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Abstract. Independent work by Chatterjee and Sarkar [9] and Naccache
[16] provided a variant of Waters’ IBE to reduce public parameters. The
idea is to divide an l-bit identity into l′ blocks of l/l′ so that size of

the vector
−→
V can be reduced from l elements of G to l′ elements of

G. We name this technique as blocking technique. This leads to some
associated degradation in security reduction. In this paper our contri-
bution is two fold: First we apply Waters’ [21] idea to convert Agrawal
et al. [1] selective-ID secure lattice HIBE to adaptive-ID secure HIBE
then using blocking technique we reduce the public parameters. Second
we present efficient lattice identity based encryption in standard model
with smaller public key size which is variant of [1]. Using blocking tech-
nique our scheme reduces public key size by a factor of β at the cost
of increasing (β − lg(β))2 number of bits in q where q is size of field
Zq . There is an interesting trade-off between reducing the public param-
eter size and increase in the computational cost. For 160-bit identities
we show that compared to scheme [1] the public parameter size can be
reduced by almost 90% while increasing the computation cost by only
8.71% for appropriate choice of β.

Keywords: Lattice, Hierarchical Identity Base Encryption, Standard
model, Learning with error(LWE).

1 Introduction

The concept of identity-based cryptosystem was introduced by Adi Shamir in
1984 [20]. In this new paradigm users’ public key can be any string which
uniquely identifies the user. For example email or phone number can be public
key. As a result, it significantly reduces system complexity and cost of establish-
ing public key infrastructure. Although Shamir constructed an identity-based
signature scheme using RSA function but he could not construct an identity-
based encryption and this became a long-lasting open problem. Only in 2001,
Shamir’s open problem was independently solved by Boneh and Franklin [6] and
Cocks [11].
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First Canetti et al. [7] presented identity-based encryption in standard model.
They proved the security of scheme in selective-ID model. In the selective-ID
model the adversary must first declare which identity it wishes to be challenged
before the global parameters are generated. Boneh and Boyen [4] then provided
an efficient secure scheme in selective-ID model. Boneh and Boyen [5] describe a
scheme that is fully secure in standard model, but their scheme is too inefficient
to practical use. Finally, the first practical and fully secure IBE scheme was
proposed by Waters [21] in the standard model under the Decisional Bilinear
Diffie-Hellman assumption. However, one drawback was that the public param-
eters is very large: namely, the public parameters contain l + 4 group elements,
where l is the size of the bit-string representing identities. In that scheme, if the

identities are n-bit string then one needs
−→
V consists of n group elements. Inde-

pendent work by Chatterjee and Sarkar [9] and Naccache [16] provided a variant
of Waters’ IBE. The idea is to divide an l-bit identity into l′ blocks of l/l′ so
that size of the vector

−→
V can be reduced from l elements of G to l′ elements of

G. We name this technique as blocking technique. This leads to some associated
degradation in security reduction.

The task of Public Key Generator (PKG) in IBE is to authenticate identity of
the entity, generate the private key corresponding to identity of the entity and
finally transmit the private key securely to the entity. In large network PKG
has a burdensome job. So the notion of Hierarchical IBE (HIBE) was intro-
duced in [13,14,5] to distribute the workload by delegating private key generation
and identity authentication to lower-level PKGs. However, lower level PKGs do
not have their own public parameters. Only root PKG has some set of public
parameters.

Lattice based cryptogrphy have arisen in recent years. Lattice based cryptog-
raphy are attractive due to their worst case hardness assumption and their poten-
tial resistance to quantum computers. Recently Regev [19] defined the learning
with errors (LWE) problem and proved that it enjoys similar worst-case hardness
properties, under a quantum reduction.

Based on LWE problem, Gentry et al. [18] constructed lattice based IBE
scheme in random oracle model. Recently Cash et al. [8], Peikert [17], and Agar-
wal et al. [2] have constructed secure IBE in the standard model from LWE
problem. Their construction view an identity as a sequence of bits and then
assign a matrix to each bit, which resulted into less efficient scheme compared
to Gentry et al.[18]. Recently Agarwal et al.[1] constructed a efficient lattice
based selective-ID secure IBE scheme in standard model. They have consid-
ered identities as one chunk rather than bit-by-bit. As Water modified Boneh
Boyen selective-ID secure IBE scheme (BB-IBE1)[5] to obtain an adaptive-ID
(full model) secure IBE scheme [21], similarly Agarwal et al.[1] in their full ver-
sion paper constructed an adaptive secure IBE using LWE problem. Similar to
Waters [21], it has large public parameters of size l n×m matrices, where l is
the size of the bit-string representing identities.

Recently Cash et al. [8] and Peikert [17] have constructed secure HIBE in
the standard model using basis delegation technique. Their construction view
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an identity as a sequence of bits and then assign a matrix to each bit, which
resulted into less efficient scheme. Recently Agarwal et al. [1] constructed a ef-
ficient lattice based secure HIBE scheme in standard model in weaker security
notion i.e. selective-ID. They have considered identities as one chunk rather than
bit-by-bit.

Our Contributions. Our contribution is two fold: First we apply Waters’ [21]
idea to convert Agrawal et al. [1] selective-ID secure lattice HIBE to adaptive-ID
secure HIBE. Then using blocking technique we reduce the public parameters.
Second one drawback of Agarwal et al. adaptive secure IBE scheme[1] was that
the public parameters is very large: namely, the public parameters contain l+1
n×m matrices, where l is the size of the bit-string representing identities. Using
blocking technique we can reduce n×mmatrices by factor β or public parameters
is reduced by around factor β; encryption and decryption are almost as efficient
as in [1]. This is associated with increase in size of q by 2β where q is a prime
number and size of field Zq. We show that compared to scheme [1] the public
parameter size can be reduced by almost 90% while increasing the computation
cost by only 8.71% for appropriate choice of β.

2 Preliminaries

2.1 Hierarchical IBE and IBE

Here definitions and security model of HIBE and IBE are similar to [13,14,5,1].
User at depth l is defined by its tuple of ids : (id/idl) = (id1, ..., idl). The user’s
ancestors are the root PKG and the prefix of id tuples (users/lower level PKGs).

HIBE consists of four algorithms.

Setup(d, λ:) On input a security parameter d(maximum depth of hierarchy tree)
and λ, it outputs the public parameters and master key of root PKG.

Derive(PP,(id/idl), SK(id/idl)): On input public parameters PP, an identity
(id/idl) = (id1, ..., idl) at depth l and the private key SK(id/idl−1) corresponding
to parent identity (id/idl−1) = (id1, ..., idl−1) at depth l − 1 ≥ 0 the algorithm
outputs private key for the identity (id/idl) at depth l.

If l = 1 then SK(id/id0) is defined to be master key of root PKG.
The private key corresponding to an identity (id/idl) = (id1, ..., idl) at depth

l can be generated by PKG or any ancestor (prefix) of an identity (id/idl).

Encrypt(PP,(id/idl),M): On input public parameters PP, an identity (id/idl),
and a message M outputs ciphertext C.

Decrypt(PP,SK(id/idl),C): On input public parameters PP, a private key
SK(id/idl), and a ciphertext C outputs message M.

Identity Based Encryption. IBE is special case of HIBE when depth of
hierarchy tree is one.
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2.2 Adaptive-ID (Full) Security Model of HIBE and IBE

We define adaptive-ID security model using a game that the challenge ciphertext
is indistinguisable from a random element in the ciphertext space. This property
implies both semantic security and recipient anonymity. The game proceeds as
follows.

Setup: The challenger runs Setup(1λ, 1d) and gives the public parameters PP
to adversary and keeps master key MK to itself.

Phase 1: The adversary issues a query for a private key for identity (id/idk) =
(id1, ..., idk), k ≤ d. Adversary can repeat this multiple times for different iden-
tities adaptivly.

Challenge: The adversary submits identity id∗ and message M. Identity id∗ and
prefix of id∗ should not be one of the identity query in phase 1. The challenger
picks a random bit r ∈ {0, 1} and a random ciphertext C. If r = 0 it sets the
challenge ciphertext to C∗ := Encrypt(PP, id∗,M). If r = 1 it sets the challenge
ciphertext to C∗ := C. It sends C∗ as challenge to the adversary.

Phase 2: Phase 1 is repeated with the restriction that the adversary can not
query for id∗ and prefix of id∗.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1} and wins if r = r′.
We refer an adversary A as an IND-ID-CPA adversary. We define the advan-

tage of the adversary A in attacking an IBE scheme ξ as

Advd,ξ,A(λ) = |Pr[r = r′]− 1/2|
Definition 1. We say that depth d HIBE scheme ξ is adaptive-ID, indistinguish-
able from random if for all IND-ID-CPA PPT adversaries A we have Advd,ξ,A(λ)
is a negligible function.

Full Security Model of IBE. Security model of IBE is same as security model
of HIBE with depth of hierarchy tree is one.

2.3 Integer Lattices

A lattice is defined as the set of all integer combinations

L(b1, ..., bn) =

{
n∑
i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n
}

of n linearly independent vectors b1, ..., bn ∈ Rn. The set of vectors {b1, ..., bn}
is called a basis for the lattice. A basis can be represented by the matrix B =
[b1, ..., bn] ∈ Rn×n having the basis vectors as columns. Using matrix notation,
the lattice generated by a matrix B ∈ Rn×n can be defined as L(B) = {Bx : x ∈
Zn}, where Bx is the usual matrix-vector multiplication. The determinant of a
lattice is the absolute value of the determinant of the basis matrix det(L(B)) =
|det(B)|.
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Definition 2. For q prime, A ∈ Zn×mq and u ∈ Znq , define:
Λq(A) := {e ∈ Zm s.t. ∃ s ∈ Znq where AT s = e (mod q)}

Λ⊥
q (A) := {e ∈ Zm s.t. Ae = 0 (mod q)}

Λuq (A) := {e ∈ Zm s.t. Ae = u (mod q)}

2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, ..., sk} in Rm. We use the following notation:

– |S| denotes the L2 length of the longest vector in S, i.e. ‖S‖ := maxi|si| for
1 ≤ i ≤ k.

– S̃ := {s̃1, ..., s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the
vector s1, ..., sk taken in that order.

We refer to ‖̃S‖ as the Gram-Schmidt norm of S.

Lemma 1([15, Lemma 7.1]). Let Λ be an m-dimensional lattice. There is a
deterministic polynomial-time algorithm that, given an arbitrary basis of Λ and
a full-rank set S = {s1, ..., sm} in Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T ‖ ≤ ‖S‖√m/2
Theorem 1([3, Theorem 3.2]). Let q ≥ 3 be odd and m := 
6nlog q�.

There is probabilistic polynomial-time algorithm TrapGen(q, n) that outputs
a pair (A ∈ Zn×mq , S ∈ Zn×m) such that A is statistically close to a uniform

matrix in Zn×mq and S is a basis for Λ⊥
q (A) satisfying

‖S̃‖ ≤ O(
√
n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Theorem 2([17]). For i = 1, 2, 3 let Ai be a matrix in Zn×mi
q and A =

(A1|A2|A3). Let T2 be a basis of Λ⊥
q (A2). There is deterministic polynomial

time algorithm ExtendBasis(A1, A2, A3, T2) that outputs a basis T for Λ⊥
q (A)

such that ‖T̃‖ = ‖T̃2‖.

2.5 Discrete Gaussians

Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter
σ ∈ R > 0, define:

ρσ,c(x) = exp(−π ‖x−c‖
σ2 ) : a Gaussian-shaped function on Rm with center c

and parameter σ,
ρσ,c(L) =

∑
x∈L ρσ,c(x) : the (always converging) ρσ,c over L,

DL,σ,c : the discrete Gaussian distribution over L with parameters σ and c,

∀y ∈ L , DL,σ,c =
ρσ,c(y)

ρσ,c(L)
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we abbreviate ρσ,0 and DL,σ,c will most often be defined over the Lattice L = Λ⊥
q

for a matrix A ∈ Zn×mq or over a coset L = t+ Λ⊥
q (A) where t ∈ Zm.

Lemma 2 ([17, Lemma 2.4]). Let q ≥ 2 and let A be a matrix in Zn×mq

with m > n. Let TA be a basis for Λ⊥
q (A) and σ ≥ ‖T̃A‖ω(

√
(logm)). Then for

c ∈ Rm and u ∈ Znq :
1. There is a PPT algorithm SampleGaussian (A, TA, σ, c) that returns x ∈
Λ⊥
q (A) drawn from a distribution statistically close to DΛ,σ,c.

2. There is a PPT algorithm SamplePre (A, TA, u, σ) that returns x ∈ Λuq (A)
sampled from a distribution statistically close to DΛu

q ,σ.

2.6 The LWE Hardness Assumption

The LWE (learning with error) hardness assumption is defined by Regev[19].

Definition 3. Consider a prime q, a positive integer n, and a distibution χ over
Zq, typically taken to be normal distribution. The input is a pair (A, v) from an
unspecified challenge oracle©,where A ∈ Zm×n

q is chosen uniformly. v is chosen
uniformly from Zmq or chosen to be As+ e for a uniformly chosen s ∈ Znq and a
vector e ∈ Zmq . When v is chosen to be As+e for a uniformly chosen s ∈ Znq and
a vector e ∈ Zmq an unspecified challenge oracle © is a noisy pseudo-random
sampler ©s. When v is chosen uniformly an unspecified challenge oracle © is a
truly random sampler ©$.

Goal of the adversary is to distinguish with some non-negligible probability
between these two cases.

Or we say that an algorithm A decides the (Zq, n, χ)-LWE problem if |Pr[A©s

= 1]− Pr[A©$ = 1]| is non-negligible for a random s ∈ Znq .

Definition 4. Consider a real parameter α = α(n) ∈ {0, 1} and a prime q. De-
note by T = R/Z the group of reals [0,1) with addition modulo 1. Denote by ψα
the distribution over T of a normal variable with mean 0 and standard deviation
α/
√
2π then reduced modulo 1. Denote by �x� = �x+ 1

2� the nearest integer to

the real x ∈ R. We denote by ψα the discrete distribution over Zq of the random
variable �qX�mod q where the random variable X ∈ T has distribution ψα.

Lemma 3([3]). Suppose that m > (n+1) log2 q+w(logn) and that q is prime.
Let A,B be matrices chosen uniformly in Zn×mq and let R be an m×m matrix
chosen uniformly in {1,−1}m×m mod q. Then, for all vectors w in Zmq , the

distribution (A,AR,RTw) is statistically close to the distribution (A,B,RTw).

3 Sampling Algorithms

Let A and B be matrices in Zn×mq and let R be a matix in {−1, 1}m×m. Our
construction makes use of matrices of the form F = (AR+B) ∈ Zn×2m

q and we
will need to sample short vectors in Λuq (F ) for some u in Znq . This can be done
either a SampleLeft or SampleRight algorithm.
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3.1 SampleLeft Algorithm ([1,Theorem 17])

SampleLeft Algorithm(A,M1, TA, u, σ):

Inputs:
a rank n matrix A in Zn×mq and a matrix M1 in Zn×m1

q .

a “short” basis TA of Λ⊥
q (A) and a vector u ∈ Znq .

a gaussian parameter σ > ‖T̃A‖ω(
√
(log(m+m1))).

Output: Let F1 := (A|M1). The algorithm outputs a vector e ∈ Zm+m1 sampled
from a distribution statistically close to DΛu

q (F1),σ.

3.2 SampleRight Algorithm ([1,Theorem 18])

SampleRight Algorithm(A,B,R, TB, u, σ):

Inputs:
matrices A in Zn×kq and B in Zn×mq where B is rank n,

a matrix R in Zk×mq , let sR := ‖R‖.
a basis TB of Λ⊥

q (B) and a vector u ∈ Znq ,
a gaussian parameter σ > ‖T̃B‖sRω(

√
log(m)).

Output: Let F2 := (A|AR + B). The algorithm outputs a vector e ∈ Zm+k

sampled from a distribution statistically close to DΛu
q (F2),σ.

4 Adaptively Secure HIBE Scheme in Standard Model

The new scheme is a variant of Agarwal et al. HIBE [1], but with short public
parameter. In our scheme, identity id/idl is represented as id/idl = (id1, ..., idl)
= ((b1,1||...||b1,l′′), ..., (bl,1||...||bl,l′′ )) where idi is l′ bit string and bi,j is l

′/l′′ = β
bit string. We apply Waters’[21] idea to convert Agrawal et al. [1] selective-ID
secure lattice HIBE to adaptive-ID secure HIBE. Then using blocking technique
we reduce the public parameters.

4.1 The HIBE Construction

Now we describe our adaptive secure HIBE scheme as follows.

Setup(d, λ). On input a security parameter λ and a maximum hierarchy depth
d, set the parameters q, n,m, σ, α as specified in section 4.2 below. The vectors
σ and α live in Rd and we use σl and αl to refer to their t-th coordinate. Next
do following.

1. Use algorithm TrapGen(q, n) to generate a matrix A0 ∈ Zn×mq and a short

basis TA0 for Λ⊥
q (A0) such that ‖T̃A0‖ ≤ O(

√
n log q).

2. Select l′′d + 1 uniformly random n×m matrices A1,1, ..., A1,l′′ , ..., Ad,1, ...,
Ad,l′′ and B ∈ Zn×mq .

3. Select a uniformly random n - vector u ∈ Znq .
4. Output the public parameters and master key,

PP = A1,1, ..., A1,l′′ , ..., Ad,1, ..., Ad,l′′ and B, MK = (TA0).
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Derive(PP,(id/idl), SK(id/id(l−1))). On input public parameters PP, a pri-
vate key SK(id/idl−1) corresponding to an identity (id/idl−1) at depth l − 1
the algorithm outputs a private key for the identity (id/idl) at depth l. From
equation (1),

Fid/idl = (A0|
l′′∑
i=1

A1,ib1,i +B|...|
l′′∑
i=1

Al,ibl,i +B) (1)

Or Fid/idl = (Fid/idl−1
|∑l′′

i=1 Al,ibl,i + B) Given short basis SK(id/id(l−1)) for

Λ⊥
q (Fid/idl−1

) and Fid/idl as defined in (1), we can construct short basis SK(id/idl)

for Λ⊥
q (Fid/idl) by invoking

S ←− SampleLeft(Fid/idl−1
,

l′′∑
i=1

Al,ibl,i +B,SK(Id/id(l−1)), 0, σl)

and output SK(id/idl) ←− S.
The private key corresponding to an identity (id/idl) = (id1, ..., idl) at depth

l can be generated by PKG or any ancestor (prefix) of an identity (id/idl) by
repeatedly calling SampleLeft algorithm.

Encrypt(PP,Id,b). On input public parameters PP, an identity (id/idl) of
depth l and a message b ∈ {0, 1},do following:

1. Build encryption matrix

Fid/idl = (A0|
l′′∑
i=1

A1,ib1,i +B||...||
l′′∑
i=1

Al,ibl,i +B) ∈ Zn×(l+1)m
q .

2. Choose a uniformly random vector s
R←− Znq .

3. Choose ll′′ uniformly random matrices Ri,j
R←− {−1, 1}m×m for i = 1, ..., l

and j = 1, ..., l′′. Define Rid
1 =

∑l′′

i=1 b1,iR1,i||...||
∑l′′

i=1 bl,iRl,i ∈ Zm×ll′′m

4. Choose noise vector x
ψαl←− Zq, y

ψ
m
αl←− Zmq and z←−RTidy ∈ Z lmq ,

5. Output the ciphertext,

CT =

(
C0 = uT0 s+ x+ b� q

2
�, C1 = FTids+

[
y

z

])
∈ Zq × Z(l+1)m

q

Decrypt(PP,SK(id/idl),CT). On input public parameters PP, a private key
SKid/idl , and a ciphertext CT = (C0, C1), do following.

1 In security proof, Rid is used to answer adversary’s secret key query and also for
valid challenge ciphertext, error vector has to be

[ y

RT
id

y

]
.
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1. Set τl = σl
√
m(l + 1)w(

√
log(lm)). Then τl ≥ ‖S̃K‖w(

√
log(lm)).

2. eid ←− SamplePre(Fid/idl , SK(Id/idl), u, τl) Then Fideid = u and ‖eid‖ ≤
τl
√
m(l + 1)

3. Compute C0 − eTidC1 ∈ Zq.
4. compare w and � q2� treating them as integers in Z. If they are close, i.e., if
|w − � q2�| < q

4 in Z, output 1 otherwise output 0.

During Decryption:
w0 = C0 − eTidC1 = b� q2�+ x− eTid

[
y
z

]
.

4.2 Parameters and Correctness

We have during decryption, w = C0 − eTidc1 = b� q2�+ x− eTid
[
y
z

]
.

And x− eTid
[
y
z

]
is called error term.

Lemma 4. Norm of the error term is bounded by [q2βl′′l2σlmαlω(
√
logm) +

O(2βl′′l2σlm3/2)].

Proof : Lemma is essentially same as lemma 32 of [1] except now Rid is uniformly
random matrix in {−2βl′′, 2βl′′}m×lm. So now |Rid| will be equal to 2βl′′Rid.
Hence error term will have extra factor 2βl′′.

Now, for the system to work correctly we need to ensure that:

– the error term is less than q/5 i.e. αl < [2βl′′l2σlmω(
√
logm)]−1 and q =

Ω(2βl′′l2σlm3/2).
– that TrapGen can operate (i.e m > 6n log q).
– That σl is sufficiently large for SimpleLeft and SimpleRight

(i.e. σl > ‖T̃B‖sRω(
√
logm) ) = 2βl′′

√
lmω(

√
logm).

– that Regev’s reduction applies (i.e. (q2β)l > 2Q, where Q is the number of
identity queries from the adversary)

To satisfy these requirements we set the parameters (q,m, σl, αl) as follows,
taking n to be the security parameter:

m = 6n1+δ, σl = l′′
√
lmω(

√
logn)

q = max((2Q/2β)1/l, (2βl′′)2l2.5m2.5ω(
√

log n)), αl = [(2β l′′)2l2.5m2ω(
√

logm)]−1

(2)

From above requirements, we need q = (2βl′′)2l2.5m2.5ω(
√
logn).

4.3 Security Proof

Our proof of theorem will require an abort-resistant hash functions defined as
follows.
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Abort-Resistant Hash Functions

Definition 5. Let H = {� : X −→ Y } be family of hash functions from X to Y
where 0 ∈ Y . For a set of Q + 1 inputs x = (x0, x1, ..., xQ) ∈ XQ+1, define the
non-abort probability of x as the quantity

α(x) = Pr [�[x0] = 0 ∧ �[x1] �= 0 ∧ ... ∧ �[xQ] �= 0]

where the probability is over the random choice of � in H .
We say that H is (Q,αmin, αmax) abort-resistance if for all x =

(x0, x1, ..., xQ) ∈ XQ+1 with x0 /∈ {x1, ..., xQ} we have α(x) ∈ [αmin, αmax].
we use the following abort-resistant hash family very similar to [1].

For a prime q let (Z l
′′
q )∗ = Z l

′′
q -{0l} and define the family

H : {� : ((Z l
′′
q )∗|...|(Z l′′q )∗) −→ (Zq|...|Zq)}

�(id) = �(id1|...|idl) = (1 +
l′′∑
i=1

h1,ib1,i)|...|(1 +
l′′∑
i=1

hl,ibl,i) (3)

where hk,i and bk,i are defined in section 4.1.

Lemma 5. let q be a prime and 0 < Q < q. Then the hash family H defined in
(4) is (Q, 1

ql
(1 − Q

ql
), 1
ql
) abort-resistant.

Proof: The proof is samilar to [1]. Consider a set of id of Q+1 inputs id0, ..., idQ

in (Z ll
′′

q )∗ where id0 /∈ {id1, ..., idQ} and idi = {id1, ..., idl}. Since number of

functions in H = (q2β)l
′′l and for i = 0, ..., Q+1 let Si be the set of functions �

in H such that �(idi) = 0. Hence number of such functions = |Si| = (q2β)l
′′l

ql
.

And
|S0∧Sj| ≤ (q2β)l

′′l

q2l
for every j > 0. Number of functions in H such that

�(id0) = (0|...|0) but �(idi) �= 0 for i = 1, ..., Q. = |S| and

|S| = |S0 − (S1 ∨ ...SQ)| ≥ |S0| −
Q∑
i=1

|S0 ∧ Si|

≥ (q2β)l
′′l

ql
−Q (q2β)l

′′l

q2l

Therefore the no-abort probability of identities is atleast equal to
(q2β )l

′′l
ql

−Q(q2β )l
′′l

q2l

(q2β)l′′l
= 1

ql
(1− Q

ql
) Since |S| ≤ |S0|, so the no-abort probability is

atmost |S0|
(q2β)l′′l =

1
ql
.

Now we show that our lattice-based IBE construction is indistinguishable from
random under a adaptive identity attack (IND-ID-CPA).
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Theorem 3. The Full-HIBE scheme with parameters(q, n,m, σ, α) as in (3) is
IND-ID-CPA secure provided that the (Zq, n, ψ̄αd

)-LWE assumptions holds.

Or Suppose there exists a probabilistic algorithm A (Adversary) that wins the
IND-ID-CPA game with advantage ε, making no more than Q ≤ ql/2 adaptive
chosen-identity queries. Then there is a probabilistic algorithm B that solves the
(Zq, n, ψα)-LWE problem in about the same time as A and with ε′ ≥ ε/4ql.

Proof. Here proof is very similar to proof of theorem 25 and theorem 33 of
[1]. We assume that Wi denote the event that the adversary correctly guessed
the challenge bit, namely that r = r′ at the end of Game i. The adversary’s
advantage in Game i is |Pr[Wi]− 1

2 |. We proceed the proof in a sequence of games.

Game 0. Game 0 is the IND-ID-CPA game between an attacker against our
scheme and IND-ID-CPA challenger.

Game 1. In Game 0 the challenger generates public parameters PP by choosing
ll′′ + 2 uniformly random matrices A0, A1,1, ..., Al,l′′ , B in Zn×mq . In Game 1,
challenger generates uniformly random matrices A0, B same as Game 0. But
challenger generates matrices Ak,j , k ∈ [1, l] and i ∈ [1, l′′] in slightly different
way. The Game 1 challenger choose R∗

k,d, k ∈ [1, l], i ∈ [1, l′′] at the set up
phase and chooses ll′′ random scalars hk,i ∈ Zq for k ∈ [1, l], i ∈ [1, l′′]. Next it
constructs the matrices Ak,i as

Ak,i ←− A0Rk,i + hk,iB

By lemma 3, the distribution (A0, A0R
∗, (R∗)T y) and (A0, (A

′
1,1|, ..., |A′

l,l′′),

(R∗)T y) are statistically close, where R∗ = (R′
1,1|...|R′

l,l′′ ) ∈ Zm×lm
q and A′

k,i, i ∈
[1, l′′], k ∈ [1, l] are uniformly independent matrices in Zn×mq . It follows that with

z = (R∗
id)

T y the distributions A0, A0R
∗
1,1, ..., A0R

∗
l,l′′ and A0, A

∗
1,1, ..., A

∗
l,l′′ are

statistically close. So in the attacker’view, Game 0 is same as Game 1. This
shows that

Pr[W0] = Pr[W1] (4)

Game 2. We introduce an abort event that is independent of the adversary’s
view and rest is same as Game 1. We will see in later part of the proof that abort
event is directly related to abort-resistant family of hash functions H introduced
in Lemma(6). From Lemma(6) H is a {Q,αmin.αmax} abort-resistant family,
where αmin = 1

ql (1 − Q
ql ). For αmin ≥ 0 we must have ql > Q. We assume

ql ≥ 2Q so αmin ≥ 1
2ql

. For a (Q + 1)-tuple of identities I = (id∗, id1, ..., idQ),
Game 2 challenger behaves as follows:

– The setup phase is identical to Game 1 except that the challenger also
chooses a random hash function � ∈ H and keeps it to itself.

– The challenger responds to identity queries and issues the challenge cipher-
text exactly as in Game 1.
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– In the final guess phase, the challenger now does following:
1. Abort check: The challenger checks if H(id∗) = 0 and H(idi) �= 0

for i = 1, ..., Q, where identity id∗ is the challenge identity and id∗ /∈
{id1, ..., idQ}. If not, it returns random bit from {0, 1} and game is
aborted. Adversary does not know about abort condition i.e. H.

2. Artificial abort: This technique was introduced by Waters [21]. Abort
condition could be correlated with the adversary’s query. The goal of the
artificial abort step is to make the probability of abort “independent”
of the adversaries queries by ensuring that in all cases its probability of
abort is the maximum possible. Function γ(id∗, id1, ..., idQ) or γ(I) is
defined in such a way that when there is no artificial abort γ(I) is zero
else γ(I) = 1. When γ(I) = 1, challenger returns random bit from {0, 1}
and game is aborted.

If game is not aborted, the attacker outputs its guess r′ ∈ {0, 1} for r.
Let ε(I) be the probability that an abort (either real or artificial) does not
happen when the adversary makes these queries. Let εmax and εmin be scalars
such that ε(I) ∈ [εmin, εmax] for all (Q+ 1) tuples of identities I.

Lemma 6 (Lemma 28 of [1]). For i = 1, 2 let Wi be the event that r = r′ at
the end of Game i. Then∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ εmin
∣∣∣∣Pr[W1]− 1

2

∣∣∣∣− 1/2(εmax − εmin).

Obviously [εmax − εmin] = [αmax − αmin], when there was no artificial abort.
With artificial abort, (εmin − εmax) is less than αmin|Pr[W1]− 1

2 | and therefore∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ 1/2.αmin

∣∣∣∣Pr[W1]− 1

2

∣∣∣∣ ≥ (1/4ql)

∣∣∣∣Pr[W1]− 1

2

∣∣∣∣ . (5)

Game 3. Game 3 differs from Game 2 how A0 and B are chosen. In Game 3,
A0 is generated as a random matrix in Zn×mq . Matrix B is generated by using
algorithm TrapGen, which returns random matrix B in Zn×mq and a Trapdoor

TB for Λ⊥
q (B). From adversary’s point of view, Game 2 and Game 3 are identical,

hence adversary’s advantage against Game 2 and Game 3 will be same. So

Pr[W2] = Pr[W3] (6)

Game 4. In Game 4 the challenge ciphertext (C∗
0 , C

∗
1 ) is always chosen as a ran-

dom independent element in Zq×Z2m
q . Rest is same as Game 3. Since ciphertext

is random element, hence Adversary’s advantage against Game 4 is zero.
Now we have to show that Game 3 and Game 4 are computationally indistin-

guishable. We can show it in following way.
Suppose there exist an Adversary who can distinguish Games 3 and 4 with

non-negligible then simulator can construct an algorithm which can solve LWE
hard problem.
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Reduction from LWE. In instance of LWE a sampling oracle © is provided.
Sampling oracle © can be either truly random ©$ or a noisy pseudorandom
©S for some secret random s ∈ Znq .
Instance. Simulator request from© and receives a fresh pair (ui, vi) ∈ Znq ×Zq
for each i = 0, ...,m.

Setup. B constructs the system’s public parameters PP as follows:

1. The random matrix A0 ∈ Zn×mq is constructed by assembling LWE sample

ui for all i = 1, ...,m, where ith column of A is ui.
2. Public random n-vector u0 is the zeroth LWE sample.
3. Rest of public parameters are constructed as in Game 3.

Queries. Matrices A0 and B are generated as in Game 3. Since B was generated
using KeyGen algorithm so challenger knows trapdoor TB. Matrices Ak,i are
constructed as in Game 1.

Ak,i = A0Rk,i + hk,iB for k = 1, ..., l and i = 1, ..., l′′. (7)

where all the matricesRk,i are random in {1,−1}m×m and hk,i is a random scalar
coefficient in Zq. Encryption matrix to encrypt to an identity id = (id1, ..., idl)
at depth l ≤ d is

Fid/idl = (A0|
l′′∑
i=1

A1,ib1,i +B||...||
l′′∑
i=1

Ad,ibd,i +B) (8)

Substituting the value of matrices Ak,i from equation(7)

Fid/idl = (A0|A0(

l′′∑
i=1

R1,ib1,i) +B(1 +

l′′∑
i=1

h1,ib1,i)||...

||A0(

l′′∑
i=1

Rl,ibl,i) +B(1 +

l′′∑
i=1

hl,ibl,i))

Or Fid = (A0|A0Rid + Bhid) where Rid =
∑l′′

i=1 R1,ib1,i||...||
∑l′′

i=1 Rl,ibl,i

and Bid = B�id = (1 +
∑l′′

i=1 h1,ib1,i)||...||(1 +
∑l′′

i=1 hl,ibl,i)
If hid is not equal to zero then challenger responds the private key query of
id = (id1, id2, ..., idl) by running

SKid ←− SampleRight(A0, Bid, Rid, TB, 0, σl)

and sending SKid to A. hid is equal to zero will be part of abort resistant hash
function.

Challenge. Adversary declares target identity id∗ = (id1, id2, ..., idl) and mes-
sage bit b∗ ∈ {0, 1}. Simulator B creates challenge ciphertext for the target
identity as follows:
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1. Let v0, ..., vm be entries from LWE instance. Set

v∗ =

⎛
⎜⎜⎜⎝
v0
v1
...
vm

⎞
⎟⎟⎟⎠ ∈ Zmq

2. Blind the message bit by letting

C∗
0 = v0 + b∗� q

2
� ∈ Zq

3. Let
Rid∗ = (R∗

1|...|R∗
l )

where

Rj∗ =

l′′∑
j=1

Ri,jbi,j

and set

C∗
1 =

(
v∗

(Rid∗)
T v∗

)
∈ Zm+lm

q

4. Choose a random bit r ← {0, 1}. If r = 0 send CT ∗ = (C∗
0 , C

∗
1 ) to the

adversary. If r = 1 choose a random (C0, C1) ∈ Zq × Zm+lm
q and send

(C0, C1) to the adversary.

When the LWE oracle is pseudorandom then Fid∗ = (A0|A0Rid∗) since hid∗ =
0 and

v∗ = AT0 s+ y

for some random noise vector y ∈ Zmq distributed as ψ̄mα . Therefore

C∗
1 =

(
AT0 s+ y

(A0Rid∗)
T s+ (Rid∗)

T y

)
= (Fid∗)

T s+

(
y

(Rid∗)
T y

)

Above C∗
1 is a valid C1 part of challenge ciphertext. Again C∗

0 = uT0 +x+b
∗� q2� is

also a valid C0 part of challenge ciphertext. Therefore (C∗
0 , C

∗
1 ) is valid challenge

ciphertext as in Game 3.
When LWE oracle is random oracle, v0 is uniform in Zq and v∗ is uniform in

Zmq . Therefore challenge ciphertext is always uniform in Zq×Z2m
q as in Game 4.

Guess. Adversary is again allowed to make private key extraction query as
in Game 3 except prefix of id∗. Then Adversary guess if it is valid ciphertext
(Game 3) or random string (Game 4). Hence simulator’s advantage in solving
LWE hard problem is same as Adversary’s advantage in distinguishing valid
ciphertext (Game 3) and random string (Game 4). Since Pr[W4] = 1/2, So

|Pr[W3]− Pr[W4]| = |Pr[W3]− 1

2
| ≤ LWE-adv(B) (9)

Combining equation (4),(5),(6) and (9), we get

|Pr[W0]− 1

2
| ≤ 4ql LWE-adv(B)



Efficient Lattice (H)IBE in Standard Model with Short Public Parameters 167

5 New Full-IBE Scheme in Standard Model

The new scheme is a variant of Agarwal et al. IBE [1], but with short public
parameter. In Agrawal et al. IBE scheme identities are represented as l-bit string.
Because of this representation, scheme requires l n×m matrices. In our scheme,
identity id is represented as id = (b1, ..., bl′), where each bi is an l/l′ = β bit
string.

5.1 The New Full-IBE Construction

Now we describe our new Full-IBE Scheme in the standard model as follows.

Setup(λ). On input a security parameter λ, set the parameters q, n,m, σ, α as
specified in section 5.2 below. Next do following.

1. Use algorithm TrapGen(q, n) to generate a matrix A0 ∈ Zn×mq and a short

basis TA0 for Λ⊥
q (A0) such that ‖T̃A0‖ ≤ O(

√
n log q).

2. Select l′ + 1 uniformly random n×m matrices A1, A2, ..., Al′ , B ∈ Zn×mq .
3. Select a uniformly random n - vector u ∈ Znq .
4. Output the public parameters and master key,

PP = (A1, A2, ..., Al′ , B, u), MK = (TA0).

Extract(PP,MK,Id). On input public parameters PP, a master secret key
MK, and an identity id = (b1, ..., bl′), where each bi is an l/l

′ = β bit string.

1. Let Aid = B +
∑l′

i=1 biAi ∈ Zn×mq .
2. Sample e ∈ Z2m

q as e←− SampleLeft(A0, Aid, TA0 , u, σ).
3. Output SKid = e ∈ Z2m.

Let Fid = (A0|Aid), then Fid.e = u in Zq and e is distributed as DΛu
q (Fid),σ by

lemma 2.

Encrypt(PP,Id,b). On input public parameters PP, an identity id, and a
message b ∈ {0, 1},do following:

1. Let Aid = B +
∑l′

i=1 biAi ∈ Zn×mq and Fid = (A0|Aid) ∈ Zn×2m
q .

2. Choose a uniformly random s
R←− Znq .

3. Choose l′ uniformly random matrices Ri
R←− {−1, 1}m×m for i = 1, ..., l′ and

define Rid
2 =

∑l′

i=1 biRi ∈ {−l′(2β − 1), ..., l′(2β − 1)}.
4. Choose noise vectors x

ψα←− Zq, y ψ
m
α←− Zmq and z←−RTidy ∈ Zmq ,

5. Set C0 ←− uT s+ x+ b� q2� ∈ Zq and C1 ←− FTids+
[
y
z

] ∈ Z2m
q and .

6. Output the ciphertext CT = (C0, C1) ∈ Zq × Z2m
q .

2 In security proof, Rid is used to answer adversary’s secret key query and also for
valid challenge ciphertext, error vector has to be

[ y

RT
id

y

]
.
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Decrypt(PP,SKid,CT). On input public parameters PP, a private key SKid =
eid, and a ciphertext CT = (C0, C1), do following.

1. Compute w ←− C0 − eTidC1 ∈ Zq. If they are close, i.e., if |w − � q2�| < q/4
in Z, output 1 otherwise output 0.

During Decryption:
w0 = C0 − eTidC1 = b� q2�+ x− eTid

[
y
z

]
.

5.2 Parameters and Correctness

We have during decryption, w = C0 − eTidc1 = b� q2�+ x− eTid
[
y
z

]
.

And x− eTid
[
y
z

]
is called error term.

Lemma 7. For an l-bit identity id = (b1, ..., bl′), where each bi is an l/l′ = β
bit string. Norm of the error term is bounded by qσ2βl′mαω(

√
logm) +

O(σ2βl′m3/2).

Proof: The proof is identical to the proof of Lemma 22 in [1] except that ma-

trix R is replaced by Rid =
∑l′

i=1 biAi. Since ‖Rid‖ ≤
∑l′

i=1 ‖bi‖‖Ai‖ and by
[1,theorem 15],‖R‖ ≤ O(√m) .

So ‖Rid‖ ≤ O(2βl′√m). This leads to the extra factor 2βl′ in the error bound.
Now, for the system to work correctly we need to ensure that:

– the error term is less than q/5 i.e. α < [σ2βl′mαω(
√
logm)]−1 and q =

Ω(σ2βl′m3/2).

– that TrapGen can operate (i.e m > 6n log q).

– That σ is sufficiently large for SimpleLeft and SimpleRight
(i.e. σ > ‖T̃B‖2βl′√mω(

√
logm) ) = 2βl′

√
mω(
√
logm).

– that Regev’s reduction applies (i.e. q > 2Q, whereQ is the number of identity
queries from the adversary)

To satisfy these requirements we set the parameters (q,m, σ, α) as follows, taking
n to be the security parameter:

m = 6n1+δ, σ = 2βl′
√
mω(

√
logn)

q = max(2Q,m2.5(2βl′)2ω(
√
logn)), α = [2βl′mω(

√
logm)]−1. (10)

From above requirements, we need q = m2.5(2βl′)2ω(
√
log n). But in [1], required

value of q = m2.5l2ω(
√
logn). In this scheme value of q is increased by (2β l

′
l )

2 =

(2
β

β )2. This means that when public parameters are reduced by factor β, the value

of q is increased by (2
β

β )2 or number of bits in q is increased by (β − lg(β))2.
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5.3 Efficiency

Here efficiency analysis is similar to [9]. Difference between our scheme and
scheme [1] is computation of Aid and Rid. Rest of the algorithm for key gener-
ation, encryption and decryption algorithms etc are same. Let |Zq| be the size
of the representation of an element of Zq. We assume that cost of adding two
n×m matrices is approximately equal to nm|Zq|. Cost of computing Aid is
adding two n×m matrices and l′ multiplication where each multiplication is
multiplication of (l/l′)-bit string and n×m matrix. On an average, cost of each
such multiplication will be l/2l′ addition and (l/l′−1) doubling. Hence, the total
cost of computing Aid is l/l′ addition and (l− l′) doubling. This cost is equal to
cnm(3l2 − l′)|Zq| for some constant c. This cost is minimum when l′ = l (as in

[1]). Minimum value is cnm l
2 |Zq|. Maximum value is less than cnm 3l

2 |Zq|. Cost
of computing FTids is equal to dnmn|Zq| for some constant d. Cost of encryption
is equal to cnm(3l2 − l′)|Zq|+dnmn|Zq|. Cost of encryption in IBE [1] is equal to

cnm( l2 )|Zq|+ dnmn|Zq|. Value of q is less than poly(n) assume n5. If q is more
than 512 bit then value of n is atleast 2100, which is much greater than size of
identity l(160). So cost of encryption is enmn|Zq| for some constant e, which
does not depend on l′. There is no effect of l′ on computation of Aid. Similarly
There is no effect of l′ on computation of Rid. Hence there is no effect of l′ on
cost of key generation and encryption. Decryption algorithm is same in both
scheme. Computational cost increases because of increase in value of q or size
of |Zq|.

5.4 Space/Time Trade-Off

Our scheme reduces public size by a factor β. The relative decrease in amount
of space (expressed in percentage) required to store the public parameter in case

of our scheme with respect to scheme [1] is equal to l−l′
l . Our scheme reduces

public size by a factor of β at the cost of increasing value of q by a factor of

(2
β

β )2 with same security as [1]. By making same security as [1], new q or q′ is

q(2
β

β )2. Size of Zq′ = |Zq′ | = |Zq|+ (β − lg(β))2. Relative increase in encryption

cost in case of our scheme with respect to [1] is
|Zq′−Zq|

|Zq| = (β−lg(β))2
|Zq| .

In table 1, we give the results for l = 160 and |Zq| = 512 for different values
of l′ ranging from 8 to 64. Overall, we suggest l′ = 16 to be good choice for
implementing the protocol.

Table 1. Relative decrease in space and relative increase in time for different values of l′

l′ Relative decrease in space Relative increase in time

8 95 48

16 90 8.71

32 80 1.40

64 60 0.27
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5.5 Security Proof

Our proof of theorem will require an abort-resistant hash functions defined as
follows.

Abort-Resistant Hash Functions([1])

Definition 6. Let H = {� : X −→ Y } be family of hash functions from X to Y
where 0 ∈ Y . For a set of Q + 1 inputs x = (x0, x1, ..., xQ) ∈ XQ+1, define the
non-abort probability of x as the quantity

α(x) = Pr [�[x0] = 0 ∧ �[x1] �= 0 ∧ ... ∧ �[xQ] �= 0]

where the probability is over the random choice of � in H .
We say that H is (Q,αmin, αmax) abort-resistance if for all x =

(x0, x1, ..., xQ) ∈ XQ+1 with x0 /∈ {x1, ..., xQ} we have α(x) ∈ [αmin, αmax].
we use the following abort-resistant hash family very similar to [1]. For a

prime q let (Z l
′
q )

∗ = Z l
′
q − {0l} and define the family

H : {� : ((Z l
′
q )

∗) −→ (Zq)}

�(id) = (1 +

l′∑
i=1

hibi) ∈ Zq (11)

where hi and bi are defined in section 4.1.

Lemma 8. Let q be a prime and 0 < Q < q. Then the hash family H defined
in (4) is (Q, 1q (1− Q

q ),
1
q ) abort-resistant.

Proof: The proof is very similar to [1]. Consider a set of id of Q + 1 inputs
id0, ..., idQ in (Z l

′
q )

∗ where id0 /∈ {id1, ..., idQ}. For i = 0, ..., Q + 1 let Si be
the set of functions � in H such that �(idi) = 0. We know that number of such

functions = |Si| = (q2β)l
′

q .

And |S0 ∧ Sj| ≤ (q2β)l
′

q2 for every j > 0. Number of functions in H such that

�(id0) = 0 but �(idi) �= 0 for i = 1, ..., Q. = |S| and

|S| = |S0 − (S1∨, ..., SQ)| ≥ |S0| −
Q∑
i=1

|S0 ∧ Si|

≥ (q2β)l
′

q
−Q (q2β)l

′

q2

Since number of functions in H = (q2β)l
′
, therefore the no-abort probability of

identities is atleast equal to
(q2β )l

′
q −Q (q2β )l

′

q2

(q2β)l′
= 1

q (1− Q
q ) Since |S| ≤ |S0|, so the

no-abort probability is atmost |S0|
(q2β)l′ = 1

q .

Now we show that our lattice-based IBE construction is indistinguishable from
random under a adaptive identity attack (IND-ID-CPA).
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Theorem 4. The Full-HIBE Scheme with parameters(q, n,m, σ, α) as in (10)
is IND-ID-CPA secure provided that the (Zq, n, ψ̄αd

)-LWE assumptions hold.
Or Suppose there exists a probabilistic algorithm A (Adversary) that wins

the IND-ID-CPA game with advantage ε, making no more than Q ≤ q/2
adaptive chosen-identity queries, then there is a probabilistic algorithm B that
solves the (Zq, n, ψα)-LWE problem in about the same time as A and with
ε′ ≥ ε/(4q).
Proof. Since limits of no-abort probability (Lemma 5) of identity is same as
lemma 27 of [1] so security proof will be same as security proof of [1,theorem 25].

6 Conclusion

We have shown that by converting selective-ID HIBE to adaptive-ID HIBE secu-
rity degradation is exponential in number of levels. In our efficient lattice based
IBE scheme we have also shown that there is an interesting trade-off between
reducing the public parameter size and increase in the value of q (computa-
tional cost). The main open problem in the construction of lattice based IBE
protocols is to reduce the public parameter size without increasing the value of
q(computational cost).

Acknowledgments. We would like to thank anonymous reviewer and PC chairs
for their useful comments.
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