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Abstract. We consider the lossiness of RSA trapdoor permutation stud-
ied by Kiltz, O’Neill and Smith in Crypto 2010. In Africacrypt 2011, Her-
rmann improved the cryptanalytic results of Kiltz et al. In this paper,
we improve the bound provided by Herrmann, considering the fact that
the unknown variables in the central modular equation of the problem
are not balanced. We provide detailed experimental results to justify our
claim. It is interesting that in many situations, our experimental results
are better than our theoretical predictions. Our idea also extends the
weak encryption exponents proposed by Nitaj in Africacrypt 2012.
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1 Introduction

1.1 Multi-Prime Φ-Hiding Assumption

Multi-Prime RSA is a generalization of the RSA public key cryptosystem [13]
where the modulus is a product of more than two primes, i.e., N = p1 · · · pm,
with pi (for 1 ≤ i ≤ m) primes of same bitsize. Note that for a fixed bit length
of Multi-Prime RSA modulus N , the number of primes m can not be very large
since, in that case one may efficiently extract the smallest factor of N using the
Elliptic Curve Method for factorization [10].

Φ-Hiding Assumption is one of the most well known assumptions in modern
cryptography. It is used in various applications to produce secure primitives. For
an RSA modulus N = pq and a prime e, the Φ-Hiding Assumption states that

“it is hard to decide whether e divides Φ(N) = (p− 1)(q − 1),”

where Φ(·) denotes the Euler’s totient function. So the Φ-Hiding Problem is to
deterministically predict whether a given prime e is a factor of Φ(N) or not,
where only the knowledge of e and N is available.

It is well known that Φ-Hiding problem can be solved efficiently using the idea
of Coppersmith [1] if e ≥ N0.25. In Asiacrypt 2008, Schridde and Freisleben [14]
proved that the Φ-Hiding Assumption does not hold for the composite integers
of the form N = pq2k for k > 0. These kind of moduli are known to be used in
a variant of RSA called Takagi’s RSA [15], which provides faster decryption.
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Multi-Prime Φ-Hiding Assumption has been proposed by Kiltz et al [8] in
Crypto 2010, where they obtained standard model instantiations of RSA-OAEP
by constructing a lossy trapdoor permutation from RSA, based on the multi-
prime generalization of the Φ-Hiding Assumption.

In their protocol, they considered Multi-Prime RSA with modulus N =
p1 · · · pm. The prime e is chosen such that e divides p1 − 1, . . . , pm−1 − 1. The
lossy trapdoor permutation then relies on the Multi-Prime Φ-Hiding Assump-
tion, which states that

“it is hard to decide whether e divides pi − 1 for all but one prime factor of N”.

1.2 Cryptanalysis of Multi-Prime Φ-Hiding Assumption

Kiltz et al. [8] present a cryptanalysis of the Multi-Prime Φ-Hiding Assumption
using the idea of Herrmann et al. [3]. Note that if e divides all pi−1 for 1 ≤ i ≤ m,
N ≡ 1 mod e. It gives a polynomial time distinguisher. To decide if e is Multi-
Prime Φ-Hidden in N , consider the system of equations

ex1 + 1 ≡ 0 mod p1, ex2 + 1 ≡ 0 mod p2, . . . , exm−1 + 1 ≡ 0 mod pm−1.

Kiltz et al. [8] construct a polynomial equation

em−1

(
m−1∏
i=1

xi

)
+ · · ·+ e

(
m−1∑
i=1

xi

)
+ 1 ≡ 0 mod

m−1∏
i=1

pi (1)

by multiplying all given equations. Then they linearize the polynomial and solve
it using a result due to Herrmann and May [3]. However, the work of [3] provides
an algorithm with runtime exponential in the number of unknown variables. So
for large m, the idea of [3] will not be efficient.

Note that the coefficients of the polynomial in Equation (1) are all powers
of e. In Africacrypt 2011, Herrmann [4] used this fact to improved the attack
of [8], by considering a different linearization to reduce the number of variables.
Suppose we have (ex1 + 1)(ex2 + 1)(ex3 + 1) ≡ 0 mod p1p2p3. Then instead of
considering the polynomial equation

e3x1x2x3 + e2(x1x2 + x1x3 + x2x3) + e(x1 + x2 + x3) + 1 ≡ 0 mod p1p2p3, (2)

Herrmann [4] considered the polynomial equation

e2x+ ey + 1 ≡ 0 mod p1p2p3, (3)

where x = ex1x2x3+x1x2+x1x3+x2x3 and y = x1+x2+x3 are the unknowns.
One positive aspect of Equation (3) is that it has only two variables x, y instead
of the original three x1, x2, x3. On the negative side, the size of the variable x is
increased by a factor of e compared to the original unknown variables x1, x2, x3.
However, the problem remains similar, as finding x, y allows one to factor N .
In [4], it has been proved that considering Equation (3) provides an advantage
in terms of better upper bounds on xi than in the case with Equation (2).
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In the general case, instead of considering the polynomial em−1ym−1 +
em−2ym−2 + · · · + ey1 + 1 over the variables y1, . . . , ym−1 with root

(y1, . . . , ym−1) =

(
m−1∏
i=1

xi, . . . ,
m−1∑
i=1

xi

)
,

Herrmann [4] considered the polynomial e2x + ey + 1 over the variables x, y
with root

(x0, y0) =

⎛
⎝em−3

m−1∏
i=1

xi + · · ·+
∑
j>i

xixj ,
m−1∑
i=1

xi

⎞
⎠ (4)

to obtain the improvement over the work of Kiltz et al. [8].

1.3 Our Contribution

In summary, we obtain the following attempts in analyzing the Multi-Prime
Φ-Hiding problem for an RSA modulus with m factors:

– Kiltz et al. [8] used linear modular equation over m− 1 variables. As in this
case dimension of lattice will be exponential in m − 1, method will not be
efficient at all for large value of m.

– Herrmann [4] considered a bivariate modular polynomial. This makes the
method efficient for larger values of m too. Also this gives better theoretical
bound than the work of [8].

However, note that in Equation (4) used by Herrmann [4], the variable y0 is
much smaller than x0. It was already indicated in [3] that one may get better
bound for these unbalanced variables. However this option has not been analyzed
systematically in the literature till date. In this work we analyzed this issue
carefully, and use the unbalanced property of the variables x, y to get further
improvement over the result of Herrmann [4].

Our improvement originates from providing extra shifts over the variable y
in the same bivariate scenario as Herrmann has considered. This reduces the
lossiness of the work of Kiltz et al. [8] even further. In Table 1, we present the
impact of our result on the work of Kiltz et al.

Table 1. Impact of our results on the lossiness of Kiltz et al. [8] for different values of
m, with 2048 bit N and for 80 bit security.

Value Lossiness in the work of Kiltz et al. [8]

of m Before the work of [4] After the work of [4] After our work

4 806 778 768

5 872 822 778
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We present the main technical result, our attack on the Multi-Prime Φ-Hiding
Assumption, in Section 2, and the respective experimental results in Section 3.
But before proceeding with the main content of this paper, let us state the
following two existing results on lattices that will be required for our work. We
first state the following due to Howgrave-Graham [5].

Lemma 1. Let h(x1, x2) ∈ Z[x1, x2] be the sum of at most ω monomials. Sup-

pose that h(x
(0)
1 , x

(0)
2 ) ≡ 0 (mod Nm) where |x(0)

1 | ≤ X1, |x(0)
2 | ≤ X2 and

||h(x1X1, x2X2)|| < Nm

√
ω
.

Then h(x
(0)
1 , x

(0)
2 ) = 0 over the integers.

We also note that the basis vectors of an LLL-reduced basis fulfill the following
property (as explained in [9]).

Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm ap-
plied to L outputs a reduced basis of L spanned by {v1, . . . , vω} with

||v1|| ≤ ||v2|| ≤ 2ω/4 det(L)1/(ω−1)

in polynomial time of dimension ω and the bit size of the entries of L.

Now we move on to the main technical content of this paper.

2 Our Attack on the Multi-Prime Φ-Hiding Assumption

Note that from Equation (4), value of y0 is much smaller than x0. We use this
fact to get the improvement over [4]. Our approach is exactly the same as [3]
except that we use extra shifts over the variable y.

Theorem 1. Let N = p1 · · · pm be a Multi-Prime RSA modulus where pi are of
same bit size for 1 ≤ i ≤ m. Let e be a prime such that e > N

1
m−δ. Then one

can solve Multi-Prime hidden Φ problem in polynomial time if there exist two
non-negative real numbers τ1, τ2 such that

Ψ(τ1, τ2, δ,m) =3τ1τ
2
2m− τ32m+ 3τ21 δm− 6τ1τ2m+ 3τ22m+ 9τ1δm+

6τ1τ2 + 3τ1m− 3τ2m+ 3δm− 9τ1 + 3τ2 +m− 3 < 0.

Proof. To decide if e is Multi-Prime Φ-hidden in N , consider the system of
equations

ex1 + 1 ≡ 0 mod p1, . . . , exm−1 + 1 ≡ 0 mod pm−1

As pi are of same bit size and e > N
1
m−δ, we have |xi| ≤ N δ for 1 ≤ i ≤ m− 1.

Denote P =
∏m−1

i=1 pi. Now consider the polynomial g(x, y) = e2x+ ey+ 1. It is
clear that g(x0, y0) ≡ 0 mod P where

(x0, y0) =

⎛
⎝em−3

m−1∏
i=1

xi + · · ·+
∑
j>i

xixj ,
m−1∑
i=1

xi

⎞
⎠ .
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From g(x, y), one can obtain a polynomial f(x, y) of the form x+ a1y+ a2 such
that f(x0, y0) ≡ 0 mod P . It is clear that the size of x0 is dominated by the term
em−3x1 . . . xm−1. Hence we have

|x0| ≤ N (m−3)( 1
m−δ)+(m−1)δ = N

m−3
m +2δ and |y0| ≤ (m− 1)N δ.

As m < log2 N , we can assume |y0| ≤ N δ, neglecting m− 1 term.

Take two integers X = N
m−3
m +2δ and Y = N δ. Clearly X,Y is an upper

bound on x0, y0 respectively.
Now consider the set of polynomials

gk,i(x, y) = yifk(x, y)Nmax{s−k,0},

for k = 0, . . . , u, i = 0, . . . , u − k + t where u is a positive integer and s, t are
non-negative integers. Note that gk,i(x0, y0) ≡ 0 mod P s.

Now we construct the lattice L spanned by the coefficient vectors of the poly-
nomials gk,i(xX, yY ). One can check that the dimension of the lattice L is

ω =

u∑
k=0

u−k+t∑
i=0

1 ≈ u2

2
+ tu.

The determinant of L is

det(L) =

u∏
k=0

u−k+t∏
i=0

Xk · Y i ·Nmax{s−k,0} = XsXY sY NsN , (5)

where sX =
u∑

k=0

u−k+t∑
i=0

k ≈ t
u2

2
+

u3

6
,

sY =

u∑
k=0

u−k+t∑
i=0

i ≈ t2u

2
+

tu2

2
+

u3

6
,

sN =

u∑
k=0

u−k+t∑
i=0

max{s− k, 0} ≈ us2

2
+

ts2

2
− s3

6
assume t ≤ u.

Using Lattice reduction on L by LLL algorithm [9], one can find two non-zero

vectors b1, b2 such that ||b1|| ≤ ||b2|| ≤ 2
ω
4 (det(L))

1
ω−1 . The vectors b1, b2 are the

coefficient vector of the polynomials h1(xX, yY ), h2(xX, yY ) with

||h1(xX, yY )|| = ||b1|| and ||h2(xX, yY )|| = ||b2||,

where h1(x, y), h2(x, y) are the integer linear combinations of the polynomials
gk,i(x, y). Hence

h1(x0, y0) ≡ h2(x0, y0) ≡ 0 mod P s.
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To find two polynomials h1(x, y), h2(x, y) which share the root (x0, y0) over
integers, using Lemma 1 we get the condition

2
ω
4 (det(L))

1
ω−1 <

P s

√
ω
. (6)

Note that ω is the dimension of the lattice which we may consider as small
constant with respect to the size of P and the elements of L. Thus, neglecting
2

ω
4 and

√
ω, we can rewrite (6) as det(L) < (P s)ω−1. In general [7], it is con-

sidered that the condition det(L) < (P s)ω is sufficient to find two polynomials
h1(x, y), h2(x, y) such that h1(x0, y0) = h2(x0, y0) = 0.

Under the assumption that gcd(h1, h2) = 1, we can collect the root (x0, y0)
using resultant method. Let t = τ1u and s = τ2u where τ1, τ2 are non-negative
reals. Now putting the value of t, s in the condition det(L) < P sω, we get the
required condition. �	
Remark 1. For fixed δ and m, we will take the partial derivative of Ψ with
respect to τ1, τ2 and equate each of them to 0 to get non-negative solutions of
τ1, τ2. Given any pair of such non-negative solutions, if Ψ is less than zero, then
for that δ, x0, y0 can be obtained efficiently.

Comparison with [4] and [8]: In the work of [4], the variable τ1 was not
involved. The bound on δ in [4] is presented as

δ <
2

3
√
m3

.

The bound on δ in the work of [8] is

δ <
2
(
m−1/(m−1) −m−m/(m−1)

)
m(m− 1)

.

In Table 2, we present a comparison of the upper bounds of δ as in our case
(Theorem 1) with those in [4] and [8], for different values of m.

From Table 2, it is clear that upper bound of δ in our case is higher than
that of [4]. Hence our new attack solves the Multi-Prime Φ-Hidding Problem for
more values of e. Also note that when m becomes larger, difference between the
upper bound of δ in Theorem 1 and the upper bound of [4] increases.

Recently Tosu and Kunihiro [16] have studied Multi-Prime Φ-Hiding Prob-
lem. In [16, Section 4.4], authors have mentioned that their bound is same as
Herrmann Method for m = 3, 4, 5. Hence for m = 4, 5, our method is better
than that of [16]. Also when m = 10 with 4096 bit modulus, attack of [16] works
when size of e is more than 314. However, in our case lower bound on size of e is
(0.1− 0.0248)× 4096 = 308. Hence in this situation too, our method is better.

3 Experimental Results

We have implemented the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on
a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB RAM
and 2 MB Cache. The results are as follows.
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Table 2. Comparison of upper bound on δ between our result and those of [4] and [8]

Value Upper bound on δ

of m Our result (Theorem 1) Herrmann [4] Kiltz et al. [8]

3 0.1283 0.1283 0.1283

4 0.0835 0.0833 0.0787

5 0.0608 0.0596 0.0535

6 0.0475 0.0454 0.0388

7 0.0387 0.0360 0.0295

8 0.0327 0.0295 0.0232

9 0.0283 0.0247 0.0188

10 0.0248 0.0211 0.0154

In Table 3, we present few experimental results for different values of m.

Table 3. Experimental results for different values of m with 2048 bit N

m δ u t s dim(L) time (sec.)

3 0.120 8 2 4 63 209.35

4 0.085 7 3 4 60 206.90

5 0.065 7 3 4 60 140.42

6 0.054 6 4 4 56 87.34

7 0.044 6 4 4 56 73.97

8 0.039 5 4 5 51 45.41

9 0.034 5 4 5 51 39.05

10 0.029 5 4 5 51 30.43

From Table 3, it may be noted that form ≥ 4 we get much better results in the
experiments than the theoretical bounds. This is because, for the parameters we
consider here, the shortest vectors may belong to some sublattice. However, the
theoretical calculation in Theorem 1 cannot capture that and further, identifying
such optimal sublattice seems to be difficult.

In [8, Proposition 5.3], Kiltz et al. proved that their construction provides
(m − 1)(1/m − δ − ε) log2 N bits of lossiness for ε log2 N bit security. One can
achieve 80 bit security by taking ε = 0.04 for 2048 bit modulus. In this case
for m = 3, 4, 5, Kiltz et al. showed that one can obtain 676, 778 and 822 bits
lossiness respectively, considering the upper bound of δ as 2

3
√
m3

. For m = 4, we

achieve the bound of δ as 0.085. This implies that actual lossiness in this case
is less than 3× (0.25− 0.085− 0.04)× 2048 = 768 instead of 778. Similarly for
m = 5, actual lossiness is less than 778 instead of 822.
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In many situations (like [6]), experimental results provide better bound than
the theoritical prediction. Thus, any concrete parameters given in [8] for instan-
tiating RSA-OAEP that depends on the Multi-Prime Φ-Hidding problem should
need experimental verification.

3.1 Weak Encryption Exponents

Recently in Africacrypt 2012, Nitaj [12] proposed a new class of weak Encryption
Exponents for RSA. The flow of the algorithm in [12] that exploits these weak
keys is as follows.

– Consider that the public exponent e satisfies ex+y ≡ 0 mod p with |x| < Nγ ,
|y| < N δ and ex+ y 
= 0 mod N .

– Use the idea of [3] to find x, y.
– Calculate p = gcd(N, ex+ y)

Nitaj [12] proved that when γ+δ ≤
√
2−1
2 ≈ 0.207, one can find x, y in the above

algorithm. He also estimated that the number of such encryption exponent is at
least N0.707−ε where ε → 0.

Note that when γ and δ are not same, i.e., x, y are of different bitsizes, we
can improve the upper bound of γ + δ using our idea as in Theorem 1. In fact,
when either γ → 0 or δ → 0, it is already mentioned in [3] that the upper bound
of γ + δ would be 0.25. Hence we have the following result, using an approach
similar to that of [12, Theorem 5].

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Let public
exponent e satisfy ex + y ≡ 0 mod p with |x| < N ε1 and |y| < N δ. If ex + y 
=
0 mod N and δ < 0.25, one can factor N in polynomial time where ε1 → 0. The
number of such encryption exponents is atleast N0.75−ε, where ε → 0.

4 Conclusion

In this paper we consider Multi-Prime Φ-Hidding problem and provide better
theoretical results than what were obtained by Herrmann [4]. For m ≥ 4, the
experimental results are better than our theoretical prediction. In this direc-
tion, an interesting open problem would be to provide a theoretical model for
constructing the sublattice.
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