clear rules and best practices for writing pattern templates (see e.g.

EARS [24])

• Extension of the catalogue with functional patterns from several domains (e.g.,

in the context of TUDOR, ERP, and CRM procurement projects)

• Improving capabilities of tool support by introducing recommendation

capabilities (e.g., “projects that used this pattern usually use this other”)

In addition, more validation is needed. We have so far conducted postmortem

analysis of the SRS coming from past projects to validate that the meta-model

covers the features expressed in those SRS and the coverage of the catalogue is

satisfactory. Still, we need to apply it to real cases in an action-research basis.

Acknowledgements This work has been partially supported by the Spanish project TIN-2010-

19130-C02-01.

References

1. Chung L, do Prado Leite JCS (2009) On non-functional requirements in software engineering,

conceptual modeling: foundations and applications. Springer-Verlag, Berlin, Heidelberg,

pp 363–379

2. Carvallo JP, Franch X, Quer C (2006) Managing non-technical requirements in COTS

selection. In: IEEE international requirements engineering conference (RE), Minneapolis/

St.Paul, Minnesota, USA

3. Renault S, Barafort B, Dubois E, Krystkowiak M (2007) Improving SME trust into IT

consultancy: a network of certified consultants case study. In: EuroSPI, Potsdam, Germany

4. Alexander C (1979) The timeless way of building. Oxford University Press, New York

5. Gamma E, Helm R, Johnson R, Vlissides J (2000) Design patterns: elements of reusable

object-oriented software. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA

6. Buschmann F, Meunier R, Rhonert H, Sommerlad P, Stal M (1996) Pattern-oriented software

architecture: a system of patterns. John Wiley and Sons Ltd, Chichester, UK

7. Chung L, Supakkul S (2006) Capturing and reusing functional and non-functional

requirements knowledge: a goal-object pattern approach. In: IEEE international conference

on information reuse and integration (IRI), Waikoloa, Hawaii, USA

8. Mannion M, Kaindl H (2008) Using parameters and discriminants for product line

requirements. Syst Eng J 11(1):61–80

9. Supakkul S, Hill T, Chung L, Tun TT, Leite JCSP (2010) An NFR pattern approach to dealing

with NFRs. In: IEEE international requirements engineering conference (RE), Sydney,

Australia

10. Darimont R, van Lamsweerde A (1996) Formal refinement patterns for goal-driven

requirements elaboration. In: ACM symposium on foundations of software engineering

(SIGSOFT), San Francisco, CA, USA

11. Monzon A (2008) A practical approach to requirements reuse in product families of on-board

systems. In: IEEE international requirements engineering conference (RE), Barcelona,

Catalunya, Spain

5 Constructing and Using Software Requirement Patterns 115

12. Hull E, Jackson K, Dick J (2010) Requirements engineering, 3rd edn. Springer-Verlag

New York Inc

13. Watahiki K,Saeki M (2001) Scenario patterns based on case grammar approach. In: IEEE

international symposium on requirements engineering (RE), Toronto, Canada

14. Withall S (2007) Software requirement patterns. Microsoft Press, Redmont, Washington

15. Toval JA, Nicolás J, Moros B, Garcia F (2002) Requirements reuse for improving information

systems security: a practitioner’s approach. Requir Eng 6(4):205–219

16. Konrad S, Cheng BHC (2002) Requirements patterns for embedded systems. In: IEEE joint

international conference on requirements engineering (RE), Essen, Germany

17. Konrad S, Cheng BHC (2005) Real-time specification patterns. In: ACM/IEEE international

conference on software engineering (ICSE), St. Louis, Missouri, USA

18. Franch X, Palomares C, Quer C, Renault S, DeLazzer F (2010) A metamodel for software

requirement patterns. In: Requirements engineering: foundation for software quality (REFSQ),

Essen, Germany

19. Renault S, Mendez-Bonilla O, Franch X, Quer C (2009) A pattern-based method for building

requirements documents in Call-for-tender processes. Int J Comp Sci Appl 6(5):175–202

20. Palomares C, Quer C, Franch X (2011) PABRE-Man: management of a requirement patterns

catalogue. In: IEEE international requirements engineering conference (RE), Trento, Italy

21. Carvallo JP, Franch X, Quer C (2007) Determining criteria for selecting software components:

lessons learned. IEEE Softw 24(3):84–94

22. Renault S, Mendez-Bonilla O, Franch X, Quer C (2009) PABRE: pattern-based requirements

elicitation. In: International conference on research challenges in information science (RCIS),

Fès, Morocco

23. ISO Standard 9126 (2001) Software engineering – product quality, part 1. International

organization for standarization

24. Mavin A, Wilkinson P, Harwood A, Novak M (2009) Easy approach to requirements syntax

(EARS). In: IEEE international symposium on requirements engineering (RE), Atlanta,

Georgia, USA

116 X. Franch et al.

Chapter 6

Using Ontologies and Machine Learning

for Hazard Identification and Safety Analysis

O. Daramola, T. Stålhane, I. Omoronyia, and G. Sindre

Abstract Safety analysis (SA) procedures, such as hazard and operability analysis

(HazOp) and failure mode and effect analysis (FMEA), are generally regarded as

repetitious, time consuming, costly and require a lot of human involvement. Previous

efforts have targeted automated support for SA at the design stage of system

development. However, studies have shown that the cost of correcting a safety

error is much higher when done at the later stages than the early stages of system

development. Hence, relative to previous approaches, this chapter presents an

approach for hazard identification (HazId) based on requirements and reuse-oriented

safety analysis. The approach offers a convenient starting point for the identification

of potential system safety concerns from the RE phase of development. It ensures that

knowledge contained in both the requirements document and previously documented

HazOp projects can be leveraged in order to attain a reduction in the cost of SA by

using established technologies such as ontology, case-based reasoning (CBR), and

natural language processing (NLP). The approach is supported by a prototype tool,

which was assessed by conducting a preliminary evaluation. The results indicate that

the approach enables reuse of experience in conducting safety analysis, provides a

sound basis for early identification of system hazards when used with a good domain

ontology and is potentially suitable for application in practice by experts.

O. Daramola (*)

Covenant University, Ota, Nigeria

e-mail: olawande.daramola@covenantuniversity.edu.ng

T. Stålhane • G. Sindre

NTNU, Trondheim, Norway

e-mail: stalhane@idi.ntnu.no; guttors@idi.ntnu.no

I. Omoronyia

University of Glasgow, Lanarkshire, Scotland

e-mail: Inah.Omoronyia@glasgow.ac.uk

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_6, # Springer-Verlag Berlin Heidelberg 2013

117

mailto:olawande.daramola@covenantuniversity.edu.ng
mailto:stalhane@idi.ntnu.no
mailto:guttors@idi.ntnu.no
mailto:Inah.Omoronyia@glasgow.ac.uk

6.1 Introduction

Safety analysis (SA) embraces all of the hazard identification (HazId), risk and safety

assessment activities involved in the development of safety-critical embedded

systems. The goal of SA is to influence safety-critical system design by conducting

several types of safety procedures in order to identify potential system hazards and

risks and to mitigate them to acceptable levels before a system is certified. Safety

analysis procedures, such as hazard and operability analysis (HazOp) and failure

mode and effect analysis (FMEA), are generally regarded as repetitious, time

consuming, costly and require a lot of human involvement [1–3]. Although

human expertise is irreplaceable in the conduct of effective SA procedures at the

moment, there is a need to reduce the amount of human effort and cost of SA.

Previous efforts to address this problem have been based largely on expert system

approaches, which target automated support for SA from the design stage of system

development [1, 4]. However, studies [5, 6] have shown that the cost of correcting a

safety error is much higher when done at the later stages than the early stages of

system development. Since requirements engineering (RE) precedes system design,

it provides a convenient starting point for the identification of potential safety

concerns of a system if the knowledge contained in requirement documents can

be extracted and used as the initial basis for SA. Hence, tool support for SA at the

RE phase will be more beneficial for attaining a reduction in the cost of hazard

identification and hazard mitigation.

HazOp is one of the prominent safety analysis techniques [4]. HazOp is used to

study hazards and operability problems by investigating the effects of deviations from

prescribed design intent in order to mitigate the occurrence of adverse consequences.

It involves early discovery of potential system hazards and operation problems and

recommendation of appropriate safeguard mechanisms by a team of experts.

However, HazOp is a time consuming, costly and a largely human-centred

process [1, 3, 6]. The HazOp process is essentially subjective, relying on the

professional experience, expertise and creativity of the team members involved.

Some of the crucial challenges of HazOp which are still open research issues are:

(1) how to reduce the level of subjectivity, (2) how to reduce the amount of human

effort, (3) how to promote reuse of valuable knowledge gained in previous HazOp

studies and (4) how to facilitate transfer of HazOp experiences among HazOp teams

[3, 7]. These challenges motivate the need for a framework that could enable early

identification of hazards and reuse-oriented HazOp analysis. The first objective of

this work is to provide a decision support tool that could assist the human expert

in the process of identifying potential safety concerns that are contained in

the requirements document. The second is to create a platform for the reuse of

knowledge from previous HazOp studies in subsequent projects, in order to reduce

the amount of human effort needed while conducting HazOp. This work would

be useful in the safety analysis of product line systems or variant systems, where

the systems share a significant degree of commonality. Also, the approach could

be valuable in the context of system development models that are iterative or

incremental in nature where there is a need to continually revise requirements

118 O. Daramola et al.

and design specifications during the period of development. Our focus on HazOp

stems from the interests of the CESAR project1 that we are currently involved in.

We have adopted an approach that combines three technologies to realise the

stated objectives of this work, namely:

• Case-based reasoning (CBR), which is a pattern-based problem solving para-

digm that enables the reuse of previously gained knowledge in resolving a new

case [8]

• Ontology, which is the semantic representation of the shared formal conceptual-

ization of a domain that provides a platform for the standardisation of terms and

vocabulary in the domain [9]

• Natural language processing (NLP) which is the processing and analysis of

natural language text [10]

A prototype tool called KROSA (knowledge reuse-oriented safety analysis) that

demonstrates the novel integration of these three technologies has been created to

validate our approach. The unique contribution of this work is the integration of

ontology and machine learning technologies into a framework that enables the

identification of hazards from requirements and reduction of effort needed for

HazOp through knowledge reuse. In this chapter, we present a description of the

proposed framework and the evaluation of the prototype tool by an experiment and

opinions provided by domain experts at ABB Norway.

The rest of this chapter is organised as follows: Sect. 6.2 presents the background

for the context of this chapter, while Sect. 6.3 describes a HazOp problem example

and how tool support can be provided for HazId based on requirements. In Sect. 6.4,

we give a description of the KROSA framework and how it can be used for HazOp.

Section 6.5 presents the evaluation procedure used for assessing the KROSA tool,

while Sect. 6.6 discusses the results of the evaluation and the threats to validity of

results. In Sect. 6.7, we review some closely related work, and the chapter is

concluded in Sect. 6.8 with a brief note and indication of our future research plans.

6.2 Background

In this section, we give a brief overview of the general HazOp process and the key

technologies that are relevant to this work.

6.2.1 Overview of the HazOp Process

A hazard and operability study (HazOp) is a structured and semiformalised team-

based procedure that focuses on the study of a system under design, in order to

identify and evaluate potential hazards that may constitute a risk to personnel or

1 http://www.cesarproject.eu

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 119

http://www.cesarproject.eu

equipment or prevent efficient operation of the system. A HazOp study is

undertaken by a HazOp team through a series of brainstorming sessions in order

to stimulate creativity used to reveal potential hazards in the system and their

cause–effect relationships [1, 4]. HazOp is based on the assumption that a problem

can only arise when a system deviates from its design and operational intents.

Hence, the HazOp study entails a detailed walkthrough of the process and

instrumentation diagram models of a system to spot every likely deviation from

its intended operation using a set of guidewords. Generally, guidewords represent
variations of known system parameters that may cause deviation from design

intentions. They are chosen and interpreted based on particular design representa-

tion and context. Examples include no, not, more, less, before, after, late, too often

and early. Examples of parameter–guidewords pairs include arrive late, arrive

early, no flow, not sent and sent after. Guidewords are carefully selected to

stimulate reasoning about all potential system hazards. A point of observation

pertaining to a system or process that can be a source of a potential hazard is called

a study node. As each deviation is derived, the HazOp team discusses potential

causes, consequences and safeguards and recommend appropriate control actions to

forestall or mitigate its occurrence.

Typically, it takes about 1–8 weeks for a HazOp team with 4–8 members to

conduct a HazOp, depending on the size and complexity of the system in question.

It is widely accepted that HazOp analysis is an extremely time-consuming process

[1, 3, 4]. More on the procedure of HazOp study and ideals of HazOp team,

membership composition can be found in [11].

6.2.2 Case-Based Reasoning (CBR)

CBR is an instance-based machine learning paradigm that emulates the human

reasoning process of solving problems based on past experiences. In CBR, problems

are modelled as abstraction called cases which consist of the problem part and the

solution part. The CBR life cycle [8] is a four-stage process that consists of (1) case
retrieval – where old cases that are similar to a new case are identified by comparing

the problem parts of the old cases and that of the new case using a similarity metric;

(2) case reuse – which entails applying the solution part of the most relevant old case

or group of old cases to the new case, and this may also involve adaptation of the old

solutions to fit the new case; (3) case revision – where the reused solution is tested for
appropriateness in the new case, and if need be, the reused solution is revised to fit the

new case; and (4) case retention – which entails storing a solved case in the case base
(repository) for future reuse. CBR provides a mechanism of organising, storing and

reusing an organisation’s memory or experiences. As such, it offers a credible model

of experience-based problem solving once relevant cases exist [12]. The CBR

paradigm is considered particularly relevant to the context of HazOp because of its

potential to support the acquisition, retrieval, reuse and retention of knowledge,

which provides a basis for documented experiences from previous HazOp studies

to be leveraged in subsequent HazOp projects.

120 O. Daramola et al.

6.2.3 Ontology

Ontology which is a shared formal conceptualization of a domain is a key technology

to shaping and exploiting information for the effective management of knowledge

that pertains to specific domains [13]. Ontologies have human and machine-readable

semantics that allow definition of semantic relationships between entities and

inference of knowledge through reasoning at runtime. According to [14], ontologies

have the capability to (1) enable knowledge reuse, (2) ensure better understanding

of a knowledge area, (3) support analysis of the structure of knowledge, (4) foster

understanding of available knowledge in a domain and (5) provide embedded

knowledge for an application that can be used by machines. Ontology is considered

relevant to the HazOp problem because of its potential to facilitate (1) formalised

semantic description of relevant domain knowledge for identification of system

hazards, (2) interoperable transmission of knowledge among HazOp teams and

(3) knowledge reuse while conducting HazOp.

6.2.4 Natural Language Processing (NLP)

NLP is concerned with the process of extracting meaningful information from natural

language text through the use of statistical machine learning algorithms [10]. In NLP,

machine learning algorithms automatically learn rules through the analysis of large

corpora of real-world examples. A corpus (plural, “corpora”) is a set of documents

that have been manually annotated with the correct values to be learned. The learned

rules are then used to classify words into various word categories (part of speech)

following the supervised learning model. Key NLP operations include sentence

tokenisation, part-of-speech tagging, coreference resolution, anaphora resolution,

named-entity recognition and morphology analysis. NLP is a necessity for automated

requirements analysis because requirements are mostly written as natural language

text. Therefore, our approach uses NLP in combination with ontology to enable the

extraction of useful knowledge from natural language requirement documents for the

early identification of potential system hazards.

6.2.5 Knowledge Management in Requirements Engineering

In recent times, the application of knowledge management technologies such as

ontologies, NLP and CBR has gained momentum in requirements engineering. In

[15], the SoftWiki approach was reported as a way of semantifying requirements

engineering. According to the authors, semantification of RE entails representing each

requirement as a unique instance of the Semantic Web having its own URI such that

spatially distributed stakeholders – including developers and users – can collect,

semantically enrich, classify and aggregate requirements within the context of

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 121

collaborative software development. The approach uses the SoftWiki Ontology for

Requirements Engineering (SWORE) to facilitate the semantification process. Simi-

larly, [14] gave an elaborate overview of how ontologies can be applied in collabora-

tive software development and the vision of a software engineering Semantic Web.

In [16], a framework for requirements elicitation using ontology reasoning

was proposed. NLP was used to parse initial requirements to obtain key concepts

that can be mapped to functions in the domain ontology. Thereafter, the rules

and relations among functions in the ontology were used to reason about errors

and potential requirements. Other research efforts where ontologies have been

applied for requirements elicitation and analysis include [17] where a domain

ontology and requirements meta-model were used to elicit and define textual

requirements; in [18], an approach for goal-oriented and ontology-driven

requirements elicitation (GOORE) was proposed. In GOORE, the knowledge of a

specific domain is represented as an ontology, which is then used for goal-oriented

requirements analysis.

In [19], a perspective for the application of CBR for requirements engineering was

provided. Also, [12] gave a detailed account of the probable applications of CBR in

software engineering in the aspects of prediction and reuse. In [20], CBR was used to

evaluate the requirements quality by referring to previously stored software

requirements quality analysis cases (past experiences) in order to ensure that the

quality of the prepared SRS is acceptable, while [21] proposed a framework for

managing implicit requirements by using a combination of ontology and CBR. All

of these efforts indicate an increasing interest in the application of ontology, NLP and

CBR as knowledge management technologies in requirements engineering.

6.3 Simplified Steam Boiler Example

The steam boiler system is a simplified version of an industrial steam boiler,

developed as a first pilot system for testing CESAR concepts. In order to have a

simple system, important components such as the feeding tank and the blow down

valve are left out.

The functional requirements of the steam boiler are as follows:

1. The steam boiler shall deliver steam at a predefined, constant pressure to an

industrial process.

2. Steam is produced by heating water using an electric heating element.

3. The steam pressure is controlled by regulating the temperature setting on the

heating element thermostat.

4. The water level in the tank is controlled by a feeding pump which pumps water

into the tank via a non-return valve.

5. The safety of the steam boiler is taken care of by a safety valve that opens to air.

The release pressure for the safety valve is fixed, based on the boiler’s strength.

6. The system shall be safety integrity level two (SIL2) certifiable.

122 O. Daramola et al.

In the CESAR project, we have embraced the notion of requirements

boilerplates2 which stems from the work in [22, 23] for writing requirements in

semiformalised form. A boilerplate is a textual template for requirements specifi-

cation that is based on predefined patterns, which reduces the level of inconsistency

in the way requirements are expressed. We have also introduced additional require-

ment boilerplates patterns that are considered well suited for embedded systems

requirements.

For the steam boiler example, we will now use the following predefined sample

boilerplates2:

BP1: The < system > shall < action>
BP2: The < system > shall be able to < action > using < system>
BP3: If < condition>, the < system > shall < action>

The functional requirements of the steam boiler can then be transformed to a

semiformal form as follows:

R1: The < steam boiler > shall be able to < deliver > [<steam > to < an
industrial process>] – BP1

R2: The < steam boiler > shall be able to < produce > [<steam > using
(<electrical > <heating element>)] – BP2

R3: The < steam boiler > shall be able to < control > [<steam pressure >
using (<thermostat > of < electrical > <heating element>)] – BP2

R4: The < steam boiler > shall be able to < control > [<water level > using
(<feeding pump>)] – BP2

R5: The < feeding pump > shall be able to < deliver > [<water > using
(<non-return valve>)] – BP2

R6: If [<steam pressure > greater than < critical pressure level>], the < steam
boiler > shall [<open > <safety valve>] – BP3

6.3.1 Preliminary HazOp (PHA) for Steam Boiler

Usually, based on a concept diagram for system – say a steam boiler – a team of

experts would run a PHA by brainstorming on specific requirements and

components of the system in order to identify potential hazards that may arise

from possible deviations from the design intent of the steam boiler. The result of

such a PHA for a steam boiler system would be a manually generated preliminary

HazOp table. A small part of such a table is shown in Table 6.1.

2 www.requirementsengineering.info/boilerplates.htm

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 123

http://www.requirementsengineering.info/boilerplates.htm

T
a
b
le

6
.1

P
re
li
m
in
ar
y
H
az
O
p
ta
b
le

fo
r
a
st
ea
m

b
o
il
er

R
eq
.

E
le
m
en
t
(s
tu
d
y

n
o
d
e)

G
u
id
ew

o
rd

H
az
ar
d

C
au
se

M
ai
n
ef
fe
ct

P
re
v
en
ti
v
e
ac
ti
o
n

R
2

W
at
er

ta
n
k

(h
ea
ti
n
g

el
em

en
t)

T
em

p
er
at
u
re

to
o
h
o
t

T
h
e
w
at
er

ta
n
k
is
to
o

h
o
t

T
o
o
li
tt
le

w
at
er

an
d
to
o
m
u
ch

h
ea
t

(s
en
so
r,
co
n
tr
o
l,
ac
tu
at
o
r,

co
n
n
ec
ti
o
n
s)

T
an
k
g
et
s
h
o
t/
fi
re

T
u
rn

o
ff
th
e
h
ea
t

A
d
d
w
at
er
?

R
3

W
at
er

ta
n
k

P
re
ss
u
re

to
o

h
ig
h

T
o
o
h
ig
h
p
re
ss
u
re

in

th
e
w
at
er

ta
n
k

(R
3
)

N
o
t
ab
le

to
tu
rn

o
ff
th
e
h
ea
ti
n
g
(s
en
so
r,

co
n
tr
o
l,
ac
tu
at
o
r,
co
n
n
ec
ti
o
n
s)

B
o
il
er

ex
p
lo
d
es

S
af
et
y
v
al
v
e

F
ee
d
in
g
p
u
m
p
fa
il
u
re

(t
o
o
st
ro
n
g
)

B
o
il
er

ru
p
tu
re

T
u
rn

o
ff
th
e
h
ea
t

T
u
rn

o
ff
p
o
w
er

to
th
e

fe
ed

p
u
m
p

R
4

F
ee
d
in
g
p
u
m
p

W
at
er

le
v
el

to
o
h
ig
h

T
o
o
h
ig
h
w
at
er

le
v
el

(R
4
)

W
at
er
-l
ev
el

re
g
u
la
ti
o
n
fa
il
u
re

(s
en
so
r,

co
n
tr
o
l,
ac
tu
at
o
r,
co
n
n
ec
ti
o
n
s)

W
at
er

to
th
e
p
ro
ce
ss

P
u
m
p
em

er
g
en
cy

st
o
p

R
5

F
ee
d
in
g
p
u
m
p

N
o
n
-r
et
u
rn

v
al
v
e

st
u
ck

T
o
o
h
ig
h
p
re
ss
u
re

in

th
e
fe
ed

p
ip
e
(R
5
)

N
o
n
-r
et
u
rn

v
al
v
e
fa
il
u
re

R
el
ea
se

b
o
il
in
g
w
at
er

to
th
e
w
at
er

su
p
p
ly

T
w
o
n
o
n
-r
et
u
rn

v
al
v
es

in
se
ri
es

E
m
er
g
en
cy

v
al
v
e
fo
r

re
le
as
in
g
p
re
ss
u
re

124 O. Daramola et al.

6.3.2 Tool Support for HazId Based on Requirements

Our objective in this work is to provide tool-based support for HazId based on

requirements – which is usually a costly manual procedure – such that:

1. Requirement documents can be analysed semantically using a combination of

shallow NLP and domain knowledge as contained in the domain ontology, to

identify potential system hazards automatically. Hence using the steam boiler

ontology (see Fig. 6.2), columns 1 and 2 of Table 6.1 – a HazOp table for the

steam boiler system – can be automatically generated.

2. The user is able to partially or totally reuse relevant parts of previously

documented HazOp projects in order to generate causes, effect, safeguards and

appropriate control actions for each system hazard that has been identified –

generate data for columns 2–5 of specific hazards (study node) in Table 6.1.

With this proposed approach, we aim to provide relevant tool support for the

HazOp experts so as to reduce the amount of effort needed and also to offer a good

starting point for HazOp in instances where there is paucity of experts. We will now

describe the architecture of our approach in the next section.

6.4 The KROSA Framework

The architectural framework of our proposed approach is an integration of the three

core technologies NLP, CBR and ontology. A view of the architecture is presented

in Fig. 6.1. The core system functionalities are depicted as rectangular boxes, while

the logic, data and knowledge artefacts that enable core system functionalities are

depicted using oval boxes. A detailed description of the KROSA framework is

given in the following.

6.4.1 Knowledge Representation and Extraction

In this section, we describe the parts of the KROSA architecture that deals with

knowledge representation and extraction.

(a) Data Preprocessing

The input to the framework is a preprocessed requirements document.

Preprocessing is a manual procedure that ensures that source documents are

transformed into a form that is suitable for the framework. It entails extraction of

requirements in form of sentences from source documents, extracting sentences that

define system requirements and replacing information conveyed in figures, diagrams

and tables with equivalent sentences. Also, the requirements could be expressed in

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 125

semiformalised way using requirement boilerplates. Boilerplate requirements will also

be more susceptible to treatment by NLP algorithms (Fig. 6.1).

(b) HazOp Ontology

The HazOp ontology defines, in a generic form, the concept of a study node,

its elements and the relationships between them. These are types of study node,

description, guidewords, deviations, causes, consequences, risk level, safeguards and

recommendation. The HazOp ontology was developed using OWL DL language

and consists of 17 classes, 23 object properties and 43 restrictions. Figure 6.3 presents

a schematic view of the structure of the HazOp ontology. It has two important

roles: (1) helping to identify potential hazards during study nodes recommendation

since its specification clearly defines which type of domain concept could be a study

node and (2) validation of the structure of the HazOp information before it is stored

in the case library during case retention. A HazOp study node must be one of the

types defined in the HazOp ontology.

(c) Ontology Library

The ontology library is a repository of domain ontologies. The domain

ontologies (.owl/.rdf) could be those that have been developed for the purpose of

a) Document Pre-processing

e) Study node
recommendation

d) NL
Processor

Knowledge
Retrieval Knowledge

Retention

Knowledge
Query

Adaptation
Procedure

Case
Library

Processed
Requirements

Boilerplate
Requirements

f) CBR MODULE

b) HazOp ontology

c) Ontology Library

g) Reports
Generation

Domain ontologies

Fig. 6.1 Architectural framework for reuse-oriented HAZOP

126 O. Daramola et al.

safety analysis or an existing ontology that is based on domain-specific safety

standards. The domain ontology consists of all the terms in the domain and the

set of relationships between terms in the domain. The domain ontology plays two

Water
level

Boiler-tank
Feeding-pump
Non-return valve
Tank

Max-critlimit

Pump

On
Off

infers

has

Is
controlled
by Min water level

Max.Water level
Water level indicator

Control-system

infer

has-state

is-coupled
with

Heating
element

Pressure indicator
Temprature
indicator

infer

is-coupled to

isa

isa

Owl:Thing

Fig. 6.2 A view of a part of the steam boiler ontology

Owl: Thing

Study node

Component

Event

isa

Activity

System

Interface

Operation

isa

isa

isa

isa

isa

isa

Context description

Consequence

Cause

Recommendation

Deviation

Guide word

has

Risk Level

Safe guard

isa

has

has

has

has

has

has

has

isa

isa

isa

isa

isa

isa

isa

Fig. 6.3 A view of the classes and restrictions in the HAZOP ontology

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 127

roles: (1) identification of valid domain concepts that are contained in requirements

document and (2) ensuring that standardised terms used in describing HazOp

information during knowledge (case) retention agree with the established vocabu-

lary of the domain. As an example, a view of part of the steam boiler ontology

which describes the concepts of the steam boiler system and the interrelationships

between the concepts is shown in Fig. 6.2. The ontology library, the HazOp

ontology and the case library jointly constitute the knowledge model of the

framework.

(d) NL Processor

The NL processor component facilitates the processing of natural language and

boilerplate requirements during the process of automatic recommendation of

HazOp study nodes. The core natural language processing operations implemented

in the architecture are:

• Tokenisation: Splitting of requirements statements (sentences) into word parts.

• Parts of speech tagging: Classification of tokens (words) in requirements

statements into parts of speech such as noun, verb, adjective and pronoun.

• Pronominal anaphora resolution: The process of identifying pronouns

(anaphors) which have noun phrases as antecedents in requirements statements.

This is essential in associating sentences that refer to the same requirement.

• Lexical parsing: Creating the syntax tree that represents the grammatical

structure of requirements statements, in order to determine phrases, subjects,

objects and predicates.

The stanford NLP toolkit3 for natural language processing was used to implement

all NLP operations.

(e) Study Node Recommendation

The procedure for automatic study node recommendation is based on a heuristic

algorithm that is derived from basic knowledge of HazOp. Study node generation is

not intended to replace human capability but rather to create a credible starting

point for early hazard identification and to alleviate the amount human effort

involved. The algorithm searches for potential study nodes in two ways:

• Requirements level (RL): A requirement statement is considered a candidate if

the following criteria are satisfied: (1) the requirement statement contains an

action-entity pair such as “open valve”, “close valve”, “start pump” or “stop

pump” (action and entity may not necessarily follow each other in a sentence);

(2) the actionmust be an instance of a generic HazOp action word (such as: stop,

close, open, send, reset, cut, receive, start or their synonyms) or one of a set of

3 http://nlp.stanford.edu/software/lex-parser.shtml

128 O. Daramola et al.

http://nlp.stanford.edu/software/lex-parser.shtml

user specified keywords, while entity is a valid concept in the domain ontology;

and (3) the entity identified in requirement statement belongs to one of the

predefined study node types (components, system, etc.) as described in the

HazOp ontology.

• Component level(CL): A term (word) contained in a requirement statement is

considered a candidate study node if the following criteria are satisfied: (1) the

term is a valid concept in the domain ontology; (2) there exists at least one axiom

that pertains to the term in the domain ontology which indicates that it could be a

study node (In other words, it is one of several types of study nodes as defined by

the HazOp ontology) and (3) the term has failure modes or guidewords defined on

it (such as stuck, omission, commission) in the domain ontology. At the CL level,

terms that satisfy the criteria (1) and (3), (1), (2) and (3) or (1) and (3) are

considered to be candidates. However, a term is ignored if it is same as, equivalent

to or a subclass of another term that has been selected as a potential study node.

6.4.2 Knowledge Reuse

This section describes the parts of the KROSA architecture that deals with knowl-

edge reuse and also report generation.

(f) CBR Module

The CBR component facilitates the knowledge reuse capability of the frame-

work. It emulates the typical workflow of the CBR life cycle which is retrieve,

reuse, revise and retain [8, 24]. Retrieval by the CBR module is performed by

displaying a ranked list of cases similar to a target case. Two types of reuse are

supported: (1) total reuse – all parts of a case are reused for a new case, and

(2) partial reuse – only parts of an existing case are reused in a target case. Revision

can be effected by the HazOp expert by making modifications to the selected case to

suit the new target case. Retention is done through storage of study node informa-

tion into the case library. The case library is implemented as a MySQL database

management system (DBMS) in order to leverage its inherent capabilities for

effective case organisation, case indexing, case storage and case retrieval.

(g) Report Generation

This module enables the generation of HazOp reports based on query posed by

the user. HazOp reports are queried based on date and the HazOp id.

6.4.3 Case Model and Case Similarity

The case model is an abstraction of the way HazOp information is represented in the

framework. A HazOp case encapsulates information attributes such as name of a

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 129

study node (unique), context description and set of applicable guidewords,

deviations, causes, consequences, risk levels, safeguards and recommendations.

The case model is partitioned into a problem part and a solution part. The three

elements of a HazOp case model that constitute the problem part are contextual

description, study node type and the set of guidewords; the remaining elements of

the case model make up the solution part.

At the instance of a new (target) case, an algorithm is used to compute the

similarity between the problem parts of the new case and all existing relevant cases

in the case library to determine suitable candidates for retrieval. The solution part of

a chosen retrieved case is then used verbatim or revised as the solution part of the

target case. There are several candidate similarity algorithms that can be used for

case retrieval depending on the value of attributes of data elements [25]. The

similarity algorithm used for comparing cases is based on the degree of intersection

between two attributes of a case, which are the set of contextual descriptions and the

set of guidewords, while the type of study node is used to determine relevant cases.

Similarity between an attribute of the new case U and a corresponding attribute of

an existing case V is determined by computing the metric:

SimðU;VÞ ¼ U \ Vj j
Uj j (6.1)

where

U \ V ¼ fx : x 2 Uandx 2 Vg

Case Similarity: Finally, the similarity between two cases is computed by using

the weighted sum of the individual similarity metrics, where wi denotes the weight

assigned to the ith attribute of a case. This is given as [26]:

Sim final ¼ w1simðcontextÞ þ w2sim2ðguidewordsÞ (6.2)

We have used equal weights (i.e., w1 ¼ w2 ¼ 1) since the parameters are

considered as equally important.

6.5 Performing HazOp with KROSA

The process of using the KROSA tool for HazOp is as follows:

Step 1: Preprocessing of source documents to get the requirements into MS Excel or

text file format and devoid of graphics, images and tables.

Step 2: Select existing domain ontology or create a new one to be used for the

HazOp.

130 O. Daramola et al.

Step 3: Import requirement documents and domain ontology into the KROSA

environment.

Step 4: Supply the set of keywords that best describe the focus of the HazOp.

Step 5: Obtain recommended study nodes from KROSA.

Step 6: Expert approves a set of study nodes for the HazOp by selecting from or

adding to the recommendations by KROSA.

Step 7: For each approved study node, expert leverages KROSA’s case retrieval,

reuse and retention features to generate information for specific study nodes. By

doing so, the user attempts to save some effort by using content of the reuse

repository to provide information for new study nodes. Figures 6.4 and 6.5 are

snapshots of the interfaces for study node recommendation and case retrieval for

reuse in the KROSA tool, respectively.

Fig. 6.4 A view of recommended study nodes by the KROSA tool

Fig. 6.5 A view of ranked list of similar cased retrieved by the tool

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 131

6.6 Evaluation

We have developed the KROSA4 (knowledge reuse-oriented safety analysis) tool, a

domain-independent CBR platform for ontology-supported HazOp that is based on

the Eclipse plug-in architecture. In following subsections, we discuss how the

KROSA tool can be integrated into the HazOp process and subsequently describe

the procedure used for its evaluation.

6.6.1 Evaluation Procedure

KROSA has been subjected to two kinds of evaluation: first, an in-house simulation

experiment to assess the quality of its recommendation of study nodes, using

requirements specifications obtained from ABB Norway, one of our partners in

the CESAR project. Second, we performed a field assessment where industry

experts from ABB Norway assessed the usability of KROSA for an industrial

HazOp process. The objectives of the field evaluation were threefold: (1) to assess

the consistency of the outcome of the tool as judged by the human experts, (2) to

assess the potential of the tool to enable reuse-oriented HazOp and (3) to determine

its usefulness as a support tool for safety analysis. Also, we wanted to identify areas

of possible improvement of the tool.

6.6.1.1 Simulation Experiment

In the simulation experiment, we worked with three sets of requirements: (1) rail

lock system, (2) steam boiler control system and (3) adaptive cruise control (ACC)

system. Three ontologies used for the experiment are rail lock system ontology,
steam boiler ontology and ACC ontology. Two of the ontologies (steam boiler and

ACC ontology) had existed prior to KROSA, having been used to support previous

ontology-based research project in CESAR [27]. These two ontologies have a fairly

wide circulation among CESAR partners. The rail lock system ontology was

created for this experiment, based on information obtained from the specification

of the GP rail lock system. The three ontologies have the common characteristics

that they were developed to be usable for safety analysis in addition to other uses.

This is because (1) safety relevant terms were used to describe ontological

concepts, e.g., object properties such as isComponent, isConcept, isFailuremode
and isInterface exist in the ontologies; (2) the semantic description of components

included the definition of generic failure modes such as stuck, omission and

commission. The simulation experiment compared recommendations from

KROSA with those obtained from four safety experts (researchers) for the same

4KROSA tool can be downloaded at https://www.idi.ntnu.no/~wande/Krosa-user-guide.htm

132 O. Daramola et al.

https://www.idi.ntnu.no/~wande/Krosa-user-guide.htm

set of requirements. We then computed the recall and precision scores for KROSA

relative to the recommendations made by each of the four safety experts that

participated in the experiment (see Eqs. 6.3 and 6.4):

precision ¼ jfExpert:recommgj \ jfKROSA:recommgj
jfKROSA:recommgj (6.3)

recall ¼ jfExpert:recommgj \ jfKROSA:recommgj
jfExpert:recommgj (6.4)

6.6.1.2 Expert Assessment

For the field assessment, the direct method of expert systems evaluation [28, 29]

was used. This method entails making qualified human experts to use a system for

solving a simple benchmark problem; thereafter based on their experience, the

human expert answers a set of questions about the system. The questions are

quantitative and based on a 0 (completely false) to 5 (very true) numerical scales.

A metric called “satisfaction level” that ranges from 0 (least satisfied user) to 5

(most satisfied user) is then computed based on the data obtained from all

participants. The satisfaction level is a measure of the likelihood of the system to

satisfy a prospective user.

The questions, the objective of each question and the weight associated with

each question (which all the participants agreed on) are as follows:

1. Sufficient information is provided for guidance and orientation of evaluators
prior to conducting the experiment (orientation) – (2).

2. The KROSA tool reaches a conclusion similar to that of a human expert
(correctness of result) – (2).

3. Does the KROSA tool provide reasonable justification for its conclusion?
(correctness of result) – (2).

4. The KROSA tool is accurate in its suggestions of study nodes (accuracy of

result) – (2).

5. The result is complete. The user does not need to do additional work to get a
usable result (accuracy of result) – (2).

6. Does the result of the system change if changes are made to the system
parameters? (sensitivity) – (1).

7. The overall usability of the KROSA tool is satisfactory (confidence) – (1).

8. The KROSA tool gives useful conclusions (confidence) – (2).

9. The KROSA tool adequately supports reuse of knowledge for HazOp (support

for reuse) – (2).

10. The KROSA tool improves as data, or experience is inserted (support for

reuse) – (1).

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 133

11. The limitations of the KROSA tool can be detected at this point in time
(limitation) – (1).

12. There are still many limitations to make the KROSA tool usable (limitation) – (1).

An evaluator gives a score between 0 and 5 per question. From the scores, a

weighted score for the satisfaction level per evaluator can be calculated using the

metric below:

Re sult ¼
Xn

k¼1

weight�scorevalueð Þ=
Xn

k¼1

weight (6.5)

where n is the number of questions.
A one-day orientation workshop on how to use the tool was conducted for all

participants, after which they had one full week to interact with the tool. The expert

participants also had a detailed user manual as further guide for using the tool.

6.7 Evaluation Results

In this section, we give an overview of results from the two evaluations carried out.

6.7.1 Simulation

Table 6.2 shows the recall and precision scores computed for KROSA relative to

the four safety experts’ (E1–E4) recommendations. Although the experts differed in

their recommendations, confirming the subjective nature of HazOp, there exist

significant agreements between study nodes recommended by KROSA and experts

at the requirements level. At the component level (CL), there was a greater degree

of agreement because the opinions of the safety experts generally agree that all

components and interfaces between components and systems should be study nodes

as recommended by KROSA. Since the experts were generally not very specific in

their recommendations at the CL, recommendations at CL were not considered

when arriving at the values in Table 6.2. The result – precision5 and recall6 values –

shown in Table 6.2 is an improved version of the one reported in [27] since we have

had more time to improve on the quality of the domain ontologies.

Our observation from the simulation experiment (see Figs. 6.6 and 6.7) is that

the performance of the KROSA tool depends significantly on the quality of the

5 Precision – percentage of suggested hazards that are relevant compared to expert’s

recommendation.
6 Recall – percentage of relevant hazards suggested by tool compared to expert’s recommendation.

134 O. Daramola et al.

Table 6.2 Showing recall and precision values of KROSA

Recall E1 E2 E3 E4

Steam boiler system (HazOp on water level) 0.57 0.67 0.75 0.60

ACC system (HazOp on speed control) 0.50 0.67 0.71 0.60

Rail lock system (HazOp on communication) 0.54 0.78 0.71 0.60

Precision E1 E2 E3 E4

Steam boiler system (HazOp on water level) 0.67 0.67 0.50 0.50

ACC system (HazOp on speed control) 0.80 0.80 1.0 0.6

Rail lock system (HazOp on communication) 0.78 0.78 0.56 0.33

Fig. 6.6 Recall metric for

KROSA

Fig. 6.7 Precision metric for

KROSA

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 135

domain ontology, even though the input of highly relevant keywords can enhance

the appropriateness of the recommended study nodes. Specific ontology qualities

are considered most crucial here, which are [30] (1) syntactic quality – the measure

of the correctness of terms in the ontology and the richness of syntax used to

describe terms in the ontology, (2) semantic quality – the measure how well the

meaning of terms is defined in the ontology and (3) pragmatic quality – the measure

of the how well it covers the scope of a domain judged by the number of classes and

properties it contains and how accurate and relevant the information is that it

provides. A domain ontology that contains a large number of concepts that are

credible and are richly described with axioms will be more suitable for KROSA in

the task of study node recommendation. Initially, we noticed that the KROSA tool

had a relatively lower precision for HazOp of the steam boiler system compared to

its performance in the HazOp for the ACC and rail lock systems. The reason for this

was that the steam boiler ontology has a lower semantic quality than the ACC

ontology and rail lock system ontology. After we improved on the quality of

description of concepts and interrelationships between concepts of the steam boiler

ontology, we obtained better results. This is not difficult to comprehend since the

domain ontology provides the knowledge base from which inferences are made by

the KROSA tool when determining what could be a potential system hazard (study

node). Thus, we conclude that the overall quality of the domain ontology affects the

performance of KROSA tool significantly, as it determines the extent to which

inferences can be made for identification of study nodes.

6.7.2 Expert Evaluation

Each of the three industry experts that took part in the assessment returned an

evaluation report from which we computed a mean weighted score of 3.27 out of 5

for the KROSA tool in relation to the evaluation objectives of the field assessment.

The tool obtained its highest mean score ratings in the aspects of support for reuse
(4.08), sensitivity (3.67), confidence (3.25) and accuracy of result (3.25), while the
lowest mean score ratings were in the aspects of: limitations (3.0) and correctness
of result (2.7). These mean score ratings reveal the perception of the experts in

terms of the strengths and weaknesses of the current version of the tool. The experts

also submitted a detailed report on desired improvements needed to make the tool

more usable. Key aspects mentioned as needing improvement were (1) the possi-

bility of providing some form of guidance to users in the selection of the most

appropriate keywords for study node recommendation and (2) the need to provide

some form of traceability links between cases that have inherited some parts from

old cases through reuse. The experts were unanimous in confirming that the tool

will be a valuable support for the conduct of HazOp, with the potential to alleviate

the complexity of the HazOp process by enabling reuse of experience.

The experts agreed that the existence of a domain ontology and a case library

where previous knowledge is stored in a structured format would help to resolve

136 O. Daramola et al.

some of the existing difficulties associated with searching, update and interopera-

bility of knowledge during HazOp. They expressed preference for the adoption of

KROSA as a support tool for HazOp over the current scenario where MS Excel

software is the main tool support for their safety analysis.

6.7.3 Threats to Validity

Our short discussion on the validity of the preliminary evaluation will be based on

the categories defined by Wohlin et al. in [31]. We consider each threat before

giving a summary of validity of our results.

Conclusion Validity: In order to ensure reliable treatment, all participants were

provided with an introduction and instructions for the experiment prior to the

experiment. Also, we used standard measures – recall and precision to assess

recommendations by the tool in order to avoid misunderstanding or misinterpreta-

tion of the results. Ordinarily using four participants in the experiment will translate

to low statistical power, but for highly technical domain like HazOp and a prelimi-

nary evaluation, we consider this to be sufficient for a first trial.

Internal Validity: A key requirement is that participants have sufficient experi-

ence or knowledge of the domain. The participants had minimum master-level

education in the area of systems safety. They were also provided with detailed

instructions of what should be done. Therefore, there were no factors other than the

treatment that influenced the outcome of the experiment.

Construct Validity: In order to ensure a realistic experiment, all participants had

the same instruction for the experiment. Also, they performed exactly the same task

which is to identify hazards (study nodes). Hence, the results obtained from

participants depend only on this task (one single variable), which eliminates any

mono-method bias effect.

External Validity: The key issue here is whether we can generalise our results

from the preliminary evaluation to the system safety industry. For the simulation

experiment, we used four expert researchers all affiliated with NTNU, while the

industrial assessment was done by three safety experts at ABB Norway. A concern

could be that possibly there would have been different results if the evaluations had

been performed with a bigger group of participants with more diverse background,

not only in terms of coming from different institutions and countries but also with

more different educational backgrounds and covering a wider spectrum of safety-

critical domains than could be achieved with only seven persons. The involved

persons mainly had experience in safety analysis in the following domains: railway,

automotive and industrial automation, and it is impossible to know if the tool would

have been found equally promising by experts from other domains, such as nuclear

power, medical technology and aviation. Our mitigation to this threat is to try to

avoid including any domain-specific limitations in our general approach, but this

does not entirely remove the threat. So, while we currently see no reason why the

approach should not also be usable in other companies and other safety-critical

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 137

domains, an interesting point for further research is to have a wider group of experts

to try out the tool.

Hence, we cannot foresee any serious threats to validity for our conclusions on

the simulation experiment performed. Also, the feedback for industry experts

proved that the KROSA tool has sufficient merit for application in an industrial

setting.

6.8 Related Work

Previously a number of attempts to solve some of the problems of HazOp analysis

have been reported in the literature [1, 3, 7]. A significant number of HazOp expert

systems and HazOp system prototypes have been reported in [4]. These include

HazOpEX, Batch HazOpExpert, HazOp Diagraph Model (HDG), STOPHAZ,

OptHazOp, EXPERTOP, HazOpTool and COMHazOp. A common trend for all

of these attempts is that their implementation and application were focussed on the

chemical process industry (CPI), the domain where HazOp originated. Also, they

were essentially rule-based expert systems and were not designed to facilitate the

reuse of experience [4]. Relatively few other automated tools for HazOp in other

domains have been reported in the literature [4]. This situation possibly reveals the

fact that the HazOp procedure in most cases is done manually but aided by the use

of spreadsheet software packages such as MS Excel and Lotus 1-2-3 in many

application domains.

It is only recently that case-based reasoning was introduced into HazOp and

few efforts have been reported so far. Sahar et al. in [6] presents a report on

development of a HazOp analysis management system with dynamic visual

model aid. The system is based entirely on CBR with no ontology support for

HazOp. In [7], a case-based expert system for automated HazOp analysis called

PHASUITE was developed. The PHASUITE system caters to the modification of

existing HazOp models and creation of new ones based on the knowledge in

existing models. It is also equipped with diagnostic reasoning capability and is

suitable mainly for process generic HazOp. It makes use of a suite of informally

specified ontologies. PHASUITE is specialised for application in the chemical

industry domain. The PetroHazOp [1] has specific application for the chemical

domain and was developed to cater to both process generic and non-process generic

HazOp. The system uses an integration of CBR and ontology for the automation of

both process generic and non-process generic HazOp procedures.

The PetroHazOp [1] and PHASUITE [7] systems are the ones most related to our

work since they are based on integration of CBR and ontology. However, none of

them have the capability for HazId based on requirements nor are they designed to

have any bearing or relevance to requirements engineering as conceived by our

approach. Additionally, unlike the two aforementioned tools that are specialised for

the chemical industry domain, our approach is a generic one that can be adapted to

support several types (process, software, human or procedure) of HazOp analysis in

138 O. Daramola et al.

different application domains, given the existence a relevant domain ontology.

Hence, the novelty of our approach is the attempt to enable early identification of

systems hazards right from the requirements engineering phase of system develop-

ment and the reuse of experience in order to reduce the amount of resources needed

for HazOp. The core idea of this chapter has been reported in [27] in abridged form.

6.9 Conclusion

This work offers support for knowledge management in systems engineering at two

levels. Firstly, at the level of requirements, it facilitates the exploitation of knowl-

edge contained in requirements documentation for early identification of potential

system hazards. The novelty of this is the provision of tool-based support for safety

analysis at an earlier phase of system development as compared to previous efforts

that focus only on the design phase. Secondly, our approach facilitates the reuse

of experience in the conduct of HazOp so that previously documented HazOp

knowledge can be leveraged for reduced effort in new projects.

Specifically, we have provided a tool that can creditably assist, but not replace

the human expert in the conduct of HazOp analysis so as to attain reduction in effort

needed. Considering the fact that HazId is a highly creative process that depends on

the experience and skill of the human domain expert, the KROSA tool would be vital

as a good starting point. Also, from the results of the evaluation, KROSA has

demonstrated a good potential for application in an industrial context. The tool

would particularly be helpful in situations where highly skilled or experienced

HazOp experts are not available, by enabling a platform whereby previously

documented cases can be reused in new scenarios by a less-experienced HazOp team.

In further work, we intend to realise the objective of an extensive semantic

framework for safety analysis by extending the features of KROSA to support

FMEA. We will also investigate the prospects of providing diagnostic reasoning

over potential hazards in order to facilitate a more elaborate automated safety

analysis. In addition, we aim to conduct more extensive industrial case studies on

safety analysis of systems and product lines using the tool and to report our findings

subsequently.

Acknowledgements We appreciate the contributions of the staff of system safety research

division ABB Norway in conducting trial evaluation of the KROSA tool.

References

1. Zhao J, Cui L, Zhao L, Qui T, Chen B (2009) Learning HAZOP expert system by case-based

reasoning and ontology. Comp Chem Eng 33(1):371–378

2. Dittman L, Rademacher T, Zelewski S (2004) Performing FMEA using ontologies. In: The

18th international workshop on qualitative reasoning. North-western University, Evanston

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 139

3. Smith S, Harrison M (2005) Measuring reuse in hazard analysis. Reliab Eng Syst Safe

89(1):93–104

4. Dunjo J, Fthenakis V, Vilchez J, Arnaldos J (2010) Hazard and operability analysis: a literature

review. J Hazard Mater 173(1–3):19–32

5. Mokos K, Meditskos G, Katsaros P, Bassiliades N, Vasiliades V (2010) Ontology-based model

driven engineering for safety verification. In: Proceedings of 36th EUROMICRO conference

on software engineering and advanced applications, Lille, pp 47–54

6. Sahar B, Ardi S, Kazuhiko S, Yoshiomi M, Hirotsugu M (2010) HAZOP management system

with dynamic visual model aid. Am J Appl Sci 7(7):943–948

7. Zhao C, Bhushan M, Venkatasubramanian V (2005) PHASUITE: an automated HazOp

analysis tool for chemical processes Part I: knowledge engineering framework. Proc Safe

Environ Prot 83(B6):509–532

8. Kolodner J (1992) An introduction to case-based reasoning. Artif Intell Rev 6(1):3–34

9. Gruber T (1993) A translation approach to portable ontologies. Knowl Acquis 5(2):199–220

10. Jurafsky D, Martin JH (2008) Speech and language processing: an introduction to natural

language processing. Speech recognition and computational linguistics, 2nd edn. Prentice-Hall,

Upper Saddle River

11. Redmill F, Chudleigh M, Catmur J (1999) System safety: HazOp and software HazOp. Wiley,

New York

12. Shepperd M (2003) Case-based reasoning and software engineering. In: Aurum A (ed)

Managing software engineering knowledge. Springer, Berlin

13. Kotis K, Vouros G (2005) Human-centered ontology engineering: the HCOME methodology.

Knowl Inform Syst 10(1):109–131

14. Happel HJ, Maalej W, Seedorf S (2010) Applications of ontologies in collaborative software

development. In: Mistrı́k I et al (eds) Collaborative software engineering. Springer, London

15. Lohmann S, Heim P, Auer S, Dietzold S, Riechert, T (2008) Semantifying requirements

engineering – the softWiki approach. In: I-SEMANTICS, Graz, pp 182–185

16. Dzung DV, Ohnishi A (2009) Ontology-based reasoning in requirements elicitation. In:

Proceedings of seventh international conference on software engineering and formal methods,

Hanoi, pp 263–272

17. Lee Y, Zhao W (2006) An ontology-based approach for domain requirements elicitation

and analysis. In: Proceedings of the first international multi-symposiums on computer and

computational sciences, Hanzhou, Zhejiang

18. Shibaoka M, Kaiya H, Saeki M (2007) GOORE: Goal-oriented and ontology driven

requirements elicitation method, ER workshops 2007, Auckland, Lecture notes in computer

sciences 4802, Springer, Heidelberg, pp 225–234

19. Maiden N, Sutcliffe A (1993) Case-based reasoning in software engineering. In: IEEE

colloquium on case-based reasoning, London, pp 2/1–2/3

20. Jani M (2010) Applying case-based reasoning to software requirements specifications quality

analysis system. In: Proceeding of 2nd international conference on software engineering and

data mining (SEDM), IEEE Press, Chengdu, pp 140–144

21. Daramola O, Moser T, Sindre G, Biffl S (2012) Managing implicit requirements using

semantic case-based reasoning. In Regnell B, Damian D (eds) REFSQ 2012, Lecture notes

in computer sciences 7195, Springer-Verlag, Berlin/Heidelberg, pp. 172–178

22. Hull E, Jackson K, Dick K (2004) Requirements engineering. Springer, London

23. StålhaneT,Omoronyia I, Reichenbach F (2010)Ontology-guided requirements and safety analysis.

In: Proceedings of international conference of emerging technology for automation, Tampere

24. Aamodt A, Plaza E (1994) Case-based reasoning: foundational issues methodological

variations, and system approaches. Artif Intell Commun 7(1):39–59

25. Pedersen T, Pakhomov S, Patwardhan S, Chute C (2007) Measure of semantic similarity and

relatedness in biomedical domain. J Biomed Inform 40(3):288–299

140 O. Daramola et al.

26. Ferguson A, Bridge D (2000) Generalised weighting: a generic combining form for similarity

metrics. In: Proceedings of the 11th Irish conference on artificial intelligence & cognitive

science (AICS’2000), pp 169–179

27. Daramola O, Stålhane T, Sindre G, Omoronyia I (2011) Enabling hazard identification

from requirements and reuse-oriented HAZOP analysis. In: Proceeding of 4th international

workshop on managing requirements knowledge, IEEE Press, pp 3–11

28. Daramola O, Oladipupo O, Musa A (2010) A fuzzy expert system tool for personnel recruit-

ment. Int J Bus Inform Syst 6(4):444–462

29. Salim M, Villavicencio A, Timmerman M (2002) A method for evaluating expert system

shells for classroom instruction. J Indust Technol 19(1):Nov 2002–Jan 2003

30. Burton-Jones A, Storey V, Sugumaran V, Ahluwalia P (2005) A semiotic metrics suite for

assessing the quality of ontologies. Data Knowl Eng 55:84–102

31. Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000) Experimentation in

software engineering: an introduction. Kluwer, Norwell

6 Using Ontologies and Machine Learning for Hazard Identification and Safety. . . 141

Chapter 7

Knowledge-Assisted Ontology-Based

Requirements Evolution

S. Ghaisas and N. Ajmeri

Abstract Reaching common level of understanding of a problem domain is one of

the key challenges that stakeholders face during the requirements phase of a project.

The stakeholders involved in requirements engineering (RE) attempt to achieve this

goal through communication and knowledge sharing. The process of clarifying

business problems and arriving at a specification necessitates developing a common

vocabulary, assigning meanings to various business concepts, determining their

interrelations, and reconciling stakeholders’ viewpoints. Oftentimes, knowledge

exists in organizations, but is not maintained in a reusable form. To address the

knowledge and collaboration needs of RE stakeholders, we have developed a

Knowledge-Assisted Ontology-Based Requirements Evolution (K-RE) method

and toolset. We demonstrate creation of a knowledge repository and its reuse in

two contexts: (1) to resolve change requests (CR) with better speed and accuracy

and (2) to jump-start a new project. We combine the social software principles and

semantic Web concepts to achieve this.

7.1 Introduction

The aim of requirements engineering (RE) is to collaboratively evolve the initial

uncertain and ambiguous understanding of a business problem into features and

attributes of a software system.Reaching a common level of understanding of a problem

domain is one of the key challenges that the software vendors and customers face during

requirements definition. The process of articulating and clarifying business problems

S. Ghaisas (*)

Tata Consultancy Services, Pune, India

e-mail: smita.ghaisas@tcs.com

N. Ajmeri

North Carolina State University, Raleigh, NC, USA

e-mail: najmeri@ncsu.edu

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_7, # Springer-Verlag Berlin Heidelberg 2013

143

mailto:smita.ghaisas@tcs.com
mailto:najmeri@ncsu.edu

and arriving at a specification based on a shared understanding requires exchange and

transfer of knowledge. This necessitates developing a common vocabulary, assigning

meanings to various business concepts, determining their interrelations, and reconciling

multiple viewpoints from stakeholders. It also involves continually accommodating

changes in the shared understanding by verifying it periodically. The challenge has

become even more daunting of late because (1) software systems increasingly find

applications in ever-widening diversity of domains, and (2) complex and conceptually

nontrivial systems are developed by globally distributed teams of stakeholders.

RE stakeholders need knowledge from different perspectives. Customers need to

see a tangible evidence of domain knowledge in an organization so that they feel

confident that their requirements would be met. Requirement analysts need the

domain knowledge to deliver good-quality requirements efficiently [1]. Subject

matter experts (SMEs) would like to optimize the time they spend with requirement

analysts. Oftentimes, knowledge exists in organizations, and it is estimated thatmore

than 50 % of requirements knowledge for similar systems can be reused completely

or with minimal modification [2]. But it is not visible and accessible easily because it

may reside in a tacit form with people. Even if it is explicit in the form of documents

or Web pages, it is difficult to refer across the multiple disparate knowledge

fragments and draw useful inferences from them. IDC report shows that the Fortune

1,000 enterprises waste $5 billion annually due to intellectual rework and the

inability of finding electronic resources within the enterprise [3]. In other words,

knowledge is not structured to be reusable.

Due to the distributed nature of projects, there is little or no opportunity for

colocated discussions among the stakeholders. This is a threat to the success of a

project. Respondents to a survey hold communication as one of the top challenges.

They express that it is extremely important for the distributed teams to “use the

same language” while defining requirements [4]. Empirical research reported in [5]

mentions “lack of common language/terminology” as one of barriers to sharing the

understanding of a problem domain. The success of “social software” in achieving

an effective communication has stimulated use of social principles in RE [6–8].

As a result, we see various tools weaving in collaboration into the RE process see,

e.g., [9]. However, although the benefits of social platforms are valuable, they are

necessary and not sufficient in themselves for an effective communication.

For example, the communication using the same language quoted above is not

possible with just a support for collaboration, unless requirement analysts can “see”

and access domain knowledge easily and use it to discuss requirements of their new

projects. They should be able to tailor the knowledge to suit their project-specific

context as well.

To address the knowledge and collaboration needs of RE stakeholders, we have

developed a Knowledge-Assisted Ontology-Based Requirements Evolution (K-RE)

method and tool. We combine the social software principles [6–8] and semantic

Web concepts to enable a knowledge-assisted RE [10].

The approach involves Knowledge-Assisted Requirements Evolution from a

generic knowledge base (KB). The KB consists of requirements knowledge elements

such as business constraints, features, business processes, use cases, and data models.

144 S. Ghaisas and N. Ajmeri

In collaboration with the customers and domain experts, requirement analysts can

modify and enhance the knowledge elements to suit project-specific needs. Each new

RE exercise thus becomes a guided evolution of a generic KB so that it meets project-

specific needs. This is characteristically different from the traditional “clean slate”

RE approach, hence the term Knowledge-Assisted Requirements Evolution. The

just-in-time, context-sensitive assistance based on semantic Web ontologies, knowl-

edge elements, and inference rules operating on them serves as a guidance and

moderation mechanism. This complements the collaborative identification, discus-

sion, and definition of requirements enabled by the underlying social platform. K-RE

has three roles – requirement analysts who consume knowledge, knowledge

contributors who capture and structure domain knowledge, and knowledge curators

who review contributions made by other experts to maintain the currency and

correctness of knowledge.

We have deployed K-RE in three pilots and have evaluated its usefulness. In this

chapter, we present the results of applying K-RE to demonstrate its benefits in the

context of knowledge reuse in a large distributed insurance project.

By weaving in domain knowledge seamlessly into an RE process, we respond

directly to the call of RE community [11] for a continued research into RE process

improvement. Both the well-documented high cost of requirements-related

problems [12–15] and the benefits of improvements in RE processes [16] serve as

a motivation for our work.

The remainder of this chapter is organized as follows. In Sect. 7.2, we describe how

social platforms and semantic Web influence RE. Section 7.3 details the solution

approach and underlying model. Section 7.4 describes the process of knowledge

representation and reuse. Section 7.5 details K-RE tool and illustrates its usage.

In Sect. 7.6, we present the results of deploying K-RE in two different industrial

settings. Section 7.7 presents the conclusion, and Sect. 7.8 talks about the future work.

7.2 Social Platforms, Semantic Web, and RE

Social platforms and the semanticWeb [17, 18] have influenced software engineering

significantly [6–8]. The emerging social software engineering discipline is about

enabling community-driven creation, management, and deployment of software by

applying methods, processes, and tools in online environments [6, 19–21]. In this

section, we highlight some relevant characteristics of the two paradigms in the context

of knowledge reuse in RE. We address issues such as self-organization versus

moderation, democratic voting versus weighted voting, bottom-up folksonomies

versus top-down taxonomies, and semantically enriched and hence more meaningful

and effective collaboration.

The social nature of Web 2.0 has been credited with democratizing knowledge

content. The same democratic aspect also assigns ownership and responsibility to

the content creators. RE stakeholders can use the democracy to identify, debate, and

define requirements collaboratively and determine what parts of existing domain

7 Knowledge-Assisted Ontology-Based Requirements Evolution 145

knowledge can be reused. The highly transparent communication that Web 2.0

platforms enable can contribute constructively to exchange of ideas and healthy

criticisms. A wiki-like platform for entering, editing requirements, and deliberating

them openly is therefore highly suitable for RE.

However, a platform meant for RE is likely to benefit from supervision and

moderation by requirements experts. Lohmann et al. [6] note that supervision and

moderation by requirements experts remains crucial to a project’s success. They empha-

size that the moderation should be unobtrusive. This seemingly defeats the purpose of a

“social” platform, but the comments and discussions are for all to see, and no single

heavy-weight stakeholder can unfairly overrule valid suggestions made by even junior

stakeholders, or they would face pressure from other experts in the community. Such a

moderation can be in the form of a context-specific semantic assistance built into the

RE process. An underlying knowledge framework of semantic Web ontologies and

inference rules can be employed to select relevant parts of domain knowledge for reuse

and provide just-in-time context-specific suggestions to collectively evolve a require-

ment specification.

Social platforms provide for voting mechanisms. A social platform meant for RE

however should take into account the opinions of stakeholders such as domain experts

with a higher weight than less experienced stakeholders in an organization. Roles that

incorporate suitable weights for respective stakeholders can be useful for this purpose.

For example, a “knowledge contributor” role has a higher weight than a “requirement

analyst” role but a lowerweight than a “knowledge curator” role.Wenote here that this

approach is intended to ensure a meritocratic treatment of participants’ opinion.

Hence, it is the responsibility of project managers to assign higher weights to the

opinions expressed by knowledgeable participants such as domain experts. If instead

the weights are decided based on hierarchy alone and without making knowledge the

central criterion for a higher weight, the meritocratic purpose will be obviously

defeated.

Folksonomies [22] that result out of free-form tagging have emerged as a way of

organizing knowledge on social platforms. RE stakeholders can arrive at a shared

understanding of a domain using thismechanism. Folksonomies are easy to create and

hence popular, but they lack structure. Also, if some concepts are not tagged using the

right term, it is hard to search and detect them. A collaborative RE platform however

cannot be entirely free of structure.A foundational structure in the formof a predefined

taxonomy of RE concepts and domain-specific terminology can be valuable to its

stakeholders in arriving at a shared understanding of a domain. Providing a user

interface that lets one use predefined concepts and add new concepts easily should

strike the right balance between ease of use associatedwith free-form tagging and rigor

associated with structure, semantic precision, and synonym control. Semantic Web

ontologies [23, 24] are a way of rendering such a structure to the platform.

The social software and semanticWeb complement each other and can enhance the

effectiveness of knowledge reuse in anRE process.Ankolekar et al. [7] emphasize that

in fact both the streams need elements from the other to overcome respective

limitations. They hold that semantic technologies bear a great potential of providing

a robust and extensible basis for Web 2.0 applications.

146 S. Ghaisas and N. Ajmeri

The social software platforms, through their democratic spirit, serve to connect

humans (e.g., identifying experts in the RE community), whereas the semantic Web

ontologies provide a mechanism to assign unambiguous meaning to vocabularies and

link them. Using semantic Web ontologies, we can assign distinct, persistent URIs to

each term and relationship (e.g., insurance domain-specific concepts and their

relationships). Therefore, linking them with each other and with other Web resources

is easy. Social platforms and semanticWeb thus provide distinct and yet complementary

network effects. Combining the two paradigms in the context of knowledge, reuse in RE

is a compelling way to increase their total value significantly.

7.3 Foundations of K-RE

Asdiscussed earlier, while adopting the social software principles to a highly specialized

field such as RE and requirements knowledge reuse, we need to complement the social

aspects with semantics [6, 7].

K-RE organizes knowledge along four distinct contexts: (1) environment, (2)

problem domain, (3) generic requirements, and (4) RE process. The semantic assistance

in K-RE comes from the inference rules operating on the four ontologies that represent

these knowledge contexts. The framework also incorporates abstractions from various

knowledgemodeling paradigms like feature models [25], business process models [26],

data models, and use case models [27], to capture and organize knowledge elements.

7.3.1 Solution Architecture: Ontologies as an Underpinning
Framework for Requirements

The four ontologies in K-RE – “Environmental Context Ontology,” “Generic

Requirements Ontology,” “RE Process Ontology,” and “Problem Domain Ontology” –

are created using RDF-OWL schema [23, 24]. Figure 7.1 shows example instances

of the ontologies depicted using the UML class diagram notation.

7.3.1.1 Environmental Context Ontology

This ontology is designed to capture the environment for which software requirements

are to be defined. For example, a requirement analyst maywant to capture requirements

for a Business Process –Member Enrolment of a Pension application for a Customer
Europe Company1 in the Europe Country1 Geography. The abstractions Actor,
Action, Domain, Line of Business‚ Customer, and Geography are used to capture

the information.

7 Knowledge-Assisted Ontology-Based Requirements Evolution 147

RE Process Ontology

Generic Requirements Ontology

Problem Domain Ontology
Business Event

<<Pension Claim
Submission>>

Business Action
<<Pension Claim

Investigation>>

Business
Constraint

<<Legistlation1>>

Business Decision
<<Adjudication>>

Business Value
<<Profit Margin>>

Business Party
<<Pensioner>>

Business Object
<<Pension

Claim>>

Business
Document
<<Pension

Policy>>

Method
<<Agile>>

Feature
<<Validate

detail>>

Requirement
Specification
<<Product
Backlog>>

Task
<<check policy

status>>

Iteration
Mechanism
<<Sprint>>

Requirement
Representation
<<User Story>>

Tracking
Mechanism

<<Burndown>>

Gui Screen
<<gui_validate_d

etail>>

makes

guides

triggers

governed by

create

Business Process
<<Pension

Claim>>

Sub Process
<<Member

Enrolment>>

Business Goal
<<Legistlation1>>

Process Step
<<Validate

detail>>

Use case
<<uc_validate_de

tail>>

Data Model
<<validate_detail

>>

Business Rule
<<Pension
Claim>>

Test case
<<tc_validate_det

ail>>

Environmental Context Ontology

Domain
<<Insurance>>

Line of Business
<<StatePension>>

Customer
<<EuropeCompany1>>

Geography
<<EuropeCountry1>>

Prototype
<<pro_validate_d

etail>>

Bridge Class 1 Bridge Class 2

Bridge Class 3

Fig. 7.1 Example KB instances and bridge classes that enable context-specific recommendations

148 S. Ghaisas and N. Ajmeri

7.3.1.2 Problem Domain Ontology

This ontology provides abstractions to capture the essence of the problem domain.

For example, consider the following scenario – In event of death of a pensioner, a
beneficiary may submit a claim request. The abstractions such as BusinessEvent,
BusinessType, Party, and BusinessAction are used to capture this information.

7.3.1.3 Generic Requirements Ontology

The KB that we present to the requirement analyst is created in terms of requirements

knowledge elements such as business goals, features, business processes and

subprocesses, business constraints (laws of the land, organizational policies), use
cases, and business entities. The Generic Requirements Ontology provides these

abstractions [[28] and references therein].

7.3.1.4 RE Process Ontology

This contains abstractions specific to the RE process, for, e.g., Agile Method has

Requirement Representation in form of User Story, Iteration Mechanism as

Sprint, and Tracking Mechanism as Burndown.

7.3.2 Examples of Mappings Between the Elements of Different
Ontologies

• The BusinessEvents (e.g., Pension Claim Submission), BusinessActions (e.g.,
Investigate Pension Claim), and BusinessDecisions (e.g., Adjugation) in the

Problem Domain Ontology are represented as BusinessProcess (e.g., Pension
Handling) in the Generic Requirements Ontology.

• BusinessConstraint (e.g., aNew legislation#123) in theProblemDomainOntology
maps to Validation (e.g., Verify conformance to legislation#123) in Generic
Requirements Ontology.

• The BusinessParty (e.g., Member), BusinessObject (e.g., Pension Claim), and
BusinessDocument (e.g., Pension Policy) from the Problem Domain Ontology
contribute to DataElement in the Generic Requirements Ontology.

• Feature (e.g., Validate Member Details) in RE Process Ontology maps to

SubProcess (Member Enrolment) in Generic Requirements Ontology.

The semantic assistance is achieved by employing the “bridge classes” and inference

rules written in the Semantic Web Rule Language (SWRL) [29]. The bridge classes

specify semantic mappings between the four ontologies. We define rules that refer the

ontology instances and provide recommendations based on the integrated inference.

The recommendations may be specific to a singular ontology or may span across the

four ontologies when necessary, in response to actions of the requirement analyst.

7 Knowledge-Assisted Ontology-Based Requirements Evolution 149

For example, if a requirement analyst selects Europe Country1 as the geography for a
Pension application to be developed, she would be presented with features and user
stories relevant to Insurance PensionProcesses from the KB.As she configures them in

the context of her project, she would be presented with business rules, in the given

geography, e.g., Pension rules in Europe Country1 (Environmental Context Ontology
and ProblemDomain Ontology). If she selects features that complement each other but

decides to associate themwith different sprints, she would receive a recommendation to

preferably rearrange them in the same sprint (Problem Domain Ontology and RE
ProcessOntology). If she adds anew feature to theProduct backlogupon the customer’s

suggestion and it happens to conflict with an already selected feature in a given domain,

she would be alerted about the inconsistency of her selection (singularly the Problem
Domain Ontology). Requirement analysts can improve the completeness, correctness,

and consistency of requirements using the inbuilt domain knowledge served to them in

the form of just-in-time alerts.

Using the collaborationmechanisms inK-RE, dispersed teams can interact informally.

Moreover, K-RE provides for a semantically enriched collaboration that would foster

meaningful and focused discussions on topics in requirements engineering in general and

problem domain such as insurance in particular. The stakeholders can even evolve the

ontologies collaboratively. A user is at liberty to identify new concepts as and when

necessary. This constitutes the folksonomy which evolves bottom-up in a community-

driven way. If their usage in the community of practice (in this case, RE stakeholders) is

substantial, the concepts can be absorbed into the taxonomy. This decision can be made

collaboratively and with advice from domain experts.

7.4 Process for Knowledge Representation and Reuse

In this section, we illustrate capturing of knowledge from requirements documents

and Web sites and mapping the knowledge elements onto the K-RE model.

7.4.1 Knowledge from Documents

Knowledge representation is done in three steps: (1) identification of structural

details of sources such as requirements documents and Web sites, (2) mapping of

the document structure to the K-RE model, and (3) extraction of domain knowledge

from documents and its representation in K-RE.

7.4.1.1 Identification of Structural Details

Each project has its own set of templates to organize requirements knowledge.

In this step, we identify the details of the document structure such as headings,

sections, and subsections. For example, a document may contain a section to list

business rules. We note that this section needs to be mapped to BusinessConstraint
in the K-RE model in the next step. We use the K-RE model as a reference to

150 S. Ghaisas and N. Ajmeri

identify missing structure details and knowledge elements in the requirements

document. For example, K-RE model has a notion of SystemUsecase, which may

not be present in a project’s requirements specification.

7.4.1.2 Mapping of Document Structure to K-RE Model

Knowledge contributor defines the scope of the KB by setting the environment

parameters (e.g., Domain, Insurance; Line of Business, State Pension; Geography,
Europe Country1; Customer, EuopreCompany1). The knowledge contributor maps

the structural details identified in the previous step to various concepts in the K-RE

model. For instance, subprocess or functionality in requirement documents maps to

the concept feature in K-RE. This is a semiautomated and semantically assisted

process; points of human intervention are identified explicitly. K-RE prompts for

inputs from users where necessary. For example, if a subsection such as overrider in
a use case cannot be mapped to any concept in the model, K-RE detects that it is

unmapped and the user is asked to either map it to some existing concept or define a

new concept that accommodates the detail. The structural details thus extracted

correspond to the Generic Requirements Ontology (Sect. 7.3.1).

7.4.1.3 Domain Knowledge Extraction and Representation

We have observed the following common problems in requirements documents:

• Granularity of domain knowledge elements such as business processes and use

cases is unspecific.

• Business constraints are not explicitly documented; they are often embedded

within the business processes – e.g., in alternate flows.

• Business process steps are not always associated explicitly with actors who

perform them.

• Manual business process steps are not explicitly differentiated from the automatable

ones.

• There is no uniformity in the usage of business terms.

K-RE aims to reduce these ambiguities by providing well-defined abstractions

using the underlying ontological model and a semantic assistance to organize

domain knowledge.

K-RE detects terms and key phrases specific to a given domain (such as insurance in

our case). The detected key phrases are instances of concepts in the ontologies.

For example, a term such asPension Policy is a concept – instance ofBusinessDocument
in the Problem Domain Ontology. The knowledge contributor is presented with the

concepts from the Problem Domain Ontology and is required to map the concept

instances extracted from the document to the concepts in the ontology. The identified

concept instances are then parsed to detect similaritymappings. The techniques employed

are lexical similarity [30], semantic similarity [31], direct stringmatching, and ontological

structure-based mapping [23, 24]. If concept instances that do not exactly correspond to

7 Knowledge-Assisted Ontology-Based Requirements Evolution 151

any existing concepts in the ontology are identified, the knowledge contributor can define

new concepts or reconcile them with the existing concepts if possible.

The concept instances are also parsed to detect associations between concept

instances (e.g., member participates in scheme). Relations like subclass, super class,
equivalent, part of, and concepts related with each other by minimum cardinality of

one on both sides are considered. The identified concept instances and associations

between them are subject to refinements by human intervention.

If a key phrase is identified as a feature, the knowledge contributor is asked to

specify complementary feature(s) and conflicting feature(s) from a list of available

features in the existing KB. She can also add new complementary/conflicting features

to the KB (e.g., Retirement Benefit Option to Purchase Annuity is followed by

Decumulation (disinvestment of funds)). The abstractions to capture complementary

and conflicting features take cues from “requires” and “excludes” relationships in

feature modeling [25].

If a key phrase is identified as a use case, the knowledge contributor specifies actor

(s) from the available list or adds new ones to the KB. She also identified “includes”

and “extends” use cases for a given use case from the KB or adds new ones. Each

sentence is processed, and all sentences in passive voice are converted to active voice.

We use triplet extraction to identify part of speech [32] in form of subject-predicate-

object. The subject refers to the performing actor, and the predicate and the object pair

in the verb phrase refers to the use case. These abstractions are captured as per the use

case model [27].

Business constraints (e.g., Member’s Benefit Age should be the age notified by
member to the SchemeAdministrator) typically contain terms such as should, must, if,
if-else, and only-if.Key phrases containing these terms are presented to the knowledge

contributor so that she can map them as instances of BusinessConstraints. Whenever

a business constraint is identified, the features and the use cases that are affected by

the constraint are specified. Complementary and conflicting constraints are specified.

The constraints are then classified into rules that are domain specific, laws that are
locale specific, and policies that are company specific.

The domain knowledge elements thus extracted map to the Problem Domain

Ontology (Sect. 7.3.1) and other knowledge models. The knowledge curator validates

the correctness and currency of the KB created using the process.

7.4.2 Knowledge from Domain-Rich Web Sources

Organizations sometimes venture into newdomains andneed to buildKBs fromexternal

sources. One of the prominent external sources today is the Web. To accumulate

knowledge from theWeb, K-RE employs aWeb crawler developed in-house to explore

various resources.We do a targeted crawling forWeb sites whose patterns are known. If

the pattern or template of theWeb site is not known (or if theWeb source does not follow

a fixed template), we prune the html tags and parse only the text to extract concept

instances. The mapping of the Web page pattern to K-RE model and the process of

152 S. Ghaisas and N. Ajmeri

identifying the concept instances, associations, features, use cases and business

constraints, and validation by knowledge curator remains the same as the one described

in Sect. 7.4.1.

7.4.3 Knowledge Reuse and Upkeep

The structured KB enables reuse of knowledge while defining requirements of a

new application in the same domain. A suitable instance of KB is made available to

requirement analyst as per the project environment.

A requirement analyst who wants to work on a new Pension project starts with

selecting environmental parameters. Based on the selected environmental parameters,

she is presented with a core set of features from the KB that matches the parameter

selection (e.g., State Pension). As she proceeds to select the relevant features, she is

recommended to include the complementary features and avoid the conflicting ones.

Based on the feature selection, she is presented with the relevant business rules and

business glossary associated with the selected feature.

If requirement analysts learn some new information about a domain, they can add/

edit/remove the knowledge elements from the repository as well. K-RE identifies the

usage patterns of the requirement analysts and makes them visible to the knowledge

curator.

7.5 K-RE: A Tool for Knowledge-Assisted Collaborative

Requirements Evolution

In this section,we describe theK-RE tool.We also illustrate its usagewith an example.

7.5.1 Overview

The tool provides a wiki-like user interface for knowledge contributor and knowledge

curator to contribute domain knowledge and for requirement analyst to access and

configure the knowledge:

• Knowledge contributor: An experienced requirement analyst who contributes

generic and specific domain knowledge to the repository.

• Knowledge curator: As a subject matter expert, the curator monitors and ensures

quality of knowledge. She ensures that the knowledge content is correct and

current. Curator acts as the reviewer and monitors the contributions made by the

knowledge contributor.

• Requirement analyst: End user of the K-RE who configures available domain

knowledge as per the project environment parameters and scope.

7 Knowledge-Assisted Ontology-Based Requirements Evolution 153

7.5.2 Architecture

K-RE is a Web-based tool with a centralized application server and database server

accessible to multiple clients over the Internet. To store knowledge models and their

instances, K-RE uses RDF-OWL [23, 24] ontologies and a relational data store [33].

The design incorporates collaborative aspects ofWeb 2.0 for a participatory information

sharing and collaboration among theRE stakeholders. The semantic assistance provided

by K-RE uses OpenNLP – NLP toolkit [34], WordNet lexical database [35], and RDF-

OWL ontologies along with SWRL rules.

Figure 7.2 shows the tool architecture. The presentation layer serves as the

interface between the tool and the user. The logic layer incorporates a guidance

enabler and content processor. The user requests, sent using the presentation layer,

are processed by the logic layer. The data layer includes the knowledge reference

module to represent knowledge in form of ontology concepts and instances.

7.5.3 Usage Illustration

Table 7.1 shows K-RE activities and knowledge assistance with examples.

In addition to those illustrated in Table 7.1, K-RE enables the following:

Presentation
Layer

Logic Layer

Data Layer

Web Browser Modeling Tools

XMI, XPDLHTML, DHTML

Content Processor

Text
Processing

Engine

Artifact
Generation

Engine

WordNet ApachePOI OpenNLP iText REXML

Knowledge Reference

Environmental
Context

Ontology

Generic
Requirements

Ontology

Problem
Domain

Ontology

RE Process
Ontology

Data Store

Guidance
Enabler
Generic

RE
Guidance

Domain
Guidance

Fig. 7.2 K-RE architecture

154 S. Ghaisas and N. Ajmeri

Table 7.1 K-RE activities and knowledge assistance

K-RE activities

Knowledge assistance

from State Pension KB Example(s)

Formalized/human

intervention

Select

environmental

parameter

A KB relevant to the

selected parameters

is presented

Parameters: Domain (e.g.,

Insurance), Line of
Business (e.g., State
Pension), Geography
(e.g., Europe Country1),
and Customer (e.g.,
Europe Company1)

Formalized

KB including processes
such as Member
Enrolment,
Contribution,
Alterations, Settlement,
and Exits presented

Select feature Domain-specific

recommendation of

complementary

and conflicting

nature of the

features

Selected feature: (1) Early
Retirement due to
serious ill-health,
(2) Over Maximum
Retirement Age
Processing

Formalized

Recommendation to

reconsider the selection

due to conflicting nature

of features

Underlying business rule: A
member is eligible for
Early Retirement due to
serious ill-health before
the Maximum
Retirement Age

Edit feature Domain and

geography-specific

recommendation to

include relevant

business rules/

policies, business

terms

Selected feature: Early
Retirement due to
serious ill-health

Formalized

Business term: Deferred
Retirement

Rule: Laws of land related
to Early Retirement

Edit feature step Domain/geographic/

context-specific

recommendation

for most agreed-

upon business term

Altering feature step:
Check if retirement age
is less than Normal
Benefit Age

Formalized + human

intervention

Most agreed-upon term:

Normal Retirement Age

Synonymous term: Normal
Pension Age, Normal
Benefit Age

Specify

interactions

with external

domain(s)

Possible interactions

with other domains

are presented

Requirement analyst can

view possible

interactions with other

domains and identify

Formalized + human

intervention

(continued)

7 Knowledge-Assisted Ontology-Based Requirements Evolution 155

7.5.3.1 Semantically Enabled Collaboration

While carrying out any of the activities in Table 7.1, a requirement analyst can start

discussions in the form of informal chats on the selected knowledge elements with

her colleagues and experts and seek opinion on selections from the KB and

refinements to be made. She can post topics for discussions on semantically enabled

forums and subscribe to alerts when others post their opinions on topic of her interest.

For example, if she selects the following rule to be included in her specification:

Member’s Benefit Age should be the age notified by member to the Scheme Adminis-
trator, and if she is not sure that whether the rule is valid in Europe Country2, she
can start a forum to discuss this with experts. Upon initiating a forum, she will be

presented with a set of relevant posts available on the topic. For example, she can

view posts related to validity of rules for Pension, rules for Europe Company1,
rules for Europe Country2, posts by other experts who contributed Pension rules,

and rules regarding related terms such as date of commencement premium and select

the most suitable thread of discussions in terms of topic, author geography, and so on.

7.5.3.2 Generating and Refining Artifacts Iteratively

The requirement analyst can generate structured requirements specification documents

intermittently. If project follows an agilemethod, she can view Sprints, Product backlogs,
andBurndown charts. She can also populate datamodels usingmodeling tools. The analyst
can either work on the “text” or “diagram” and import/export to/from either format. This

helps in refining artifacts incrementally.

Table 7.1 (continued)

K-RE activities

Knowledge assistance

from State Pension KB Example(s)

Formalized/human

intervention

entry points into

relevant processes:

Feature: Early Retirement

due to ill-health

Possible Interfaces with
external domain(s)

Healthcare domain (e.g.,

reviewing member’s
medical evidences
submitted for serious ill-
health to confirm that
life expectancy of
member is less than a
year)

Banking domain (e.g.,

payout processing after
Early Retirement claim
is approved)

156 S. Ghaisas and N. Ajmeri

Starting with the KB for business processMember Enrolment, the requirement analyst

can thus evolve a specification that suits a given project. The evolution is an assisted

exercise that helps in adding to or modifying the KB by providing context-sensitive help

to a requirement analyst.

It is relevant here to add that not all of the domain knowledge is formalizable in terms

of ontologies and the Semantic Web Rule Language (SWRL). We therefore use a

combination of formalization and human intervention to represent knowledge and

enable its reuse in RE. The example presented in Table 7.1 indicates points of human

intervention.

7.6 Evaluation in Industrial Settings

In this section, we present results of deploying K-RE in a large insurance project.

The project under discussion is a large Europe Country1 workplace pension scheme. It

involves providing scheme administration services to the client.

We illustrate reuse of the structured knowledge in two contexts: (1) change

impact analysis in the same project (Europe Country1) and (2) while starting a new
project (Europe Country2) in the same domain.

We created a State Pension KB using K-RE from existing requirement

specifications. Table 7.2 lists the tasks and effort involved in creating the KB.

The details pertaining to the size and content of the KB are given in Table 7.3.

In parentheses against the knowledge elements, we indicate the number of the

respective knowledge elements identified in the documents.

The KBwas found to be useful in two ways – (1) for resolution of change requests

in the same project and (2) as a point of departure for a new Pension project.

7.6.1 Change Request Resolution in the Same Project

For each proposed requirement change request, the requirement analysts carry out the

change impact analysis and discuss with other stakeholders the effort involved in

implementing the change. Changes in requirements always have a ripple effect [36].

Bohner [37] defines change impact analysis (CIA) as “the activity of identifying the

potential consequences, including side effects and ripple effects, of a change, or

estimating what needs to be modified to accomplish a change before it has been

made.” The effort involved in implementing a change is proportional to the impact

and has a direct bearing on cost of the project. The process of change resolution thus

benefits from (1) a visible knowledge about impacted requirements elements as a result

Table 7.2 Tasks and effort involved in creating knowledge base

Task Effort

Analysis and standardization of requirement specification documents 10 person days

Uploading in K-RE 1 person day

Review of extracted knowledge elements 8 person days

7 Knowledge-Assisted Ontology-Based Requirements Evolution 157

of the change in a given element and (2) collaboration mechanisms that allow for

discussions among requirement analysts, developers, project managers, and customers.

K-RE incorporates both these aspects.

To evaluate the usefulness of K-RE, we conducted an experiment to compare the

manual change request implementation routinely practiced by the project and one

carried out using K-RE. Two separate groups of requirement analysts implemented 30

change requests for the project. (1) Group 1 consisting of seven requirement analysts

followed the traditional approach of analyzing the requirement specification documents

Table 7.3 Knowledge elements from project documents and their mappings to the K-RE model

Requirement

artifacts identified

from project

documents Problem area Mapping details

Corresponding

knowledge

elements in

K-RE

Group (5) Multiple business

processes

within a group

Individual processes (e.g.,

Settlement and Exits, Fund

Administration) from a group

(e.g., Group 4) were extracted

and mapped to a process in

K-RE

Process (16)

Subgroup (13) Multiple business

subprocesses

within a

subgroup

Individual subprocesses (e.g.,

Retirement, Transfers, Death,

and Cessation) from a subgroup

(e.g., Settlement and Exits)

were extracted and mapped to a

subprocess in K-RE

Subprocess (52)

Functional use

case (48)

Multiple

functionalities

within a use

case

Piece of business functionality

(e.g., Early Retirement due to

ill-health, Early Retirement due

to incapacity) that can execute

separately was extracted from

the use cases and business flows

and mapped to a feature in K-

RE (pieces of functionalities

from 48 functional use cases

and 333 business flows were

mapped as 220 features)

Feature (220)

Business flows (333)

Business flow step Actors not

associated with

each business

flow step

Each feature step was associated

with a performing actor

Feature step

Business rules(218) Many business

rules embedded

in the business

flows

128 additional business rules were

identified from the business

flows through domain analysis

Business

rule (346)

Glossary terms

(517)

Inconsistency in

the usage of

business terms

Additional business terms detected

from documents. Business

terms and the relation between

them were identified

Business terms

(1,210)

158 S. Ghaisas and N. Ajmeri

to identify impacted elements, and (2) Group 2 consisting eight requirement analysts

implemented the changes using K-RE. The change request implementation was

reviewed by five domain experts.

7.6.1.1 Change Request Analysis

Table 7.4 shows an example of the original requirement and the change request.

The proposed requirement change implicitly includes change in Nominal Benefit
Age-related business rules and change in the use of some business terms.

7.6.1.2 Traditional Change Request Resolution

Requirement analysts in Group 1 performed the change impact analysis and determined

the related requirement artifacts. They used the traceability information available in

requirement specification documents.

We noted the following:

• Total number of impacted knowledge elements identified by domain expert (IKE Total):
These are the total number of knowledge elements impacted by the proposed change

assuming all knowledge elements have been captured.

• Total number of impacted knowledge elements identified by requirement analyst
manually (IKE Manual): These are actual number of impacted knowledge elements

identified by the requirement analyst manually from requirement specification

documents.

7.6.1.3 Change Request Resolution Using K-RE

Analysts in Group 2 used K-RE to handle change requests. Using K-RE, they

modified the business rules corresponding to Nominal Benefit Age in the business
process Settlements and Exits and subprocess Retirement. Upon making these

modifications, they received alerts to also update associated knowledge elements

Table 7.4 Requirement change request details

Requirement details

Original
requirement

Introduction of a default retirement age: member’s benefit age should default to

Nominal Benefit Age/State Pension Age

Change request Introduction of two Default Retirements Age

1(a): Revise the rule of Nominal Benefit Age to automatically adjust the Benefit

Age of member. Member’s Benefit Age should default to Nominal Benefit

Age/State Pension Age. In case the member does not take their benefit and

does not tell when they intend to take their benefit, then after the expiration

of Nominal Benefit Age/State Pension Age, the Nominal Benefit Age

should automatically default to 1 day before the Maximum Retirement Age

(i.e., 75)

1(b): Change the current definition of “Nominal Benefit Age” and replace the

term with “Benefit Age”

7 Knowledge-Assisted Ontology-Based Requirements Evolution 159

such as complementary rules and validations. When the validations were updated,
K-RE prompted the analysts to review corresponding task and feature step. For
each feature step altered, K-RE presented all the knowledge elements associated

with it. Table 7.5 illustrates some examples for change request under consideration.

We noted the following:

• Total number of impacted knowledge elements identified by K-RE (IKE K-RE):
These are the total number knowledge elements identified by K-RE as impact of

the proposed change.

• Total number relevant impacted knowledge elements identified byK-RE (IKEK-RE Rel):
These are the impacted knowledge elements that were identified by K-RE and

considered relevant by the domain expert.

7.6.1.4 Effectiveness Parameters

In order to measure the effectiveness of requirement change resolution using K-RE

and compare it with to the traditional approach, we computed precision and recall

values based on the data obtained from the experiment.

Table 7.5 Illustration of requirement change resolution using K-RE

Requirement

change

resolution

activities Guidance from K-RE

Identifying impacted knowledge

element

Update business

rule

Domain-specific recommendation to

update complementary business

rule

Rule#1: “Member’s Benefit Age should

be the age notified by member to the

scheme”

Complementary rules

Rule#2: “In the absence of member

notification, Member’s Benefit Age

should be State Pension Age”

Rule#3: “In the absence of member

notification, if member has already

attained relevant age then

Member’s Benefit Age should be

immediately before the member

attains age 65”

Generic recommendation for

requirements completeness to

update corresponding validations

Validation#1: Check if member age is

less than 65

Update

validation

Generic recommendation for

requirements completeness to

update corresponding task

Task#1: Validate member age with

Normal Minimum Retirement Age

Update task and

feature step

Generic recommendation for

requirements completeness about

possible impacted knowledge

elements associated with feature

step

Associated actor, associated triggering

feature step, associated nested

feature step, associated system use

case

160 S. Ghaisas and N. Ajmeri

Precision:We define precision as “percentage ratio of relevant impacted knowledge

elements identified that require change to the total impacted knowledge elements

identified.”

Precision (PM) is the percentage ratio of impacted knowledge elements identified by

the requirement analysts in Group 1 that were considered relevant by the domain expert

(to the total number of impacted knowledge elements identified by the requirement

analyst).

Precision (PK-RE) is the percentage ratio of impacted knowledge elements

identified by the requirement analysts using K-RE that were considered relevant

by the domain expert (to the total knowledge elements identified by K-RE).

PK-RE ¼ ðIKEK-RERel=IKEK-REÞ � 100

Here, we have assumed that precision (PM) is 100 % because all the elements

that the requirement analysts identify are correct. However, requirement analyst

may or may not identify all the impacted knowledge elements that require change.

We have verified this logical assumption with domain experts.

Recall: We define recall as “percentage ratio of impacted knowledge elements

identified to the total actual impacted knowledge elements.”

Recall (RM) is the percentage ratio of the relevant knowledge elements identified

by the requirement analyst to the total actual impacted knowledge elements.

Recall (RK-RE) is the percentage ratio of the relevant knowledge elements

identified by K-RE to the total actual impacted knowledge elements.

RM ¼ ðIKEManual=IKETotalÞ � 100

RK-RE ¼ ðIKEK-RERel=IKETotalÞ � 100

7.6.1.5 Results

Table 7.6 lists the parameters discussed earlier.

The plot in Fig. 7.3 depicts the precision and recall value computed for each of

the CR handled manually and using K-RE.

Precision
Average precision of the K-RE was computed as 90.79 %.

PK-RE ¼
X

IKEK-RE Rel=
X

IKEK-RE

� �
� 100

PK�RE ¼ 90.79 %.

Recall
Average recall of the K-RE was computed as 89.61 %.

7 Knowledge-Assisted Ontology-Based Requirements Evolution 161

RK-RE ¼
X

IKEK-RE Rel=
X

IKETotal

� �
� 100

RK-RE ¼ 89.61 %.

Average recall of the traditional manual requirement traceability approach was

computed as 51.94 %.

RM ¼ ð
X

IKEManual=
X

IKETotalÞ � 100

RM ¼ 51.94 %

7.6.1.6 Analysis

Average precision of identifying knowledge elements impacted by the change

requests when using K-RE was found to be 90.79 %. If a knowledge element is

being changed, K-RE uses the underlying domain knowledge ontology to identify

all the related knowledge elements. For example, if it is required to change a

feature, the related rules, complementary features, use cases, and test cases will
be highlighted as impacted elements. Only human intervention can discern if all

need to be correspondingly updated. For example, not all test cases will need to be

changed if a use case is being modified. As discussed earlier, we have involved

domain experts to review the results of manual identification and identification

done by K-RE.

Table 7.6 Impact analysis of change requests

Change

request IKE Total IKE K-RE IKE K-RE Rel IKE Manual

CR 1 4 5 4 2

CR 2 6 7 6 6

CR 3 11 12 11 5

CR 4 10 10 9 4

CR 5 10 10 9 4

CR 6 13 11 11 7

CR 7 12 11 9 6

Total
P

IKETotal ¼ 154
P

IKEK�RE ¼ 152
P

IKEK�RE Rel ¼ 138
P

IKEmanual ¼ 80

0

20

40

60

80

100

CR 1 CR 2 CR 3 CR 4 CR 5 CR 6 CR 7 CR 8

Precision (K-RE)

Precision (Manual)

Recall (K-RE)

Recall (Manual)

Fig. 7.3 Precision and recall:

manual and K-RE based

162 S. Ghaisas and N. Ajmeri

Average recall of the K-RE was computed 89.61 %. Recall using manual

approach was found to be 51.94 %. K-RE thus has an inherent ability to make

knowledge visible using the domain knowledge ontology it incorporates. The

business analysts could not identify as many impacted elements in the absence of

such a mechanism. Some of the impacted elements such as tasks and validations
associated with use cases; complementary features were not obvious to them. K-RE

makes the impact easily visible to all stakeholders and hence easy to discuss the

effort involved.

7.6.2 Starting a New Project Using the Knowledge Base

A Pension application for an insurance company in Europe Country2 was to be

developed. The KB created for Europe Country1 was reviewed for reuse. From the

repository, the knowledge elements mentioned in Table 7.7 were found to be closest

to the new project for Europe Country2. These were imported into the new project

workspace from the repository.

Eighteen of the selected State Pension processes were modified. Two hundred

business entities and relations were added afresh to the ones borrowed from repository.

Fifty new country-specific variants to business rules had to be included. The resultant

KB was reorganized, modified, and refined in consultation with customers and domain

experts, using the Web 2.0 enabled communication in addition to the assistance that

K-RE provides. For example, the analyst selected the processContribution toworkwith
from the list of available process in the KB. She received a recommendation to add the

processes Customer Management, Finance, and Accounting, as these processes are

complimentary to the process Contribution. The analyst was also presented a list of

features specific to selected process. For example, features such as member regular
contribution by new direct debit, member ad hoc contribution by new direct debit,
member adhoc contribution by debit card, and member contribution correction were

presented to the analyst from theprocessContribution. She selected the featuresmember
regular contribution by new direct debit and member adhoc contribution by new direct
debit to add to her project. K-RE prompted her to add feature member contribution
correction as well (as feature, member contribution correction is complimentary to the

other selected features). The requirement analyst made changes to one of the features –

member regular contribution by new direct debit. She entered a new feature step – verify
member contribution details with respect to present growth rate and send notification
to the scheme holder; K-RE provided an alert that scheme holder and member are

synonymous terms, but member is the commonly accepted term. In addition to this,

K-RE also parsed the text to identify new business terms and concepts (e.g.,growth rate,
contribution) and recommended the analyst to add them to the glossary. She was

also prompted to add relevant business rules such as growth rate must be within the
range of 8–10 % and validations such as check if the growth rate is within the range
of 8–10 %. Corresponding use cases as well as screens were made visible to her to

select from.

7 Knowledge-Assisted Ontology-Based Requirements Evolution 163

The final requirement specification for the new project consisted of 239 State
Pension processes, 3,269 business entities and relations, and 822 business rules
along with exceptions and overrider scenarios. A review by domain experts reveals

that 60 % of the knowledge needed to arrive at the baseline specification was reused

from the repository created originally for the Europe Country1 Pension project.

In subsequent phases, 20–30 % of time savings were observed.

The projects teams consider this to be a significant contribution to the requirements

definition exercise, which otherwise starts from a clean slate for want of visible,

accessible, and configurable knowledge. The availability of a structured KB also serves

as a “thinking aid” for all RE stakeholders to brainstorm and arrive at a consensus. It is

easier to review and modify (if necessary) an existing feature or a process than to come

up with one afresh. Customers find it simpler to suggest changes and additions to an

existing process or a rule than to narrate one from memory. Requirement analysts can

leverage the domain vocabulary to have meaningful discussions with customers and

optimize the time spent with SMEs.

Table 7.7 Knowledge elements reuse in project for Europe Country2

Knowledge

elements in

knowledge base

from Europe
Country1

Knowledge elements

imported from Europe
Country1 for reuse in

Europe Country2
project Remark(s) Example

52 subprocess All of 52 State Pension

subprocesses and

BPMN process maps

18 out of the 52 imported

State Pension

subprocesses were

modified

Some of the modified

subprocesses are

Contribution, Joiner,
Risk Management,
Customer
Management

220 features All of 220 features Feature steps modified to

accommodate

country-specific

variations

Original step: Perform
contribution limit
check as dictated by
Europe Country1

Modified step: Perform
contribution limit
check as dictated by
Europe Country 2

346 business

rules

250 business rules 50 new country-specific

variants to business

rules included

New business rule such

as in case of Europe
Country 2, the
member must hold a
valid debit card that
was added

1,210 business

terms and

relationships

All of 1,210 business

terms and

relationships

Two hundred business

entities and relations

added afresh to the

1,210 borrowed from

repository

Example: New terms

such as growth rate
and contribution were
added

164 S. Ghaisas and N. Ajmeri

7.7 Discussions and Conclusion

REpredominantly involves establishing a shared understanding of problemdomain. It is

estimated that more than 50 % of requirements knowledge for similar projects can be

reused completely or with minimal modification [2]. However, knowledge present in

tacit form is not amenable to reuse. Even explicit knowledge in the form of disparate

documents may not serve the purpose of reuse because it is not structured in a way that

makes it visible, accessible, and configurable. We address this need by developing a

method and toolset to create, curate, and reuse knowledge for evolving requirements of

large projects. K-RE facilitates extracting domain knowledge from semistructured and

unstructured knowledge sources to create a structured KB consisting of generic require-

ment elements that can be reused in the same project as well as while starting new

projects. We envisage a monitored environment where in a community of stakeholders

creates and evolves the generic KB to suit project-specific needs. The just-in-time alerts

to guide knowledge reuse in an RE process help achieve an improved completeness,

consistency, and richness of the resulting specification. We have used a combination of

the social software principles and semantic Web concepts.

We have demonstrated creation of knowledge repositories and its reuse in large

projects.

In addition to knowledge reuse in RE, the concept of using active knowledge

repositories can be extended to any exercise that draws on intensive knowledge

services. We find that the foundation of our method and toolset is generic enough to

cater to the knowledge reuse needs of stakeholders in very interesting emergent

disciplines such as nanotechnology-based agriculture/food research [38, 39].

We realize however that the success of K-RE will depend largely on the quality

of KB that we are able to create. Also, adopting K-RE would require a mindset

change that is difficult to achieve in any organization. The upfront investment in

creating a KB can also be a hindrance to adopting this approach.

7.8 Future Work

The work presented here attempts to combine benefits of the inference and reasoning

possibilities associated with the use of semanticWeb and the social aspects associated

with Web 2.0 for achieving knowledge reuse in RE.

SemanticWeb presents the additional possibility to link resources across theWeb

by assigning persistent URIs to domain concepts and their relationships. We have

recently attempted to explore this possibility for understanding and visualizing the

multi-domain span of requirements in a given domain [40]. Our approach tested on a

few sample user stories brings out that the approach can help in explicitly visualizing

the multi-domain scope of requirements and improve their completeness at the stage

of specification itself [40]. We are aware that the completeness of ontologies is a

precursor to this method and hence a limiting factor to its successful application.We

seek opportunities to further test the applicability and scalability of the method and

tool in large projects.

7 Knowledge-Assisted Ontology-Based Requirements Evolution 165

Acknowledgments We thank the anonymous referees of our previously published work in

MaRK 10 and MaRK 11 workshops at previous RE conferences. One of us (SG) would like to

thank Vijaya Deepti, TCS, for her solid support to this project and very many practical insights

during the course of this work. The authors acknowledge inputs from Mini Jain and Preethu Rose

(TCS) and reviews from V. S. Sivakumar and C. Sudheer of the Insurance unit of TCS.

References

1. Kaiya H, Saeki M (2006) Using domain ontology as domain knowledge for requirements

elicitation. In: Proceedings of the 14th IEEE international requirements engineering conference,

IEEE Press, Minneapolis, pp 189–198

2. Lopez O, Laguna MA (2001) Requirements reuse for software development, in RE 01 doctoral

workshop. In: Proceedings of the 5th IEEE international symposiumon requirements engineering,

Toronto, pp 27–31, Aug 2001

3. Feldman S, Sherman C (2004) The high cost of not finding information. Information Today,

Incorporated

4. Making agile software development work for distributed teams. http://searchsoftwarequality.

techtarget.com/news/article/0,289142,sid92_gci1277064,00.html. Accessed 15 Nov 2011

5. Buchan J, Ekadharmawan CH, MacDonell SG (2009) Insights into domain knowledge sharing

in software development practice in SMEs. In: Proceedings of the 16th Asia-Pacific software

engineering conference, IEEE CS Press, Penang, pp 93–100

6. Lohmann S, Dietzold S, Heim P, Heino N (2009) A web platform for social requirements

engineering. In: Software Engineering 2009 – workshopband, Kaiserslautern, 2–6 March 2009

7. Ankolekar A, Krotzsch M, Tran T, Vrandecic D (2007) The two cultures- mashing up web 2.0

and the semantic web. In: Proceedings of the 16th international conference on World Wide

Web, ACM, Banff, pp 825–834

8. Maalej W, Happel H (2008) A lightweight approach for knowledge sharing in distributed

software teams. In: Yamaguchi T (ed) PAKM 2008. Lecture notes in artificial intelligence

(LNAI), vol 5345. Springer, Heidelberg, pp 14–25

9. IBM -Jazz (2011) http://www-01.ibm.com/software/rational/jazz. Accessed 15 Nov 2011

10. Ajmeri N, Sejpal R, Ghaisas S (2010) A semantic and collaborative platform for agile

requirements evolution. In: Proceedings of the third international workshop on managing

requirements knowledge, IEEE Press, Sydney, pp 32–40

11. Cheng B, Atlee J (2007) Research directions in requirements engineering. In: Future of

software engineering, Minneapolis, pp 285–303

12. Flynn DJ (1992) Information systems requirements: determination and analysis. McGraw Hill,

London

13. Hofmann HF, Lehner F (2001) Requirements engineering as a success factor in software

projects. IEEE Software 18(4):58–66

14. Boehm B (1981) Software engineering economics. Prentice Hall, Upper Saddle River

15. Kastanov A, Sakkinen M, Kastanov A, Sakkinen M (2006) Requirements quality control: a

unifying framework. In: Requirements engineering, vol 11. Springer, New York, pp 42–57

16. Damian D, Chisan J (2006) An empirical study of complex relationships between the

requirements engineering process and other processes that lead to payoffs in productivity,

quality and risk management. In: IEEE transactions in software engineering, vol 32. IEEE,

San Francisco, pp 433–453

17. Berners-Lee T, Hendler J, Lassila O et al (2001) The semantic web. Scientific Am 284(5):

28–37

18. Shadbolt N, Hall W, Berners-Lee T (2006) The semantic web revisited. IEEE Intell Syst

21(3):96–101

166 S. Ghaisas and N. Ajmeri

http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1277064,00.html
http://searchsoftwarequality.techtarget.com/news/article/0,289142,sid92_gci1277064,00.html
http://www-01.ibm.com/software/rational/jazz

19. Hannemann A, Hocken C, Klamma R (2009) Community driven elicitation of requirements

with entertaining social software. In: Software engineering 2009 workshop-band,

Kaiserslautern, pp 317–328

20. Decker B, Ras E, Rech J, Jaubert P, Rieth M (2007) Wiki-based stakeholder participation in

requirements engineering. IEEE Softw 24(2):28–35

21. Whitehead J (2007) Collaboration in software engineering: a roadmap. In: Future of software

engineering, IEEE, Washington, pp 214–225

22. Folksonomy http://vanderwal.net/folksonomy.html. Accessed 15 Nov 2011

23. Ghazvinian A, Noy NF, Jonquet C, Shah N, Musen MA (2009) What four million mappings

can tell you about two hundred ontologies? In: Proceedings of the 8th international semantic

web conference, Lecturer notes in computer science, vol 5823. Springer, Heidelberg,

pp 229–242

24. McGuinness DL, Van Harmelen F et al (2004) OWL web ontology language overview. W3C

recommendation 10(2004-03):10

25. Kang KC, Cohen SG, Hess JA, Novak WE, Peterson AS (1990) Feature-oriented domain

analysis (FODA) feasibility study. DTIC Document

26. Business ProcessModeling Notation (BPMN) (2006) Specification, final adopted specification.

Technical report, Object Management Group (OMG), Feb 2006

27. Cockburn A (2001) Writing effective use cases. Addison-Wesley, Boston

28. Ghaisas S (2009) A method for identifying unobvious requirements in globally distributed

software projects. In: Proceedings of SENSE09, Kaiserslautern, Lecture Notes in Informatics

(LNI), pp 297–308

29. Horrocks I, Patel-Schneider PF, Boley H, Tabet S, Grosof B, Dean M et al (2004) SWRL:

a semantic web rule language combining OWL and RuleML. W3C Member Submission

21:79

30. Kiu CC, Lee CS (2007) Ontodna: ontology alignment results for OAEI 2007. In: Proceedings

of the 2nd ontology matching workshop, Bonn, pp 196–204

31. Dao TN, Simpson T (2005) Measuring Similarity between sentences. http://opensvn.csie.org/

WordNetDotNet/trunk/Projects/Thanh/Paper/WordNetDotNet_Semantic_Similarity. Accessed

24 Feb 2008

32. Rusu D, Dali L, Fortuna B, Grobelnik M,Mladenic D (2007) Triplet extraction from sentences.

In: Proceedings of the 10th international multiconference on information society-IS, Ljubljana,

pp 8–12

33. MySQL (2011) http://mysql.com. Accessed 15 Nov 2011

34. OpenNLP Project (2011) http://incubator.apache.org/opennlp. Accessed 15 Nov 2011

35. WordNet (2011) http://wordnet.princeton.edu. Accessed 15 Nov 2011

36. Spijkerman W (2010) Tool support for change impact analysis in requirement models:

exploiting semantics of requirement relations as traceability relations, University of Twente

37. Bohner SA, Arnold RS (1996) Software change impact analysis. IEEE CS Press, Los Alamitos

38. Rose P, Bhat M, Vidhani K, Ajmeri N, Gole A, Ghaisas S (2011) Intelligent informatics

platform for nano-agriculture. In: 2011 11th IEEE conference on nanotechnology (IEEE-

NANO), IEEE, pp 916–919

39. Rose P, Gole A, Ghaisas S (2011) A semantic regulatory framework for nanotechnology

application in agri-food domain. In: 2011 fourth international workshop on requirements

engineering and law (RELAW), IEEE, pp 60–66

40. Ajmeri N, Vidhani K, Bhat M, Ghaisas S (2011) An ontology-based method and tool for cross-

domain requirements visualization. In: 2011 fourth international workshop on managing

requirements knowledge (MARK), IEEE, pp 20–23

7 Knowledge-Assisted Ontology-Based Requirements Evolution 167

http://vanderwal.net/folksonomy.html
http://opensvn.csie.org/WordNetDotNet/trunk/Projects/Thanh/Paper/WordNetDotNet/_Semantic/_Similarity
http://opensvn.csie.org/WordNetDotNet/trunk/Projects/Thanh/Paper/WordNetDotNet/_Semantic/_Similarity
http://mysql.com
http://incubator.apache.org/opennlp
http://wordnet.princeton.edu

Part III

Sharing Requirements Knowledge

“The power of human thought grows exponentially with the number of minds

that share that thought.”

—Dan Brown

Walid Maalej. Printed with permission

Chapter 8

Reusing Requirements in Global Software

Engineering

Juan Manuel Carrillo de Gea, Joaquı́n Nicolás, José Luis Fernández Alemán,

Ambrosio Toval, A. Vizcaı́no, and Christof Ebert

Abstract Knowledge sharing and reuse in global software engineering (GSE) are

challenging issues. Knowledge management (KM) is specifically impacted because

on top of distance, culture and language mismatches, there is also the perceived risk

of sharing something which could mean that others could take over some work.

Mistrust and protectionism are often the consequence, leading to insufficient reuse.

This is visible specifically in requirements engineering (RE), where all reuse should

start. In this chapter, we will look to reuse in RE with a detailed look on how to

improve knowledge sharing and collaboration in distributed environments. We first

look into the state of the practice. Then we present a lightweight, reuse-based,

global RE method called PANGEA (Process for globAl requiremeNts enGinEering
and quAlity), based on natural language requirements and software engineering

standards. Based on this method, we also build a prototypical tool, called

PANTALASA (PANgea Tool And Lightweight Automated Support Architecture)
which provides automated support for PANGEA. Its features are drawn from

PANGEA and the state of the practice commercially available RE tools. A proto-

type of PANTALASA was developed by using Semantic MediaWiki and Facebook

and applied to a case study in the domain of hotel management. We could show

with this method and prototype that collaboration and thus KM and reuse in RE are

improved.

J.M. Carrillo de Gea (*) • J. Nicolás • J.L. Fernández Alemán • A. Toval

Universidad de Murcia, Murcia, Spain

e-mail: jmcdg1@um.es; jnr@um.es; aleman@um.es; atoval@um.es

A. Vizcaı́no

Universidad de Castilla - La Mancha, Ciudad Real, Spain

e-mail: aurora.vizcaino@uclm.es

C. Ebert

Vector Consulting Services, Stuttgart, Germany

e-mail: christof.ebert@vector.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_8, # Springer-Verlag Berlin Heidelberg 2013

171

mailto:jmcdg1@um.es
mailto:jnr@um.es
mailto:aleman@um.es
mailto:atoval@um.es
mailto:aurora.vizcaino@uclm.es
mailto:christof.ebert@vector.com

8.1 Introduction

Brooks stated more than 20 years ago [1] that there are approaches in software

engineering (SE) that target the accidental complexity of software, while others are

targeted at its essential complexity. As regards this difficulty, and discussing the

role of requirements engineering (RE) in software development, Brooks considered

the refinement of requirements and rapid prototyping. Among the SE strategies

which attack the conceptual essence of the problem, he also mentions the idea of

buy versus build: in other words, he stated the need for software reuse. Software

reuse is for Meyer [2] “the ability of software elements to serve for the construction

of many different applications”. Meyer summarises the benefits of reusability: (1)

improved timeliness, in the sense of decreased time to market; (2) reduced software

maintenance efforts; (3) improved reliability, efficiency and consistency of the

developed software and (4) enhanced investment, through the preservation of the

know-how. Mili et al. [3] affirm that software reuse is “the (only) realistic approach

to bring about the gains of productivity and quality that the software industry

needs”.

There is a line of thinking within software reuse that considers that every

software artefact (asset) produced during the development process is reusable,

including system or product specifications, design, source code, test cases, project

plans, quality plans, etc. Since the mid-1990s, specifications and requirements reuse

are postulated by a number of authors as a promising path towards quality and

productivity in software development, a way that has been less explored than reuse

of source code or designs. There is some consensus, in that the higher the abstrac-

tion level and the more not only source code but also design and specifications are

reused, the greater the reusability benefits are [4, 5]. In this respect, Favaro [6]

affirms that “a well-formulated, measurable, reusable requirement [. . .] is every bit

as valuable as a reusable software module”. In addition, Robertson and Robertson

[7] claim that if the development starts with a set of requirements that were

specified for other projects or domains, the accuracy of the requirements specifica-

tion is improved, and the time to develop this specification is reduced. Cheng and

Atlee [8] also consider the identification of sets of reusable requirements for

particular domains or types of applications to be of interest. To the best of our

knowledge, Rine and Nada [9] are the first authors who demonstrated empirically

that the reusability level determines the effectiveness of improvements in produc-

tivity, quality and development time, concluding that greater benefits are obtained

when reusability is applied during the initial processes of the software development

life cycle.

Cheng and Atlee [8] highlighted globalisation and requirements reuse as two of
the more urgent needs and grand challenges in RE research and expected the

solutions to these issues to produce a great impact on both research and practice

in SE. Globalisation arises from growing and relatively new software needs, while

requirements reuse focuses on extending and maturing existing technologies.

Global software engineering (GSE) implies a paradigm shift towards globally

172 J.M. Carrillo de Gea et al.

distributed development teams [10], and it has become a business need for various

reasons: to decrease costs, capitalise on global resource pools owing to the scarcity

of resources, locate development closer to the customers, exploit around-the-clock

development to achieve cycle-time acceleration and cater to local markets [11].

In contrast, GSE leads to an increased risk of communication gaps, given the

temporal, geographic, cultural and linguistic nature of the distance imposed by

GSE [12], which might hinder collaborative activities that require stakeholders to

share a mental model of the problem and requirements [8]. Indeed, due to its

collaboration-intensive nature, RE presents several specific challenges and

difficulties when the stakeholders are distributed [13, 14]. Gallardo-Valencia and

Sim [15] are convinced that the success of a software product depends on the proper

understanding of requirements among stakeholders. Herbsleb [10], for his part,

emphasised that “getting the requirements right, and dealing with unstable

requirements” are notoriously difficult problems to address, even in a traditional,

collocated environment. A shared understanding of the requirements is even more

difficult to achieve in a GSE context, “both because of loss of context and loss of

communication”. As well as this, Herbsleb pointed out that research on eliciting
and communicating requirements has made substantial progress in addressing the

issues posed by globalisation, although impediments still exist.

Knowledge is considered to be one of the major resources of an organisation, and

this is further emphasised in organisations dedicated to software development.

SE and RE are knowledge-intensive activities [15, 16] and hence, the growing

interest of software development organisations in providing methods to help with

its appropriate management [17]. By means of knowledge management (KM),

software development organisations might obtain certain potential benefits:

decrease the development time and cost of software projects, avoid mistakes and

reduce rework, increase productivity through repetition of successful processes,

increase quality and make better decisions [18]. Thus, achieving good KM is very

important if competitive levels are to be maintained in an increasingly globalised

and demanding world. Nevertheless, challenges to KM increase when the develop-

ment activities are geographically distributed [16]. According to Ebling et al. [19],

proposals related to KM challenges in the field of RE in distributed software

development are needed; they encourage further research on these issues.

Both GSE and requirements reuse are therefore relevant approaches for the

software industry. As far as we know, however, there are no proposals which tackle

both GSE and requirements reuse together. Since one of the current problems in

GSE is the existence of knowledge which is not properly shared and reused, KM

and awareness in distributed settings is a challenging task [20] which might be

addressed by reusing, sharing and collaboration mechanisms in GSE. The proposal

which is presented here treats knowledge in the form of natural language

requirements and aims at laying out the basis for a reuse-based RE method for

GSE environments, named PANGEA (Process for globAl requiremeNts enGinEer-
ing and quAlity). It also includes PANTALASA (PANgea Tool And Lightweight
Automated Support Architecture), the automated support for the PANGEA method.

8 Reusing Requirements in Global Software Engineering 173

The rest of the chapter is organised as follows: Sect. 8.2 provides an overview of

the field. Current and relevant challenges for both RE and KM in GSE are studied in

Sect. 8.3. Section 8.4 includes our proposal for a method to address these issues.

Section 8.5 focuses on the tool architecture supporting this method. Section 8.6

reports on a preliminary evaluation of both method and tool. Finally, our

conclusions and future work are presented in Sect. 8.7.

8.2 Foundations

At this point, and in the context of this chapter, a brief description of KM,

architectural knowledge management (AKM) and KM as the basis for RE is

provided.

8.2.1 Knowledge Management

Al-Ani [21] cites a generally accepted definition for the term knowledge. It is
located at the top of a hierarchical structure, and this representational structure

sees information as standing above data and knowledge standing above of both.

In the model described, data is processed and transformed into information; infor-

mation is then interpreted and contextualised by individuals and transformed into

knowledge. In addition, the term KM suggests that knowledge is something tangi-

ble which is possible to manipulate. According to Ebert and De Man [22], KM is

“the process that deals with systematically eliciting, structuring and facilitating the

efficient retrieval and effective use of knowledge”.

In those organisations involved in GSE projects, an adequate KM is necessary to

mitigate those factors derived from the geographical, temporal and sociocultural

distance [23–25] that might hamper communication and relationships between

stakeholders. Indeed, knowledge changes quickly during software development,

and so all the knowledge generated in the project should be made as accurate,

complete and updated as possible. Furthermore, if software development is

distributed globally, many more people are involved in the development activities,

and thus organisations tend to have problems in terms of content, location and use

of knowledge that can make it difficult to take advantage of this knowledge.

Moreover, Al-Ani [21] states that ineffective KM can lead to disastrous

consequences, showing some examples and lessons learnt which illustrate ineffec-

tive KM practices and their aftermath.

During the activities of the software life cycle, knowledge which is important for

the subsequent activities is generated [26], and these are commonly carried out by

different people to those involved previously. It is important to ensure that this

knowledge is accessible for them. The software development process generates

documents and other software engineering artefacts. In this sense, KM plays a very

174 J.M. Carrillo de Gea et al.

important role, since this knowledge has to be captured, and it emerges from the

solution to problems encountered during the course of past and current projects.

However, some common issues in software development organisations are actually

problems in the flow of knowledge, e.g. lack of documentation [27]. To be success-

ful, organisations that apply KM techniques and processes should create an

organisational culture that fosters and promotes the dissemination and sharing of

knowledge among its employees, through encouraging them to document and store

their knowledge in a KM repository [18]. This is especially true in GSE settings,

where according to Ebert and De Neve [28], a relevant step towards creating such a

common culture is to choose a specific, common language to be used within the

organisation. However, these authors highlight that since “a common syntactical

language does not necessarily mean the same semantics and pragmatics”, team

members should rotate across locations to live within different cultures and gradu-

ally build mutual understanding. On the other hand, this issue might be also

addressed by means of ontologies, which formalise concepts and relationships

among them as well as enable automatic reasoning with knowledge [29].

8.2.2 Architectural Knowledge Management

According to Beecham et al. [30], AKM involves capturing, sharing and managing

the information resulting from the software architecture process, in the form of

knowledge of the problem domain, the solution domain and knowledge artefacts

used throughout the whole process. It supports the creation, storage and dissemina-

tion of all the knowledge used in defining and using the architecture, including the

requirements documentation [31] and the functional and non-functional

requirements [30]. In fact, there are similarities between requirements and archi-

tecture [32]. We could go even further; Clerc [33] notices “a close resemblance

between a set of requirements for a software system and a set of architectural

decisions taken for that software system: what one person regards as requirements

for a software system, another person may regard as architectural decisions”.

Architectural knowledge can serve to support the collaboration needs of

distributed software development organisations [31]. In addition, as was stated

above, KM is even more challenging in a GSE context [16], and exactly the same

situation occurs in the case of AKM [30, 31], which faces the same risks as RE in

GSE settings [33] (for a detailed study of threats and safeguards in RE for GSE

environments, see, e.g. [34]). There is a need to capture, share and manage

architectural knowledge, in particular in the form or requirements, among different

and distributed sites, but the related tasks become more demanding than in a

collocated setting. Thus, the challenges of GSE have to be addressed by the

members of globally distributed teams by relying on appropriate AKM practices;

Beecham et al. [30] identified that one important area to achieve AKM is

represented by KM practices for creating and disseminating architectural

knowledge.

8 Reusing Requirements in Global Software Engineering 175

In this context, Clerc [33] identified seven essential KM practices to achieve

effective AKM in GSE environments that build on the RE discipline. In summary,

these practices are (1) frequent interaction across sites, encouraging team members

to interact frequently with each other; (2) cross-site delegation, improving integra-

tion of distributed teams by means of mutual delegation of team members from a

local site to a remote site; (3) face-to-face project kickoff meetings, assisting the

establishment of initial relationships between and among teams; (4) urgent request,
identifying expert project members to collect information on a given topic quickly;

(5) collocated high-level architecture phase, creating a sound high-level architec-

ture efficiently; (6) clear organisation structure with communicating responsi-
bilities, maintaining clear lines of communication among stakeholders’ roles; and

(7) establishing of a repository for architecture artefacts, built to store architectural
knowledge. Moreover, Ebert and De Neve [28] emphasise that customer

requirements might be mapped to architectural units in order to cluster activities

and split a globally distributed project into different, collocated work teams. In this

way, each team assumes the responsibility for a set of functionally related customer

requirements, and teamwork is therefore reinforced.

According to Desouza et al. [35], there are three distinct strategies for AKM: (1)

codification, which refers to the use of a central repository for storing the architec-

tural knowledge; (2) personalisation, which alludes to stakeholders and the inter-

action between them to get the knowledge when they needed it; and (3) a hybrid
approach, in which there is a central knowledge repository shared among

stakeholders, addressing questions such as “when”, “how” or “who” in relation to

knowledge, in order to enable personalised knowledge sharing.

8.2.3 Knowledge Management for Requirements Engineering

Regarding reusability, there are various studies which have centred on applying

KM in software development organisations, most of which focus on the reuse of

experiences, such as best practices or lessons learned, in order to improve the

quality of processes and products or to facilitate the reuse of software artefacts

[36–38]. In this context, Rus and Lindvall [18] consider software reuse to be a KM

activity that supports software development. These authors affirm that repeated

implementation by programmers of the same or very similar solutions, along with

the rework resulting from this, might be avoided or reduced through establishing a

reuse repository, which would contain software previously submitted by others, and

“this same concept can apply to all software engineering artefacts”. This approach

requires a change in the software development process, since the first step would be

to search the repository for reusable parts developing the solution from scratch only

if nothing useful is found. Furthermore, information is often reused with high

redundancies or manual overhead, eventually leading to rework or even errors in

the product [22]. Thus, only reuse of information is not enough, and knowledge

176 J.M. Carrillo de Gea et al.

should be embedded into integrated workflows for specific tasks. This strategy

“generates immediate returns by making engineers more flexible”.

For Gallardo-Valencia and Sim [15], requirements knowledge is ideally captured in

a requirements specification document using a written format, although such written

knowledge is complemented by requirements knowledge that is shared in an informal

manner through conversations among and between stakeholders. Moreover, Maalej

et al. [39] affirm that it is necessary to capture and share tacit knowledge about

requirements and make it explicit, in order to be able to manipulate it, because (1)

reuse is enhanced, (2) traceability is enabled, (3) requirements evolution is supported

and (4) collaboration between participants in distributed projects is improved. Besides,

Ma et al. [40] have noted that the presence of tacit knowledge might have a negative

impact on communication through requirements documents; such knowledge should

therefore be properly managed with the intention of avoiding miscommunication,

misinterpretation and inappropriate contextualisation among stakeholders, especially

in the case of a GSE context [21]. Even though recent technologies and advancements

have boosted KM support within distributed software development teams [21], in

particular KM support to RE [39], usual technologies and infrastructures typically

focus only on addressing issues related to the management of explicit knowledge,

whereas they should capture, formalise and manipulate tacit or implicit knowledge

[21, 39]. Maalej et al. [39] demand improvements in RE processes and tools in order to

achieve better management of requirements knowledge, owing in particular to the

growing tendency towards agile methods and distribution in software development,

while “themajor constraint is to have a lightweight, usable, intelligent and personalised

capturing and sharing approach”.

Another key issue for achieving successful results in global RE is requirements

awareness. Informal communication is also important in global, distributed devel-

opment because it contributes to project awareness [41]. In a software development

setting, and in particular in RE, awareness happens if “a software developer working
in a project has knowledge of events, such as changes to a requirement suggested by

a customer, that occur in the project” [42]; this becomes even more essential in GSE

[13]. Kwan et al. [42] conducted an industrial study of twoGSE projects; one of them

is an example of offshore outsourcing, and the other project has outsourced

collocated development. These authors identified three main factors that produce

certain effects which might influence awareness: (1) the distributed development

reduces awareness, (2) the experience of the team members bridges awareness gaps

and (3) the centralised communication structure might prevent awareness problems.

All this being so, project members should keep abreast of any issues that take place

in the scope of the project. The lessons learned are (1) experienced team members

should be accessible; (2) a centralised communication structure can help new teams

to remain aware, whereas a decentralised structure decreases communication band-

width and improves response times; (3) frequent meetings improve awareness

among distributed sites and (4) each distributed team member should be assigned

to a set of stable requirements and an unstable requirement, in order to allow him or

her to experience minimal downtime when there are delays. In conclusion,

requirements awareness is neither a banal nor an easy issue, and a lack of awareness

can lead to problems with design, quality and cost within the distributed project [42].

8 Reusing Requirements in Global Software Engineering 177

8.3 Practical Challenges

Distance hinders KM and requirements management processes in GSE. Issues

concerning GSE have been given a lot of attention in literature in the last years.

To begin with, Cheng and Atlee [8] affirm that new or extended techniques are

needed to overcome the challenges posed to RE by globalisation; they are the

following: (1) obtain proper support to outsourcing of downstream software devel-

opment tasks (e.g. design, coding, testing, etc.), bearing in mind that distance

complicates the collaboration between the requirements and the development

teams, and (2) enable effective distributed RE activities, since analysts and geo-

graphically distributed stakeholders will work together and distributed software

development teams might work with in-house customers; practitioners therefore

need techniques to facilitate distributed requirements elicitation, modelling, nego-

tiation and management of distributed teams.

Ebling et al. [19] have conducted a systematic literature review of RE in

distributed software environments, concluding that the challenges identified in the

field of KM issues are related to inappropriate sharing of requirements information

with distributed stakeholders [10, 41], which eventually damages the interaction

between them [13]. Moreover, there are no available methods, models, techniques

or approaches to RE in GSE environments in relation to the KM challenges

identified [19].

Process mismatches, differing technical and domain vocabularies, incompatible

environments and conflicting assumptions can be particularly problematic in a GSE

context [43]. Cultural differences can also pose formidable challenges for achieving

a shared understanding of the requirements [44], and all these factors can hamper

discovery and integration of knowledge [10]. Knowledge transfer is “the transmis-

sion of general or project specific knowledge which is needed to understand and

execute the project requirements” [45]. It is also a challenging activity of KM in

GSE environments, because of the significant reduction in communication fre-

quency and speed among remote teams [46], which leads knowledge to become

fixed to locations in which it is produced, hindering the transfer of such knowledge

from one site to another [47].

Manteli et al. [16] classify the challenges of KM in GSE under three main

categories: communication, knowledge creation and storage and knowledge transfer.
The coordination of communication between remote teams is included in KM

[20, 23], but it is a fact that distance introduces barriers to both informal and face-to-

face communication in GSE. Project members have to rely on synchronous commu-

nication tools (e.g. chats, phone calls, videoconferences), or asynchronous ones (e.g.

discussion forums, emails), in order to collaborate [41]. Since communication speed

and frequency is relevant in a GSE context, any communication delay can slow

down or even detain the project course, producing delivery delays [16], so synchro-

nous communication is generally preferable in distributed environments [48], as it

boosts real-time, interactive communication and improves collaboration among

stakeholders. By means of synchronous communication tools, analysts can check

178 J.M. Carrillo de Gea et al.

each other’s work, see if certain features have been implemented the right way or

solve problems together and assist each other. Nevertheless, the most appropriate

communication media depend on the team member’s role [16]. It is also worthwhile

to reduce tasks by coupling as much as possible, since the interdependencies among

distributed tasks introduce important communication overload, thus affecting com-

munication speed and frequency between distributed sites [16].

The effectiveness of knowledge capture (the process of making it explicit), that

is, how knowledge is captured into software development artefacts and acquired by

other team members, is a critical success factor for projects [49]. Among the

distinct KM strategies for knowledge capture and management [35], codification
is pursued when knowledge is documented and stored in a central repository,

personalisation relies on the tacit knowledge of stakeholders and knowledge

sharing through person-to-person communications and the hybrid approach
combines the previous two, being the recommended strategy towards AKM in

GSE [50]. An important challenge for KM is found in personalisation strategies,

which are typical of agile development methods, in which employees are

encouraged to cooperate with each other, taking initiative and responsibility with-

out being constrained by strictly defined processes [16]. Furthermore, with this

approach, much of the knowledge remains tacit, and the explicit knowledge is not

always updated in the corresponding documents. However, documentation has an

important role [27], and it should consequently be updated; it ought to reflect what

distributed teams are working on, in order to keep requirements awareness [42].

According to Manteli et al. [16], the use of different repositories and tools for

storing and sharing documents is not recommended. The knowledge search through

all these resources to locate the right document and the up-to-date information is

complicated, leading in turn to the adoption of local codification strategies that

hamper knowledge sharing between sites. In addition, if no appropriate

mechanisms for storing and sharing documentation are provided, more communi-

cation between distributed project members is needed, decreasing stakeholders’

productivity.

Knowledge transfer was identified as a critical success factor for software

development projects with an onsite/offshore structure [45], since some

circumstances obstruct knowledge transferability across sites, including the use of

different working methods [51] or the differences in skills and expertise of remote

project members [30]. Manteli et al. [16] point out that when the greater part of a

software development project is developed at one site, most of the system-generic
knowledge (“the comprehensive knowledge of the entire system that teams are

working on”) resides only there, which causes knowledge to be fixed to that

location [47]. It thus takes additional effort for that knowledge to be transferred

to the remote sites, which only retain the unit-specific knowledge (“the particular

knowledge that the individual has, for the specific unit he or she is working on”).

Another challenge in knowledge transfer is “how” to locate the knowledge [16]; an

effective knowledge-sharing strategy should enable project members to know

“who”, in addition to providing the ability to know “what” and “where” knowledge

resides [52]. This approach is also known as transactive memory [51], and

8 Reusing Requirements in Global Software Engineering 179

according to Kotlarsky and Oshri [53], it constitutes a means of knowledge sharing

that contributes decisively to successful collaboration between and among remote

teams. A personalisation strategy in which people transfer more knowledge in a

person-to-person way leads to know “who” knows “what” more efficiently [16].

Tools help in managing requirements and are key success factors in GSE [28,

54]. Moreover, Ebert [54] affirms that change management is unmanageable

without automated tools in a GSE environment. Traceability facilitates change

management and must include horizontal and vertical dependencies – between

artefacts in the same and in different abstraction levels, respectively. Heindl et al.

[55] detected a lack of traceability and computer-aided requirements engineering

tools in RE for GSE (from now on, these will be referred to as CARE tools or

simply RE tools). Mistrı́k et al. [56] point out that a considerable number of recent

advances in collaborative SE are related to the development of supporting tools for

certain collaborative practices. Portillo-Rodrı́guez et al. [24] have conducted a

systematic literature review of GSE tools supporting the ISO/IEC 12207 processes,

concluding that the majority of the tools were developed within research groups or

labs. In addition, all the tools analysed included web-based or client–server access,

as well as communication and coordination features for globally distributed teams.

Herbsleb [10] highlighted that environments and tools are important areas of

research in GSE. This author affirms that awareness and communication are

relevant and interrelated issues, since the reduced communication bandwidth in

GSE makes it much more difficult to face the problem of understanding what other

project members are doing and thus coordinate effectively with them. This means

that synchronous and asynchronous communication features should be integrated

into RE tools, avoiding practices that might lead to low efficiency and productivity,

such as using e-mail instead of web-based tools or shared repositories to manage

requirements [57]. Besides the awareness and communication features, Herbsleb

[10] detected a need for collaborative capabilities to be integrated into the develop-

ment environment, as well as more “interoperable tools with standard data formats

and interaction protocols”. In this regard, software requirements should be suitable

for being imported from, or interfaced to, users, hardware and other software

systems. This being so, standard file formats are interesting features which should

be offered by RE tools. Since companies rarely work on the same requirements

repository and they usually do not work with the same RE tools, a generic format

for requirements information is needed. In this context, the Object Management

Group (OMG) standard ReqIF [58] is an emerging open, non-proprietary exchange

format that is a successful step towards satisfying the urgent industry need for

exchanging requirement information between different companies, without losing

the advantage of requirements management at the organisations’ borders and

allowing them to interact and collaborate efficiently.

180 J.M. Carrillo de Gea et al.

8.4 The Method

Although GSE has recently attracted great interest, to the best of our knowledge, an

RE method that specifically addresses GSE and knowledge reuse is lacking.

In response to this problem, a global, reuse-based RE method called PANGEA is

presented in the following paragraphs. PANGEA allows the sharing and reuse of

knowledge between distributed teams through a shared repository of requirements.

The PANGEA repository contains both reusable knowledge from earlier projects

and the requirements under development in the current one. A proper requirements

management is critical to maintaining awareness in any kind of development.

For the sake of applicability, PANGEA encodes knowledge in the form of natural

language requirements, which are the most widely used requirements in industry.

Industry experience demonstrates that a process model based on accepted best

practices that allows tailoring processes for the specific needs of a project

contributes to support GSE [28]. Therefore, to propose an RE method addressing

reuse and GSE, we have done the following: firstly, we have studied the state of the

art on the threats and their solutions identified in literature regarding RE and GSE,

through a systematic literature review [34]. Secondly, a repository of risks and

safeguards for the global RE has been compiled. Finally, based on this repository, a

global RE method called PANGEA, which encompasses all the proposed

safeguards, is put forward in the following pages.

PANGEA extends the SIREN (SImple Reuse of softwarE requiremeNts)
requirements reuse method [59], a practical way of dealing with requirements

reuse. SIREN is a method which is simple enough to be adopted easily by

organisations that are currently immature in relation to RE. It can improve produc-

tivity and quality of software processes and products, as well as affecting the

business positively – indeed, Sommerville and Ransom [60] have conducted an

empirical study which revealed that improvements in the RE process led to business

improvements. SIREN can be used on its own, as the first RE method adopted by a

software development organisation, but in addition, SIREN can be considered as a

kind of add-in whose goal is to extend, with reusability concerns, any RE method

based on natural language requirements. Moreover, Toval et al. [61] state eight key

issues that should be taken into account to achieve a practical reuse-based RE

method. These are based on the lessons learned from the application of SIREN in

the security and data protection fields [59, 62], as well as on other related

experiences closer to the domain analysis or audit [63, 64], together with the

analysis of related research and current RE tools. However, SIREN was conceived

as an RE method for collocated settings right from the beginning; in consequence, it

does not address the issues that should be considered when working in a global

environment. That makes it necessary to extend and adapt the SIREN method.

The PANGEA method is based on SIREN to a great extent, owing to the success

of the latter in practice. Nevertheless, the process model (new activities and new

tasks, along with a new set of roles responsible for carrying them out) and part of

the techniques (in particular, the requirements reference model, with new

8 Reusing Requirements in Global Software Engineering 181

requirements attributes and new attribute values, as well as new traceability

relations) have undergone modifications. As well as all this, another part of the

techniques, namely, the hierarchy for the requirements documents and the reusabil-

ity bases (the repository of requirements arranged into catalogues and the

requirements reuse guidelines), have been inherited unchanged from SIREN.

Thus, the remaining part of this section is devoted to the method resulting from

the process explained above, i.e. the method known as PANGEA. Furthermore,

having presented PANGEA, Sect. 8.5 goes on to explain the architecture of

PANTALASA, the automated support for PANGEA, given that it has evolved

along with the process model and the techniques for addressing the GSE issues.

8.4.1 Process Model

The process model proposed for PANGEA combines a set of initial sequential tasks

with other cyclical, iterative tasks. This approach therefore includes a spiral model

of software development (Fig. 8.1).

In Fig. 8.1, IRD 6, IRD 7, IRD 9 and IRD 10 tasks move from the original model

of SIREN, while IRD 1–5 and IRD 8 are brand new. The first five tasks serve as a

preparation for making the globally distributed method successful. For this reason,

they only have to be performed in the first iteration. The last five tasks make up the

effective execution of the RE method, and they are conducted on a cyclical basis for

as many iterations as necessary.

Before examining each task, it is necessary to introduce the roles involved in the

process model: coordinator (coordinates the work of all the project’s participants),

moderator (moderates the requirements negotiation meetings), team leaders
(represent their work team and speak in their name with the coordinator and

other team leaders), analysts (or requirements engineers), key users (know the

whole system or a part of it and give the necessary knowledge for the production

of the requirements documents) and users (know part of the system and give the

knowledge that is needed for the creation of the requirements documents). Each

role has specific responsibilities and a given participation in the tasks and subtasks.

8.4.1.1 IRD 1: Cultural Analysis

This task analyses the different cultures of the participants in the project, using

cultural indicators. The role responsible for conducting this study is the coordina-
tor, and the reports obtained become part of a catalogue of cultural descriptions, so

that they can be reused. The subtasks within this task are:

• IRD 1.1: Nationality identification. The nationalities of all the work teams

involved in the project are registered, considering the term nationality as the

182 J.M. Carrillo de Gea et al.

national culture in which people have grown and acquired their values scale.

If the work team is heterogeneous, individuals should be analysed.

• IRD 1.2: Report retrieval. The catalogue of cultural descriptions is consulted,

and existing reports on the cultures involved are obtained.

• IRD 1.3: Cultural reporting. Preparation of reports on the cultures that are not in

the catalogue of cultural descriptions. If they are already in it, review them with

the purpose of refining its descriptions and finding errors.

• IRD 1.4: Improvement of the catalogue of cultural descriptions. The reports

produced for the first time, along with those already existing and which were

improved, are included in the catalogue.

8.4.1.2 IRD 2: Face-to-Face Meeting

It is essential to hold at least one face-to-face meeting at the beginning of the

project, not only because it is a richer and more efficient form of communication

than any other but because it is needed if a trust relationship is to be established

between the participants in a distributed project.

• IRD 2.1: Face-to-face meeting. A meeting for all participants in the project is

organised by the coordinator. Attendance of at least one representative on behalf
of the customer is recommended. All members of all work teams should take

part in this meeting; if this is not possible, it will involve at least the team
leaders. The event should make it possible both to discuss the initial questions

about the project and to allow the participants to get to know each other a little,

at least.

Fig. 8.1 PANGEA process model with SPEM notation

8 Reusing Requirements in Global Software Engineering 183

8.4.1.3 IRD 3: Local Workshops

Cultural understanding is critical to establishing trust relationships.

• IRD 3.1: Local workshops. The team leaders organise workshops locally to

study the differences between the cultures of the other teams and their own, by

means of the indicators established in IRD 1. They are responsible for

disseminating the information within their team, the other team leaders and

the coordinator. When the analysts and the team leader of a team are aware of

the major cultural differences, the team leader has to report to the coordinator.
The task ends when the coordinator has received confirmation from all the team
leaders.

8.4.1.4 IRD 4: Previous Adjustments

This task aims to make final adjustments prior to elicitation of requirements.

• IRD 4.1: Key user identification. This problem is complicated in GSE, since the

distance and the inability to observe the users performing their regular work may

hinder proper identification of people playing the user and key user roles.
• IRD 4.2: Assignment of key users to work teams. A set of key users is assigned to

each work team to elicit requirements. They should be collocated whenever

possible. Otherwise, the elicitation techniques selected must be compatible with

electronic communication media. Only key users should collaborate in the

elicitation activity, but if this is not possible, then users can also be assigned.

• IRD 4.3: Selection of an official language. Although all roles can use the

language with which they feel most comfortable in informal social interactions,

the coordinator must establish an official language for the project. This is to be

used in formal requirements negotiation meetings or any situation involving

participants from different native languages.

• IRD 4.4: Compilation of a common vocabulary. The terms used in the project-

specific domain should be documented, but in GSE the language differences

may be substantial. Ontologies are thus useful to alleviate these problems.

At this point, a catalogue of ontologies is consulted, and a relevant ontology is

retrieved or built from scratch if there is not yet an ontology for the domain.

8.4.1.5 IRD 5: Schedule Periodic Check-Ups

The distance in GSE projects entails many problems, but also enables a follow-the-

sun or around-the-clock working model, achieving 24-h global workdays.

• IRD 5.1: Schedule periodic check-ups. The coordinator examines the location of

the work teams and their time differences, with the intention of scheduling daily

meetings. These meetings might be uncomfortable sometimes, but are necessary

for tracking the work of the other teams.

184 J.M. Carrillo de Gea et al.

8.4.1.6 IRD 6: Requirements Elicitation

Each work team can reuse and extract requirements locally or in a distributed

manner. In both cases, different groups of analysts extract requirements from a

repository of requirements and from different users. As a result, a mostly coherent

requirements documents hierarchy is obtained.

• IRD 6.1: Requirements reuse. Firstly, each work team selects the catalogues

of requirements related to the project from the repository of requirements.

Secondly, the team instantiates the parametrised requirements. Finally, the

team adds the requirements to the current requirements document. The

automated tool support should avoid most of the problems related to the multiple

sources of requirements (see Sect. 8.5). Inconsistencies that cannot be

confronted automatically should be added to the agenda of the next analysis

and negotiation meeting (IRD 7).

• IRD 6.2: Project requirements elicitation. The analysts within each work team

develop the requirements obtained from the users who are working with them

and add these to the current requirements document. The moderator reviews the
requirements included by the different work teams and adds all the

inconsistencies found to the agenda of the next analysis and negotiation meeting.

In addition, the analysts can add any other issue to the agenda that they need to

address, by creating a discussion thread.

8.4.1.7 IRD 7: Analysis and Negotiation

Starting from a requirements document with inconsistencies, in which there are

issues to discuss, the goal is to obtain a refined version of it in which all the

inconsistencies are resolved.

• IRD 7.1: Preparation of the meeting. The agenda, which should be available in

the automated tool support, should be read by all the participants involved in the

meeting.

• IRD 7.2: Development of the meeting. The discussion is initially carried out by

means of a structured, synchronous and textual communication system. The

moderator takes part in the discussion to impose order, to maintain the progress

of the meeting on a virtual blackboard and to use a vote utility if needed. Only

the team leaders are allowed to participate in representation of their teams.

A videoconference system can only be used later on; the reasons for doing it

this way are the following: (1) the participants have had enough time to study all

the information concerning the agenda, without the pressure of a synchronous

communication; (2) the discussion has been conducted so far by means of a

textual synchronous tool controlled by the moderator, which means that the

written interventions have had more chance of being well thought out; and

(3) the face-to-face communication allows the reactions of the participants to

be evaluated better and helps to solve any issue that still remains open.

8 Reusing Requirements in Global Software Engineering 185

• IRD 7.3: Extraction of conclusions. The moderator publishes the agreements of

the meeting in the automated tool support, including the conclusions reached and

the results of any voting carried out. The agreements will be given a unique code

to identify them in the project. A discussion thread will be linked to the

agreements, for the purpose of storing all the written discussions, the results of

the eventual votes and the changes in the requirements documents.

8.4.1.8 IRD 8: Redistribution of Requirements

The requirements documents contain information about the team which has elicited

each requirement. In this task, these assignments of requirements to work teams are

revised so that requirements can be allocated to different teams.

• IRD 8.1: Assignment proposal. The coordinator prepares a proposal for

assigning requirements to each work team, based on their most prominent skills,

current or expected workload, etc. Such a proposal is made available to all teams

through the supporting tool, and a meeting is convened with them to discuss it.

• IRD 8.2: Validation of the assignment. A virtual meeting involving all the team
leaders and the coordinator takes place to discuss the issues related to the

assignments. An analysis and negotiation meeting (IRD 7) is performed if

needed. Eventually, a validated requirements redistribution is obtained and

published in the supporting tool.

8.4.1.9 IRD 9: Documentation

We start from a requirements document that is coherent and without inconsistencies,

ideally, and which can be more or less detailed depending on the current iteration of

the method; the result is the establishment of such a document as a baseline.

• IRD 9.1: Formalisation of documentation. The coordinator creates a baseline

from a stable version of the documentation, stores it in a catalogue of releases

and exports it to a standard document format by means of the supporting tool.

8.4.1.10 IRD 10: Validation

This task is identical to that carried out in collocated development of software.

• IRD 10.1: Validation of requirements. The coordinator provides the document

output of IRD 9 to the customer, negotiates all the change requests and forwards

the information to the team leaders, through a list of changes published in the

supporting tool.

186 J.M. Carrillo de Gea et al.

8.4.2 Requirements Reference Model

There are different types of requirements in PANGEA, but all have the minimum

set of associated attributes shown below (the requirements that must be initialised

when created are marked as “compulsory”):

• Text (compulsory): natural language sentence that specifies the requirement.

• UniqueIdentificator (compulsory): identifier of the requirement in the project.

• Risk: relative risk of the requirement compared with the rest.

• Criticality: relative importance of the requirement for the customer.

• Priority: helps to establish an order for the development (set by the analyst).

• Rationale: reason why the requirement is included in the project.

• State: situation of the requirement (see Fig. 8.2).

• Source: origin of the requirement (if it was reused from the repository, then the

attribute reflects the catalogue and reusable requirement it comes from).

• ValidationCriteria: validation criteria needed to test the requirement (included

in the STS document).

• Responsible: person responsible for the implementation of the requirement.

• Section: document section in which the requirement is specified.

• VersionLog: historical record of all versions of the requirement (including

author, date, version number and text).

• RequestedBy (compulsory): user asking for the inclusion of the requirement

(particularly useful when the person who elicited the requirement is not in the

team in charge of implementing it).

• SourceTeam (compulsory): identifier of the team that elicited or reused the

requirement.

Fig. 8.2 State diagram of a requirement

8 Reusing Requirements in Global Software Engineering 187

• SourceAnalyst (compulsory): analyst who drew up or reused the requirement.

• DiscussionThread: link to the identifier of the agreements of the meetings in

which the requirement was discussed (empty until IRD 7).

• DestinationTeam: identifier of the team which has been assigned the require-

ment for refinement (empty until IRD 8).

PANGEA includes the concept of parametrised requirement. The parameter

allows us to specify a variation point in the requirements specification, i.e. when

it is necessary to choose between various alternatives in order to configure a specific

product. For instance, “the system shall make it possible to export to external files

for report generation in [Format]”, where the value of the parameter “Format”

would be comma-separated values (CSV) or Excel.

The traceability model defined in PANGEA includes a set of traceability

relations that enable different links to be established between requirements. Such

traces are described below:

• Parent–child: relationship describing a more general requirement by a sequence

of more specific requirements.

• Requires: directional dependency relationship between two requirements.

A Requires B means that the reuse of A necessarily involves the reuse of B.

• RelatedTo: bidirectional dependency relationship between two requirements.

A is RelatedTo B if (1) B refines or supplements A in some way, so that when

A is reused, then B should also be considered for reuse; or (2) A and B belong to

the same cluster of requirements.

• MutuallyExclusive: mutually exclusive relationship between two requirements.

A MutuallyExclusive B means that if A is present in the specification, then

B cannot be, and vice versa.

• Reifies: relationship between a requirement and an artefact of the development

process in which it materialises (e.g. class, module, component, etc.).

• DiscussionThread: relationship between a requirement and the negotiation

meeting in which it was discussed, recorded in the minutes of the meeting and

the object DiscussionThread that contains the complete record of the discussion,

together with the results of any vote taken.

A repository of reusable requirements arranged into catalogues for managing

requirements knowledge is included in PANGEA. These catalogues can be (1)

domains, “vertical” application domains (e.g. insurance or banking), or (2) profiles,
“horizontal” application domains (e.g. security or personal data protection). More-

over, they are organised in a hierarchy of requirements documents, which, in turn,

are structured according to standards (IEEE Std. 1233, IEEE Std. 12207.1, and

IEEE Std. 830).

With regard to the reuse of requirements, once the scope of the project has been

established, the requirements repository should be searched to find a domain

catalogue within that area. If so, the project probably corresponds with the devel-

opment of a particular product in the domain specified in the catalogue. In this case,

the searches in the repository might begin with the requirements with the highest

188 J.M. Carrillo de Gea et al.

value in the attribute Criticality in the domain catalogue. Since these requirements

are mandatory, they are part of any product for that domain, and as such all of them

should be reused. Their traces should be analysed to determine other non-

mandatory requirements which ought also to be part of the specification of the

current project. After the common specification of the product is established, new

searches should be defined, guided by the business requirements and the features or

system objectives identified. These guidelines may involve searching the same

domain catalogue or different profile catalogues. If, as a result of any of the

searches, a requirement is reused that has trace relations of type RelatedTo other

requirements, then a cluster of requirements is found. In this case, we should

consider the selection of the requirements within that cluster. In summary, reusing

the requirements selected involves the resolution of the variation points found in

them: (1) instantiation of the parameters of the parametrised requirements with

values appropriate to the current project; (2) resolution ofMutuallyExclusive traces;
(3) resolution of RelatedTo traces, which are optional; and (4) resolution of

Requires and Parent–child traces, which should normally be included.

8.5 The Tool Architecture

As is shown in Sect. 8.3, literature reflects the need for RE tools that support GSE.

In this respect, the PANGEA method is supported by PANTALASA (PANgea Tool
And Lightweight Automated Support Architecture), which is the underlying tool

architecture for the global RE processes and models. Current RE tools’ capabilities

[65] and the ISO TR 24766 [66] have been taken into account in its conception.

PANTALASA is responsible for managing the requirements knowledge in a

coherent way, giving a boost to reuse, automatising some repetitive tasks and, in

short, facilitating the distributed stakeholders’ activities carried out within the

framework of PANGEA. Among its features, PANTALASA allows multiple

users to edit the same requirements document simultaneously, so when a user

reuses a requirement from a catalogue of the requirements repository, the tool

automatically has to keep track of all the existing relationships, i.e. the tool will

check if the parent requirement has to be included, if other requirements are

involved or if the reused requirement or its dependencies violate any exclusive

relationship with any requirement previously added.

By means of these automated verification mechanisms, it is ensured that the

requirements are consistent at all times and that there is a single shared working

document for all stakeholders, promoting proper control and coordination of the

team members’ work. Moreover, if different analysts introduce the same

parametrised requirement and assign different values to the same parameter,

when the second analyst attempts to insert the troublesome requirement in the

requirements document, the tool will detect the inconsistency and will notify

the analysts involved about such a situation. These analysts can then discuss what

8 Reusing Requirements in Global Software Engineering 189

the correct value of the parameter is, and, if necessary, they can take the matter to

the agenda of the next requirements analysis and negotiation meeting (IRD 7).

With regard to specific technologies that might be particularly useful for

PANTALASA, we considered the use of semantic wikis and social networks,

because we believe that they turn out to be complementary. Semantic wikis are

organised around an ontology of requirements, so that the requirements repository

is structured more consistently than in a plain wiki, whereas social networks

leverage the communication strategies between project members. In this regard,

wikis were originally conceived for distributed collaborative content creation [67],

but it is possible to use them to capture requirements and domain knowledge

[67, 68] or even to support AKM in GSE [50], improving domain knowledge

reuse and tacit knowledge acquisition [68]. Furthermore, as a result of their

underlying information models, semantic wikis can provide support to reasoning

with the requirements knowledge [50, 69]. This is especially relevant for traceabil-

ity approaches and also enables automated information retrieval [50]. On the other

hand, Whitehead et al. [70] raised the possible application of new trends in

networking and social networks to improve formal and informal communication.

Following this trend, Lim et al. [71] at first proposed a social network system for

stakeholder analysis and later, an extension of this tool was developed to identify

and prioritise software requirements [72].

8.6 Prototype Implementation and Validation

We have recently developed an automated tool support proposal for PANGEA by

means of the integration of (1) a well-known social network like Facebook,1 which

integrates both synchronous and asynchronous communication, and that serves to

establish and strengthen trust relationships between distributed software develop-

ment teams, and (2) a semantic wiki like Semantic MediaWiki (SMW),2 which is

suitable for supporting the PANGEA requirements reference model and the

reusable-requirements repository, taking into account issues such as security, con-

currency and discussion threads. Some of the KM challenges previously identified

in Sect. 8.3, such as communication, knowledge capture and knowledge transfer

issues, are therefore addressed by relying on such collaborative and open source

technologies.

A block diagram of the prototype is shown in Fig. 8.3. Users connect with the

application in an automatic and transparent manner through Facebook. The appli-

cation serves as a connection bridge to SMW, where the requirements repository is

located. Figure 8.4 shows a SMW page in the Facebook interface for enabling

distributed stakeholders’ work.

1 http://www.facebook.com.
2 http://semantic-mediawiki.org.

190 J.M. Carrillo de Gea et al.

http://www.facebook.com
http://semantic-mediawiki.org

Facebook offers an application programming interface (API) to support the

execution of external applications. In addition, these applications have authentica-

tion mechanisms at their disposal, so it is possible to access personal data such as

name, email, friends list or even wall comments. If the user gives permission for the

external application, Facebook is able to send to our application the user informa-

tion needed. The aim is to provide a personalised experience, but a user

authorisation process must be carried out to make that possible.

This implementation of PANTALASA includes an external, go-between applica-

tion, whose main task is to communicate Facebook and SMW (see Fig. 8.3). Hence,

this piece of software allows us to perform the following duties in a transparent

manner, automatically: (1) gather the data of a Facebook user, (2) register Facebook

users in the SMW database, (3) authenticate users in SMW, (4) configure SMW in

order to adapt it to the use requested by PANGEA and (5) execute SMW under the

Facebook applications interface.

It is important to note that the validation of the prototype was conducted in an

academic environment by college students who worked with the application in a

distributed and collaborative way, encoding requirements catalogues in the proto-

type, reusing the requirements in a new project and taking advantage of the

Facebook capabilities for supporting communication between them. More detailed

information about the validation is provided below.

Fig. 8.3 Free-form architecture diagram of the prototype

Fig. 8.4 Graphical user interface (GUI) of the prototype

8 Reusing Requirements in Global Software Engineering 191

Two students participated in the study with the intention of validating the

prototype; this lasted for 2 weeks. They introduced three requirements catalogues

in the requirements repository. The catalogues were made up of both functional and

non-functional requirements. Two of these catalogues were profiles, as they

codified security requirements and personal data protection requirements based

on the respective original catalogues developed for SIREN [59, 62]. The other

catalogue, on the other hand, was a domain, since it included domain-specific

requirements extracted from a case study on the field of hotel management,

which was presented in a course on RE belonging to a degree programme on

computer science and engineering. The full case study was composed of approxi-

mately 150 requirements, and about 50 of these were inserted in the system.

Note that the mentioned catalogues are located in the SMW requirements reposi-

tory. All the requirements that make up these three catalogues are thus available for

reuse in new projects that can be created with the tool, following the proposed

method. In fact, the students created a new project in which specific requirements

were extracted from the catalogues listed above in order to check the reuse function-

ality of the tool. Such a project was aimed at the development of a software

application for a particular hotel. In this project, the different sections of the SRS

were generated, including the functional requirements of the project, which were

mostly reused from the functional requirements of the hotel industry catalogue.

The feedback after using the system was mainly satisfactory. However, some

difficulties in reusing the requirements from the catalogues in the new project were

reported; these problems come about from technical concerns related to SMW,

since the tool is still in an incipient stage. In addition, the students worked in a

distributed manner, but not in a global environment, since they were located in

different cities about 100 km apart. Moreover, they have reported neither commu-

nication nor concurrency problems.

From our point of view, the main limitation of the validation of the prototype is

the fact that it was conducted by students. Nevertheless, students play a very

important role in software engineering experimentation, because before performing

studies in industrial environments, which requires a lot of resources and time, it is

generally useful for researchers to carry out pilot studies with students in academic

environments [73, 74]. In addition, students are the next generation of professionals

[75], and under some conditions, there is not a great difference between students

and professionals. In situations in which the tasks which are to be performed do not

require industrial experience, experimentation with students is viable [76, 77].

Another relevant threat to the validity of the study is that the students were not

globally distributed. Nonetheless, this was to some extent mitigated by the fact that

they were not collocated, and even relatively small geographic distances between

offices profoundly affect the ability to collaborate [10]. Indeed, Allen [78] found

that there is a strong negative correlation between physical distance and frequency

of communication between sites and any distance greater than the critical threshold

of about 50 m led to a dramatic drop in spontaneous communication and collabora-

tion between individuals.

192 J.M. Carrillo de Gea et al.

8.7 Summary

Since one of the current problems in GSE is the existence of knowledge which is

not properly shared and reused, thus hampering awareness, KM in global,

distributed settings is a challenging task. It can be faced by improving reuse,

sharing and collaboration in global RE. To the best of our knowledge, there is no

proposal which tackles both GSE and requirements reuse. In this chapter, we have

presented PANGEA, a reuse-based RE method for GSE that specifies knowledge in

the form of natural language requirements. PANGEA encompasses a process

model, a requirements reference model and PANTALASA, the supporting tool

architecture. PANTALASA has been developed by means of (1) a semantic wiki, in

an effort to implement a reusable-requirements repository, and (2) a social network,

to improve communication issues. Before describing PANGEA and PANTALASA,

this chapter provides brief insights into the relationship between KM and (global)

RE, as well as the practical challenges concerning RE and KM in GSE.

Ebert and De Man [22] state that a software company or department is

confronted with many challenges that must be mastered through continuous

improvement, along the following axes: (1) consolidating, focusing on a few

essential products and maximising their business value; (2) industrialising, master-

ing projects, processes and knowledge by intelligent collaboration to improve

predictability, repeatability and affordability; and (3) globalising, depending on

the needs of the target market and the size of the company, but its success relies on

the other two axes. An approach has been presented in this chapter that leverages

this continuous improvement strategy by means of proper management of

requirements knowledge. Firstly, an organisation that usually develops products

in a domain eventually has enough expertise to generate high-quality requirements

catalogues dealing with common issues in that domain (consolidating). Secondly,

once such an organisation manages domain knowledge appropriately by means of

requirements catalogues, the entire software development process benefits and is

greatly improved in terms of cost, time and effort (industrialising). Finally, the

particularities of globalisation are taken into account and its demands materialised

in the RE process in order to be successful in a global environment (globalising).

Future work includes research on data mining techniques that can be applied to

requirements, the aim being to build prediction models and help developers make

better decisions on the subsequent stages of the software development process. We

are also interested in supporting project management issues by relying on RE, so

that project management and decision making processes within the organisation

could take advantage of explicit or derived requirements knowledge. Finally, an

academic case study between the University of Murcia (Murcia, Spain), the Uni-

versity of Castilla-La Mancha (Ciudad Real, Spain) and the University Mohammed

V – Souissi (Rabat, Morocco) is planned, with the intention of validating our

proposal in a nearshore environment. We are also planning to conduct a case

study in a real industry environment later on, in a subsequent stage of the validation.

8 Reusing Requirements in Global Software Engineering 193

Acknowledgments This work has been funded by the PEGASO/PANGEA project (TIN2009-

13718-C02-02), the ORIGIN Integrated Project (IDI-2010043 (1–5)) and the ENGLOBAS Project

(PII2I09-0147-8235).

References

1. Brooks FP Jr (1987) No silver bullet: essence and accidents of software engineering. IEEE

Comp 20:10–19

2. Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice-Hall, New York

3. Mili H, Mili F, Mili A (1995) Reusing software: issues and research directions. IEEE Trans

Softw Eng 21:528–562

4. Cybulski JL, Reed K (2000) Requirements classification and reuse: crossing domain

boundaries. In: Proceedings of the 6th international conference on software reuse: advances

in software reusability, Vienna, pp 190–210

5. Sommerville I (2004) Software engineering, 7th edn. Pearson Addison Wesley, Boston

6. Favaro J (2002) Managing requirements for business value. IEEE Softw 19:15–17

7. Robertson S, Robertson J (2006) Mastering the requirements process, 2nd edn. Addison-

Wesley, Upper Saddle River

8. Cheng BHC, Atlee JM (2007) Research directions in requirements engineering. In: Future of

software engineering, IEEE Computer Society, Minneapolis, USA, pp 285–303

9. Rine DC, Nada N (2000) An empirical study of a software reuse reference model. Inf Softw

Technol 42(1):47–65

10. Herbsleb JD (2007) Global software engineering: the future of socio-technical coordination.

In: Future of software engineering, IEEE Computer Society, Minneapolis, USA, pp 188–198

11. Damian D, Moitra D (2006) Global software development: how far have we come? IEEE

Softw 23:17–19

12. Noll J, Beecham S, Richardson I (2010) Global software development and collaboration:

barriers and solutions. ACM Inroads 1(3):66–78

13. Damian D (2007) Stakeholders in global requirements engineering: lessons learned from

practice. IEEE Softw 24:21–27

14. Sinha V, Sengupta B, Chandra S (2006) Enabling collaboration in distributed requirements

management. IEEE Softw 23:52–61

15. Gallardo-Valencia RE, Sim SE (2009) Continuous and collaborative validation: a field study

of requirements knowledge in agile. In: Proceedings of the 2nd international workshop on

managing requirements knowledge, IEEE Computer Society, Atlanta, USA, pp 65–74

16. Manteli C, van den Hooff B, Tang A, van Vliet H (2011) The impact of multi-site software

governance on knowledge management. In: Proceedings of the 6th IEEE international confer-

ence on global software engineering, IEEE Computer Society, Helsinki, Finland, pp 40–49

17. Aurum A, Jeffery R, Wohlin C, Handzic M (eds) (2003) Managing software engineering

knowledge. Springer, Berlin

18. Rus I, Lindvall M (2002) Knowledge management in software engineering. IEEE Softw

19:26–38

19. Ebling T, Nicolas Audy JL, Prikladnicki R (2009) A systematic literature review of

requirements engineering in distributed software development environments. In: Proceedings

of the 11th international conference on enterprise information systems,Milan, Italy, pp 363–366

20. Berenbach B (2006) Impact of organizational structure on distributed requirements engineer-

ing processes: lessons learned. In: Proceedings of the international workshop on global

software development for the practitioner, ACM, Shanghai, China, pp 15–19

194 J.M. Carrillo de Gea et al.

21. Al-Ani B (2010) Questions regarding knowledge engineering and management. In:

Proceedings of the 5th IEEE International conference on global software engineering, IEEE

Computer Society, Princeton, USA, pp 324–329

22. Ebert C, De Man J (2008) Effectively utilizing project, product and process knowledge.

Inf Softw Technol 50(6):579–594

23. Ågerfalk PJ, Fitzgerald B, Holmström H, Lings B, Lundell B, Conchúir EO (2005)

A framework for considering opportunities and threats in distributed software development.

In: Proceedings of the international workshop on distributed software development, Austrian

Computer Society, Paris, France, pp 47–61

24. Portillo Rodrı́guez J, Ebert C, Vizcaı́no A (2010) Technologies and tools for distributed teams.

IEEE Softw 27:10–14

25. Portillo Rodrı́guez J, Vizcaı́no A, Ebert C, Piattini M (2010) Tools to support global software

development processes: a survey. In: Proceedings of the 5th IEEE international conference on

global software engineering, IEEE Computer Society, Princeton, USA, pp 13–22

26. Edwards JS (2003) Managing software engineers and their knowledge. In: Aurum A, Jeffery R,

Wohlin C, Handzic M (eds) Managing software engineering knowledge. Springer, Berlin,

pp 5–27

27. Lethbridge TC, Singer J, Forward A (2003) How software engineers use documentation: the

state of the practice. IEEE Softw 20:35–39

28. Ebert C, De Neve P (2001) Surviving global software development. IEEE Softw 18(2):62–69

29. Mika P (2007) Social networks and the semantic web, Semantic web and beyond. Springer,

New York

30. Beecham S, Noll J, Richardson I, Ali N (2010) Crafting a global teaming model for architec-

tural knowledge. In: Proceedings of the 5th IEEE international conference on global software

engineering, IEEE Computer Society, Princeton, USA, pp 55–63

31. Ali N, Beecham S, Mistrı́k I (2010) Architectural knowledge management in global software

development: a review. In: Proceedings of the 5th IEEE international conference on global

software engineering, IEEE Computer Society, Princeton, USA, pp 347–352

32. Hall JG, Jackson M, Laney RC, Nuseibeh B, Rapanotti L (2002) Relating software

requirements and architectures using problem frames. In: Proceedings of the 10th anniversary

IEEE joint international conference on requirement engineering, IEEE Computer Society,

Essen, Germany, pp 137–144

33. Clerc V (2008) Towards architectural knowledge management practices for global software

development. In: Proceedings of the 3rd international workshop on sharing and reusing

architectural knowledge, ACM, Leipzig, Germany, pp 23–28

34. López A, Nicolás J, Toval A (2009) Risks and safeguards for the requirements engineering

process in global software development. In: Proceedings of the 4th IEEE international confer-

ence on global software engineering, IEEE Computer Society, Limerick, Ireland, pp 394–399

35. Desouza KC, Awazu Y, Baloh P (2006) Managing knowledge in global software development

efforts: issues and practices. IEEE Softw 23:30–37

36. Kucza T, Nättinen M, Parviainen P (2001) Improving knowledge management in software

reuse process. In: Proceedings of the 3rd international conference on product focused software

process improved, Kalserslautern, pp 141–152

37. Schneider K, von Hunnius JP, Basili V (2002) Experience in implementing a learning software

organization. IEEE Softw 19:46–49

38. Seaman CB, Mendonça MG, Basili VR, Kim YM (2003) User interface evaluation and

empirically-based evolution of a prototype experience management tool. IEEE Trans Softw

Eng 29:838–850

39. Maalej W, Thurimella AK, Happel HJ, Decker B (2008) Managing requirements knowledge

(MaRK’08). In: Proceedings of the 1st international workshop on managing requirement

knowledge, IEEE Computer Society, Barcelona, Spain, pp i–ii

40. Ma L, Nuseibeh B, Piwek P, Roeck AD, Willis A (2009) On presuppositions in requirements.

In: Proceedings of the 2nd international workshop on managing requirement knowledge,

IEEE Computer Society, Atlanta, USA, pp 27–31

8 Reusing Requirements in Global Software Engineering 195

41. Damian D, Zowghi D (2002) The impact of stakeholders’ geographical distribution on

managing requirements in a multi-site organization. In: Proceedings of the 10th anniversary

IEEE joint international conference on requirements engineering, IEEE Computer Society,

Essen, Germany, pp 319–330

42. Kwan I, Damian D, Marczak S (2007) The effects of distance, experience, and communication

structure on requirements awareness in two distributed industrial software projects. In:

Proceedings of the 1st international global requirements engineering workshop, Munich,

Germany, pp 29–35

43. Bhat JM, Gupta M, Murthy SN (2006) Overcoming requirements engineering challenges:

lessons from offshore outsourcing. IEEE Softw 23:38–44

44. Hsieh Y (2006) Culture and shared understanding in distributed requirements engineering.

In: Proceedings of the IEEE international conference on global software engineering,

IEEE Computer Society, Florianopolis, Brazil, pp 101–108

45. Betz S, Oberweis A, Stephan R (2010) Knowledge transfer in IT offshore outsourcing projects:

an analysis of the current state and best practices. In: Proceedings of the 5th IEEE international

conference on global software engineering, IEEE Computer Society, Princeton, USA,

pp 330–335

46. Herbsleb JD, Mockus A (2003) An empirical study of speed and communication in globally

distributed software development. IEEE Trans Softw Eng 29:481–494

47. Szulanski G, Winter S, Grant R, Spender JC, Kogut B, Miner A, Ghoshal S (2000) The process

of knowledge transfer: a diachronic analysis of stickiness. Organ Behav Hum Dec Proc

82:9–27

48. Carmel E, Agarwal R (2001) Tactical approaches for alleviating distance in global software

development. IEEE Softw 18:22–29

49. Correia FF, Aguiar A (2009) Software knowledge capture and acquisition: tool support for

agile settings. In: Proceedings of the 4th international conference on software engineering

advanced, IEEE Computer Society, Limerick, Ireland, pp 542–547

50. Clerc V, de Vries E, Lago P (2010) Using wikis to support architectural knowledge manage-

ment in global software development. In: Proceedings of the ICSE workshop on sharing and

reusing architectural knowledge, ACM, Cape Town, South Africa, pp 37–43

51. Oshri I, van Fenema PC, Kotlarsky J (2008) Knowledge transfer in globally distributed teams:

the role of transactive memory. Inf Syst J 18(6):593–616

52. Lee SB, Shiva SG (2010) An approach to overcoming knowledge sharing challenges in a

corporate IT environment. In: Proceedings of the 5th IEEE international conference on global

software engineering, IEEE Computer Society, Princeton, USA, pp 342–346

53. Kotlarsky J, Oshri I (2005) Social ties, knowledge sharing and successful collaboration in

globally distributed system development projects. Eur J Inf Syst 14:37–48

54. Ebert C (2012) Global software and IT: a guide to distributed development, projects, and

outsourcing. Wiley, Hoboken

55. Heindl M, Reinisch F, Biffl S (2007) Requirements management infrastructures in global

software development – Towards application lifecycle management with role-based in-time

notification. In: Proceedings of the international conference on global software engineering

(ICGSE), workshop on tool-supported requirements management in distributed projects

(REMIDI), Munich, Germany

56. Mistrı́k I, Grundy J, Van der Hoek A, Whitehead J (2010) Collaborative software engineering:

challenges and prospects. In: Mistrı́k I, Grundy J, Van der Hoek A, Whitehead J (eds)

Collaborative software engineering. Springer, Berlin/Heidelberg, pp 389–403

57. Laurent P (2010) Globally distributed requirements engineering. In: Proceedings of the 5th

IEEE international conference on global software engineering, IEEE Computer Society,

Princeton, USA, pp 361–362

58. Monteiro MR, Ebert C, Recknagel M (2009) Improving the exchange of requirements and

specifications between business partners. In: Proceedings of the 17th IEEE international

requirements engineering conference, IEEE Computer Society, Atlanta, USA, pp 253–260

196 J.M. Carrillo de Gea et al.

59. Toval A, Nicolás J, Moros B, Garcı́a F (2002) Requirements reuse for improving information

systems security: a practitioner’s approach. Requir Eng 6:205–219

60. Sommerville I, Ransom J (2005) An empirical study of industrial requirements engineering

process assessment and improvement. ACM Trans Softw Eng Methodol 14:85–117

61. Toval A, Moros B, Nicolás J, Lasheras J (2008) Eight key issues for an effective reuse-based

requirements process. Comp Syst Sci Eng 23:1–13

62. Toval A, Olmos A, Piattini M (2002) Legal requirements reuse: a critical success factor for

requirements quality and personal data protection. In: Proceedings of the 10th anniversary IEEE

joint international conference on requirement engineering, IEEE Computer Society, Essen,

Germany, pp 95–103

63. Martı́nez MA, Lasheras J, Fernández-Medina E, Toval A, Piattini M (2010) A personal data

audit method through requirements engineering. Comp Stand Interf 32:166–178

64. Nicolás J, Lasheras J, Toval A, Ortiz FJ, Álvarez B (2009) An integrated domain analysis

approach for teleoperated systems. Requir Eng 14:27–46

65. Carrillo de Gea JM, Nicolás J, Fernández Alemán JL, Toval A, Ebert C, Vizcaı́no A (2011)

Requirements engineering tools. IEEE Softw 28(4):86–91

66. ISO/IEC JTC 1 SC 7: ISO/IEC TR 24766 (2009) Information technology – systems and software

engineering – guide for requirements engineering tool capabilities, 1st edn. ISO, Geneva

67. Uenalan O, Riegel N, Weber S, Doerr J (2009) Using enhanced wiki-based solutions for

managing requirements. In: Proceedings of the 2nd international workshop on managing

requirement knowledge, IEEE Computer Society, Atlanta, USA, pp 63–67

68. Ugai T, Aoyama K (2009) Domain knowledge wiki for eliciting requirements. In: Proceedings of

the 2nd international workshop on managing requirement knowledge, IEEE Computer Society,

Atlanta, USA, pp 4–6

69. Liang P, Avgeriou P, Clerc V (2009) Requirements reasoning for distributed requirements

analysis using semantic wiki. In: Proceedings of the 4th IEEE international conference on

global software engineering, IEEE Computer Society, Limerick, Ireland, pp 388–393

70. Whitehead J, Mistrı́k I, Grundy J, Van der Hoek A (2010) Collaborative software engineering:

concepts and techniques. In: Mistrı́k I, Grundy J, Van der Hoek A, Whitehead J (eds)

Collaborative software engineering. Springer, Berlin/Heidelberg, pp 1–30

71. Lim SL, Quercia D, Finkelstein A (2010) StakeSource: harnessing the power of crowdsourcing

and social networks in stakeholder analysis. In: Proceedings of the 32nd ACM/IEEE interna-

tional conference on software engineering, ACM, Cape Town, South Africa, pp 239–242

72. Lim SL, Damian D, Finkelstein A (2011) StakeSource2.0: using social networks of

stakeholders to identify and prioritise requirements. In: Proceedings of the 33rd international

conference on software engineering, Waikiki, pp 1022–1024

73. Carver J, Jaccheri L, Morasca S, Shull F (2003) Issues in using students in empirical studies in

software engineering education. In: Proceedings of the 9th IEEE international symposium on

software metrics, IEEE Computer Society, Sydney, Australia, pp 239–249

74. Carver J, Jaccheri L, Morasca S, Shull F (2003) Using empirical studies during software

courses. In: Conradi R, Wang A (eds) Empirical methods and studies in software engineering,

Lecturer notes in computer science, vol 2765, Springer, Berlin/Heidelberg, pp 81–103

75. Kitchenham BA, Pfleeger SL, Pickard LM, Jones PW, Hoaglin DC, Emam KE, Rosenberg

J (2002) Preliminary guidelines for empirical research in software engineering. IEEE Trans

Softw Eng 28:721–734

76. Basili VR, Shull F, Lanubile F (1999) Building knowledge through families of experiments.

IEEE Trans Softw Eng 25:456–473

77. Svahnberg M, Aurum A, Wohlin C (2008) Using students as subjects – An empirical evalua-

tion. In: Proceedings of the 2nd ACM-IEEE international symposium on empirical software

engineering & measurement, ACM, Kaiserslautern, Germany, pp 288–290

78. Allen T (1977) Managing the flow of technology. MIT Press, Cambridge, MA

8 Reusing Requirements in Global Software Engineering 197

Chapter 9

Performative and Lexical Knowledge Sharing

in Agile Requirements

S.E. Sim and R.E. Gallardo-Valencia

Abstract We present the results of our field study that describe how requirements

knowledge was shared at an industrial software company using agile software

practices. As is common in agile processes, the team did not capture requirements

knowledge in a comprehensive specification document. Instead, requirements knowl-

edge was captured in user stories, automated acceptance tests, personal notes, and

conversations. We identified two modes of knowledge sharing: performative and

lexical. Performative knowledge, which occurs through actions such as question-

asking, gestures, and informal speeches, was observed in conversations and at the

Scrum board. Lexical knowledge sharing, which occurs through inscribed texts, was

observed in testing wiki and the software release documents. We found that the

software team relied mainly on performative knowledge sharing. Although team

members shared few written documents, they were able to effectively develop soft-

ware that satisfied customer requirements. Results from our field study have

implications for both agile practitioners and knowledge management. The former

could encourage question-asking to provide opportunities for performative knowledge

sharing. The latter could pay attention to personal management so that users can more

effectively engage in performative knowledge sharing.

9.1 Introduction

Socrates is well known for many contributions to ancient Greek philosophy.

However, he is perhaps less well known as an early theorist of knowledge manage-

ment. The dialogue Phaedrus is an account of a conversation between him and the

S.E. Sim (*) • R.E. Gallardo-Valencia

University of California, Irvine, CA, USA

e-mail: ses@manyroadsstudios.com; gallardo.re@gmail.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_9, # Springer-Verlag Berlin Heidelberg 2013

199

mailto:ses@manyroadsstudios.com
mailto:gallardo.re@gmail.com

man for whom the text is named [12]. The ostensive topic of the dialogue is the

nature of love and friendship. At a deeper level, the dialogue is about the merits of

the various ways to impart knowledge: oration, dialectic, and written texts.

In Ancient Greece, the conventional means to acquire knowledge was to listen to

a prepared, rehearsed speech, or oration, by a learned man and to memorise the

speech word for word so that it can be repeated at a later occasion. The dialogue, as

a method of sharing knowledge, is Socrates’s contribution; we now know this as the

Socratic method. Written texts were growing in quantity and adoption, enabled by

a new technology called the alphabet.

Socrates was not fond of oration, because speeches are static and more suitable

for persuasion and entertainment rather than the search for ultimate truth. But he

reserves his most scathing criticism for written texts, saying ‘Then [a philosopher]

will not seriously incline to “write” his thoughts “in water” with pen and ink, sowing

words which can neither speak for themselves nor teach the truth adequately to

others?’ The dialectic, he argues, is a far superior method for imparting knowledge:

But nobler far is the serious pursuit of the dialectician, who, finding a congenial soul, by the

help of science sows and plants therein words which are able to help themselves and him

who planted them, and are not unfruitful, but have in them a seed which others brought up

in different soils render immortal. . .

In other words, only the dialectic, or dialogue, is the only method of teaching

that ensures the received knowledge will be useful and productive. This is a central

concern of knowledge management even today. Not content with the sharing of

preprocessed data (information), his goal is the sharing of information in context to

produce an actionable understanding (knowledge).

Socrates’s mistrust of written texts seems quaint in our modern age where we are

surrounded by documents, post-it notes, and web pages. Nevertheless, it prompts us

to consider the differences between the written word and dialogues as means for

sharing requirements knowledge. Our insights come from a field study of a team

using agile software development techniques. In this context, agile is significant,

because the creation of ‘comprehensive documentation’ is not a priority and as a

result there is a greater reliance on other forms of knowledge sharing.

We undertook the study with the aim of better understanding how and why agile

software development teams worked.Wewere particularly interested in requirements

techniques, specifically user stories, because they seemed too simple and under-

specified to work effectively. Yet our initial research indicated that developers,

customers, and executives were able to use these and were highly satisfied with them.

The team in our study used a variety of agile techniques, in particular Scrum

[13], user stories [4], and automated acceptance testing [1, 11]. They captured

requirements knowledge in user stories, improvised checklists, and automated

acceptance test cases. The written component of these artefacts and practices was

minimal; they served only as reminders. Knowledge sharing occurred primarily

through ongoing conversations, meetings, and feedback.

From our observations, we identified two forms of knowledge sharing: lexical

and performative. Lexical knowledge sharing occurs through inscribed texts. This

label was derived from semiotics, where the lexicon is the set of things in an

200 S.E. Sim and R.E. Gallardo-Valencia

ontology [3]. Performative knowledge sharing occurs through actions, such as

question-asking and gestures, as well as informal speeches. This label follows

from work in the humanities and social sciences that analysed human behaviour

using the heuristic of performance [10].

We found that software development relied much more on performative sharing

of requirements knowledge than lexical. In other words, developers relied almost

entirely on conversations to share knowledge. The few documents that did exist

were personal and generally not shared with the team. Our analysis is based on

careful study of four requirements activities (elicitation, modelling, commu-

nication, and validation) during three stages of the iteration (pre-iteration, iteration

planning, and intra-iteration). We examined two cultural sites for performative

knowledge sharing, conversations and the Scrum (project status) board, and

contrast these with current and past sites for lexical knowledge sharing. In our

discussion, we identify implications for both agilists and researchers, including

directions for future research.

9.2 Method

This research applied qualitative field methods to understand how a team of

software developers manage requirements knowledge. We were interested in how

the various stakeholders made use of user stories in requirements engineering.

Consequently, our data collection was focused on the practices and artefacts around

this software development activity. We were also interested in comparing the

current practices and artefacts with ones that the team used to use or were

recommended by software engineering best practices.

Our field site was ‘Easy Retirement’, an Internet-based service provider for self-

directed retirement investment plans. The company’s main product is a web

application that allows individuals to manage their own retirement investment

plans and is sold as a service to companies that are legally required to provide

this benefit to employees. Easy Retirement has a total of 26 employees, and the

software team consists of ten members. We observed the software team for 2 days

in December 2007. This included observations of stand-up and iteration planning

meetings. We also conducted six semi-structured interviews that lasted between

30 and 68 min. Our interview participants had various roles in the company,

including the Scrum Master, Product Owner, two programmers, a tester, and the

owner of the company.

We also collected some samples of artefacts by taking photographs of artefacts

in use, as well as collecting older artefacts (user story cards, checklists, forms, and

test cases) that were no longer in use. We used pseudonyms for names of people and

places to protect the privacy of individuals who have participated in this research.

After completing data collection, we transcribed our field notes and audio

recordings of the interviews. We analysed the data inductively and iteratively [9].

We used open coding to identify categories, sometimes revisiting data to apply new

categories. We used axial coding to relate different categories to each other to

create descriptions.

9 Performative and Lexical Knowledge Sharing in Agile Requirements 201

9.3 Field Site: Easy Retirement

We conducted a field study at ‘Easy Retirement’ (a pseudonym), an Internet-based

401 k service provider. The company develops a web application which helps users

to manage their own retirement investment plans.

The software team follows a number of agile methods closely, including Scrum,

daily stand-up meetings, user stories, continuous integration, on-site customer, and

automated acceptance testing. Each sprint or iteration lasts 2 weeks and starts and

ends on a Friday. On the first day of an iteration, the team holds a sprint planning

meeting when user stories are broken down into tasks and estimated. During the

sprint, programmers and testers work closely to complete the user stories and to

ensure that all the user stories are accepted by the end of the sprint. It is a challenge

to get everything done in an orderly fashion because testing and development are

mutually dependent.

In this section, we give some background on agile and describe the agile

techniques used at Easy Retirement.

9.3.1 Agile

Agile software development is a family of modern software techniques that have

been developed by practitioners. Their distinguishing feature is an emphasis on

adapting to change by working in an incremental and iterative fashion, that is,

taking many small steps repeatedly in order to grow a software system. The agile

approach to software development contrasts with phased, sequential processes, as

typified by the waterfall model, which seeks to minimise change through careful

study and planning. The two best-known agile process models are Extreme Pro-

gramming (XP) [2], which is more concerned with how software ought to be

written, and Scrum [13], which is more concerned with how software projects

ought to be managed. This array of techniques hold in common an adherence to

the Manifesto for Agile Software Development [5], which states:

We are uncovering better ways of developing software by doing it and helping others do it.

Through this work we have come to value:

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more.

Iterative and incremental development models have been around for decades [7],

but users tended to be isolated, and techniques were invented locally or adopted

piecemeal. The current move towards agile is marked by a large and growing

community of users and advocates who are all focused on promoting and applying

agile techniques. The flagship conference in 2007 was sold out with approximately

1,100 attendees, while the Agile 2011 Conference had over 1,600 attendees from

around the world.

202 S.E. Sim and R.E. Gallardo-Valencia

9.3.2 Scrum

Easy Retirement uses Scrum to do planning and management of work. Rather than

dividing the project into phases corresponding to activities, time is divided into

increments, called a ‘sprint’ or iteration, where the objective is to produce working

software that is another step closer to completion. The Scrum model is depicted in

Fig. 9.1 above.

Agile seeks to have working but incomplete software from the first sprint.

Sprints can vary in length from 1 to 4 weeks. In the figure, they are represented

as 30 days. At Easy Retirement, the iterations lasted 2 weeks or ten working days,

beginning and ending on a Friday.

Several sprints grouped together is called a ‘release’ and can correspond to a

time window (e.g. a fiscal quarter) or a logical group of features indicating a level of

achievement. A sprint begins with a sprint planning meeting in which items from

the product backlog (called user stories) are selected and estimated for the upcom-

ing time increment. This set of items becomes the sprint backlog. Every 24 h, the

team synchronises their work in a ‘daily stand-up meeting’, which is a short

meeting lasting no more than 15 min and is usually held at the beginning of the

work day. A sprint concludes with a sprint review meeting to look back on the

tactics that were supportive or detrimental to progress. Easy Retirement used all of

these practices.

There are five primary roles on the Scrum team: Scrum Master, Product Owner,

Team Members, Stakeholders, and Users [13]. These roles do not necessarily align

with conventional job titles, for instance, a software developer could be a Scrum

Master or Team Member. We will describe each of the roles and the people in the

roles at Easy Retirement.

Scrum Master. This person facilitates software development by removing

impediments and tracking the progress of the team. Typical tasks for the Scrum

Master are convening the daily stand-up meeting, keeping a ‘burn down chart’ to

record the tasks completed, maintaining the product backlog, and preparing for

sprint planning meetings. Project managers are often Scrum Masters, but not

Fig. 9.1 Diagram of the Scrum software development process model (Adapted from Wikipedia)

9 Performative and Lexical Knowledge Sharing in Agile Requirements 203

always. There may be a technical manager as well as a Scrum Master. A software

developer could be a Scrum Master, but a Scrum Master does not necessarily have

coding skills. Usually there is one Scrum Master per project, but with very large

projects, there can be a Scrum of Scrums with multiple levels of Scrum Masters.

Leanne is the Scrum Master at Easy Retirement, having served as an office

manager before the switch to agile. While they tried out different people as the

ScrumMaster at first, she quickly settled into the role because, as she explained, she

had always been a kind of liaison between software development and business.

Product Owner. This person represents business concerns and can be literally the
person paying for the project or a figurative surrogate for customers. The Product

Owner’s main responsibilities are writing user stories and prioritising the product

backlog. This role can be fulfilled by a senior manager, a product manager,

someone involved in sales and marketing, a business analyst, or a user experience

designer.

Sam is the regulatory compliance officer at Easy Retirement and also serves as

the Product Owner. He has a background in law and business. His office is near the

open area where the software developers work (and away from his peers in the

company), so he can be consulted easily and frequently as the software is

developed.

Team Members. This group of people is engaged in the work of creating the

working software. Team members can include software developers, software

testers, database analysts, system administrators, technical writers, and multimedia

artists.

The software team at Easy Retirement consists of ten members including the

Scrum Master, the Product Owner, a technical manager, four programmers, two

testers, and a database/system administrator. Some agile methods, such as Extreme

Programming, recommend that all ‘developers’ engage in programming and test-

ing. Our field site does not fully embrace this practice. At Easy Retirement, both the

programmers and testers call themselves developers. Programmers are responsible

for writing code for features and for unit tests of those features. Testers are

responsible for integration testing and verification and validation of requirements.

Stakeholders. Anyone with an interest in the software product is a stakeholder,

but in practice, stakeholders are limited to those with business interests, such as

customers and vendors. They tend to be involved only at release or sprint planning.

The stakeholders who typically attended the release planning meetings at Easy

Retirement included the President, Vice Presidents, and Director of Marketing and

Sales.

Users. A subset of the stakeholders are the Users of the software. Business

stakeholders often are not Users. This role is included to remind the team that

software should be built for someone to use. Individual users are usually not

participants in the process like the roles but are consulted regularly to obtain

feedback. This role can be fulfilled by someone who uses or will use the software

or by a surrogate for them.

204 S.E. Sim and R.E. Gallardo-Valencia

9.3.3 User Stories

A user story has three parts: a written description of work to be done, conversations

with the customer about the work, and the test cases [4]. A common format for the

written description is ‘As a <role>, I can <action>, so that <goal>’. They are

partially a software requirement and partially a to-do item. They should be small, so

they can fit on a 300 � 500 index card and can be completed within a single sprint. In this

formulation, user stories include both a lexical aspect (the written description) and a

performative aspect (the conversations). It also includes a computational aspect

(automated tests). Fig. 9.2 shows examples of user stories and associated tasks and

tests cards.

The user stories were written on index cards and posted on a Scrum board for

everyone to see. The board was large, covering an entire wall from floor to ceiling,

and it was divided into four columns (to do, work in progress, to verify, and done).

The placement of the index card indicates the status of the task.

In addition to the index cards, individuals also have their own representations

that they use in their work. The Product Owner and Scrum Master each maintain a

personal checklist in a spreadsheet. The testers store additional details in a wiki [8].

9.3.4 Test-Driven Development

Test-driven development (TDD) is an agile technique that involves creating test

cases early, even before source code has been written [1]. Using an automated

testing framework and running the tests often are key parts of this technique.

A newly created test case should fail but pass after new application code is added.

During the sprint at Easy Retirement, testers start creating the test cases while

programmers are adding new functionality. Testers use Fitnesse [11], an automated

acceptance testing tool, to create the test cases. On the first Monday of the sprint,

testers meet with the Product Owner to ask questions about the high-level

Fig. 9.2 Example user story cards

9 Performative and Lexical Knowledge Sharing in Agile Requirements 205

requirements and to create acceptance tests. The programmers also use these tests to

guide their design work. Programmers are expected to write their own unit tests and

to write fixtures for Fitnesse.

Although the programmers were primarily responsible for unit tests, all team

members were involved in creating test cases, especially for acceptance testing.

9.4 Requirements Process at Easy Retirement

In agile, requirements knowledge is both lexical and performative. While this

coupling between physical artefacts and actions in time makes our data analysis

more complicated, it is one of the strengths of agile. In other words, there is a web

of collaborative and interlocking practices that provide a safety net for adaptive

software development.

Consequently, we describe the requirements process at Easy Retirement using

sequence diagrams, as shown in Figs. 9.3–9.5. By modelling the process in this

manner, we are able to see both the lexical knowledge (artefacts) and performative

knowledge (conversations and meetings).

These diagrams also facilitate our examination of knowledge sharing activities.

The stick figures along the top of the diagrams represent the different roles involved

in requirements. Horizontal arrows show knowledge being exchanged through

questions and answers. Large boxes that are bordered with a dashed line depict

meetings. Smaller rectangular boxes represent artefacts that are created or used.

Down the left-hand side of the diagrams is a shorthand notation for the kinds of

requirements activities taking place. The first letter shows whether the interaction is

performed through a conversation (‘C’) or through other means (‘–’). The last four

characters correspond to the four canonical activities in requirements engineering,

elicitation (‘E’), modelling (‘M’), communication (‘C’), and validation (‘V’).

In our data analysis, we found that there were three time periods that correspond

to different opportunities for requirements engineering. These stages were (1) pre-

iteration shown in Fig. 9.3, (2) iteration planning shown in Fig. 9.4, and (3) intra-

iteration shown in Fig. 9.5.

9.4.1 Pre-iteration

Pre-iteration is the time leading up to the start of an iteration. During this stage,

Sam, the Product Owner, received requirements from business people and clarified

their expectations (arrows 1.1 and 1.2 in Fig. 9.3).

Everyone at Easy Retirement writes user stories, though some more than others.

Leanne, the Scrum Master, focuses on how the user stories allow people in the

company to feel that they are participating in the development of the software:

206 S.E. Sim and R.E. Gallardo-Valencia

We encourage everyone to do the stories as everyone has his or her view of how the system

works or should work and makes them feel they are part of the product and feel involved.

[This applies to] the plan administrator, the sales people, even the accountant [who] has

actually written some stories for the report data that she needs. And this is one of things the

people in this company like about it here is that they feel they are part of the things that are

built and the process.

Sam records what he has learned from these interactions with the business

people to create a personal user story checklist in a spreadsheet. Sam uses this

checklist to help him think of questions to ask the businessperson regarding details

and test cases, manage details of the user story, understand scope, manage risks, and

document conversations and decisions. The checklist also helps him to participate

more effectively in iteration planning. The user story checklist includes the satis-

faction conditions that are needed to consider the user story completed, as well as a

story description, its assigned story points, expected delivery date, the iteration it

belongs to, output of the story, and related user stories .

Then, the software team held a brainstorming meeting (1.3–1.5 in Fig. 9.3) to

make preliminary estimates of user stories, which are prioritised in a later meeting

(1.6 in Fig. 9.3).

Jerry, the owner of Easy Retirement, explained that at first, some of their

business partners did not understand their process but that the user story estimates

help. He would use the prioritisation and effort estimates that were assigned to each

request to negotiate with customers:

Business People Scrum Master Product Owner Programmers Testers

1.1 Request
functionality 1.2 Talk about

functionality

1.3 Present requested
functionality

1.4 Ask questions and
identify sw pieces

1.5 Ask for estimation of
US

1.6 Ask for priority
of US

1.7 Ask for details and
satisfaction conditions

US
Checklists

1.8 Fill out

1.9 Ask questions, if
needed

Brainstorming
Meeting

C EMCV

- E C

C E C

C C

C M

C EM

C E CV

M

C E CV

C MCV

Iteration Prioritization
Meeting

C EMCV

Is it a Conversation?
C: Yes, : No

Requirement Activities:
E: Elicitation, M: Modeling, C: Communication, V: Validation, :Activity not present

US = User story

LEGEND

Fig. 9.3 Pre-iteration flow of requirements at Easy Retirement

9 Performative and Lexical Knowledge Sharing in Agile Requirements 207

If we have an existing business requirement, you fully explain our process to anybody who

said that they want something [new]. And I told them if you want it to be prioritised, here is

what it means to me. So it is number five under 122 others, (laughs). You want it be in the

top five? Tell me you will pay me $25,000; otherwise, just understand that there is no return

on the investment. [We use] the user points to assign a value to it.

While this kind of negotiation with large customers or business partners may be

rare, the same kind of negotiation can also take place internally as well on a smaller

scale. Leanne explained that sometimes ‘the business people are asking for the

world’ because they care more about new sales than anything else. They might not

understand that a request is very big because, for example, it requires changes to the

legacy code. Leanne said that she can go to the owner and explain that this is a ‘very

expensive’ feature, relying on the estimates to convince him.

9.4.2 Iteration Planning

Every Friday, an iteration planning meeting (2.1–2.5 in Fig. 9.4) is held. At this

time, user stories, tasks cards, and test cards are written on an index card and placed

on the Scrum board. All the team members, including the Product Owner, Scrum

Master, technical manager, programmers, and testers, work collaboratively to

create these cards. The index cards do not have much information on them, just a

couple of sentences. However, the requirements that they represent are validated

when programmers and testers ask questions about details.

Observing a sprint planning meeting reveals just how much participation and

collaboration takes place. The meetings we observed had strict turn-taking

procedures, and holding the marker used to write the user story was an indication

of who is speaking. While team members have many artefacts at their disposal for

the meeting, such as privately used lists of stories or notes from conversations, what

Scrum Master Product Owner Programmers Testers

2.1 Explain
USs

2.3 Ask questions to
determine tasks

USs
2.2 Create

2.4 Coordinate tasks and

test cases needed

Task
Cards

2.5 Create Test
Cards

C EMCV

MC

C C

C MCV

C MCV

MC 2.5 Create

Iteration Planning
Meeting

C EMCV

Is it a Conversation?
C: Yes, : No

Requirement Activities:
E: Elicitation, M: Modeling, C: Communication, V: Validation, :Activity not present

US = User story

LEGEND

Business People

Fig. 9.4 Iteration planning flow of requirements

208 S.E. Sim and R.E. Gallardo-Valencia

is included on a user story card is public and agreed upon by everyone. As people

disagree, user story cards are frequently thrown away and replaced by a new

version. The participants did comment that one of the advantages of the small

card is that it is easily thrown away.

The user story is a form of performative knowledge. This can be seen in the way

that people keep their personal artefacts separate from the user stories even when

they contain similar information. The user story is the only standardised and

accepted reference to a requirement. The user story card, while the outcome of

the negotiation, still does not have all the information on it that was decided upon

during the discussion. It is merely the token that refers to performative knowledge.

Several times, participants made note of how important it is that the user story

card is written while everyone is present. The writing of the card in front of others is

a part of the collaboration. Taking the card in front of everybody is also significant

as an agreement that a particular programmer is taking ownership of that story. By

writing the story together, there is ‘group ownership of all the tasks’. And by taking

the card in front of everybody, there is individual ownership of the task.

The user story also has a strong connection to participation because of the way that

estimates of user stories create a valuing system for features of the system. The final

decision of what is on the card is an agreement, not unlike a contract, of work for that

sprint. The team members associated with a user story, the person who wrote it and

the person who will implement it, are considered to be owners of the story.

9.4.3 Intra-iteration

During the iteration, as showed in Fig. 9.5, testers write tests, programmers

implement new functionality, and testers run the acceptance test cases. Addition-

ally, the Product Owner checks that the software works as expected.

We asked Greg, a programmer, what he did to start a task and he replied:

It depends. There are some things that are on the wiki. Some things that are new develop-

ment so there is nothing really written for it yet. And other things there is past history on

that feature that you are adding to. So I might talk to Carol, you know, she might point me to

either the wiki or the Fitnesse that have background information on it so I can use that as a

reference. I will say, well how did it work before? (laughs). And what is the delta between

how it worked before and what I need to make it do now?

Testing plays a particularly important role during the intra-iteration stage. For

the first time, requirements are expressed as test cases. Carol, a tester, explained,

‘[The testers] always meet with Sam on Monday and go over all the stories again to

make sure that we understand everything and we can write a high-level test cases’.

This information is stored on a wiki and coded into acceptance test cases in

Fitnesse. Although Carol did not know if the programmers looked at the wiki,

Ryan reported that he did:

9 Performative and Lexical Knowledge Sharing in Agile Requirements 209

So that is pretty nice because, knowing what story I am working on, if there is any question,

the first place to look is the wiki and see if it there. If there is nothing there, then we have to

go ask somebody.

When the programmers add a feature to the software, they are also responsible

for doing their own unit testing and for creating a ‘fixture’ for the Fitnesse testing

framework. The testers add the fixture to the test harness and program a set of

acceptance test cases.

9.5 Performative and Lexical Knowledge Sharing

Consistent with the values in the Manifesto for Agile Development [5], the

requirements process at Easy Retirement does not use comprehensive documentation,

instead relies on collaboration, and emphasises individuals and interactions. In order

to better understand the forms and modes of knowledge sharing in agile requirements,

we draw our attention to the categories of ‘lexical’ and ‘performative’.

By lexical, we denote knowledge sharing through written documents. Because

we do not wish to include informal jottings or notes, this label is derived from

semiotics, where the lexicon is the set of things in a language or ontology [3].

In turn, lexical knowledge sharing happens in inscribed texts that are passed from

one to another. Digital texts can also be lexical, provided that they are written

documents, travel between stakeholders, and carry their weight of authority.

Business People Product Owner Programmers Testers

High Level
TestCases

3.1 Write

3.2 Ask questions about
functionality3.3 Ask questions, if

needed 3.4 Update

Aceptance
TestCases

3.5 Write

3.6 Ask questions about
functionality3.7 Ask questions, if

needed 3.8 Ask for background
info about functionality

High Level
TestCases

3.9 Read

3.10 Ask questions
about functionality3.11 Ask questions, if

needed
Unit

TestCases

3.12 Write

Code
3.13 Write

Aceptance
TestCases

3.14 Run

3.15 Give feedback about

Acceptance TestCases

C EMCV

MC

C MCV

C E CV

MC

MC
C MCV

C E CV

C C

C

C MCV

C E CV

V

C C

Scrum Master

C EMCV

Is it a Conversation?
C: Yes, : No

Requirement Activities:
E: Elicitation, M: Modeling, C: Communication, V: Validation, : Activity not present

US = User story

LEGEND

Fig. 9.5 Intra-iteration flow of requirements at Easy Retirement

210 S.E. Sim and R.E. Gallardo-Valencia

By performative, we denote knowledge sharing that is acted out in the presence

of others and can include question-asking and gestures, as well as informal

speeches. This label follows from work in the humanities and social sciences,

which sought to use performance as a heuristic for understanding human behaviour

[10]. Goffman’s work, which used the metaphor of a theatre (actors, stage, back-

stage, audience, etc.) to analyse the presentation of the self in daily life, is highly

influential in the area [6]. In the category of performative, we do not include all

actions, but rather, we focus specifically on actions that are performed in order to be

witnessed by an audience.

In many situations, knowledge sharing is neither entirely performative nor

entirely lexical. However, one will figure more prominently than the other based

on the context. We define these categories carefully to help us adjudicate the corner

cases, such as the action of writing a requirements document and performances that

include texts.

A written requirements specification is primarily lexical knowledge sharing.

Stakeholders can sign off on the specification, and the document will serve as a

set of agreements about the software to be delivered. It is a snapshot of

requirements knowledge at a particular time, and as such, it can date quickly, lose

accuracy, and decrease in value. Although authoring a requirements document is an

action, it is not the performance of writing that completes the action of knowledge

sharing but rather the reading of that writing by the receiver.

Moving an index card containing a user story from one column of the Scrum

board to another is primarily performative knowledge sharing, not only because it is

an action but also because it is an action that is intended to be seen by others.

Although the index card contains text, it is not the words that cause knowledge to be

shared but rather the interaction with or movement of the physical artefact.

In this section, we will look at the various sites for lexical and performative

knowledge sharing in agile. The two types are summarised in Table 9.1.

Table 9.1 Performative and lexical sharing of requirements knowledge at Easy Retirement

Stage Performative knowledge sharing Lexical knowledge sharing

Pre-iteration Conversations between Checklists

Programmers and PO

Testers and PO

PO and business people

Iteration planning Conversations between User story and task cards

Programmers and PO

Testers and PO

Programmers and testers scrum board

Intra-iteration Conversations between User story cards

Programmers and PO Wiki

Testers and PO Unit test cases

PO and business people Acceptance test cases

9 Performative and Lexical Knowledge Sharing in Agile Requirements 211

9.5.1 Performative Knowledge Sharing

Performative sharing of requirements knowledge occurred whenever a conversa-

tion took place. In the activity diagrams in the previous section, these are indicated

by the letter ‘C’ in the first column of each row, which is the case for many of the

interactions. There were two primary sites for performative knowledge sharing:

conversations and the Scrum board.

9.5.1.1 Conversations

Conversations are a key site for performative knowledge sharing because they

involve people in dialogue. This trait is not unique to software development. The

decision to have a conversation, the selection of participants, and the questions that

are asked are all part of the staging of the performance.

In agile, conversations are built into the process and the basic units of work. User

stories are meant to include conversations between programmers, testers, and

customers. Knowledge may reside in the minds of the participants, but it does not

become part of the user story until it has been shared. The transmission takes place

through a performance.

Performative knowledge takes place when knowledge in the minds of the

participants is presented and others acquire an actionable understanding. Product

Owner, Sam, described the user stories as ‘triggers that help me to ask questions’.

This question-asking is important, because it creates knowledge that did not

previously exist. This performance is so important that Sam even writes out ideas

for user stories before the planning meeting to remind him to ask questions.

Even though the performances are ephemeral, the knowledge persists beyond the

moment when the action is taken. The agreement to a requirement is public and

made when programmers are looking into the eyes of the customer. Developers

cannot help but recall this performance when they are back at their desks, alone and

working on a user story. For Greg, there is a big difference between

sitting down with the requirements on your desk versus actually taking a piece of the

requirement in front of everybody else. Now you have opened up the door to conversation

about it, and now you have perspectives from multiple people and not just yourself and that

piece of paper that you think that you are interpreting correctly.

As Jerry reiterated, the user stories would be ‘meaningless without that inter-

play’. The meaning of the user story comes from the interactions between those

present at the planning meetings when it is created as well as among the people

whose roles are encoded in the user story.

9.5.1.2 Scrum Board

The Scrum board is an important example, because the performative knowledge

sharing is non-verbal. Knowledge is shared by the arrangement of the index cards

and other notes and actors moving, adding, or removing index cards. It contains

212 S.E. Sim and R.E. Gallardo-Valencia

handwritten notes. Team members can see each other moving the cards. It is a

tableau of knowledge creation, like a frame in a video, and it is a static representa-

tion of a dynamic process (Fig. 9.6).

After the cards are written during the sprint planning meeting, they are placed on

the Scrum board to signify that they have officially become agreed upon units of

work. During the sprint, developers move the cards from one column to another.

Sometimes, a developer will even take a card to his desk while working on it. The

board provides valuable information about how work is progressing. ‘You can just

look at the board and know how things are going’, Leanne said. As the sprint

progresses and cards are not being moved out of the ‘to-do’ column at a good pace,

it gives the team a sense of how hard they will have to work to finish the sprint

successfully. Similarly, a growing number of red cards indicating high severity bugs

in need of attention create performative knowledge that things may be going awry.

In addition to being a representation of project status, the Scrum board can also

help team members locate knowledge. The system under development is in flux,

evolving, so the most current information is in the artefacts, which is most effec-

tively accessed via the team members. As Greg explained:

So you can look at the task and go, “well so-and-so is working out this task at the same time

or just before.” So you can have some context there where you might be able to use some of

what he did.

9.5.2 Lexical Knowledge Sharing

In the activity diagrams in the previous section, lexical sharing of requirements

knowledge occurred when the letter ‘C’ did not appear in the first column of each

row. This happened only in a small number of interactions, as depicted by edge 1.1,

Fig. 9.6 The Scrum board at Easy Retirement

9 Performative and Lexical Knowledge Sharing in Agile Requirements 213

1.8, 2.2, 2.5, 3.1, 3.4, 3.5, 3.9, 3.12, 3.13, and 3.14. In this subsection, we discuss

two sites for lexical knowledge sharing and make some comparisons to compre-

hensive requirements documents.

9.5.2.1 Fitnesse Testing Wiki

The Fitnesse testing wiki is a lexical artefact that is built collaboratively between

the programmers, testers, and the computer. The programmers provide fixtures for

performing unit tests on their code. The tests use these fixtures to write system and

acceptance tests. The results from running these tests are displayed on the Fitnesse

testing wiki.

More than a static web page, the wiki is something that all the developers

contribute to. Ryan, a programmer, explained:

We mostly write JUnits, but we also provide [Fitnesse] fixtures for the testers, when we

think that is necessary. I think that Fitnesse it is a nice testing tool because it [is] a test

harness that nonprogrammers can maintain. You can add test cases to it, have your harness

run them, without bothering other developers.

As can be seen from the quotation, Fitnesse ‘runs’ and keeps the ‘nonprogrammers’

from ‘bothering other developers’, so it is clearly an actor in Easy Retirement’s

software process.

The wiki is not merely a vessel for test cases and a display for results. Instead,

there is a back and forth regarding whether the code is ‘red’ (failing) or ‘green’

(passing) and what new test cases are added. As Carol said enthusiastically, ‘And

then we will get that thing turning green, and we will start to write more and more

test cases, and we always think of test cases’. Fitnesse also encourages dialogue

between team members. Carol again said:

They look at the Fitnesse and they will go “Wow, I did not understand how that was

supposed to work.” Or, you know, a lot of times we will sit down together, and I will say,

“Here is how I am thinking on doing the Fitnesse test. Does this makes sense and line up

with how you write code?” And again, as I said this, one advantage of the tool is that get us

to collaborate, you know, all that communication is good.

9.5.2.2 Software Release Documents

Due to the success and prominence of performative knowledge transfer at Easy

Retirement, there is a paucity of inscribed knowledge or documents. This defi-

ciency became a problem when the company was audited. Legal and regulatory

compliance are important because they are providing financial service software.

Leanne explained that an auditor had a difficult time dealing with their process,

because they did not have documents with signatures and approvals:

[They] were very upset that we did not have any signatures confirming what we were going

to make in a sprint. And as they do not really understand agile, we told them in the next

sprint, we are going to give you a release document showing that it was approved, tested on

this release date, with the build number, etc.. . .so now we have documents called Software

Release Documents.

214 S.E. Sim and R.E. Gallardo-Valencia

This new document is an example of a lexical knowledge transfer created from

undocumented knowledge in use at Easy Retirement. It was a kind of compromise

to make their process look more like those that the auditor was familiar with.

9.5.2.3 Past Experiences with Documents

Although the team did not rely on documents for knowledge sharing, they did have

experience in the past with comprehensive requirements documents. Prior to

switching to agile, Easy Retirement did rely significantly on lexical knowledge

sharing. Most participants in the study did not recall these times fondly.

Jerry, Sam, and Ryan all mentioned the prior effort that they put into creating a

comprehensive requirements document. Jerry said, ‘I would literally build the

entire application in PowerPoint and just say when you push this button, you are

supposed to go to this web page and this is what you are supposed to end with’.

Despite the effort put into the documents, the process and end results were

unsatisfactory. Jerry explained, ‘It was taking too long [to deliver] and [the software

team] would not get you what you asked for.... Whatever was written on the page

and how they [the engineers] interpreted it was what was developed’. Here, Jerry

alluded to the communications problem that occurs when using only lexical knowl-

edge sharing. The ‘page’ is the primary mode of communication, and as is reflected

in our conversations with many of our participants, the pre-agile process precluded

any communication beyond this document.

Ryan offered the following critique:

In the old days, we used to do waterfall, where we spent like 3 months just building

documents. That was not fun. And nobody would get to try out a bit of code for about 3

months. And then by the time your document was done, your document was out of date,

typically. It did not really serve its purpose because when you started doing development it

was like, you kind of have this document that kind of sort of shows what you were shooting

for, but because things had changed since you designed that, you sort of end with another

approach anyways, where you build pieces, do it piece by piece.

9.6 Discussion

In this section, we discuss the implications of lexical and performative requirement

knowledge sharing for both practitioners and researchers. Based on our field study,

we have a number of insights and observations relevant to the application of agile

and knowledge management.

9.6.1 Implications for Practitioners of Agile

Lessons can be learned from the Easy Retirement experience, whether or not one

intends to adopt agile validation or even agile itself. Some of the practices at the

field site suggest improvements to knowledge sharing that are generally applicable.

9 Performative and Lexical Knowledge Sharing in Agile Requirements 215

Encourage Knowledge Sharing and Question-Asking. Team members should be

encouraged to share knowledge and ask questions about requirements throughout the

software lifecycle. Questions can be helpful even when using the waterfall model,

especially in the early phases where detecting and fixing a misunderstood requirement

could be less expensive and time-consuming. Asking questions about requirements

will help team members gain a better understanding of high-level requirements and

share a common understanding of requirements. This common understanding is key to

have all teammembers participating in a collaborative validation where every member

can trigger validation of requirements or validate them.

Write Test Cases Even for the Obvious Success Scenarios. Agile processes

depend on continuous feedback and frequent conversations. Additionally, compre-

hensive documentation is avoided, sometimes at the risk of not having enough

documentation. As a result, there is a great deal of tacit knowledge on agile projects,

including requirements that seem obvious at the time. However, these requirements

may not be obvious to team members as the project ages or to newcomers to the

project. Consequently, tests should be written for the simple, obvious scenarios too.

Test cases are actually part of user stories and provide high-level details.

9.6.2 Implications for Knowledge Management

Our findings are relevant to knowledge management practice and research as well.

Pay Attention to Personal Knowledge Management. Team members could be

asked a question at any time, and when this happens, they need to have an answer.

Consequently, each person needs to perform their own personal knowledge man-

agement to record information and to keep track of it, so it can be found again. At

Easy Retirement, many people created documents for their own purposes that other

people generally did not look at. Sam creates a checklist for gathering user stories

and requirements. Leanne used a spreadsheet to track user stories completed in each

iteration. Carol put details about test cases on a wiki. Each of these records is highly

context specific – they are meant to be used by one person for a particular task for a

constrained time period.

The Boundary Between Performative and Lexical Requires Further Study. This
chapter draws an analytical line between performative and lexical knowledge

sharing. However, there are many questions still to be answered. Our findings

suggest that performative knowledge sharing is more effective for requirements,

but there are many open questions. The information sharing that we witnessed was

specific and tailored. Answers were given in response to a particular question posed

by a team member. The participants had already established common ground, and

each had a good sense of the other’s perspective and starting point for the question.

It is entirely possible that sensitivity to the audience and customisation of the

answer were the most significant aspects of the knowledge sharing rather than

performativity. Further study is required to tease out these differences, and here are

some possible directions. On the web, there are question-and-answer web sites,

216 S.E. Sim and R.E. Gallardo-Valencia

such as Stack Overflow1, Quora2, and ask.metafilter.com. Users post questions and

others provide answers and comments. Would this count as performative or lexical?

In another vein, would we be able to achieve the same relevance, personalisation,

and timeliness with written documentation? This is a topic of much research in

knowledge management.

9.7 Limitations

We are aware that our study has some limitations. The data reported in this chapter

is based on observations and interviews conducted in one company. Our findings

cannot be generalised statistically to other companies due to the specific settings of

Easy Retirement, the nature of the software product, and the organisational culture

of the company, among other factors.

This chapter reports on data collected and analysed using qualitative methods.

This work would be improved by future development of quantitative metrics to

supplement the qualitative ones.

Although our study has some limitations, the results obtained represent the

findings of an initial study and provide us with some empirical data on requirements

knowledge in agile. We expect that our observations will be valuable for agile

practitioners that use similar agile methods and our insights into lexical and

performative knowledge will be valuable for researchers working in requirements.

9.8 Conclusion

In this chapter, we reported on a field study of the requirements practices of an agile

software development team. Our analysis focused on requirements knowledge

sharing because we were struck by the gap between conventional, academic

concepts of requirements engineering and what we found the team was doing. In

the software engineering literature, requirements knowledge is captured in specifi-

cation documents, and requirements validation is an activity that relies on this

detailed document. Such an artefact is rare on agile projects, which do not value

comprehensive documentation. Instead, we saw a set of artefact activities that were

centred around the basic unit of work in agile, the user story. A user story consists of

a written reminder, test cases, and conversations, which means that it is both

something that is created and something that is done. At Easy Retirement, the

user story was also the basic unit for requirements. The conversations, test cases,

and written reminders served to help team members share their knowledge and

understanding of the requirements.

1 http://www.stackoverflow.com
2 http://www.quora.com

9 Performative and Lexical Knowledge Sharing in Agile Requirements 217

http://www.stackoverflow.com
http://www.quora.com

These observations led us to identify two modes of knowledge sharing: perfor-

mative and lexical. Performative knowledge sharing is acted out for others and can

include question-asking and gestures, as well as informal speeches. Lexical knowl-

edge sharing happens in inscribed texts that are passed from one to another.

Informal, ephemeral reminders are not considered lexical knowledge sharing,

because they do not travel between stakeholders and do not carry their weight of

authority. We found the software team relied almost entirely on performative

knowledge sharing; there were no official documents for the entire team other

than user story cards. Despite having few shared written documents, the team was

able to effectively develop software that satisfied customer requirements.

Returning to Socrates, he was an advocate of performative knowledge sharing

through dialogue but strongly disliked lexical knowledge sharing through written

texts. He claimed that the dialectician did not impart knowledge by giving a

prepared speech but rather he/she prepared the audience to receive knowledge

before planting a specially selected seed of knowledge that would grow into

wisdom. He had even less regard for written texts than for oration and said:

. . .you give your disciples not truth, but only the semblance of truth; they will be hearers of

many things and will have learned nothing; they will appear to be omniscient and will

generally know nothing; they will be tiresome company, having the show of wisdom

without the reality.

Although the rhetoric is strong, it is astonishingly similar to Ryan’s criticism of

comprehensive requirements documents, which came nearly 2,400 years later. In

our modern age, it is unlikely that we would want to or even be able to rid ourselves

of written documents entirely. But it is worthwhile to consider how we can bring

more dialogue or performative knowledge sharing into requirements engineering.

Acknowledgements Thanks to all the participants and supporters at Easy Retirement. This

research was possible due to their generosity in sharing their time and work with us. Thanks to

Marisa Cohn for her help in data collection and to Anahita Fazl for helping us with transcriptions.

This research was supported in part by a grant from the Agile Alliance Academic Research

Program.

References

1. Astels D (2003) Test-driven development: a practical guide. Prentice Hall PTR, London

2. Beck K (2000) Extreme programming explained: embrace change. Addison Wesley, Reading

3. Chandler D (2007) Semiotics: the basics. Taylor & Francis, New York

4. Cohn M (2004) User stories applied: for agile software development. Addison-Wesley Profes-

sional, Boston

5. Fowler M, Highsmith J (2001) The agile manifesto updation: Dr. Dobbs, 1 Aug 2001, http://

www.drdobbs.com/the-agile-manifesto/184414755

6. Goffman E (2002) The presentation of self in everyday life. Doubleday, Garden City

7. Larman C, Basili VR (2003) Iterative and incremental developments: a brief history. IEEE

Comput 36(6):47–56

218 S.E. Sim and R.E. Gallardo-Valencia

http://www.drdobbs.com/the-agile-manifesto/184414755
http://www.drdobbs.com/the-agile-manifesto/184414755

8. Leuf B, Cunningham W (2001) The wiki way: quick collaboration on the web. Book, whole.

Addison-Wesley Professional, Boston

9. Lofland J, Snow DA, Anderson L, Lofland LH (2006) Analyzing social settings: a guide to

qualitative observation and analysis. Wadsworth/Thomson Learning, Belmont

10. Madison DS, Hamera J (2006) The Sage handbook of performance studies. Sage, Thousand

Oaks

11. Mugridge R, Cunningham W (2005) Fit for developing software: framework for integrated

tests. Prentice Hall, Upper Saddle River

12. Plato (2008) Phaedrus. Forgotten Books, Charleston

13. Schwaber K (2004) Agile project management with scrum. Microsoft Press, Redmond

9 Performative and Lexical Knowledge Sharing in Agile Requirements 219

Chapter 10

Using Web 2.0 for Stakeholder Analysis:

StakeSource and Its Application in Ten

Industrial Projects

S.L. Lim, D. Damian, F. Ishikawa, and A. Finkelstein

Abstract Software projects often fail because stakeholders are omitted. Existing

stakeholder analysis methods rely on practitioners to manually identify and

prioritise stakeholders, which is time consuming, especially in large projects with

many stakeholders. This chapter investigates the use of Web 2.0 technologies, such

as crowdsourcing and social networking, to identify and prioritise stakeholders.

The investigation is based on the application of StakeSource in practice.

StakeSource is a Web 2.0 tool that uses social networking and crowdsourcing

techniques to identify and prioritise stakeholders. This chapter describes our

experiences of and lessons learnt from applying StakeSource in ten real-world

projects from six organisations in UK, Japan, Australia, and Canada, involving

more than 600 stakeholders. We find that StakeSource can yield significant benefits,

but its effectiveness depends on the stakeholders’ incentives to share information.

In some projects, StakeSource elicited valuable stakeholder information; in other

projects, the stakeholder responses were insufficient to add value. We conclude

with a description of factors that influence stakeholder engagement via the use of

Web 2.0 tools such as StakeSource. If collaborative tools such as StakeSource were

to find a place in requirements engineering, we would need to understand what

motivates stakeholders to contribute.

S.L. Lim (*) • A. Finkelstein

University College London, London, United Kingdom

e-mail: s.lim@cs.ucl.ac.uk; a.finkelstein@cs.ucl.ac.uk

D. Damian

University of Victoria, Victoria, BC, Canada

e-mail: danielad@cs.uvic.ca

F. Ishikawa

National Institute of Informatics, Tokyo, Japan

e-mail: f-ishikawa@nii.ac.jp

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_10, # Springer-Verlag Berlin Heidelberg 2013

221

mailto:s.lim@cs.ucl.ac.uk
mailto:a.finkelstein@cs.ucl.ac.uk
mailto:danielad@cs.uvic.ca
mailto:f-ishikawa@nii.ac.jp

10.1 Introduction

Stakeholder analysis, which involves the identification and prioritisation of

stakeholders, is a critical step in requirements elicitation. Stakeholders are

individuals or groups who can influence or be influenced by the software project [1].

These people include customers who pay for the software system, users who

interact with the system to get their work done, developers who build and maintain

the system, and legislators who impose rules on the development and operation of

the system [1, 2]. These people have diverse backgrounds, expertise, interests, and

personal goals [3]. Projects with higher stakeholder engagement tend to have higher

success [4–6], but omitting stakeholders is a common problem in software devel-

opment [7]. As stakeholders are the source of requirements, they have to be

identified before requirements can be elicited [1, 8]. As a result, missing

stakeholders gives rise to missing requirements, causing projects to fail [9, 10].

This work investigates the application of Web 2.0 technologies for stakeholder

analysis using StakeSource, a Web 2.0 stakeholder analysis tool developed in

previous work [11]. StakeSource uses several Web 2.0 technologies including

crowdsourcing, social networking, and tagging and aims at engaging a large set

of stakeholders [11]. StakeSource elicits information about other stakeholders from

the stakeholders without requiring the practitioner1 to be present [11]. Then, it

builds a social network of stakeholders and prioritises the stakeholders using

the elicited information. The stakeholders can provide information anytime and

anywhere, and the information they provide can reduce missing requirements and

improve the quality of the elicited requirements [9, 10]. As such, StakeSource has

the potential to effectively manage stakeholder information in projects with a large

number of stakeholders, even when the stakeholders are in different locations

[12–14]. In addition, it is one of the first Web 2.0 requirements elicitation tool to

be widely available to practitioners, providing valuable data for our study. It is

anticipated that Web 2.0 technologies will be increasingly used in requirements

elicitation, and thus empirical studies of such tools in real projects are needed to

assess their viability [15].

In this chapter we describe the application of StakeSource in ten real-world

projects. These projects are based in six organisations in United Kingdom, Japan,

Australia, and Canada, involving more than 600 stakeholders. The number of

stakeholders per project ranges from 10 to more than 200. The effectiveness of

StakeSource in engaging with stakeholders is investigated in terms of response rate,

timing of response, quantity, and quality of the response. The practitioners and

stakeholders are interviewed, and data is analysed to reveal the factors that influ-

ence stakeholder engagement using StakeSource.

1 In this chapter, practitioners refer to the requirements engineers, project managers, system

analysts, business analysts or developers who are responsible for stakeholder analysis in their

projects.

222 S.L. Lim et al.

The evaluation of StakeSource in real projects is a significant contribution to

software engineering research. Web 2.0 applications are difficult to evaluate due

to their collaborative nature [16]. Despite the widespread use of Web 2.0 in

software development, there are few empirical studies to investigate the adoption

and implications of their use [15]. Our lessons learnt and experiences can benefit

practitioners and researchers by highlighting the benefits and limitations associated

with using Web 2.0 technologies to support software engineering activities [15].

For example, in StakeSource, the use of Web 2.0 technologies enables stakeholders

to provide information without the presence of the practitioner. Nevertheless, the

participation of many stakeholders, such as users and legislators, is largely volun-

tary. Stakeholders with low incentives may not respond, fail to provide a timely

response, or provide a low quality response [17].

The rest of this chapter is organised as follows. Section 10.2 describes existing

stakeholder analysis methods and tools. Section 10.3 describes StakeSource and

Sect. 10.4 introduces the projects and our methodology. Section 10.5 describes our

experiences and lessons learnt, Sect. 10.6 discusses threats to validity and Sect. 10.7

concludes.

10.2 Background

Existing stakeholder analysis methods rely on the practitioners to manually identify

stakeholders. For example, in the semi-structured approaches that form the basis of

existing practices, the practitioner manually identifies stakeholders by considering

broad stakeholder categories, such as stakeholders who interact directly with the

system and stakeholders who have interests in the project [7]. In the interview
method proposed by Pouloudi and Whitley [18], the practitioner manually identifies

generic stakeholder roles and stakeholders, then interviews each stakeholder to

learn about other stakeholders or stakeholder roles, and repeats the interviews for

each newly identified stakeholders. In the search method proposed by Sharp et al.

[2], the practitioner manually identifies initial stakeholders from project documen-

tation or interviews. Then for each stakeholder, the practitioner identifies other

stakeholders who interact with the stakeholder and repeats this process for each

newly identified stakeholder.

Traditional stakeholder analysis tools hold and process the data provided by

the practitioners but provide little support in the actual identification and

prioritisation of stakeholders. The practitioners manually elicit information from

the stakeholders via face-to-face meetings, workshops, or focus groups and then

populate the information in the tools [1, 7, 19]. The main purpose of the tools is to

hold information. Except for the project team and possibly the key clients, few

stakeholders interact directly with these tools. For example, in Stakeholder Analy-

sis Matrix,2 the practitioner manually compiles a list of stakeholders and plots them

2 http://www.mindtools.com/pages/article/newPPM_07.htm.

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 223

http://www.mindtools.com/pages/article/newPPM_07.htm

against two variables on a matrix, such as power and interest or importance and

influence. The Onion Model developed by Alexander [8] and the Volere Stake-

holder Analysis Template developed by Alexander and Robertson [20] consist of a

set of generic stakeholder roles. The practitioner refers to the generic roles to

manually derive specific roles for the project. Stakeholder Circle3 is a software

package that enables practitioner to enter the stakeholders’ information after they

have been manually identified, and the tool generates reports based on the informa-

tion provided.

Software projects are becoming more global and involving more stakeholders.

As a result, Web 2.0 tools are increasingly used to augment existing development

tools, with the aim to support collaboration and increase awareness among

stakeholders. Using Web 2.0 tools, emerging forms of software development,

such as distributed development, can benefit from access to a large pool of

stakeholders [15]. In our previous work, we have developed StakeNet, a method

that uses social networks for stakeholder analysis in large projects [9, 10].

In StakeNet, the practitioner prepares an initial list of stakeholders. Then, the

practitioner manually identifies stakeholders by asking the initial stakeholders to

recommend other stakeholders, builds a social network of stakeholders from the

recommendations, and prioritises the stakeholders using social network measures.

StakeNet was applied in a substantial real-world project and shown to identify a

comprehensive set of stakeholders and prioritise them accurately [9, 10]. Neverthe-

less, the method is time consuming. The practitioner has to approach each stake-

holder to elicit recommendations, convert the recommendations into the

appropriate format for the social network measures, compute the stakeholders’

priorities using social network measures, and convert the output from the social

network measures into a prioritised list of stakeholders [9]. Changes to the

recommendations (additions, modifications, removal) require the practitioner to

repeat the process [9]. In the previous application of StakeNet [10], more than

150 person hours was spent manually eliciting and processing the recommendations

from 68 stakeholders.

10.3 StakeSource

StakeSource is a Web 2.0 tool developed to automate the StakeNet method [9, 11].

To use StakeSource, the practitioner provides StakeSource with the initial

stakeholders. StakeSource automatically contacts the stakeholders and asks them to

recommend other stakeholders via a web interface. Then, StakeSource converts the

recommendations into the appropriate format, applies the social network measures,

visualises the network of stakeholders, and produces a prioritised list of stakeholders.

The remainder of this section describes the features of StakeSource.4

3 http://www.stakeholder-management.com/.
4 StakeSource tool demo is available at http://vimeo.com/18250588. For further details about

StakeSource, refer to the previous work [9, 11].

224 S.L. Lim et al.

http://www.stakeholder-management.com/
http://vimeo.com/18250588

StakeSource is a web-based application. The practitioners access StakeSource

via a web interface and create their project by entering project details such as name,

description, and scope definition. They also provide an initial set of stakeholders

from the categories of users, developers, legislators, and decision-makers. Each

stakeholder in this initial list has the following information: name, the role in the

project, and email address. The practitioners can also customise the email template

that StakeSource uses to contact stakeholders.

StakeSource contacts the initial stakeholders via email. The email provides a

link that brings the stakeholders to the web-based form that enables them to

recommend other stakeholders (Fig. 10.1). The recommendation form consists of

the project name and scope description as provided by the practitioners. Each

recommendation consists of the stakeholder’s name, their role in the project, their

influence in the project (from low to high), and their email address. If a stakeholder

is aware of a role but is not aware of the individual stakeholders, he can recommend

only the role. Stakeholders can also comment on the stakeholders they recommend.

Public comments can be viewed by anyone who can access the stakeholder analysis

user interface; private comments are only available to the practitioners.

Each time a new stakeholder is identified, StakeSource contacts the stakeholder

to invite them to recommend other stakeholders. This technique is also known as the

Fig. 10.1 StakeSource web-based recommendation form

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 225

snowballing technique [21], where the set of stakeholders build up like a snowball

rolled down a hill. People who are recommended may be “non-stakeholders” or

stakeholders who lack time or interest to be involved in the project. StakeSource

provides an option for these people to unsubscribe from the project and nominate

other stakeholders.

Once the recommendations are collected from the stakeholders, StakeSource

provides the following support for stakeholder analysis via a web interface. This

interface is accessible to the practitioners as well as stakeholders who have made

recommendations.

Feature 1: Identify and prioritise stakeholders. StakeSource compiles the initial

and recommended stakeholders to form the list of stakeholders in the project.

To prioritise stakeholders, StakeSource builds a social network of stakeholders

with the stakeholders as nodes and their recommendations as directed links: S1
links to S2 if S1 believes S2 to be a stakeholder. Then, it prioritises the stakeholders
using various social network measures. For example, in-degree centrality prioritises

stakeholders who receive the most recommendations, out-degree centrality

prioritises stakeholders who make the most recommendations, and betweenness

centrality prioritises stakeholders who are widely recommended by disparate

groups of stakeholders [11]. Each time a measure is selected, StakeSource applies

the measure and displays the prioritised list of stakeholders and their roles in the

stakeholder analysis user interface (Fig. 10.2 Panel A). To improve the accuracy of

prioritisation, stakeholders are unaware of existing recommendations when they

recommend other stakeholders.

Feature 2: Identify stakeholders with potential problems. StakeSource identifies
potential involvement or communication problems a stakeholder may have based on

the stakeholder’s position on the social network (Fig 10.2 Panel B) [11]. When one

of the problems is selected, StakeSource highlights stakeholders in the network who

may potentially have the problem during the project. StakeSource provides a slider

to change the sensitivity of problem detection. This helps the practitioners to decide

the right level of problem detection for the project, which is a trade-off between the

risk of the problem affecting the project and the cost to rectify the problem [11].

Feature 3: Display stakeholder social network and details. The stakeholders’

recommendations are visualised as a social network (Fig 10.2 Panel C). StakeSource

enables practitioners and stakeholders to study a stakeholder’s position in the social

network, the stakeholder’s details, priority, and the stakeholders they recommend.

For each stakeholder, StakeSource displays their name, role, photo, the scope items

they are recommended for, the stakeholders who recommended them, the

stakeholders they recommended, and comments from other stakeholders [11].

10.4 Using StakeSource in Practice

Industrial practitioners were made aware of StakeSource through the demonstration of

the tool at seminars and conferences. A StakeSource website (www.stakesource.co.uk)

was set up. Practitioners who were interested to use the tool could request an account

226 S.L. Lim et al.

http://www.stakesource.co.uk

from the website or contact the authors. The majority of the practitioners who adopted

StakeSource did so after the toolwas demonstrated to them in seminars. Others adopted

StakeSource throughword ofmouth. For example, two projects used StakeSource after

being recommended by higher-level management, and another two projects used it

after their colleagues (practitioners or stakeholders) who have used the tool in other

projects recommended the tool to them.

10.4.1 Projects

Table 10.1 summarises the projects included in the study. In addition to the ten real-

world projects, a student project was included to investigate the differences

between industrial and student projects. These projects have completed their use

of StakeSource in the 1-year period after the tool was developed (December 2009 to

December 2010). In these projects, the project details were entered, initial

stakeholders were provided, and invitation emails were sent to stakeholders.

Small projects have about 10 stakeholders; larger projects have more than 70

stakeholder groups and 200 stakeholders. For reasons of privacy, the projects,

organisations, practitioners, and stakeholders are anonymised in this chapter.

The project characteristics are summarised as follows.

• Projects P1 to P10 were industrial projects led by practitioners. P11 was a

Masters project led by students.

Fig. 10.2 The three panels (A, B, and C) of the StakeSource web-based user interface (refer to

[11] for enlarged figure)

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 227

• All projects were conducted in English except for P8. In P8, the project descrip-

tion and invitation email were worded in Japanese in StakeSource, and

stakeholders were able to provide recommendations in either English or

Japanese.

• All the projects are software projects except the following. P2, P3, and P4 were

policy-related projects. P5 was a project to investigate the adequacy of an

existing role in the organisation. P8 is a software project but a major part of

the project included the design and configuration of hardware devices.

• Most projects used StakeSource to find stakeholders, but P2, P3, and P6 used it

to find experts. In these projects, the recommendation form comes with an extra

field for the experts to enter their own expertise as tags. These projects were

included in our study to investigate if stakeholders are motivated to provide

recommendations when it conflicts with their own benefits. In P5 and P8,

Table 10.1 Projects (P for project, O for organisation, D for department)

ID Short description

Application

area Identifying Organisation Country Size

P1 Develop an enterprise software

system

Software Stakeholders O1.D1 UK L

P2 Identify experts in health

problems in urban

environments

Non-

software

Experts O1.D2 UK S

P3 Same project as P2 with

random initial stakeholders

Non-

software

Experts O1.D2 UK S

P4 Examine and improve

organisational structures,

processes, people practices,

culture, and values and

change management

Non-

software

Stakeholders O1.D1 UK L

P5 Investigate the adequacy of an

existing role in the

organisation and create a

new role if necessary

Non-

software

Stakeholders O2 UK M

P6 Identify people who hold

information that can help

new employees become

productive members of the

organisation

Software Experts O3 UK S

P7 Develop an enterprise software

system

Software Stakeholders O1.D1 UK S

P8 Develop a cloud computing

facility

Software Stakeholders O4 Japan M

P9 Identify potential investors and

users of an innovative

software application

Software Stakeholders O5 Australia S

P10 Increase awareness about an

existing access grid system

Software Stakeholders O6 Canada M

P11 Develop a Web 2.0 system Software Stakeholders Student UK S

228 S.L. Lim et al.

stakeholders were already identified, StakeSource was used to validate the list of

stakeholders and uncover missing stakeholders.

• In all projects, the stakeholders were unaware that their responses were being

studied, in order to study their natural response or lack of response. One

exception was P8, where the email to the stakeholders stated that the tool was

being studied as part of a research project, and the data provided by the

stakeholders will be analysed empirically for research purposes and used to

improve the software system.

• All projects were set up by the practitioners themselves, except for P11 and P8.

P11 was a student project set up by the students; P8 was set up by the second

author on behalf of the project manager. In all projects, the first author provided

technical support.

• P3 was the same project as P2, but instead of the initial set of stakeholders

determined by the practitioner, P3 used the same number of initial stakeholders

but randomly selected from the organisation people directory. This project was

created to investigate if “non-stakeholders” were equally motivated to engage in

the project by recommending stakeholders.

• All the projects were managed by different practitioners, except P2 and P3

(see previous point). P1 and P4 had different project managers but was set up

by the same practitioner whose role in both projects was the communications

manager.

10.4.2 Methodology

We interviewed the practitioners and stakeholders and analysed the data captured

by StakeSource for each project. A total of eight practitioners from the real-world

projects were interviewed. The practitioner for P6 was unavailable for the inter-

view; P2 and P3 shared the same practitioner. The following questions guided the

report of our experiences and lessons learnt:

Q1. Were stakeholders motivated to respond and how timely were their responses?

Q2. What were the stakeholders’ responses?

Q3. How useful were the responses to the project?

Q4. What were the factors that influence the stakeholders’ responses?

To analyse the stakeholder data elicited by StakeSource, the StakeSource data-

base was accessed and the following information was extracted for each project.

• Initial stakeholders

• Customised email content

• Reminder email content (if available)

• Stakeholders who responded

• Stakeholders who provided recommendations

• Stakeholders who unsubscribed and rationale behind it (if available)

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 229

• Recommendations and date of recommendations

• Public and private notes

• Expertise description (if available)

The practitioners responsible for setting up their projects in StakeSource were

invited for a face-to-face interview. The interviews were semi-structured, allowing

the questions to be modified and new questions to be brought up depending on their

response [22]. Some of the questions include:

• What is your previous experience in using stakeholder analysis tools?

• How were the initial stakeholders identified?

• How useful are the stakeholders identified by StakeSource?

• How do you use StakeSource’s output?

• What is the stakeholders’ contribution to the project?

• Who should not be on the stakeholder list?

• Who are unexpected stakeholders?

• How useful are the descriptions about stakeholders?

• How do you use the tool? Network view? List view?

• What is the progress of the project after the tool is used? Did you contact the

stakeholders identified by the tool?

• What do you think about the response rate? Lower than expected, ok, more than

expected? Why?

• Which part of the tool is most useful? Which is the least useful? Do you have any

suggestions for improving the tool?

For P1, the first author also attended the board meeting where the practitioners

reported their use of StakeSource to their directors. In addition, the practitioner for

P2 and P3 allowed the stakeholders to be interviewed. In those projects, phone

interviews were conducted with stakeholders who did not respond. The questions

include:

• Did you receive an email about the project?

• If so, why didn’t you respond? Is it because the tool is difficult to use?

10.5 Experiences with StakeSource and Lessons Learnt

10.5.1 Timeliness and Motivation to Respond

In projects where stakeholders provided recommendations, StakeSource was able

to build the social network and produce a prioritised list of stakeholders. However,

in some projects, there were little incentives for stakeholders to recommend other

stakeholders. In these projects, StakeSource failed to elicit information from the

stakeholders.

230 S.L. Lim et al.

More than 600 stakeholders were identified, but only about 150 responded,

giving an overall response rate of 25 %. The response rate for each project was

calculated as the number of stakeholders who responded over the total number of

stakeholders identified. According to Table 10.2, the response rate for all the

projects in this study ranged from 0 % to 39 %, which was similar to the online

survey response rate by Deutskens et al.5 [23]. The response rate was consistent

with the results from survey research: face-to-face and phone interviews have about

40 percentage points higher response rate than online surveys [24]. This indicates a

trade-off between manual and automated approaches for eliciting information from

stakeholders. Manual approaches may be more time consuming but are likely to

elicit more comprehensive information as compared to web-based approaches.

In this study, only two projects had higher response rate than that of online

surveys, i.e., P11 (39 %) and P8 (35 %). P11 was a student project, and the high

response rate may be due to the motivation to do well in their requirements

engineering course. In P8, the stakeholders were aware they were being studied,

which may have led to a higher response rate. In addition, many of the stakeholders

in P8 are researchers or research-oriented students, so they may have been inter-

ested to participate in experiments.

Four projects have response rates of less than 10 %. Among these projects, P4

and P6 had no response. Nevertheless, P6 started with only 2–3 initial stakeholders,

which is the main reason for no responses, as 2–3 stakeholders are too few for an

effective snowballing process. The practitioner for P4 reported that the project

manager decided against using StakeSource as the use of new technologies might

be risky for the project. Nevertheless, the same practitioner continued to use

StakeSource for P1 and recommended StakeSource to practitioner of P7. P3 and

P10 had a very low response rate of 3 %. P3 was the project with a random set of

initial stakeholders. Interviews with the stakeholders revealed that they ignored or

deleted the invitation emails, as it was not relevant to them. The purpose of P10 was

to ask existing users of an access grid system to recommend other users of an access

grid system. It may be easier for the users to directly ask their collaborators to adopt

the access grid system, rather than to recommend them using StakeSource.

In some projects, the stakeholders were already communicating before

StakeSource was used. For example, in P9, three out of nine initial stakeholders

provided recommendations via email or face-to-face communication before

StakeSource was used. As such, StakeSource only managed to engage two other

initial stakeholders. Most of the stakeholders who responded did so within the first

week receiving the email. For P8, all the stakeholders who responded did so in

2 days, and it also has a very high response rate. Interviews revealed that in P8,

employees tend to respond to email within a short timeframe. 10 projects were

completed within 2 weeks. Only 1 project was completed in 20 days. The delay was

5 In Deutskens et al.’s study of the response rate of online surveys with different configurations

(e.g., short vs. long, donation to charity vs. lottery incentive, early vs. late reminder), they found

that the response rate ranged from 9.4 % to 31.4 %.

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 231

T
a
b
le

1
0
.2

S
u
m
m
ar
y
o
f
d
at
a
co
ll
ec
te
d
b
y
S
ta
k
eS
o
u
rc
e
an
d
in

in
te
rv
ie
w
s

P
1

P
2

P
3

P
4
a

P
5

P
6
b

P
7

P
8

P
9

P
1
0

P
1
1

N
o
.
o
f
in
it
ia
l
st
ak
eh
o
ld
er
s

6
4

3
0

3
0

3
1
3

2
3
2

1
2

9
3
0

6

T
o
ta
l
n
o
.
o
f
st
ak
eh
o
ld
er
s
id
en
ti
fi
ed

c
1
9
3

3
9

3
1

3
3
5

2
8
1

2
4

1
1

3
1

1
4

N
o
.
o
f
st
ak
eh
o
ld
er
s
w
h
o
re
sp
o
n
d
ed

3
7

2
5

6
0

1
0

0
2
0

8
2

1
7

N
o
.
o
f
st
ak
eh
o
ld
er
s
w
h
o
m
ad
e
re
co
m
m
en
d
at
io
n
s

3
2

1
0

1
0

1
0

0
2
0

8
2

1
7

N
o
.
o
f
ex
p
er
ts
w
h
o
p
ro
v
id
ed

ex
p
er
ti
se

N
/A

2
2

4
N
/A

N
/A

0
N
/A

N
/A

N
/A

N
/A

N
/A

N
o
.
o
f
p
eo
p
le

u
n
su
b
sc
ri
b
ed

7
0

1
0

0
0

0
0

0
0

0

A
v
g
.
n
o
.
o
f
re
co
m
m
en
d
at
io
n
s
p
er

st
ak
eh
o
ld
er

w
h
o
re
co
m
m
en
d
ed

5
.3
4

1
.3
0

1
.0
0

0
.0
0

3
.8
0

0
.0
0

6
.1
0

7
.1
3

1
.0
0

1
4
.7
1

N
o
.
o
f
em

ai
ls
b
o
u
n
ce
d

0
0

0
0

1
0

6
1

0
0

0

R
es
p
o
n
se

ra
te

(%
)

1
9

2
6

3
0

2
9

0
2
7

3
5

1
8

3
3
9

F
ac
to
r
in
cr
ea
se

in
st
ak
eh
o
ld
er
s
(t
o
ta
l
–
in
it
ia
l)
/t
o
ta
l

2
.0
2

0
.3
0

0
.0
3

0
.0
0

1
.6
9

0
.0
0

1
.5
3

1
.0
0

0
.2
2

0
.0
3

1
.3
3

N
o
.
o
f
sn
o
w
b
al
li
n
g
ro
u
n
d
s
(r
o
u
n
d
1
is
in
it
ia
l
se
ed
)

4
3

2
1

3
1

4
3

2
1

3

R
es
p
o
n
se
s
co
m
p
le
te
d
in

(d
ay
s)

1
5

1
5

1
5

N
/A

1
0

N
/A

2
0

2
4

7
4

D
id

S
ta
k
eS
o
u
rc
e
id
en
ti
fy

st
ak
eh
o
ld
er
s
o
r
st
ak
eh
o
ld
er

ro
le
s
th
at

p
ra
ct
it
io
n
er
s
w
er
e

u
n
aw

ar
e
o
f?

Y
es

Y
es

N
o

N
/A

Y
es

N
o

Y
es

Y
es

Y
es

Y
es

Y
es

W
as

S
ta
k
eS
o
u
rc
e
u
se
fu
l
to

th
e
p
ro
je
ct
?

Y
es

N
o
t
v
er
y

N
o

N
/A

Y
es

N
/A

Y
es

Y
es

Y
es

N
o
t
v
er
y

Y
es

M
en
ti
o
n
ed

u
si
n
g
S
ta
k
eS
o
u
rc
e
in

fu
tu
re

p
ro
je
ct
?

Y
es

N
o

N
o

Y
es

Y
es

N
/A

Y
es

Y
es

Y
es

Y
es

Y
es

R
ec
o
m
m
en
d
ed

S
ta
k
eS
o
u
rc
e
to

o
th
er

p
ra
ct
it
io
n
er
s?

Y
es

N
o

N
o

Y
es

Y
es

N
/A

N
o

N
o

Y
es

Y
es

N
o

a
T
h
e
p
ro
je
ct

m
an
ag
er

d
ec
id
ed

to
st
o
p
u
si
n
g
S
ta
k
eS
o
u
rc
e
b
ef
o
re

th
e
sn
o
w
b
al
li
n
g
p
ro
ce
ss

st
ar
te
d

b
T
h
e
p
ra
ct
it
io
n
er

w
as

n
o
t
in
te
rv
ie
w
ed

d
u
e
to

u
n
av
ai
la
b
il
it
y

c
A
st
ak
eh
o
ld
er

co
n
si
st
s
o
f
a
n
am

e
an
d
a
ro
le
;
an
d
if
th
e
n
am

e
is
n
o
t
p
ro
v
id
ed
,
o
n
ly

th
e
ro
le

232 S.L. Lim et al.

caused by technical issues: the StakeSource server was down and stakeholders were

unable to make recommendations. The recommendations restarted when the issue

was fixed and an email reminder was sent.

10.5.2 Types of Stakeholder Response

The responses from stakeholders consisted of recommendations about other

stakeholders with optional comments about the stakeholders and unsubscription

with optional rationale for unsubscription. Through the use of StakeSource

technologies, the stakeholders were able to voice their opinions early in the project.

As a result, the projects uncovered missing stakeholders, negative stakeholders

(stakeholders who are unfriendly toward the product being developed), and

stakeholders who lack time or interest to be involved.

Among the stakeholders who responded, 92 % of them provided recom-

mendations, and the average number of recommendations ranges between 1 and 7

(Table 10.2). In the majority of the projects, the stakeholders were able to identify

other stakeholders that the practitioners were unaware of. The number of new

stakeholders identified also depends on the initial list. For P2, only a few new

stakeholders were identified. However, this was because the project manager had

used an open call to find the initial stakeholders by sending emails to mailing lists.

Most recommendations were valid. Errors were caused by misunderstanding,

rather than by malicious intent. For example, a stakeholder entered the

stakeholder’s surname rather than their role in the Role field for all her

recommendations. A few emails bounced (Table 10.2) due to the stakeholders

entering incorrect email addresses. Some stakeholders wrote in the public notes

field the phrase “visible to everyone,” as they misunderstood that doing so would

make their recommendations public.

Only 8 % of the responses were unsubscription. Unsubscription responses were

informative, especially when stakeholders provided the reason for unsubscription.

These responses uncovered negative stakeholders and stakeholders who lacked

time to be involved in the project. For example, the objective of P1 was to replace

the existing paper-based system with a software system. A stakeholder

unsubscribed to the project with the reason “I find that the ‘paper’ system as it is,

works extremely well. I think that online applications will be more time- consuming

than the present system. I feel that I want to avoid anything which suggests sitting at

a computer for even longer than I do already.” Another stakeholder unsubscribed

and provided the reason “Sorry but I don’t think I can spare the time (to attend

project meetings).” Uncovering negative and unavailable stakeholders early in the

project can help the practitioners mitigate the risks because they can monitor

negative stakeholders and find other available stakeholders.

Some unsubscriptions revealed “non-stakeholders” or stakeholders who have

changed their roles. These people nominated other more suitable stakeholders in

their unsubscription. For example, a non-stakeholder wrote “I am no longer the

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 233

[role] of [department name]. Please could you send your invitation to [name]

[email] and [name] [email].” Another non-stakeholder wrote, “I don’t have any

involvement with the xxx process. This is dealt with by [name].”

Stakeholders’ comments about other stakeholders provided the practitioners

with the rationale of their recommendation and additional information about the

stakeholders. For example, the following comments described the stakeholder’s

expertise, “[Name] has been contributing to [another project] on children,

disabilities and well-being in informal settlements in India,” and “[Name]’s influ-

ence is very strong in assisting with the more complex proposals.” Another

comment revealed suitable representatives of a stakeholder group, “As the central

contact point for [group], [name] could be the point of information.” Private

comments were informative but generally less positive. For example, “In our case

this role is not very effective. . .However, if the role were more pro-active. . .it
might form the basis of a more comprehensive liaison service. . .”

10.5.3 Value of Responses to Project

The study of StakeSource in real-world projects reveals benefits, limitations, and

risks as follows.

Benefits. In general, in projects with more than 10 % response rate, the

practitioners found the use of StakeSource to benefit their project. An indicative

factor of success is continued use of the list of stakeholders identified by

StakeSource. For example, P1 and P5 used the stakeholder list as a “contact list”

to organise future workshops and meetings with the stakeholders. Additional

features to print the network diagram and export stakeholder list were requested

by three projects for visualisation and reporting purposes.

The practitioners found the network diagram and the stakeholder list to be useful.

According to the practitioners for P1, “StakeSource identified some unexpected

stakeholders, and the stakeholder network highlighted the need for communication

among clusters of stakeholders for the project to be successful.” According to the

practitioner for P2, “The experts identified by StakeSource were already involved in

the project or haven’t been involved anyway. One exception was [name]. He came to

meetings after StakeSource identified him. And since then, he has been absolutely

invaluable.” Practitioner for P7 also compared the importance of stakeholders

reported by StakeSource with his own perception. The ratings that did not agree

were double-checked, and the comparison helped the practitioner view the priorities

from the stakeholders’ perspective. For P8, StakeSource identified relationships

between stakeholders, which the practitioner were unaware of. According to the

practitioner, “In a sense it makes us aware of relationships we don’t recognise.

However, it is not good to accept the results as they are, because some indirect

relationships are presented as direct relationships, and some present relationships are

lacking. For example, there is no link between NASA and the person who is

responsible for collaboration with NASA.” The practitioner continued to use

234 S.L. Lim et al.

StakeSource in the project. He explains, “if you accumulate information, trustful-

ness of the relationships will be improved. Then it is useful to catch the overall

picture of the project.”

Interviews revealed that the practitioners were keen to use StakeSource, as the

tool was simple to use requiring little time and training from both the practitioners

and stakeholders. In addition, the practitioners understand how and why the social

networking concept works in the context. Most projects took 2 h or less for

the practitioners to set up on StakeSource. The practitioner for P1 regarded the

automated elicitation of stakeholder information as a significant timesaving and

reported that she had, in a previous project, spent weeks to manually compile a list

of stakeholders of a similar size. According to four practitioners, the majority of

time was spent customising the email, as the content of the email is crucial to

encourage the stakeholders’ response.

The usefulness of StakeSource was also reflected in the practitioners’ intention

of using the tool in future projects and their recommendation of the tool to their

colleagues. In the interviews, eight practitioners mentioned the use of StakeSource

for future projects, and two projects were already in progress. In addition, 5

practitioners recommended StakeSource to their colleagues (Table 10.2). Some

recommendations are learnt from the interviews. For example, a practitioner men-

tioned, “I showed this tool to xxx, his xxx project starts soon”, another asked, “How

long will this tool be available for? My managers may want to use it.” Others are

learnt from enquires by the practitioner. For example, enquiries from a defence

organisation revealed that practitioner in P9 recommended the tool to them.

Finally, as reported in the previous section, StakeSource enables stakeholders to

voice their opinions early in the project. As a result, it detected non-stakeholders

and positive and negative stakeholders at the start of the project.

Limitations. As StakeSource automatically elicits information from

stakeholders, its use is limited in projects where stakeholders are not incentivised

to contribute [16]. Although manual approaches are time consuming for the

practitioners, the presence of the practitioners can encourage reluctant stakeholders

to provide information [10]. In addition, collaborative software applications such as

StakeSource provide different levels of benefit to different stakeholders [16]; hence,

those who do not see the benefit in contributing would be less inclined to contribute,

especially when the elicitation is done by an automated tool.

The usefulness of StakeSource’s output was dependent on number of stakeholder

responses. In projects with higher response rate and higher number of

recommendations per stakeholder, StakeSource’s output was deemed to be more

useful to the practitioners. The practitioners in projects with less than 10 % response

rate were disappointed with the information elicited by StakeSource. As commented

by the practitioner in P3 with only 1 recommendation, “it (StakeSource) didn’t do

much, did it?”

A practitioner posed a broader concern. If an organisation uses StakeSource for

many projects, some individuals may receive an increasing number of emails asking

for recommendations in various projects, which will start to take time to complete.

Eventually, these individuals may start to ignore recommendation requests.

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 235

Risks. The automatic contact of stakeholders was not always favourable to the

practitioners. In addition, although StakeSource is open and inclusive, many

projects have private information that should not be shared with all stakeholders.

In one of the projects, stakeholders recommended potential vendors that were

bidding for the project. As the vendors were recommended, StakeSource automati-

cally invited them to make recommendations and provided them with access to all

the stakeholders in the network. This threatened to lead to an unfair bidding

process. The practitioners reported, “We deleted potential vendors from the list –

they should not be able to see internal stakeholder information. Can we ‘approve’

the stakeholders before they receive the invitation?” Other practitioners who

expressed interest in StakeSource highlighted similar privacy issues. For example,

a practitioner from the defence domain requested a feature to restrain StakeSource

to only send emails within their organisation. Another requested for StakeSource to

allow private objectives with a classified list of stakeholders and information that

are only available to certain stakeholders.

According to a practitioner, mistakes are more open using the crowdsourcing

technique in StakeSource. If the project is not interesting and there is no response,

everyone knows about it. The same goes for mistakes in the invitation email. The

practitioner was referring to an incident where a bug in StakeSource caused it to

send garble html emails to the stakeholders. In addition, if practitioners continu-

ously ignore the information provided by stakeholders, then the stakeholders may

stop contributing in future projects.

10.5.4 Factors that Influence Stakeholder Engagement

The application of StakeSource to multiple projects highlighted the following

factors that influence the stakeholders’ engagement. (Some factors are common

in requirements elicitation regardless of the technology.) We conclude our discus-

sion with a description of these factors.

Factor 1. Number of stakeholders and location. The automated crowdsourcing

in StakeSource works best when there are many users. If there are only a few

stakeholders and they are co-located, all stakeholders can communicate without

needing to use StakeSource. For instance, in P9, informal recommendations were

already in progress. In P4 and P6, there were too few stakeholders (2–3) to start the

snowballing process. Projects with higher response rate have more stakeholders,

and the stakeholders are not available at the same time, in different departments, or

in distributed locations.

Factor 2. Stake and benefit. Stakeholders are more likely to respond when they

have more stake in the project or when there is direct benefit associated with their

response. For example, in P2, experts were more motivated to provide their

expertise description, than to recommend other experts. Although the response

rate was high, the majority of responses were description about the person’s

expertise in the field, rather than recommendations of other experts. Providing

236 S.L. Lim et al.

their expertise could get them involved in the project, but recommending other

experts may mean the other experts would obtain the funding. This observation was

confirmed by the practitioner, “The context is very important for StakeSource to

work: stakeholders must be incentivised to make recommendations. In this project,

most respondents may have been more incentivised to provide their expertise than

recommend other experts.” In P3, the random people in the organisation have very

low stake in the project. As such, they may know parties interested in the project but

did not recommend due to lack of benefit for them to do so.

In all projects, the practitioners customised the email that stakeholders will

receive, in order to motivate the stakeholders to make recommendations. For

example, in P1, the email started with “This project will affect you.” In P5, the

practitioners realised that recommendations were unlikely to benefit the recom-

mender, hence started their email with “Help! We need your input into. . .”
Factor 3. Culture. Culture and social conventions affected the stakeholders’

recommendations, which in turn influenced the effectiveness of StakeSource.

Interviews revealed that the stakeholders in P8 (Japanese project) were polite and

more private. The stakeholders were aware that their recommendations were not

anonymous as the invitation email from StakeSource reveals the recommenders’

identity. Hence, they only recommended stakeholders that they were familiar and

interacted with, as they do not want to “disturb important people.” As a result,

stakeholders with higher positions in the organisation hierarchy were not

recommended and hence omitted in the stakeholder list, although they were crucial

to the project. For example, the director was not recommended but was responsible

to promote the project and make budget decisions. The stakeholders might be more

“free in their recommendations” had they been anonymous.

In addition, stakeholders in P8 only provided private comments, even when their

comments were positive. Two stakeholders from different projects (one UK project

and one Japanese project) provided the same comment about not remembering the

exact details of the stakeholder they recommended. But the stakeholder in the UK

project put the comment as public, while the stakeholder in the Japanese project put

the comment as private.

P8 was also the only real-world project with a connected stakeholder network

(Fig. 10.3). A social network is connected when there are no disconnected

components. This indicates that the stakeholders who were involved in P8 were

aware of one another. All the other real-world projects had disconnected

components. For example, P5 had four disconnected components (Fig. 10.3). This

finding is contrary to the assumption in the previous work that the stakeholder

network is connected [10]. Interviews revealed that stakeholders in disconnected

components are responsible for different subsystems or work for different

departments.

Factor 4. Availability. StakeSource promises to automatically elicit information

from stakeholders even when they are not physically present. Nevertheless, the

stakeholders’ response depended on their availability when the invitation email was

received. If they were away or on holiday, they tended not to respond despite having

access to the Internet. For example, P1 had a tight schedule to complete stakeholder

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 237

analysis by 15th Jan. The response rate was skewed by the time and duration

StakeSource was used. According to the practitioners, “it was the time of year

where people were particularly busy. We were warned to do it another time, but we

had no choice as the meetings started in January.” The duration given for

stakeholders to make recommendations was just 2 weeks, excluding the Christmas

break. Many stakeholders were on holiday during the recommendation period.

According to the practitioners, “There is never a quiet time especially for large

projects involving many departments or organisations because different

departments have their own busy time. Project managers need to be cautious

about the best time to run StakeSource to increase the number of

recommendations.”

In most projects, reminder emails were used by the practitioners a week after the

initial email was sent, to remind stakeholders to respond. The reminder emails were

able to encourage more stakeholders to respond. In addition, interviews with some

stakeholders revealed that they did not respond because they were waiting for

someone else to do it.

P1

P5

P11 P2
P3

P4 & P6

No network

P8

P9 P10
P7

Fig. 10.3 Social networks of stakeholders. Names are blurred for reasons of privacy

238 S.L. Lim et al.

Factor 5. Clarity of instructions. The content and clarity of the project descrip-

tion and the invitation email is crucial to encourage response. This finding is

consistent with existing literature for manual requirements elicitation approaches

[25]. But because StakeSource is web-based, the importance of the clarity of

instructions is increased, as the practitioners are not available to clarify or explain

their intentions. In some projects, lack of response came from the stakeholders not

knowing what the practitioner was looking for. For example, P5 initially received

low response. The practitioner contacted some stakeholders asking if the lack of

response was due to the tool being difficult to use. The stakeholders responded that

they know how to use the tool, but the email description was vague and they did not

understand what the project manager was looking for, hence did not make

recommendations. Once the email description was clarified, the stakeholders

made their recommendations.

Factor 6. Politics. Politics and conflicts of interest can affect the success of

collaborative software applications, StakeSource or not [16, 26]. For StakeSource,

political issues affected the recommendations stakeholders made and whether they

made recommendations at all. In some projects, none of the stakeholders from

higher-level management made recommendations, despite being influential

stakeholders. A practitioner explained, “Although StakeSource is open and inclu-

sive, some stakeholders are not. They may refrain from recommending a stake-

holder to exclude their involvement in the project.” Another practitioner

mentioned, “They (the stakeholders) know who the other stakeholders are, but

they want us to find it out ourselves.” These stakeholders refuse to be engaged as

their input benefits the practitioner but brings little benefit to themselves.

The practitioners also mentioned that some stakeholders are reluctant to respond

to an automated tool. For these stakeholders, manual approaches using phone calls

or face-to-face interviews may still be required to elicit responses. In addition, the

recommendations can be biased. Some stakeholders may recommend people who

are important to them in their work, regardless of whether these people will be

useful for the project. Others may choose not to recommend rather than to omit

recommending a stakeholder who is important to them.

10.6 Threats to Validity

This study is based on ten real-world projects that have used StakeSource during the

first year of its deployment. Due to the variation in project size, location, and

application area, there must be some caution generalising the lessons learnt to

other projects. For example, cultural effects on recommendations were observed

in one project P8. As more practitioners use StakeSource in their projects, addi-

tional studies should be conducted to gain further insights, and the factors that

influence stakeholder engagement can be studied in more detail.

In this work, the quality of the stakeholder list returned by StakeSource was

evaluated qualitatively by interviewing the practitioners. Future work should follow

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 239

up with the projects when they have completed, to compare the list of stakeholders

identified by StakeSource against the actual list of stakeholders in the project in

terms of their pertinence. Future work should also conduct more in-depth analysis

of the findings, such as analysing the relationship between project size and effec-

tiveness of StakeSource, the effect of using StakeSource on the quality of the final

product, and the properties of the different stakeholder networks.

Finally, the authors of this chapter were involved in the development and

deployment of StakeSource. Due to social niceties, the practitioners’ feedback on

StakeSource may be positively biased. Nevertheless, these practitioners have little

incentive to make socially desirable remarks, and they have been quite frank

(e.g., the practitioner in P3 said that StakeSource did not do much). In addition, it

was made clear to the practitioners and stakeholders that the main objective of their

feedback was to improve the work. Also, their interview comments were

corroborated with quantitative data and evidence. For example, we considered a

practitioner X to have recommended StakeSource to practitioner Y only if practi-

tioner Y enquired about or adopted StakeSource.

10.7 Conclusions

Web 2.0 collaborative tools such as StakeSource are likely to play an increasingly

important role in supporting requirements elicitation, especially for emerging forms

of development such as distributed development.

This chapter reports our experiences of and lessons learnt from the use of

StakeSource in ten real-world projects.We learnt that the effectiveness of StakeSource

in semi-automating stakeholder analysis is dependent on the stakeholders’ engage-

ment. In projects with large number of stakeholders who are motivated to contribute,

StakeSource was able to elicit useful stakeholder information with little support from

the practitioners. For example, StakeSource was able to uncover missing stakeholders,

negative stakeholders, and the stakeholders’ opinion about other stakeholders at the

start of the project. Yet, it failed to elicit information when stakeholders were not

incentivised enough to contribute. The main factors that influence stakeholder engage-

ment via StakeSource include the number of stakeholders and their location, the

stakeholders’motivation to be engaged, and their stake in the project. The stakeholders’

culture, availability, clarity of instructions from the practitioners, and politics in the

organisation also affect stakeholder engagement.

Stakeholder engagement is crucial for the success of Web 2.0 collaborative tools

such as StakeSource. Future work should address the critical issue of incentives to

increase stakeholder response.

Acknowledgments We thank the SEGAL and CHISEL research groups at University of Victoria,

Peggy Storey, and Peter Bentley for their feedback on the work and the practitioners and

stakeholders for their feedback on StakeSource.

240 S.L. Lim et al.

References

1. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings of

the conference on the future of software engineering, Limerick, Ireland, pp 35–46

2. Sharp H, Galal GH, Finkelstein A (1999) Stakeholder identification in the requirements

engineering process. In: Proceedings of the database and expert system applications workshop

(DEXA), Florence, Italy, pp 387–391

3. Zave P (1997) Classification of research efforts in requirements engineering. ACM Comput

Surv 29:315–321

4. Macaulay L (1996) Requirements engineering. Springer Verlag, New York

5. Maiden N, Ncube C, Robertson S (2007) Can requirements be creative? Experiences with an

enhanced air space management system. In: Proceedings of the 29th international conference

on software engineering (ICSE), Minneapolis, MN, USA, pp 632–641

6. Gottesdiener E (2002) Requirements by collaboration: workshops for defining needs. Addison-

Wesley Longman, Boston

7. Gause DC, Weinberg GM (1989) Exploring requirements: quality before design. Dorset

House, New York

8. Alexander I (2005) A taxonomy of stakeholders: human roles in system development. Int J

Technol Hum Interact 1:23–59

9. Lim SL (2010) Social networks and collaborative filtering for large-scale requirements

elicitation. Ph.D. thesis, University of New South Wales

10. Lim SL, Quercia D, Finkelstein A (2010) StakeNet: using social networks to analyse the

stakeholders of large-scale software projects. In: Proceedings of the 32nd international confer-

ence on software engineering (ICSE), vol 1, Cape Town, South Africa, pp 295–304

11. Lim SL, Quercia D, Finkelstein A (2010) StakeSource: harnessing the power of crowdsourcing

and social networks in stakeholder analysis. In: Proceedings of the 32nd IEEE international

conference on software engineering (ICSE), vol 2, Cape Town, South Africa, pp 239–242

12. Cleland-Huang J, Mobasher B (2008) Using data mining and recommender systems to scale up

the requirements process. In: Proceedings of the 2nd international workshop on ultra-large-

scale software-intensive systems, Leipzig, Germany, pp 3–6

13. Serrano N, Torres JM (2010) Web 2.0 for practitioners. IEEE Softw 27:11–15

14. Damian D (2007) Stakeholders in global requirements engineering: lessons learned from

practice. IEEE Softw 24:21–27

15. Storey M, Treude C, van Deursen A, Cheng L (2010) The impact of social media on software

engineering practices and tools. In: Proceedings of the FSE/SDP workshop on the future of

software engineering research, Santa Fe, New Mexico

16. Grudin J (1994) Groupware and social dynamics: eight challenges for developers. Commun

ACM 37:92–105

17. Oreilly T (2007) What is web 2.0: design patterns and business models for the next generation

of software

18. Pouloudi A, Whitley EA (1997) Stakeholder identification in inter-organizational systems:

gaining insights for drug use management systems. Eur J Inform Syst 6:1–14

19. Cheng BHC, Atlee JM (2007) Research directions in requirements engineering. In:

Proceedings of the conference on the future of software engineering, Minneapolis, MN,

USA, pp 285–303

20. Alexander I, Robertson S (2004) Understanding project sociology by modeling stakeholders.

IEEE Softw 21:23–27

21. Scott J (2000) Social network analysis: a handbook. Sage, Thousand Oaks

22. Lindlof TR, Taylor BC (2002) Qualitative communication research methods. Sage, Thousand

Oaks

23. Deutskens E, De Ruyter K, Wetzels M, Oosterveld P (2004) Response rate and response

quality of internet-based surveys: an experimental study. Mark Lett 15:21–36

10 Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in. . . 241

24. Yu J, Cooper H (1983) A quantitative review of research design effects on response rates to

questionnaires. J Mark Res 20:36–44

25. Thayer RH, Dorfman M (1997) Software requirements engineering. Wiley-IEEE Computer

Society Press, Los Alamitos

26. Dobson J, Blyth A, Chudge J, Strens R, Dobson J, Blyth A, Chudge J, Strens R (1994) The

ORDIT approach to organisational requirements. In: Requirements engineering: social and

technical issues. Academic Press Professional, San Diego, pp 87–106

242 S.L. Lim et al.

Part IV

Reasoning About Requirements

“There are also two kinds of truths: truth of reasoning and truths of fact. Truths

of reasoning are necessary and their opposite is impossible; those of fact are

contingent and their opposite is possible.”

—Gottfried Leibniz

Walid Maalej. Printed with permission

Chapter 11

Resolving Inconsistency and Incompleteness

Issues in Software Requirements

R. Sharma and K.K. Biswas

Abstract In this chapter, we present an approach toward better understanding and

analyzing significant aspect of software – the requirements. Comprehending the

semantics of requirements is crucial to the success of the intended software. In order

that the software requirements be well understood, it is imperative that these must

be complete and consistent. But, the elicited requirements are often incomplete,

inconsistent, and, consequently, ambiguous in nature. Requirements engineer is

presented with the task of examining and analyzing such requirements and

detecting these issues, i.e., instances of incompleteness and inconsistency. We

present here courteous logic-based representations of requirements as an approach

toward resolving the issues of incompleteness, inconsistency, and ambiguity in

the elicited requirements and assisting improved understanding of elicited

requirements. We explain how courteous logic can be an effective solution to

requirements interpretation in terms of observable behavior of the system and can

be a useful tool for requirements engineer toward improving the quality of software

requirements. We will be more concerned toward inconsistency and incompleteness

issues in this chapter.

11.1 Introduction

Requirements engineering (RE hereafter) is the basis for subsequent phases of

software development cycle. Software design and development take off once the

requirements are well understood and agreed upon by the developers, clients, and

the involved stakeholders. The question of well or better understanding of the

requirements calls for an adequate representation of requirements. IEEE’s

recommended guidelines [1] for good requirements specification suggest that

R. Sharma (*) • K.K. Biswas

IIT Delhi, New Delhi, India

e-mail: sricha@gmail.com; kkb@cse.iitd.ernet.in

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_11, # Springer-Verlag Berlin Heidelberg 2013

245

mailto:sricha@gmail.com
mailto:kkb@cse.iitd.ernet.in

requirements should be correct, complete, consistent, unambiguous, verifiable, and

traceable. The guidelines precisely define these characteristics in terms of

requirements specified or mentioned in the document, referred to as software

requirements specification. We however stress that these attributes are equally

applicable to the requirements representation in context of the domain under

study, albeit the interpretations differ. Correctness, completeness, and consistency

of requirements have been described in detail in [2]. Zowghi and Gervasi suggest

that correctness has at least two different perspectives:

1. From a formal point of view, correctness is usually meant to be the combination of

consistency and completeness. Consistency refers to situations where a specification

contains no internal contradictions, whereas completeness refers to situations where

a specification entails everything that is known to be “true” in a certain context.

Consistency is an internal property of a certain body of knowledge, whereas

completeness is defined with respect to an external body of knowledge.

2. From a practical point of view, however, correctness is often more pragmatically

defined as satisfaction of certain business goals. This indeed is the kind of

correctness which is more relevant to the customer, whose goal in having a

new system developed is to meet his overall business needs.

Our focus in this chapter is on business requirements pertaining to enterprise

business applications. Such applications are data-intensive and are driven by the

constraints, properties, and rules of the business domain under consideration.

Therefore, our approach toward correctness of requirements is not merely from

documentation point of view but also more from the point of view of the business

domain. We, therefore, prefer to follow the perspectives drawn out in [2]. We argue

here that it is the practical viewpoint that must translate to formal point of view so that

requirements defined in terms of business goals hold good and can be well understood

by the developers too at the time of implementation. The ultimate objective of

software development is to develop the software that satisfies business goals. The

software design and development activities, that are more of formal tasks in terms of

the corresponding language specification, have to meet the objective of software

development. Therefore, it would be wise to say that practical viewpoint of notion

of correctness needs to strike chord with the formal viewpoint. Requirements engineer

who is supposed to establish correct, complete, consistent, unambiguous, and

verifiable requirements must take into account formal viewpoint to achieve his

objective. We will explore how the formal notion of correctness of requirements

leads to the question of an “adequate representation” of requirements and how both

these ideas are related in following sections. The motive behind determining adequate

representation is that it is the central problem in requirements engineering. An

adequate representation of requirements can be helpful in well-understanding of

requirements and establishing high quality of requirements. Though there is no precise

definition to the “adequate representation,” yet numerous authors ([3, 4, 5, 6]) have

proposed various desirable features of requirements representations independently.

We will discuss these features in the sections to be followed.

Business requirements are usually represented using natural languages and, there-

fore, often suffer from the drawback of formal analysis, verification, and validation in

246 R. Sharma and K.K. Biswas

the absence of reasoning engine for natural language. The requirements gathered

through client interactions, observations, or interviews tend to be incomplete and

ambiguous as clients might fail to express their expectation from the software system

clearly and precisely. This kind of informal communication results in vague and

ambiguous requirements in first place. This concern is further aggravated by the fact

that natural language itself is ambiguous and can have multiple interpretations given

varying contexts. Natural language representation is, therefore, not an apt choice to

represent requirements and establish their correctness. Some degree of formalism is

required to overcome the defects of inconsistency and incompleteness – together

which contribute to the notion of incorrectness of requirements. Of the various formal

approaches to express business requirements, logical representations have been

widely acknowledged with the increasing complexity and expectations of software

systems. Real-world business requirements correspond to human way of thinking and

commonsense (non-monotonic) reasoning. These aspects require that any logical

specification of requirements should be able to handle non-monotonic reasoning.

We have made use of courteous form of non-monotonic logic to express

requirements. Requirements are usually captured in natural language; hence, it

makes sense to translate these natural language expressions to logical expressions

to a certain extent. We are prototyping a tool that can build domain model from the

given set of requirements. This chapter contributes toward formal representation of

requirements in terms of following points:

1. We present courteous logical representation of requirements as an effective

solution for requirements representation. We show that these representations

have the desirable features for establishing correct and verifiable requirements.

2. We show how correctness of the requirements can be verified at an early stage,

i.e., how courteous logic-based representations help in resolving inconsistency

and incompleteness in requirements during RE phase. This would minimize the

number of defects that would otherwise permeate further phases of software

development.

3. We present prototype of the tool that we are working upon for generating domain

model from requirements.

Section 11.2 presents the requirements engineering problem followed by a

discussion of contributions from numerous authors on desirable features of

requirements representation in Sect. 11.3. This section also presents a consolidated

list of desirable features for requirements representation that can be referred to as an

“adequate representation” – one that can be said to be effective toward detecting

and resolving inconsistency and incompleteness. Section 11.4 then presents our

contribution in this chapter. We have made use of courteous logic to represent

requirements following the recommendations of inference mechanism [4] and non-

monotonic logic [5]. We present how courteous logic semantics are helpful in

exploring and detecting instances of inconsistency and incompleteness in software

requirements in case studies in Sects. 11.5 and 11.6. We also found that these

representations satisfy most of the desirable features of requirements illustrated in

Sect. 11.3. The related work is discussed in Sect. 11.7 followed by discussion and

conclusion in Sect. 11.8.

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 247

11.2 The RE Problem

The introduction section has spawned sufficient background for the issue of

correctness of business requirements and an adequate representation of the

requirements. We have seen that the motivation behind discussing the requirements

representation is that it has remained the central problem in RE, and an adequate

representation only can offer an approach toward handling inconsistency and

incompleteness issues. Determining presence of inconsistency and incompleteness

requires reasoning the given set of requirements and drawing inferences from it.

The representation of requirements should have some features to serve this purpose.

We will discuss these features in next section, but it suffices to make the point clear

that the concern of proving correctness of requirements is closely related to the

concern of requirements representation. We will first discuss the RE problem in

detail before moving on to consistency and completeness concerns.

Software development practices so far have varied from structured programming

to object-oriented programming to aspect-oriented programming. The RE

approaches have also varied in accordance to the programming practices followed,

and consequently, a number of requirements model and representation practices

surfaced. Structured programming resulted in structured analysis of the requirements,

i.e., activity-flow-oriented analysis. The deliverables of structured analysis include

context diagrams, data flow diagram, and structure charts [7]. Object-oriented

analysis [8] results in a number of UML diagrams including class and object

diagrams and activity diagrams and interaction diagrams. Aspect-oriented analysis

[9] results in representation of aspects, cut points, and joins.

Despite several approaches in place, the central requirements problem remained

same across these approaches: what is to be represented and how it is to be

represented. As suggested in [10], the requirements problem amounts to finding

the representation S, that for given domain assumption K satisfies the given

requirements R. If K, S, and R are represented in mathematical logic, then the

requirements problem is solved once the requirements engineer finds S such that

K, S |- R.
The questions relevant to the requirements problem become important from the

point of view of how the representations are going to be utilized. The analyst is

concerned with representation as well as the ability of the representation to yield

itself to validation and verification [3]. Tsai and Weigert [4] have proposed that if

an inference mechanism is available for requirement specification, then it can be

used to validate the requirements. Logical representations offer a solution to

understanding the semantics of requirements and validating them. Most of the

formalism for requirements representation is often reducible to first-order logic.

RML [11] and Telos [12] representations find their well-formedness and semantics

in the roots of first-order logic. KAOS [13] and i* [14] representations are goal-

oriented in nature. The advantage of formal representation of requirements lies in

reasoning with representations for inferencing purpose.

Consistency Concern – Consistency concern among requirements requires that

no two or more requirements in the given requirement set contradict each other.

248 R. Sharma and K.K. Biswas

There can be various reasons for contradictions to arise. A simple reason could

be that requirements specified in natural language are interpreted differently by

different people involved during RE phase. Another possible reason can be because

of the fact that the terminology used by clients and stakeholders might differ from

the terminology familiar to developers. Inconsistency also arises when multiple

stakeholders have varying views and appropriate prioritization on a conflicting

scenario has not been considered. Consistency has been defined and reviewed by

various authors in number of ways independently like [15, 16, 17], and many more.

Multiple stakeholders’ view has been taken into account in [15]. Balzer has

proposed approach for tolerating and minimizing inconsistency in [17].

With growing complexity of the software applications being developed, it

becomes imperative to effectively manage inconsistency before commencing the

design and development phase. The complex nature of software with lot many

inconsistency will eventually result in budget and schedule overruns.

Completeness Concern – Completeness of the requirements is the most difficult

to define and determine. The IEEE guidelines state completeness in terms of the

information covered in software requirements specification that there should not

be any information undefined or “to be determined.” But, there is another dimen-

sion to completeness in context of the business domain under consideration. This

aspect considers that the requirements should cover all the necessary information

required for problem definition and processing. The notion of completeness has

more to do with the scope and goals of the system to be developed. Goal-oriented

RE therefore focuses more on goals. Letier and Lamsweerde [18] have also

suggested specifying the goals explicitly and that goals offer a criterion to measure

requirements completeness.

11.3 Desirable Features for Representation of Requirements

Section 11.2 has laid out the foundation for the expectations from requirements

representation. In order that these expectations should be satisfied, requirements

representations must have some desirable features. As introduced in Sect. 11.1,

several authors have suggested desirable features for representations of

requirements independently at different times. We will discuss some of these

features in this section.

In [3], Zualkernan and Tsai have suggested following criteria for a language to

qualify for problem specification and consequently requirements specification:

1. Epistemological Adequacy – Also called as expressive power in context of

knowledge representation and refers to the adequacy of a formal system to

represent concepts in real-world.

2. Synthesis Adequacy – It refers to the criteria of maintainability from representa-

tion perspective and availability of procedures for constructing specification

from methodology point of view.

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 249

3. Analysis Adequacy – It refers to the adequacy of representation to yield itself to

validation and verification.

4. Contractual Adequacy – This is the adequacy of the representation to support

interaction with domain experts or clients.

5. Blueprint Adequacy – This is the adequacy of problem specification to serve as

blueprint for next stages of development.

Tsai and Weigert [4] have proposed that if the requirements can be operationally

interpreted, then the user would be exposed to a “working model” of the system at

an early stage of development. Secondly, if an inference mechanism is available for

the requirement specification, then it can be used to validate the requirements. They

propose following demands on a language to express requirements:

1. Free from implementation concerns

2. Ability to check the validity of the requirements

3. Ability to express both the objects and the relations of the domain, as well as the

constraints on them and rules about them in a straightforward manner

4. Should be sound and complete

5. Should allow for operational interpretation of the system behavior

Tse and Pong in [6] have recommended following points of consideration for

requirements specification:

1. Abstraction of the real-world – The requirements language must allow

abstracting out the important issues from nonessentials. This will help in

improving the conceptual clarity of the problem.

2. Manipulation of the requirements – Requirements specification must be

structured in such a way that parts of it can be modified as requirements

gradually evolve. Requirements should be expressible in a precise notation

with a unique interpretation to avoid ambiguity.

3. Construction of real-world system – Requirements specification should be

independent of the design and implementation issues. The elements in specifi-

cation should be traceable to the final design and implementation.

In [5], the recommendation is to deal with over-abstraction and ensuring

consistency of the model. It is further proposed that AI research on non-monotonic

logics may provide insight on how to make final specification logically consistent.

A careful look at above discussed features too shows overlaps. Since we are

looking for an adequate representation of requirements that can help us expressing

the requirements correctly, we can say that adequacy of representation can be

looked at in terms of the observable behavior of the system. We agree with the

recommendations in [2] and [3] that availability of inference mechanism for

software requirements can support validating the requirements against the expected

observable behavior of the system and that non-monotonic logic may provide

insight to make final specification logically consistent. The motivation for

non-monotonic logic comes from the fact that software requirements correspond

to some real-world system where there can be conflicts as well as exceptional

250 R. Sharma and K.K. Biswas

scenarios occurring quite often and these are resolved by commonsense reasoning

on a day-to-day basis. We have consolidated the desirable features in our case as:

1. The requirements specification should be an abstract representation or model of

the real-world.

2. The requirements specification should not be affected by the design and
development of the information system.

3. It can be subjected to validation and verification in terms of the observable

behavior of the real-world, i.e., an inference mechanism should exist.

4. It should be sound and complete. Any modification to existing requirements

should not result in an inconsistent set of requirements, i.e., it should support

non-monotonic reasoning.

5. The requirements specification should be maintainable and traceable to design

and development artifacts.

6. It should be able to act as a bridge between the user or client and the
development team, i.e., it should be well understood by both parties

11.4 Our Approach

In this chapter, we present courteous logic-based representation of requirements as

a solution toward representing requirements in a way that assists in detecting and

resolving inconsistency and incompleteness in the elicited requirements. Courteous

logical representation (CLP) is based on non-monotonic reasoning. It is an

expressive subclass of ordinary logical representation (OLP) having procedural

attachments to it for prioritized conflict handling. Having the ability to resolve

conflicts, CLP representations can keep the existing knowledge base consistent

while resolving conflicting opinion or exception by adding some new facts or

information or removing some existing details.

Non-monotonic Logic – Non-monotonic logic refers to formal logic where

consequence relation is not monotonic. An important goal of knowledge represen-

tation and reasoning is to reach only the true conclusions, and we also require that

our conclusions are justified. These two constraints are not same. Justification

preserving is not always monotonic, and human reasoning too is not monotonic

and, therefore, the need for non-monotonic logic. There are several forms of

non-monotonic logics. Default logic, proposed by Raymond Reiter [19], is one of

the oldest and most studied non-monotonic logic. Default logic has found its

application for inconsistency handling in requirements in [20].

Defeasible logic, proposed by Donald Nute [21], is based on strict rules,

defeasible rules, and defeaters. Conclusions are tentative in the sense that a

conclusion can be withdrawn when there is a new piece of information.

Courteous logic [22] is based on prioritization of the rules. This is in contrast to

defeasible logic where rules are marked as strict and defeasible rules. We will

discuss features of courteous logic in next subsection.

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 251

Courteous Logic – Courteous logical representation is an expressive subclass of

ordinary logical representation with which we are familiar, and it has got procedural

attachments for prioritized conflict handling. First-order logic beyond logic

programming (LP) has not become widely used for two main reasons: it is pure

belief language, it cannot represent procedural attachments for querying and actions,

and it is logically monotonic; it cannot specify prioritized conflict handling which are

logically non-monotonic. The courteous logic programming (CLP) extension of LP is

equipped with classical negation and prioritized conflict handling. CLP features

disciplined form of conflict handling that guarantees a consistent and unique set of

conclusions [22]. CLP provides a method to resolve conflicts that arise in specifying,

updating, and merging rules. Our CLP representations are based on IBM’s

CommonRules, available under free trial license from IBM alpha works [23].

Syntactically, courteous logic program is defined as a restricted class of

extended logic programs, in which, additionally, rules have labels. In an extended

logic program, each rule is of the form:

Lð0Þ Lð1Þ ΛLð2Þ Λ . . . : ΛLm ΛeL mþ 1ð Þ Λ . . . :ΛeL nð Þ

Here, each L(i) is a literal of the form A or ¬A, where A is an atom and ¬ stands

for classical negation and ~ stands for negation-as-failure operator. L(0) is the head

of the rule, and L(1), L(2), etc., constitute the body of the rule. The rule can be

interpreted as L(0) holds true if the body of the rule evaluates to true. Such a rule

will optionally have a label before L(0) in CLP. The label is used as a handle for

specifying prioritization information. Each label represents a logical term, e.g., a

logical 0-ary function constant.

In addition to label, there is binary predicate “overrides” to specify prioritization.

The “overrides” predicate is used to specify prioritization. “Overrides (lab1, lab2)”

means that any rule having label “lab1” is higher priority than any other rule having

label “lab2.” The scope of what is conflict is specified by pair-wise mutual exclusion

statements called “mutex’s.” For example, a mutex (or set of mutex’s) might specify

that there is at most one amount of discount granted to any particular customer. Any

literal may be classically negated. There is an implicit mutex between p and classical-

negation-of-p, for each p, where p is a ground atom, atom, or predicate.

The answer set is defined incrementally and constructively by means of partial

answer sets S(i) that are built up iteratively by generating conclusions for each

ground atom along the way taking into account the partial order relation specified in

overrides predicate. It has been proved in [22] that every courteous logic program

has exactly one answer set which is consistent.

An example illustrating the expressive and reasoning power of CLP: Consider
following rules for giving discount to customer:

• If a customer has Loyal Spending History, then give him 5 % Discount.

• If a customer was Slow to pay last year, then grant him No Discount.

• Slow Payer rule overrides Steady Spender.

• The amount of discount given to a customer is unique.

252 R. Sharma and K.K. Biswas

These rules are represented in CLP as following set of rulebase:

<steadySpender>
if shopper(?Cust) and spendingHistory(?Cust, loyal)
then giveDiscount(percent5, ?Cust);

<slowPayer>
if slowToPay(?Cust, last1year)
then giveDiscount(percent0, ?Cust);
overrides(slowPayer, steadySpender);
As discussed above, there are two types of customers labeled as<steadySpender>

and <slowPayer> each allowed different discounts on purchase. The conflict arises

when a customer qualifies to be both steadyspender as well as slowPayer. In such a

conflicting situation, the predicate “overrides” is used to prioritize the discount

attributed to slowpayer over the discount to be given to steadyspender.

Advantages of Courteous Logic – We found that courteous logic representation

is more suitable for our cause for two main reasons: first, it supports non-monotonic

reasoning and, second, the representation can be well understood by the involved

parties during the requirements phase of software development. Courteous logic

representations are closer to natural language representation of business rules in

terms of commonly used “if-then” rules and can be interpreted by both the users and

the developers. An experience with CLP shows that it is especially useful for

creating rule-based systems by nontechnical authors too [22]. We present a case

study in the following section with the idea of showing that courteous logic-based

requirements specification satisfies the desirable features of requirements specifica-

tion language. We were able to uncover ambiguities and resolve inconsistency and

presuppositions in the studied requirements set using courteous logic-based

requirements specifications.

Another advantage of CLP is computational scalability: inferencing is tractable

(worst-case polynomial time) for a broad expressive case. By contrast, classical

logic inferencing is NP-hard for this case. This is an additional advantage to the two

main reasons for which we chose courteous logic. Key to courteous programs’

computational and conceptual simplicity is that conflicts are resolved locally: by

refutation and skepticism among rules that mention (positively or negatively) the

same head atom. There is a unique answer set which facilitates understandability,

especially by nontechnical end users. We found tractability and uniqueness of

answer set features useful and attractive in context of resolving inconsistency and

incompleteness in requirements.

Processing the Natural Language Requirements – As discussed in introduc-

tion section, normally the stakeholders and clients involved in RE phase of

software development are not comfortable with formal logical language; hence,

natural language has been the most preferred means to express requirements. The

requirements engineer or analyst is posed with the task of analyzing the gathered

requirements; generate models or representations from the given specification;

detect any errors (incorrectness, ambiguity, inconsistency, and incompleteness);

and then, finally validate the requirements against the expected behavior of the

system. It would be an additional advantage if models or representations can be

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 253

auto-generated from the given specifications. We are currently working on

tool intended to generate domain model from the natural language specifications

and, then, to allow analysts to design processing rules for the domain model.

Our idea is to manually capture not just rules but also the constraints and

exceptional scenarios for the generated domain model. Analyst would be

prompted to ensure that he has covered all these aspects relevant to a scenario

being modeled.

Generating domain model requires parsing process in place to translate NL

sentences to logical formulae. The parsing process consists of typographical

adjustments, tokenization, and morphosyntactic analysis. The processed text is

then parsed to produce a parse tree corresponding to original statement.

Morphosyntactic analysis is done with the help of Stanford-postagger [24]. We

are refining the results of morphosyntactic analysis by presenting them to

requirements analyst. We present the analyst the nouns (that would be marked

as entities in the domain) from the result of morphosyntactic analysis, and he is

supposed to remove, add, or update any entity if required. The refined collection

of nouns is then translated to domain entity model. The steps discussed are

exemplified in Fig. 11.1:

Original Requirement
(Scenario: Direct
Entry of grades by
course coordinator)

Student/NN can/MD be/VB assigned/VBN grades/NNS
that/WDT are/VBP validated/VBN by/IN grade/NN
rules/NNS./.User/NN initiates/VBZ the/DT `/`` Direct/JJ
grade/NN entry/NN '/'' Process/NNP ./. User/NN selects/VBZ
the/DT academic/JJ year/NN ,/, semester/NN and/CC
course/NN of/IN which/WDT he/PRP wants/VBZ to/TO sub-
mit/VB grade/NN ./. Student/NN list/NN is/VBZ dis-
played/VBN based/VBN on/IN the/DT above/JJ selection/NN
along/IN with/IN the/DT possible/JJ valid/JJ grades/NNS ./.
User/NN selects/VBZ the/DT grades/NNS for/IN all/PDT
the/DT students/NNS and/CC submits/VBZ the/DT informa-

After Morphosyntactic
analysis

Student grades grade rules User entry Process year semester
course list selection information

Entities Presented
to analyst

Student grades year semester course Finalized Entities

Student(?X) grades(?X)
year(?X)
course(?X)

Equivalent logical
formula

Student can be assigned grades that are validated by grade
rules. User initiates the ‘Direct grade entry’ Process. User se-
lects the academic year, semester and course of which he
wants to submit grade. Student list is displayed based on the
above selection along with the possible valid grades. User se-
lects the grades for all the students and submits the informa-
tion to save.

tion/NN to/TO save/VB ./.

semester(?X)

Fig. 11.1 Generating domain entity model from NL requirements

254 R. Sharma and K.K. Biswas

11.5 Case Study

We studied the registration, grade-processing, and graduation part of an educational

institute to carry out our study. The reason behind choosing these two processing

parts was that these are rule-intensive, and we took the challenge of writing the given

use-cases using courteous logic representations and, then, ensure that consistency

between rules is preserved. We were presented processing information in the form of

use-cases and here we will take the running example of grade-processing part.

Our aim in conducting this experiment was to determine if courteous logic-based

specifications meet the desirable features as discussed in Sect. 11.3, especially in

the fourth feature that is relevant to consistency and completeness. Our aim in

conducting this experiment was to determine if courteous logic-based specifications

help in detecting and resolving inconsistencies and incompleteness, if any. The

experiment started with the identification of entities, relevant attributes, and

relations in the given use-cases. We identified a total of eight entities along with

their attributes in this subsystem. We translated the processing part of the use-cases

under study to courteous logic representation. Much to our satisfaction, it didn’t

turn out to be an arduous task. The information obtained was already structured in

the form of use-cases and secondly, the translation part didn’t require much

experience with CommonRules. Before proceeding to discuss each point from

desirable features of requirements specification language, we illustrate a sample

from our representations so that observations become clearer:

<new>
if assignGrades(?Regno, ?Year, ?Sem, ?Group, ?Sub,

?Point)
then valStatus(new, ?Regno, ?Year, ?Sem, ?Group, ?Sub);

The representation indicates that when grades are assigned first time to a student

with registration Id, Regno; year as Year; semester and group as Sem and Group
respectively; with subject and grade point as Sub and Point respectively, then the

status of that grade would be assigned as ‘new’.

We conducted one more experiment in Corporate Action Event domain to verify

that courteous logic representations can scale to a complex domain and still ensure

consistency among the requirements. We present findings from this example-study

while discussing the consistency feature in Sect. 11.6.

11.6 Observations from Case study

Our observations for the case studies conducted can be summarized in terms of the

desirable features of requirements specifications as compiled below:

1. Abstract representation of real-world – Within the periphery of given use-cases,

identifying the entities; their attributes and relations was not ambiguous.

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 255

We could represent the behavior of the system by capturing the governing rules

and the constraints imposed at a high level without delving into any sort of

implementation details. This representation itself worked as a ‘working model’

for the subsystem under study. This point would be clearer with the scenario

presented in next point.

2. Not affected by design and development details – The requirements are modified

only when something new is encountered at a later stage. In our case, we didn’t

have to tweak our requirements specifications later as the development details

started pouring in. An interesting and relevant scenario was with grade conver-

sion use-case:

The Grade Conversion use-case was defined with preconditions stating:

Grade rules must be defined in the system and grades should be submitted and approved.

The processing part of the use-case stated:

User initiates ‘Grade Conversion’ process. User selects academic year, semester and course

of which he wants to change the grade. User then selects the student names and can

optionally give remarks while converting the grade. The updated information is saved.

The post-condition part stated:

Grade status gets modified and entire workflow of grade approval is initiated.

We represented this use-case as:

<gradeMod>
if convertGrades (?Regno, ?Year, ?Sem, ?Group, ?Sub, ?Status, ?OldPoint,
?NewPoint)
then valStatus (new, ?Regno, ?Year, ?Sem, ?Group,?Sub);
The representation indicates that any grade conversion request for a student with

registration Id, Regno; year as Year; semester and group as Sem and Group,
respectively; with subject and current grade status as Sub and Status respectively
would change the status of grades to new, which calls for grade approval process
as is the case with new grade assignment:

<new>
if assignGrades(?Regno, ?Year, ?Sem, ?Group,?Sub, ?Point)
then valStatus(new, ?Regno, ?Year, ?Sem, ?Group,?Sub);
The design team preferred to have grade approval part as a component reusable

at the time of regular/new (without conversion) grade approval and at the time of

grade conversion. The development team, on the other hand, couldn’t use that

component in its entirety owing to technical reasons and had to go by the choice

of separate components. We have two observations here to make:

(a) The representation remained unaffected by the choices design team and

development made. It just represented the abstracted underlying idea that

grade change would entail invoking the grade approval processing right

from the very beginning.

(b) The abstract idea had a suitable representation in the use-case too, but courteous

logic representation was quite compact as compared to the use-case one.

256 R. Sharma and K.K. Biswas

Secondly, we could verify the observable behavior of grade change as courte-

ous logic specifications represented working model of the system.

3. Validation in terms of observable behavior of the system – We have already

made a reference to this observation in the above point that courteous logic-

based specifications represent working model of the system. We would like to

explore this observation in terms for requirements analysis for two main issues

that analysts encounter, namely, resolving ambiguity and finding
incompleteness.
Direct grade change use-case was defined with administrator as actor and

preconditions stating:
Grade rules must be defined in the system, and grades should be submitted and

approved.

The processing part stated:

User initiates “direct grade change.” User selects academic year, semester, and student

whose grades need to be changed. A list is displayed showing the student’s grades in the

respective courses he enrolled. User submits the information to save.

The post-condition part stated:

Grade submitted are finalized.

A quick look at the use-case description apparently doesn’t pose any problem.

But, when this use-case was studied with other use-cases where three different

levels of approval are defined, we were immediately posed with these questions:

(a) When can admin intervene for direct grade change?

(b) What is meant by grade finalization?

(c) Do finalization and approval refer to same grade status? What happens if there

is no direct grade change request? How would finalization of grades happen?

(d) Can this use-case be executed again after finalization?

It’s quite possible that different people are working on different use-case and

may not uncover incompleteness in their use-case in context of the environment.

This use-case had ambiguity in terms of approval and finalization status, and this

was overlooked in the textual use-case. When we approached subject matter

expert (SME hereafter), then we found that there was a presupposition in the

grade-processing use-cases. It was assumed that approval by dean refers to

finalization of grades and that the above use-case would be executed in excep-

tional scenario only when grades are finalized (that called for a change in

precondition too). In such a scenario the system administrator will do the needful

as mentioned in this use-case.

We could successfully find above-mentioned ambiguity and incompleteness at

the time of requirements specification only.

4. Ensuring consistency – We will present two case studies in this context:

Grade-Processing Example:
This is the main focus point that motivated us to make use of courteous logic-

based representation of requirements. It’s important while representing and

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 257

analyzing the requirements that any modification to current requirements should

not result in any sort of inconsistency.

We would like to bring out this point following the same use-case as discussed in

point 3. Our representation had already captured grade approval part and the

facts whose approval would be given priority as:

When we filled for the gaps in the use-case as discussed in point 3, we could

easily modify the requirements without any inconsistency creeping in as; cour-

teous logic representation has already provided means of prioritized conflict

handling. We could also validate the observable behavior of the system by

executing different scenarios. Existing requirement specifications were:

<new>
if assignGrades(?Regno, ?Year, ?Sem, ?Group,?Sub, ?Point)
then valStatus(new, ?Regno, ?Year, ?Sem, ?Group,?Sub);

<cdn>
if approvedby(?Regno, ?Year, ?Sem, ?Group,?Sub, ?Point, ?Status,

coordinator)
then valStatus(coordApproved, ?Regno, ?Year, ?Sem,?Group, ?Sub);

<hod>
if approvedby(?Regno, ?Year, ?Sem, ?Group,?Sub, ?Point,

coordApproved, hod)
then valStatus(hodApproved, ?Regno, ?Year, ?Sem,?Group, ?Sub);

<dean>
if approvedby(?Regno, ?Year, ?Sem, ?Group,?Sub, ?Point, hodApproved,

dean)
then valStatus(deanApproved, ?Regno, ?Year, ?Sem,?Group, ?Sub);

<gradeMod>
if convertGrades(?Regno, ?Year, ?Sem, ?Group,?Sub, ?Status, ?OldPoint,

?NewPoint)
then valStatus(new, ?Regno, ?Year, ?Sem, ?Group,?Sub);

overrides(cdn, new);
overrides(hod, new);
overrides(dean, new);
overrides(hod, cdn);
overrides(dean, cdn);
overrides(dean, hod);
overrides(gradeMod, cdn);
overrides(gradeMod, hod);
overrides(gradeMod, dean);
Adding updated information for ‘Direct Grade Change’ use-case entailed

specifying:

<adminMod>
if convertGrades(?Regno, ?Year, ?Sem, ?Group,?Sub, deanApproved, ?

OldPoint, ?NewPoint)
then valStatus(deanApproved, ?Regno, ?Year, ?Sem, ?Group, ?Sub);
Corporate Action Event Processing Example

258 R. Sharma and K.K. Biswas

Consider a corporate action event announced on a security. If a client is holding

the security on which event is announced, then that client is eligible to get the

announced benefits of the event. These benefits can either be in the form of cash

or stock or both. The types of benefits disbursed to the clients vary from one

event type to another; it also depends on various other factors like base country

of the security on which event is announced, the country of the customer, client

opting for an option, etc. Then, there can be multiple stakeholders having

differing views like one particular stock market has rules that do not allow client

to opt any option announced on event; whereas, clients from some other market

can opt for event’s announced operations, so on and so forth. We took a small

subset of this large set of rules and gradually scaled the rules as well as the data

to find that results are consistent with the actual observable expectations. This

particular example served toward claiming scalability of courteous logic-based

requirements specifications. Our expressions could not only be easily validated

against the real-world expected behavior, but also these were small and compact

making them easy to comprehend and verify against multiple real-world

scenarios as shown below:

<cash>
if event(?EventId, ?Type, ?Security) and holds(?Client, ?Security) and opts
(?Client, cash)
then distribute(?Client, ?EventId, cash);
<stock>
if event(?EventId, ?Type, ?Security) and holds(?Client, ?Security) and opts
(?Client, stock)
then distribute(?Client, ?EventId, stock);
<both>
if event(?EventId, ?Type, ?Security) and holds(?Client, ?Security) and opts
(?Client, both)
then distribute(?Client, ?EventId, both);
<divMtk1>
if event(?EventId, dividend, ?Security) and holds(?Client, ?Security) and
baseCntry(?Security, Mkt1)
then distribute(?Client, ?EventId, stock);
<divMkt2>
if event(?EventId, dividend, ?Security) and holds(?Client, ?Security) and
clientCntry(?Client, Mkt2)
then distribute(?Client, ?EventId, nothing);
<divMkt1Mkt5>
if event(?EventId, dividend, ?Security) and holds(?Client, ?Security) and
baseCntry(?Security, Mkt1) and clientCntry(?Client, Mkt5)
then distribute(?Client, ?EventId, cash);
The rule with label as < cash > indicates that if an event, ?Event of some type,

?Type is announced on a stock, ?Security and a client, ?Client is holding that

stock and he opt for cash option then he will receive the benefit of event in the

form of cash as per the announced rules of the event. Similarly, use-cases with

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 259

stock and both types of disbursements are represented through rules labeled as

stock and both, respectively. These are generic rules. Next, we have considered a
hypothetical scenario where in stakeholders from stock market, Mkt1 are of the

view that if “dividend” type of event is announced on the stock belonging to their

nation, then all customers shall get event’s benefits as stock only. This is

represented in the rule labeled as < divMkt1>. The rule with label < divMk2 >
indicates that dividend event announced will not entail any benefits to clients from

stock market Mkt2. The last rule is an exception to rule < divMkt1 > � it says

that if client hails from the stock market,Mkt5, then he is eligible for benefit in the
form of cash rather than stock. The above-mentioned rules were then verified

against facts from real-world as below:

event(11, dividend, samsung);
event(22, dividend, dell);
baseCntry(dell, US);
holds(abc, samsung);
holds(abc, dell);
holds(xyz, dell);
holds(pqr, dell);
clientCntry(xyz,Mkt2);
clientCntry(pqr, Mkt5);
opts(abc, both);
In the absence of any kind of prioritization among multiple views, we got the

validation results as:
distribute(pqr, 22, cash);
distribute(pqr, 22, stock);
distribute(xyz, 22, nothing);
distribute(xyz, 22, stock);
distribute(abc, 11, both);
distribute(abc, 22, both);
distribute(abc, 22, stock);
These results are not in line with what actual happens in the stock market as one

conclusion indicates no benefit to xyz for event 22; whereas next conclusion

points out stock benefit to the same client on the same event. When the multiple

views from stakeholders of different stock market were assigned priorities (that

can be easily modified or updated later on too), the results obtained were as per

the expected benefits disbursed to the client in stock market abiding terms and

conditions:

overrides(divMkt1Mkt5,divMkt2)
overrides(divMkt1Mkt5,divMkt1)
overrides(divMkt1Mkt5,cash)
overrides(divMkt1Mkt5,stock)
overrides(divMkt1Mkt5,both)
and similar rules for rest of the markets including the generic ones:
overrides(both,stock);
overrides(both,cash);

260 R. Sharma and K.K. Biswas

overrides(stock, cash);
MUTEX

distribute(?Client, ?EventId, ?Value1) AND
distribute(?Client, ?EventId, ?Value2)

GIVEN
notEquals(?Value1, ?Value2);

Validating the facts gathered earlier against the set of labeled rules and the

prioritized information, consistent and expected results were obtained as:

distribute(abc, 22, stock);
distribute(pqr, 22, cash);
distribute(abc, 11, both);
distribute(xyz, 22, nothing);

5. Maintainability and Traceability – As we’ve made our observation while

discussing point 2 that courteous logic-based requirements representation is

quite compact and preserves consistency (refer point 4), it can be said that this

representation is maintainable in nature. We’re further planning to refine the

proposed representations to take care of traceability as well.

6. Well understood by the involved parties –While carrying out our case study, we

worked in close collaboration with the analysts and the developers of the system.

We had to check with SMEs on account of any gap or ambiguity and, then, we

took our representation to developers. We found that none of the parties had

much difficulty in making sense of these representations. Developers found

these quite helpful as it was easier for them to relate observable behavior of

the system to the expected behavior. This observation led us to believe that our

approach should turn out to be practical, though we have to further test the

representations for practicability.

11.7 Related work

The use of use of logic for requirements representation has been acknowledged

earlier too and has found its place in several authors’ work. RML [11] is one of the

earliest logic-based formal requirements modeling language. HCLIE language [4]

is a predicate logic-based requirement representation language. It makes use of

Horn clause logic, augmented with multiple inheritances and exceptions. In case of

exceptions and contradictions, HCLIE refrains from generating any conclusion.

Description logic has also been used for representing requirements in [25].

Description logic is an expressive fragment of predicate logic and is good for

capturing ontology, whereas Horn clause logic is useful for capturing rules.

Description logic alone is not sufficient to express business requirements as

explored in [26]. Ordinary logic programming (OLP) lacks in conflict-handling or

non-monotonic reasoning. Business rules do present themselves with many

instances of conflict handling along with constraints and related events. To

capture business rules successfully, Horn clause logic needs to be augmented with

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 261

non-monotonic (/commonsense) reasoning as has been discussed in [5]. Default logic

has also been used for expressing requirements and resolving inconsistency in

requirements in [20]. The computational complexity of default logic is quite high,

and the default logic expressions are not simpler to comprehend by end users. We

have presented courteous logic-based representations toward the cause

11.8 Discussion and Conclusion

This chapter has addressed the challenge to establish correct business requirements,

i.e., free from inconsistency and incompleteness concerns. This is one of the

important and crucial issues in RE as incorrect and inconsistent requirements are

major contributors to project budget overruns and schedule slippage. Our approach

has been to find a suitable representation of business requirements that can help us

meet the challenge rather than finding some methodology to combat the challenge.

Having presented the case studies and their observations, we can now go back and

review our contributions. Our preliminary work has shown that courteous logic-based

requirements representation meets the consolidated set of desirable features for a

requirements specification language. We have presented scenarios from two case

studies here in domains varying in complexities and number of involved processes.

This reinforces our belief that courteous logic-based expressions of requirements are

scalable too. We have been able to derive domain model from natural language

sentences, and the model is verified during generation process by analyst’s

intervention. We have been able to demonstrate how this representation can prove

helpful in ensuring consistency and resolving conflicts and incompleteness in the

elicited requirements. We are now developing the framework based on courteous

logic representation for formal analysis of requirements as part of our future work.

References

1. IEEE Recommended Practice for Software Requirements Specifications, IEEE Std 830-1998,

pp 1–40, 20 Oct 1998, doi: 10.1109/IEEESTD.1998.88286

2. Zowghi D, Gervasi V (2003) On the interplay between consistency, completeness, and

correctness in requirements evolution. Inform Technol 45(14):993–1009

3. Zualkernan IA, Tsai WT (1988) Are knowledge representations the answer to requirements

analysis. In: Proceedings of the IEEE conference on computer languages (ICCL 1988),

pp 437–443. doi:10.1109/ICCL.1988.13094

4. Jeffrey J-PT, Weigert T (1991) HCLIE: a logic-based requirement language for new software

engineering paradigms. Softw Eng 6(4):137–151

5. Borgida A, Greenspan S, Mylopoulos J (1985) Knowledge representation as the basis for

requirements specifications. Computer 18(4):82–91. doi:10.1109/MC.1985.1662870

6. Tse TH, Pong L (1991) An examination of requirements specification languages. Comput J

34(2):doi:10.1093/com/jnl/34.2.143

262 R. Sharma and K.K. Biswas

http://dx.doi.org/10.1109/IEEESTD.1998.88286
http://dx.doi.org/10.1109/ICCL.1988.13094
http://dx.doi.org/10.1109/MC.1985.1662870

7. Svoboda CP (1990) Tutorial on structured analysis. In: Thayer RH, Dorfman M (eds) System

and software requirements engineering. IEEE Computer Press Society, Los Alamitos

8. Grady Booch Object-oriented analysis and design with applications, 2nd edn, Pearson

Education

9. Weston N, Chitchyan R, Rashid A (2008) A formal approach to semantic composition of

aspect-oriented requirements. In: Proceedings of the 16th IEEE international requirements

engineering conference, Barcelona, Spain, pp 173–182

10. Zave P, Jackson M (1997) Four dark corners of requirements engineering. ACM Trans

Softw Eng Methodol 6(1):1–30

11. Greenspan S, Borgida A, Mylopoulos J (1986) A requirements modeling language and its

logic. Inform Syst 11(1):9–23

12. Mylopoulos J, Borgida A, Jarke M, Koubarakis M (1990) Telos: representing knowledge about

information systems. ACM Trans Inform Syst 8(4):325–362

13. Dardenne A, van Lamsweerde A, Fickas S (1996) Goal directed requirements acquisition.

Sci Comput Program 28(4):623–643

14. Yu E (1997) Towards modelling and reasoning support for early-phase requirements engineering.

In: Proceedings of the 5th IEEE international requirements engineering conference, Maryland,

US, pp 226–235

15. Nuseibeh B (1996) To be and not to be: on managing inconsistency in software development.

In: Proceedings of the 8th IEEE international workshop on software specifications and design,

Germany, pp 164–169

16. Easterbook S, Nuseibeh B (1995) Managing inconsistencies in an evolving specification.

In: Proceedings of the 2nd international symposium on requirements engineering, UK,

pp 48–55

17. Balzer R (1991) Tolerating inconsistency. In: Proceedings of the 13th international conference

on software engineering, IEEE Computer Press, Texas, US, pp 158–165

18. Letier E, van Lamsweerde A (2002) Requirements analysis: deriving operational software

specifications from system goals. In: Proceedings of the 10th ACM SIGSOFT symposium on

foundations of software engineering. ACM Press, South Carolina, US, pp 119–128

19. Reiter R (1980) A logic for default reasoning. Artif Intell 13:81–132

20. Gervasi V, Zowghi D (2005) Reasoning about inconsistencies in natural language

requirements. ACM Trans Softw Eng Methodol 14(3):277–330

21. Nute D (2001) Defeasible logic. In: Proceedings of the international conference on

applications of prolog (INAP 2001), Tokyo, Japan, pp 87–114

22. Grosof, BN (1997) Courteous logic programs: prioritized conflict handling for rules. IBM

research report RC20836, IBM Research Division, T.J. Watson Research Centre

23. Grosof BN (2004) Representing E-commerce rules via situated courteous logic programs in

RuleML. Electron Comm Res Appl 3(1):2–20. doi:10.1016/j.elerap. 2003.09.005

24. http://nlp.stanford.edu/software/tagger.shtml

25. Zhang Y, Zhang W (2007) Description logic representation for requirement specification.

In: Proceedings of the international conference on computational science (ICCS 2007), Part II,

Springer-Verlag, Beijing, China, pp 1147–1154

26. Sharma R, Biswas KK (2011) Can ontologies be sufficient solution to requirements engineering

problem? In: Proceedings of the international conference on knowledge engineering and

ontology development (KEOD 2011)

11 Resolving Inconsistency and Incompleteness Issues in Software Requirements 263

http://dx.doi.org/10.1016/j.elerap. 2003.09.005
http://nlp.stanford.edu/software/tagger.shtml

Chapter 12

Automated Verification of Variability Model

Using First-Order Logic

A.O. Elfaki

Abstract Verification of the domain engineering is motivated by two reasons: (1)

the huge size of the software assets and (2) the possibility of changes in business

rules or in stakeholders’ needs which affect the structure of the domain engineering.

To solve this problem of verifying software product line (SPL), we propose set of

rules to verify four operations: inconsistency detection, inconsistency prevention,

dead feature detection, and false-optional feature detection. Scalability is a key

factor in measuring the applicability of the methods dealing with the domain

engineering. We generated experiments for testing the scalability of our approach.

Our experiments results show that our approach is scalable.

12.1 Introduction

Software product line consists of two processes: the domain engineering and the

application engineering. Application engineering is responsible for configuring new

software products. Domain engineering is responsible for collecting all the software

assets (such as requirements, specification reports, functions, procedures, components,

and test cases) in a specific business domain. In addition, data in domain engineering

are classified and grouped in a way that allows the development of a specific software

product based on the reuse of these software assets. The development of the domain

engineering is a continuous process in which the adding or updating of software assets

could happen at any time.

A.O. Elfaki (*)

Management and Science University, Shah Alam, Malaysia

e-mail: abdelrahmanelfaki@gmail.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_12, # Springer-Verlag Berlin Heidelberg 2013

265

mailto:abdelrahmanelfaki@gmail.com

In SPL, a successful software product is highly dependent on the validity of an

SPL. Hence, verification is a significant process within SPL. Recently, verification

of SPL has been discussed as an important issue, and research has focused on the

maturity of SPL [1–5]. Mannion [6] defines verification in SPL as a mechanism that

is used to ensure that an SPL can produce at least one product that can satisfy the

constraint dependency rules. Lan et al. [7] define verification in SPL as a mecha-

nism to check if the configuration output satisfies corresponding variability

constraints (in a specific domain) or not. In this chapter, we define verification as

a method used to ensure the correctness of assets in the domain engineering.

Usually, a medium-sized domain engineering contains thousands of software assets

with constraint dependency rules among them. Therefore, validating domain engi-

neering represents a challenge. The verification of the feature model (FM) (one of the

accepted SPL modeling techniques) has already been identified as a critical task in

Batory et al. [8], Massen and Litcher [9, 10], and Czarnecki and Eisenecker[11].

Domain engineering is a continuous process; when there are new assets, these

are added to the existing assets. Cumulative aggregation for the software assets may

produce some errors. The grouping of assets may be made at different times and by

different groups of people. In some cases, there is a parallel development process,

that is, several people add assets to develop domain engineering at the same time.

The verification of SPL is a vital process, and it is not feasible that it be done

manually. For all the above reasons, verification of domain engineering is a

necessity. In this chapter, a set of rules is introduced for validating domain

engineering. The proposed rules guide SPL engineers by detecting errors and

anomalies in the domain-engineering process.

In Elfaki et al. [12], a new variability modeling technique is suggested as a

prerequisite process for our approach. The proposed variability modeling technique

is based on two layers. The first layer is a graphical representation, which consists

of merging the feature model (FM) [13] with the orthogonal variability model

(OVM) [14]. The lower layer is a mathematical representation, in which variability

is modeled using first-order logic predicates. Modeling SPL completely using the

proposed notations is the condition for implementing the verification rules.

Software requirements are the main and major component in the domain engi-

neering. Modeling the domain engineering is the main concern of variability

modeling technique. Therefore, this chapter introduces a novel approach to verify

software requirements in a variability model.

In this chapter, four verification operations are discussed. These operations are

as follows: inconsistency detection, inconsistency prevention, dead features detec-

tion, and false-optional features detection.

This chapter is organized as follows; introducing the verification operations is

taken place in Sect. 12.2. Scalability results are presented in Sect. 12.3. In

Sect. 12.4, we compare our work with the previous works. The chapter is concluded

in Sect. 12.5.

266 A.O. Elfaki

http://dx.doi.org/10.1007/978-3-642-34419-0_12

12.2 Automated Verification of the Variability Using

First-Order Logic Rules

12.2.1 The Operations

In an SPL, software assets are also known as features. In the proposed approach, a

feature has only two possibilities: variation point or variant.

Definition. Let fi denote a feature, VPi denote a variation point, and Vi denote a

variant, where i 2 I + .

Let us now examine the four verification operations in turn.

12.2.2 Inconsistency Detection

Inconsistency detection is introduced in Batory et al. [8] as a research challenge.

Inconsistency occurs because of contradictions in constraint dependency

rules. Inconsistency is the existence of relations between features that cannot be

true at the same time. For example, (A requires B) and (B excludes A), which means

selection of A must be followed by selection of B, but selection of B prevents

selection of A. Therefore, these relations cannot be true at the same time. An SPL

can contain complicated forms of inconsistency such as (f1 requires f2) and (f2

requires f3) and (f3 requires f4) and (f4 excludes f1). Another example is VP1

excludes VP2 and VP1 require V2, where VP1 and VP2 are variation points and V2

is a variant belongs to VP2. Inconsistency is very complicated because it takes

different forms. Inconsistency can occur between groups of features, individual

features, or between a group features and an individual feature. In the following, we

define three types of inconsistency, and logic rules (based on FOL) are developed to

detect all the defined types of inconsistency.

12.2.2.1 Forms of Inconsistency

We categorize inconsistency into three forms: direct inconsistency, indirect incon-

sistency, and inconsistency related to a common feature. In the following, these

forms of inconsistency are discussed, and the rules that detect each form are

illustrated.

1. Direct Inconsistency

In direct inconsistency, all features are of the same type: variation point or

variant. The relation (f1, f2) requires (f3, f4, f5) means the existence of both f1 and

f2 requires the existence of f3, f4, and f5 together. Direct inconsistency can be

divided in four groups:

12 Automated Verification of Variability Model Using First-Order Logic 267

Many-to-Many Inconsistency: Here, a set requires another set, while the required

set excludes the first one, for example, ((f1, f2, f3) requires (f4, f5, f6)) and ((f4, f5,

f6) excludes (f1, f2, f3)).

Many-to-One Inconsistency: A set of features has a constraint dependency relation

(require/exclude) with one feature, while this feature has a contradictory relation

to that set, for example, ((f1, f2, f3) requires f4) and (f4 excludes (f1, f2, f3)).

One-to-Many Inconsistency: One feature has a constraint dependency relation

(require/exclude) with a set of features, while this set has a contradictory relation

to that feature, for example, (f4 requires (f1, f2, f3)) and ((f1, f2, f3) excludes f4).

One-to-One Inconsistency: One feature has a constraint dependency with one

feature, while the second feature has a contradictory relation to the first feature,

for example, (f1 requires f2) and (f2 excludes f1).

Each type of direct inconsistency at the same time represents the type of

constraint relation. There are four types of constraint relation: many-to-many,

many-to-one, one-to-many, and one-to-one relations. All forms of constraint rela-

tion must be converted to a one-to-one relation as a prerequisite process for direct

inconsistency detection. In order to implement the conversion of the other forms of

constraint relation to a one-to-one relation, we use rule 1 which converts complex

constraints to direct constraints:

Let FA and FB denote two sets of features where fi 2 FA, fj 2 FB, (i, j) 2 I+,

FA \ FB ¼ Ø, and ℛ 2 {require, exclude}.

Table 12.1 demonstrates rule 1 and its three implementations. By using the

implementations of rule 1, all forms of the constraint relations will be converted to

one-to-one constraint relations.

There are three cases ((i), (ii), and (iii)) for the two sets:FA andFB. In case (i), the
number of elements in set FA is greater than 1, and the number of elements in FB is

also greater than 1. In case (ii), the number of elements in set FA is equal to 1, and

the number of elements in FB is greater than 1. In case (iii), the number of elements

in set FA is greater than 1, and the number of elements in set FB is equal to 1.

Case (i) converts many-to-many, case (ii) converts one-to-many, and case (iii)

converts many-to-one inconsistency.

Example 12.1 This example shows how the many-to-many constraint relation can

be converted to a one-to-one constraint relation. Suppose that an SPL has this form

of constraint: ((f1, f2, f3) requires (f4, f5)) and ((f4, f5) excludes (f1, f2)). This

constraint denotes that the existence of (f1, f2, f3) requires the existence of (f4, f5)

and the existence of (f4, f5) excludes the existence of (f1, f2). To convert this

complex constraint to a one-to-one constraint relation, first, this constraint must

Table 12.1 Rule 1 and its three implementations

FARFB ^ select ðFAÞ) ffiR fj j fi 2 FA and fj 2 FBg ð1Þ
jFAj > 1 ^ jFBj > 1 : many-to-many ðiÞ
jFAj ¼ 1 ^ jFBj > 1 : one-to-many ðiiÞ
jFAj > 1 ^ jFBj ¼ 1 : many-to-one ðiiiÞ

268 A.O. Elfaki

be restructured to be suitable for applying rule 1. Rule 1 must be applied for each

constraint relation, and this example has two constraint relations. Therefore, rule 1

must be applied to each one separately:

The first constraint is ((f1, f2, f3) requires (f4, f5)). Let FA represents (f1, f2, f3) and

FB represents (f4, f5). By searching for these predicates, select(f1), select(f2), and

select(f3), the existence of all elements of the set FA in the configuration is checked.

This searching implements the predicate select (FA) from rule 1. If all the elements

of FA are found, then the many-to-many constraint will be converted to a one-to-one

constraint. The new constraint is ((f1 requires f4), (f1requires f5), (f2 requires f4), (f2
requires f5), (f3 requires f4), and (f3 requires f5)).

The second constraint is ((f4, f5) excludes (f1, f2)). Let FA represents (f4, f5) and

FB represents (f1, f2). By searching for these predicates, select (f4), and select (f5),

the existence of all elements of the set FA in the configuration is checked. If all the

elements of FA are found, then the many-to-many constraint will be converted to a

one-to-one constraint. The new constraint is (f4 excludes f1), (f4 excludes f2), (f5
excludes f1), and (f5 excludes f2).

Table 12.2 shows the many-to-many relation constraint (from Example 1) and its

equivalent one-to-one relation constraint. The many-to-many inconsistency (case

(i)) is converted to a one-to-one inconsistency (case (ii)).

After converting all constraint relations to one-to-one relations, the rules in

Table 12.3 are used for detecting direct inconsistency. In Table 12.3, rule 2 is

used for detecting inconsistency between two variants, whereas rule 3 is used for

detecting inconsistency between two variation points.

There is no representation for the variation point-to-variant relation, because it

could be divided into variant-to-variant relations. As an example, imagine an SPL

has the following inconsistency: variation point VP requires variant V, and variant V

excludes variation point VP. The relation variant point VP requires variant V cannot

be implemented in our notations. Therefore, all features in the direct inconsistency

detection process are limited to being of the same type: variation point or variant.

Rules 2 and 3 trigger an error message that is sent to the user announcing an error in

the relations. The conversion of complex constraint relations to one-to-one relations

happens during configuration time. Hence, rules 2 and 3 detect all types of direct

Table 12.2 Many-to-many relation constraint and its equivalent one-to-one relation constraint

((f1, f2, f3) requires (f4, f5)) and ((f4, f5) excludes (f1, f2)). many-to-many

((f1 requires f4), (f1 requires f5), (f2 requires f4), (f2 requires f5),

(f3 requires f4), and (f3 requires f5), (f4 excludes f1), (f4 excludes f2),

(f5 excludes f1) and (f5 excludes f2)). one-to-one

Table 12.3 Rules for detecting direct inconsistency

Definitions

type(VP1,variationpoint),type(VP2,variationpoint),type(V1,variant),and type(V2,variant)

8V1;V2 : requires v vðV1;V2Þ ^ excludes v vðV2;V1Þ) error ð2Þ
8VP1;VP2 : requires vp vpðVP1;VP2Þ ^ excludes vp vpðVP2;VP1Þ) error ð3Þ

12 Automated Verification of Variability Model Using First-Order Logic 269

inconsistency during configuration time. Rules 2 and 3 can also be used to detect direct

inconsistency in domain engineering. In this case, rules 2 and 3 detect direct inconsis-

tency in domain engineering between two variants or two variation points only.

2. Indirect Inconsistency

We describe indirect inconsistency in general as the relationship between two

variation points and a contradictory relation (at the same time) between a variant

belonging to the first variation point and the second variation point or one of its

variants. The general patterns of indirect inconsistency are as follows:

2. VP1 requires VP2, and V1 excludes V2 where V1 and V2 are common.

3. VP1 requires VP2, and the common variant V1 excludes VP2.

4. VP1 excludes VP2, and V1 requires V2.

5. VP1 excludes VP2, and V1 requires VP2.

where type(V1,variant), type(V2,variant), type(VP1,variationpoint), type(VP2,

variationpoint), variants(VP1,V1), and variants(VP2,V2).

Table 12.4 shows the rules that are used for detecting indirect inconsistency.

Rules 4, 5, 6, and 7 detect indirect inconsistency denoted by the general pattern

numbers 1, 2, 3, and 4, respectively.

The rules in Table 12.4 can be applied directly to domain engineering for

detecting indirect inconsistency. Remember that domain engineering has already

been modeled as a knowledge base [12]. The output of these rules is an error

message which is sent to the user. In addition, these rules can be used to define the

source of inconsistency. For instance, rule 4 detects the indirect inconsistency that

is denoted by the general pattern number 1. Hence, modifying the output from rule 4

to be, for example, error_4 can lead to the detection of the incorrect relations that

have caused the indirect inconsistency.

3. Inconsistency Related to a Common Feature

In general, we define inconsistency related to a common feature as a feature
excludes a common feature. This inconsistency has two types: (1) full inconsistency
and (2) conditional inconsistency.

1. Full Inconsistency: The general pattern of full inconsistency is feature f1 is
common and feature f2 is common, and f1 excludes f2.

Using our proposed approach for modeling an SPL, there are three possibilities

for the exclusion relation: (1) variant excludes variant, (2) variant excludes varia-

tion point, and (3) variation point excludes variation point. Moreover, there are two

possibilities for a feature to be common: common variation point and common

variant belong to common variation point. Hence, the common possibilities must be

applied into both sides of the exclude relation to implement the general pattern of

full inconsistency (a common feature excludes another common feature). As an

example, in the exclude relation, “variant excludes variation point,” the variant

must be common variant belongs to common variation point and the variation point

must be common. Table 12.5 shows the rules that are used for detecting full

inconsistency.

270 A.O. Elfaki

T
a
b
le

1
2
.4

R
u
le
s
fo
r
d
et
ec
ti
n
g
in
d
ir
ec
t
in
co
n
si
st
en
cy

D
efi
n
it
io
n
s

ty
p
e(
V
P
1
,v
ar
ia
ti
o
n
p
o
in
t)
,
ty
p
e(
V
P
2
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
1
,v
ar
ia
n
t)
,
ty
p
e(
V
2
,v
ar
ia
n
t)
,
v
ar
in
ts
(V

P
1
,V

1
),
an
d
v
ar
ia
n
ts
(V

P
2
,V

2
)

8V
P
1
;V

P
2
;V

1
;V

2
:
re
q
u
ir
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

co
m
m
o
n
ðV

1
;y
es
Þ^

co
m
m
o
n
ðV

2
;y
es
Þ^

ex
cl
u
d
es

v
v
ðV

1
;V

2
Þ)

er
ro
r

ð4
Þ

8V
P
1
;V

P
2
;V

1
:
re
q
u
ir
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

co
m
m
o
n
ðV

1
;y
es
Þ^

ex
cl
u
d
es

v
v
p
ðV

1
;V

P
2
Þ)

er
ro
r

ð5
Þ

8V
P
1
;V

P
2
;V

1
:
ex
cl
u
d
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

re
q
u
ir
es

v
v
p
ðV

1
;V

P
2
Þ)

er
ro
r

ð6
Þ

8V
P
1
;V

P
2
;V

1
;V

2
:
ex
cl
u
d
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

re
q
u
ir
es

v
v
ðV

1
;V

2
Þ)

er
ro
r;

ð7
Þ

12 Automated Verification of Variability Model Using First-Order Logic 271

T
a
b
le

1
2
.5

R
u
le
s
fo
r
d
et
ec
ti
n
g
th
e
fu
ll
in
co
n
si
st
en
cy

D
efi
n
it
io
n
s

ty
p
e(
V
P
1
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
P
2
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
1
,v
ar
ia
n
t)
,t
y
p
e(
V
2
,v
ar
ia
n
t)
,v
ar
ia
n
ts
(V

P
1
,V

1
),
an
d
v
ar
ia
n
ts
(V

P
2
,V

2
)

8V
P
1
;V
P
2
:
ex
cl
u
d
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

co
m
m
o
n
ðV

P
1
;y
es
Þ^

co
m
m
o
n
ðV

P
2
;y
es
Þ)

er
ro
r

ð8
Þ

8V
P
1
;V
P
2
;V

1
:
co
m
m
o
n
ðV

P
1
;
y
es
Þ^

co
m
m
o
n
ðV

1
;
y
es
Þ^

co
m
m
o
n
ðV

P
2
;
y
es
Þ^

ex
cl
u
d
es

v
v
p
ðV

1
;V

P
2
Þ)

er
ro
r

ð9
Þ

8V
P
1
;V
P
2
;V

1
;V

2
:
co
m
m
o
n
ðV

P
1
;y
es
Þ^

co
m
m
o
n
ðV

1
;y
es
Þ^

co
m
m
o
n
ðV

P
2
;y
es
Þ^
^c

o
m
m
o
n
ðV

P
2
;y
es
Þ^

ex
cl
u
d
es

v
v
ðV

1
;V

2
Þ)

er
ro
r

ð1
0
Þ

272 A.O. Elfaki

In Table 12.5, rule 8 illustrates a common variation point excludes another

common variation point, rule 9 illustrates a common variant belongs to a common

variation point excludes common variation point, and rule 10 illustrates a common

variant belongs to a common variation point excludes another common variant that

belongs to another common variation point.

2. Conditional Inconsistency

The general pattern of conditional inconsistency is feature f1 is not common and
feature f2 is common, and f1 excludes f2. The only difference between this type and

full inconsistency is that in conditional inconsistency, the first feature is not

common. This type of inconsistency happens only if the first feature is selected.

Table 12.6 shows the rules that are used for detecting conditional inconsistency.

Rule 10 illustrates a not common variation point excludes a common variation

point, rule 12 illustrates a common variant belongs to a not common variation point

excludes common variation point, and rule 13 illustrates a common variant belongs

to a not common variation point excludes another common variant that belongs to

another common variation point. The rules in Tables 12.3, 12.4, 12.5, and 12.6

could be applied directly to check inconsistency in domain engineering. As men-

tioned earlier, these rules can also be used to find the source of inconsistency, that

is, the incorrect constraint relations.

12.2.3 Inconsistency Prevention

In this operation, new constraint dependency rules are developed to avoid or

prevent direct inconsistency. The general patterns of inconsistency prevention are

as follows:

1. (f1 require f2) and (f2 require f3)) f1 require f3
2. (f1 require f2) and (f2 exclude f3)) f1 exclude f3

Example 12.2 This example is provided in order to clarify the advantage of general

pattern number 1. In general pattern number 1, if feature f1 requires feature f2 and f2
requires feature f3, then the new constraint rule (f1 requires f3) will be added to the

domain-engineering process. This new rule solves the following inconsistency:

imagine that an SPL also has this relation – f3 excludes f1. Before applying our

rules, the constraint relations in this SPL are f1 requires f2, f2 requires f3, and f3
excludes f1. It is very difficult to detect this inconsistency. After adding the new rule

(f1 requires f3), the constraint relations in this SPL become f1 requires f2, f2 requires

f3, f3 excludes f1, and f1 requires f3. The inconsistency now becomes a direct

inconsistency between features: f1 and f3, and it could be detected using rule 2 or

rule 3. If the feature type is a variant, then rule 1 will detect the direct inconsistency.

If the feature type is a variation point, then rule 2 will detect the direct

inconsistency.

12 Automated Verification of Variability Model Using First-Order Logic 273

T
a
b
le

1
2
.6

R
u
le
s
fo
r
d
et
ec
ti
n
g
co
n
d
it
io
n
al

in
co
n
si
st
en
cy

D
efi
n
it
io
n
s

ty
p
e(
V
P
1
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
P
2
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
1
,v
ar
ia
n
t)
,
ty
p
e(
V
2
,v
ar
ia
n
t)
,v
ar
ia
n
ts
(V

P
1
,V

1
),
an
d
v
ar
ia
n
ts
(V

P
2
,V

2
)

8V
P
1
;V

P
2
:
ex
cl
u
d
es

V
P
V
P
ðV

P
1
;V

P
2
Þ^

co
m
m
o
n
ðV

P
1
;n
o
Þ
co
m
m
o
n
ðV

P
2
;y
es
Þ)

er
ro
r

ð1
1
Þ

8V
P
1
;V

P
2
;V

1
:
co
m
m
o
n
ðV

1
;y
es
Þ^

co
m
m
o
n
ðV

P
2
;y
es
Þ^

co
m
m
o
n
ðV

P
1
;n
o
Þ^

ex
cl
u
d
es

v
v
p
ðV

1
;V

P
2
Þ)

er
ro
r

ð1
2
Þ

8V
P
1
;V

P
2
;V

1
;V

2
:
co
m
m
o
n
ðV

P
1
;n
o
Þ^

co
m
m
o
n
ðV

1
;y
es
Þ^

co
m
m
o
n
ðV

P
2
;y
es
Þ^

co
m
m
o
n
ðV

2
;y
es
Þ^

ex
cl
u
d
es

v
v
ðV

1
;V

2
Þ)

er
ro
r

ð1
3
Þ

274 A.O. Elfaki

Example 12.3 This example is provided to clarify the advantage of general pattern

number 2. In general pattern number 2, if the feature f1 requires the feature f2 and f2
excludes f3, then the new constraint rule (f1 excludes f3) will be added to the

domain-engineering process. The new rule is added to avoid direct inconsistency.

As an example, suppose an SPL also has this constraint relation: f3 requires f1.

Before applying our rules, the constraint relations in this SPL are f1 requires f2, f2
excludes f3, and f3 requires f1. This inconsistency is not easy to detect. After adding

the new constraint rule, the constraint relations become f1 requires f2, f2 excludes f3,

f3 requires f1, and f1 excludes f3. Rules 1 and 2 could then be used to detect the

following direct inconsistency: (f3 requires f1, and f1 excludes f3).

Table 12.7 explains all the possibilities of general patterns 1 and 2. The term “V”

represents variant, and the term “VP” represents variation point; the word “yes”

denotes that this possibility can be implemented, and the word “no” denotes that

this possibility cannot be implemented. The relation (variation point-variant) has no

place in our proposed approach. Therefore, general patterns 1 and 2 could be

implemented using only four possibilities (1, 2, 3, 8).

Applying our notations, the first general pattern becomes:

V1 requires V2 and V2 requires V3) V1 req V3

VP1 requires VP2 and VP2 requires VP3) VP1 req V3

V1 requires VP1 and VP1 requires VP2) V1 req VP2
V1 requires V2 and V2 requires VP1) V1 req VP1

Applying our notations, the second general pattern becomes:

V1 requires V2 and V2 excludes V3) V1 exc V3

VP1 requires VP2 and VP2 excludes VP3) VP1 exc VP3
V1 requires VP1 and VP1 excludes VP2) V1 exc VP2
V1 requires V2 and V2 excludes VP1) V1 exc VP1

Table 12.8 shows the rules that are used for implementing the first pattern, and

Table 12.9 shows the rules that are used for implementing the second pattern in the

inconsistency prevention operation.

The rules in Tables 12.8 and 12.9 are applied directly to the domain-engineering

process to prevent direct inconsistency.

Table 12.7 All possibilities

for patterns 1 and 2
f1 f2 f3 Applicability

1 V V V Yes

2 VP VP VP Yes

3 V VP VP Yes

4 VP V VP No

5 VP VP V No

6 VP V V No

7 V VP V No

8 V V VP Yes

12 Automated Verification of Variability Model Using First-Order Logic 275

T
a
b
le

1
2
.8

Im
p
le
m
en
ta
ti
o
n
o
f
th
e
fi
rs
t
p
at
te
rn

in
in
co
n
si
st
en
cy

p
re
v
en
ti
o
n

D
efi
n
it
io
n
s

ty
p
e(
V
P
1
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
P
2
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
P
3
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
1
,v
ar
ia
n
t)
,
ty
p
e(
V
2
,v
ar
ia
n
t)
,
an
d
ty
p
e(
V
3
,v
ar
ia
n
t)

8V
1
;V

2
;V

3
:
re
q
u
ir
es

v
v
ðV

1
;V

2
Þ^

re
q
u
ir
es

v
v
ðV

2
;V

3
Þ)

re
q
u
ir
es

v
v
ðV

1
;V

3
Þ

ð1
4
Þ

8V
P
1
;V

P
2
;V

P
3
:
re
q
u
ir
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

re
q
u
ir
es

v
p
v
p
ðV

P
2
;V

P
3
Þ)

re
q
u
ir
es

v
p
v
p
ðV

P
1
;V

P
3
Þ

ð1
5
Þ

8V
1
;V

P
1
;V

P
2
:
re
q
u
ir
es

v
v
p
ðV

1
;V

P
1
Þ^

re
q
u
ir
es

v
p
v
p
ðV

P
1
;V

P
2
Þ)

re
q
u
ir
es

v
v
p
ðV

1
;V

P
2
Þ

ð1
6
Þ

8V
1
;V

2
;V

P
1
:
re
q
u
ir
es

v
v
ðV

1
;V

2
Þ^

re
q
u
ir
es

v
v
p
ðV

2
;V

P
1
Þ)

re
q
u
ir
es

v
v
p
ðV

1
;V

P
1
Þ

ð1
7
Þ

276 A.O. Elfaki

T
a
b
le

1
2
.9

Im
p
le
m
en
ta
ti
o
n
o
f
th
e
se
co
n
d
p
at
te
rn

in
in
co
n
si
st
en
cy

p
re
v
en
ti
o
n

D
efi
n
it
io
n
s

ty
p
e(
V
P
1
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
P
2
,v
ar
ia
ti
o
n
p
o
in
t)
,t
y
p
e(
V
P
3
,v
ar
ia
ti
o
n
p
o
in
t)
,
ty
p
e(
V
1
,v
ar
ia
n
t)
,
ty
p
e(
V
2
,v
ar
ia
n
t)
,
an
d
ty
p
e(
V
3
,v
ar
ia
n
t)

8V
1
;V

2
;V

3
:
re
q
u
ir
es

v
v
V

1
;V

2
ð

Þ^
ex
cl
u
d
es

v
v
V

2
;V

3
ð

Þ)
ex
cl
u
d
es

v
v
V

1
;V

3
ð

Þ
ð1
8
Þ

8V
P
1
;V

P
2
;V

P
3
:
re
q
u
ir
es

v
p
v
p
ðV

P
1
;V

P
2
Þ^

ex
cl
u
d
es

v
p
v
p
ðV

P
2
;V

P
3
Þ)

ex
cl
u
d
es

v
p
v
p
ðV

P
1
;V

P
3
Þ

ð1
9
Þ

8V
1
;V

2
;V

P
1
:
re
q
u
ir
es

v
v
ðV

1
;V

2
Þ^

ex
cl
u
d
es

v
v
p
ðV

2
;V

P
1
Þ)

ex
lu
d
es

v
v
p
ðV

1
;V

P
1
Þ

ð2
0
Þ

8V
1
;V

P
1
;V

P
2
:
re
q
u
ir
e
v
v
p
ðV

1
;V

P
1
Þ^

ex
cl
u
d
es

v
p
v
p
ðV

P
1
;V

P
2
Þ)

ex
cl
u
d
es

v
v
p
ðV

1
;V

P
2
Þ

ð2
1
Þ

12 Automated Verification of Variability Model Using First-Order Logic 277

12.2.4 Dead Feature Detection

A dead feature is defined in Czarnecki and Kim [15] as a frequent case of error in

the FM. A dead feature is a feature that never appears in any legal product of an

SPL. The only reason to prevent a feature from being included in any product is that

there is a common feature that excludes this feature. As previously stated, in our

proposed notations, the term “feature” has only two possibilities: variation point or

variant. Therefore, this operation detects dead variants or dead variation points.

We define the general pattern for describing a dead feature as feature f1 excludes
feature f2, and feature f1 is common, and then feature f2 is a dead feature. This
exclusion could be indirect or direct.

1. Dead Feature Caused by Indirect Exclusion

In indirect exclusion, a common feature requires another feature, and the

required feature is the only choice that is allowed to be selected from its variation

point. From this definition, it is clear that the type of required feature must be a

variant because it belongs to a variation point. In this case, where the required

feature is a variant, the requiring feature must be also a variant because there is no

variation point-to-variant relation. Now, the definition of indirect exclusion

becomes a common variant requires another variant which is the only variant that

is allowed to be selected from its variation point. The other variants that share the

variation point with the required variant are dead variants because they cannot be

included in any product.

Figure 12.1 shows examples of indirect exclusion. In Fig. 12.1 a, there are three

facts: (1) the variant V1 is a common variant belonging to a common variation point

VP1, which means V1 must be included in all products; (2) the maximum number of

Common

Common

Common

Common

Require

1..1

Common

Common

Require
Require

1..2

VP1

V1

VP1

V5

VP2

V3 V2 V4

V6

VP3

V2

VP2

V3

b

a

Fig. 12.1 Examples of dead features caused by indirect exclusion

278 A.O. Elfaki

variants allowed to be selected from VP2 is 1; and (3) the common variant V1

requires the variant V3 which belongs to the variation point VP2. Hence, V3 will be

selected in all products, whereas variant V2 will never be included in any product.

Therefore, variant V2 is a dead variant caused by indirect exclusion. In Fig. 12.1 b,

the maximum number of variants allowed to be selected from VP2 is 2. The variants

V3 and V4 are required by common variants V5 and V6 which belong to common

variation points VP1 and VP3. Therefore, V3 and V4 must be included in any

product. Again, variant V2 is a dead variant caused by indirect exclusion.

Table 12.10 shows the rule that is used for detecting a dead variant caused by

indirect exclusion. Rule 22 states that if there is a variation point (VP2) and a

number of its variants are required by common variants that belong to common

variation points and this number is equal to the maximum number allowed to be

selected from this variation point (VP2), then the rest of variants of the variation

point (VP2) are dead variants.

2. Dead Feature Caused by Direct Exclusion

This type of dead feature is caused by direct exclusion between a common feature

and a dead feature. There are three possibilities for the exclusion relations: variant

excludes another variant, variant excludes variation point, and variation point

excludes another variation point. Table 12.11 shows the rules that are used for

detecting dead variants caused by direct exclusion. Rule 23 states that if the common

variation point VP1 excludes the variation point VP2, then VP2 is a dead variation

point. All variants belonging to a dead variation point are dead variants. Therefore,

V2 in rule 23 is a dead variant. In rule 24, a common variant (V1) belonging to a

common variation point (VP1) excludes another variants (V2). Hence, V2 is a dead

variant. In rule 25, if a common variant belongs to a common variation point that

excludes a variation point (VP2), then this variation point is a dead variation point. All

variants belonging to a dead variation point are dead variants.

12.2.5 False-Optional Feature Detection

A feature is false optional if it is included in all the products of an SPL despite not

being modeled as a common feature [16]. The general pattern to describe false-

optional feature detection is feature f1 is common, and requires feature f2, and
feature f2 is not common.

As mentioned earlier, there are three implementations for the require relation:

variant requires another variant, variant requires variation point, and variation point

requires another variation point. Table 12.12 shows the rules for detecting the false-

optional variants and false-optional variation points. Rule 26 shows that if a common

variant which belongs to common variation requires a non-common variant, then the

required variant is a false-optional variant. Rules 27 and 28 detect false-optional

variation points. In this case, it is clear that all the common variants belonging to the

12 Automated Verification of Variability Model Using First-Order Logic 279

T
a
b
le

1
2
.1
0

R
u
le

fo
r
d
et
ec
ti
n
g
d
ea
d
fe
at
u
re
s
ca
u
se
d
b
y
in
d
ir
ec
t
ex
cl
u
si
o
n

D
efi
n
it
io
n
s

(V
1
,v
ar
ia
n
t)
,(
V
2
,v
ar
ia
n
t)
,(
V
3
,v
ar
ia
n
t)
,t
y
p
e(
V
P
1
,v
ar
it
io
n
p
o
in
t)
,t
y
p
e(
V
P
2
,v
ar
ia
ti
o
n
p
o
in
t)
,
v
ar
ia
n
ts
(V

P
1
,V

1
),
v
ar
ia
n
ts
(V

P
2
,V

2
)
an
d
v
ar
ia
n
ts
(V

P
2
,V

3
)

8V
1
;V

2
;V

P
1
;V

P
2
:
co
m
m
o
n
ðV

P
1
;y
es
Þ^

co
m
m
o
n
ðV

1
;y
es
Þ^
ðre

q
u
ir
es

v
v
ðV

1
;V

2
Þ¼

m
ax
ðV

P
2
;n
ÞÞ
)

d
ea
d
v
ar
ia
n
tðV

3
Þ

ð2
2
Þ

280 A.O. Elfaki

false-optional variation point are false-optional variants. Rule 29 explains how to

detect the common variants belonging to the false-optional variation point.

In this chapter, we have discussed four problems and explained how they can be

detected and handled by the FOL rules. These problems can be divided in two

groups: severe and light issues. Inconsistency is a severe problem. Dead feature and

false-optional are light problems. The problems classified under severe issues are

critical problems and must be handled to ensure generation of valid products.

Although valid software products with light issue problems can be generated,

handling and removing these problems ensures the maturity and increases the

maintainability of the domain-engineering process.

Each operation could be applied alone. For example, if we want to detect only

inconsistency in domain engineering, rules 1 to 13 could be used to find the

inconsistency. In addition, all these rules could also be applied together. There is

no direct relation between these rules, that is, each rule is completely independent.

12.3 Scalability Testing

Usually, a medium-sized SPL has a huge amount of software assets, and there are

complex dependency relations between these assets. Therefore, scalability is a key

factor in measuring the applicability of the modeling techniques that deal with

variability in an SPL [17, 18].

Table 12.11 Rules for detecting dead variants caused by direct exclusion

Definitions

type(VP1,variationpoint),type(VP2,variationpoint),type(V1,variant), type(V2,variant),

variants(VP1,V1), and variants(VP2,V2)

8VP1;VP2;V2 : commonðVP1; yesÞ ^ excludes vp vpðVP1;VP2Þ ^ variantsðVP2;V2Þ
) dead variantðV2Þ ð23Þ

8VP1;V1;V2 : commonðVP1; yesÞ ^ commonðV1; yesÞ ^ excludes v vðV1;V2Þ
) dead variantðV2Þ ð24Þ

8VP1;VP2;V1;V2 : commonðVP1; yesÞ ^ commonðV1; yesÞ ^ excludes v vpðV1;VP2Þ
^ variantsðVP2;V2Þ) dead variantðV2Þ ð25Þ

Table 12.12 Rules for detecting false-optional features

Definitions

type(V1,variant),type(V2,variant),type(VP1,variationpoint),type(VP2,variationpoint) variants

(VP1,V1), variants(VP2,V2), common(V1,yes), and common(VP1,yes)

8VP2;V1;V2 : requires v vðV1;V2Þ ^ commonðV2; noÞ) false optionðV2Þ ð26Þ
8VP2;VP1 : requires vp vpðVP1;VP2Þ ^ commonðVP2; noÞ) false optionðVP2Þ ð27Þ
8VP2;V1 : requires v vpðV1;VP2Þ ^ commonðVP2; noÞ) false optionðVP2Þ ð28Þ
8VP2;V2 : false optionðVP2Þ ^ commonðV2; noÞ) false optionðV2Þ ð29Þ

12 Automated Verification of Variability Model Using First-Order Logic 281

In general, a system is considered scalable for a specific problem if it can solve

that problem in a reasonable time. The scalability test is an important criterion for

testing performance because even a small SPL will grow in size over time.

In order to test the scalability of our approach, we implement our proposed

verification operations in SPLs of different sizes. Our experiments start with

domain engineering containing 1,000 assets and end with domain engineering

containing 20,000 assets. Compared with the ranges reported in the literature, to

the best of our knowledge, our range is the biggest tested. The principal aim of this

section is to demonstrate that our approach could be applicable for industrial SPLs.

12.3.1 Experiment: The Method

SPL data are considered to be business secrets; therefore, many researchers evalu-

ate their work using synthetic data. There are many methods that are used empirical

results to test scalability by generating artificial data, such as Trinidad et al. [19] and

White et al. [20]. According to these methods, the output time is considered a key

measurement for scalability experiments. In this chapter, we follow the same

concept and test the scalability of our approach using artificial data.

In the following, the method of our experiments is described:

Define the Assumptions: We have one assumption: each variation point and variant

has a unique name.

Generate the Domain Engineering as a Dataset: Domain engineering is generated in

terms of predicates (variation points and variants). We generated four sets

containing 1,000, 5,000, 15,000, and 20,000 variants. Variants are defined as

numbers represented in sequential order, for example, in the first set (1,000

variants), the variants are 1, 2, 3,. . ., 1,000, and in the last set (20,000 variants),

the variants are 1, 2, 3,. . ., 20,000. The number of variation points in each set is

equal to the number of variants divided by five, which means each variation point

has five variants. As an example, in the first set (5,000 variants), the number of

variation points equals 1,000. Each variation point is defined as a sequence number

having the term VP as a prefix, for example, VP12.

Set the Parameters: The main parameters that are used in our experiments are the

number of variants and the number of variation points. The remaining

parameters are the following: common variants, common variation points,

variant requires variant, variant excludes variant, variation point requires varia-

tion point, variation point excludes variation points, variant requires variation

point, and variant excludes variation point. These eight parameters are defined

randomly as a percentage of the number of variants or variation points. Three

ratios are defined: 10 %, 25 %, and 50 %. The number of parameters related to

the variant, such as common variant, variant requires variant, variant excludes

variant, variant requires variation point, and variant excludes variation point, is

defined as a percentage of the number of variants. The number of parameters

282 A.O. Elfaki

related to the variation point, such as variation point requires variation point, is

defined as a percentage of the number of variation points. As an example, in the

dataset that contains 1,000 variants (note that in the dataset that contains 1,000

variants, there are 200 variation points) and in the ratio 10 %, the number of each

parameter related to the variant is 100 and number of each parameter related to

the variation point is 20, that is, 100 variants require 100 variants, 100 variants

exclude 100 variants, 20 variants require 20 variation points, 20 variants exclude

20 variation points, 20 variation points require 20 variation points, 20 variation

points exclude 20 variation points, 100 common variants, and 20 common

variation points. The variants and variation points that are included in these

constraint relations are selected randomly. The variants are selected randomly

from 1 to 1,000, and the variation points are selected randomly from 1 to 200.

Table 12.13 represents snapshots of the experimental dataset, that is, the domain

engineering used in our experiments.

Calculate Output: For each set, we conducted 30 experiments and calculated the

execution time as an average. The experiments were performed for the range of

1,000–20,000 variants and the percentage ratio of 10 %, 25 %, and 50 %.

12.3.2 Scalability Result of Inconsistency Detection Experiments

Inconsistency in the SPL is a relationship between features that cannot be true at the

same time. In Sect. 12.2, we have defined three types of inconsistency: direct,

indirect, and inconsistency between common feature. The rules of detecting incon-

sistency are combined in one program to calculate the scalability of inconsistency

detection. Table 12.14 shows a snapshot of the inconsistency detection program.

The outputs of this program are messages that explain the type of inconsistency and

variants or variation points that create the inconsistency.

Figure 12.2 illustrates the average execution time to detect inconsistency in an

SPL with a range of 1,000–20,000 variants. The other parameters are defined as

three ratios: 10 %, 25 %, and 50 %.

Table 12.13 Snapshot of the

experimental dataset
type(vp1,variationpoint)

type(1,variant)

variants(vp1,1)

common(570,yes)

Common(vp123,yes)

requires_v_v(7552,2517)

requires_vp_vp(vp1572,vp1011)

excludes_vp_vp(vp759,vp134)

excludes_v_v(219,2740)

requires_v_vp(3067,vp46)

excludes_v_vp(5654,vp1673)

12 Automated Verification of Variability Model Using First-Order Logic 283

12.3.3 Scalability Result of Inconsistency Prevention Experiments

According to the specific constraint dependency rules that are defined in Sect. 12.3,

new dependency rules (require/exclude) should be added to the domain engineering

to prevent inconsistency. The rules in Tables 12.8 and 12.9 are combined together

in one program to prevent inconsistency. The output of this program is new

constraint rules which update the domain engineering directly. Figure 12.3

illustrates the average execution time to prevent inconsistency in an SPL with a

range of 1,000–20,000 variants.

12.3.4 Scalability Result of Dead Feature Detection Experiments

A dead feature is a feature that never appears in any legal product of an SPL. The

rules of detecting dead features are combined in one program to detect dead

Table 12.14 Snapshot of inconsistency detection program

direct_inconsistecy_rule4.6

type(X,variant), type(Y,variant), requires_v_v(X,Y), excludes_v_v(Y,X)

write(‘direct_inconsistecy_rule4.6’),nl,

write(‘inconsistency between’),write(X),write(‘. . .and....’),write(Y),

nl, fail, main

direct_inconsistecy_case_one:- true

0

20

40

60

80

100

120

Variants

T
im

e
(S

ec
)

10%

25%

50%

10% 0.193 4.89 19.5 78.222

25% 0.212 5.265 21.013 84.415

50% 0.246 6.024 24.156 97.309

1000 5000 1E+04 2E+04

Fig. 12.2 Inconsistency detection: scalability results

284 A.O. Elfaki

features. This program searches for dead features within the domain engineering.

Figure 12.4 illustrates the average execution time. The output of each experiment is

a result file containing the dead variants.

12.3.5 Scalability Result of False-Optional Feature Detection
Experiments

Figure 12.5 illustrates the average execution time. The output of each experiment is

a result file containing the false-optional features.

12.4 Contributions of the Research and Comparison with

Previous Works

Our methodology defines a general pattern for each verification operation in order

to handle verification of an SPL. These definitions of the general patterns formulate

the problems and allow the FOL rules to deduce the results from predefined cases.

0

20

40

60

80

Variants

T
im

e
(S

ec
)

10%

25%

50%

10% 0.096 0.722 1.706 2.687

25% 0.684 4.444 10.872 17.021

50% 2.853 19.515 34.637 67.515

1000 5000 1E+04 2E+04

Fig. 12.3 Inconsistency prevention: scalability results

12 Automated Verification of Variability Model Using First-Order Logic 285

0

20

40

60

80

100

120

140

160

180

200

220

Variants

T
im

e
(S

ec
)

10%

25%

50%

10% 0.234 5.775 23.103 95.275

25% 0.297 7.853 31.487 131.506

50% 0.484 11.981 48.137 205.393

1000 5000 1E+04 2E+04

Fig. 12.4 Dead feature detection: scalability results

240

220

200

180

160

140

120

100

80

60

40
20

0
1000

0.375

0.422

0.546

10%

25%

50%

5000

9.641

10.922
13.704

Variants

56.281

1E+04

38.828

44.188

2E+04

156.156

174.89

221.516

10%
25%

50%

T
im

e
(S

ec
)

Fig. 12.5 False-optional

feature detection: scalability

results

286 A.O. Elfaki

In the following, we discuss each operation and highlight our contributions this area

of research:

Inconsistency Detection: In this chapter, we analyze the inconsistency problem and

define three types of inconsistency. First-order logic rules are developed in order

to detect inconsistency in the domain-engineering process. The definition of the

three types of inconsistency and the detection of inconsistency in the domain-

engineering process are our contributions to the literature in respect of this

operation. In the literature, only direct inconsistency is detected at the configu-

ration stage [20, 21].

Inconsistency Prevention: To the best of our knowledge, this is the first time this

operation has been implemented with the aim of preventing direct inconsistency

in the domain-engineering process. This is another contribution to this field of

research.

Dead Features Detection: Trinidad et al. [22, 23] developed a method to detect

dead features based on finding all products and searching for the not used

features. Trinidad and Ruiz-Cortes [24] used abductive reasoning to explain

the dead features using the same concept of Trinidad et al. [22, 23]. Finding

all products from the SPL is very tough operation, and it is not feasible in big

SPL [16]. Thus, Trinidad et al.’s [22, 23] method is not a practical solution.

Our approach detects dead features by searching only for predefined cases,

which means defining dead features in the domain-engineering process with-

out implementing the configuration process. Our approach needs less cost.

False-Optional Features Detection: In the literature, detecting false-optional

features is based on finding all products and searching for common features

that are not assigned as common [22]. As it mentioned before, finding all

products is not practical solution. Using our approach, false-optional features

could be detected in the domain-engineering process based on predefined cases.

Thurimella and Janzen [25] are verifying the configuration process and the

constraint relation between the features during the configuration (selecting

features of specific product). Our work is focusing to verify the variability

model in the domain engineering.

12.5 Conclusion

The benefits of using an SPL have been proved in both the academic and industrial

domains. Although a huge amount of research work in the area of the SPL has

already been undertaken, the automated analysis of the SPL is still a “hot” area of

research [4]. In this research, we introduce an approach for the automated verifica-

tion of domain-engineering process using FOL rules.

The problems that are discussed in this research could be found in any SPL

regardless of the technique used for modeling variability. Inconsistency, dead

features, and false-optional features could occur in an SPL due to the wrong

usage of constraint dependency rules. Although these problems are very clear in

12 Automated Verification of Variability Model Using First-Order Logic 287

both the FM and the OVM, it still could occur in all types of variability modeling

techniques. Since any SPL has a group of features (by which we mean software

assets) that are collected in the domain-engineering process, wrong usage of the

dependency rules leads to these problems.

In respect of the scalability results of the domain engineering, we conducted

experiments for SPLs with ranges of up to 20,000 variants and up to 50 % of

constraint dependency rules, and we were able to obtain results in a good time.

White et al. [20] scaled their work by 5,000 features in 1 min. In Segura [26], the

execution time for 200–300 features is 20 min after applying atomic sets to enhance

the scalability. When compared to the literature, it can be seen that our proposed

method is scalable. The scalability of our approach is good enough when compared

with the literature because we first define special patterns and later the system

searches only for these patterns. As a consequence, the searching time is acceptable.

Our approach is limited to work only in a certain environment, that is, where

constraint dependency rules are well known in all cases. In some SPL, constraint

dependency rules are different from product to product. We called these types of

SPL as uncertain SPL environments. For future work, our approach could be

extended to handle uncertain SPL environments using case-based reasoning. In

domain engineering, our approach is used to detect inconsistency, dead features,

and false-optional features. As a future extension of this work, some new rules

could be developed for auto-correction of these errors.

References

1. Benavides D, Ruiz-Cortés A, Batory D, Heymans P (2008) Opining introduction. In: First

international workshop on analyses of software product lines (ASPL’08), Limerick

2. Benavides D, Metzger A, Eisenecker U (2009) Opining introduction. In: Third international

workshop on variability modelling of software-intensive systems, ICB-research report No. 29,

University of Duisburg Essen, Duisburg

3. Benavides D, Batory D, Grünbacher P (2010) Opining introduction. In: Fourth international

workshop on variability modelling of software-intensive systems, ICB-research report No. 37,

University of Duisburg Essen, Duisburg

4. Eisenecke U, Apel S, Gnesi S (2012) Opining introduction. In: Sixth international workshop on

variability modelling of software-intensive systems, ACM, Leipzig

5. Heymans P, Czarnecki K, Eisenecker U (2011) Opining introduction. In: Fifth international

workshop on variability modelling of software-intensive systems, Namur

6. Mannion M (2002) Using first-order logic for product line model validation. In: the second

software product line conference SPLC2, San Diego

7. Lan Q, Liu S, Li B, ChenY, Pang S, Yin J (2006) Research on variability metamodeling method.

In: The first international symposium on pervasive computing and applications (SPCA06),

Urumchi

8. Batory D, Benavides D, Ruiz-Cortés A (2006) Automated analysis of feature models:

challenges ahead. Commun ACM 49(12): 45–47

9. Massen T von der, Litcher H (2004) Deficiencies in feature models, workshop on software

variability management for product derivation- towards tool support, collocated with SPLC

2004, Boston

10. Massen T von der, Litcher H (2005) Determining the variation degree of feature models. In:

Software product lines conference, Lecturer notes in computer science, vol 3714. Rennes, pp 82–88

288 A.O. Elfaki

11. Czarnecki K, Eisenecker U (2002) Generative programming: methods, tools, and applications.

Addison-Wesley, Boston

12. Elfaki A, Phon-Amnuaisuk S, Ho CK (2009) Modeling variability in software product line

using first order logic. In: Proceedings of 7th the international conference on software

engineering research, management and applications (SERA2009), Haikou

13. Kang K, Cohen S, Hess J, Novak W, Peterson S (1990) Feature oriented domain analysis

(FODA) feasibility study, Technical report no. CMU/SEI-90-TR-21, Software Engineering

Institute, Carnegie Mellon University, Pittsburgh

14. Pohl K, Böckle G, van der Linden F (2005) Software product line engineering foundations

principles and techniques. Springer, Heidelberg

15. Czarnecki K, Kim C (2005) Cardinality-based feature modeling and constraints: a progress

report. In: Proceedings of the international workshop on software factories at OOPSLA05, San

Diego California

16. Benavides D, Segura S, Ruiz-Cort´es A (2010) Automated analysis of feature models 20 years

later: a literature review. Inform Syst j 35(6), Elsevier: 615–636

17. Kasikci BC, Bilgen S (2009) Scalable modeling of software product line variability. In: 13th

international software product line conference, SPLC 2009, San Francisco

18. Wang H, Li YF, Sun J, Zhang H, Pan J (2007) Verifying feature models using OWL. J Web

Semantics 5(2):117–129, Elsevier

19. Trinidad P, Benavides D, Dur´an A,Ruiz-Cort´es A, Toro M (2008) Automated error analysis

for the agilization of feature modeling. J Syst Softw 81(6): 883–896

20. White J, Dougherty B, Schmidt D, Benavides D (2009) Automated reasoning for multi-step

feature model configuration problems. In: 13th international software product line conference

table of contents San Francisco, California, pp 11–20

21. Hemakumar A (2008) Finding contradictions in feature models. In: First international work-

shop on analyses of software product lines (ASPL’08)’, collocated with SPLC08. Limerick

22. Trinidad P, Benavides D, Ruiz-Cort´es A (2006) Isolated features detection in feature models.

In: Advanced information systems engineering, 18th international conference, CAiSE2006,

short paper proceedings, Luxembourg

23. Trinidad P, Benavides D, Ruiz-Cort´es A (2006) Explanations for agile feature modeling. In

the first workshop on agile product line engineering (APLE’06), Baltimore

24. Trinidad P, Ruiz Cort´es A (2009) Abductive reasoning and automated analysis of feature

models: how are they connected? In: Third international workshop on variability modelling of

software-intensive systems. Proceedings, pp 145–153

25. Thurimella AK, Janzen D (2011) on the metadoc feature modeler. In: SPLC2011 proceedings

26. Segura S (2008) Automated analysis of feature models using atomic sets. In: Proceedings of

first international workshop on analyses of software product lines (ASPL’08)’, collocated with

SPLC08, Limerick

12 Automated Verification of Variability Model Using First-Order Logic 289

Chapter 13

Model-Based Requirements Engineering

Framework for Systems Life-Cycle Support

A. Soffer and D. Dori

Abstract The recent migration from traditional sequential development process

models to the more modern iterative and evolutionary process models has brought

about an evolution in the scope of the requirements engineering process, along with

new challenges of managing the requirements knowledge. In parallel, conceptual

modeling throughout the development process has been receiving growing attention

and wide acceptance.

Working under the premise that effective requirements knowledge management is a

key factor in developing quality software that meets customer needs, the main contri-

bution introduced in this chapter is creation and study of a new requirements engineer-

ing and management (REM) framework that is tightly coupled with the evolving

conceptual model of the developed system. The integration of the proposed REM

process into an Object-Process Methodology (OPM)-based systems development and

modeling environment is demonstrated via a case study, followed by an evaluation.

The work presented in this chapter shows that coupling the requirements knowl-

edge management activities with the development methodology and a tool-supported

modeling environment creates a comprehensive approach for the production of

high-quality software.

13.1 Introduction

Close examination of the typical outcome of software-intensive systems develop-

ment projects introduces the challenge of narrowing the gap between the required

system and the resulting implementation. In spite of efforts to improve the flow of

A. Soffer (*)

ORT-Braude College of Engineering, Karmiel, Israel

e-mail: asoffer@braude.ac.il

D. Dori

Technion, Israel Institute of Technology, Haifa, Israel

e-mail: dori@ie.technion.ac.il

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_13, # Springer-Verlag Berlin Heidelberg 2013

291

mailto:asoffer@braude.ac.il
mailto:dori@ie.technion.ac.il

engineering information throughout the development process, often times the

implemented system does not fully match the required one, nor does it meet the

customer’s needs and expectations [1]. In this setting, an effective requirements

engineering and management process should be used throughout the development

life cycle to handle new and evolving requirements. System requirements are

expected to reflect stakeholder needs by describing the system’s externally per-

ceived functionality as well as certain properties at the desired granularity.

Although the field of requirements engineering provides means for managing this

need based on establishing and maintaining traces between the requirements and

their implementation, the effectiveness of these means remains a significant factor

in quality and productivity of the software development process.

Requirements engineering (RE) is the branch of software engineering that

focuses on the processes of handling and management of requirements in any

software development effort [2]. Regardless of the applied life-cycle development

model or the software engineering methodology, RE is a critical component of any

comprehensive engineering process employed for systems development or mainte-

nance. Numerous conceivable scenarios (e.g., the typical process of change man-

agement) demonstrate that proper management of the requirements knowledge

plays a pivotal role in system evolution, as it is embedded within the core of the

system’s development process throughout its life cycle and may take place at any

point during this process.

The main contribution introduced in this chapter is creating, analyzing, and

evaluating a life-cycle requirements engineering and management (REM) environ-

ment that is tightly coupled with the conceptual model of the evolving system. The

proposed RE process is integrated into the Object-Process Methodology (OPM)

system development process. This new REM environment supports requirements

documentation, tracing, testing, and management and enables reasoning about

requirementsduring the entire system’s life span. Analysis and evaluation of this

approach and the developed process automation show that coupling the

requirements knowledge management activities with the software development

methodology and a tool-supported modeling environment creates a comprehensive

approach for the production of high-quality software.

To present this comprehensive framework, the necessary concepts are explored

in this chapter as follows: In Sect. 13.2 some requirements engineering challenges

are presented as motivation for this work. In Sect. 13.3, the concept of life-cycle

REM process is introduced, along with the value of integrating it with the model-

driven approach to systems development. Section 13.4 includes an introduction to

OPM and argues for the choice of OPCAT (Object-Process CASE Tool) as the

supporting environment for REM implementation. Focusing on implementation of

these ideas, Sect. 13.5 describes an extension to OPM’s capability which enables

linking textual requirements to the system’s models. It then demonstrates how the

requirements engineering activities are integrated into the OPM-based conceptual

system model which evolves throughout the system its life cycle. An evaluation of

this work is also presented in this section. Section 13.6 concludes the chapter with

some observations on the utility of this mechanism.

292 A. Soffer and D. Dori

13.2 Background: Requirements Engineering Challenges

Requirements should be complete, consistent, comprehensible, unambiguous, well

documented, traceable, and testable [2]. Proper communication of requirements

knowledge to all the software developers in the project and across their organization

helps to ensure that the requirements, as well as changes in them, are handled

correctly throughout the project life cycle and that all stakeholders maintain a

shared vision [3–5].As requirements evolve during the development or mainte-

nance phases, it becomes necessary to modify and manage the system specification

and design. Although the field of requirements engineering provides means for

managing this need based on establishing and maintaining traces between the

requirements and their implementation, this need remains a significant challenge

in productivity of the software process.

The term “software product quality” is used as a qualifier of the extent to which

the implementation satisfies stated and implied needs. The quality of a software

product is directly linked to the characteristics of the process that was used to create

it [3, 4]. Consequently, enhancing the development process and methodology is

expected to result in higher product quality, which would manifest itself in a better

match between the envisioned system, as expressed in the requirements specifica-

tion, and its realization at the end of the development process.

Requirements management (RM) is the activity concerned with the effective

control of information related to system requirements, in particular the preservation

of the integrity of that information with respect to changes in the system and its

environment [2]. The recent trend of migration from traditional sequential software

development models to evolutionary process models has brought about the evolu-

tion of the scope of requirements management. In traditional development

approaches, requirements were formulated and documented (often by the acquirer

without the involvement of the developer) prior to any development activities. This

set of textually expressed requirements was frozen prior to its validation for the

entire duration of the system development effort. Often, the requirements list is a

contractually binding document, serving as a “technical appendix” to the legal

engagement between the system acquirer and provider, so deviating from it poses

problems of various kinds. This may still be the case in formal, very-large-scale

projects, where organizations such as governments are involved. In most modern

systems R&D environments, however, where RE is at the heart of the development

process, such requirements freezing is inconceivable. Focused on change manage-

ment, the evolving requirements set serves as the glue that ties the other engineering

processes together over time, ensuring that the resulting system or software-

intensive product satisfies the needs and expectations of the users, the customers,

and the beneficiaries.

A functional requirement is a specific need or desired behavior as seen by an

external user of the system. The required capability or function must be delivered

by a system through one or more of its components. Achieving high-level

stakeholders’ satisfaction strongly depends on maintaining the system’s life-cycle

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 293

conceptual integrity, that is, faithfully reflecting the stakeholders’ views and needs

throughout the system life cycle. Model-driven development (MDD) [6], which has

received growing attention and wide acceptance in recent years, is an adequate

response to this need. High-quality requirements should give information on what a

software-intensive system is and what it does, rather than how to implement the

system [7]. This means that the requirements (“what”) need to be linked to the

implementation model (“how”) in order to facilitate the adequate connection

between them.

The requirements phase is a critical part of software development, yet difficult to

enhance [8]. Brooks attests on the difficulty of establishing the requirements and

their importance throughout the entire development process: “the hardest single

part of building a software system is deciding precisely what to build. No other part

of the conceptual work so cripples the resulting system if done wrong” [9].

Since requirements engineering in general and the traceability function in particu-

lar are quality-enabling techniques [10], improvements in RE capability are essential

for developing higher-quality software systems. A major expectation of RE is the

quality (i.e., effectiveness, efficiency) of the requirements traceability, which is

aimed at improving error detection and correction, leading to a better environment

for the production of high-quality software [11]. Typically, systems are tested to

verify the satisfaction of all of the requirements that were deemed feasible. This way,

quality is guaranteed with respect to compliance with the requirements.

In summary, the objectives of an integrated requirements engineering and

management process include the continuous management of new and changed

requirements in a way that ensures competitiveness in the marketplace. Successful

implementation of RE depends primarily on (1) controlling requirements and

changes in them, (2) managing requirement attributes for better decision making,

(3) establishing and maintaining traceability throughout the life span of the project,

and (4) ensuring the availability of flexible frameworks for the necessary commu-

nication channels among stakeholders. The integration of requirements engineering

processes into the model-driven development paradigm (MDD) has motivated this

work as a promising approach for supporting these needs.

13.3 Model-Based Requirements Engineering and Management

Combining requirements engineering processes and artifacts with model-driven

development approachmay offer effective solutions to some of the critical difficulties

in software development. In this section, we first review some basic terms relevant to

this approach and challenges they present. Then we describe the integration of RE

into the system model-based development and discuss how it improves many factors

that affect the system’s quality, notably change management.

294 A. Soffer and D. Dori

13.3.1 Life-Cycle Requirements Management

The objectives of requirements management activities include collecting, documenting

and organizing the requirements, linking requirements to software items, tracing

requirements to all development artifacts, and tracking and communicating this infor-

mation to all stakeholders. This is necessary to ensure that the basic requirements and

their evolution are properly handled throughout the project life cycle. Some process

models such as the SEI’s CMMI [4] associate some of the requirements-related

activities also to other process areas, such as product engineering, project management,

and configuration management.

The requirements document is the basic source for communication among

customers, end users, system designers, and implementers of the software. It also

serves as a validation device for the stated requirements. In many circumstances, it

is used as the basis for user’s manuals or other documents. Another important role

that this document plays is serving as the basis for project planning and project

management activities.

13.3.2 Model-Based Development

Model-driven development (MDD) technologies [12] have been recognized by the

software engineering community as potential vehicles to alleviate the cognitive

effort required for creating a software system that matches its requirements [13, 14].

In this context, a model is a domain-specific abstraction which defines in appropri-

ate terms the structure and behavior of the modeled concepts. According to the

MDD paradigm, the requirements model (specification), which is problem domain

oriented, evolves into another representation of the contemplated system in a new

and different context – the implementation, which belongs to the solution domain.

In the solution domain, the approach to implementing the required system is

described by means of system architecture, design, and code [15].

Requirements modeling is the process of constructing abstract, formal represen-

tation of the initial textually described system requirements in a way that is

amenable to unambiguous interpretation. This process ends with a requirements

model, which is expected to capture as much of the relevant real-world semantics as

possible. Based on the need to clearly express and communicate the engineering

knowledge (particularly pertaining to requirements), the conceptual model of the

system has become an essential and effective means of communication among all

stakeholders of the system’s development process. Not less importantly, the con-

ceptual model is used for the system validation and documentation needs.

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 295

13.3.3 Model-Based Requirements Process

Creation of the requirements model is the first stage in model-driven development.

The model aims to capture the real-world semantics pertaining to the system [16].

The requirements representation and documentation serve interests of the different

system’s stakeholders: customers, developers, and managers [17]. The requirements

model focuses primarily on functional requirements, that is, specific business needs

or behaviors as seen by an external user of the system. The required capability or

function must be delivered by some subset of the system, so the functional

requirements set captured in this model is a basis for subsequent system development

and later on possibly also for its maintenance activities.

In the subsequent phases of the development process, the requirements model is

elaborated and transformed into the design model. This transition emphasizes the

critical need for creating a formal, accurate, and complete requirement model from

the outset, as it designed serve as the foundation of the entire software developing

process.

Modeling is targeted at clear and accurate representation of the concepts that

comprise the system. An important benefit of requirements modeling is that since

the resulting model is available at an early stage in the system’s life cycle, model

analysis and simulation may be used to validate the requirements and reduce

conceptual design errors. Later on, as requirements modeling is integrated into

the flow of activities in the development process, it fosters collaboration between

requirements acquirers, system engineers, and developers.

A domain model is an abstraction which defines generically the structure and

behavior of the problem domain. Two types of concepts are involved in life-cycle

requirements modeling: (1) concepts related to customers’ objectives, which represent

the problemdomain and are emphasized in the requirementsmodel, and (2) engineering

concepts, which are emphasized in the design model(s). A conceptual gap, which is

often very wide, exists between these two model types, since one faces the acquirer

with her problem domain, while the other faces the solution domain and the techno-

logical solution provider. Inevitably, the problems created due to this dissonance cast

dark shadows over the remainder of the systems development process. To attenuate the

adverse impact of switching from requirements to design, it is desirable tominimize the

additional shake caused by the need not just to switch the attention from the problem to

the solution but to also switch between amodeling approach or diagram type used in the

requirements engineering phase to the one(s) used in the design phase. In this regard, if

one uses UML, for example, the problem of switching from use case diagrams, applied

at the requirements phase, to object-class diagrams and the rest of the UML diagram

types exacerbates the difficulties involved in this transition.

Our goal is therefore to adopt a single modeling approach, language, and

methodology, which can be used across this chasm and help bridge it. Such a

language must have the traits of simplicity, clarity, and dynamic aspects that use

cases possess, combined with formality, the object orientation of object-class

296 A. Soffer and D. Dori

diagrams. In addition, it should have the state transition aspects of state charts and

the workflow and time sequence of activity, collaboration, and time sequence

diagrams in a single modeling framework.

The use of domain knowledge can significantly reduce the requirements engi-

neering effort and the amount and severity of errors [16]. Using domain ontologies

that include abstractions of typical structure and behavior as modeling patterns

facilitates reuse and error reduction. Here too, the ability to apply the same

modeling language and diagram type for domain knowledge modeling across the

gap between requirements engineering and design can significantly reduce the

cognitive load that impedes comprehension of the two sides of this canyon.

13.3.4 Integrating the Requirements Process

The requirements engineering processes constitute a fundamental life-cycle chain

of engineering activities, which start early on with the establishment of positive

relationships among success-critical stakeholders, and continue throughout the life

span of the system. Modeling the requirements and integrating the requirements

model into the system’s life cycle enable extending the benefits of a solid REM

process from the early stage to all the remaining stages of the development process,

as depicted in Fig. 13.1.

A natural way of connecting requirements to a model is to represent the RE

information and activities according to the adopted product and process models

[18]. System model integration adds value to the knowledge captured in the RE

process by enabling validation and better understanding of the causal relations

underlying traces.

A good requirements specification is one in which requirements are arranged

hierarchically. Few high-level, broadly defined requirements are specified in

increasing levels of detail, where each level contains a set of requirements that

Fig. 13.1 Model-integrated requirements engineering

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 297

elaborate upon one or more requirements at the level above it. Current commercial

tools indeed support such structure for requirements management. A hierarchical

structure of requirements may also facilitate the process of their modeling. In

general, high-level requirements correspond to abstract processes and aggregate

objects or agents (actors) and interactions between them at lower levels.

How are requirements integrated into a model? Each requirement is a specification

of an individual system function. Thus, a model component designed to meet this

requirement is created if it does not yet exist in the model, and it is linked to other

model elements to express its relation to the rest of the model. This component should

also be associated with the corresponding requirement (or requirements set) with

which it is related, creating the traceability information. This traceability information

is embedded into the model and is built on the fly during the modeling process,

eliminating the need for an external tracing mechanism, such as a traceability matrix.

This approach is becoming particularly valuable as traditional phase-oriented

(waterfall-type) system development processes are being replaced by concurrent

and iterative approaches, such as the spiral process and RUP [19]. In such nonlinear

development processes, it is difficult to maintain accurate and reliable traceability

information over time due to their concurrent and repetitive nature.

Model-integrated REM helps bring down the communication barriers between

the various stakeholders involved, including system engineers, analysts,

developers, and customers. Such barriers, misunderstandings, and potential

contradictions typically exist in requirements that are based on text documents.

Linking the requirements to the system model facilitates forward and backward

traceability to and from the model (possibly including its test plan and model) to the

requirements set and vice versa. This two-way traceability enables impact assess-

ment of a proposed change in a requirement using the design model.

The requirements engineering and management (REM) process relates to the

information captured in the specification and implementation models through

requirements traceability checks, validation, error detection and analysis, and

change management. Since the required capability or function must be delivered

by the system to be, the information captured in the implementation model is used

later for driving system development or maintenance activities.

A complete and effective model-integrated REM process includes the following

steps:

1. Elicitation, acquisition, and text-based documentation of domain-dependent

knowledge that pertains to the requirements from the system to be developed

2. Modeling: formal, semantics-conveying graphic representation of the contents

of the text-based requirements documentation elicited in (1)

3. Mapping of the text-based requirements description to the conceptual

requirements-level system model (the problem domain model), to the system’s

architectural model (the solution domain model), and to the system implemen-

tation in software and/or hardware

298 A. Soffer and D. Dori

13.3.5 Model-Integrated Requirements Traceability

Requirements traceability (RT) is the ability to describe and follow information

about the life of a requirement in both forward and backward directions [20]. RT is

aimed at improving error detection and correction, leading to a better environment

for the production of high-quality software [11]. A major activity in the REM

process, RT helps stakeholders understand the relationships between software

artifacts created during the software development life cycle. RT is fundamental to

change management, as it enables one to assess the impact of a change in some part

of the system on the rest of the system by analyzing dependencies between the

associated requirements and the system design and implementation.

The scope of RT is evolving as the migration from traditional sequential

software development models to evolutionary development approach is taking

place. Consequently, a number of issues should be considered: when should the

trace be created, what is the detail level (granularity) of traces, how to relate traces

to the hierarchical structure of requirements and to designed system artifacts, and

how to report traces.

13.3.5.1 Requirements Traceability Challenges

Requirements traceability (RT) is a facilitator of system quality, as it provides

means to keep track of the relationships between stakeholders’ requirements and

artifacts produced during the software development life cycle. Despite being

introduced as a mandatory activity in development standards [4], RT is highlighted

as an area in need of improvement [16, 21].

Management of change is an essential part in the development and maintenance

of systems in general and software-intensive systems in particular. RT is funda-

mental to the management of change, and its scope is evolving due to the migration

from traditional sequential development models to evolutionary ones. This transi-

tion raises a number of issues, including the timing of creating each trace, the

granularity (detail level) of a trace, and how to relate a trace to the hierarchical

structure of the requirements on one hand and to the system conceptual model on

the other hand.

Studies that examined the nature of the relations between requirements, artifacts,

and people [20] propose that a more detailed semantic relation than statements such

as “X contributed to Y” is needed. Research based on empirical investigations with

practitioners and extensive surveys of techniques and tools for requirements engi-

neering [8, 20] suggests that documenting and preserving information generated

during early stages of a project is of crucial importance. This is so because this

information is potentially relevant to later stages of the system under development,

but it cannot be reconstructed at those stages.

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 299

A significant practical problem underlying RT is the difficulty to maintain

the trace information up-to-date as development artifacts change over time [22].

The challenge here is to provide a low-effort method to continuously update the

traceability picture. Performing the REM activities efficiently and effectively

cannot be achieved without adequate tool support for automating tedious and

error-prone REM tasks. The desired properties of such tools and methods of

using them are discussed next.

13.3.6 Tool Support for Model-Based Requirements Engineering

Years of attempts to achieve progress in RE have focused primarily on establishing

procedures and developing practice-oriented methodologies [23] and standards,

such as CMMI [4]. However, the high expectations for quality gains cannot be

completely met by using methodologies and tools that address the needs of the

requirements engineering phase alone. These specialized tools focus mainly on

traceability between requirements and code, that is, relating sections of the systems

code to the relevant requirements [20, 24]. However, the amount of knowledge

captured by means of traceability can be used in many more ways to improve the

gamut of software engineering activities, including requirements validation, change

management, complexity and cost measurement and estimation, and test manage-

ment. Unfortunately, most RE tools fall short of exploiting this full potential of the

knowledge represented by traceability, since their methods of operation do not

reflect the complexity of the software development scenarios and process [6].

Requirements are the first artifact in the development process, while code is the

last in line, the most obscure and least accessible to most stakeholders. To achieve

effective traceability, we need to fill the gap between requirements and code.

Relating requirements to precode artifacts, such as conceptual model elements,

test plans, and test outcomes is far more effective than connecting requirements

directly to the code.

While moving from high to lower levels of abstraction in system modeling, the

complexity of the associated traceability structure grows. The challenge then is to

maintain the accuracy and effectiveness of the trace information. Model-based

REM is therefore most suitable for RT, as it can exploit the potential for automation

through proper tools [25]. Many automation solutions employ an array of tools to

support a variety of functions, creating the challenge of consolidation and unifica-

tion of these tools.

The proposed approach suggests embedding the requirements engineering and

management process as an integral part of the system engineering process based on

Object-Process Methodology (OPM) through the use of OPCAT – Object-Process

CASE Tool [26]. Spanning across the entire system life cycle and supported by

automation, REM, including RT, is thus fully integrated into the modeling and

development methodology.

300 A. Soffer and D. Dori

13.4 The Choice of OPM

This section includes an introduction to Object-Process Methodology (OPM) and

analysis of principles to establish the theoretical foundations for considering OPM

as a basis for implementing the required solution.

An effective requirements engineering process that yields a successful system

and high-level stakeholders’ satisfaction should be supported by a model that

clearly and accurately expresses the system’s requirements. The requirements

model is a critical artifact in the development life cycle, since it serves as the

basis for the system’s architecture, detailed design, testing, and change manage-

ment. Following the premise that effective modeling of complex systems should

combine structure and behavior representations in the same model [27], OPCAT is

a comprehensive system modeling, engineering, and life-cycle support environ-

ment, based on Object-Process Methodology (OPM) [28, 29].

OPM integrates the object-oriented and process-oriented paradigms into a single

frame of reference. OPM’s core entities are objects, representing things that exist,

and processes, which are things that transform objects. A process transforms an

object by creating it, consuming it, or changing its state. Processes are connected to

the involved objects through procedural links, which describe the function and

behavior of a system. In addition, a set of structural relations provides for modeling

the system’s structure. The premise of the OPM paradigm is that objects and

processes are two types of equally significant entities. Contrary to the object-

oriented approach, processes in OPM are not necessarily properties of objects or

operations owned by objects but can rather stand alone. A set of interrelated Object-

Process Diagrams (OPDs) constitutes the graphical OPM formalism. The same set

of symbols is used in all the Object-Process Diagrams, which is the only diagram

type. This way, both the static (structure) and dynamic (function, behavior) aspects

that each system exhibits coexist as integrated and equivalent components in the

same OPM model.

One of the most progressive ideas of OPM is the approach that promotes

integration of the various system life-cycle perspectives into a unified continuous

model that may reflect the complete system’s life cycle. The OPM philosophy is

that the same system model that started in the requirements stage as an analysis

model of the requirements is continuously developed, evolved, and refined to

represent the system all the way to implementation and deployment.

13.4.1 Bimodal Representation

An OPMmodel is jointly expressed by two semantically equivalent modalities, one

graphic and the other textual. A set of interrelated Object-Process Diagrams (OPDs)

constitute the graphical, visual OPM formalism. The graphical OPD set has a

textual counterpart modality named Object-Process Language (OPL). OPL is a

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 301

dual-purpose language, oriented towards humans as well as machines. Catering to

human needs, OPL is designed as a constrained subset of English, which serves

domain experts and system architects engaged in analyzing and designing a system.

Every OPD construct is expressed by a semantically equivalent OPL sentence or

phrase. Designed also for machine interpretation through a well-defined set of

production rules, OPL has an XML-based notation that provides a solid basis for

further automated processing, such as information extraction or code generation.

13.4.2 Complexity Management

OPM mitigates the inherent complexity of model-based system development by

supporting gradual refinement/abstraction of information and smooth traversal of a

hierarchy of diagrams. This capability is enabled by a multidimensional complexity

management mechanism. The three built-in refinement/abstraction mechanisms are

as follows: (1) unfolding/folding, which is used for refining/abstracting the struc-

tural hierarchy of a thing and is applied by default to objects; (2) in-zooming/out-

zooming, which exposes/hides the inner details of a thing within its frame and is

applied primarily to processes; and (3) state expressing/suppressing, which

exposes/hides the states of an object. Flexible combinations of these three

mechanisms enable consistent system modeling at different levels of detail without

losing the overall comprehension of the representation.

The unified, bimodal, and flexible representation of a system increases the user’s

comprehension and processing capability, which is further enhanced through auto-

mation by CASE Tool support.

13.4.3 OPM Tool Support

OPM facilitates clear and concise graphical formalism along with semantically

equivalent and formally structured text. Both representations are automatically kept

consistent at all times by OPCAT – the OPM CASE Tool. The unified, bimodal

representation of an OPM system makes use of the same methodology-supported

language, which could be universal or domain-specific, throughout the system life

cycle. In addition, OPM facilitates continuous life-cycle modeling; thus, life-cycle

requirements engineering can be naturally and easily achieved through OPM-based

system development.

OPCAT can provide a number of functions and features to support various

activities in the RE process, such as domain modeling, requirements modeling

and analysis, and traceability. Based on unified modeling, combining OPCAT’s

modeling capabilities and the RE process needs will bring better results for system

development challenges such as effective alignment of stakeholders’ requirements

with system evolution, and enhanced traceability and process measurements

(complexity, cost, and quality).

302 A. Soffer and D. Dori

13.4.4 A Comparison to UML-Based Systems

The ability to trace the requirements throughout the entire life cycle is a critical part

of the requirements management process [30]. Many tools enable linking

requirements to a variety of life-cycle artifacts, such as source code files, change

requests, test case descriptions, or project tasks. However, the significant advantage

of model-driven development is the ability to link requirements to the system model

for various needs, such as verification and certification, impact analysis, or test case

design. Tools designed for UML environments provide the capability to link

requirements to use cases and to activity diagrams. However, they do not support

fully integrated model traceability, since none of them have provided the ability to

trace a requirement to the internals of the design model, notably to a specific class.

Furthermore, since a UML representation of a particular system includes a collec-

tion of models, an attempt to achieve full requirements traceability in UML will

require a very complex association mechanism in order to link the requirements to

the various components included in the representation.

In contrast, the unique ability of OPCAT/REM, described below, to trace

requirements to elements of the design model is highly valuable. OPM facilitates

clear and concise formalism. Furthermore, OPM enables integration of the various

system perspectives into a single unifiedmodel that may reflect the complete system’s

life cycle, based on its complexity management mechanisms that enable continuous

refinement of the model [10]. Thus, a highly effective integration of requirement

engineering capabilities into a modeling environment would be with OPM.

13.5 The OPM Requirements Engineering and Management

Framework

Having established the value of model-integrated requirement engineering and

management, as well as the main concepts of OPM, we now review and demon-

strate the implementation of the proposed approach to connecting these two

technologies. The OPCAT Requirements Engineering Module (REM) has been

developed as an extension of OPCAT, the OPM-based system modeling environ-

ment. This integrated requirements engineering and management environment is

tightly coupled with the model of the evolving system. It supports requirements

modeling, documentation, analyzing, validating, tracing, and management during

the entire system’s life cycle, including its development and maintenance phases.

OPCAT/REM supports the following necessary requirements engineering

activities:

1. Requirements acquisition and modeling: obtaining and maintaining a text-based

requirements database

2. Linking requirements to the system model: producing and maintaining the

requirements traceability information by linking requirements and model elements

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 303

3. Reasoning about requirements: analyzing and validating requirements traceabil-

ity and reporting deficiencies, including omissions, conflicts, and ambiguity

Application of the OPM-based technical solution for integrated requirements

management is described in detail next, using a few usage scenarios which represent

common engineering tasks during the course of the development cycle. Typically, the

OPM unified system model is built incrementally, including the detailed connection

between the requirements database and the system specification model.

13.5.1 Requirements Acquisition and Modeling

The system’s requirements database, which includes textual information

concerning each requirements such as ID, description, level (hierarchy), originator,

status, priority, owner, and permissions (to modify), may be created and maintained

by a dedicated text-based requirements management tool. These tools (such as

DOORS [31], RequisitePro [32], or Cradle [33]) typically support exporting the

requirements data in CSV (comma-separated value) format, which OPCAT/REM is

designed to accept. Alternatively, the requirements table may be created manually

by the requirements engineer via a designated user interface as plain text in CSV

format. At this point, the requirements database is acquired and incorporated in the

OPCAT modeling environment. This step sets the foundation for further

processing, which includes (1) creating the traceability links by mapping

requirements to model elements and (2) analyzing and validating the integrated

(text/model) requirements data.

The OPCAT/REM interface is depicted in Fig. 13.2. This example shows the

textual requirements in a grid structure, which is part of OPCAT’s Configurable

Management View Console, which, in this case, is configured for requirements

management. The representation allows flexibility in the level of detail, as each

hierarchical level can be collapsed or expanded. The basic view shown in this

example includes the unique identifier of the requirement (ID), its title, description,

and hierarchical level. The description field enables editing free text description of

the requirement. Additional attributes may be included as needed.

Once the requirements database is imported and integrated into the model,

OPCAT/REM supports modifications and updates of the requirements set. In

order to secure the integrity of the requirements database, which is primarily

maintained through an external dedicated tool (e.g., DOORS [31]), all the changes

Fig. 13.2 The OPCAT/REM requirements database view

304 A. Soffer and D. Dori

(addition, removal, modification) made to the requirements set through the external

tool are reloaded into the OPCAT environment by updating the CSV file. The

update is then completed by applying additional processing, mapping, and

analyzing, as described next.

13.5.2 Linking Requirements to the System Model

The novelty of this integrated RE tool is its ability to bind OPM model elements

(mainly objects and processes, collectively called “things”) from any of the system

life-cycle phases (e.g., conceptual modeling, requirements specification, architec-

ture, and design) to the related system requirements. The requirements linking

process is described below using Fig. 13.3.

Linking a requirement to a corresponding model element is done by first

selecting the desired requirement from the available requirements database (e.g.,

Requirement 4 – highlighted), then the target model element is selected (e.g., the

“Creating Filter for the Recipients” process). The link is made by clicking the

“connect” button and indicated by setting a check mark in the “connected?” field

(Fig. 13.3 depicts the OPCAT screen just before making the “connection”). Once a

requirement has been linked to one or more model elements, the requirement links

become an integral part of the OPM model engine. The requirement links are used

by the tracing and validation mechanisms described next.

Fig. 13.3 The requirements linking process

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 305

13.5.3 Reasoning About Requirements

Tracing, analyzing, and reasoning are done using the analysis and reporting capa-

bility of the tool. Through this capability, OPCAT/REM facilitates efficient and

accurate access to the relevant model sections based on the requirement of interest,

thus providing the ability to trace requirements directly to the system model.

A number of viewing, analysis, and validation functions are available, as follows:

13.5.3.1 Thing: Requirement Matching

Indicating which requirements are linked to a certain Thing “T” (e.g., “Sending

Mails,” as depicted in Fig. 13.3). This information can be obtained by using the

thing’s name “Sending Mails” (¼“T”) as a reduction filter on the things list in the

requirements database view (shown in Fig. 13.2). The result will be a new list that

includes just the requirements that are associated with “T” (in the same format as

depicted in Fig. 13.3).

13.5.3.2 Requirement: Thing Matching

Indicating which model elements (“Things”) are linked to a certain requirement

“R.” The “Things” field in the “R” row in the requirements table (shown in

Fig. 13.3) includes a list of the things associated with “R” (the Things list is

horizontal, partly visible in Fig. 13.3 due to space constraints). Double-clicking

on the “R” row will bring up a list of all the appearances of these things in the

model, including the Object-Process Diagram (OPD) in which each thing appears,

as shown in Fig. 13.4. Furthermore, double-clicking on the OPD name will bring up

that diagram with the relevant thing highlighted in red. For example, the

requirement-model association view is depicted in Fig. 13.4. In this example,

there are four occurrences of the “Creating Filter for the Recipients” process

which are associated with Requirement 4. The desired row is then selected from

the list. For example, the first row may be selected, and as a result of double-

clicking on the diagram title (“SD2.4 – Summary Report”) in that row, the SD2.4

diagram is displayed with the “Creating Filter for the Recipients” process

highlighted in red.

The integrated REM module also enables checking for gaps and inconsistencies

in the designed system. For example:

• What requirements in the database are not linked to any element of the model?

This information can be obtained by using the “not connected” flag (i.e., the

“connected?” check mark is not sown) to apply a reduction filter on the

“connected?” list.

• Which elements of the model are not linked to any requirement? This informa-

tion is obtained by clicking the “Not Assigned” button.

306 A. Soffer and D. Dori

• Where are the trace inconsistencies (broken links)? Trace inconsistencies might

appear as a result of a scenario in which a requirement R is linked to a thing T

such that if the requirement R is deleted (or even modified), when the

requirements database is reloaded, the link to T gets broken. This situation

may be detected by clicking the “Missing” button, in response to which a list

of all broken links will be displayed.

13.5.4 Evaluation

Evaluation and validation of the results of this work were done based on a modeling

case study and an experienced users’ survey.

The modeling case study was based on a commercial home management system.

The purpose of this exercise was to gain experience with the proposed framework

and methodology on a larger scale and with a real-world system and to evaluate its

usefulness in terms of the quality of the resulting model and the OPM-based model-

integrated requirements engineering process. Analysis of these factors enables

drawing some conclusions on the effectiveness of the OPM-based REM environ-

ment, as follows:

The process of creating, binding, and reasoning about requirements is convenient

and user-friendly. It is easy to navigate through the diagram hierarchy and quickly get

to where is needed. The concurrent display of the diagram tree structure, the details of

a selected component, and the requirements link table in one view was instrumental

in seeing the big picture, while working on the details of one particular part of the

system. The automation provided by the OPCAT tool (e.g., finding the connected

things) is very helpful in increasing the productivity of the development process.

Fig. 13.4 The requirement-model association view

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 307

In order to further evaluate and validate the impact of this development with

experienced practitioners, we conducted a survey among several software system

engineers who have years of experience developing large-scale systems of different

types using various modeling techniques. The objective was to evaluate three main

aspects of the underlying problem:

1. Corroborating the significance of the requirements-implementation traceability

problem and its impact on the quality of resulting systems

2. Assessing the effectiveness of the OPM-based requirements engineering and

management process as it is integrated in the development life cycle

3. Evaluating the viability and usefulness of the OPM-based implementation and

its potential to be applied in large-scale system development tasks

Overall, the results of the survey provided useful insights that corroborated most

of the assumptions set out to examine:

1. The participants generally agreed with our analysis and conclusion that the

requirements-implementation information gap is a significant problem that

impacts the quality of the developed system.

2. The participants were comfortable with the assertion that integrated model-

based requirements engineering process helps to obtain better, less disruptive

information flow. However, they were slightly less certain that achieving model

integration will contribute to the overall quality of the software product.

3. The participants found the system stronger in some aspects compared to others.

In particular, the criteria that were ranked high were clarity, level of detail,

completeness, and effectiveness. The participants were less convinced about the

required learning curve, the ability of the system to scale, and the support for

developers’ collaboration while using this system.

13.6 Summary and Conclusions

The primary objective of the work presented here was to develop an engineering

solution that can reduce the undesired mismatch that often exists between the

required system and its implementation. The fundamental approach to achieving

this objective is based on the premise that coupling core software engineering

concepts with innovative model-driven development methodology enables creation

of the desired solution.

While traditional knowledge management techniques focus on creation, organi-

zation, and management of knowledge based on the properties and attributes of the

data, the approach presented here is primarily focused on the utility of the

requirements knowledge. The system development processed is enhanced by inte-

gration of two engineering process: requirements engineering and model-based

development.

308 A. Soffer and D. Dori

After establishing the value of model-integrated requirement engineering and

management and presenting the main concepts of Object-Process Methodology

(OPM), the chapter includes a description of the implementation of the proposed

approach to connecting these two technologies. OPCAT – the OPM – supporting

system modeling tool with its integrated requirements engineering capabilities,

supports a requirements engineering process that spans across the entire software

life cycle, including design, maintenance, and evolution. System engineers who use

OPCAT can quickly and accurately model and specify requirements, architecture,

and any structural and behavioral aspects of the system. Furthermore, they can

promptly and correctly establish and obtain the traceability between requirements

and their implementation, thereby contributing to improving the system quality.

These conclusions were also corroborated by the user survey presented in

Sect. 13.5.4.

In summary, following this analysis and findings, this chapter exhibits the

following contributions of this work:

• Establishing that coupling the requirements engineering process with a concep-

tual modeling environment and development methodology facilitates production

of high-quality software. By using model-integrated requirements-trace infor-

mation, error detection and analysis, as well as change management can be done

more efficiently and correctly. Consequently, the value and impact of effective

management of requirements knowledge is extended to the entire system life

cycle.

• Development of the OPCAT Requirements Engineering Module (REM) as an

extension of OPCAT, the OPM-based system modeling environment. This

integrated requirements engineering and management environment is tightly

coupled with the model of the evolving system and enables creating, linking,

and reasoning about requirements throughout the system’s life cycle, including

its initiation, development, and maintenance phases.

• Analyzing and evaluating the role of automation and CASE Tool support,

including knowledge management and reasoning capability, aimed at improving

the effectiveness of the requirements engineering process across the software

development and maintenance cycle. As has been shown by the example system

and by the user survey, the result can indeed solve the system development

problem stated above.

While the tip of the iceberg has been touched here with some basic analytical

functions that can be performed on the requirements-integrated model, the oppor-

tunity for additional analyses is vast. Specifically, an interesting future research

direction is to extend this basic capability to enable the system analyst to answer

questions such as the following: To what extent does the requirements model

faithfully represent the operational concepts of the system? Does the design fulfill

the requirements?

More future work may relate to automation of RE activities which are supported

by OPCAT. One possible enhancement is automatically generating an OPM

requirements model from text-based requirements specification documentation, a

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 309

capability that was proven feasible [34]. Other possible enhancements are in the

area of requirements trace management: addressing the need to encapsulate the

engineering rationale for the link between the requirement and its design within the

traceability structure. The challenge is to maintain the effectiveness of the trace

information in many development-cycle situations.

References

1. Gibbs W (1994) Software’s chronic crisis. Sci Am 271(3):86–95

2. Sommerville I, Sawyer P (1999) Requirements engineering: a good practice guide. Wiley,

Chichester/New York

3. Robertson S, Robertson J (1999) Mastering the requirements process. Addison-Wesley,

Reading

4. Capability Maturity Model Integration-SE/SW, Ver. 1.2, Technical Report CMU/SEI-2006-

TR-008, 2006

5. Marschall F, Schoenmakers M (2003) Towards model-based requirements engineering for

web-enabled B2B applications. In: Proceedings of the 10th IEEE international conference and

workshop on the engineering of computer-based systems (ECBS’03), digitally available from

IEEExplore, pp 312–320

6. OMG Model Driven Architecture. http://www.omg.org/mda/

7. Jackson MA (1994) The role of architecture in requirements engineering. In: Proceedings, 1st

IEEE international conference on requirements engineering, Colorado Springs, April 1994,

p 241

8. Ramesh B (1998) Factors influencing requirements traceability practice. Commun ACM

41(2):37–44

9. Brooks F (1975–1995) The mythical man-month. Addison-Wesley, Reading

10. Gotel O, Finkelstein A (1994) Modeling the contribution structure underlying requirements.

In: Proceedings of the first international workshop on requirements engineering: foundation of

software quality (REFSQ ’94), Utrecht, June 1994, p 21

11. Ramesh B, Stubbs C, Powers T, Edwards M (1997) Requirements traceability: theory and

practice. Ann Softw Eng 3:397–415

12. Kleppe A, Warmer J, Bast W (2003) MDA explained, the model driven architecture: practice

and promise. Addison-Wesley, Boston

13. Brooks F (1987) No silver bullet – essence and accident in software engineering. IEEE Comp

20(4):10–19

14. Harel D (1992) Biting the silver bullet: towards a brighter future for system development.

IEEE Comp 25(1):8–20

15. Boehm B, Port D (1999) Escaping the software tar pit: model clashes and how to avoid them.

Softw Eng Notes Assoc ComputMach 24(1):36–48

16. Rolland C, Prakash N (2000) From conceptual modeling to requirements engineering. Ann

Softw Eng 10:151–176

17. Nuseibeh B, Easterbrook S (2000) Requirements engineering: a roadmap. In: Proceedings,

conference on the future of software engineering (ICSE), Limerick, June 2000, pp 35–46

18. Lavazza L, Valetto G (2000) Enhancing requirements and change management through

process modeling and measurement, In: ICRE2000 fourth IEEE international conference on

requirements engineering, Schaumburg, 19–23 June 2000

19. IBM, the Rational Unified Process. http://www-01.ibm.com/software/awdtools/rup/

20. Gotel O, Finkelstein A (1994) An analysis of the requirements traceability problem. In:

Proceedings of the first international conference on requirements engineering, Colorado

Springs, April 1994, pp 94–101

310 A. Soffer and D. Dori

http://www.omg.org/mda/
http://www-01.ibm.com/software/awdtools/rup/

21. Ramesh B, Jarke M (2001) Toward reference models for requirements traceability. IEEE Trans

Softw Eng 27(1):58–93

22. Egyed A, GrunbacherP (2002) Automating requirements traceability: beyond the record &

replay paradigm. In: Proceedings of the 17th international conference on automated software

engineering, IEEE CS, Edinburgh

23. Boehm B, Egyed A (1999) Optimizing software product integrity through life-cycle process

integration. J Comp Stand Inter 21:63–75

24. The International Council on Systems Engineering (INCOSE) (1999) Tools survey:

requirements management tools. http://www.incose.org/tools/tooltax.html, April 1999

25. Badar M, Zowghi D Developing a requirement toolset: lessons learned. In: Proceedings of the

Australian software engineering conference (ASWEC’04), Melbourne, April 2004

26. Dori D, Reinhartz-Berger I, Sturm A (2003)OPCAT – a bimodal case tool for object-process

based system development. In: Proceedings IEEE/ACM 5th international conference on

enterprise information systems (ICEIS 2003), Angers, pp 286–291

27. Dori D (1995) Object-process analysis: maintaining the balance between structure and behav-

ior. J Logic Comput 5(2):227–249

28. Dori D (2002) Object-process methodology – a holistic systems paradigm. Springer, Berlin/

New York

29. OPM – The Official Web Site. http://www.objectprocess.org

30. Kotonya G, Sommervile I (1998) Requirements engineering: processes and techniques. Wiley,

Chichester/New York

31. DOORS – IBM Rational. http://www-01.ibm.com/software/awdtools/doors/

32. IBM Software – Rational RequisitePro. http://www-01.ibm.com/software/awdtools/reqpro/

33. Cradle: requirements management tools. http://www.threesl.com/pages/index.php

34. Dori D, Korda N, Soffer A, Cohen S (2004) SMART: system model acquisition from

requirements text.In: Proceedings: international conference on business process management,

Potsdam June 2004

13 Model-Based Requirements Engineering Framework for Systems Life-Cycle Support 311

http://www.incose.org/tools/tooltax.html
http://www.objectprocess.org
http://www-01.ibm.com/software/awdtools/doors/
http://www-01.ibm.com/software/awdtools/reqpro/
http://www.threesl.com/pages/index.php

Part V

Intelligent Tool Support

“The expectations of life depend upon diligence; the mechanic that would

perfect his work must first sharpen his tools.”

—Confucius

Walid Maalej. Printed with permission

Chapter 14

An Overview of Recommender Systems

in Requirements Engineering

A. Felfernig, G. Ninaus, H. Grabner, F. Reinfrank, L. Weninger, D. Pagano,

and W. Maalej

Abstract Requirements engineering (RE) is considered as one of the most critical

phases in software development. Poorly implemented RE processes are still one of

the major risks for project failure. As a consequence, we can observe an increasing

demand for intelligent software components that support stakeholders in the com-

pletion of RE tasks. In this chapter, we give an overview of the research dedicated

to the application of recommendation technologies in RE. On the basis of a

literature analysis, we exemplify the application of recommendation technologies

in different scenarios. In this context, the approaches of collaborative filtering,

content-based filtering, clustering, knowledge-based recommendation, group-based

recommendation, and social network analysis are discussed. With the goal to

stimulate further related research, we conclude the chapter with a discussion of

issues for future work.

A. Felfernig (*) • G. Ninaus • H. Grabner • F. Reinfrank

Graz University of Technology, Graz, Austria

e-mail: alexander.felfernig@ist.tugraz.at; gerald.ninaus@gmail.com; hgrabn@ist.tugraz.at;

freinfra@ist.tugraz.at1

L. Weninger

wsop, Vienna, Austria

e-mail: LWeninger@wsop.at

D. Pagano

Technische Universität München, Munich, Germany

e-mail: pagano@cs.tum.edu

W. Maalej

University of Hamburg, Hamburg, Germany

e-mail: maalej@informatik.uni-hamburg.de

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_14, # Springer-Verlag Berlin Heidelberg 2013

315

mailto:alexander.felfernig@ist.tugraz.at
mailto:gerald.ninaus@gmail.com
mailto:hgrabn@ist.tugraz.at
mailto:freinfra@ist.tugraz.at1
mailto:LWeninger@wsop.at
mailto:pagano@cs.tum.edu
mailto:maalej@informatik.uni-hamburg.de

14.1 Introduction

Requirements engineering (RE) is considered as one of the most critical phases of a

software development project. Poorly implemented RE is one of the major reasons

for the failure of a project [1]. Core activities of an RE process are elicitation and

definition, quality assurance, negotiation, and release planning [2]. Due to the

increasing size and complexity of software systems, we can observe a growing

demand for intelligent methods, techniques, and tools that can help to improve the

overall quality of RE processes [3–5]. In this chapter, we focus on the aspect of how

different types of recommendation technologies [6] can be applied to support

stakeholders in the completion of their RE tasks.

A recommender system can be defined as any system that guides a user in a
personalized way to interesting or useful objects in a large space of possible options
or that produces such objects as output [6, 7]. Recommender systems are inten-

sively applied for the purpose of recommending products and services such as

movies, books, digital cameras, and financial services. Such systems support users

in the identification of relevant items in situations where the amount and/or

complexity of an assortment outstrips their capability to survey it and to reach a

decision [8]. Low-involvement items such as movies and books are often

recommended by analyzing the preferences of users with a similar rating behavior.

The corresponding recommendation approach is collaborative filtering [9] which is
a basic implementation of word-of-mouth promotion where purchase decisions are

influenced by the opinion of relatives and friends: if two users rated similar items in

a similar fashion in the past, a collaborative filtering-based recommender system

would propose new items to one user that the other one has already rated positively.

For example, the online selling platform amazon.com recommends books which

have already been purchased by customers with a similar rating behavior [10]. An

alternative approach to the recommendation of low-involvement items is content-
based filtering [11]. It is an approach to information filtering where features of

items a user liked in the past are exploited for determining new recommendations

for the same user. For example, if a customer of amazon.com bought books related

to the Linux operating system, similar books (related to Linux) will be proposed in

future recommendation sessions.High-involvement items such as digital cameras or

financial services are recommended on the basis of knowledge-based recommender
applications where predefined recommendation rules are exploited by the recom-

mendation engine to determine a set of candidate items [12]. Typically, rating-

based recommendation approaches are not applicable to high-involvement items

since such items are not purchased frequently and therefore no up-to-date rating

data is available.

The major contributions of this chapter are the following. First, we provide an

overview of the research related to the application of recommendation technologies

in RE. Second, we show in detail how different types of recommendation techniques

can be applied to proactively support users in RE scenarios. Third, we want to

stimulate new ideas and research by discussing a couple of issues for future work.

316 A. Felfernig et al.

The remainder of this chapter is organized as follows. In Sect. 14.2, we provide

an overview of research on the application of recommendation technologies in RE.

In the following, we discuss application scenarios for recommendation techno-

logies with a focus on collaborative filtering [13], content-based filtering [11],

clustering [14], knowledge-based recommendation [7, 12], group-based recommen-

dation [15], and social network analysis [16] (Sect. 14.3). Relevant issues for future

research are discussed in Sect. 14.4. With Sect. 14.5, we conclude this chapter.

14.2 Research on Recommender Systems in Requirements

Engineering

In this section, we discuss existing research dedicated to the application of recom-

mendation technologies in requirements engineering (RE). Our discussion of

related research is organized along the typical activities in an RE process. In this

context, we take into account the activities of requirements elicitation and defini-
tion, quality assurance, and negotiation and release planning. For each activity, we
discuss relevant application scenarios for recommendation techniques. Table 14.1

provides an overview of these scenarios. Further technical insights into recommen-

dation techniques are provided in Sect. 14.3.

Table 14.1 Overview of recommendation approaches for requirements engineering

Activity Scenario Si Recommendation approach

Elicitation and

definition

Recommending

stakeholders (S1)
Social network analysis Lim et al. [17]

Content-based filtering Cleland-Huang et al. [5],

Castro et al. [18]

Recommending

requirements (S2)
Content-based filtering Dumitru et al. [19]

Social network analysis Lim and Finkelstein [20]

Collaborative filtering Cleland-Huang et al. [5],

Castro et al. [18]

Quality assurance Managing feature

requests (S3)
Clustering Cleland-Huang et al. [22]

Machine learning Fitzgerald et al. [21]

Consistency

management (S4)
Knowledge-based

recommendation

Felfernig et al. [23]

Dependency

detection (S5)
Clustering Cleland-Huang et al. [22]

Negotiation and

planning

Triage (S6) Clustering, Utility theory Duan et al. [24]

Release planning (S7) Group recommendation Felfernig et al. [25]

Utility theory Felfernig et al. [23],

Ruhe et al. [26, 27]

14 An Overview of Recommender Systems in Requirements Engineering 317

14.2.1 Requirements Elicitation and Definition

Requirements elicitation and definition focuses on the collection of requirements

from different stakeholders. Typical resulting artifacts are, for example, textual

requirement descriptions, scenario descriptions, use cases, and sketches of proto-

typical user interfaces. The following application scenarios for recommendation

techniques are related to activities in the context of requirements elicitation and

definition.

Recommending Stakeholders (S1). This is an important task in the early phase of

an RE process since, for example, a low degree of user involvement in most cases

leads to project failure [17]. The major goal of stakeholder identification is to

identify a set of persons who are capable of providing a complete and accurate

description of the software requirements. Identifying a set of authorized, collabora-

tive, responsible, committed, and knowledgeable stakeholders is an important and

challenging task [5, 17]. A common mistake is that wrong representatives of groups

are integrated into a project or that important stakeholders are simply omitted.

StakeNet [17] is an approach to stakeholder identification which is based on the

concepts of social network analysis [16, 28]. In StakeNet , an initial set of

stakeholders and recommendation information provided by these stakeholders is

applied for the construction of a social network (SN). The included nodes represent

the stakeholders, and connections between nodes represent recommendations artic-

ulated by the stakeholders, that is, if stakeholder si recommends stakeholders sj with
a certain rating, then this information is included in the corresponding social

network. This process of stakeholder recommendation is repeated in order to

exploit a kind of snowball effect. On the basis of the constructed social network,

different SN analysis measures are used for stakeholder prioritization. An example

of such a measure is betweenness centrality which determines for a specific

stakeholder si the number of shortest paths between other stakeholders in which

si is contained. A high value of this measure indicates a person’s (stakeholder si’s)
capability of acting as a broker between different groups of stakeholders.

Especially in large-scale and distributed software projects, it is infeasible to

organize personal meetings on a regular basis. In such scenarios, requirements are

often defined in wiki-based forums which are receptive to the problems of informa-

tion overload, redundancy, incompleteness of information, and diverging opinions

of different stakeholders. In their approach to improve the stakeholder support in

ultra-large-scale software systems development (ULS software systems), Cleland-

Huang et al. [5] and Castro-Herrera et al. [18] show how to exploit clustering

techniques for grouping user requirements and in the following to assign (recom-

mend) stakeholders to clusters on the basis of content-based filtering [11]. One

major motivation for such an assignment of stakeholders to requirement clusters is

to achieve a representative coverage, that is, each requirement should be discussed

and evaluated by a sufficient number of stakeholders.

318 A. Felfernig et al.

Recommending Requirements (S2). A systematic reuse of already existing soft-

ware requirements has the potential of significantly reducing the overall costs of a

software project. A recommendation-based approach to requirements reuse is

presented by Dumitru et al. [19]. The basic idea is to analyze requirements which

are accessible in software project repositories and to apply clustering techniques for

the intelligent grouping of such requirements. The identified requirement groups

can be analyzed in future software projects for the purpose of reuse and also for the

purpose of completeness checking (are all relevant requirements contained in the

current requirements model). The proposed recommendation approach is content-

based filtering, where a vector of keywords (derived from the description of the new

software project) is matched with the keywords extracted from requirements

artifacts from the repository of already completed software projects.

Lim and Finkelstein [20] introduce the StakeRare approach which supports the

identification and reuse of requirements. StakeRare [20] is based on the aforemen-

tioned StakeNet approach [17]. In StakeRare, stakeholders are rating initial sets of

requirements. Additional (new) requirements currently not contained in the list are

then recommended using the concepts of collaborative filtering [13]. On the basis of

the rating information (weighted with the stakeholders’ weight (influence) in the

current project), requirements are prioritized.

Similar to their approach of recommending (assigning) stakeholders to require-

ment clusters (topics), the approaches discussed in Cleland-Huang et al. [5] and

Castro-Herrera et al. [18] also support the recommendation of requirements to

stakeholders, for example, based on the concepts of collaborative filtering. A major

motivation for the application of collaborative filtering in this scenario was to achieve

serendipity effects which help to increase requirements quality (stakeholders receiv-

ing recommendations regarding requirements they are interested in have a higher

probability of analyzing these requirements). Another motivation for the application

of collaborative filtering is to improve requirement model understanding since it

generates personalized navigation paths for stakeholders.

14.2.2 Quality Assurance

A set of requirements has to be evaluated regarding properties such as consistency

(requirements are not contradictory), completeness (all relevant requirements

should be part of the requirements model), feasibility (technical feasibility as well

as economic feasibility), understandability (does the description fulfill the quality

standards), and reusability (are the requirements reusable in future projects). Cur-

rently, recommenders are applied to support the following quality assurance

scenarios.

Managing Feature Requests (S3). The major goal of feature request management

is to support the effective management of large sets of software features. Unstruc-

tured request management can lead to suboptimal communication between

stakeholders and to the selection of irrelevant features [5]. An approach to support

14 An Overview of Recommender Systems in Requirements Engineering 319

effective feature management has been introduced by Cleland-Huang et al. [22]

where clusters of similar requirements are exploited for the identification of

redundancies and the prioritization of feature requests. Fitzgerald et al. [21] intro-

duce an approach to feature request management which is based on the idea of

predicting software failures (e.g., stopped implementation of a feature) by

analyzing the communication threads in feature management systems. Their

approach to failure identification is based on the idea of applying different machine

learning techniques for the construction of a prediction model for failures. The basis

for learning this prediction model is logged feature requests and their related

positive or negative outcomes. Prediction models are derived on the basis of

parameters that are assumed to be important for specifying the quality of a feature

request, for example, involvement of the right stakeholders or sufficient engagement
of stakeholders in terms of contributing to a feature-related discussion thread.

Consistency Management ðS4Þ: Inconsistencies between requirements are

resulting from factors such as not enough time for consistency checking, different

perceptions and goals, or different granularity of knowledge [29]. Especially for

informally defined requirements, the complete automation of consistency manage-

ment is unrealistic [29], but semiautomated tools help to keep the efforts accept-

able. Assuming the existence of a formal description of the requirements model

(on the basis of a constraint satisfaction problem [30]) and the stakeholder

preferences (priorities) regarding the defined set of requirements, Felfernig et al.

[23] introduce an approach to the automated diagnosis of inconsistent requirement

models and inconsistent stakeholder preferences. In this context, a diagnosis is

interpreted as a minimal set of stakeholder preferences (or requirements) that have

to be adapted or deleted in order to restore consistency. A detailed introduction to

the concepts of model-based diagnosis can be found, for example, in the work of

Reiter [31].

Dependency Detection ðS5Þ: Due to the fact that requirements are often

represented on an informal level, the analysis regarding properties such as model

consistency and completeness is challenging. Relationships between requirements

are typically expressed in terms of dependencies (e.g., requirement A requires

requirement B or requirement A is incompatible with requirement B) which are

defined by stakeholders. Recommender systems allow the provision of additional

information which proactively supports stakeholders in the identification of

dependencies. Dependency detection between requirements can be based, for

example, on clustering techniques where requirements are grouped into clusters

of similar topics (see, e.g., Cleland-Huang et al. [22]). The basic underlying

assumption is that requirements which are assigned to the same cluster are

depending on each other. Although helpful, this approach does not result in a

complete specification of the type of dependency but serves as a basis for a further

analysis by stakeholders. Some preliminary work regarding requirements and

inconsistency discovery in Open Source Software Development (OSSD) which is

based on the methods of Natural Language Processing (NLP) is presented by

Fantechi and Spinicci [32].

320 A. Felfernig et al.

14.2.3 Requirements Negotiation and Release Planning

Requirements negotiation is the process of identifying conflicts between stakeholder

preferences and to facilitate efficient stakeholder decision-making regarding

priorities and acceptance (this process is also denoted as requirements triage). The
major goal of release planning is the development of a schedule which specifies in

which development (release) period which requirement should be implemented [26].

Requirements Triage (S6). Restrictions regarding the available resources (e.g.,

budget and employees) and defined deadlines for the completion of a software

system in many cases require decisions regarding the set of requirements which

should be implemented. Requirements have to be prioritized in order to take aside

unimportant requirements and to support project managers in conflict resolution

and making tradeoffs. Prioritization of requirements is often a complex and itera-

tive communication and decision process [33] which has to take into account

different soft factors such as company policies, personal preferences, and social

relationships between stakeholders. The term requirements triage stems from

medical decision-making [34]. In disaster scenarios, victims are categorized into

three types: those who will die (independent of the medication), those who will

survive (independent of the medication), and those whose survival depends on the

given medication. Requirements prioritization has to deal with a similar task:

identify the requirements which must not be included in the next release,

requirements that are optional for the next release, and the requirements that must

be included in the next release.

The lack of efficient triage processes in large software projects with hundreds

of stakeholders and thousands of (sometimes conflicting) requirements led to

the development of intelligent technologies supporting the semiautomated

requirements prioritization. The approach presented by Duan et al. [24] focuses

on the generation of clusters which are derived from different clustering criteria.

The weight of clustering criteria is specified by stakeholders, and an initial prioriti-

zation is generated on the basis of a utility function. This utility function is based on

the number of clusters a requirement is included in and the weights of these clusters.

Recommendation of Release Plans (S7). Ruhe et al. [27] introduce an approach to
release planning that is based on the concept of linear programming [35]. The basic

idea is to define a linear program that should calculate a sequence of assignments of

features to a corresponding release taking into account the dependencies between the

different features. Ruhe et al. [26] show how to apply AHP (Analytical Hierarchy

Process) for determining a set of preferred requirements. Felfernig et al. [23, 36]

extend the work of Ruhe et al. [26] by introducing automated diagnosis and repair

mechanisms which effectively help to figure out minimal sets of acceptable changes

in situations where release plan preferences of stakeholders become inconsistent. The

contributions of [23, 26, 27, 36] are important steps towards improving the quality of

requirements selection. However, these approaches depend on the assumption that

stakeholders know their preferences and that preferences remain stable. In the line of
traditional models of human decision-making, it is assumed that humans are taking

14 An Overview of Recommender Systems in Requirements Engineering 321

decisions on the basis of rational thinking [37]. Following such models, a human

would take the optimal decision following a formal evaluation process. In contradic-

tion to these models, research has clearly pointed out the fact that preference stability

in decision processes does not exist and can also be easily manipulated [38].

A customer who wants to purchase a digital camera could first define a strict upper

limit for the price. But due to additional technical information about the camera, the

customer could change her mind and significantly increase the upper limit of the

price. This typical example of preference reversal [39] indicates the nonexistence of

stable preferences. Instead, the model of preference construction [38] should be used,

in which decision-making processes are more characterized by a process of iterative

refinement and adaptation of the current preferences in the face of new alternatives

and as well in the face of opinions of other users that are visible to the decision maker.

The idea of applying group decision-making techniques in requirements engi-

neering is to exploit basic decision heuristics [40] such as majority voting (the

decision is taken conform to the majority of the votes of the engaged stakeholders)

or the fairness heuristic which guarantees that none of the stakeholders will be

disadvantaged in the group decision process. Group decision heuristics already play

an important role in application scenarios outside software engineering [40].

Felfernig et al. [25] applied group decision heuristics in the context of RE scenarios.

They introduce the IntelliReq environment which can be used for supporting group

decision processes in distributed settings (e.g., open-source platforms or large and

distributed software projects). The authors present the results of an empirical study

which show that group recommendation technologies can help to improve the

perceived quality of decision support. A further insight was that stakeholders

should not be confronted with the preferences of other group members at the

beginning of prioritization – the reason is that knowledge about preferences auto-

matically triggers insufficient information exchange between group members.

14.3 Recommendation Techniques for Requirements

Engineering

In order to show how recommendation techniques can be exploited in the RE

context, we will now discuss basic application scenarios. These scenarios should

help to develop an understanding of potential applications of recommendation

techniques and show how different recommendation approaches have to be tailored

in order to be applicable. Note that we interpret recommendation technologies as

supportive technologies; we do not claim that information gaps in general can be

closed by the application of recommendation technologies. Information does not

substitute communication, that is, effective RE processes still heavily rely on

personal stakeholder interaction. Furthermore, the quality of recommendations

depends on the quality of information provided by stakeholders, that is, the

successful application of recommendation technologies is only possible on the

322 A. Felfernig et al.

basis of motivated and proactive stakeholders. Finally, successful RE depends on

process quality, which cannot be achieved and guaranteed only by the application

of recommendation technologies. In the following, we discuss basic RE application

scenarios for the major types of recommendation technologies which are content-
based filtering (CBF) [11], clustering [14], collaborative filtering (CF) [13], group
recommendation (GR) [41], social network analysis [16], and knowledge-based
recommendation (KBR) [7, 12].

Content-Based Filtering. Content-based filtering (CBF) [11] exploits the

similarities between the preferences of the current user and descriptions of items

the user did not notice up to now. User preferences can be, for example, represented

by frequent keywords extracted from artifacts previously processed by the user.

Another alternative are predefined categories assigned to items as meta-

information. Typical recommendations derived by CBF recommenders are of the

form item C is recommended since you were also interested in item A (which is

similar to item C).
When defining requirements, a recommender can support stakeholders, for

example, by indicating similar requirements or point out requirements already

defined in previous projects. Let us assume the active stakeholder (s1) has already

investigated the requirement r1 which has the assigned category database (see

Table 14.2). Now, CBF would recommend requirement r3 if r3 has not been

investigated up to now by the active stakeholder. If no such categorization of

requirements is available, the detailed textual description of requirements can be

used: keywords have to be extracted [42], and the determination of similar

requirements can then be based on the similarity of the extracted keywords – a

simple corresponding similarity metric is shown in Formula 14.1.1 For example,

sim(r1, r3) ¼ 0.17, if we assume keywords(r1) ¼ {store, component, configuration,
DB} and keywords(r3) ¼ {tier, DB, independence}:

simðs; rÞ ¼ jkeywordsðsÞ \ keywordsðrÞj
jkeywordsðsÞ [keywordsðrÞj (14.1)

Table 14.2 Example of a content-based filtering recommendation problem

Requirement Category Planned release Efforts (person days) Description

r1 Database 1 150 Store component

configuration in DB

r2 User interface 2 60 User interface with

online help available

r3 Database 1 300 Separate tier for DB

independence

r4 User interface 1 30 User interface with

corporate identity

1 Note that the parameter s in Formula 14.1 represents a user profile; however, this approach can as
well be applied to calculate the similarities between different requirements, that is, simðri; rjÞ.

14 An Overview of Recommender Systems in Requirements Engineering 323

k-Means Clustering. A basic method for determining clusters is k-means
clustering [43] where k specifies the number of clusters being sought. In the initial

iteration, k requirements can be chosen as cluster centers, and the other

requirements are assigned to their closest cluster. Different distance metrics can be

applied [14] – for the purposes of our example, we apply the similarity between

keywords (see Table 14.3) extracted from the textual description of our example

requirements ({ r1; r2; r3; r4 } in Table 14.2). Thereafter, the centroid (mean) per

cluster is determined for each cluster, and an assignment of requirements to clusters

takes place again. For our example, we assume that after one step, the two clusters

c1:{r1; r3} andc2:{r2; r4} have been identified where sim(r1; r3)¼ 0.17 and sim(r2; r4)¼
0.5. The algorithm terminates if a maximum iteration depth has been reached or all

clusters remain stable.

Collaborative Filtering. Collaborative filtering (CF) [13] is perhaps the most

widespread recommendation approach where information about the rating behavior

of nearest neighbors (i.e., users with similar ratings compared to the current user) is

exploited for predicting the current user’s ratings for items not known to her/him

yet. Typical recommendations derived by CF recommenders are of the form users
who were interested in item A were also interested in item C.

When stakeholders try to understand a given set of requirements (e.g., new

stakeholders in the project), recommender systems can provide support in terms of

showing related artifacts or showing those artifacts stakeholders have investigated

when working on the current or a similar requirement. In the setting of Table 14.4,

the requirements {r1, r2, r3, r4} have already partially been investigated by the

stakeholders {s1, s2, s3}. For example, stakeholder s1 has already investigated the

requirements r1 and r3. The main idea of collaborative filtering (CF) is to exploit

user ratings (in our context, the rating¼ 1 if a stakeholder has already investigated a

certain requirement and the rating ¼ 0 if the stakeholder did not investigate the

requirement up to now) in order to identify additional requirements the stakeholder

may be interested in. User-based CF is a basic variant which is often used in

industrial contexts [13]. User-based CF tries to identify the k-nearest neighbors

(stakeholders interested in a similar set of requirements) of the current user

Table 14.3 Keywords

extracted from the textual

requirement descriptions in

Table 14.2

Requirement Extracted keywords

r1 Store component configuration DB

r2 User interface help

r3 Tier DB independence

r4 User interface corporate

Table 14.4 Example of a

collaborative

recommendation problem. A

table entry ij with value 1 (0)

denotes that fact that

stakeholder si has (has not)

inspected the requirement rj

r1 r2 r3 r4

s1 1 0 1 0

s2 1 0 1 1

s3 1 1 0 1

324 A. Felfernig et al.

(stakeholder) and calculates a prediction for the rating of an item the stakeholder

has not investigated up to now. Such a rating can be defined, for example, as the

weighted majority of the k-nearest neighbors. In our example, stakeholder s2 can be

identified as the nearest neighbor (if we set k ¼ 1) since s2 has investigated all the

requirements investigated by stakeholder s1. Vice versa, stakeholder s1 did not

investigate the requirement r4 up to now – in this context, collaborative filtering

would recommend requirement r4 to stakeholder s1 since the nearest neighbor of s1
has already investigated r4.

Group Recommendation. The major goal of group recommendation (GR)

technologies [41] is to support/achieve consensus among group members. GR can

support groups in their decision process by taking into account the fact that

individual decisions depend on various factors, such as own evaluation of a solution

alternative, beliefs about the opinions of group members, and information about the

individual motivation (e.g., egocentric or cooperative motivation [41]). GR

includes heuristics that can be exploited for identifying solution alternatives that

are (with a high probability) accepted by all or at least the majority of group

members. Typical recommendations derived by group recommenders are of the

form this recommendation tries to take into account the preferences of all group
members.

Requirements evaluation and negotiation have a clear need of group decision

support: a group of stakeholders has to decide about the quality of requirements and

in the following to figure out which requirements should be accepted without a

change. Let us assume that the requirement r has to be evaluated by the stakeholders
{s1, s2, s3, s4} – the individual evaluations of r are depicted in Table 14.5.

In this context, group recommendation concepts can be applied which propose

alternatives to be further evaluated by the group. Different strategies for determin-

ing such a group recommendation are possible [15], for example, the least-misery
strategy would propose evaluations that are stable in the sense that none of the

evaluation dimensions have been overestimated (or underestimated, e.g., in the case

of person days). Applying this strategy in our context would mean to propose the

evaluation (quality ¼ medium, effort ¼ 14, decision ¼ revision) as first alternative
for the overall group decision. On the basis of this and further proposals, each

individual stakeholder enters the next review round with the goal to achieve (if

possible) a consensus regarding the evaluation. A detailed discussion of further

strategies for determining group recommendations can be found in Masthoff [15].

Social Network Analysis.With the concepts of social network analysis, different

properties of a network of stakeholders engaged in an RE process can be identified.

In order to sketch the analysis of betweenness centrality of stakeholders, we

introduce the communication patterns between the stakeholders {s1; s2; s3; s4; s5}
in Table 14.6. For simplicity, we assume that each discussion thread (related to one

Table 14.5 Example of a

decision problem: deciding

about the group evaluation of

requirement r

Requirement: r s1 s2 s3 s4

Quality Medium Medium Medium High

Effort (person days) 10 7 14 8

Decision Accept Revision Accept Accept

14 An Overview of Recommender Systems in Requirements Engineering 325

requirement) includes at most four comments and stakeholder si is connected to

stakeholder sj in a social network (see Fig. 14.1) if both are in at least one common

discussion thread. Betweenness centrality measures for each stakeholder si the
number of shortest paths between pairs of other stakeholders sjðsi 6¼ sjÞ in which

si is included. Table 14.7 depicts the results of the betweenness centrality evaluation
in our working example; the stakeholders s1 and s3 have a centrality measure of 3.0

(both are part of three shortest paths between stakeholders sjðsj 6¼ siÞ) whereas the
other ones have a betweenness centrality of 0.0. This way we are able to analyze the

role of a person in communication processes (with regard to certain topics). As

such, this measure can be exploited as a first basic selection criterion for

stakeholders who should participate in a project.

Knowledge-Based Recommendation. Knowledge-based recommendation (KBR)

[7, 12] exploits formal knowledge about the offered item assortment, knowledge

about user preferences, and knowledge about which items should be recommended

in which context. The explicit form of knowledge representation in terms of rules

(constraints) allows the generation of deep explanations as to why a certain item has

been recommended or why no solution exists in a certain recommendation context

[36]. Typical recommendations derived by KBR are of the form you specified the
item properties I¼{x,y,z} therefore we recommend C which supports all the

properties of I.

Table 14.6 Communication patterns (e.g., in a discussion forum) between stakeholders fs1; s2;
s3; s4; s5g regarding requirements fr1; r2; r3; r4g
Requirement: r Comment 1 Comment 2 Comment 3 Comment 4

r1 s1 s2 s1 s2
r2 s3 s4 s1 s3
r3 s3 s5 s3 s5
r4 s3 s1 s3 s1

s2s1

s4s3

s5Fig. 14.1 Example social

network (sn) derived from

communication patterns of

Table 14.6

Table 14.7 Betweenness centrality values for stakeholders fs1; s2; s3; s4; s5g: For example,

stakeholder s1 has a betweenness centrality of three since he/she is included in three shortest

paths between stakeholders sj (sj 6¼ si); these shortest paths are fs2 � s3, s2 � s4, s2 � s5g
Stakeholder Shortest paths between sj Betweenness centrality

s1 s2 � s3, s2 � s4, s2 � s5 3:0

s2 – 0:0

s3 s1 � s5, s2 � s5, s4 � s5 3:0

s4 – 0:0

s5 – 0:0

326 A. Felfernig et al.

Knowledge-based recommendation technologies can support consistency man-

agement as well as intelligent explanations in situations where no solution (e.g.,

release plan) can be identified due to contradicting stakeholder preferences [23, 36].

Table 14.8 depicts a set of requirements R ¼ {r1, r2, r3, r4} and a set of stakeholders

S ¼ {s1, s2, s3}. For each requirement ri 2 R, each stakeholder specifies his/her

preferences which can be 1 (include) or 0 (exclude), for example, c12 ¼ 1 denotes

the fact that stakeholder s1 wants to include requirement r2 in the next software

release. The set of stakeholder preferences is denoted as C ¼ [cij. Inclusion and

exclusion are example constraints (preferences). Further types of constraints are

possible (see, e.g., the RE ontology proposed by Lohmann et al. [44]) but not used

in this example. For the preferences shown in Table 4, no solution exists, that is, the

stakeholder preferences are inconsistent (Tables 14.9 and 14.10).

The first step to resolve this inconsistency is to figure out combinations of

constraints (preferences) that are causes for the inconsistency, for example, the

stakeholder preference c12 is inconsistent with the preference c22. The com-

plete set of such (minimal [45]) inconsistencies is CON ¼ {con1:{c12, c22},

con2:{c22, c32}, con3:{c13, c33}, con4:{c23, c33}}. Such sets can be determined

using the algorithm presented by Junker [45]. We can now determine all

possible repairs for the given set C of stakeholder preferences by simply

deleting at least one element from each subset of CON (see [31]). The possible

repair constraint sets repk for CON are elements of REP ¼ {rep1:{c22, c33},

rep2:{c22, c13, c23}, rep3:{c12, c32, c33}, rep4:{c12, c32, c13, c23}} where a repair

constraint set repk is defined as a minimal set of stakeholder preferences (see

[46]) that have to be changed in order to make the stakeholder preferences

consistent.

Table 14.8 Example of

inconsistent stakeholder

preferences: each table entry

represents a constraint c ij,

where c ij ¼ 1 (0) denotes

the fact that stakeholder i
wants to include (exclude)

requirement j

s1 s2 s3

r1 1 1 1

r2 1 0 1

r3 0 0 1

r4 1 1 1

Table 14.9 Example

importance values for the

stakeholder preferences

shown in Table 14.8

s1 s2 s3

r1 imp(c11) ¼ 0.5 imp(c21) ¼ 0.3 imp(c31) ¼ 0.4

r2 imp(c12) ¼ 0.2 imp(c22) ¼ 0.3 imp(c32) ¼ 0.2

r3 imp(c13) ¼ 0.2 imp(c23) ¼ 0.2 imp(c33) ¼ 0.2

r4 imp(c14) ¼ 0.1 imp(c24) ¼ 0.2 imp(c34) ¼ 0.2

Table 14.10 Utility values of

repair actions {repc1, repc2,

repc3, repc4}

repck 2 REPc Utility(repck)

repc1 2

repc2 1.42

repc3 1.66

repc4 1.25

14 An Overview of Recommender Systems in Requirements Engineering 327

For the given set REP, we can identify the following set of concrete repair

actions: REPc ¼ {repc1:{c22 ¼ 1, c33 ¼ 0}, repc2:{c22 ¼ 1, c13 ¼ 1, c23 ¼ 1},

repc3:{c12 ¼ 0, c32 ¼ 0, c33 ¼ 0}, repc4:{c12 ¼ 0, c32 ¼ 0, c13 ¼ 1, c23 ¼ 1}.

REPc can now be considered as a set of alternative and minimal repairs for the

original set of stakeholder preferences such that consistency between the

preferences can be restored.

14.4 Issues for Future Research

Based on our analysis of existing research on the application of recommendation

technologies in requirements engineering (RE), we now focus on a discussion of

relevant issues for future research.
Decision Support and Preference Construction. Existing RE approaches often

rely on the assumption of stable stakeholder preferences (e.g., in the context of

requirements negotiation). The assumption of stable preferences is not applicable

for RE scenarios; in fact, related decision-making follows an incremental prefer-

ence construction process [25, 47]. In order to better integrate recommendation

technologies into RE processes, we are in the need of deep knowledge about human

decision strategies. Such a knowledge will help us to improve the decision support

quality. The integration of human decision strategies into recommendation systems

research is a new and challenging field of research which requires a strongly

interdisciplinary research approach [25].

Recommendation Approaches. We exemplified how conventional recommenda-

tion approaches can be exploited in RE scenarios. However, there are settings with

complex interdependencies between requirements and a large number of inconsis-

tent stakeholder preferences. These settings require to adapt, combine, and extend

existing recommendation approaches. One possible direction is to adapt

knowledge-based recommendation functionality for group-based recommendation

scenarios, for example, critiquing-based recommendation approaches [48] have to

be extended to support different types of group-based recommendation and diagno-

sis functionalities (for determining repair actions for inconsistent stakeholder

preferences).

Quality of Recommendations. Stakeholders are often skeptical regarding a new

form of automated tool support. As a consequence, recommendation technologies

will only succeed if they deliver high-quality recommendations. To this end, we

have to design and conduct empirical studies to (a) learn about stakeholder needs

and (b) evaluate recommendation systems. The goal is to figure out how existing

recommendation approaches have to be adapted for an optimal performance in RE

scenarios. Empirical studies should deliver grounded theories about the behavior of
stakeholders in particular situations, which are needed to train and optimize related

recommendation algorithms.

328 A. Felfernig et al.

Social Networks in Recommender Systems. The position of stakeholders in a

social network often has an enormous impact on RE-related decision processes.

Social network analysis is an important supportive technology for different types of

recommenders. For example, collaborative filtering recommenders can use trust

information to improve the quality of item predictions. Group-based recommenders

can exploit trust information for determining group recommendations.

Semiautomated Dependency Detection. Effective dependency management is

crucial for efficient requirements engineering processes. Existing recommendation

support is focused on the analysis of similarities between requirements (using, e.g.,

clustering and content-based filtering methods). An important issue for future

research is to make dependency detection more intelligent in terms of making it

possible to predict, for example, the type of dependency (e.g., refinement or

incompatibility dependency). Such new approaches can rely on concepts from the

areas of natural language processing [32] and text mining [14].

Requirements Discovery in Open Source Software Development. Open-source
platforms include different types of communication channels and types of commu-

nication. As a consequence, the filtering of requirement-relevant information is a

challenge but a prerequisite for improving the quality of recommendation support.

An issue for future research is the development of methods which allow to isolate

requirement-relevant artifacts before recommendation algorithms are applied.

Recommendation Beyond Textual Requirements. Existing RE recommendation

approaches focus on the analysis of textual requirements specifications which are

represented, for example, in a completely informal fashion or in terms of use case

scenarios. Future recommendation techniques for RE should be able to deal with

graphical data sources such as, for example, class diagrams, sequence diagrams,

state charts, as well as formal requirements specifications and system models. The

inclusion and analysis of such artifacts has the potential to improve the prediction

quality of recommendation algorithms and – as a consequence – also to improve the

overall efficiency of RE processes.

Context Awareness. There are two basic recommendation modes: pull and push.
Pull means that stakeholders are actively triggering recommendation functionality

when needed. Push means that the recommender application proactively detects

situations (contexts) in which a stakeholder needs a particular support [49]. In order

to deliver push recommendations, the context of a stakeholder has to be observed

and discovered [49]. An approach to tackle this challenge is to continuously collect

users’ context and reason about user needs. Contextual recommendation is an

emerging field [50] and will also play a major role in the development of recom-

mendation solutions for RE.

14.5 Conclusions

Due to the increasing size and complexity of software systems as well as the

growing degree of distributedness in software projects, recommendation

technologies are becoming more and more popular as an intelligent technology

14 An Overview of Recommender Systems in Requirements Engineering 329

for requirements engineering (RE). In this chapter, we focused on a discussion of

existing research related to the application of recommendation technologies in

different requirements engineering scenarios. In order to demonstrate the applica-

tion of recommendation technologies, we came up with examples such as the

analysis of social networks for stakeholder identification and the clustering of

requirements for the detection of dependencies. With our outlook on relevant topics

for future research, we hope to stimulate fruitful further research focused on the

development and application of recommendation technologies in RE.

Acknowledgements The work presented in this chapter has been conducted in the IntelliReq

(829626) research project funded by the Austrian Research Promotion Agency.

References

1. Hofmann H, Lehner F (2001) Requirements engineering as a success factor in software

projects. IEEE Softw 18(4):58–66

2. Sommerville I (2007) Software engineering. Pearson, Munich

3. Felfernig A, Maalej W, Mandl M, Schubert M, Ricci F (2010) Recommendation and decision

technologies for requirements engineering. In: ICSE 2010 workshop on recommender systems

in software engineering, Cape Town, pp 1–5

4. Maalej W, Thurimella A (2009) Towards a research agenda for recommendation systems in

requirements engineering. In: Proceedings of 2nd international workshop on managing

requirements knowledge, Atlanta

5. Mobasher B, Cleland-Huang J (2011) Recommender systems in requirements engineering.

AI Mag 32(3):81–89

6. Felfernig A, Burke R, Goeker M (2011) Recommender systems: an overview. AI Mag

32(3):13–18

7. Burke R (2000) Knowledge-based recommender systems. Encycl Libr Inf Syst

69(32):180–200

8. Burke R (2002) Hybrid recommender systems: survey and experiments. UMUAI

J 12(4):331–370

9. Terveen L, Herlocker J, Konstan J, Riedl J (2004) Evaluating collaborative filtering recom-

mender systems. ACM Trans Inf Syst 22(1):5–53

10. Linden G, Smith B, York J (2003) Amazon.com recommendations: item-to-item collaborative

filtering. IEEE Inter Comput 7(1):76–80

11. Pazzani M, Billsus D (1997) Learning and revising user profiles: the identification of interest-

ing web sites. Mach Learn 27:313–331

12. Felfernig A, Burke R (2008) Constraint-based recommender systems: technologies and

research issues. In: Proceedings of IEEE ICEC’08, Innsbruck, pp 17–26

13. Konstan J, Miller B, Maltz D, Herlocker J, Gordon L, Riedl J (1997) Grouplens: applying

collaborative filtering to usenet news full text. Commun ACM 40(3):77–87

14. Witten I, Frank E (2005) Data mining. Elsevier, San Francisco

15. Masthoff J (2004) Group modeling: selecting a sequence of television items to suit a group of

viewers. UMUAI 14(1):37–85

16. Golbeck J (2009) Computing with social trust. Springer, London

17. Lim S, Quercia D, Finkelstein A (2010) Stakenet: using social networks to analyse the

stakeholders of large-scale software projects. In: Proceedings of ACM/IEEE, Cape Town,

pp 295–304

330 A. Felfernig et al.

18. Castro-Herrera C, Duan C, Cleland-Huang J, Mobasher B (2008) Using data mining and

recommender systems to facilitate large-scale, open, and inclusive requirements elicitation

processes. In: Proceeding of the 16th IEEE international conference on requirements engineer-

ing (RE’08), Barcelona, pp 165–168

19. Dumitru H, Gibiec M, Hariri N, Cleland-Huang J, Mobasher B, Castro-Herrera C (2011)

On-demand feature recommendations derived from mining public product descriptions.

In: Proceedings of ACM/IEEE, Waikiki/Honolulu, pp 181–190

20. Lim S, Finkelstein A (2012) Stakerare: using social networks and collaborative filtering for large-

scale requirements elicitation. IEEE Transactions on Software Engineering 38(3):707–735

21. Fitzgerald C, Letier E, Finkelstein A (2011) Early failure prediction in feature request

management systems. In: 19th IEEE requirements engineering conference, Trento, pp

229–238

22. Cleland-Huang J, Dumitru H, Duan C, Castro-Herrera C (2009) Automated support for

managing feature requests in open forums. Communications of the ACM 52(11):68–74

23. Felfernig A, Schubert M, Mandl M, Ghirardini P (2010) Diagnosing inconsistent requirements

preferences in distributed software projects. In: Proceedings of 3rd International workshop on

social software engineering, Paderborn, pp 1–8

24. Duan C, Laurent P, Cleland-Huang J, Kwiatkowski C (2009) Towards automated requirements

prioritization and triage. Requir Eng 14(2):73–89

25. Felfernig A, Zehentner C, Ninaus G, Grabner H, Maalej W, Pagano D, Weninger L, Reinfrank

F (2011) Group decision support for requirements negotiation. Springer Lect Notes Comput

Sci 7138:1–12

26. Ruhe G, Eberlein A, Pfahl D (2003) Trade-off analysis for requirements selection. J Softw Eng

Knowl Eng (IJSEKE) 13(4):354–366

27. Ruhe G, Saliu M (2005) The art and science of software release planning. IEEE Softw

22(6):47–53

28. Marczak S, Kwan I, Damian D (2007) Social networks in the study of collaboration in global

software teams. In: Proceedings of ICGSE’07, Munich

29. Iyer J, Richards D (2004) Evaluation framework for tools that manage requirements inconsis-

tency. In: 9th Australian workshop on requirements engineering, Adelaide, pp 1.1–1.8

30. Tsang E (1993) Foundations of constraint satisfaction. Academic, London

31. Reiter R (1987) A theory of diagnosis from first principles. AI J 23(1):57–95

32. Fantechi A, Spinicci E (2005) A content analysis technique for inconsistency detection in

software requirements documents. In: WER05 – workshop em Engenharia de Requisitos,

Porto, pp 245–256

33. Aurum A,Wohlin C (2003) The fundamental nature of requirements engineering activities as a

decision-making process. Inf Soft Technol 45(14):945–954

34. Davis A (2003) The art of requirements triage. IEEE Comput 36(3):42–49

35. Schrijver A (1998) Theory of linear and integer programming. Wiley, New York

36. Felfernig A, Friedrich G, Schubert M, Mandl M, Mairitsch M, Teppan E (2009) Plausible

repairs for inconsistent requirements. In: Proceedings of IJCAI’09, Pasadena, pp 791–796

37. McFadden D (1999) Rationality for economists. J Risk Uncertain 19(1):73–105

38. Bettman J, Luce M, Payne J (1998) Constructive consumer choice. J Consum Res

25(3):187–217

39. Lichtenstein S, Slovic P (2006) The construction of preference. Cambridge University Press,

New York

40. Masthoff J (2011) Group recommender systems. In: Recommender systems handbook.

Springer, Boston, pp 677–702

41. Jameson A, Baldes S, Kleinbauer T (2004) Two methods for enhancing mutual awareness in a

group recommender system. In: ACM international working conference on advanced visual

interfaces, Gallipoli, pp 48–54

42. Roy L, Mooney R (2004) Content-based book recommending using learning for text categori-

zation. User Model User-Adapt Interact 14(1):37–85

14 An Overview of Recommender Systems in Requirements Engineering 331

43. Can F, Ozkarahan A (1990) Concepts and effectiveness of the clustering methodology for text

databases. ACM Trans Database Syst 15(4):483–517

44. Lohmann S, Riechert T, Auer S (2008) Collaborative development of knowledge bases in

distributed requirements elicitation. In: Software engineering (workshops): agile knowledge

sharing for distributed software teams, Munich, pp 22–28

45. Junker U (2004) Quickxplain: preferred explanations and relaxations for over-constrained

problems. In: Proceedings of 19th national conference on AI (AAAI04), San Jose, pp 167–172

46. Felfernig A, Schubert M, Mandl M, Ghirardini P (2010) Diagnosing inconsistent requirements

preferences in distributed software projects. In: Proceedings of 3rd international workshop on

social software engineering, Paderborn, pp 1–8

47. Felfernig A, Chen L, Mandl M (2005) Recsys’11 workshop on human decision making in

recommender systems, Chicago, pp 389–390

48. Burke R, Felfernig A, Goeker M (2011) Recommender systems – an overview. AI Mag

32(3):13–18

49. Hans-Jörg H, Maalej W (2008) Potentials and challenges of recommendation systems for

software development. In: RSSE ’08: proceedings of the 2008 international workshop on

recommendation systems for software engineering, ACM, Atlanta

50. Anand S, Mobasher B (2007) Contextual recommendation. In: Discovering and deploying user

and content profiles, Springer Berlin/Heidelberg, pp 142–160

332 A. Felfernig et al.

Chapter 15

Experience-Based Requirements

Engineering Tools

E. Knauss and S. Meyer

Abstract Writing a good software requirement specification is a complex task.Many

different aspectsmust be taken into account;most of them can only be learned through

experience. Being aware of experiences and distilled best practices at the right time

when writing a specification is another challenge. Experience-based requirements

engineering tools make sharing and reuse of experience feasible. In this chapter, we

present design principles for such tools, define a learning model to describe how

organisations and individuals can learn new experiences by using them, and sketch a

strategy for evaluating experience-based requirements engineering tools.Wehighlight

these concepts with an example.

15.1 Introduction

Authors of software requirement specifications (SRS) have to adopt the increasing

complexity of today’s software systems. This leads to more comprehensive and

complicated requirements. In these situations, authors find it increasingly difficult

to avoid ambiguities and contradictions in order to create a high-quality SRS.

There aremany guidelines and best practices about how to create a good specification.

Authors are expected to know them and to be able to apply themwhen needed. This leads

to an information overflow, especially if the author is not a full-time requirements analyst.

Furthermore, writing good requirements needs a lot of experience. Gaining and sharing

experiences in writing SRS is a challenging task. In general, software developing

organisations try to address these challenges by systematic knowledge and experience

management [1], thus becoming Learning Software Organisations (LSO) [2]. However,

there is limited support for organisational learning in requirements engineering.

E. Knauss (*) • S. Meyer

Leibniz Universität Hannover, Hanover, Germany

e-mail: eric.knauss@inf.uni-hannover.de; sebastian.meyer@inf.uni-hannover.de

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_15, # Springer-Verlag Berlin Heidelberg 2013

333

mailto:eric.knauss@inf.uni-hannover.de
mailto:sebastian.meyer@inf.uni-hannover.de

When trying to support analysts in this situation, one has to face two problems that

are intertwined with each other: On the one hand, an author of a SRS is not aware of

guidelines or best practices that could help to create a good specification. On the

other hand, experienced requirements engineers that know these best practices do not

know how to share them with others in a form that supports efficient reuse.

In this chapter, we discuss how tools can address these two problems and offer

experience-based support. Based on a learning model, we address the following

research question:

Can experience-based tools support learning requirements engineering and do they lead to

better requirements documentation?

We describe important design principles for such tools in Sect. 15.2 and illustrate

them at the hand of the example of our HeRA tool (Sect. 15.3). In Sect. 15.4, we

relate other works to these concepts. In addition, we discuss how our concepts can be

applied and evaluated in Sect. 15.5. Our concepts are specific to requirements

engineering activities in allowing dealing with inconsistent and incomplete

documents with limited structure and formality, that is, the kind of documents

typically encountered during the requirements analysis.

15.2 Design Principles

This section gives design principles for requirements engineering tools based on

principles of experience and knowledge management. Based on Schneider, we

define experience as a specific kind of knowledge being acquired by a person by

being involved [1]:

Definition 1. Experience (Schneider [1]). An experience is defined as a three-tuple
consisting of:

(a) An observation

(b) An emotion (with respect to the observed event)

(c) A conclusion or hypothesis (derived from the observed event and emotion)

We call a tool that supports requirements engineering based on externalised

experience an experience-based requirements tool.

Definition 2. Experience-based requirements tool. An experience-based requirements

tool supports one or more of the following aspects of organisational learning during

requirements engineering activities:

(a) Learning: the creation of new experience

(b) Evaluation: the evaluation of existing experience

(c) Management: the distribution, updating, and refinement of existing experience

(d) Application: the usage of existing experience in a given context

An example of a simple experience-based requirements engineering tool is a tool

allowing tailoring (and manage) requirements templates. Based on experience, the

334 E. Knauss and S. Meyer

template can be improved. A better template (i.e. tailored to a specific project context)

supports requirements engineering. More sophisticated examples include automatic

requirements checkers, because they support the application of existing experience

about quality problems that should be removed from requirements documentation.

Often, the discussion of tools that automatically analyse requirements documentation

is limited to the discussion of their recall and precision (e.g. in [3]). Here we give a

broader model for requirements analysis tools allowing us to describe their usefulness

for supporting continuous improvement and organisational learning in requirements

engineering activities.

Kiyavitskaya et al. argue that tools used for identifying problems in requirements

documentation should have 100 % recall, that is, they should find all problematic

requirements [3]. Only then, requirements analysts can focus on reading only the

problematic requirements returned by the tool. With lower recall, analysts have to

read all requirements again to find all problems. In addition, many false positives

have a similar effect: If the tool reports almost every requirement to be problematic,

the analyst does not gain much. Thus, a high precision is also important. We agree

that recall and precision are important properties and subsume them in the property

reliability. Note that even low reliability might be acceptable, if other properties of

the tool add enough value.

Definition 3. Reliability. The reliability of a requirements checking tool is defined

inversely proportional to the number of type one errors (the checking tool reports a
problem, but there is none; metric: precision) and type two errors (the checking tool
reports no problem, but there is one; metric: recall). The reliability can be:

(a) Low: Recommendations of tool are often incorrect.

(b) Medium: F-measure > 0.7 (f-measure is a combined metric based on the

harmonic mean of precision and recall).

(c) High: F-measure > 0.85.

Especially, when focusing on learning aspects of such tools, it is important to

switch the perspective and analyse how such tools affect the work of requirements

analysts. For this, we add another definition: authority of tools.

Definition 4. Authority. The degree to that users rely on feedback of automatic

requirements checkers. The authority can be:

(a) Low: Recommendations of tool are seldom adhered to.

(b) Medium: Recommendations of tool are more often adhered to than not.

(c) High: Recommendations of tool are mandatory.

This definition has two facets:

1. In an extreme case, the requirements engineering workflow of an organisation

could dictate analysts to react on all findings from an experience-based

requirements engineering tool, no matter whether the finding stands for an actual

problem or not. This makes sense, if changing 100 requirements without problems

15 Experience-Based Requirements Engineering Tools 335

is cheaper than missing one requirement with a problem. We conclude: Authority
can be independent from reliability.

2. Otherwise, the experience-based tool has to earn authority by being useful. We

conclude: Reliability (as expressed by precision and recall) has a strong impact

on usefulness.

Note that inexperienced users could rely on bad feedback. Therefore, it is

important to distinguish between the concepts of reliability and authority. Beyond

these concepts, the usefulness of computer-based feedback is strongly influenced by

the proactivity and by the degree of interpretation.

Definition 5. Proactivity. The degree to that an automatic requirements checker

defines the time of feedback. The proactivity can be:

(a) Low (¼reactive): Feedback is only given if the user requests it.

(b) Medium: Feedback is triggered by the user’s specific actions.

(c) High: Time of feedback is determined based on more complex rules.

Proactivity defines the trigger of the feedback. Often, it is easier to directly

improve a problematic requirement. When using a reactive tool, the analyst needs

to understand that feedback will be useful in a given situation. Because of the high

time pressure during requirements analysis, this often leads to the problem that

feedback is only given very late. Then, it is muchmore difficult to repair problematic

requirements: Other requirements might depend on the problematic one. In addition,

the analyst needs to understand the exact circumstances of a given requirement.

Definition 6. Degree of interpretation. The degree to that an automatic requirements

checker gathers and interprets data about a given situation beyond concrete available

data. The degree of interpretation can be:

(a) Low: The tool reproduces existing data and lets the user interpret it.

(b) Medium: The tool sorts and filters data, thus suggesting a specific interpretation.
(c) High: The tool refines and interprets data.

Finally, an important property of experience-based tools is the ability to learn.

Definition 7. Learning ability. The ability to integrate new experiences or refine

existing experiences in the experience-based requirements tool. Learning ability

can be:

(a) Low: New experience has to be hard coded into the tool by experts.

(b) Medium: Special facilities exist in the tool to allow users to add new experience.

(c) High: The tool can automatically adopt, for example, based on observing its

user.

The learning ability is important to allow adopting the experience-based tool to a

specific situation. Furthermore, the learning ability is the primary facility to support

continuous improvement and organisational learning: If new knowledge is encoded

into the experience-based tool, the organisation owning the experience-based tool

has learnt.

336 E. Knauss and S. Meyer

In requirements engineering, we encounter a large variety of document types.We

aim to define our design principles independent from the specific document type, but

of course the properties of documents handled by a tool have a certain impact on the

performance of the tool. For our purposes, it is sufficient to distinguish two properties

of requirements documents: (a) formality and (b) maturity. The more formal the

syntax of a requirements document (or model) is, the easier it is to analyse for

requirements checkers. Formal requirements models even allow simulation and

other mechanisms for quality insurance. However, in many projects, requirements

are specified without too much formalism, especially in the beginning of a project.

Experience-based tools that offer support early during requirements engineering

activities should be able to handle informal requirements descriptions as well as

incomplete documents (with low maturity).

15.2.1 Learning Through Experience: Heuristic Critiques

In this section, we describe how the presented design principles affect learning and

experience management. First, we introduce the concept of heuristic critiques:

Definition 8. Heuristic critique. Computer based feedback to an activity or work

product (e.g. requirements documentation) based on experience. A heuristic critique

consists of:

(a) A heuristic rule that can be evaluated by a computer

(b) A criticality
(c) A meaningful and constructive message

A heuristic critique depicts a single automatic requirements check. Furthermore, it

supports Learning SoftwareOrganisations (LSO). Such anLSO focuses on developing

software while supporting the following aspects of organisational learning [1]:

(a) Learning of the individuals in the organisation

(b) Organisation-wide collection of knowledge and experience

(c) Cultivation of an organisation-wide infrastructure for exchanging knowledge

and experience

When integrated in requirements engineering tools, heuristic critiques offer

support for a LSO. Table 15.1 gives an example of the relation between heuristic

critique and experience (see Definition 1). While implementing a requirement, a

developer makes an experience (left hand of Table 15.1). A heuristic could be

created that covers part of this experience (right hand of Table 15.1).

The heuristic rule gives a good solution without guarantee for optimality or

feasibility. In the example, passive voice can be found by computers and often

(not always) leads to the detection of unclear responsibilities. Examples of other

heuristic critiques include:

• Inconsistencies: If two similar requirements (e.g. use cases with similar title) are

detected, give a warning and suggest that the user merges both requirements or

clarifies them to avoid inconsistencies.

15 Experience-Based Requirements Engineering Tools 337

• Ambiguities: If a weak word (e.g. always, sometimes) is encountered, give a

warning and ask the user to specify the circumstances of the requirement more

exactly.

• Incompleteness: If a use case on user goal level is found that is not included or

does not extend a use case on business level, give a warning and ask the user to

add the missing link or to specify the missing business goal.

15.2.2 Learning Model

Figure 15.1 shows two important areas of learning, supported by heuristic critiques.

Learning occurs on individual and organisational level during the activity of writing

requirements.

15.2.2.1 Individual Learning: Reflect and Apply

Under pressure, analysts write bad requirements, even if they know how to do it

better. It is good to have a mentor who gives gentle reminders until knowledge

develops to skills. Heuristic critiques like in Table 15.1 could give just this type of

feedback.

Reflect: If a heuristic detects passive voice in a requirement and fires a warning, the

requirements engineer is interrupted in his task. This gives him the chance to reflect

about the action currently taken out; a breakdown occurs [4, 5]. This facilitates learning

through reflection, if evaluated directly on the requirements engineers’ input. Note that

we depict this information flow as irreproducible, because the reflexion depends not

only on the heuristic critique but also on the mental context and state of mind of the

analyst.

Apply: The requirements engineer might already know how to write good

requirements in general. Nevertheless, passive sentences may slip into a specification

Table 15.1 Example: a heuristic critique encodes an experience (cf. [33])

Part of exp. Experience Heuristic critique

Part of heur.
crit.

(i) Observation Req. was misunderstood, because

we had not specified who was

responsible

If passive voice is

detected. . .
(a) Heuristic

rule

(ii) Emotion It took a week to rework the module

– just for sloppy writing!

. . .give a warning (b) Notion of
severity

(iii) Conclusion/
hypothesis

It should always be spelled out who

is responsible for an action.

Avoid passive voice!

. . .asking the user to use

active voice and state

responsibility

(c) Meaningful
and
constructive
msg.

338 E. Knauss and S. Meyer

during periods of intensewriting. Reminders andwarnings help to apply and repeat the

knowledge. Thus, they support turning abstract knowledge into internalised skills and

help writing good requirements. Again, this information flow is irreproducible, as the

analyst might choose different solutions, even if he makes the same mistake again.

15.2.2.2 Organisational Learning: Reuse and Encode

Heuristic critiques allow codifying experiences in a useful way.

Reuse: Based on heuristics, computers can be used to find situations matching

the observation that led to the original experience. A more or less disruptive

message points to potential improvements that are inferred from reported emotions.

Encode: Heuristic warnings are not always correct, for example, an actor could be

specified even in a passive sentence. Furthermore, they are not always applicable. For a

condition, which is stated in requirements documentation, use of passive voice is

unproblematic. If such a situation is observed during a breakdown, the requirements

engineer can refine the heuristic warning and specify that it should not be applied to

conditions. Thus, experience is added to the organisations’ knowledge base. As a by-

product, the growing body of codified experience adopts a manageable granularity for

a LSO’s knowledge base. This information flow is irreproducible, as solutions differ

based on the context that leaded to the encoding of the new experience.

15.2.3 Research Questions

We derive our research questions from the learning model in Fig. 15.1. Each (group

of) experience and knowledge flow leads to a specific question:

• RQ 1. Can experience-based tools support individual learning? We need to

investigate the impact on individuals (a) applying and (b) reflecting as depicted

in Fig. 15.1.

Document
RequirementsWishes and raw

requirements
Requirements
Document

Actor Experience
Base

Individual Learning Organisational
Learning

apply
reflect

encode
reuse

can cause a Breakdown
caused by a Breakdown

Fig. 15.1 Learning model (cf. [32, 33]): information flows (arrows; dashed, irreproducible; grey,
experiences) are the foundation of individual and organisational learning. Heuristic critiques can
stimulate the information flows by causing breakdowns

15 Experience-Based Requirements Engineering Tools 339

• RQ 2. Can experience-based tools support organisational learning? We need to

investigate organisation-wide (a) reuse and (b) encoding of experience (c.f. Fig. 15.1.).
• RQ 3.Do experience-based tools lead to better requirements documentation?We

need to investigate if (a) quality and (b) costs of requirements documentation are

improved with experience-based tools.

15.3 Example: The Heuristic Requirements Assistant (HeRA)

This section gives an example of how to integrate the described design principles

into an experience-based requirements engineering tool. While we demonstrate the

principles and their implementation on our own HeRA tool, there are of course

other tools. We give a short overview of them at the end of this section.

HeRA is our implementation of an experience-based requirements engineering

tool. It is basically a smart requirements editor with several heuristic feedback

facilities [6]. While HeRA is designed to be extensible, we focus in HeRA’s

original critique system for describing the key concepts.

HeRA is based on Fischer’s architecture for domain-oriented design environments

(DODE) [5]. The central part of this architecture is a construction component. In the

case of HeRA, requirements are “constructed” using a general-purpose requirements

editor, a use case editor, and a glossary editor. These editors allow constructing specific

artefacts (i.e. requirements, use cases, and a glossary). HeRA offers two other DODE

components, namely, the argumentation component and the simulation component.

Figure 15.2 shows the structure of the HeRA tool.

We describe the interplay of construction, argumentation, and simulation

components based on use cases. Use cases are used to describe the interactions of a

user with the system to construct (based on templates suggested by Cockburn [7]).

HeRA was designed to support the requirements engineer with heuristic feedback: It

analyses the input and warns the user if it detects ambiguities or incomplete

specifications. Furthermore, HeRA can generate diagrams like use case diagrams

from the Unified Modelling Language (UML) or event-driven process chain (EPC)

models that show how the current user goals relate to the business goal or the global

process. If needed, a glossary assistant can be used to ensure consistent use of

important terms. On demand, HeRA computes use case points and displays an effort

estimation associated with the use cases. Use case points are calculated based on the

actors and transaction between them. The HeRA module implements the use case

points method as described by Kusumoto et al. [8]. All of these perspectives are

derived while the use case is being written. In this way, the author gets immediate

feedback on the input andmay improve it.We have successfully appliedHeRAduring

interviews and workshops (see Sect. 5). Supported by HeRA’s feedback facilities, we

aim to achieve the following:

340 E. Knauss and S. Meyer

1. Elicitation of user goals on a level of detail that allows for the identification of

conflicts

2. Discussion whether the current user goals fit into the underlying business goal

and the other user goals already documented (based on visualisation as UML use

case and process models)

3. Discussion of important terms and identification of conflicting interpretations of

these terms

4. Discussion of prioritisation and project constraints based on the use case points

The direct feedback of HeRA allows starting with elicitation of user goals and

detection of inconsistencies and conflicts very early by applying computer-generated

feedback.

HeRA’s capability of applying direct feedback while writing the document is

achieved by automatically evaluating heuristic critiques in the background, whenever

a user works on a use case in HeRA. If a heuristic rule fires, the message is displayed

besides the use case form and a warning symbol is displayed at the specific field of the

use case where the potential problem was detected (see Fig. 15.3, points (1) and (2)).

Additionally, the argumentation component shows a short description for each

fired heuristic rule. The user can decide to get a more detailed description for the

experience that is encoded through this rule (see Fig. 15.3, point (3)). He can

comment on this rule. This feedback can be used to re-evaluate the heuristics and

maybe fine-tune them by hand. The user can also decide to ignore this rule if he

finds it inappropriate for his current document.

Heuristic critiques can be directly changed in HeRA (see Fig. 15.3, point (4)).

This allows rapid prototyping of new critiques. All users can change the message of

the critique or parameters (e.g. keyword lists). In addition, the heuristic rule can be

adjusted. This rule is encoded in JavaScript. In the scope of the script, all use cases

written in HeRA can be accessed.

Fig. 15.2 Structure of the HeRA tool

15 Experience-Based Requirements Engineering Tools 341

15.3.1 Argumentation Component: Glossaries

Glossaries are widely accepted as a method to define a common ground for communi-

cation in software projects. Their goal is to define terms used in the project-specific

domain and gain a commonunderstanding. The usefulness of glossaries has often been

reported [9, 10].

We often observe that complicated terms are gladly introduced into the glossary

of a given project. However, problems arisewhen common terms are used differently

in the context of a project. An example for this is the term application. Most

developers think they know how the term application is defined (according to

Wikipedia as computer software designed to help the user to perform specific
tasks). However, in a given software project, this term was used as “the task of a
student applying for his thesis”.

While this is of course a domain-specific definition of the term at hand, this scenario

is especially dangerous, because developers and customers think they have a common

understanding about a given term. Customers know the domain-specific definition of

this term for their domain, while developers might just know the common definition.

The problem is that neither customers nor developers are aware of these conflicting

interpretations of terms. Therefore, they cannot be expected to solve it without help.

The only way of solving this hidden ambiguity is to confront both parties with the

inconsistency of their assumed meanings.

In the context of experience-based RE tools, there are two possible ways in which

the tool can help. Firstly, it can help to build the glossary by suggesting terms to put

into it, and it can help maintaining the glossary by giving feedback on its quality.

Secondly, it can increase the awareness that there is a glossary and which terms are

defined in it. This is important since a readermay not look up these terms because he is

not aware of the conflict.

Fig. 15.3 The HeRA critique environment

342 E. Knauss and S. Meyer

15.3.1.1 Suggesting Terms for a Glossary

To recommend potentially interesting words to the requirements author, we have to

define what makes a term interesting. For a glossary tool in the context of experience-

based RE tools, we identified two useful heuristics for identifying terms that should be

suggested:

1. Occurrence matters: A term that is used frequently is probably relevant to the

glossary because it can be misused more often.

2. Experience matters: If a term was added to a glossary in another project in the

same domain, it probably should be defined in the current glossary, too.

There exists empirical evidence that people write important terms more often in

order to clarify them or stress their importance [11]. This makes the occurrence

heuristic – although simple – an important and strong method to identify terms that

are important for a project. These terms are candidates for being added to a glossary.

However, simply counting the occurrence of each word does not lead to satisfying

results: A term can be used in different forms over a document. If these terms were not

normalised, the algorithm would suggest both spellings separately. For example, the

terms project and projects have the same meaning, but if they are compared literally,

they do not match. Hence, the algorithm would list each of them with an occurrence

count of 1. Therefore, each term has first to be converted into a defined base form.

Methods for this are stemming (e.g. Porter stemming [12]) or lemmatisation.

Because SRS are often written in natural language, each term in the glossary

should be a correct term according to grammar rules. This requirement makes

stemming unusable for getting a base form and leaves us with lemmatisation. We

use a modified spellchecking engine together with the OpenOffice.org1 dictionaries

to get base forms of inflected words.

This yields another favourable effect: Since the lemmatisation is language-

agnostic, the SRS can be written in every language for which a dictionary exists. We

can evenhavemore than one dictionary activated simultaneously. This is, for example,

useful for non-English texts containing technical terms in English.

Having solved the problem of different forms of the same term strengthens the

occurrence count heuristic. In the above example, project and projects would be

suggested as project with an occurrence count of 2.

The second heuristic (experience matters) works by remembering the terms,

which have already been added to a glossary in another project in the same domain.

The experience circle has an “activate” step. This is where tacit knowledge is

seeded into the experience circle. The most difficult part is recognising the terms

to put into the glossary. Afterwards we can profit from previous experiences and

suggest those terms again whenever they are used.

Therefore, a term, which has already been added to a glossary, is not tacit any

longer but has successfully been identified to be added to a glossary. Such a term is

1 http://www.openoffice.org.

15 Experience-Based Requirements Engineering Tools 343

http://www.openoffice.org

more valuable than a term that is frequently used. Thus, we put those terms on top of

the suggestion list, regardless if there are other terms that are used more often, but

have not been added to a glossary before.

After identifying the terms that qualify for recommendation, they are shown to the

requirements author. For the specification to be helpful, it is necessary to limit the

number of simultaneous recommendations. If there are too many recommendations,

the user is rather distracted than supported. So we decided to initially show only the

ten terms with the highest priority.

Not all words that have been identified as possible suggestions through the two

heuristics should be presented to the author. For example, words like and or that can
be filtered out through a stopword list. Furthermore, the author may decide to ignore

some words because he does not want them to be part of the glossary, and therefore,

they should no longer be suggested. For this case, another filter list is maintained,

consisting of all the ignored words. This list is editable by the author. Each author

maintains his own list of ignored words. Since they are only plain text files, they can

be easily reused or exchanged between different users. Further work may combine

creation, maintenance, and exchange of ignored words with social elements, to

allow sharing between different users of the same knowledge base. Figure 15.4

shows the overall process of working with glossaries in HeRA.

15.3.1.2 Awareness of Defined Terms

As discussed earlier, the crucial step is to identify ambiguity. This is important both

for the requirements author and for anyone who reads the SRS. However, there is

one big difference: Since the author has already added the term to the glossary, the

former implicit and tacit knowledge about his specific understanding has been

explicitly defined. So it is possible to share this special knowledge. That means a

Fig. 15.4 The overall process of working with glossaries in HeRA

344 E. Knauss and S. Meyer

reader does not have to bother whether a term is ambiguous or not because he or she

can look it up in the glossary.

However, most readers do not look up critical words in the glossary. Either because

it stops their natural flow of reading or because they believe a term is not ambiguous.

This is the same problem the author faces when writing the document. Consequently

the reader has to be supported in identifying ambiguous terms.

We use highlighting tomark terms defined in the glossary. This is a common approach

that is, for example, used in almost every modern word processor for spellchecking. This

method does not need much space in the text input area but can still easily be recognised

by a user. We noticed that we cannot use red as the highlighting colour since this may let

the user think of a spelling error.

The use of highlighting makes the recognition of defined terms very easy. The

reader is made aware of an existing definition for a term without having to look it up.

Therefore, the natural reading flow is not interrupted. This enhances the awareness of

the reader since he notices that a word is in the glossary while looking at its context.

This would not be given if he looked up the word in the glossary by himself. To further

foster the context awareness, tooltips can be used to show the definition of the term.

Figure 15.5 shows an underlined term (Application) in the HeRA use case form.

15.3.2 More Heuristic Feedback

Glossaries are not the only part of HeRA that takes advantage of the heuristic

feedback mechanism. Other examples are Cockburn’s aforementioned rules for

writing effective use cases that can also be encoded as heuristic critiques.

A more sophisticated example for applying heuristic rules constructively during the

creation of a SRS is the SecReq heuristics [13]. These heuristics support the identification

of security-relevant requirements. We first created a body of knowledge from three

industrial-level specifications. For two of them, we classified the requirements with the

help of security experts; for the third, we made use of an already existing requirements

database. We then used this body of knowledge to train a Bayesian classifier to recognise

security-relevant requirements. The Bayesian classifier was added to HeRA’s critique

mechanism. This allows HeRA’s argumentation component to suggest security-relevant

requirements that need further refinement. In addition, the classifier can be trained further

by adding information about falsely classified requirements, similar to email spam filters

(see Fig. 15.3).

This is an example of a more sophisticated mechanism. In our experience, it is

important to have a high learning ability in a tool. This can be achieved by either

having very easymechanisms that can be adjusted by the user (e.g. heuristic JavaScript

rules) or by sophisticated algorithms with an easy-to-use interface.

Fig. 15.5 Creating awareness for terms in the glossary

15 Experience-Based Requirements Engineering Tools 345

15.4 Overview of Related Tools

Requirements are often specified using natural language, if only as an intermediate

solution before formal modelling. As natural language is inherently ambiguous [14],

several approaches have been proposed to automatically analyse natural language

requirements in order to support requirements engineers in creating good requirements

specifications [15–19]. Typically, such approaches define a specific quality model

first. Then indicators are defined for the quality aspects that can be automatically

evaluated. A good example for this approach is the ARM tool by Wilson et al. [15].

Often these indicators are based on simple mechanisms, for example, keyword lists.

Newer approaches leverage sophisticated analysis of natural language, for example,

the search for under specification in the QuARS tool [20]. Fabbrini et al. report that the

QuARS tool can effectively assess the quality of requirements documentation [20].

Fantechi et al. have applied both the QuARS and the ARMS tool on use cases [21].

They report that use cases are especially well suited for automatic analysis because of

their structure. Melchisedech’s work goes beyond these approaches by using input

from specific workflow and information models for the automatic checks in the

ADMIRE tool [22]. This allows for a closer investigation of relationships between

requirements but renders the approach only useful if a given workflow is applied.

Somé describes a method and a tool (UCed) to systematically create use cases

[23]. The method prescribes a strict use case metamodel and a grammar for natural

language descriptions. By constricting natural language to a formalised subset,

certain ambiguities and inconsistencies can be avoided.

Jang proposes a formal language for specifying requirements that is founded on

mechanisms fromknowledgemanagement [24]. The language has similarities toProlog

and allows to easily checking even complex relationships between conditions. Hunter

and Nuseibeh propose a related approach that also documents and checks requirements

based on logical expressions [25]. They extend the classical logic to allow automatic

reasoning on inconsistent requirements descriptions. Such formal and logical languages

have advantages in automatic checking but disadvantages in the usability of writing and

reading requirements. Thus, Gervasi et al. describe how to transform natural language

requirements into a logical representation for verification [26].

Berenbach proposes an approach for automatic checks of UML models, based on

heuristics that create an analysis model [27]. This analysis model allows checking,

whether UML requirements models have sufficient quality (e.g. for verification or for

automatic requirements extraction). The heuristics can be used interactively by the

modeller or analytically by the quality assurance. Souza et al. propose to use critique

systems to check software engineering models for inconsistencies [28]. Accordingly,

such critique systems allow efficient and scalable consistency checking because of the

rather small and local critiques.

Kof, Lee et al. work on extracting semantics from natural language texts [16, 17] by

focusing on the semiautomatic extraction of an ontology froma requirements document.

Their goal is identifying ambiguities in requirements specifications. Gleich et al. present

346 E. Knauss and S. Meyer

a tool that is able to detect a comprehensive set of ambiguities in natural language

requirements [19].

Chantree et al. describe how to detect noxious ambiguities in natural language

requirements [18] by using word distribution in requirements to train heuristic

classifiers (i.e. how to interpret the conjunctions and/or in natural language). The

reported results (recall ¼ 0.587, precision ¼ 0.71) are useful in the described context

but are too low for more generic approaches as discussed by Kiyavitskaya et al. as

discussed in Sect. 15.2.

Table 15.2 gives an assessment of related experience-based requirements tools based

on the properties defined in Sect. 15.2. Based on this assessment, related work seems to

concentrate on authority and degree of interpretation, thus giving sophisticated and

reliable feedback. In contrast, learning ability andproactivity seem tobeunderrepresented.

Because of the impact of these properties on individual and organisational learning, we

consider this to be a gap in research that should be closed.

We feel supported in this by Gervasi’s discussion on why ambiguity is not always

bad [29]. He argues that our language has evolved to cope with uncertainty and

missing knowledge. Thus, people are able to articulate this missing knowledge in

ways that are then identified as ambiguities. Removing these ambiguities can only be

beneficial, if the underlying uncertainty is removed.

Further, Adam et al. propose to approach requirements engineering in a domain-

specific way, thus capturing the peculiarities of the domain as soon as possible [30].

The rationale is that for a given domain, the creation of a solution depends on domain-

specific information needs. We conclude from this that generic rules have their

limitations and experience-based tools, which can be adapted to a specific domain,

are a relevant concept.

Table 15.2 Adherence of experience-based requirement tool to design principles

Name Authority Proactivity DEG of interpr. Learning ability

HeRA ●●●○○ ●●●●● ●●●●○ ●●●○○
ARM [15] ●●●●○ ○○○○○ ●●●○○ ●●○○○
QuARS [20] ●●●●○ ○○○○○ ●●●○○ ○○○○○
ADMIRE [22] ●●●●○ ○○○○○ ●●●●○ ○○○○○
Chantree [18] ●●○○○ ●○○○○ ●●●●● ●●●●○
Kiyavitskaya et al. [3] ●○○○○ ○○○○○ ●●●●● ○○○○○
Jang [24] ●●●●● ○○○○○ ●●○○○ ○○○○○
Hunter [25] ●●●●● ○○○○○ ●●○○○ ○○○○○
Gervasi et al. [26] ●●●●● ○○○○○ ●●●○○ ○○○○○
Berenbach [27] ●●●○○ ●●●○○ ●●●○○ ○○○○○
Souza et al. [28] ●●●○○ ●●●○○ ●●○○○ ●●○○○
UCed [23] ●●●●○ ●○○○○ ●●●●○ ○○○○○

15 Experience-Based Requirements Engineering Tools 347

15.5 Evaluating Experience-Based RE Tools

In Sect. 15.2, we presented concepts for RE tools that go beyond the current state of

automatic requirements checking by introducing a learning model. In this section,

we discuss strategies for evaluating these experience-based RE tools, based on

the research questions we introduced in Sect. 15.2.3. We do this by sketching the

evaluation of HeRA, showing that these concepts hold, that the learning model is

valid, and that experience-based requirements tools are feasible and beneficial.

For details, we refer to other work.

15.5.1 Research Method

For investigating the research questions, we apply the following methods: First, we

investigate related work for relevant evidence. Then we find or create a suitable

exemplary implementation of an experience-based requirements tool (e.g. HeRA).

We let typical users use this exemplary implementation, either in a case study or in an

experimental setting. Finally, we complement the observation by using questionnaires

to tackle individual learning of these users.

15.5.2 Sketch of Evidence

Here wewill give a rough sketch of our evidence that experience-based requirements

tools are feasible and beneficial.

Step 1. Existing automatic requirements checkers can be regarded as experience-

based requirements tools, because they incorporate experience about typical

problems in requirements documentation.

Step 2. Related work (Sect. 3.4) shows that such tools are feasible (as they exist) and
beneficial: Some tools are able to cut costs for quality assurance (RQ 3.b); others

help to create better requirements documentation (RQ 3.a). We can support RQ

3.a with empirical evidence that students create better requirements documenta-

tion with the HeRA (see [31]).

Step 3.Wecan conclude from this that users improved the documentation based on the

heuristic feedback. Thus, they have received (RQ 2.a: reuse), understood (RQ 1.b:

reflect), and applied (RQ 1.a: apply) the experience transported by the feedback.

During the evaluation reported in [31], we used questionnaires to interview the

students. They reported inmajority that they have learnt fromusingHeRA (RQ1.b:

reflect).

Step 4. In an experiment we could show that it is possible to encode new experiences

as heuristic critiques in less than 7min and to change existing heuristic critiques in

less than 2 min [32] (RQ 2.b: encode).

348 E. Knauss and S. Meyer

http://dx.doi.org/10.1007/978-3-642-34419-0_3

15.5.3 Discussion of Implications

In the scope of this chapter,we do not give details about the evaluation. Instead,we show

how to approach the research questions raised in this section. Thus, we complement the

design principles by giving hints on how to operationalise those principles. In addition,

we show that automatic requirements checkers can be even more valuable for an

organisation, if they are seen as a way to capture and apply knowledge and experience.

Our evaluation shows that it is possible to support the complete learning model:

Experience-based requirements tools are improving the documentation of requirements

(by lowering documentation cost or increasing quality) and support learning on the

organisational and individual level.

15.6 Summary

In this chapter, we argued that experience-based tools can offer important support for

requirements engineers. Such tools offer valuable experience during requirements

engineering activities. Feedback based on these experiences helps analysts to cope

with the information overload and complexity of modern systems.

Beyond recall and precision,we discussed additional properties of such experience-

based tools. Especially the proactivity and the ability to learn new experience can be

valuable to manage requirements knowledge.

We illustrated our concepts with an exemplary implementation of an experience-

based requirements engineering tool. Based on this implementation, we sketched a

strategy for evaluating such tools. It is important to evaluate the impact of such tools on

the quality of the product (i.e. software requirements specification) and on the quality

of the process (i.e. the documentation and quality assurance of requirements). Beyond

that, the effect of such tools on organisational and individual learning should be

assessed to fully cover the capabilities of such tools. The learning model we presented

in this chapter is an important asset for this task. On the long run, improvements of

these aspects of knowledge management can lead to considerable benefits.

References

1. Schneider K (2009) Experience and knowledge management in software engineering.

Springer, Berlin

2. Senge PM (1993) The fifth discipline: the art and practice of the learning organization.

Century Business Random House, London

3. Kiyavitskaya N, Zeni N, Mich L, Berry DM (2008) Requirements for tools for ambiguity

identification and measurement in natural language requirements specifications. Requir Eng

13:207–239

4. Schön DA (1983) The reflective practitioner: how professionals think in action. Basic Books,

New York

15 Experience-Based Requirements Engineering Tools 349

5. Fischer G (1994) Domain-oriented design environments. Autom Sof Eng 1:177–203

6. Knauss E, Lübke D, Meyer S (2009) Feedback-driven requirements engineering: the heuristic

requirements assistant. In: Proceedings of the IEEE 31st international conference on software

engineering, IEEE, Vancouver, Canada, pp 587–590

7. Cockburn A (2001) Writing effective use cases. Addison-Wesley, Boston

8. Kusumoto S, Matukawa F, Inoue K, Hanabusa S, Maegawa Y (2004) Estimating effort by use

case points: method, tool and case study. In: Proceedings of the 10th international symposium

on software metrics, IEEE, Chicago, USA, pp 292–299

9. Maciaszek LA (2007) Requirements analysis and system design. Pearson Education Limited,

Harlow

10. Berry DM, Kamsties E, Krieger MM (2003) From contract drafting to software specification:

linguistic sources of ambiguity, Technical report, University of Waterloo

11. Luhn HP (1958) The automatic creation of literature abstracts. IBM J Res Develop 2:159–165

12. Willett P (2006) The Porter stemming algorithm: then and now. Program Electron Lib Inform

Syst 40:219–223

13. Knauss E, Houmb S, Schneider K, Islam S, Jürjens J (2011) Supporting requirements engineers

in recognising security issues. In: 17th international working conference on requirements

engineering: foundation for software quality, Essen, Germany, pp 4–18

14. Berry DM, Kamsties E (2003) Ambiguity in requirements specification. In: do Leite Prado

JCS, Doorn JH (eds) Perspectives of requirements engineering. Kluwer, Norwell, pp 7–44

15. Wilson WM, Rosenberg LH, Hyatt LE (1997) Automated analysis of requirement

specifications. In: Proceedings of the 19th international conference on software engineering

(ICSE’97. ACM, New York, pp 161–171

16. Kof L (2005) Text analysis for requirements engineering. Ph.D. thesis, Technische Universität

München, Germany

17. Lee SW, Muthurajan D, Gandhi RA, Yavagal DS, Ahn G-J (2006) Building decision support

problem domain ontology from natural language requirements for software assurance. Int J

Softw Eng Knowl Eng 16:851–884

18. Chantree F, Nuseibeh B, de Roeck A, Willis A (2006) Identifying nocuous ambiguities in

natural language requirements. In: Proceedings of the 14th IEEE international requirements

engineering conference. IEEE Computer Society, Minneapolis, pp 56–65

19. Gleich B, Creighton O, Kof L (2010) Ambiguity detection: towards a tool explaining ambigu-

ity sources. In: Wieringa R, Persson A (eds) Proceedings of requirements engineering:

foundation for software quality (REFSQ). Springer, Essen, pp 218–232

20. Fabbrini F, Fusani M, Gnesi S, Lami G (2001) An automatic quality evaluation for natural

language requirements. In: Proceedings of the seventh international workshop on RE: founda-

tion for software quality (REFSQ 2001), Interlaken, pp 150–164

21. Fantechi A, Gnesi S, Lami G, Maccari A (2002) Application of linguistic techniques for use

case analysis. In: Proceedings of IEEE joint international conference on requirements engi-

neering, Essen, pp 157–164

22. Melchisedech R (2000) Verwaltung und Prüfung natürlichsprachlicher Spezifikationen. Ph.D.

thesis, Fakultät Informatik, Universität and Stuttgart, Germany

23. Somé SS (2006) Supporting use case based requirements engineering. Inform Softw Technol

48:43–58

24. Jang H-C (1994) A knowledge-based analyzer for requirements specification analysis.

In: Proceedings of the sixth international conference on tools with artificial intelligence,

New Orleans, USA, pp 276–282

25. Hunter A, Nuseibeh B (1998) Managing inconsistent specifications: reasoning, analysis, and

action. ACM Trans Softw Eng Methodol 7:335–367

26. Gervasi V, Zowghi D (2005) Reasoning about inconsistencies in natural language

requirements. ACM Trans Softw Eng Methodol 14:277–330

350 E. Knauss and S. Meyer

27. Berenbach B, Borotto G (2006) Metrics for model driven requirements development.

In: ICSE’06: Proceedings of the 28th international conference on software engineering.

ACM, Shanghai, pp 445–451

28. de Souza CRB, Oliveira HLR, da Rocha CRP, Gonçalves KM, Redmiles DF (2003)

Using critiquing systems for inconsistency detection in software engineering models. SEKE,

San Francisco, USA, pp 196–203

29. Gervasi V, Zowghi D (2010) On the role of ambiguity in RE. In: Wieringa R, Persson A (eds)

Proceedings of requirements engineering: foundation for software quality (REFSQ). Springer,

Essen, pp 248–254

30. Adam S, Doerr J, Eisenbarth M, Gross A (2009) Using task-oriented requirements engineering

in different domains – experience of application in research and industry. In: Proceedings of

the 17th IEEE international requirements engineering conference (RE’09), Atlanta,

pp 267–272

31. Knauss E, Flohr T (2007) Managing requirement engineering processes by adapted quality

gateways and critique-based RE-tools. In: Proceedings of workshop on measuring

requirements for project and product success, Palma de Mallorca, Spain

32. Knauss E, Schneider K (2012) Supporting learning organisations in writing better

requirements documents based on heuristic critiques. In: Regnell B, Damian D (eds)

Proceedings of requirements engineering: foundation for software quality (REFSQ’12).

Springer, Heidelberg/Essen, pp 165–171

33. Knauss E, Schneider K, Stapel K (2009) Learning to write better requirements through

heuristic critiques, IEEE, Atlanta, USA

15 Experience-Based Requirements Engineering Tools 351

Chapter 16

The Eclipse Requirements Modeling

Framework

M. Jastram

Abstract This chapter is concerned with the Requirements Modeling Framework

(RMF) (http://eclipse.org/rmf), an Eclipse-based open-source platform for require-

ments engineering. The core of RMF is based on the emerging Requirements

Interchange Format (ReqIF), which is an OMG standard [1]. The project uses

ReqIF as the central data model. At the time of this writing, RMF was the only

open-source implementation of the ReqIF data model.

By being based on an open standard that is currently gaining industry support, RMF

can act as an interface to existing requirements management tools. Further, by based

on the Eclipse platform, integration with existing Eclipse-based offerings is possible.

In this chapter, we will describe the architecture of the RMF project, as well as

the underlying ReqIF standard. Further, we give an overview of the GUI, which is

called ProR. A key strength of RMF and ProR is the extensibility, and we present

the integration ProR with Rodin, which allows traceability between natural

language requirements and Event-B formal models.

16.1 Introduction

RMF may be of relevance to the reader for a number of reasons. First and foremost,

RMF extends the Eclipse ecosystem with a meta-model for modeling requirements.

We hope that ReqIF will have a similar effect on requirements engineering to what

UML did for modeling: providing a unified data model that tools could converge

on. By being open source, RMF contributes to spreading the use of ReqIF.

Second, RMF contains the stand-alone ProR application, a platform for

requirements engineering. This tool uses ReqIF as the underlying data model and

therefore offers sophisticated, standardized data structures for organizing

M. Jastram (*)

Formal Mind GmbH, Düsseldorf, Germany

e-mail: michael.jastram@formalmind.com

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_16, # Springer-Verlag Berlin Heidelberg 2013

353

mailto:michael.jastram@formalmind.com

requirements and provides interoperability with industry tools. Especially in small

companies or academic projects, users until now faced the dilemma: Tools like Word

and Excel have wide acceptance but limited features for requirements engineering.

Professional tools like Rational DOORS1 or IRQA2 are not affordable. There are

some free tools, like Trend/Analyst,3 Topcased [2], or Wikis.4 But these either use

their own data structures, with their own limitations, or follow a standard with few

features in respect to requirements, like SysML. ProR provides a lot of functionality

out of the box and offers interoperability according to an international standard. The

interest that ProR created both in academia and industry confirms this.

Third, ProR can be easily extended to provide additional functionality or for

integration with other tools. ProR is implemented as Eclipse plug-ins. While it can

run stand-alone, it can be installed in any existing Eclipse system. No special

project type is required for ProR; therefore, any Eclipse project can contain ProR

requirements files. ProR provides an extension point, which allows developers to

build tool integrations. For instance, we created an integration plug-in for Rodin, a

tool for formal modeling. After installing ProR into Rodin, it was possible to use

drag and drop to integrate model elements into the requirements specification.

Fourth, RMF can be used as a generic platform for working with ReqIF-based

requirements, independently of an Eclipse-based GUI. This can be useful for a wide

range of activities from analysis, report generation, generation of requirements

artifacts, product line management, etc. RMF is built on the Eclipse Modeling

Framework (EMF), which supports the integration with other EMF-based offerings.

Before discussing the technical details, we will provide an overview of the

current state of requirements modeling, both in industry and academia.

This chapter is structured as follows: Sect. 16.2 provides an overview of the

current state of requirements modeling. Section 16.3 describes the data model of the

ReqIF format. Section 16.4 introduces the architecture of the Requirements

Modeling Framework (RMF), followed in Sect. 16.5 by a description and tutorial

of ProR, the user interface. Section 16.6 demonstrates how the platform can be

extended and integrated with other Eclipse-based software. This chapter concludes

with Sect. 16.7.

16.2 Requirements Modeling

While this chapter is concerned with a software platform, it is useful to put it into the

bigger context of requirements management and engineering, which we will do in

this section. Ultimately, a tool is only useful if used properly and with a clear goal.

1 http://www.ibm.com/software/awdtools/doors/.
2 http://www.visuresolutions.com/irqa-requirements-tool.
3 http://www.gebit.de/loesungen/technische-loesungen/trend-analyst-requirements.html.
4 http://www.mediawiki.org/.

354 M. Jastram

http://www.ibm.com/software/awdtools/doors/
http://www.visuresolutions.com/irqa-requirements-tool
http://www.gebit.de/loesungen/technische-loesungen/trend-analyst-requirements.html
http://www.mediawiki.org/

A tool must support the activities found in requirements engineering and

requirements management. These include the structuring of requirements,

establishing traceability, handling versions, and integrating with other processes

(e.g., testing and project management), to name just a few. The specific activities

depend to a degree on the process that the tool has to support.

After discussing requirements and specifications in general below, we will

revisit the topic of tool support in Sect. 16.2.5.

16.2.1 Specifying Systems

Everything is build twice: First, an idea forms in the mind; then the idea is realized.

This is true from the smallest to the biggest projects, from hanging up a picture to

building a space rocket. In the case of the space rocket, there would be a number of

intermediate steps to account for the complexity and scale of the task at hand. The

number of intermediate steps and types of documentation depends on the size of the

project, how critical it is, how many people are involved, and many other factors.

Nevertheless, requirements and specification are artifacts that are so important that

they play part in all but the smallest projects.

Every project should have a goal. A goal typically says nothing about the “how”

(“How do I achieve this?”) but the “what” (“What is it that I want to achieve?”). A

goal is typically very simple and high level. This does not necessarily mean that it is

not precise or quantifiable.

A requirement puts the goal into the context of the world. A requirement for

hanging a picture on a wall is that it stays there, which in turn has to take the

picture’s properties into account. This does not mean that it should indicate how the

picture is mounted – a nail or two screws – because a good requirement does not

provide a solution but precisely describes the problem.

For big projects, it is not practical to go directly from goal to requirements. The

goal is typically broken down into subgoals; an overall architecture is established

that allows partitioning of the tasks at hand. In addition, there is a lot of overhead

that does not directly contribute to the development but that is crucial nevertheless.

This includes artifacts for subdisciplines like project management, testing, and

many other areas of interest.

It is the specification’s job to provide a solution to the problem. This is the place

that describes that a nail shall be used to put up the photo and where to put it. It is

dangerous to look for solutions sooner than at this point because it is easy to miss

important requirements or something crucial regarding the context.

16.2.2 Structuring Requirements

A good structure of requirements can make a huge difference in their management

and traceability, and quite a bit of research went into understanding this relationship

16 The Eclipse Requirements Modeling Framework 355

better. In industrial environments, this manifests itself in standards like IEEE

830–1997 [3] or the relevant aspects of process frameworks like RUP [4].

In academia, Gunter, Jackson, and Zave [5] developed WRSPM as a reference
model for requirements and specifications. A reference model is attractive for

discussion, as it draws on what is already understood about requirements and

specifications, while being general enough to be flexible. There are a number of

concrete approaches that fit nicely into the WRSPM reference model, including

Problem Frames [6], KAOS [7] or the functional-documentation model [8].

WRSPM distinguishes five artifacts:

Domain knowledge (W) describes how the world is expected to behave.

Requirements (R) describe how the world should behave.

Specifications (S) bridge the world and the system.

Program (P) provides an implementation of S.
Programming platform (M) provides an execution environment for P.

Inexperienced users sometimes confuse requirements and domain knowledge,

but the distinction is quite important:

• Requirements describe how the world should behave, and the system is respon-

sible for this.

• Domain knowledge describes how the world is expected to behave, and the

functioning of the system depends on the domain knowledge holding.

The relationship between requirements, domain knowledge, and the specifica-

tion can be expressed formally:

S ^W) R

or in words: Assuming a system that conforms to the specification S and assuming

that the domain propertiesW hold, the requirements R are realized. There are some

subtleties (e.g., we are probably not interested in the trivial solution), but this is a

central idea of WRSPM.

Note that WRSPM does not know the concept of a goal. But according to

WRSPM, a goal is merely a high-level requirement. Also note that there is a

whole category of approaches called goal-oriented requirements engineering

(GORE) [9].

The reference model defines phenomena, which act as the vocabulary to formu-

late the artifacts. There are different types of phenomena based on their visibility.

For instance, there may be phenomena that the machine is not aware of. Consider a

thermostat: The controller is not aware of the temperature5 but only of the voltage at

one of its inputs.

5 To be precise, whether the controller is aware of the temperature or not depends on where the line

is drawn between system and environment. In this simple example, the sensor is not part of the

system (the controller).

356 M. Jastram

The reference model can be applied to any requirements or specifications, no

matter whether they use natural language or a formalism. Once applied, more

formal reasoning about the specification is possible.

Informal requirements rarely explicitly distinguish between requirements,

domain knowledge, and even specification elements and implementation details.

In the following, artifacts will refer to all of them.

16.2.3 Informal and Formal Specifications

Artifacts can be formalized by modeling them using a formalism. Many formalisms

exist, all with their respective advantages and disadvantages. Modeling can also be

applied on various levels of the development process – for goals, requirements, the

specification, and even for the implementation.

Some formalisms are more, others less “formal.” Often, a formalism only

models a certain aspect of the specification and has to be complemented with

additional information. Here are a few examples:

Context diagrams only formalize a small aspect of a system, its boundary to the

world. They help in the requirements elicitation process by forcing us to define

the boundary of the system and to identify the actors that can interact with it.

Using a context diagram in the elicitation process will leave its traces in the

structure of the requirements (i.e., by systematically enumerating all actors and

how they interact with the system). They are formal only in the sense that they

allow reasoning about a tiny aspect of the system and need to be complemented

with much more information.

UML and SysML diagrams provide modeling elements for many elements of the

system and their relationship, ranging from class diagrams for object relationships

to state diagrams for transitions. While they are useful, they are not formal enough

to express complex functionalities and must be complemented somehow, for

example, by use cases.

Problem frames [6] introduce problem diagrams, which extend the notation of

context diagrams and make the problem explicit by showing the requirements in

the diagram. The notation of context diagrams is also formalized by

distinguishing between machine domain, designed domains, and given domains.

The notation further introduces problem frame diagrams for concisely recording
problem frames.

Z, VDM, B, and many others are a particular kind of mathematically based

techniques for the specification of sequential behavior. These and similar

notations are used to specify and verify systems. While formal methods do not

guarantee correctness, they can greatly increase the understanding of a system

and help revealing inconsistencies, ambiguities, and incompleteness that might

otherwise go undetected [10].

CSP, CSS, and others are formal methods that are used for specifying concurrent
behavior.

16 The Eclipse Requirements Modeling Framework 357

16.2.4 Traceability

Traceability refers to the relationships between and within the artifacts and other

elements [11, 12]. These are plentiful and exist implicitly. But the implicit trace-

ability can be made explicit. By doing so, those traces become themselves artifacts

that must be maintained. Therefore, the benefits and costs of making traces explicit

must be weighted carefully – as with some artifacts, the cost of stale traces may be

higher than the cost of no explicit traces.

Making traces explicit can in itself provide useful information. Consider the “is

realized by” relationship between requirements and specification. Such a relation-

ship would immediately identify those requirements that are not specified yet,

namely, those requirements that have no outgoing traces. Such a requirement can

then be inspected and the specification extended to realize it. After the specification

has been extended, a new trace is created, marking the requirement as realized.

While this approach works in principle, there are at least two problems with it.

First, which elements will be traced? It would be nice if there was a one-to-one

relationship between requirements and specification elements, but this is true only

for the simplest toy examples. In practice, this is an n-to-m relationship, and

sometimes, one end of the trace can be elusive. Just consider quality requirements

that apply to the system as a whole.

Maintenance is the second issue. Creating a trace correctly is one thing, but

keeping it updated is quite another. Consider again the “is realized by” relationship.

All incoming traces would have to be verified to make sure that the specification

element still, in fact, realizes all requirements that it traces. But this works only if all

traces have been created in the first place. And when more corrections have to be

done during this verification (both on requirements and specification), it may trigger

another wave of verifications. Tool support can help to mark traces for verification –

but how much this helps depends on the completeness and correctness of the traces.

The ease of traceability depends, amongst other things, on the structure and

quality of the artifacts. For instance, one quality criterion for good requirements is

the lack of redundancy. Not having redundancy also eases traceability. Further,

there are many ways to structure the artifacts. A good structure can make traceabil-

ity significantly easier. The structure depends on notation and approach. The

approach guides the artifacts towards a certain structure, while the notation

constrains how easy or difficult it is to express something. Some notations require

a certain approach and may also push the artifacts in a certain structure. This is good

if the notation is well suited for the problem at hand, but it can be counterproductive

if this is not the case. Just imagine drawing the blueprint of a house with UML or to

document an enterprise system with a mechanical drawing. Other notations are

open to everything, like natural language. But the downside in this case is that the

notation provides no guidance and can be ambiguous or contradicting.

358 M. Jastram

16.2.5 The Importance of Tool Support

The previous sections described the concerns regarding the working with

requirements and specifications. We created RMF specifically to provide a platform

that could be used in academia and industry to realize their ideas. We believe that

there is a real need for this: Research projects often build their own tools in isolation

with proprietary data structures, which vastly decreases their survival chances. In

industry, we see a lot of customization of proprietary tools (for instance, there is a

whole industry creating scripts for IBM Rational DOORS6). RMF in turn builds on

the open ReqIF standard that is currently being adapted by commercial tools, and it

is built on top of Eclipse EMF [13]. Specifically, here are the areas where RMF

could be put to use:

Structuring Requirements RMF provides all the features necessary for structuring

artifacts, both according to WRSPM and other approaches. In itself, the ProR

tool does not put any constraints on the structure, but this can be achieved via

specific plug-ins which could also provide guidance to the use, for instance, by

providing wizards.

Model Integration As we will see in Sect. 16.6, an integration with models can be

achieved via plug-ins as well, especially if the formal modeling tools are built

using Eclipse EMF. In that case, referenced model elements can be seamlessly

incorporated into ProR specifications.

Traceability ReqIF includes data structures for typed traces, and RMF can be

extended for intelligent handling of the traceability. For instance, traces could

be marked as suspect, as soon as the source or target element of the trace changes.

16.3 Requirements Interchange Format

We will provide a brief overview on the Requirements Interchange Format (ReqIF)

[1] file format and data model. We are mainly concerned with the capabilities and

limitations of the data model. The tool that we describe in Sect. 16.5 uses ReqIF as

the underlying data model. Doing so provides interoperability with industry-

strength tools and builds on top of a public standard.

ReqIF allows the structuring of natural language artifacts and supports an

arbitrary number of attributes and the creation of attributed links between artifacts.

It therefore provides the foundation of collecting and organizing artifacts in a way

that users are comfortable with but provides additional structure for supporting a

solid traceability.

6 http://www-01.ibm.com/software/awdtools/doors/.

16 The Eclipse Requirements Modeling Framework 359

http://www-01.ibm.com/software/awdtools/doors/

ReqIF was created in 20047 by the “Hersteller Initiative Software” (HIS8), a

body of the German automotive industry that oversees vendor-independent collab-

oration. At the time, the car manufacturers were concerned about the efficient

exchange of requirements with their suppliers. Back then, exchange took place

either with low-tech tools (Word, Excel, PDF) or with proprietary tools and their

proprietary exchange mechanisms. ReqIF was meant to be an exchange format that

would allow the exchange to follow an open standard, even if the tools themselves

are proprietary.

The basic use case for ReqIF consists of the following steps (described in detail

in the ReqIF specification [1]):

1. The manufacturer exports the subset of requirements that are relevant to the

supplier, with the subset of attributes that are relevant.

2. Those attributes that the supplier is expected to modify are writable; other

content is marked as readable only.

3. The supplier imports the data from the manufacturer into their system. If this not

the first import, then the data may be merged into an existing requirements

database.

4. The supplier can then edit the writable attributes or even create a traceability to

other elements in their database (e.g., a systems specification).

5. The supplier performs an export with the data relevant to the manufacturer.

6. The manufacturer merges the data back into their requirements database.

16.3.1 The ReqIF Data Model

In general terms, a ReqIF model contains attributed requirements that are connected

with attributed links. The requirements can be arbitrarily grouped into document-

like constructs. We will first point out a few key model features and then provide

more specifics from the ReqIF specification [1].

A SpecObject represents a requirement. A SpecObject has a number of

AttributeValues, which hold the actual content of the SpecObject. SpecObjects

are organized in Specifications, which are hierarchical structures holding

SpecHierarchy elements. Each SpecHierarchy refers to exactly one SpecObject.

This way, the same SpecObject can be referenced from various SpecHierarchies.

ReqIF contains a sophisticated data model for Datatypes, support for permission

management, facilities for grouping data, and hooks for tool extensions.

ReqIF is persisted as XML and therefore represents a tree structure. The top

level element is called ReqIF. It is little more than a container for the ReqIFHeader,
a placeholder for tool-specific data (ReqIFToolExtension) and the actual content

7At the time of its creation, the format was called RIF and only later on, renamed into ReqIF.
8 http://www.automotive-his.de/.

360 M. Jastram

http://www.automotive-his.de/

(ReqIFContent). The ReqIFContent has no attributes but is simply a container for

six elements. These are as follows:

SpecObject A SpecObject represents an actual requirement. The values

(AttributeValue) of the SpecObject depend on its SpecType.

SpecType A SpecType is a data structure that serves as the template for anything

that has Attributes (e.g., a SpecObject). It contains a list of Attributes, which are

named entities of a certain data type and an optional default value. For example,

a SpecObject of a certain type has a value for each of the SpecType’s attributes.

DatatypeDefinition A DatatypeDefinition is an instance of one of the atomic data

types that is configured to use. For instance, String is an atomic data type. A

DatatypeDefinition for a String would have a name and the maximum length of

the string. Each attribute of a SpecType is associated with a DatatypeDefinition.

Specification SpecObjects can be grouped together in a tree structure called Speci-

fication. A Specification references SpecObjects. Therefore, it is possible for the

same SpecObject to appear in multiple Specifications or multiple times in the

same Specification.

In addition, a Specification itself may have a SpecType and therefore

AttributeValues.

SpecRelation A SpecRelation is a link between SpecObjects; it contains a source

and a target. In addition, a SpecRelation can have a SpecType and therefore

AttributeValues.

RelationGroup SpecRelations can be grouped together in a RelationGroup but only
if the SpecRelations have the same source and target Specifications. This

construct got added to accommodate certain data structures of existing, proprie-

tary requirements tools.

We just learned that there are four element types that can have attributes:

SpecObjects, Specifications, SpecRelations, and RelationGroups. These four are all

SpecElementsWithAttributes or SpecElements for short. Each SpecElement has its

own subclass of SpecType (SpecObjectType, SpecificationType, SpecRelationType,

and RelationGroupType). A SpecType has any number of AttributeDefinitions,

which ultimately determines the values of a SpecElement. Correspondingly, a

SpecElement can have any number of AttributeValues. The AttributeValues of a

SpecElement depend on the AttributeDefinitions of the SpeElement’s SpecType.

This fact cannot be deducted from the model.

The AttributeDefinition references a DatatypeDefinition that ultimately

determines the value of the Attribute Value of the corresponding SpecElement.

For each atomic data type of ReqIF, there is a corresponding DatatypeDefinition,

AttributeDefinition, and AttributeValue each.

The ReqIF specification [1] contains a number of class diagrams that nicely

visualize these relationships.

16 The Eclipse Requirements Modeling Framework 361

ReqIF supports the following atomic data types:

String A unicode text string. The maximum length can be set on the Datatype.

Boolean A Boolean value. No customization is possible.

Integer An integer value. The maximum and minimum can be set on the Datatype.

Real A real value. The maximum and minimum can be set on the Datatype, as well

as the accuracy.

Date A date- and timestamp value. No customization is possible.

Enumeration An enumeration Datatype consists of a number of enumeration

values. The AttributeDefinition determines whether the values are single value

or multiple values.

XHTMLXHTML is used as a container for a number of more specific content types.

The AttributeValue has a flag to indicate whether the value is simplified, which

can be used if the tool used to edit only supports a simplified version of the

content. For instance, a tool that does not support rich text editing could set the

flag and replace the content with plain text.

ReqIF consists of 44 element types in total. The ones we just described are

important for understanding ReqIF in general and this chapter in particular.

Elements we omitted concern aspects like access control and identifier

management.

16.3.2 The Impact of ReqIF

Even though ReqIF was initially created as a file-based exchange format, we

believe that it can be much more than that. By employing ReqIF directly as the

underlying data model for an application, we can take full advantage of the model’s

versatility. Conveniently, the OMG made the data model available in the CMOF

format, thereby facilitating the process of instantiating the data model in a concrete

development environment. As we will see in the next section, RMF is based on

EMF [13], which can use CMOF as an input.

On the significance on ReqIF and our first clean-room implementation of the

standard, we draw comparisons to model-driven software development: After the

specification of UML, a lot of publications and work concentrated on this standard,

paving the way for low-cost and open-source tools. We hope that our open-source

clean-room implementation of the standard based on Eclipse can serve as the basis

for both innovative conceptual work and new tools.

This is by no means guaranteed, and there are examples where this approach did

not work. For instance, the XMI format (in model-based community) was not that

successful, and XMI was also promoted by OMG.

362 M. Jastram

16.4 The Requirements Modeling Framework (RMF)

RMF grew out of the Deploy9 research project [14] and the VERDE10 research

project. It is an Eclipse Foundation project that unifies a generic core engine to work

with RIF/ReqIF content and a GUI called ProR.

The vision of RMF is to have at least one clean-room implementation of the

OMG ReqIF standard in the form of an EMF model and some rudimentary tooling

to edit these models. The idea is to implement the standard so that it is compatible

with Eclipse technologies like GMF, Xpand, Acceleo, Sphinx, etc. and other key

technologies like CDO.

16.4.1 High-Level Structure

Figure 16.1 depicts the high-level architecture of RMF. It consists of an EMF-based

implementation of the ReqIF core that supports persistence using the ReqIF XML

schema. The core also supports the older versions RIF 1.1a and RIF 1.2.

The GUI for capturing requirements is called ProR (see also Sect. 16.5). It

operates directly on the ReqIF data model. This is an advantage compared to

Fig. 16.1 High-level architecture of RMF

9 http://www.deploy-project.eu/.
10 http://www.itea-verde.org/.

16 The Eclipse Requirements Modeling Framework 363

http://www.deploy-project.eu/
http://www.itea-verde.org/

existing requirements tools, where a transformation between ReqIF and the tool’s

data model is necessary. Not all tools support all ReqIF features; therefore, infor-

mation may be lost in the process.

ProR at this time only supports the current version of ReqIF 1.0.1, not the older

versions.

These contributions have their origins in research projects, where they are

actively used. In particular, these research projects already produced extensions,

demonstrating the value of the platform. These are depicted in Fig. 16.1 as well and

described in Sect. 16.6.

16.4.2 Extending RMF

RMF is designed as a generic framework for requirements modeling, and the ProR

GUI is designed as an extensible application. It has been used and extended in

various projects, as we will describe in Sect. 16.6. It provides an extension point

that allows the tailoring with plug-ins.

This is an important aspect of the project. As we have seen in industry, heavy

tailoring to the processes used and integration with other tools is what makes

requirements tools successful. By using Eclipse as the platform for this tool, we

can provide integration with modeling tools like Rodin [15] or Topcased [2]. By

providing a versatile extension point, the behavior of the application can be adapted

to the process employed.

16.5 ProR

ProR is the Graphical User Interface (GUI) or RMF. ProR is available as a stand-

alone application, and it can be integrated into existing Eclipse installations.

This section will go through the more important features of ProR to provide an

impression of the tool in action. We provided a more extensive introduction to the

tool in [16]. We also created a screencast11 that demonstrates the basic features of

ProR.

16.5.1 Installing ProR

ProR can be downloaded stand-alone or installed into an existing application via its

update site. The download is a convenient option for nontechnical people who just

11 http://www.youtube.com/watch?v¼sdfTNZduvZ4.

364 M. Jastram

http://www.youtube.com/watch?v=sdfTNZduvZ4
http://www.youtube.com/watch?v=sdfTNZduvZ4

want to get started with ProR. There is no special restriction for the update site

version: ProR can be installed into any reasonably new Eclipse installation.

16.5.2 Creating a ReqIF Model

ReqIF models can be created in any Eclipse project and manifest themselves as a .

reqif file. A user creates a new ReqIF model via the FILE | New. . . menu, where there

is a wizard for a new “Reqif10 Model.” The wizard will create a new ReqIF model

with a very rudimentary structure, with one Datatype, one SpecType with one

Attribute, using the Datatype, and one Specification with one SpecObject that uses

the SpecType.

The user can then inspect the model structure in the outline and the properties

views. ProR provides its own Perspective, which ensures that all relevant views are
shown.

The editor in Fig. 16.2 (the window in the middle) provides an overview of the

model. The most important section is the one labeled “Specifications.” Users can

double click on specifications to open them in their own editor, as shown in Fig. 16.3.

Fig. 16.2 ProR with a newly created ReqIF model, as produced by the wizard

16 The Eclipse Requirements Modeling Framework 365

Each row represents a requirement (SpecObject), and each requirement can have

an arbitrary number of attributes. Which specific attribute a requirement has

depends on its type.

Users can configure the editor to show an arbitrary number of columns. Each

column has a name. If an element has an attribute of that name, then the value of

that attribute is shown in the corresponding column.

16.5.3 New Attributes

The actual information of requirements (SpecObjects) is stored in its attributes.

Which attributes a SpecObject has depends on its type. Users can add more

attributes to existing requirement types.

To do this, the user opens the dialog for the data types via PROR|DATATYPE

CONFIGURATION. . . or the corresponding icon in the toolbar. The upper part of the

dialog shows the data structures, while the lower part contains a property view that

allows editing the properties of the element that is selected in the upper part. New

child or sibling elements can be added via context menus.

Fig. 16.3 ProR with the specification editor open. The screenshot shows some sample

366 M. Jastram

In this example, the user adds two attributes to the type “Requirements Type”: an

ID for a human readable identifier and a status field, which is an enumeration. The

result is shown in Fig. 16.4.

The user just created a new data type for the ID called “T_ID.” For the status

field, the user created a new enumeration of type “T_Status.” In the figure, we can

see the properties of the selected element in the lower pane, where they can be

edited.

16.5.4 Configuration of the Editor

When closing the dialog and selecting a requirement, the three properties are visible

in the properties view, where the user can edit them. But the main pane of the editor

still only shows one column. The user can add new columns via PROR | COLUMN

CONFIGURATION. . . (or the corresponding tool bar icon), which opens a dialog for this
purpose. The dialog looks and works similar to the one for the data types. In this

Fig. 16.4 The data type dialog after adding some data

16 The Eclipse Requirements Modeling Framework 367

example, the user adds one more column called “ID.” The dialog also allows the

reordering of columns via drag and drop, and the user uses this mechanism to make

the ID column the first one.

With this setup, the user can set the status of individual requirements by

selecting them and updating the status field in the properties view. Upon clicking

on the field, a drop-down allows the selection of the new status value. Had the user

added the status field to the editor (as just described), they could adjust the values

directly in the editor as well.

Using this approach, users can add an arbitrary number of attributes to a

requirement, which the user can all see and edit in the properties view. A selected

number can additionally be shown in the editor. For example, the user may decide

that a requirement should have a comment field to record additional information.

16.5.5 Generating IDs

The ID column is now visible in the specification editor, but it is empty. While the

user could add IDs simply by hand, this is error prone, and one would expect the

tool to be able to handle this. ProR does not have the ability to generate IDs, but a

“Presentation” can. Presentations are ProR-specific plug-ins that modify the pre-

sentation of data and inspect and modify the data. Presentations are described from

a technical point of view in Sect. 16.6.

To add a presentation, the user opens the presentation dialog via PROR | PRESEN-

TATION CONFIGURATION. . . (or the tool bar). The SELECT ACTION. . . drop-down lists all

installed presentations, and by selecting “ID Presentation,” the user creates a new

configuration element. In the properties, the user adjusts the prefix and counter of

the ID presentation. But more important is the data type that is associated with the

presentation. In this example, the user selects “T_ID” – and this is the reason why

the user created a new data type for the IDs earlier.

After closing the dialog, all requirements that did not have an ID yet will have

received one by the presentation.

16.5.6 Adding Requirements

Finally, everything is ready for adding some data. The user does this via the context

menus, but in several places, keyboard shortcuts are available as well. Upon

opening the context menu for a requirement, the user adds new elements via the

NEW SIBLING and NEW CHILD submenus. A specification is a tree structure of

arbitrary depth, and the left margin indicates via a corresponding numbering

scheme the position in the hierarchy. In addition, the left margin of the first column

is indented.

368 M. Jastram

The context menu allows the creation of typed requirements – there is one entry

for each user-defined type – which can save a lot of clicking. But it is also possible

to add untyped requirements or even empty placeholders (SpecHierarchies).
Adding a placeholder can be useful for referencing an existing requirement.

Requirements may appear multiple times, both in the same specification and in

other specifications of the same ReqIF model.

To allow the rapid addition of requirements, ProR provides the CTRL-ENTER

keyboard shortcut. Upon activating the shortcut, the new requirement is inserted

below the one that is currently selected and has the same type.

Last, a user can rearrange requirements via drag and drop or copy and paste.

16.5.7 Linking Requirements

The user can link requirements via drag and drop. As drag and drop is also used for

rearranging requirements, it has to be combined with a keyboard modifier. The key

that needs to be pressed is dependent of the operating system and is the same that is

used for creating file links and the like.

Once the user creates a link, the last column of the specification editor shows the

number of incoming and outgoing links. The user can toggle the showing of the

actual link objects (SpecRelations) via PROR | SPECRELATIONS. . ., which are then

shown below the originating requirement (depicted in Fig. 16.3). The last column of

link objects shows the destination object (selecting that column will show the target

requirement’s properties in the property view).

The user can assign types to link objects, resulting in them having attribute

values. The values will be shown in the specification editor, if the columns are

configured correspondingly.

This concludes the brief overview of the usage of ProR.

16.6 Extending ProR

The functionality of ProR is quite limited, but this is by design. ProR can be

extended using the Eclipse plug-in mechanism. Many features that should be

standard in a requirements engineering tool will not be implemented into the

ProR core but could be made available via plug-ins. An example of this has been

presented in Sect. 16.5.5, where a plug-in was responsible for generating user-

readable IDs.

Likewise, functionality like versioning or baselining will not be integrated into

the core. Versioning is already supported (albeit in a crude manner) by installing

a repository plug-in like Subclipse12 or Subversive13 (Subversion support)

12 http://subclipse.tigris.org/.
13 http://www.eclipse.org/subversive/.

16 The Eclipse Requirements Modeling Framework 369

http://subclipse.tigris.org/
http://www.eclipse.org/subversive/

or eGit14 (git support). However, these plug-ins perform versioning on the file level.

In practice, versioning on the requirement lesvel would be more desirable, and from

a technical point of view, it is straightforward to realize this in the form of a plug-in.

Extensions for ProR exist – those have been driven mainly by academic needs so

far. In this section, we demonstrate how a developer can integrate RMF with other

Eclipse-based tools.

16.6.1 Traceability Between Requirements and Event-B Models

The research project Deploy [14] is concerned with the deployment of formal

methods in industry. Traceability between natural language requirements and

formal models was one issue that the deployment partners were struggling with.

Deploy continues to develop the Eclipse-based Rodin tool [15], which was the main

deciding factor for using Eclipse for RMF. ReqIF was an attractive choice for

providing interoperability with industry tools. By using EMF, we could build

directly on the ReqIF data model, which allowed us to get a solid integration

quickly. Figure 16.5 shows how we establish traceability between formal models

Fig. 16.5 Integration of ProR with an Event-B formal model. Model elements are highlighted in

the requirement text, and annotated traces to the model show the model element in the property

view

14 http://www.eclipse.org/egit/.

370 M. Jastram

http://www.eclipse.org/egit/

and natural language requirements [17]. The formal modeling is done in Event-B

(using Rodin). Integration is seamless via drag and drop, and a custom renderer

supports color highlighting of model elements.

16.6.2 Tracepoint Approach in ProR

The general concept of traceability in VERDE led to the decision to implement a

traceability that is independent of the types of artifacts that are involved. Since

Eclipse-based models are usually built on EMF, VERDE implements a generic

solution for the traceability of EMF-based elements called tracepoints [18]. The

core data structure is a mapping table with three elements: source element, target

element, and arbitrary additional information. The elements are identified by a data

structure, the so-called tracepoint. The inner structure of a tracepoint depends on

the structure of the meta-model that is being traced but is hidden from the trace-

ability infrastructure.

We added an adapter for the tracepoint approach for ProR, which was easy to

realize, as ProR is also built using EMF. This is true for all Eclipse-based offerings

(and what the tracepoint plug-in is targeted at). The tracepoint application adds a

new view to Eclipse. To set a tracepoint, the source and target are being selected in

Eclipse and stored by clicking one button for each.

16.6.3 Integration of Domain-Specific Languages

The possibility to specify requirements with textual domain-specific languages

(DSLs) and to trace these to development artifacts is one of the foundations of

the VERDE project, which drove the DSL extension for ProR [18]. A textual DSL

is a machine-processable language that is designed to express concepts of a specific

domain. The concepts and notations used correspond to the way of thinking of the

stakeholder concerned with these aspects while still being a formal notation.

In the Verde requirements editor, the open-source tool Xtext [19] has been used.

The introduction of Xtext allows any project to define their own grammar and

modeling. Users can design and evaluate new formal notations for the specification

of requirements.

The editor for the DSLs integrates itself directly into the requirements tool and is

activated as a presentation (as described in Sect. 16.5.5). Upon editing, a pop-up

editor appears that gives immediate feedback to the user in the form of syntax

highlighting and error markers and supports the user by providing auto-complete

and tool tips, similar to what users are used to in modern programming editors.

16 The Eclipse Requirements Modeling Framework 371

16.7 Conclusion

In this chapter, we gave a broad overview of the current state in requirements

engineering both in academia and industry. We then introduced the ReqIF data

model for requirements, as well as Eclipse RMF and ProR. Last, we provided a few

examples on how this ReqIF-RMF-ProR-stack has been used to solve real problems.

As an Eclipse Foundation project, RMF relies on the feedback of users and on

contributors to thrive. We hope that we spurred some interest both in academia and

industry to see what RMF is capable of and to use it for their projects.

References

1. OMG (2011) Requirements interchange format (ReqIF) 1.0.1.http://www.omg.org/spec/ReqIF/

2. Jastram M, Graf A (2011) Requirement traceability in topcased with the requirements inter-

change format (RIF/ReqIF). First Topcased Days Toulouse

3. IEEE (1997) Recommended practice for software requirements specifications. Technical

Report IEEE Std 830–1998, IEEE

4. Kruchten P (2004) The rational unified process: an introduction. Addison-Wesley, Boston

5. Gunter CA, Jackson M, Gunter EL, Zave P (2000) A reference model for requirements and

specifications. IEEE Softw 17:37–43

6. Jackson M (2001) Problem frames: analysing and structuring software development problems.

Addison-Wesley/ACM Press, Harlow/New York

7. Darimont R, Delor E, Massonet P, van Lamsweerde A (1997) GRAIL/KAOS: an environment

for goal-driven requirements engineering. In: Proceedings of the 19th international conference

on software engineering, ACM, Boston, MA, USA, pp 612–613

8. Parnas DL, Madey J (1995) Functional documents for computer systems. Sci Comp Program

25(1):41–61

9. Van Lamsweerde A et al. (2001) Goal-oriented requirements engineering: a guided tour.

In: Proceedings of the 5th IEEE international symposium on requirements engineering,

Toronto, Canada, vol 249, p 263

10. Clarke E, Wing J (1996) Formal methods: state of the art and future directions. ACM Comput

Surv (CSUR) 28(4):626–643

11. Gotel O, FinkelsteinA (1994)An analysis of the requirements traceability problem. In: Proceedings

of the first international conference on requirements engineering, Colorado Springs, CO, U.S.A.,

p 94101

12. Jastram M, Hallerstede S, Leuschel M, Russo AG Jr (2010) An approach of requirements

tracing in formal refinement. In: VSTTE. Springer, Edinburgh, Scotland

13. Steinberg D, Budinsky F, Peternostro M, Merks E (2009) EMF eclipse modeling framework,

2nd edn. Addison-Wesley, Upper Saddle River

14. Part B (2008) Deploy project

15. Coleman J, Jones C, Oliver I, Romanovsky A, Troubitsyna E (2005) RODIN (rigorous open

development environment for complex systems). EDCC-5, Budapest, Supplementary Volume

p 2326

16. Jastram M, Graf A (2011) Requirements modeling framework. Eclipse magazine 6.11

17. JastramM, Hallerstede S, Ladenberger L (2011)Mixing formal and informal model elements for

tracing requirements. In: Automated Verification of Critical Systems (AVoCS), Newcastle / UK

18. JastramM,Graf A (2011) Requirements, traceability and DSLs in eclipse with the requirements

interchange format (RIF/ReqIF). In: Tagungsband des Dagstuhl-Workshop MBEES:

Modellbasierte Entwicklung eingebetteter Systeme VII. fortiss GmbH, Dagstuhl, Germany

19. Efftinge S, Völter M (2006) oAW xText: a framework for textual DSLs. In: Workshop on

modeling symposium at eclipse summit, Esslingen, Germany, vol 32

372 M. Jastram

http://www.omg.org/spec/ReqIF/

Chapter 17

Managing Requirements Knowledge:

Conclusion and Outlook

A.K. Thurimella and W. Maalej

Abstract This chapter summarises theManaging Requirements Knowledge book and

concludes with the future work. For this purpose, we performed a case-by-case review

of the book chapters as well as other relevant publications and extracted the research

issues, main contributions, benefits or lessons learned, and future research directions.

17.1 Summary of the Motivations

Requirements engineering (RE) is a collaborative and knowledge-intensive activity,

in which significant knowledge exists in a tacit form. Requirements knowledge

consists of information useful for identifying, comprehending, implementing, and

changing requirements.

Traditional requirements engineering does not manage this knowledge systematically,

which leads to misunderstandings in specifications, delays in deliveries, problems in

software quality, or inconsistencies in artefacts (e.g. mismatch between a requirement

and its implementations). A systematic management of requirements knowledge brings

the following advantages:

• It aids identification of new requirements from the knowledge that is captured in

the previous projects of the company [1].

• It helps solving repetitive problems that occur in requirements engineering by

systematising experiences and guiding stakeholders [2].

• It speeds up decision-making by sharing relevant information [3, 4].

A.K. Thurimella (*)

Harman Becker Automotive Systems GmbH, Moosacher Str. 48, 80809, Munich, Germany

e-mail: anil.thurimella@gmail.com

W. Maalej

Department of Informatics/ MOBIS, University of Hamburg, Vogt-Kölln-Str. 30, 22527,

Hamburg, Germany

e-mail: maalej@informatik.uni-hamburg.de

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0_17, # Springer-Verlag Berlin Heidelberg 2013

373

mailto:anil.thurimella@gmail.com
mailto:maalej@informatik.uni-hamburg.de

• It improves requirements reuse [2].

• It improves evolvability of requirements by providing rationales helpful to

decide on future changes [5, 6, 61].

• It speeds up the analysis of requirements by improving understandability of

requirements [4, 7] and reduces the mismatch between requirements and their

implementations [8].

• It improves traceability by capturing implicit links [9] and identifying hidden

interdependencies [10].

Despite these promising advantages, there are several challenges in the area of

managing requirements knowledge. Perhaps the most crucial issue is the need of a

deep understanding of tacit knowledge based on theoretical and empirical research.

Fundamental questions include the following: What is tacit knowledge in requirements

engineering?What are the types of tacit knowledge?Why is it tacit? And, where does it

exist in a software engineering project? To answer these questions, the requirements

engineering community can learn from other disciplines such as management science,

linguistics, or social sciences, which have been studying tacit knowledge for a while

[11]. In addition to these questions, RE methodologies, tools, and processes should be

extended to give more room for capturing tacit knowledge and integrating it into

requirements in an accessible, sharable, and reusable manner.

Another major challenge is to avoid an additional overhead with the management
of requirements knowledge and adding additional tasks and information for

stakeholders. We think that we need lightweight processes and intelligent tools as

well as alternative, integrated requirements infrastructures, which automate the

capture and access of useful information and the proactive sharing of knowledge.

Furthermore, we need to bring the scientific concepts to the level of requirements

engineers working in the industry.

To address the challenges and enable the advantages, this book introduces managing

requirements knowledge and lays its foundations from a theoretical, practical, and

empirical perspective. Furthermore, it presents approaches, methodologies, tools, and

guidelines formanaging requirements knowledge. From the inputs of the authors and the

experience from theMaRKworkshop series [12], we identified the following fivemajor
topics for the book:

1. Identifying Requirements Knowledge

2. Representing Requirements Knowledge for Reuse

3. Sharing Requirements Knowledge

4. Reasoning About Requirements

5. Intelligent Tool Support

This chapter concludes the book by a case-by-case review of the chapters along

with the five topics listed above. The remainder of this chapter is organised as follows.

Section 17.2 summarises the book chapters. Section 17.3 describes the future research

issues and the road head of this emerging area. Furthermore, Sect. 17.4 concludes

this chapter.

374 A.K. Thurimella and W. Maalej

17.2 Summary of Requirements Knowledge Foundations

Overall, this book includes 15 core chapters apart from the introduction and conclusion.

To summarise these chapters,weperformed a systematic case-by-case review extracting

the following information:

• Research issues reported

• Contributions to requirements engineering

• Benefits and lessons learned

• The future research proposed by the authors of the chapters

17.2.1 Identifying Requirements Knowledge

The first part of the book focuses on the first step in requirements knowledge

management: the identification of requirements knowledge. Table 17.1 summarises

the chapters of this part. The main handled issues are as follows:

• What is requirements knowledge?

• How can requirements knowledge be captured?

• How can requirements knowledge be identified and extracted?

There is a tacit agreement amongst researchers that the term requirements

knowledge mainly refers to tacit knowledge and that identifying requirements

knowledge is mainly about identifying tacit knowledge [11]. While communicating

about requirements, tacit knowledge remains in the minds of stakeholders. The lack

of common understanding of tacit knowledge leads to the misunderstandings of

requirements. In Chap. 2, Gervasi et al. [11] study tacit knowledge by reviewing the

literature from various disciplines and proposing a theoretical, logic-based frame-

work involving various communication cases between analysts and customers.

For example, when customers talk to skilled analysts with sound experience, they

barely state everything they know. In this situation, the requirements knowledge is

assessable and expressible, but not articulated. To avoid the loss of requirements

knowledge, analysts should proactively validate requirements derived from the

domain knowledge with the customers. The theoretical framework in such cases

helps stakeholders to mitigate the effects of tacit knowledge.

Gervasi et al. focus on tacit knowledge between a customer and an analyst.

Similarly, identifying tacit knowledge between other stakeholders (e.g. between

testers and developers) can also help capturing new requirements. Lutz et al. [1] report

on two case studies inChap. 3, fromwhich they conclude that enriching featuremodels

with bug report knowledge would aid developers to identify requirements for new

products of a software product line. The authors also conclude that the variability

binding times (or at which point of time in the software lifecycle, a variation point is

resolved?) for themajor decisions should be extended to the requirements engineering

phase. The tacit knowledge is also useful to bind the variability early in the

requirements engineering phase. For example, Stoiber and Glinz [13] propose an

17 Managing Requirements Knowledge: Conclusion and Outlook 375

http://dx.doi.org/10.1007/978-3-642-34419-0_2
http://dx.doi.org/10.1007/978-3-642-34419-0_3

approach to enrich variability at the level of product line requirements with rationale

[14]. This information is used later to make decisions on binding and instantiating the

variability.

While the first two chapters suggest how to formally identify and capture

requirements knowledge setting the foundation for future tool support, in Chap. 4,

we present a set of practical guidelines to aid practitioners manage requirements

knowledge with little overhead. Our DUFICE guidelines [15] call for Drawing a

knowledge landscape, Using lightweight tools, Following an iterative process,

Interacting with external communities, Capturing tacit knowledge and Establishing

Table 17.1 Review of chapters on identifying requirements knowledge

Authors Research issues Contributions

Benefits/lessons

learned Further research

Gervasi et al.

[39]

(1) What is tacit

knowledge?

(1) Multidisciplinary

literature review

on tacit

knowledge

(1) Better

understanding

of tacit

knowledge

(1) Evolution of

knowledge over

a long period of

time

(2) Can we build a

theoretical

framework for

reasoning

about tacit

knowledge in

RE?

(2) A predicate logic

framework to

specify tacit

knowledge

(2) Potential tools

that implement

the framework

to mitigate the

effects of tacit

knowledge

(2) Identifying the

presence of tacit

knowledge and its

relevance

Lutz et al. [1] (1) How to mine

requirements

knowledge

from bug

reports?

(1) Empirical

evidence with

two cases studies

that were

implemented at

JPL

(1) Knowledge

from bug

reports helps

to identify

requirements

for future

products

(1) Capturing the

requirements

knowledge and

propagating it

forward in the

development

process to support

design,

implementations,

and evolution

(2) How to

proactively

communicate

the knowledge

to developers?

(2) Variation

points in SPLs

are resolved

late in the

development.

Primary

decisions are

to be made in

RE

Maalej and

Thurimella

[15]

(1) How can

practitioners

implement

requirements

knowledge

management

without

introducing

a bug

overhead?

(1) Guidelines for a

knowledge

management in

RE

(1) Practitioners

can implement

the guidelines

to improve RE

and increase

reuse

(1) Proposing new

guidelines

(2) Examples from 6

organisations on

how these

guidelines were

used

(2) Lessons

learned on

what worked

well and

what not

(2) Broad empirical

evidence for

the guidelines

(what works

well in which

context)

376 A.K. Thurimella and W. Maalej

http://dx.doi.org/10.1007/978-3-642-34419-0_4

a knowledge culture. We synthesise these guidelines from a long-term observation of

six software companies. These guidelines enable stakeholders to identify and manage

requirements knowledge despite their limited time and resources.

17.2.2 Representing Requirements Knowledge for Reuse

Several requirements-related tasks are repetitive, are time-consuming, and require a

lot of human involvement [7, 16]. For example, requirement analysis for safety

critical systems includes Hazard and Operability Analysis or Failure Mode and

Effect Analysis tasks in order to identify potential system hazards and risks and to

mitigate them to acceptable levels before a system is certified. Another example of

repetitive time-consuming tasks can be found in large contract-based projects.

There, requirements elicitation typically includes the creation of a requirements

specification document, which is used as a contractual document. Large IT service

providers, which conduct similar projects in the same domain, typically spend

valuable time on creating separate requirements specification documents for each

project – with copy and paste as the only reuse instrument if at all.

Requirements knowledge should be captured such that it can be reused in case

similar issues arise. As summarised in Table 17.2, this part involves a wide range of

approaches for capturing knowledge for reuse, including patterns, case-based

reasoning, natural language processing, ontologies, and social media.

A pattern is a knowledge representation scheme, which can be used to manage

requirements. In Chap. 5, Franch et al. [17] propose a catalogue of patterns for

eliciting, documenting, and reusing requirements. The authors also introduce a frame-

work where a stakeholder would be able to instantiate relevant patterns for managing

requirements. Other applications of patterns for requirements engineering include

handling non-functional requirements (NFRs). Handling NFRs such as security,

cost, or usability is difficult because they require a large body of multidisciplinary

knowledge. Similarly, Supakkul et al. [18] propose patterns to guide engineers for

handling NFRs. Supakkul approach also models relationships between the patterns,

for example, generalisation or aggregation.

Reuse is particularly desired in critical, time-consuming, and repetitive tasks.

Dararmola et al. [7] show in Chap. 6 how capturing requirements knowledge can

support reuse for such tasks, in particular for safety analysis and hazard identification.

To automate these activities, the authors proposes KROSA, an approach that uses

case-based reasoning, ontologies, and natural language processing. The approach

allows extracting and reusing experiences and identifying hazards early in the project.

The approach uses ontologies to manage and resolve conflicts with other NFRs (e.g.

safety vs. usability).

In Chap. 7, Ghaisas and Ajmeri [4] present an approach for capturing domain

knowledge for reuse. The approach combines the advantages of ontologies (inference

and simple linking of resources) with the advantages of Web 2.0 (democratic and

collaborative evolution of knowledge). In two case studies, the authors demonstrate

how reuse in their approach leads to (1) a faster and more accurate resolution of

requests and (2) to jump-start a new project.

17 Managing Requirements Knowledge: Conclusion and Outlook 377

http://dx.doi.org/10.1007/978-3-642-34419-0_5
http://dx.doi.org/10.1007/978-3-642-34419-0_6
http://dx.doi.org/10.1007/978-3-642-34419-0_7

17.2.3 Sharing Requirements Knowledge

Sharing requirements knowledge forms the bridge between its capture and reuse. This

activity is of particular importance in large distributed projects, where the means for

informal exchange “during the coffee break” or “a quick brainstorming” with relevant

stakeholders are limited. Table 17.3 presents a summary of the chapters on sharing

requirements knowledge, focussing on global, agile, and distributed projects.

In global projects, sharing requirements knowledge is difficult because of the

geographical and cultural separation between stakeholders. In Chap. 8, Carillo De

Gea et al. [2] argue how their PANGEA approach enables knowledge sharing in

distributed projects by employing a reusable repository. The repository itself should

be implemented using technologies such as semantic wikis and social networks.

Table 17.2 Review of chapters on representing requirements knowledge for reuse

Authors Research issues Contributions

Benefits/lessons

learned Further research

Franch et al.

[17]

(1) How can we

increase

requirements

reuse by using

knowledge

representation

patterns?

(1) The PABE

framework for

documenting

and reusing

requirements

(1) Advantages

from reuse

including

reduced efforts

and improved

quality

(1) Adoption of

rules and best

practices for

writing

pattern

templates

(2) A catalogue of

patterns

(2) Extension of

the catalogue

with NFR

patterns from

several

domains

Dararmola

et al. [7]

(1) How can we

automate

repetitive and

time-

consuming

activities in

RE?

(1) KROSA an

approach that

enriches

traditional RE

with case-based

reasoning,

natural language

processing, and

ontologies

(1) Reuse of

experience in

conducting

safety analysis

(1) A semantic

framework

for safety

analysis and

diagnostic

reasoning for

hazards

(2) Early

identification

of system

hazards with

good domain

ontology

Ghaisas and

Ajmeri [4]

(1) How can we

capture

domain

knowledge for

easy evolution

and reuse?

(1) A platform for

defining and

reusing

requirements

using ontologies

and Web 2.0

techniques

(1) A faster and

accurate

resolution of

change

requests

(1) The

applicability

and

scalability of

the method

and tool in

large projects

(2) Two case

studies

(2) Faster start of

new projects in

the same

domain

378 A.K. Thurimella and W. Maalej

http://dx.doi.org/10.1007/978-3-642-34419-0_8

Table 17.3 Review of chapters on sharing requirements knowledge

Authors Research issues Contributions

Benefits/lessons

learned Further research

Carrillo De

Gea et al.

[2]

(1) How to

improve

requirements

knowledge

sharing and

reuse in

global

software

engineering?

(1) PANGEA: a

process for

global

requirements

and quality that

uses natural

language

requirements

and software

engineering

standards

(1) Benefits from

software reuse

including [57] (1)

improved

timeliness, in the

sense of decreased

time to market;

(2) reduced

software

maintenance

efforts;

(3) improved

reliability,

efficiency, and

consistency of the

developed

software; and

(4) enhanced

investment, through

the preservation of

the know-how

(1) Mine

requirements

to assist

developers

making

better

decisions on

subsequent

software

development

phases

(2) Reusing

requirements

knowledge

for project

management

decisions

Sim and

Gallardo-

Valencia

[19]

(1) How

requirements

knowledge is

shared in

agile

projects?

(1) Findings from a

field study of a

project which

uses scrum and

user stories to

capture

requirements

(1) The agile

community should

encourage question

asking to tighten

performative

knowledge sharing

(1) Research

addressing

the two

issues from

lessons

learned

(2) Characterisation

of performative

knowledge

sharing

(2) The knowledge

management

community should

support users to

engage in

performative

knowledge sharing

Lim et al.

[20]

(1) How can we

identify

stakeholders

with a

particular

knowledge?

(1) StakeSource, a

tool that uses

social networks

to identify and

prioritise

stakeholders

(1) The main factors

that influence

stakeholder

engagement include

the number of

stakeholders, their

location, motivation

to be engaged, and

their stake in the

project

(1) Address the

critical

issue of

incentives

to increase

stakeholder

response

(2) Which

factors

influence

stakeholders

engagement

in sharing

knowledge?

(2) Lessons learned

from using

StakeSource in

an empirical

study with 600

stakeholders

(2) The stakeholders’

culture, availability,

clarity of

instructions, and

organisation

politics also affect

stakeholder

engagement

17 Managing Requirements Knowledge: Conclusion and Outlook 379

Agile methodologies do not emphasise the explicit maintenance of requirements

documents. In contrast, “people have a higher priority than documentation”. In

Chap. 9, Sim and Gallardo-Valencia report on an empirical study on agile projects

[19] and conclude that a question-asking culture should be introduced in order to

share knowledge in agile development. Simultaneously, personnel management

should pay attention to improving knowledge sharing.

Stakeholder analysis involves collecting data on stakeholders (e.g. their profiles,

information added during discussions) from tools and social platforms and analysing the

data to make some recommendations (e.g. suggesting relevant stakeholders). Supporting

an automated analysis of stakeholders is helpful to identify relevant stakeholders to elicit

and share knowledge. In Chap. 10, Lim et al. [20] report on an empirical study, in which

more than 600 stakeholders of the StakeSource platform, a Web 2.0 tool based on social

networking and cloud sourcing techniques, have been analysed. In an environment where

stakeholders are motivated and are willing to contribute, the stakeholder analysis will be

able to extract automatically useful information about stakeholders (see Table 17.3 for

more details). Herrera and Cleland-Huang [21] previously raised the importance of

stakeholder analysis. The authors used collaborative filtering techniques for automatically

identifying the stakeholders for a given topic.

17.2.4 Reasoning About Requirements

Reasoning about requirements and their interdependencies is essential for consistency
and compatibility management as well as for requirements prioritisation and release

planning [22]. Requirements planned for a certain release should be compatible, and

requirements should not be treated independently. For instance, choosing a “low-cost/

high-priority” requirement may also entail the need to include a “low-priority/high-

cost” requirement. Inconsistencies between requirements are triggered by different

factors such as a lack of time for consistency checking or stakeholders’ different

perceptions and goals [23].

In domains or organisationswhere stakeholders are able toworkwith formalmodels,

there is a good chance for developing high-quality specifications by automatically

verifying requirements. In Chap. 11, Sharma and Biswas [24] capture requirements in

courteous logic,which allows for resolving the inconsistency and incompleteness issues.

This approach leads to an overall improvement of requirements quality. Chapter 12

presents a rule-based approach for formally verifying product line requirements [25].

This approach enables detecting inconstancies, dead features, and defects in variability

such as false optional features.

Reasoning about requirements and their interdependencies should also be

propagated to the latter activities such as design and implementation. To support

this, Soffer and Dori [8] propose in Chap. 13 the REM approach by integrating

requirements process to design and implementation as well as by supporting traceabil-

ity. Table 17.4 shows a summary of the chapters.

A recent promising approach uses Semantic Web technologies, enabling all

stakeholders to collect and semantically annotate requirements, for example, in a

380 A.K. Thurimella and W. Maalej

http://dx.doi.org/10.1007/978-3-642-34419-0_9
http://dx.doi.org/10.1007/978-3-642-34419-0_10
http://dx.doi.org/10.1007/978-3-642-34419-0_11
http://dx.doi.org/10.1007/978-3-642-34419-0_12
http://dx.doi.org/10.1007/978-3-642-34419-0_13

semantic wiki [26, 27, 58]. Such approaches use ontologies (e.g. a requirements

ontology and a domain ontology)with dependencies to reason about various properties

of requirements [28, 29, 60]. Ghaisas and Ajmeri introduce in Chap. 7 a similar

approach and showed its applicability in industrial settings.

Finally, data mining and machine learning approaches also seem to be

very promising for supporting semiautomated reasoning about requirements

[22, 30, 31], as, for example, discussed in Chap. 14 [32]. Generally speaking,

however, approaches to reason about informally defined requirements are still

rare and represent a major future direction for the field as discussed in Sect. 17.3.

Table 17.4 Review of chapters on reasoning about requirements

Authors Research issues Contributions

Benefits/lessons

learned Further research

Sharma and

Biswas [24]

(1) Can we use

formal methods

to reason about

the quality of

requirements?

(1) An approach to

resolve

consistency

and

completeness

issues in

requirement

using

courteous

logic

(1) Formal

mechanism to

improve quality

of requirements

(1) Formal

analysis of

requirements

for detecting

ambiguities

(2) A framework

for the formal

analysis of

requirements

Elfaki [25] (1) How can we

reason about

quality of

requirements in

the context of a

large SPL

(1) A set of rules

for verifying

requirements

expressed

using a

combination

of feature

modelling and

OVM

(1) Inconsistency

detection and

prevention

(1) Extending the

verification

technique

with case-

based

reasoning

(2) Detection of

false-optional

and dead

features

Soffer and Dori

[8]

(1) How reasoning

about

requirements

reduces the

undesired

mismatch

between the

required system

and its

implementation?

(1) A new

requirements

engineering

and

management

framework

that is tightly

coupled with

the evolving

conceptual

model of the

developed

system

(1) System

engineers can

quickly and

accurately

model and

specify

requirements,

architecture,

and any

structural and

behavioural

aspects of the

system.

(1) Address these

questions: To

what extent

does the

requirements

model

faithfully

represent the

operational

concepts of

the system?

Does the

design fulfil

the

requirements?

(2) The integration

of the

proposed

framework

into an Object-

process

methodology

(2) Improved

traceability

between

requirements

and their

implementation

(2) Adding

rationales for

traceability

links

17 Managing Requirements Knowledge: Conclusion and Outlook 381

http://dx.doi.org/10.1007/978-3-642-34419-0_7
http://dx.doi.org/10.1007/978-3-642-34419-0_14

17.2.5 Intelligent Tool Support

Intelligent tool support helps engineers by automatically capturing and sharing

requirements knowledge. This book contains chapters on emerging technologies

such as recommendation systems, experience-based tools, as well as tools embedded

into Integrated Development Environments such as the Eclipse Requirements

Modelling Framework (RMF). Table 17.5 presents a short review of these chapters.

A recommender system is a system that guides a user in a personalised way to

interesting or useful objects in a large space of possible options or that produces such

objects as output [33]. In the context of requirements engineering, a recommender

systemwould improve the efficiency of stakeholders’ tasks by suggesting items such

as related requirements, the preferences of other stakeholders, or a pattern that

should be used to capture a special type of requirements knowledge [59].

In Chap. 14, Felfering et al. [32] introduce RE relevant recommendation

technologies such as collaborative filtering, clustering, and group-based

recommendations. The authors also discuss how these can be applied to the

elicitation, negotiation, prioritisation, and planning of requirements.

In Chap. 15, Knauss and Meyer [34] discuss how tools can learn from previous

experiences to help requirements engineers improve requirements documentation.

The high-level design principles of an experience-based tool are reliability in

reporting problematic requirements, authority for relying on feedback of automatic

requirements checkers, proactivity in providing a degree for time of feedback,

degree of interpretation ability of the tool to interpret data, and learnability on

adding new experiences into the tool.

Based on these principles, the authors propose a learning model, a prototype, and

heuristics on writing tense, inconsistencies, ambiguities, and incompleteness.

Another relevant aspect for intelligent tool support is the integration of

requirements knowledge into other types of software engineering knowledge,

in particular development knowledge. In Chap. 16, Jastram shows how this can

be done with the Eclipse Requirements Modelling Framework [35], which extends

the Open-Source Eclipse Development Environment. The framework also supports

RIF (Requirements Interchange Format), which is futuristic XML-based standard

for exchanging requirements-related information.

In addition to these tool possibilities, social platforms such as wikis provide

economical tool support for requirements engineering. For example, Uenalan et al.

[36] argue that traditional features of requirements engineering such as projects,

folders, specification modules, traceability, and baselines may be provided by

simple extensions of wikis.

17.3 Open Issues and Road Ahead

This section presents open issues and the road ahead in the area of managing

requirements knowledge.

382 A.K. Thurimella and W. Maalej

http://dx.doi.org/10.1007/978-3-642-34419-0_14
http://dx.doi.org/10.1007/978-3-642-34419-0_15
http://dx.doi.org/10.1007/978-3-642-34419-0_16

T
a
b
le

1
7
.5

R
ev
ie
w
o
f
ch
ap
te
rs
o
n
in
te
ll
ig
en
t
to
o
l
su
p
p
o
rt

A
u
th
o
rs

R
es
ea
rc
h
is
su
es

C
o
n
tr
ib
u
ti
o
n
s

B
en
efi
ts
/l
es
so
n
s
le
ar
n
ed

F
u
rt
h
er

re
se
ar
ch

F
el
fe
rn
ig

et
al
.

[3
2
]

(1
)
H
o
w

co
u
ld

re
co
m
m
en
d
at
io
n

te
ch
n
o
lo
g
ie
s
b
e
ap
p
li
ed

fo
r
v
ar
io
u
s

R
E
sc
en
ar
io
s?

(1
)
R
ev
ie
w

o
f
re
co
m
m
en
d
at
io
n

te
ch
n
o
lo
g
ie
s
(c
o
ll
ab
o
ra
ti
v
e

fi
lt
er
in
g
,
co
n
te
n
t-
b
as
ed

fi
lt
er
in
g
,

cl
u
st
er
in
g
,
k
n
o
w
le
d
g
e-
b
as
ed

re
co
m
m
en
d
at
io
n
,
g
ro
u
p
-b
as
ed

re
co
m
m
en
d
at
io
n
,
an
d
so
ci
al

n
et
w
o
rk

an
al
y
si
s)

fo
r
th
ei
r

ap
p
li
ca
ti
o
n
to

re
q
u
ir
em

en
ts

el
ic
it
at
io
n
,
d
efi
n
it
io
n
,
n
eg
o
ti
at
io
n
,

an
d
p
la
n
n
in
g

(1
)
Im

p
ro
v
in
g
th
e
u
sa
b
il
it
y

o
f
re
q
u
ir
em

en
ts
p
ro
ce
ss

an
d
in
fr
as
tr
u
ct
u
re
.

(1
)
R
es
ea
rc
h
ag
en
d
a
o
n
v
ar
io
u
s

re
co
m
m
en
d
at
io
n
u
se
s
ca
se
s,

in
cl
u
d
in
g
d
ec
is
io
n
-s
u
p
p
o
rt
,

p
re
fe
re
n
ce

co
n
st
ru
ct
io
n
,
an
d

co
n
te
x
t
aw

ar
en
es
s

(2
)
E
ff
ec
ti
v
e
an
d
ef
fi
ci
en
t
R
E

K
n
au
ss

an
d

M
ey
er

[3
4
]

(1
)
H
o
w

ca
n
ex
p
er
ie
n
ce
-b
as
ed

to
o
ls

le
ad

to
b
et
te
r
re
q
u
ir
em

en
ts

d
o
cu
m
en
ta
ti
o
n
?

(1
)
D
es
ig
n
p
ri
n
ci
p
le
s,
le
ar
n
in
g
m
o
d
el
,

an
d
a
p
ro
to
ty
p
e
fo
r
an

ex
p
er
ie
n
ce
-

b
as
ed

re
q
u
ir
em

en
ts
to
o
l

(1
)
Im

p
ro
v
ed

re
q
u
ir
em

en
ts

sp
ec
ifi
ca
ti
o
n

(1
)
D
ee
p
ev
al
u
at
io
n
o
f
th
e

ex
p
er
ie
n
ce
-b
as
ed

to
o
l

Ja
st
ra
m

[3
5
]

(1
)
A

to
o
l
fo
r
st
at
e-
o
f-
th
e-
ar
t

re
q
u
ir
em

en
ts
k
n
o
w
le
d
g
e

(1
)
R
ev
ie
w

o
f
ca
p
ab
il
it
ie
s
o
f
ec
li
p
se

re
q
u
ir
em

en
ts
M
o
d
el
li
n
g

fr
am

ew
o
rk

(R
M
F
),
w
h
ic
h
su
p
p
o
rt

fo
rm

al
an
d
in
fo
rm

al
re
q
u
ir
em

en
ts

ap
p
ro
ac
h
es

(1
)
A
n
o
p
en
-s
o
u
rc
e
R
E
to
o
l

(1
)
S
u
p
p
o
rt
o
f
re
q
u
ir
em

en
ts

k
n
o
w
le
d
g
e
ap
p
ro
ac
h
es

o
n

o
p
en
-s
o
u
rc
e
to
o
ls
su
ch

as
R
M
F

(2
)
S
u
p
p
o
rt
re
q
u
ir
em

en
ts

in
te
rc
h
an
g
e
fo
rm

at

17 Managing Requirements Knowledge: Conclusion and Outlook 383

17.3.1 Identification of Tacit Knowledge

We can know more than we can tell [37]. Therefore, one of the most important

research issues in knowledge management is the identification of “what we know

but did not tell”, that is, the identification of tacit knowledge. Non-functional

requirements represent a common example of tacit knowledge in requirements

engineering [38]. Unfortunately, these are often treated with lower importance

than functional requirements and are neither discussed nor documented. However,

non- functional requirements have a major influence on the design and evaluation of

a system. For example, performance requirements impact the system design, its

development, and deployment. These impacts often remain tacit in a project as well.

After releasing a system and testing it, developers might then need to invest

significant refactoring effort for improving the performance.

The main research challenges for identifying tacit knowledge in requirements

engineering are twofold. First, we need to deeply understand the nature of tacit
knowledge in engineering projects and why they are tacit. This can be achieved

through large-scale empirical studies including experiments, surveys, and context

analysis studies, as well as surveying and establishing bilateral collaboration to

related fields including management, psychology, and social sciences [39]. Second,

we need to develop processes, methodologies, and intelligent tools to support

stakeholder in identifying and externalising tacit knowledge. Thereby, the main

challenge lays in the usability rather than in the power of the approaches. Several
authors have suggested different ways to capture and document tacit knowledge

[40], also for requirements engineering as discussed in Chap. 2. However, these

authors agree that the identification and extraction is more difficult than in the

capturing and documentation. Approaches, which assume that stakeholders will

“tell” tacit knowledge just by asking them or that they will capture this knowledge

just by providing the right forms, will probably fail in practice, as several rationale

management researchers have reported [11, p20–22]. A more promising way is to

extract requirements knowledge by mining artefacts (e.g. as reported in Chap. 3)

or by instrumenting the work environments of stakeholders and observing their

behaviour [41, 42].

17.3.2 Studies of Information and Knowledge Needs in RE

In addition to identifying requirements knowledge and capturing it in repositories

and artefacts, we must also enable the efficient assessment of it, which means

quantifying its relevance and usefulness for a particular context [39]. Not every

piece of knowledge is relevant for every task and everyone. Therefore, researchers

should focus in the future on studying, modelling, and predicting which piece of

knowledge can be extracted from whom and is relevant to whom and when.

The first step in this direction is to identify the information needs of the different

stakeholders and conduct a gap analysis with the state-of-the-art tool support.

384 A.K. Thurimella and W. Maalej

http://dx.doi.org/10.1007/978-3-642-34419-0_2
http://dx.doi.org/10.1007/978-3-642-34419-0_3

In recent years, researchers extensively studied knowledge needs in software

development, unfortunately with a little to no attention to requirements engineering

tasks. Ko et al. [43] observed 17 developers at Microsoft and identified 21 encoun-

tered questions such as “What is the program supposed to do” or “What code could

have caused this behaviour”. Similarly, Sillito et al. [44] identified questions specific

to software evolution tasks. Robillard [45] found that “missing information” and “out-

of-context documentation” are two of the obstacles that developers face when

learning to use APIs. We think that the requirements engineering community should

follow this movement focussing more on questions encountered when working with

requirements. Thereby, the ultimate goal is twofold. First, such studies will help

understanding and differentiating the knowledge needs of stakeholders and, hence,

tightening the knowledge access and sharing. Second, the studies also help under-

standing and formalising the whole field of requirements knowledge, establishing

taxonomies of knowledge and common standards across the community.

We think that the quality of these studies has a higher priority than the quantity.

By quality, we mean in particular:

• A reliable and reproducible study design should be used. That is, the study

instructions are clearly described with enough details so that researches would

be able to replicate the study to come up with similar results (high agreement

rates).

• Representative samples, summarising the different stakeholders, demographics,

geographies, businesses, etc. It is also important that studies are conducted with

real practitioners and not proxy participants

• Broad-spectrum and mixture of instruments including quantitative (e.g. surveys,

content analyses, and experiments) and qualitative (e.g. case studies, interviews,

and observations).

17.3.3 Reasoning About Requirements

The detection of interdependencies between requirements is crucial for successful

software projects. Such interdependencies must be made explicit early in the

project to support decisions during the planning and the negotiation. Explicit

interdependencies should be added to the traditional reasoning (e.g. rationale).

Informal requirements are hard to analyse. For informally defined requirements,

the complete automation of consistency management is unrealistic [46], but

semiautomated tools can help to keep the efforts acceptable. Here, text parsing

and natural language techniques should be used to detect interdependencies

between requirements semiautomatically.

Data mining approaches also seem to be very promising for supporting

semiautomated reasoning about requirements. For example, Ruhe and Saliu [22]

introduce a release planning approach, which is based on the concept of linear

programming [31]. The basic idea is to define a linear program that should calculate

a sequence of assignments of features to a corresponding release taking into account

17 Managing Requirements Knowledge: Conclusion and Outlook 385

the dependencies between the different features. An optimisation algorithm [3]

assigns features to releases. Ruhe et al. [30] show how to apply Analytical Hierarchy

Process for determining a set of preferred requirements.

Representing requirements using formal languages allows engineers to automati-

cally verify specifications for inconsistencies and missing requirements [24, 25].

Stakeholder preferences (e.g. weights/priorities of requirements) also influence the

requirements reasoning. The major issue of existing approaches is their limited

capability of handling inconsistencies of preferences. Given a formal description of

the dependencies between a set of requirements, existing systems are able to detect

inconsistencies but are not able to localise and repair them. Given a potentially

inconsistent set of stakeholder preferences, existing approaches are unable to resolve

inconsistencies amongst the preferences.

Researchers should develop novel approaches to reason about requirements by

combining advantages of intelligent diagnosis and repair techniques [10, 30] with

those of semantic wikis [26, 27, 58]. Some techniques have been successfully

applied for diagnosing inconsistent knowledge bases [47], faulty process flows

[28], or faulty utility definitions in utility-based recommendation [33] – but not to

inconsistent requirements yet.

Another research direction is to replace pure preference elicitation [48] with a

preference construction [49] in RE decision-making. This has been shown to be very

beneficial in other domains [50]. New techniques for semiautomated dependency

detection, for example, based on sentiment analysis [51], will help to make dependency

detection more efficient.

17.3.4 Evolution of Requirements Knowledge

Enhancing the longevity of software-intensive systems, which are often maintained

over decades, is a real challenge. From the requirements perspective, the main

difficulty is to allow for changes without reducing themaintainability and evolvability

of the whole software. One of the recurrent criteria for decisions on requirements is to

ensure optimal changes and minimise unanticipated changes. Techniques to reason

about requirements interdependencies can help addressing this challenge.

Capturing tacit knowledge also facilitates the evolution of requirements [5].

Stakeholders are able to decide about the evolution by reviewing rationale documentation

available from similar decisions. Moreover, by reviewing alternative solutions, engineers

are able to identify new requirements and forecast future issues.

As requirements evolve, the knowledge around them evolves too. In this case, it

becomes difficult to simplymanage versions and configuration items for requirements

knowledge (e.g. rationales, presuppositions, or experiences) in a lightweight manner

without introducing overhead to software projects. There are also interdependencies

between issues, alternative, and decisions, which can be logical (e.g. requires and

conflicts) or temporal (e.g. triggers) [52]. These interdependencies also change over

time –making everything changing over time. Researchers should focus onmodelling

386 A.K. Thurimella and W. Maalej

the requirements knowledge with time, for example, by adopting concepts such as

evolving knowledge bases [53].

Finally, prediction models, which use requirements knowledge to predict the

evolution andmaintenance, represent a major research direction as well. For example,

a model that forecasts the number of changes that will occur in a time period will help

stakeholders to plan their resources for proper reaction and change handling.

17.3.5 From the Information to the Recommendation Age

Managing requirements knowledge introduces new problems. Additional information

is created, and additional effort is needed to identify and find information in

requirements repositories. This would mean overhead of capturing, maintaining, and

accessing requirements knowledge.

To address these problems, researchers should focus on data modelling and man-

agement and recommendation technologies. For example, a system that proactively

recommends how similar issues were solved previously would aid engineers to

automatically get relevant information. Similarly, using experience-based learning

models [34] enable automatic capture of experiences. Traditional requirements

databases should be enhanced such that data is modelled and stored in a way that

allows learning and querying for recommendations. Furthermore, recommendation

technologies [32] should extend existing requirements infrastructures and tools.

A research agenda for recommendation systems in RE is available at [41].

Recommendation systems would strongly influence the future of requirements

engineering. Here, the focus should be on supporting recommendation technologies

for various use cases of requirements engineering [19, 32, 34]. Similarly, researchers

should also focus on decision-support systems where several aspects of decision-

making (e.g. decisions, related issues, etc.) could be recommended. In Chap. 14,

Felfernig et al. suggest research on constructing preferences (e.g. weights) for criteria

such as goals or non-functional requirements. Additionally, data mining and machine

learning techniques should be applied to get prediction models fromwhich engineers/

project managers could make predictions on the subsequent stages of software devel-

opment [7, 28].

17.3.6 Democratisation and Active Involvement

The use of social media would support collaboration, information exchange, and

interoperability in requirements management. For example, a company together

with its client might use social media for collecting users’ feedback and elicit

requirements directly from the users [39, 42]. The use of social media improves the

transparency (e.g. origin of requirements?) and understandability of requirements

because of additional contextual information and formalism of requirements.

Increasing the involvement of end users and “democratising” requirements activities

trigger several challenges. End users want to focus on performing their tasks and not on

17 Managing Requirements Knowledge: Conclusion and Outlook 387

http://dx.doi.org/10.1007/978-3-642-34419-0_14

improving the software. In an ideal case, their contribution should be at almost zero

cost. In addition, collecting (usage) data, implicit feedback, and explicit feedback will

lead to a huge amount of possibly conflicting data. The processing of these data should
be automated as much as possible.

The next research direction is the proactive sharing of knowledge between

distributed stakeholders. Here, the challenge is to identify relevant stakeholders for

communicating information.Machine learning techniques (e.g. collaborative filtering

[21]) can be applied for identifying relevant stakeholders. Social platforms such as

StakeSource could be automatically analysed to identify expert stakeholders [40]. For

enabling automated analysis, it is important that stakeholders are enthusiastic enough

in making contributions on the social platform. Therefore, incentives should be

provided for improving stakeholder enthusiasm. In particular, it should be researched

how to motivate stakeholders to contribute and use requirements knowledge [14].

Agile methodologies are collaboration intensive, that is, tacit knowledge is involved

in various collaboration patterns (e.g. between an analyst and a customer [39]).

Therefore, managing requirements knowledge is an important research area in agile

development as well, even though agile principles emphasise on developing working

code over maintaining specifications. Here, researchers should propose and implement

lightweight knowledge management principles such as promoting a question-asking

culture for eliciting and sharing requirements knowledge [19]. Moreover, researchers

should come up with methods and frameworks, which allow using agile methods and

the tool-supported capturing, access, and sharing of knowledge.

17.3.7 Integration into Software Engineering Knowledge

In the last 5 years, while organising the MaRK workshop and editing this book, we

encountered the following recurrent question: “What exactly is requirements knowledge

and how does it differ from other types of software engineering knowledge such as

design or implementation knowledge?” In the introduction chapter, we gave a definition

for requirements knowledge and for managing requirements knowledge, highlighting

the impacts not only on analysts and requirements engineers but also on all stakeholders.

We think it does not reallymatter for the single stakeholders and thewhole software

projects, whether the knowledge is classified as requirements knowledge or other

knowledge. We think that requirements knowledge can be identified and used in any

phase and task in a software project: from the requirements elicitation to the mainte-

nance. The captured requirements knowledge should not be localised to requirements

engineering and should be transmitted forward for architects [54] and developers [1].

For example, the missing requirements that are identified by eliciting tacit knowledge

are helpful for architects to identify design objects. Researchers should develop and

evaluate approaches for identifying and creating design and implementation artefacts

as well as traceability links from the requirements knowledge.

We think therefore that the integration of requirements knowledge with and in other

types of knowledge is of a particular importance. Guidelines are helpful for practitioners

to manage requirements knowledge in practical settings. Based on our experience, we

388 A.K. Thurimella and W. Maalej

proposed the DUFICE guidelines targeting industry people. These guidelines should be

extended, and additional guidelines should be proposed. Furthermore, guidelines aswell

as experiences should be shared on online platforms and communities (e.g. [4]).

17.3.8 Pragmatic Need-Driven Solutions and Tools

From the practitioners’ point of view, stakeholders should be guidedwhenmanaging

requirements knowledge in real projects. As a first step, we have aggregated a set of

guidelines [15] from previous experience and discussion in the community. These

should be extended, and the experiences on these guidelines should be shared in an

online community such as MaRK [55].

Pragmatic tool support also means investigating open-source solutions, which can

be tightly integrated to other activities and tools in the software lifecycle, for example,

the Eclipse Requirements Modelling Framework [35]. Furthermore, requirements

knowledge approaches should be deeply evaluated for scalability (e.g. [17]), that is,

their applicability should be tested in large projects [4].

Tool support is an important topic for the requirements engineering community.

In this book, the authors described several prototypes (e.g. [28, 34]) as well as

emerging tools (e.g. [35]). Tool support for managing requirements knowledge is a

challenging task because there are no tools reported for practitioners.

The requirements repositories used in the industry mainly contain unstructured or

structured text. Introducing intelligent functionality (e.g. recommendation systems,

experience-based tools, etc.) for those repositories is another challenge for tool support.

In addition, there is a gap between the tool vendors and the needs of users [56]. The

tool vendors tend to negotiate with companies, and there is less interaction with the

users. Furthermore, a variety of tools is available, which makes it difficult for users to

select the appropriate tool for their needs. The tool community should also focus on

bridging this gap.

17.4 Conclusion

Assuming that engineering, understanding, and implementing requirements are

knowledge-intensive tasks that affect all software project stakeholders, we have identified

“managing requirements knowledge” as an emerging area in software engineering.

Systematically managing requirements knowledge improves the comprehension of

requirements and supports the engineering, collaboration, and management activities.

This book introduces theoretical concepts as well as state-of-the-art tools, methods, and

practices for managing requirements knowledge.

In this chapter, we have summarised the main concepts discussed in this book by

reviewing research questions, contributions, benefits, and future research directions

reported across the chapters.We have organised our review based on the five fundamental

topics of the book: identifying requirements knowledge, representing requirements

knowledge for reuse, sharing requirements knowledge, reasoning about requirements,

17 Managing Requirements Knowledge: Conclusion and Outlook 389

and intelligent tool support. We have also discussed the open issues and our vision on the

long-term road ahead in the area.

Acknowledgements We thank Rick Rabiser and Yang Li for providing a valuable feedback on

this chapter.

References

1. Lutz R, Lavin M, Lux J, Peters K, Rouquette NF (2013) Mining requirements from operational

experience. In: Managing requirements knowledge (Chapter 3 in this volume). Springer,

Heidelberg, Germany

2. Carrillo de Gea JM, Nicolás J, Alemán JLF, Toval A, Vizcaı́no A, Ebert C (2013) Reusing

requirements in global software engineering. In: Managing requirements knowledge

(Chapter 8 in this volume). Springer, Heidelberg, Germany

3. Classen A, Heymans P, Schobbens P (2008) What’s in a feature: a requirements engineering

perspective. FASE’08, Lecturer notes in computer science, vol 4961. Budapest, pp 16–30

4. Ghaisas S, Ajmeri N (2013) Knowledge-assisted ontology-based requirements evolution. In:

Managing requirements knowledge (Chapter 7 in this volume). Springer, Heidelberg

5. Dutoit A, Paech B (2003) Eliciting and maintaining knowledge for requirements evolution.

In: Aurum A, Jeffery R,Wohlin C, Handzic M (eds) Managing software engineering knowledge.

Springer, New York

6. Thurimella AK, Bruegge B (2012) Issue-based variability management. Inform Softw Technol

54(9):933–950

7. Daramola O, Stålhane T, Omoronyia I, Sindre G (2013) Using ontologies and machine

learning for hazard identification and analysis. In: Managing requirements knowledge (Chap-

ter 6 in this volume). Springer, Heidelberg, Germany

8. Soffer A, Dori D (2013) Model-based requirements engineering framework for systems

lifecycle support. In: Managing requirements knowledge (Chapter 13 in this volume).

Springer, Heidelberg

9. Narayan N, Delater A, Paech B, Bruegge B (2011) Enhanced traceability in model-based

CASE tools using ontologies and information retrieval. In: Proceedings of the 4th international

workshop on managing requirements knowledge (MaRK’11), Trento, 30 Aug 2011

10. Hull E, Jackson K, Dick J (2004) Requirements engineering. Springer, London

11. Gervasi V, Gacitua R, Rouncefield M, Sawyer P, Kof L, Ma L, Piwek P, de Roeck A, Willis A,

Yang H, Nuseibeh B (2013) Unpacking tacit knowledge for requirements engineering. In:

Managing requirements knowledge (Chapter 2 in this volume). Springer, Heidelberg, Germany

12. Maalej W, Thurimella A (2008–2010) Managing requirements knowledge, international

workshop on, 2008–2010, IEEE, Barcelona/Atlanta/Sydney/Trento

13. Stoiber R, Glinz M (2009) Modelling and managing tacit product line requirements knowledge.

In: Proceedings of the 2009 second international workshop onmanaging requirements knowledge

(MARK ’09). IEEE Computer Society, Washington, DC, pp 60–64

14. Liang P, Avgeriou P, He K (2010) Rationale management challenges in requirements engineering.

In: Proceedings of the third internationalworkshoponmanaging requirements knowledge (MARK),

Sydney, Australia, pp 16–21

15. Maalej W, Thurimella A (2013) DUFICE: practical guidelines for managing requirements

knowledge. In: Managing requirements knowledge (Chapter 4 in this volume). Springer,

Heidelberg, Germany

16. Smith S, Harrison M (2005) Measuring reuse in hazard analysis. Reliab Eng Syst Safe 89(1):

93–104

390 A.K. Thurimella and W. Maalej

17. Franch X, Quer C, Renault S, Guerlain C, Palomares C (2013) Constructing and using software

requirements patterns. In: Managing requirements knowledge (Chapter 5 in this volume).

Springer, Heidelberg, Germany

18. Supakkul S, Hill T, Oladimeji EA, Chung L (2009) Capturing, organizing, and reusing

knowledge of NFRs: an NFR pattern approach, managing requirements knowledge, Atlanta,

USA, pp 75–84

19. Sim SE, Gallardo-Valencia GE (2013) Performative and lexical knowledge sharing in agile

requirements. In: Managing requirements knowledge (Chapter 9 in this volume). Springer,

Heidelberg, Germany

20. Lim SL, Damian D, Ishikawa F, Finkelstein A (2013) Using Web 2.0 for stakeholder analysis:

StakeSource and its application in ten industrial projects. In: Managing requirements knowl-

edge (Chapter 10 in this volume). Springer, Heidelberg, Germany

21. Castro-Herrera C, Cleland-Huang J (2009) A machine learning approach for identifying expert

stakeholders, managing requirements knowledge, international workshop on, second international

workshop on managing requirements knowledge, Atlanta, USA, pp 45–49

22. Ruhe G, Saliu M (2005) The art and science of software release planning. IEEE Computer

Society, IEEE Softw 22(6): 47–53

23. Dardenne A, van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition.

Sci Comput Prog 20:3–50

24. Sharma R, Biswas KK (2013) Resolving inconsistency and incompleteness issues in software

requirements. In Managing requirements knowledge (Chapter 11 in this volume). Springer,

Heidelberg, Germany

25. Elfaki A (2013) Automated verification of variability models using first order logic. In:

Managing requirements knowledge (Chapter 12 in this volume). Springer, Heidelberg,

Germany

26. Lohmann S, Heim P, Auer S, Dietzold S, Riechert R (2008) Semantifying requirements

engineering – the softWiki approach, I-SEMANTICS, Graz, pp 182–185

27. Lohmann S, Riechert T, Auer S (2008) Collaborative development of knowledge bases in

distributed requirements elicitation. Software engineering (Workshops): agile knowledge

sharing for distributed software teams, Munich, Germany pp 22–28

28. Felfernig A, Friedrich G, Jannach D, Stumptner M, Zanker M (2003) Configuration knowledge

representations for semantic web applications. AIEDAM 17(2):31–50

29. Haarslev V, Möller R (2001) RACER system description. In: IJCAR 2001, LNAI, vol 2083.

Siena, pp 701–705

30. Ruhe G, Eberlein A, Pfahl D (2003) Trade-off analysis for requirements selection. Int J Softw

Eng Knowl Eng (IJSEKE) 13(4):354–366

31. Schrijver A (1998) Theory of linear and integer programming. Wiley, New York

32. Felfernig A, Ninaus G, Grabner H, Reinfrank F, Weninger L, Pagano D, Maalej W (2013) An

overview of recommender systems in requirements engineering. In: Managing requirements

knowledge (Chapter 14 in this volume). Springer, Heidelberg, Germany

33. Burke R (2000) Knowledge-based recommender systems. Encyclop Libr Inform Syst 69(32):

180–200

34. Knauss E, Meyer S (2013) Experience-based requirements engineering tools. In: managing

requirements knowledge (Chapter 15 in this volume). Springer, Heidelberg, Germany

35. Jastram M (2013) The eclipse requirements modelling framework. In: Managing requirements

knowledge (Chapter 16 in this volume). Springer, Heidelberg, Germany

36. Uenalan O, Riegel N, Weber S, Doerr J (2008) Using enhanced wiki-based solutions for

managing requirements, first international workshop on managing requirements knowledge

(MARK), Barcelona, Spain, pp 63–67

37. Polanyi M (1966) The tacit dimension. The University of Chicago Press, Garden City

38. Glinz M (2007) On non-functional requirements. In: IEEE RE2007, New Delhi, India,

pp 21–26

17 Managing Requirements Knowledge: Conclusion and Outlook 391

39. Ali R, Solis C, Omoronyia I, Salehie M, Nuseibeh B (2012) Social adaptation: when software

gives users a voice. In: Proceedings of the 7th international conference on evaluation of novel

approaches to software engineering (ENASE 2012), Wroclaw, 29–30 June 2012

40. Dutoit A, McCall R, Mistrik I, Paech B (2006) Rationale management in software engineering.

Springer, Berlin

41. Maalej W, Happel H, Rashid A (2009) When users become collaborators: towards continuous

and context-aware user input. In: Proceedings of OOPSLA 2009 (Onward!), ACM,

Orlando, USA

42. Maalej W Pagano D (2011) On the socialness of software. In: Proceedings of the international

conference on social computing and its applications, IEEE, Sydney, Australia

43. Ko AJ, DeLine R, Venolia G (2007) Information needs in collocated software development

teams. In: Proceedings of the 29th internatinal conference on software engineering,

Minneapolis, USA, pp 344–353

44. Sillito J, Murphy GC, De Volder K (2008) Asking and answering questions during a program-

ming change task. Trans Softw Eng 34:434–451

45. Robillard MP (2009) What makes APIs hard to learn? Answers from developers. IEEE Softw

26:27–34

46. Iyer J, Richards D (2004) Evaluation framework for tools that manage requirements inconsistency.

In: 9th Australian workshop on requirements engineering (AWRE’04), Adelaide, Australia

47. Felfernig A, Friedrich G, Jannach D, Stumptner M (2004) Consistency-based diagnosis of

configuration knowledge bases. Artif Intell 152(2):213–234

48. Grether D, Plott C (1979) Economic theory of choice and the preference reversal phenomenon.

Am Econ Rev 69(4):623–638

49. Bettman J, Luce M, Payne J (1998) Constructive consumer choice. J Cons Res 25(3):187–217

50. Felfernig A, Friedrich G, Isak K, Shchekotykhin K, Jannach D, Teppan E (2009) Automated

debugging of recommender user interface descriptions. J Appl Intell 31(1):1–14, Springer

51. Hu M, Liu B (2004) Mining and summarizing customer reviews. In: Proceedings of the

10th ACM SIGKDD international conference on knowledge discovery and data mining,

Seattle, USA, pp 168–177

52. Zimmermann O, Koehler J, Leymann F, Polley R, Schuster N (2009) Managing architectural

decision models with dependency relations, integrity constraints, and production rules. J Syst

Softw 82(8):1249–1267

53. Leite JA (2002) Evolving knowledge bases, frontiers in artificial intelligence and applications,

IOS Press, Amsterdam, Netherlands

54. Avgeriou P, Grundy J, Hall JG, Lago P, Mistrı́k I (2011) Relating software requirements and

architectures. Springer, New York

55. MaRK Community www1.cs.tum.edu/mark/community

56. Jones P (2011) Can requirements tool vendors tell us about user needs? Fourth international

workshop on managing requirements knowledge (MARK), Trento, Italy, pp76–81

57. Meyer B (1997) Object-oriented software construction, 2nd edn. Prentice-Hall Inc, Upper Saddle

River

58. Hoenderboom B, Liang P (2009) A survey of semantic wikis for requirements engineering,

technical report RUG-SEARCH-09-L03, University of Groningen

59. Maalej W, Thurimella A (2009) Towards a research agenda for recommendation systems in

requirements engineering. In: Proceedings of the 2nd international workshop on managing

requirements knowledge, Atlanta

60. Mairiza D, Zowghi D (2010) An ontological framework to manage the relative conflicts

between security and usability requirements. In: Proceedings of the third international work-

shop on managing requirements knowledge (MARK), Sydney, Australia, pp 1–6

61. Schubanz M, Pleuss A, Botterweck G, Lewerentz C (2012) Modeling rationale over time to

support product line evolution planning. In: VaMoS 2012, Leipzig, Germany, pp 193–199

392 A.K. Thurimella and W. Maalej

http://www1.cs.tum.edu/mark/community

About the Editors

Walid Maalej

Walid Maalej is a professor of infor-

matics at the University of Hamburg,

Germany. Previously, he has been

leading a research group on context

and human aspects in software

engineering at the Technische Uni-

versität München (TUM), where he

also received his master’s and doctorate

degrees. For this book, Walid brings a

unique multidisciplinary and interna-

tionally renowned research profile

covering the fields of knowledge man-

agement, empirical software engi-

neering, recommender systems, and

requirements engineering. Walid served

as a member of the Program Committee of renowned conferences, including ICSE, RE,

and ESEC/FSE. He chaired the Industrial Track of RE10 and co-organized several

international workshops, e.g., on Recommendation Systems for Software Engineering

and Social Software Engineering.

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0, # Springer-Verlag Berlin Heidelberg 2013

393

Anil Kumar Thurimella

Dr. Anil Kumar Thurimella is lead-

ing the requirements engineering

and management activities for the

BMW Program of Harman Auto-

motive Division. He is also an

external scientist at the Technische

Universität München (TUM), where

he received his master’s and

doctorate degrees in computer sci-

ence. He has several years of

industrial experience on require-

ments engineering, software product

lines, software architecture, and

empirical software engineering.

For this book, Anil contributes

a unique blend of industry and

academic experience on requirements engineering. He has published several articles

in leading software engineering conferences and journals.

394 About the Editors

Index

A

Accessible, 34, 35, 39–41, 43

Accessing, 81

Adoption, 223

Agile, 82, 380

Air-traffic control, 40

AKM. See Architectural knowledge
management (AKM)

Anecdotes, 71

Anomaly, 69

Application, 342

Architectural knowledge management

(AKM), 174

Articulated, 34, 35, 40, 41, 43

Automated verification, 287

Awareness, 77, 177

B

Binding times, 50, 62, 65, 66, 71

Bridge classes, 149

C

Case-based reasoning (CBR), 120

Cases, 13

CBF. See Content-based filtering (CBF)

CBR. See Case-based reasoning (CBR)

Change impact analysis (CIA), 157

Change requests (CR), 143, 157–160, 162

CIA. See Change impact analysis (CIA)

CL. See Component level (CL)

Clustering, 318–321, 324, 329

Codification, 176

Collaboration, 6

Collaboration knowledge, 8, 78–79

Collaborative filtering, 316, 319, 324, 329

Collaborative tools, 221, 235, 240

Collective knowledge, 31

Commonality and variability analysis (CVA),

51, 63

Common ground, 30, 39, 42

Component level (CL), 128

Content-based filtering (CBF), 316, 318, 319,

323, 329

Corpus, 121

Courteous logic, 380

CR. See Change requests (CR)
Crowdsourcing, 221

CVA. See Commonality and variability

analysis (CVA)

D

Data mining, 381

Dead feature detection, 265

Decisions, 2, 5, 64, 68, 71, 76, 85, 86

Defect pattern, 59

Defect reports, 50–62, 71

Defects, 50, 52

Dependencies, 68

Development life cycle, 299, 308

model, 292

model-driven development (MDD), 294–296

system development processes, 292, 298

Domain-engineering process, 287, 288

Domain engineering verification, 265, 266

Domain experts, 146

Domain knowledge, 7, 77, 144–146, 150, 151,

153, 157, 162, 165

Domain-oriented design, 340

Domains, 188

Domain-specific language (DSL), 371

DUFICE guidelines, 376

W. Maalej and A.K. Thurimella (eds.), Managing Requirements Knowledge,
DOI 10.1007/978-3-642-34419-0, # Springer-Verlag Berlin Heidelberg 2013

395

E

EasyWinWin, 31

Eclipse Requirements Modeling Framework, 382

Electras, 50, 62, 63

Empirical studies, 11

Engineering knowledge, 7, 78

Environmental Context Ontology, 147, 150

Ethnographic studies, 27, 31, 40, 43

Evaluation, 132–134

Experience, 334

Experience-based requirements tool, 334

Experience-based tool, 382

Expressible, 34, 35, 39, 40, 43

Extend feature models, 58, 71

assumption specifications, 58

structured anecdotes, 58

F

Facebook, 190

False-optional feature detection, 265

Feature models, 50, 58

assumption specifications, 50

structured anecdotes, 50

Feedback, 88

Folksonomy(ies), 145, 146, 150

FOL rules, 287

Formal languages, 253

Functional requirement, 4

G

Generic Requirements Ontology, 147, 149, 151

Globalisation, 172

Global software engineering (GSE), 172

Glossaries, 342

Group recommendation (GR), 322, 325

GSE. See Global software engineering (GSE)

H

Hazard and operability analysis (HazOp), 118

HeRA. See Heuristic requirements assistant

(HeRA)

Heuristic critique, 337

Heuristic requirements assistant (HeRA), 340

How-to knowledge, 8, 79

I

Identification, 11

Identification and prioritisation of

stakeholders, 222

Incentive methodologies, 87

Incompleteness, 245–262

Inconsistency, 245–262

Inconsistency detection, 265

Inconsistency prevention, 265

Index card, 205, 208, 209, 211–213, 218

Individual learning, 339

Information needs, 384

Intelligent tool, 16–17

Intervals, 50, 66, 71

K

KB. See Knowledge base (KB)
KM. See Knowledge management (KM)

Knowledge, 11, 12, 14, 82, 173

Knowledge access, 10

Knowledge and experience management, 333

Knowledge-Assisted Ontology-Based

Requirements Evolution (K-RE), 143,

145, 147–152, 154, 158–163, 165

Knowledge-assisted RE, 144

Knowledge base (KB), 144, 148–153,

155–157, 163–165, 316, 326, 328

Knowledge contributors, 145, 146, 151–153

Knowledge culture, 87–88

Knowledge curators, 145, 146, 153

Knowledge elements, 144, 147, 149–151, 156,

157, 159–163

Knowledge elicitation, 30

Knowledge landscape, 77–79, 83, 88

Knowledge management (KM), 7, 9, 81, 173

Knowledge representation, 12, 249, 251

Knowledge reuse, 145–147, 153, 165

Knowledge reuse-oriented safety analysis

(KROSA), 119

Knowledge sharing, 88

K-RE. See Knowledge-Assisted Ontology-

Based Requirements Evolution (K-RE)

KROSA. See Knowledge reuse-oriented safety

analysis (KROSA)

L

Laddering, 30

Learning model, 334, 338–339

Learning Software Organisations (LSO), 337

Lexical parsing, 128

Lightweight tools, 79–81

Logic, 247, 248, 250–253, 255–258, 262

Longevity, 386

LSO. See Learning Software Organisations

(LSO)

396 Index

M

Machine learning, 320, 381

Management knowledge, 7–8, 78

Methodologies, 82

Misunderstood requirements, 57, 71

N

Natural language, 13, 246, 247, 249, 253,

254, 262

Natural language processing (NLP), 121, 182

Natural language requirements, 253

NLP. See Natural language processing (NLP)

Non-functional requirements, 5, 384

Nonmonotonic logic, 247, 250, 251

O

Object-Process Methodology (OPM), 301, 309

OPCAT, 292, 300, 302–304

OPM, 302, 303, 305, 307

Ontology(ies), 13–14, 121, 175, 377

Open-source community, 84

Operational experience, 50, 52, 62–70

OPM. See Object-Process Methodology (OPM)

Organisational learning, 333, 340

Organisational memory, 39

Orthogonal defect classification (ODC), 52, 54

P

PABRE, 95

Parametrised requirement, 188

Partial order, 64

Pattern-based requirements elicitation, 98

Pattern catalogue, 103

Patterns, 13, 52, 377

Personalisation, 176

PFRs. See Problem/failure reports (PFRs)

PLA-DP. See Product-Line Analysis Defect
Paradigm (PLA-DP)

Practitioners, 226

Pragmatic quality, 136

Preference construction, 386

Prioritization, 318–322

Problem domain, 143, 144, 149, 150, 165

Problem Domain Ontology, 147, 149–151

Problem/failure reports (PFRs), 54

Process model, 182

Process ontology, 149

Product-Line Analysis Defect Paradigm

(PLA-DP), 53, 59, 71

Product lines, 4, 49, 51, 63, 71, 265

Profiles, 188

Pronominal anaphora resolution, 128

ProR requirements tool, 364

R

Rationale, 5, 31, 57, 71, 85

RE. See Requirements engineering (RE)

Reasoning, 15

Recommendations, 224

Recommender systems, 81, 316–322, 327, 382

Release planning, 321–322, 385

RE process, 144–146, 165

RE Process Ontology, 147, 150

ReqIF. See Requirements Interchange Format

(RIF/ReqIF)

Requirements, 52, 67, 266

analysis, 257

analysts, 144–147, 149, 150, 153, 155–159,

161, 163, 164

artefacts, 4–5

dependencies, 57, 71

elicitation, 82, 95, 222

evolution, 67, 68

knowledge, 6–11, 50–71, 76, 77

knowledge repositori, 97

pattern, 95–115

phase, 50, 65, 71

reference model, 187–189

reuse, 97, 172

specification, 96, 245, 246, 248–251, 253,

255–259, 262

structuring, 355

traceability, 358, 370

triage, 321, 322

Requirements engineering (RE), 1–6, 12,

143–147, 149–165, 172, 221

Requirements engineering and management,

294–300, 303, 309

life-cycle, 292

process, 292, 294, 298, 300, 308

requirements traceability, 298, 299,

303, 304

traceability function, 294

Requirements Interchange Format

(RIF/ReqIF), 359

Requirements knowledge management, 292

knowledge management techniques, 308

reasoning about requirements, 292, 304,

306, 307, 309

Requirements level (RL), 128

Requirements Modeling Framework

(RMF), 363

Index 397

Response rate, 222

Reusable requirements repository, 188

Reuse, 12

RL. See Requirements level (RL)

RMF. See Requirements Modeling Framework

(RMF)

Rule-based approach, 380

S

Safety analysis (SA), 118, 377

Scrum, 201, 205, 208, 211–213

Semantic MediaWiki (SMW), 190

Semantic quality, 136

Semantic Web, 143–147, 157, 165, 380

Semantic Web Rule Language (SWRL), 149,

154, 157

Semi-tacit knowledge, 30

Sharing, 10, 14, 81

Sharing requirements knowledge, 378

SMEs. See Subject matter experts (SMEs)

SMW. See Semantic MediaWiki (SMW)

Social networking, 221

Social networks, 84, 224, 318, 325, 326, 329

Social platforms, 145–147

Socrates, 199, 200, 218

Software-defined radios (SDRs), 50, 62, 63, 71

Software engineering, 2, 9, 10, 223

Software reuse, 172

SoftWiki Ontology for Requirements

Engineering (SWORE), 122

Somatic knowledge, 31

Spacecraft, 49, 54, 64, 71

Specification, 3, 13, 50

Stakeholder analysis, 222, 380

Stakeholder engagement, 222, 240

Stakeholders, 5, 222

StakeNet, 224

StakeSource, 221, 222, 380

Study node, 120

Subject matter experts (SMEs), 144, 164

SWORE. See SoftWiki Ontology for

Requirements Engineering (SWORE)

SWRL. See Semantic Web Rule Language

(SWRL)

Syntactic quality, 136

T

Tacit, 12, 24, 82

Tacit knowledge, 23–45, 85–87, 375

Tacitness, 35–40

Tacit requirements knowledge, 52, 59

Taxonomy, 146, 150

Temporal order, 51

Testing, 200, 202, 204–206, 208–210, 214,

216, 217

Tokenisation, 128

Tools, 180

importance of tool support, 359

ProR, 364

Traceability model, 188

U

User story, 200, 205, 207–209, 212, 216, 217

V

Variability, 51

Variability model, 266, 287

Variability modeling techniques, 266, 288

W

Web 2.0, 221, 222, 377

Wikis, 80, 205, 209, 210, 214, 216

WRSPM, 356

398 Index

	Preface
	The Story
	The Structure
	The Audience

	Acknowledgments
	Contents
	List of Contributors
	Chapter 1: An Introduction to Requirements Knowledge
	1.1 What Is Requirements Engineering?
	1.1.1 Requirements Engineering Activities
	1.1.2 Requirements Artefacts
	1.1.3 Stakeholders, Collaboration, and Decisions

	1.2 What Is Managing Requirements Knowledge?
	1.2.1 What Is Knowledge?
	1.2.2 What Is Requirements Knowledge?
	1.2.3 Why Managing Requirements Knowledge?
	1.2.4 Knowledge Management in Software Engineering

	1.3 Foundations of Managing Requirements Knowledge
	1.3.1 Identifying Requirements Knowledge (Part I)
	1.3.2 Representing Requirements Knowledge for Reuse (Part II)
	1.3.3 Sharing Requirements Knowledge (Part III)
	1.3.4 Reasoning About Requirements (Part IV)
	1.3.5 Intelligent Tool Support (Part V)

	1.4 Summary
	References

	Part I: Identifying Requirements Knowledge
	Chapter 2: Unpacking Tacit Knowledge for Requirements Engineering
	2.1 Introduction
	2.2 Review
	2.2.1 Tacit Knowledge and Business and Management
	2.2.2 Tacit Knowledge and Requirements Engineering
	2.2.3 Tacit Knowledge and Talking Through Requirements

	2.3 A Systematic Framework for TK
	2.3.1 Knowledge, Information and Documents
	2.3.2 Stakeholders and Their Goals
	2.3.3 Writing It Down
	2.3.4 Tacitness
	2.3.5 Application of Our Framework to RE

	2.4 Challenges and Research Agenda
	2.5 Conclusions
	References

	Chapter 3: Mining Requirements Knowledge from Operational Experience
	3.1 Introduction
	3.2 Using Operational Defect Reports to Build Requirements Knowledge in Product Lines
	3.2.1 Using Operational Defect Reports: Problem Definition
	3.2.2 Using Operational Defect Reports: Previous Work
	3.2.3 Using Operational Defect Reports: Analysis
	3.2.4 Using Operational Defect Reports: Results
	3.2.5 Using Operational Defect Reports: Use of the Results
	3.2.5.1 Preserving New Requirements Knowledge by Extending the Feature Model
	3.2.5.2 Application of the Extended Feature Model: MRO Transponder
	3.2.5.3 Capturing New Product-Line Requirements by Constructing PLA-DPs
	3.2.5.4 Application of the PLA-DP: MRO Reaction Wheel

	3.2.6 Using Operational Defect Reports: Related Work

	3.3 Using Operational Experience to Build Requirements Knowledge of Product-Line Binding Times
	3.3.1 Product-Line Binding Times: Problem Definition
	3.3.2 Product-Line Binding Times: Study Context (Software-Defined Radios (SDRs))
	3.3.3 Product-Line Binding Times: Analysis
	3.3.4 Product-Line Binding Times: Results
	3.3.4.1 Extending Binding Times to the Requirements Phase
	3.3.4.2 Recognizing that Binding Time Can Be an Interval
	3.3.4.3 Reflect Temporal Dependencies Among Binding Decisions

	3.3.5 Product-Line Binding Times: Use of the Results
	3.3.5.1 Product-Line Binding Times: Illustration from MRO

	3.3.6 Product-Line Binding Times: Related Work

	3.4 Conclusion
	References

	Chapter 4: DUFICE: Guidelines for a Lightweight Management of Requirements Knowledge
	4.1 Introduction
	4.2 Draw a Knowledge Landscape
	4.2.1 How in Practice

	4.3 Use Lightweight Tools
	4.3.1 How in Practice

	4.4 Follow an Iterative Process
	4.4.1 How in Practice

	4.5 Interact with External Communities
	4.5.1 How in Practice

	4.6 Capture Tacit Knowledge
	4.6.1 How in Practice

	4.7 Establish a Knowledge Culture
	4.7.1 How in Practice

	4.8 Conclusion
	References

	Part II: Representing Requirements Knowledge for Reuse
	Chapter 5: Constructing and Using Software Requirement Patterns
	5.1 Introduction
	5.2 Context
	5.3 Patterns in Requirement Engineering
	5.4 Software Requirement Patterns in PABRE
	5.5 A Catalogue for Software Requirement Patterns
	5.5.1 Structure of the Catalogue
	5.5.2 SRP Catalogue Construction
	5.5.3 The SRP Catalogue Use
	5.5.4 The SRP Catalogue Evolution

	5.6 A Software Requirement Pattern Catalogue for Nontechnical Requirements
	5.6.1 Preliminaries
	5.6.2 Alignment
	5.6.3 Analysis
	5.6.4 Formulation
	5.6.5 Catalogue Construction

	5.7 Conclusions
	References

	Chapter 6: Using Ontologies and Machine Learning for Hazard Identification and Safety Analysis
	6.1 Introduction
	6.2 Background
	6.2.1 Overview of the HazOp Process
	6.2.2 Case-Based Reasoning (CBR)
	6.2.3 Ontology
	6.2.4 Natural Language Processing (NLP)
	6.2.5 Knowledge Management in Requirements Engineering

	6.3 Simplified Steam Boiler Example
	6.3.1 Preliminary HazOp (PHA) for Steam Boiler
	6.3.2 Tool Support for HazId Based on Requirements

	6.4 The KROSA Framework
	6.4.1 Knowledge Representation and Extraction
	6.4.2 Knowledge Reuse
	6.4.3 Case Model and Case Similarity

	6.5 Performing HazOp with KROSA
	6.6 Evaluation
	6.6.1 Evaluation Procedure
	6.6.1.1 Simulation Experiment
	6.6.1.2 Expert Assessment

	6.7 Evaluation Results
	6.7.1 Simulation
	6.7.2 Expert Evaluation
	6.7.3 Threats to Validity

	6.8 Related Work
	6.9 Conclusion
	References

	Chapter 7: Knowledge-Assisted Ontology-Based Requirements Evolution
	7.1 Introduction
	7.2 Social Platforms, Semantic Web, and RE
	7.3 Foundations of K-RE
	7.3.1 Solution Architecture: Ontologies as an Underpinning Framework for Requirements
	7.3.1.1 Environmental Context Ontology
	7.3.1.2 Problem Domain Ontology
	7.3.1.3 Generic Requirements Ontology
	7.3.1.4 RE Process Ontology

	7.3.2 Examples of Mappings Between the Elements of Different Ontologies

	7.4 Process for Knowledge Representation and Reuse
	7.4.1 Knowledge from Documents
	7.4.1.1 Identification of Structural Details
	7.4.1.2 Mapping of Document Structure to K-RE Model
	7.4.1.3 Domain Knowledge Extraction and Representation

	7.4.2 Knowledge from Domain-Rich Web Sources
	7.4.3 Knowledge Reuse and Upkeep

	7.5 K-RE: A Tool for Knowledge-Assisted Collaborative Requirements Evolution
	7.5.1 Overview
	7.5.2 Architecture
	7.5.3 Usage Illustration
	7.5.3.1 Semantically Enabled Collaboration
	7.5.3.2 Generating and Refining Artifacts Iteratively

	7.6 Evaluation in Industrial Settings
	7.6.1 Change Request Resolution in the Same Project
	7.6.1.1 Change Request Analysis
	7.6.1.2 Traditional Change Request Resolution
	7.6.1.3 Change Request Resolution Using K-RE
	7.6.1.4 Effectiveness Parameters
	7.6.1.5 Results
	7.6.1.6 Analysis

	7.6.2 Starting a New Project Using the Knowledge Base

	7.7 Discussions and Conclusion
	7.8 Future Work
	References

	Part III: Sharing Requirements Knowledge
	Chapter 8: Reusing Requirements in Global Software Engineering
	8.1 Introduction
	8.2 Foundations
	8.2.1 Knowledge Management
	8.2.2 Architectural Knowledge Management
	8.2.3 Knowledge Management for Requirements Engineering

	8.3 Practical Challenges
	8.4 The Method
	8.4.1 Process Model
	8.4.1.1 IRD 1: Cultural Analysis
	8.4.1.2 IRD 2: Face-to-Face Meeting
	8.4.1.3 IRD 3: Local Workshops
	8.4.1.4 IRD 4: Previous Adjustments
	8.4.1.5 IRD 5: Schedule Periodic Check-Ups
	8.4.1.6 IRD 6: Requirements Elicitation
	8.4.1.7 IRD 7: Analysis and Negotiation
	8.4.1.8 IRD 8: Redistribution of Requirements
	8.4.1.9 IRD 9: Documentation
	8.4.1.10 IRD 10: Validation

	8.4.2 Requirements Reference Model

	8.5 The Tool Architecture
	8.6 Prototype Implementation and Validation
	8.7 Summary
	References

	Chapter 9: Performative and Lexical Knowledge Sharing in Agile Requirements
	9.1 Introduction
	9.2 Method
	9.3 Field Site: Easy Retirement
	9.3.1 Agile
	9.3.2 Scrum
	9.3.3 User Stories
	9.3.4 Test-Driven Development

	9.4 Requirements Process at Easy Retirement
	9.4.1 Pre-iteration
	9.4.2 Iteration Planning
	9.4.3 Intra-iteration

	9.5 Performative and Lexical Knowledge Sharing
	9.5.1 Performative Knowledge Sharing
	9.5.1.1 Conversations
	9.5.1.2 Scrum Board

	9.5.2 Lexical Knowledge Sharing
	9.5.2.1 Fitnesse Testing Wiki
	9.5.2.2 Software Release Documents
	9.5.2.3 Past Experiences with Documents

	9.6 Discussion
	9.6.1 Implications for Practitioners of Agile
	9.6.2 Implications for Knowledge Management

	9.7 Limitations
	9.8 Conclusion
	References

	Chapter 10: Using Web 2.0 for Stakeholder Analysis: StakeSource and Its Application in Ten Industrial Projects
	10.1 Introduction
	10.2 Background
	10.3 StakeSource
	10.4 Using StakeSource in Practice
	10.4.1 Projects
	10.4.2 Methodology

	10.5 Experiences with StakeSource and Lessons Learnt
	10.5.1 Timeliness and Motivation to Respond
	10.5.2 Types of Stakeholder Response
	10.5.3 Value of Responses to Project
	10.5.4 Factors that Influence Stakeholder Engagement

	10.6 Threats to Validity
	10.7 Conclusions
	References

	Part IV: Reasoning About Requirements
	Chapter 11: Resolving Inconsistency and Incompleteness Issues in Software Requirements
	11.1 Introduction
	11.2 The RE Problem
	11.3 Desirable Features for Representation of Requirements
	11.4 Our Approach
	11.5 Case Study
	11.6 Observations from Case study
	11.7 Related work
	11.8 Discussion and Conclusion
	References

	Chapter 12: Automated Verification of Variability Model Using First-Order Logic
	12.1 Introduction
	12.2 Automated Verification of the Variability Using First-Order Logic Rules
	12.2.1 The Operations
	12.2.2 Inconsistency Detection
	12.2.2.1 Forms of Inconsistency

	12.2.3 Inconsistency Prevention
	12.2.4 Dead Feature Detection
	12.2.5 False-Optional Feature Detection

	12.3 Scalability Testing
	12.3.1 Experiment: The Method
	12.3.2 Scalability Result of Inconsistency Detection Experiments
	12.3.3 Scalability Result of Inconsistency Prevention Experiments
	12.3.4 Scalability Result of Dead Feature Detection Experiments
	12.3.5 Scalability Result of False-Optional Feature Detection Experiments

	12.4 Contributions of the Research and Comparison with Previous Works
	12.5 Conclusion
	References

	Chapter 13: Model-Based Requirements Engineering Framework for Systems Life-Cycle Support
	13.1 Introduction
	13.2 Background: Requirements Engineering Challenges
	13.3 Model-Based Requirements Engineering and Management
	13.3.1 Life-Cycle Requirements Management
	13.3.2 Model-Based Development
	13.3.3 Model-Based Requirements Process
	13.3.4 Integrating the Requirements Process
	13.3.5 Model-Integrated Requirements Traceability
	13.3.5.1 Requirements Traceability Challenges

	13.3.6 Tool Support for Model-Based Requirements Engineering

	13.4 The Choice of OPM
	13.4.1 Bimodal Representation
	13.4.2 Complexity Management
	13.4.3 OPM Tool Support
	13.4.4 A Comparison to UML-Based Systems

	13.5 The OPM Requirements Engineering and Management Framework
	13.5.1 Requirements Acquisition and Modeling
	13.5.2 Linking Requirements to the System Model
	13.5.3 Reasoning About Requirements
	13.5.3.1 Thing: Requirement Matching
	13.5.3.2 Requirement: Thing Matching

	13.5.4 Evaluation

	13.6 Summary and Conclusions
	References

	Part V: Intelligent Tool Support
	Chapter 14: An Overview of Recommender Systems in Requirements Engineering
	14.1 Introduction
	14.2 Research on Recommender Systems in Requirements Engineering
	14.2.1 Requirements Elicitation and Definition
	14.2.2 Quality Assurance
	14.2.3 Requirements Negotiation and Release Planning

	14.3 Recommendation Techniques for Requirements Engineering
	14.4 Issues for Future Research
	14.5 Conclusions
	References

	Chapter 15: Experience-Based Requirements Engineering Tools
	15.1 Introduction
	15.2 Design Principles
	15.2.1 Learning Through Experience: Heuristic Critiques
	15.2.2 Learning Model
	15.2.2.1 Individual Learning: Reflect and Apply
	15.2.2.2 Organisational Learning: Reuse and Encode

	15.2.3 Research Questions

	15.3 Example: The Heuristic Requirements Assistant (HeRA)
	15.3.1 Argumentation Component: Glossaries
	15.3.1.1 Suggesting Terms for a Glossary
	15.3.1.2 Awareness of Defined Terms

	15.3.2 More Heuristic Feedback

	15.4 Overview of Related Tools
	15.5 Evaluating Experience-Based RE Tools
	15.5.1 Research Method
	15.5.2 Sketch of Evidence
	15.5.3 Discussion of Implications

	15.6 Summary
	References

	Chapter 16: The Eclipse Requirements Modeling Framework
	16.1 Introduction
	16.2 Requirements Modeling
	16.2.1 Specifying Systems
	16.2.2 Structuring Requirements
	16.2.3 Informal and Formal Specifications
	16.2.4 Traceability
	16.2.5 The Importance of Tool Support

	16.3 Requirements Interchange Format
	16.3.1 The ReqIF Data Model
	16.3.2 The Impact of ReqIF

	16.4 The Requirements Modeling Framework (RMF)
	16.4.1 High-Level Structure
	16.4.2 Extending RMF

	16.5 ProR
	16.5.1 Installing ProR
	16.5.2 Creating a ReqIF Model
	16.5.3 New Attributes
	16.5.4 Configuration of the Editor
	16.5.5 Generating IDs
	16.5.6 Adding Requirements
	16.5.7 Linking Requirements

	16.6 Extending ProR
	16.6.1 Traceability Between Requirements and Event-B Models
	16.6.2 Tracepoint Approach in ProR
	16.6.3 Integration of Domain-Specific Languages

	16.7 Conclusion
	References

	Chapter 17: Managing Requirements Knowledge: Conclusion and Outlook
	17.1 Summary of the Motivations
	17.2 Summary of Requirements Knowledge Foundations
	17.2.1 Identifying Requirements Knowledge
	17.2.2 Representing Requirements Knowledge for Reuse
	17.2.3 Sharing Requirements Knowledge
	17.2.4 Reasoning About Requirements
	17.2.5 Intelligent Tool Support

	17.3 Open Issues and Road Ahead
	17.3.1 Identification of Tacit Knowledge
	17.3.2 Studies of Information and Knowledge Needs in RE
	17.3.3 Reasoning About Requirements
	17.3.4 Evolution of Requirements Knowledge
	17.3.5 From the Information to the Recommendation Age
	17.3.6 Democratisation and Active Involvement
	17.3.7 Integration into Software Engineering Knowledge
	17.3.8 Pragmatic Need-Driven Solutions and Tools

	17.4 Conclusion
	References

	About the Editors
	Walid Maalej
	Anil Kumar Thurimella

	Index

