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Preface

This volume contains the papers presented at SPACE 2012: the International
Conference on Security, Privacy and Applied Cryptography Engineering held
during November 2–3, 2012, in Chennai, India. This year’s conference had a
focus on the latter aspect—applied cryptography and cryptographic engineering.
We believe that cryptology is an applied science in its essence which makes the
areas in question most impactful.

We received 61 submissions. The Program Committee completed 203 reviews.
Eleven papers were accepted for publication. We had four keynote talks on top of
that, delivered by Thomas Peyrin, Bart Preneel, Pierangela Samarati and Berk
Sunar, being top notch researchers in their respective domains.

The two core days of the conference were accompanied by four days of special-
purpose tutorials. There were two days of pre-conference and two days of post-
conference workshops. The workshops covered a wide array of topics ranging
from mobile platform security, side channel attacks in cryptography to the prov-
able security of cryptographic protocols. The speakers were eminent researchers
from the world of industry and academia.

This was the second conference in the SPACE series. The first conference was
named InfoSecHiComNet 2011 and its proceedings were published as LNCS vol-
ume 7011 in 2011. The Program Chairs of that conference—Marc Joye, Michael
Tunstall, and Debdeep Mukhopadhyay—worked hard to start this series of con-
ference. We are extremely thankful to these founders of the conference for
establishing a solid platform for us, building on which has been easy.

SPACE 2012 was held in cooperation with the International Association for
Cryptologic Research (IACR). We are extremely thankful to its current Presi-
dent, Bart Preneel, for awarding this status. This without doubt helped consid-
erably to make this year’s conference a success.

We would like to acknowledge the General Chairs Sanjay Burman and
V. Kamakoti for the successful organization of the conference. They not only
took pains to ensure the smooth running of the workshops and the conference,
but also worked hard to get all the funding for the events. This event could not
have been held without the energy and effort put in by the General Chairs. Spe-
cial thanks go to Swarup Bhunia, who worked tirelessly as the Publicity Chair
of the conference. Debdeep Mukhopadhyay was helpful at every stage of the
conference organization. We would have found it hard to make it a successful
event without the timely help of all of them.

The administration of IIT Madras was extremely positive and helpful in the
organization of the conference. They warmly agreed to extend all support and
facilities for SPACE 2012. Most of the speakers and guests of SPACE were
housed in the excellent guest house of IIT Madras. The Society for Electronic
Transactions and Security (SETS), Chennai, kindly provided their space and
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resources for organizing the workshops. We are especially thankful to the director
of SETS, R. Balasubramaniam, for all the help extended. SETS also provided
us the formal legal umbrella under which we could apply to the IACR to hold
this event.

We were lucky to find generous funding support from various agencies. We
are particularly thankful to the Ministry of Information Technology, who funded
us under the Information Security Education and Awareness (ISEA) scheme.
We take this opportunity to warmly appreciate the funding support from the
Defense Research and Development Organization (DRDO), Government of India
and Center of Excellence in Cryptology (CoEC), Kolkata. Besides these, we also
received industry funds. We would like to thank all our sponsors for the support
they provided.

We thank all authors of submitted papers for considering SPACE 2012 to
publish their work. Last but by no means least, we would like to thank the
Program Committee members of SPACE 2012 for their numerous reviews and
enlightening discussions that were a tremendous help in the challenging task of
selecting papers for presentation.

September 2012 Andrey Bogdanov
Somitra Sanadhya
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A Novel Circuit Design Methodology

to Reduce Side Channel Leakage

Andreas Gornik, Ivan Stoychev, and Jürgen Oehm

Ruhr-Universität Bochum, Analogue Integrated Circuits Research Group,
Universitätsstraße 150, 44780 Bochum, Germany

http://www.ais.ruhr-uni-bochum.de

Abstract. To estimate the probable information leakage of a logic cir-
cuit through a side channel is a major problem for circuit designers. In
this paper a novel circuit design methodology is presented to estimate
and reduce the side channel leakage of logic gates. The focus lies on
the investigation of side channel leakage during circuit design. With this
novel methodology three different logic circuit families are compared.
Additionally, the process of improving a logic circuit using this method-
ology is shown in detail.

Keywords: circuit design, DPA countermeasures, side channel leakage.

1 Introduction

Beside the classical cryptanalysis, side channel attacks can be used to break
cryptographic systems. These side channel attacks use the information that is
presented by the physical implementation of the system. This information can
be e.g. the execution time of an operation, the electromagnetic radiation or
the current consumption of the cryptographic system. The latter became very
popular for attackers since the publication of differential power analysis (DPA)
attacks [1], because only low cost equipment is needed for this kind of attack.

As a consequence, circuit designers developed countermeasures to reduce the
information leakage through the power consumption. But the effectiveness of
these countermeasures can only be checked after the whole system is imple-
mented. This leads to extreme costs for the development, if the circuit designer
does not have a possibility to check the probable information leakage of the
circuit during the design process.

Therefore a design tool is needed which helps to predict the effectiveness of
a side channel countermeasure during the circuit design. Such a design tool for
circuit design on the transistor level is not known to the authors, until now.
Thus a new methodology to reduce the possible information leakage during the
design of logic gates on the transistor level is presented in this paper.

The remainder of this article is structured as follows: in Sect. 2 a categorization
of countermeasures is done and the actual work is arranged according to this
categorization. In the next section the mathematical concept for the analysis
of the circuits is explained, which is implemented in an analysis methodology

A. Bogdanov and S. Sanadhya (Eds.): SPACE 2012, LNCS 7644, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Design levels

described in Sect. 4. The results of the analysis of three logic styles are presented
in Sect. 5. These results are used to improve a logic gate with the analysis
methodology which is presented in Sect. 6. The article closes with a conclusion
and an outlook in Sect. 7.

2 Categorization of DPA-Countermeasures

The countermeasures against DPA attacks can be divided by their level of inte-
gration, like in a top to bottom design. Therefore there is a chip level, a system
level, an algorithmic level, a gate level and finally a transistor level as depicted
in Fig. 1.

On the chip level several countermeasures were proposed like e.g. introducing
noise on the supply voltage lines by randomly switching loads [2], or buffering
the supply voltage with capacitors [3]. These measures are often implemented in
one circuitry which protects the whole chip. Because of this, less circuit area is
used as with other protection on gate or transistor level. The weakness of such
circuits is, if they can be overridden, the whole chip is unprotected. Additionally
they only try to hide the information leakage from lower levels, without the
prevention of leakage where it occurs e.g. at the gate or transistor level.

The next level of protection is the system level. In contrast to the chip level,
the protection against leakage is included in the system architecture. One concept
is introduced in [4], where a session key is generated from a main key, and each
key function is separately protected against DPA. Using FPGAs there is the
possibility to take unused circuitry for generating noise on the supply lines,
randomize the clock or prevent clock frequency manipulations [5].
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On the algorithmic level the encryption algorithm is modified to complicate
DPA attacks. This can be done e.g. by masking the bits which are operated [6],
randomization of the processed data [7], a combination of masking and random-
ization [8] or by randomly inserted delays [9].

The next level from top to bottom is the gate level. On this level new logic
gates with less information leakage are created by using standard cells (logic
gates provided by a chip manufacturer). This is quite popular, because it is
cheaper and needs less circuit design knowledge than a full custom design of
new standard cells. To complicate DPA some circuit designers try to make the
current consumption more symmetric or invariant [10], insert random delays [11]
or mask the data [12,13].

At the bottom is the transistor level. To get a protection against leakage on
this level, there has to be a full custom design for all logic gates which will
be used in a design. Hence this kind of protection needs more time and effort
than the levels discussed before and additionally an experienced circuit designer
to avoid information leakages. Because of this the levels above, especially the
system and algorithmic level, are more popular for developing DPA countermea-
sures. Nonetheless there have been several proposals to build up logic gates with
reduced information leakage. This is justified by the possibility to reduce the
information leakage where it occurs, in the transistor switching. All other levels
can only try to hide this leakage, but cannot prevent it.

Most of the proposed circuits focus on equal power consumption for each
transition and are therefore differential (dual rail) circuits. These circuits can
be divided into static [14,15] and dynamic respectively pre-charged circuits [16].
There are also circuits which use random switching to protect against DPA
[17,18].

The main problem designing logic circuits with a resistance against DPA at-
tacks, is to measure the information leakage. On levels above the transistor level,
there is a relatively quick possibility to synthesize the circuit by a digital design
flow, and to simulate the current consumption of the system. These simulation
can be used for an DPA attack to get a rough estimation of its resistance.

On the transistor level, everything has to be designed manually, and every
gate has to be checked by itself. The first proposals for checking the side channel
leakage of a logic gate was to calculate the normalized standard deviation (NSD)
of the current or the normalized energy deviation (NED) of the energy consump-
tion [19]. These measures could be used for classifying differential logic gates.
Due to the nature of the standard deviation, the NSD gives only a very rough
estimation if a gate has equal power consumption as discussed in Sect. 3. The
NED cannot be used generally, because it is tailored for the use with dynamic
logic circuits which is also discussed in the next section of this paper.

Another proposed measure is based on the information theoretic evaluation
of information leaking from logic gates [20,21]. But this method still does not
deliver information that can be used for circuit design. Thus a new analytical
concept is introduced in the next section.
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3 Analytical Concept

To get a measure for a probable information leakage, it has to be explored where
the leakage comes from. Most implementations of logic styles with a resistance
against DPA use differential circuits. For these circuits each transition of the
input and output signals should generate the same amount of current which
flows through the logic gate. Therefore it has to be checked, if the current is
always the same for each transition.

One way to get a measure for the current Idyn, that is generated by a transition
from state X to state Y, is to calculate the integral of the absolute value:

flow(X → Y ) =

t0+T∫
t0

|Idyn| dt . (1)

The absolute value is used to take the negative part of the current trace into
account, which would normally reduce the value of the integral. For the compar-
ison of the current flow for each transition, a transition matrix T can be built
by using the calculated flow. Equation (2) shows such a transition matrix for a
logic gate with two input signals. In this matrix each state is represented by its
decimal value. For example 3 → 2 stands for

(
A
B

)
=

(
1
1

) → (
1
0

)
, where

(
A
B

)
is the

combination of the input signals A and B.
The transitions and with this the flow are time invariant, which means that it

does not matter at which time they occur. Thus propagation times do not play
a role for this metric when a signal change happens after the output signal of
the circuit under test is stable. A change of the input signals during the change
of the output signal is not predictable and can have a unmanageable amount of
possibilities of occurrence. Because of that, the signal changes for the transitions
1 → 2 and respectively 2 → 1 are assumed to happen at the same time.

T =

⎛⎜⎜⎝
0 → 0 0 → 1 0 → 2 0 → 3
1 → 0 1 → 1 1 → 2 1 → 3
2 → 0 2 → 1 2 → 2 2 → 3
3 → 0 3 → 1 3 → 2 3 → 3

⎞⎟⎟⎠ (2)

The values in this matrix give an overview how the flow differs between the
transitions and can be used by a circuit designer to improve a logic gate at the
transistor level, as shown in Sect. 6. But this is not sufficient to characterize the
overall leakage of a logic gate. To gain a more detailed measure, the difference
between the current of two transitions Idyn,1 and Idyn,2 over a time T is examined.
For this (1) is extended and called verbosity, because this is the information that
leaks to the attacker.

verbosity =
1

T
·

t0+T∫
t0

||Idyn,1| − |Idyn,2|| dt (3)
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In this equation the absolute value is used to take account of all parts of the
current being positive or negative, or the current Idyn,2 greater than Idyn,1.

To get a verbosity which is independent from the amplitude of the current,
the current is set into relation to the sum of the two currents as shown in (4).
This value is called relative verbosity, short RV.

RV =

1
T ·

t0+T∫
t0

||Idyn,1| − |Idyn,2|| dt

1
T ·

t0+T∫
t0

|Idyn,1|+ |Idyn,2| dt
=

t0+T∫
t0

||Idyn,1| − |Idyn,2|| dt
t0+T∫
t0

|Idyn,1|+ |Idyn,2| dt
(4)

With this measure the current of two transitions can be compared. This example
is extended to all possible combinations of the transitions. The result is the total
relative verbosity, short TRV :

TRV =
1

N
·
n−1∑
i=1

n−1∑
k=i

t0+T∫
t0

||Idyn,i| − |Idyn,k+1|| dt
t0+T∫
t0

|Idyn,i|+ |Idyn,k+1| dt
. (5)

Where N denotes the number of all possible combinations of the transitions and
n stands for the number of all possible transitions of the logic gate under test.
N can be calculated with the help of n:

N =

n−1∑
m=1

m =
n(n− 1)

2
. (6)

The TRV can be used by a circuit designer to compare logic gates within one
logic family or to compare logic families with each other as shown in Sect. 5.

The former proposed measures NSD and NED [19] base on the standard
deviation of the measured/simulated current trace respectively the minimum
and maximum values of the energy per cycle:

NSD =
σ

μ
(7)

NED =
max(energy/cycle)−min(energy/cycle)

max(energy/cycle)
. (8)

Where σ stands for the standard deviation and μ for the mean of the trace under
investigation. The NSD can be used to analyze several clock cycles, or complete
transition schemes. Because it is based on the standard deviation, it cannot show
the absolute difference between transitions. In addition the standard deviation
depends on the switching activity of the analyzed circuit. If the switching activity
is not equal for all circuits under test, it is not a meaningful measure. Another
drawback of the NSD is that the standard deviation is divided by the mean of
the analyzed trace. A large value of the mean, which can be generated easily by
a large DC power consumption, can falsify this measure, too. Hence the NSD
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is only a rough measure for the difference between transitions or the resistance
against side channel attacks.

When the cycle for the NED is interpreted as one clock cycle, this measure
can only be used for dynamic logic circuits, because only these circuits have
two separate current/energy peaks per cycle. Static logic circuits only have one
significant energy peak per cycle and therefore they cannot be compared with
this measure. A possible extension could be to regard several transitions as one
cycle. But then the NED has still the drawback, that only the maximum and
the minimum energy is compared and all values in between are ignored.

In addition, the NED is based on the energy which is drawn by the circuit as
its name says. To calculate the energy the following equations are used:

E =

t0+T∫
t0

u(t) · i(t)dt (9)

In a simulation environment the voltage u(t) is normally constant. Hence only
the integral over the current i(t) is calculated, where negative parts of the current
compensate positive parts and thus some information is lost.

Compared to NSD the verbosity measures are more accurate, because all tran-
sitions are compared exactly with each other and it is independent from the DC
power consumption. Regarding the NED we get more information about the
traces with the verbosity, because the absolute values are calculated here. Addi-
tionally we get an overall measure for all transition (TRV ), as well as information
about each transition through the transition matrix T.

4 Methodology

A proposal for a methodology that uses the presented analytical concept is shown
in Fig. 2. A circuit designer creates a logic gate with a program for schematic
entry and generates a netlist for the test circuit. This netlist is simulated with
an analog circuit simulator and the resulting current traces are evaluated with
a script, which generates the values for the TRV and the transition matrix. In
the remainder of this section these parts are described in detail.

4.1 Circuit Netlist

The netlists for the examined logic gates were built with a design kit for a 90nm
process. Then these gate netlists were placed in a test circuit which fits to the
amount of input signals of the logic gate. A test circuit for a gate with two input
signals is depicted in Fig. 3.

The logic gate in this test circuit is driven by two input signals A and B. These
signals are combined in such a way, that each transition of the input signal,
e.g.

(
A
B

)
=

(
1
0

) → (
0
1

)
, occurs only once. In this way unnecessary transitions

are avoided and the simulation time is minimized. To represent the use in a
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schematic entry

analog circuit 

simulator

evaluation script

circuit netlist

current traces

circuit

designer

TRV / transition matrix

circuit parameters

Fig. 2. Methodology

digital circuit, the logic gate drives a capacitive load CL. In order to obtain
information about the current consumption for each transition, only the dynamic
current which is generated by each transition is investigated. This is necessary to
compare logic gates with high static current consumption with those that have
a low leakage current.

To separate the dynamic part of the current from the static part, a first order
RC-filter with a cutoff frequency of:

ωg =
1

RC
= 1

1

s
(10)

⇒ fg =
ωg

2π
≈ 0, 16Hz (11)

is used. This filter only works for an input voltage, therefore the current Igate
is transformed to a voltage Vgate with a conversion factor of 1. This is done
by a current controlled voltage source. The output voltage of the filter Vdyn

is equivalent to the dynamic current generated by the logic gate. This kind
of filtering can be accepted, because the dynamic behavior of the current is
negligible altered. The resulting netlist is then simulated with an analog circuit
simulator.

4.2 Analog Circuit Simulator

A numerical correct subtraction is only achieved if minuend and subtrahend are
vectors with the same length, which are in this case the simulated current traces.
Therefore an analog circuit simulator is needed which generates data only with
equally spaced time steps. Some of the simulators generate additional time steps
at times when special events occur and break this equal spacing. Such simulators
cannot be used for this kind of operation.
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logic gate

C L

V DD

I gate

A

B
Y

R

C

VgateVdyn

Vgate I gate

Fig. 3. Test circuit for logic gates with two input signals

initialize cut calculate format output

simulation

results output

Fig. 4. Structure of the used evaluation script

4.3 Evaluation Script

The results of the analog circuit simulator have to be further processed. This is
done by an evaluation script (cf. Fig. 4).

The simulation results are imported into the script and all used variables
are set, like the period of the transitions and the number of input signals of
the analyzed gate. Then the amount of points per current trace is calculated
from the start and end point of the measured current. According to this data
the trace is cut into pieces to get one current trace for each transition. These
traces, which are vectors with an equal amount of points, are afterwards used
for the calculation of the verbosity and to generate the transition matrix T as
described in Sect. 3. To minimize the error which is introduced by cutting the
current traces, a mathematical extension of the trace is done as follows. Normally
a capacitor needs an infinite amount of time to completely discharge because of:

VC(t) = V0 · e− t
τ ; τ = R · C . (12)

Thus the voltage Vdyn would need an infinite amount of time to reach zero. This
creates an error in the calculation of the TRV, because a part of the trace is cut
off. To compensate this error the value of the following analytical integral has
to be solved:
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Fig. 5. (a) MAOI gate, (b) MOAI gate

∞∫
t0

||Idyn,1| − |Idyn,2|| dt =

∞∫
t0

||Vdyn,1 · e− t
τ | − |Vdyn,2 · e− t

τ || dt (13)

= (||Vdyn,1| − |Vdyn,2||) ·
∞∫

t0

e−
t
τ dt = ||Vdyn,1| − |Vdyn,2|| · τ (14)

For the used cutoff frequency of ωg = 1 1
s follows that τ = 1 s. Therefore only the

difference of the last points of the cut traces have to be added to the numerical
integration for the TRV. With this method, the traces can be reduced in length
and hence the calculation time and data storage can be reduced also without
loosing accuracy.

5 Results

As described in Sect. 2 the methodology is developed for symmetric differential
logic styles. Thus we compare two symmetric and differential logic styles, Charge
Recycling Sense Amplifier Based Logic (CRSABL) with feedback circuit [16]
and a subthreshold implementation of Source Coupled Logic (SCL) [22], with
standard CMOS logic. The special variant of SCL is used (also known as MCML),
because of the lower power consumption compared to standard implementations.
To distinguish between the SCL flavors we call the SCL logic gates which work
in subthreshold region STSCL. It was shown, that SCL gates in general leak less
information than standard CMOS gates [14,15].

A VHDL description for a PRESENT S-Box [23] was written and synthesized.
The logic gates, that are needed to build the gate netlists, were designed for each
logic style and with them the S-Box circuit. MAOI and MOAI gates shown in
Fig. 5 are not as common as AO or AOI gates, but are needed to minimize the
gate netlist of the S-Box implementation.

All logic gates and S-Box implementations were analyzed with the presented
methodology. For CRSABL the pre-charge phase and the evaluate phase are
taken into account for the analysis.

In Tab. 1 the results for the TRV are shown. The TRV is a measure for the
difference between current traces, therefore values near to zero are better than
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Table 1. TRV in dB for different logic gates in CMOS, STSCL and CRSABL

TRV / dB
logic circuit CMOS STSCL CRSABL

2 input NAND -5.255 -8.992 -22.655
2 input NOR -5.031 -8.995 -23.129
AO21 -6.730 -7.780 -24.374
AO31 -7.678 -7.394 -26.495
MAOI -7.896 -8.461 -25.047
MOAI -7.785 -8.484 -25.894

S-Box -7.956 -10.167 -27.014

greater ones. To see the differences between the values more clearly, the TRV is
given in decibel, hence large negative values are better than small ones.

The results show that all S-Box circuits have a better TRV than each of the
single gates. The reason might be the simultaneously switching of all involved
gates, which possibly equals out differences between the transitions of single logic
gates. It can be seen, that both differential logic styles have better results than
CMOS, as expected. But it is also noticeable, that CRSABL is much better than
STSCL. The reason for this is explored in the next section.

6 Improvement of a Logic Gate

Regarding the transition matrix TCRSABL of the CRSABL NAND gate, it can
be seen, that all values are nearly in the same range, which is clear because of the
TRV in dB (TRVdB) of −22.66dB. These low values derive from the structure
of CRSABL, because it uses a pre-charge an an evaluation phase to achieve an
equal current flow for each transition.

TCRSABL =

⎛⎜⎜⎝
5.83 5.91 5.89 5.89
5.77 5.81 5.85 5.84
5.81 5.82 5.77 5.90
6.28 6.28 6.28 6.29

⎞⎟⎟⎠ · 10−3 (15)

In comparison, a non optimized standard implementation of a STSCL NAND
gate, depicted in Fig. 6(a), is examined. This 2 input STSCL NAND is chosen as
example, because the optimization can be followed more easily. This circuit was
not used for calculating the results in Sect. 5, but the improved one presented
later in this section.

The PMOS transistors are used as a resistive load for the gate to generate
the output voltage. The corresponding transition matrix TSTSCL,asym is shown
in (16). It depicts that single transition values vary a lot from each other which
can also be seen in the low TRVdB of −6.81dB.

TSTSCL,asym =

⎛⎜⎜⎝
0 0.59 2.34 3.57

0.54 0 2.58 3.25
2.15 3.93 0 3.22
3.69 2.20 2.98 0

⎞⎟⎟⎠ · 10−7 (16)
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Fig. 6. (a) Asymmetric 2 input STSCL NAND, (b) same with current paths

Regarding the complementary transitions 2 → 1 / 1 → 2 and 3 → 1 / 1 → 3,
the values have a bigger difference than other complementary transitions such as
0 → 1 / 1 → 0. This can be explained by the structure of the circuit. For the state(
A
B

)
=

(
1
0

)
= 2 the left current path in Fig. 6(b) is active. If this state changes to(

A
B

)
=

(
0
1

)
= 1, then the right current path is active. These two paths are not the

same, because in the left path the capacitances of an additional transistor have
to be charged and thus a different amount of current is flowing. This is the same
with the complementary transitions 3 → 1 / 1 → 3, but with different current
paths. On the other hand, we get lower values for the transitions 0 → 1 / 1 → 0,
because the current flows through almost equal paths.

For an improvement of these values, the logic gate is modified as depicted in
Fig. 7. The right current path is extended with a differential pair of NMOS
transistors, so that it is equal to the left current path. With this the logic
gates becomes symmetric regarding the output. Hence this gate is called output-
symmetric.

The transition matrix TSTSCL,outsym of this gate shows an improvement in
the complementary transitions that have been discussed. This is also displayed
by the lower TRVdB of −7.13dB. Although the complementary transitions have
improved, there is still a big difference between the single transitions, e.g. if we
compare 1 → 0 and 0 → 3. Because of this, the symmetry of the NAND gate
has to be further improved.

TSTSCL,outsym =

⎛⎜⎜⎝
0 0.56 2.81 3.39

0.51 0 2.81 3.08
2.20 2.76 0 2.90
3.30 2.86 2.90 0

⎞⎟⎟⎠ · 10−7 (17)
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Fig. 7. Output-symmetric 2 input STSCL NAND

In Fig. 8 an input and output symmetric variant of the NAND gate is shown.
The symmetry is achieved by adding the complementary paths for the signal B
to the output-symmetric circuit.

As can be seen in TSTSCL,sym, the values of the single transitions have been
improved, as well as the TRVdB value of −8.99dB. The symmetric implementa-
tion of the STSCL NAND gate was used for the overall comparison in Sect. 5.

TSTSCL,sym =

⎛⎜⎜⎝
0 1.04 1.02 3.11

0.97 0 2.31 2.67
0.97 2.32 0 2.67
3.10 2.23 2.21 0

⎞⎟⎟⎠ · 10−7 (18)
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B

OUT OUT

VDD

VBias

A A

Iref

A A B B

B B

Fig. 8. Input and output symmetric 2 input STSCL NAND
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In comparison to TCRSABL the values for complementary transitions of the tran-
sition matrix TSTSCL,sym are quite close together, with the result, that these
might be difficult to distinguish for an attacker. This is a result of the symmetry
of the circuit. But the complementary transitions differ a lot from other comple-
mentary transitions and thus the overall leakage of the symmetric STSCL NAND
gate is higher than the overall leakage of the CRSABL NAND gate, whose values
for the complementary transitions are not that close together.

7 Conclusion and Outlook

In this paper a novel and unique design methodology to reduce the information
leakage of differential logic gates has been presented. A comparison of three
logic families using this methodology shows that STSCL gates and CRSABL
gates leak less information than standard CMOS logic gates.

Furthermore the weaknesses of an asymmetric STSCL NAND gate were ana-
lyzed with the proposed design methodology. It was demonstrated how a circuit
designer can reduce the information leakage of this gate by using the TRV and
the transition matrix T.

Although the methodology can be successfully used to reduce the probable in-
formation leakage of differential logic gates, there are still some open issues. For
examplemismatch through fabrication tolerances is not considered.Mismatch can
lead to different results, because symmetric gates can be sensitive to mismatch
in the transistor geometries and threshold voltages. Therefore a methodology to
design gates with less influence from mismatch would be a great improvement.
Another extension for this methodology would be the analysis of non differential
logic gates or logic gates with a random or masked power consumption.
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Abstract. Side Channel Attacks are a major concern in modern secu-
rity. Two main countermeasure techniques have been studied in order to
counteract them: hiding and masking. Hiding techniques try to random-
ize the obtained traces by adding noise or by swapping instructions of
the performed algorithm. In this work, we present a randomization of
AES where AES operations can be executed even if previous operations,
in the corresponding non-randomized execution of AES, are not finished.
We present theoretical and practical results about the distribution of the
execution times and show interesting results in comparison to existing
techniques. An implementation is available on the author’s website1.

Keywords: Side Channel Attacks, Power Analysis Attacks, hiding, ran-
domized execution, AES.

1 Introduction

Side Channel Attacks (SCA) exploit information leakage from cryptographic
devices such as execution times [10], electromagnetic emanations [7] and power
consumption [11].

Since their introduction by Kocher [11], Power Analysis Attacks have been
widely studied in the literature [15–18] not only in order to improve these at-
tacks but also to propose corresponding countermeasures. Power Analysis At-
tacks take advantage of the data-dependent power consumption of cryptographic
devices to retrieve secret information such as a secret key. An attacker needs to
measure several times the power consumption of a device performing crypto-
graphic operations. Each of these measures is called a power trace, or simply a
trace, and represents the power consumption of a single execution of the device.
In most cases, Power Analysis Attacks exploit the fact that the device always
performs the same operations at the same time for different traces. Therefore,
for each moment of time, the instantaneous power consumption in all of the
traces, collected on the same device for the same algorithm, will be linked to the
same operation. Alignment of power traces hugely helps the attack to succeed
but is not mandatory since alignment techniques exist. The attacker just needs
to collect more traces if they are not aligned [13].
1 http://homepages.ulb.ac.be/~stfernan/

A. Bogdanov and S. Sanadhya (Eds.): SPACE 2012, LNCS 7644, pp. 16–31, 2012.
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Countermeasures against Power Analysis Attacks consist in breaking the de-
pendency between used data and power consumption. To achieve this objective,
those countermeasures can add secret masked values to the algorithm, and must
therefore modify the algorithm to deal with these masks (masking countermea-
sures), so the power consumption will not only be linked to one secret value.
Another possibility is to change the moment of time where an operation will
take place by randomizing the sequence of operations (hiding countermeasures).
Main approaches in hiding countermeasures are the reduction of the signal-to-
noise ratio (SNR) and the randomized ordering of instructions [12].

A broad overview of SCA countermeasures can be found in [13] where Man-
gard et al. present, among other things related to Power Analysis Attacks, hiding
and masking countermeasures at the software level, the hardware level and the
logical level.

Daemen and Rijmen [4] already suggest, in 1999, some countermeasures against
Power Analysis such as desynchronisation of power traces by adding dummy in-
structions, software balancing and power consumption randomization by using
noisy hardware modules.

Clavier et al. [3] mention Random Process Interrupts as a countermeasure
against Power Analysis. It consists in interleaving the code’s execution with
dummy instructions so that power traces are not aligned. Authors also show how
to apply Power Analysis Attacks when such a countermeasure is implemented.

In [14], May et al. propose a new processor design that randomizes the in-
struction stream executed by the processor. Authors focus on DES [6] and integer
multiplication used in RSA and EC-DSA. It is a general technique that can be
applied to any cryptographic algorithm and which does not require changing the
original algorithm.

Irwin et al. [9] also propose the modification of the instruction stream on non-
deterministic processors as a countermeasure against Power Analysis Attacks.
It identifies independent instructions in order to allow crossing their execution
with the help of a mutation unit added to the conventional processor pipeline. It
does not modify the executed algorithm since it is a general approach. Authors
work in the context of AES [5].

In [19], Tillich et al. proposed a combination of hiding and masking counter-
measures for AES where the hiding part consists in randomizing the execution
of some rounds. When performing the AddRoundKey operation, it can operate
on each byte in a non-deterministic way. The same holds for SubBytes and Mix-
Columns operations. But each operation has to be finished in order to perform
the next one and thus, each round has to be finished before starting the next
one. Two consecutive AES executions will not produce the same power traces
since it is possible for each operation, in the first and last rounds, to start from
different STATE indexes.

1.1 Our Contribution

In this paper, we analyze the AES algorithm to allow permutation of oper-
ations at the algorithm level, e.g. to allow a SubBytes (SB) operation to be
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performed2 on a byte before performing an AddRoundKey (ARK) operation on
another byte. While our proposition suits AES by design, it can be adapted to
other cryptographic primitives by analyzing the dependencies of their operations.

In Tillich’s proposition [19], ARK operations have to be completely performed,
no matter the order, before performing SB operations. Our contribution allows to
perform an ARK on one byte directly followed by a SB on the same byte and then
to execute another ARK on another byte, possibly followed by a MixColumns
(MC) operation. Another difference is the fact that a masking countermeasure
is used in Tillich’s scheme. In this paper, we focus on the randomization of the
execution. However, masking can be added to our proposition in order to improve
the security of the scheme.

Our proposition consists in adding another program, a scheduler, that will
ensure the correctness of the algorithm execution, i.e. ensure that each operation
can be performed and is performed with correct inputs following the logic of the
original algorithm. The original algorithm (AES in our case) has to be modified
in order to be applied at byte level instead of being applied to 16 bytes at a
time. SubBytes and AddRoundKey operations will be applied to one byte at a
time while ShiftRows and MixColumns will be applied to four bytes at a time
since these operations operate on a complete line or column. We do not modify
the AES algorithm, we adapt it in such a way it can be applied at byte level,
nevertheless all intermediate values computed are the same than in the original
AES, except that these values are not necessarily computed at the same time
than in the original version of AES.

The results of our theoretical analysis can be reused in any other scheduling
research regarding AES’s operations, as we provide their possible minimum and
maximum execution time.

This paper is organized as follows: in Section 2, we discuss SCA and hid-
ing countermeasures. Section 3 presents our proposition of schedulable AES. In
Section 4, we analyze our scheduler proposition in a theoretical (4.1) and a prac-
tical (4.2) way. In Section 5, we experimentally compare our proposition to an
unprotected scheme and to Tillich’s scheme. We finally conclude our paper in
Section 6.

2 Side Channel Countermeasures

SCA countermeasures are divided into two families: hiding countermeasures and
masking countermeasures.

2.1 Hiding

Hiding countermeasures cover two domains: amplitude dimension and time di-
mension [13]. The first one changes the instantaneous power consumption by
adding more noise and/or by reducing the signal. The second one tries to ran-
domize the execution of the algorithm in order to obtain unaligned power traces.
2 If certains pre-conditions are met as we explain in section 3.
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Amplitude Dimension
To change the instantaneous power consumption, one has to modify the signal-
to-noise ratio (SNR). Each instruction that does not belong to the cryptographic
algorithm, performed in parallel with those of the cryptographic algorithm, will
decrease the SNR by increasing the power consumption and thus adding more
noise to the power traces. It is possible to use “noise engines” [2, 13] that will
perform parallel instructions in order to increase the power consumption. An-
other countermeasure consists in trying to have a constant power consumption,
but such a countermeasure is very difficult to achieve [13].

Time Dimension
Techniques to modify the time dimension of a trace, i.e. to change the instant
where an instruction will be performed, are more numerous: skipping clock
pulses, randomly changing the clock frequency, having multiple clock domains,
inserting dummy instructions, inserting dummy clock cycles [1, 3, 4, 13], etc. All
these techniques will modify the outline of the trace.

Shuffling [19] is another possibility to randomize the execution of an algorithm
by swapping the order of its instructions’ execution when allowed.

2.2 Masking

Masking [1,13] intends to decorrelate the power consumption from the manipu-
lated data by adding other secrets to the cryptographic process called the mask
values. Key and Plaintext are masked at the start of the process. Masks can be
arithmetic or boolean. The encryption algorithm has to be modified in order to
deal with the masks. For instance, in AES, the Sbox has to be modified in order
to respect the following constraint: S′(m⊕ x) = S(x)⊕m, where m denotes the
mask value and S the Sbox function, meaning that the output of the modified
Sbox applied to a masked value has to be the same than the masked output of
the original Sbox.

3 SchedAES

3.1 Notations

In the rest of the paper, we will use the following abbreviations and concepts.
AES operations AddRoundKey, SubBytes, ShiftRows and MixColumns will be
respectively denoted by the following abbreviations: ARK, SB, SR and MC. To
identify the rounds and the bytes of STATE on which an operation is performed,
indexes will be used in addition to the abbreviations, e.g. ARKk,i,j denotes the
AddRoundKey operation of round k applied to the j-th byte of the i-th line of
STATE3. SR and MC operations will only have two indexes: the round index
and the line or column index. Finally, note that when a MC operation will be
performed, all of the SR operations may not have been performed. This means
3 For ease of coding, we assume STATE indexes start at 0.
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that the bytes needed to perform the MC operation will not be aligned. The
column index will thus denote a “virtual” column corresponding to the column
of STATE as if all SR operations had been performed. Operations will be applied
to one byte at a time for ARK and SB or to four bytes when performing SR or
MC, and will not be applied on all the bytes of STATE at the same time.

3.2 Preconditions

As we mentioned above, it is possible to randomize some parts of AES such as
the SubBytes operation by not performing it line by line and column by column
but in a random order. It is also possible to use non-deterministic processors
that will check for instructions’ dependencies and allow swapping the order of
non-dependent instructions.

Our proposition is to implement a scheduler that will control the execution
of AES. The scheduler will manage a set of allowed operations Θ. After the exe-
cution of an operation (ARK, SB, SR or MC), it will check if further operations
are allowed and add them to Θ. An operation can be added by the scheduler to
Θ if all of its predecessors have been performed.

Initially, the set of allowed operations, Θ, will contain the 16 initial ARK
operations:

Θ = {ARK0,i,j | 0 ≤ i, j ≤ 3}.
It corresponds to the initial AddRoundKey of AES. Note that in this first version
of the scheduler, we assume that the Key Scheduling has already been done.

Other operations will be added4 to Θ when the following preconditions
are met:

SubBytes
SBk,i,j can be added to Θ when ARKk−1,i,j has been performed.

ShiftRows
ShiftRows is a particular operation because it is not mandatory to physically
perform it. In our implementation we impose the following rule: SRk,i can be
performed when all of the ARKk−1,i,j , with 0 ≤ j ≤ 3, have been done. When
a SR operation has been performed on line i, SB and ARK operations, linked
to line i, in Θ have to updated consecutively, e.g. if ARK5,1,2 is in Θ and SR5,1

has been executed then ARK5,1,2 will be replaced by ARK5,1,1. Furthermore,
SRk,i can be executed only if SRk−1,i has already been done.

MixColumns
MCk,j can be added to Θ once all the SBk corresponding to the j-th virtual
column have been performed. Since all SR have not necessarily been performed,
4 These operations are allowed to be performed once they are inserted in Θ the set of

allowed operations.
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the bytes MC will use will be located at physical column j if the SR operation
has already been done for that line, or at physical column (i+ j) mod 4 if there
is still one SR operation to perform for line i. We do not take into account cases
where more than one SR operation has to be performed for the same line due
to the conditions we imposed above to the SR operations. Therefore, when we
execute MC operations, we know that bytes are located at the correct column
in STATE or are one SR late.

AddRoundKey
ARKk operations will be added four at a time, one per line, after performing the
corresponding MCk−1,j operation. Depending on the SR operations, ARKk,i,j or
ARKk,i,(i+j)mod4 will be added to Θ. For the ARK10 operation, the precondition
has to be modified since there are no MC10 operations. ARK10,i,j will be added
to Θ after the execution of SB10,i,j .

3.3 Implementation Issues

We made several implementations of the scheduler. Code updates were always
done in order to improve the overhead of the control structure. The first solution
used 824 booleans5, a set of all possible actions and one STATE matrix per
round. Our second solution used 412 booleans6, a set of possible actions and one
STATE matrix. Our last implementation required only 40 8-bit integers7, a set
of possible actions and one STATE matrix. Note that the use of one STATE
matrix per round has the drawback of hugely increasing the memory overhead
but has the advantage that all operations can be performed on a single byte at
a time, even MC and SR operations.

The Key Scheduling operation has not been taken into account in our sched-
uler because we wanted to focus on the main part of the algorithm. Therefore,
we made the assumption that the Key Scheduling had already been performed.
Note that it is possible to include the Key Scheduling by adding some precon-
ditions: an ARK operation can be performed with the same precondition we
already mentioned and if the subkey byte it will use is already computed.

The AES scheduler pseudo-code can be found in Appendix A. Algorithm 1 rep-
resents the main body of the scheduler with the initialization and the execution
loop where the scheduler randomly picks an operation in Θ before performing
it and updating Θ. Algorithm 2 is the main body of the update process of Θ,
which consists in identifying the processed action α and calling the appropriate
update fonction. Algorithms 3, 4, 5 and 6 show the update process to accomplish
after performing each operation.

5 Two booleans for each operation: one to know if the action can be performed and
the second to know if the operation has been performed.

6 To know if an action has been performed.
7 To know for each action the last round index performed. 16 integers for ARK, 16

integers for SB, 4 integers for MC and 4 integers for SR.
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3.4 Simulation Verification

In order to stochastically validate our scheme, we have performed 1,000,000
encryptions, with randomly chosen plaintexts and keys. These inputs were used
with the normal AES scheme and with our SchedAES scheme. We have compared
the outputs and obtained 100% matches.

4 Scheduler Analysis

4.1 Theoretical Analysis of SchedAES

In this section, we discuss some theoretical results such as the relative minimum
and maximum instants of time where an operation can take place. By instant
of time we mean the index of the instruction during the algorithm, e.g. an op-
eration performed at time 0 will be the first operation executed. Since there are
412 operations in the algorithm, indexes will go from 0 to 411. To compute this
information we recursively enumerate predecessors and successors of an opera-
tion. For instance, ARK0,0,0 has no predecessor so its minimum execution time
is 0 and 351 operations depend on it8, so its maximum execution time is 60.
Table 1 summarizes all the information about minimum and maximum execu-
tion time. Note that operations have been grouped by round since they have
the same minimum and maximum values independently from the bytes indexes.
These are theoretical results since they are based on precedence constraints and
not on experimental observations.

Table 1. Minimum and maximum execution instant times

operation min max operation min max operation min max operation min max
ARK0 0 60

SB1 1 62 SR1 4 74 MC1 8 63 ARK1 9 100
SB2 10 102 SR2 41 114 MC2 48 103 ARK2 49 140
SB3 50 142 SR3 81 154 MC3 88 143 ARK3 89 180
SB4 90 182 SR4 121 194 MC4 128 183 ARK4 129 220
SB5 130 222 SR5 161 234 MC5 168 223 ARK5 169 260
SB6 170 262 SR6 201 274 MC6 208 263 ARK6 209 300
SB7 210 302 SR7 241 314 MC7 248 303 ARK7 249 340
SB8 250 342 SR8 281 354 MC8 288 343 ARK8 289 392
SB9 290 394 SR9 321 410 MC9 328 408 ARK9 329 408
SB10 330 410 SR10 361 411 ARK10 331 411

As we can see, the difference between minimum and maximum execution
instant of time is quite large. The smallest difference is observed for MC1 to
MC8 with 56 different moments of time where the operations can take place. The
highest value is 104 for the SB9 operation. In comparison with Tillich’s scheme,
8 In other words, there are 60 operations that do not depend on it.
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an initial AddRoundKey operation can take place at 61 different moments of
time in our scheme instead of 16 moments of time in Tillich’s scheme. While
this number stays the same for all ARK operations in Tillich’s scheme for each
round, it varies from 61 to 102 (depending on the round) in ours.

4.2 Practical Analysis of SchedAES

Theoretical analysis, from the previous section, shows that there exist a lot of
possibilities for an action to be performed at different instants of time. However,
all these possibilities are not equiprobable: this means that for an initial ARK0,i,j

operation to be executed at instant 60, all the operations independent of it
have to be performed before. This scenario will, of course, happen less often
than having a part of those operations to be performed before an ARK0,i,j

operation. Minimum and maximum execution times are representative of best
case scenario (each operation is executed as soon as possible) and worst case
scenario (each operation is executed as late as possible). In order to collect
practical information, we performed 1, 000, 000 full AES encryptions with our
scheduler. During each encryption we observed the instant of time when each
operation is performed. Table 2 summarizes the results. For each operation,
Table 2 gives the average moment of execution, its standard deviation and the
moment of time when 75% and 90% of the operations have been performed.
We grouped this empirical data information by operation for the same round
without looking at indexes.

As we can see, it is theoretically possible to execute operations in a large
time domain. Practically, due to randomization, the majority of operations are
concentrated in a smaller part of their execution time domain. We observe that
for the inner rounds (3 to 8) the standard deviation of each operation is almost
the same. The standard deviation is smaller for the beginning operations due
to the lack of possibilities when choosing operations. The standard deviation is
greater for final operations than in inner rounds, except for the SR10 operation9,
taking advantage of the randomization of the entire scheme.

Despite the fact that a large range of execution times is available in theory, a
smaller range arises in practice. This is due to the fact that for some operations
to be performed at some later instants of time, it is necessary to execute almost
all of the other operations. It is possible to try to get a larger range of execution
times during the practical experiments by balancing the executions and trying to
distribute the operations over time. However, this solution would require more
computations and would thus leak more information about the decisions during
these computations.

The first operation of our scheme is the weakest point of it because it offers
the same randomness as in Tillich’s scheme (16 possible ARK0 operations in
both cases). For the second operation to perform we still have 16 operations
(15 ARK and 1 SB) that can be executed due to the fact that an SB operation
has been added to Θ instead of 15 operations (15 ARK) in Tillich’s scheme. In

9 SR10 also has a smaller execution time domain (Table 1).
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Table 2. Average and standard deviation of execution times

operation avg dev 75% 90% operation avg dev 75% 90%
SB1 22.41 11.66 30 39 SR1 32.44 11.67 40 50
SB2 58.9 13.89 69 78 SR2 74.33 10.77 81 91
SB3 98.99 13.8 109 118 SR3 114.3 10.78 121 131
SB4 138.99 13.8 149 158 SR4 154.29 10.78 161 171
SB5 178.99 13.8 189 198 SR5 194.3 10.78 201 211
SB6 218.99 13.8 229 238 SR6 234.3 10.78 241 251
SB7 258.99 13.8 269 278 SR7 274.3 10.78 281 291
SB8 298.99 13.8 309 318 SR8 314.29 10.77 321 331
SB9 339.20 14.32 349 358 SR9 355.07 12.36 361 374
SB10 383.12 15.58 397 405 SR10 399.91 7.57 407 410

ARK0 11.92 9.86 19 27
MC1 41.87 10.6 51 59 ARK1 50.68 12.47 61 67
MC2 81.86 10.34 91 99 ARK2 90.72 12.34 101 107
MC3 121.86 10.34 131 139 ARK3 130.72 12.33 141 147
MC4 161.86 10.34 171 179 ARK4 170.72 12.33 181 187
MC5 201.86 10.34 211 219 ARK5 210.72 12.33 221 227
MC6 241.86 10.34 251 259 ARK6 250.72 12.33 261 267
MC7 281.86 10.34 291 299 ARK7 290.72 12.33 301 307
MC8 321.86 10.34 331 339 ARK8 330.76 12.46 341 347
MC9 363.64 12.72 373 384 ARK9 373.82 14.96 386 396

ARK10 391.04 14.85 405 410

Tillich’s proposition, we are sure that the first 16 operations will all be ARK0 op-
erations: over 1, 000, 000 executions, the 16, 000, 000 ARK0 will all be randomly
distributed over the 16 first instants, whereas in our proposition, we observe that
10, 997, 161 ARK0 operations are distributed over the same period. Our scheme
offers more randomization, except for the first instant of time, and this applies
to all operations of all rounds.

Adding dummy AES rounds on dummy STATES in parallel to the beginning
of our AES computation will increase the randomization of the execution and
improve the security of the first instants of time.

5 Performance Analysis

5.1 Attack Results

In this section we present the results of a DPA attack we performed on three dif-
ferent schemes: an unprotected AES scheme, Tillich’s proposition scheme where
operations on bytes were randomly executed inside the 4 main AES operations,
and finally our SchedAES scheme.

The attack has been performed with different number of traces (100, 200,
500, 1000, 2000, 5000 and 10000) in order to compare the effectiveness of the
countermeasure and using a fixed key. The traces were generated based on the
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simulated power consumption of the manipulated data with randomly chosen
plaintexts and the fixed key. We use the Hamming weight model in order to
simulate our traces: after each byte modification of the STATE matrix we write
the Hamming weight of the new value. We also add noise, of mean 0 and standard
deviation of 0.3, to the simulated values.

We then apply, for each byte of the key, the "general DPA attack strategy",
described by Mangard et al. in [13], using the exact Hamming weight model as
hypothetical power consumption.

Attacks using power traces alignment methods were not feasible because we
used simulated power traces, where each operation corresponds to one value,
and pattern matching techniques were impossible to use on our power traces.

Table 3. Correct guessed bytes of the key based on the number of traces allowed for
the attack when attacking ARK0 and SB1 operations

Number of traces ARK SB
Unprotected Tillich SchedAES Unprotected Tillich SchedAES

100 16 1 0 16 8 0
200 16 0 0 16 14 1
500 16 1 1 16 16 1
1000 16 3 1 16 16 3
2000 16 5 5 16 16 4
5000 16 11 9 16 16 12
10000 16 16 16 16 16 16

Table 3 summarizes the results of the attack on the three different AES imple-
mentations. The results express the number of correctly guessed bytes of the key
based on 2 parameters: the number of used power traces and the targeted op-
eration. We decided to attack the initial AddRoundKey operation and the first
round SubBytes operation. Therefore, based on Table 1, we limited the power
traces to the 64 first points (representing the 64 first operations). For the AES im-
plementation without countermeasure, full key recovery was made possible with
only 100 power traces, for the ARK operations as well as for the SB operation.
The Tillich implementation allowed a full key recovery with 10, 000 power traces
when attacking the ARK operation and only 500 for the SB operation. Finally,
our proposition achieved the same results as the Tillich implementation when
attacking ARK but needed ten times more power traces when attacking SB.

5.2 Execution Times

In order to perform the attack described in Section 5.1, we performed 10, 000
encryptions for each of the schemes. Table 4 summarizes the execution times of
the three schemes for 10, 000 encryptions10 .

10 2.4 GHz Intel Core 2 Duo with 4 GB RAM.
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Table 4. Time in seconds for performing 10, 000 encryptions and the number of traces
required to fully recover the key

Unprotected Tillich SchedAES
time 26.87 32.75 188.82

# traces 100 500 10000

Table 4 shows that our scheme is approximately 6 to 7 times slower than the
two other implementations. The execution time was not our main focus for this
work. However, the optimization of our proposition has to be researched.

Finally, our implementation is two times bigger, in terms of source code size,
than the two other implementations we used.

6 Conclusion

We show in this paper that shuffling can do more than just swapping two in-
structions and allows many possible execution paths. In comparison to Tillich’s
technique [19], our technique allows more possibilities even if this number is in
practice smaller than what theory predicts.

Our technique requires a greater overhead (our source code is twice as large as
basic AES) and is on average 6 to 7 times slower in comparison to Tillich’s one
due to the fact that a scheduler is needed to schedule the operations. However,
according to our experiments, our technique requires 10 times more traces to
fully recover the key.

This solution seems interesting in the context of side channel attacks and par-
ticularly against power analysis attacks where power traces need to be aligned
in order for the attack to succeed more easily. The number of different possi-
ble executions takes a prohibitively long time to compute due to preconditions
between operations.

Other countermeasures can be added to our proposition in order to strengthen
it against SCA: masking, execution of dummy AES at the same time so the
action that is performed at a moment of time will be related to the desired
AES computation or to one of the dummy computations. The computing of
all of the dummy AES should not necessarily start at the same time than the
desired one but some of them should start earlier. It is interesting to notice that
in the context of multiple block encryptions a countermeasure like Inter-Block
Shuffling [8] could also be applied in conjunction with our scheme.

Since all the intermediate values computed in SchedAES are the same than
in a normal AES, classical cryptanlysis like linear and differential cryptanalysis
seem, at first look, having no different effect on SchedAES. However, this issue
can be explored in a futur work.

In our proposition, we make the assumption that the Key Expansion has
already been performed. Adding the Key Expansion to the scheme will add more
randomness and will allow more different executions. Our goal was to focus on
the four main (ARK, SB, SR, MC) AES operations, but future works will take
Key Expansion into account.
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Other future works are (1) the physical implementation and the attack of
the proposition with real measurement power traces and considering attacking
schemes that take into account power traces misalignment, (2) to be more per-
missive with SR operations by allowing them to be skipped in order to have
different length of traces, (3) to consider other selection policies for the sched-
uler. Finally, we should investigate how this technique could be applied to other
algorithms.
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A Algorithms

Algorithm 1. AES Scheduler: pseudo-code

1: {Initialization}
2: Θ = { ARK0,0,0, ARK0,0,1, ARK0,0,2, ARK0,0,3, ARK0,1,0, ARK0,1,1, ARK0,1,2,

ARK0,1,3, ARK0,2,0, ARK0,2,1, ARK0,2,2, ARK0,2,3, ARK0,3,0, ARK0,3,1,
ARK0,3,2, ARK0,3,3 }

3: {Execution loop}
4: while not finished do
5: α = randomly pick operation in Θ
6: perform α
7: Θ = updateTheta(α)
8: end while
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Algorithm 2. updateTheta: pseudo-code

Require: operation α , set of possible operations Θ
Ensure: set of possible operations Θ updated

1: remove α from Θ
2: operation_name = operation part of α
3: k = round index of α
4: i = line index of α
5: j = column index of α

6: if operation_name is ARK then
7: arkUpdate(k,i,j)
8: else if operation_name is SB then
9: sbUpdate(k,i,j)

10: else if operation_name is SR then
11: srUpdate(k,i)
12: else if operation_name is MC then
13: mcUpdate(k,j)
14: end if

Algorithm 3. arkUpdate: pseudo-code

Require: indexes k, i and j, set of possible operations Θ
Ensure: set of possible operations Θ updated

1: {Nothing to update after ARK10}
2: if k ≤ 9 then
3: add SBk+1,i,j to Θ

4: {if all the ARKk,i are done for line i}
5: if ARKk,i,0 and ARKk,i,1 and ARKk,i,2 and ARKk,i,3 and SRk,i done then
6: add SRk+1,i to Θ
7: end if
8: end if
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Algorithm 4. sbUpdate: pseudo-code

Require: indexes k, i and j, set of possible operations Θ
Ensure: set of possible operations Θ updated

1: if k ≤ 9 then
2: vj = determine the virtual column’s index based on i and j

3: {if all SBk corresponding to vj are done}
4: if SBk,0,vj and SRk,0 done OR SBk,0,vj and SRk−1,0 done then
5: if SBk,1,vj and SRk,1 done OR SBk,1,(vj+1)mod4 and SRk−1,1 done then
6: if SBk,2,vj and SRk,2 done OR SBk,2,(vj+2)mod4 and SRk−1,2 done then
7: if SBk,3,vj and SRk,3 done OR SBk,3,(vj+3)mod4 and SRk−1,3 done then
8: add MCk,vj to Θ
9: end if

10: end if
11: end if
12: end if
13: else
14: add ARKk,i,j to Θ
15: end if

Algorithm 5. srUpdate: pseudo-code

Require: indexes k and i, set of possible operations Θ
Ensure: set of possible operations Θ updated

1: apply SR operation to all ARK operations, concerning line i, in Θ
2: apply SR operation to all SB operations, concerning line i, in Θ
3: apply SR operation to line i in the control structure

4: {Check if MC operations can be allowed}
5: if k < 9 then
6: for vj = 0 → 3 do
7: if SBk+1,0,vj and SRk+1,0 done OR SBk+1,0,vj and SRk,0 done then
8: if SBk+1,1,vj and SRk+1,1 done OR SBk+1,1,(vj+1)mod4 and SRk,1 done

then
9: if SBk+1,2,vj and SRk+1,2 done OR SBk+1,2,(vj+2)mod4 and SRk,2 done

then
10: if SBk+1,3,vj and SRk+1,3 done OR SBk+1,3,(vj+3)mod4 and SRk,3

done then
11: add MCk+1,vj to Θ
12: end if
13: end if
14: end if
15: end if
16: end for
17: end if

18: {Check if next SR for line i can be allowed}
19: if ARKk,i,0 and ARKk,i,1 and ARKk,i,2 and ARKk,i,3 done and k �= 10 then
20: add SRk+1,i to Θ
21: end if
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Algorithm 6. mcUpdate: pseudo-code

Require: indexes k and j, set of possible operations Θ
Ensure: set of possible operations Θ updated

1: for i = 0 → 3 do
2: if SRk,i done then
3: add ARKk,i,j to Θ
4: else
5: add ARKk,i,(j+i)mod4 to Θ
6: end if
7: end for
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Abstract. Side channel attacks are extremely implementation specific.
An attack is tailor-made for a specific cipher algorithm implemented
in a specific model. A natural question is: what is the effect of a side
channel technique on a variant of the cipher algorithm implemented in
a similar model? The motivation for such an investigation is to study
the feasibility of using a cipher variant as a mode of recovering from
a successful side channels attack. As a case study, we consider the HC
series of stream ciphers, viz., HC-128 and HC-256. We extend the HC-128
fault attack and the HC-256 cache analysis onto the HC-256 and HC-128
ciphers respectively under similar models. The techniques applied on one
variant is not trivially translatable to the other and the issue was left
open until the current work. We propose a technique to recover half the
state of HC-128 using cache analysis, which can be cascaded with the
differential attack towards a full state recovery and hence key recovery.
Similarly, we analyze the state leakage of HC-256 under differential fault
attack model to achieve partial state recovery.

Keywords: Cache Analysis, Cryptography, eSTREAM, Fault Attack,
Side Chanel Cryptanalysis, Stream Cipher.

1 Introduction

The software profile of the eSTREAM [3] final portfolio contains the stream
cipher HC-128 [16] which is a lighter version of HC-256 [17] stream cipher born
as an outcome of 128-bit key limitation imposed in the competition. Several
research works exist on the cryptanalysis of HC-128 [8,9,4,11,13]. However, HC-
256 has been undergone only a few cryptanalytic attempts [18,12].

Side channel cryptanalysis attacks are targeted to a specific implementation of
a cipher. In a commercially popular device with large user-base, the immediate
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reaction to an attack is to change the underlying crypto algorithm, but with a
low replacement cost. Variants of the original algorithm form a preferential choice
because of the structural similarity with the original cipher. For example, in Wi-
Fi networks, when the RC4 implementation in WEP [5] protocol suffered several
attacks, a natural choice in the subsequentWPA [6] protocol was a variant of RC4
implementation (with different key and IV size and different form of key and IV
mixing), before the longterm change-over to the block cipher AES in WPA2 [7].

In this paper, we examine the security of using a variant algorithm to thwart
a side channel vulnerability. The HC series of stream ciphers have been used
for this purpose. Both HC-128 and HC-256 have been exposed to distinct side
channel cryptanalytic attacks, as follows:

– a differential fault attack on HC-128 [4],
– a cache timing analysis analysis on HC-256 [18].

For both the above works, extending the attack on one HC variant to the other
is not straight-forward. In [4], there is no mention about the extendibility of the
attack to HC-256. On the other hand, the author of [18] mentions the following
point in a subsequent work [19] that studied the cache timing analysis of all the
eSTREAM finalists.

HC-128 ... has a slightly smaller inner state ... and surprisingly big changes
of the internal workings. Most state update equations are modified, and this
has a profound impact on the above cache timing attack. It turns out that
the attack can not be transferred to HC-128 in a straightforward way. Thus,
further analysis of HC-128 is necessary to determine its resistance against
cache timing attacks.

We like to point out here that one of the key difference in the structure of
HC-128 and HC-256 is that in the former the two state tables are updated inde-
pendently, whereas in the latter they are inter-dependant. This makes extending
the differential fault analysis of HC-128 [4] to HC-256 a challenging task.

In this work, we analyze the effect of the attacks on one HC variant to the
other for the first time. We specifically analyze how much state information can
be leaked when the HC-256 variant is chosen against the fault attack on HC-
128, and the latter is chosen against the cache timing analysis of the former. We
consider the same implementations that are considered in [4,18]. For details of
the implementation issues, one may refer to [16, Section 5] and [17, Section 5].

1.1 Overview of Cache Analysis and Differential Fault Attacks

Cache analysis is a side channel cryptanalysis technique that has been introduced
independently by Bernstein [1] and Osvik et al. [10], primarily for the AES block
cipher.We give a simple description of the cache analysis adapted from [18].Cache
is a temporary storage area that is closer to the CPU compared to the RAM and
is used to replicate frequently accessed data for enabling faster access. Data once
stored in the cache, can be further used by accessing the cached copy rather than
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by re-fetching from the RAM. If the CPU finds the data it needs in the cache, a
cache hit is said to occur. Otherwise a cache miss occurs and the cache must be
immediately loaded with the requisite data from the RAM. Cache management
in modern processors divides the available cache memory into blocks of b bytes.
For a given block, all the b bytes must be loaded together. To ensure consistency
between the data in the RAM and the cache, a record of cache blocks being loaded
into the cache is maintained. This record serves as the initial raw-data for com-
mencing the cache analysis. The adversary first fills the entire cache with his own
data. Next, during normal computation, user’s data replaces some data of the ad-
versary. When adversary tries to reload his own data from the cache. If it takes
longer time, then he knows the address of the user’s data from the cache record.
This method can be considered as a cache access attack. However, since the time to
load the data plays a crucial role in leaking the address of the data, we follow the
same nomenclature as in [18] and call this as cache timing attack. In this paper,
we extend the cache timing analysis of HC-256 [18] to its reduced version HC-
128 using a similar framework. Though cache-analysis attacks may not be consti-
tuted as an concrete attack on HC-128, we believe these findings will assist further
exposure towards analysis of the cipher.

Fault attacks [2] are an invasive side channel cryptanalytic technique in which
faults are inserted into the cryptographic device. The goal may be to corrupt the
value of an internal state register or memory location or to make a small change
in the execution flow, such as skipping an instruction or changing a memory
address etc. The corresponding change in the cipher output obtained are used to
extrapolate the internal state. A differential fault attack against a stream cipher
resets the cipher with the same key, but injecting different faults. The resulting
keystreams have small differences and the attack exploits these differentials. In
this paper, we extend the differential fault attack on HC-128 [4] to HC-256 and
study the resulting state leakage.

1.2 Layout of the Paper

In Section 2 and Section 4 we discuss the internal structures of HC-128 and HC-
256 stream cipher respectively. In Section 3 the description of the cache analysis
model as applied to HC-128 along with the inferences have been presented. This
issue had been left as an open problem in [18]. In Section 5 we analyze the fault
attack on HC-256. We conclude the paper and discuss possible future works in
Section 6.

2 Description of HC-128

We summarize the key points of the structure and the keystream generation of
the cipher below. The following operators are used in HC-128.

+ : addition modulo 232.
� : subtraction modulo 512.
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⊕ : bit-wise exclusive OR.
‖ : bit-string concatenation.
� : right shift operator (defined on 32-bit numbers).
	 : left shift operator (defined on 32-bit numbers).
≫ : right rotation operator (defined on 32-bit numbers).
≪ : left rotation operator (defined on 32-bit numbers).

Two internal state arrays P and Q are used in HC-128, each with 512 many
32-bit elements. A 128-bit key array K[0, . . . , 3] and a 128-bit initialization vec-
tor IV [0, . . . , 3] are used, each entry being a 32-bit element. Let st denote the
keystream word generated at the t-th step, t = 0, 1, 2, . . ..

The following six functions are used in HC-128.

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x � 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x � 10),
g1(x, y, z) = ((x ≫ 10)⊕ (z ≫ 23)) + (y ≫ 8),
g2(x, y, z) = ((x ≪ 10)⊕ (z ≪ 23)) + (y ≪ 8),
h1(x) = Q[x(0)] +Q[256 + x(2)],
h2(x) = P [x(0)] + P [256 + x(2)],

where x = x(3)‖x(2)‖x(1)‖x(0) is a 32-bit word, with x(0), x(1), x(2) and x(3) being
the four bytes from right to left.

The key and IV setup of HC-128 recursively loads the P and Q array from
expanded key and IV and run the cipher for 1024 steps to use the outputs to
replace the table elements. It happens in four steps as follows.

Let K[i+ 4] = K[i] and IV [i + 4] = IV [i] for 0 ≤ i ≤ 3.

The key and IV are expanded into an array W [0, . . . , 1279] as follows:
W [i] = K[i], for 0 ≤ i ≤ 7;

= IV [i− 8], for 8 ≤ i ≤ 15;
= f2(W [i− 2]) +W [i − 7]

+f1(W [i − 15]) +W [i− 16] + i, for 16 ≤ i ≤ 1279.

Update the tables P and Q with the array W as follows:
P [i] = W [i+ 256], for 0 ≤ i ≤ 511,
Q[i] = W [i+ 768], for 0 ≤ i ≤ 511.

Run the cipher 1024 steps to replace the table elements as follows:
For i = 0 to 511, do

P [i] = (P [i] + g1(P [i� 3], P [i� 10], P [i� 511]))⊕ h1(P [i� 12]);
For i = 0 to 511, do

Q[i] = (Q[i] + g2(Q[i� 3], Q[i� 10], Q[i� 511]))⊕ h2(Q[i� 12]);
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The keystream is generated using the following algorithm.

i = 0;
repeat until enough keystream bits are generated
{

j = i mod 512;
if (i mod 1024) < 512
{

P [j] = P [j] + g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

}
else
{

Q[j] = Q[j] + g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i+ 1;

}
end-repeat

3 Cache Analysis of HC-128

In the attack model, we assume that the adversary is running a special process
in the CPU in which the cipher is executing. The adversary’s process executes
calls so as to fill the entire cache with his own data, causing the HC-128 cached
data to be evicted. When the HC-128 process gains control of the CPU it must
reload data into the cache pertinent to current instruction. The cache block size
b in present day processors range from 16 bytes to 128 bytes. The arrays P and Q
have 512 many word entries. As four bytes make a word, b/4 array elements will
be mapped to a single cache block size. If the cache block is aligned with the index
of the array, we will have the elements from indices 0 to (b/4)−1 in the first cache
block and the elements from indices (b/4) to (b/2)− 1 in the second block and so
on, till the elements from indices 511− (b/4) to 511 in the final cache block.

3.1 Bits Obtainable from Cache Information

The keystreamwords are generated using both the arraysP andQ, each consisting
of 512 many words. However, the updates of P andQ arrays are independent. For
512many iterations, the arrayP is updated with the older values from P itself and
during this time the array Q is accessed but not updated. For the next 512 many
iterations the array Q is updated with the older values of Q and during this time
the array P is accessed for keyword generation but not updated. This access and
update pattern continues alternatively. At this phase, the key-stream is generated
using two functions h1, h2 of similar kind. The equations used are as follows.

sj = h1(P [j � 12])⊕ P [j] (keystream when P is updated),

sj = h2(Q[j � 12])⊕Q[j] (keystream when Q is updated).
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Every time the h1 (or h2) function is called, it uses bytes 0 and 2 of P [j � 12]
(or Q[j� 12]) to access the elements of Q (or P ) array. Since a cache with block
size b holds b/4 array elements, the cache blocks can be numbered using the first
8 − log2(b/4) bits. For each call, two elements of the array are accessed. This
gives 16− 2 log2(b/4) bits of each element of the arrays P and Q corresponding
to the cache fill sought at the time h1 or h2 is called. Thus, the number of bits
obtained depends on b and is given in the table.

Table 1. Cache block size vs. number of bits learnt

Cache Block Size b: 16 32 64 128

No. of bits obtained: 12 10 8 6

Using the above, we can form an array with the known elements of P and
Q. Let Pk and Qk denote the array corresponding to the k-th iteration of the
update. On completion of the KSA, we will get the fist array denoted by P0

and Q0. On generation of the first 512 keystream words, we get another array
denoted by P1 and for the next 512 words we get the Q1 array, and so on.

3.2 Constructing Bytes 0 and 2 of Each Array Element

Since h1 and h2 are similar, without any loss of generality we present the case for
P1, and this is valid for Q1 also. For 0 ≤ j ≤ 500, we can rewrite the keystream
generation equation sj = h1(P [j � 12])⊕ P [j] as follows.

Q[u] +Q[v] = s(j + 12)⊕ P1[j + 12]), (1)

where u = P [j](0) and v = P [j](2). The keystream s is known. For a cache block
size of 32 bytes, the first 5 most significant bits of each of u and v are known.
Thus, u � 3 and 32 + (v � 3) denote the cache blocks loaded for computing
h1. Within these blocks (in Q0), we exhaustively search the elements that would
give a sum identical to the right hand side of Equation 1. These additions are
across two chunks of 5 bits and so additional carry bits need to be accounted.
For each element P [j], there are (b/4).(b/4) = b2/16 calculations. Finding a
correct single match gives the unknown bits of bytes 0 and 2 of P1. Finding
more than one match means that we have a set of values out of which one is
the correct candidate. Considering the HC-128 keystream is uniformly random,
the frequency of such ties would be very low. The procedure is repeated for all
elements of P and Q array.

3.3 Finding the Remaining Sixteen Bits for Each Element

Since bytes 1 and 3 of the array elements are never used in h1 (or h2), obtaining
any information about these bits is not possible by the above cache analysis. If
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one considers the g1 (or g2) function and propagates the known 10 bits across
many updates, one can guess some bits considering the carry propagation. How-
ever, we could not get much information from such analysis. In the cache attack
of HC-256 [18], the advantage was that all the four bytes of the array elements are
used inside the h1 (or h2) functions, giving leakage of all the 32 bits eventually.

In order to find the remaining 16 bits for each element in case of HC-128,
we propose to use the techniques of differential fault analysis [4] in combination
with the cache analysis suggested here. According to [4], they need to solve a set
of 32 systems of linear equations over Z2 in 1024 variables. If one performs the
cache analysis proposed in this paper first, immediately the problem reduces to
16 systems of linear equations over Z2 in 1024 variables.

According to [8], the key schedule of HC-128 is reversible and hence once the
full state is recovered, the secret key can be easily found.

4 Description of HC-256

The operations used in HC-256 are similar to HC-128 as described in Section 2.
Two tables P and Q, each with 1024 many 32-bit elements are used as internal
states of HC-256. A 256 bit key array K[0, . . . , 7] and a 256-bit initialization
vector IV [0, . . . , 7] are used, where each entry of the array is a 32-bit element.
Let st denote the keystream word generated at the t-th instance, t = 0, 1, 2, . . ..

The following six functions are used in HC-256.

f1(x) = (x ≫ 7)⊕ (x ≫ 18)⊕ (x � 3),
f2(x) = (x ≫ 17)⊕ (x ≫ 19)⊕ (x � 10),
g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) +Q[(x⊕ y) mod 1024],
g2(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) + P [(x⊕ y) mod 1024],
h1(x) = Q[x(0)] +Q[256 + x(1)] +Q[512 + x(2)] +Q[768 + x(3)],
h2(x) = P [x(0)] + P [256 + x(1)] + P [512 + x(2)] + P [768 + x(3)].

The key and IV setup of HC-256 proceeds as follows.

The key and IV are expanded into an array W [0, . . . , 2559] as follows:
W [i] = K[i], for 0 ≤ i ≤ 7;

= IV [i− 8], for 8 ≤ i ≤ 15;
= f2(W [i − 2]) +W [i− 7]

+f1(W [i− 15]) +W [i− 16] + i, for 16 ≤ i ≤ 2559.

Update the tables P and Q with the array W as follows:
P [i] = W [i+ 512], for 0 ≤ i ≤ 1023,
Q[i] = W [i+ 1536], for 0 ≤ i ≤ 1023.

Run the keystream generation algorithm 1024 steps without generating output.
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The keystream generation algorithm is as follows.

i = 0;
repeat until enough keystream bits are generated
{

j = i mod 1024;
if (imod)2048 < 1024
{

P [j] = P [j] + P [j � 10] + g1(P [j � 3], P [j � 1023]);
si = h1(P [j � 12])⊕ P [j];

}
else
{

Q[j] = Q[j] +Q[j � 10] + g2(Q[j � 3], Q[j � 1023]);
si = h2(Q[j � 12])⊕Q[j];

}
end-if
i = i+ 1;

}
end-repeat

5 Fault Attack on HC-256

The model that we use for inserting faults in HC-256 is similar to that used for
the attack on HC-128 [4] with a slightly stronger assumption as regards to the
fact that one needs to know the location of the fault. Such an assumption is not
entirely impractical. In [14,15], the authors discuss how to flip precise bits in
SRAM and EEPROM, or change the state of any individual CMOS transistor
on a chip. We only require a change in at least one of the 32 bits of a word at a
specific location. Like [4], we also do not need to know the value of the fault.

In practice, we know that the updates of P and Q occur alternatively. The
fault is assumed to be inserted into the array that is not being updated. Any
variation in the keystream would imply that a faulty element has been accessed.
The block of 1024 keystream generation in which P (or Q) is updated is referred
as the P (or Q)-block and the keystream is denoted by sP (or sQ). Let the
primed variables s′P and s′Q denote the ‘faulty’ keystream, i.e., the keystream
generated after fault injection. We denote the location (index) of the fault as f .

In P -block, the keystream is generated as

sP,j = h1(P [j � 12])⊕ P [j]

=
(
Q
[
(P [j � 12])(0)

]
+Q

[
256 + (P [j � 12])(1)

]
+Q

[
512 +

(P [j � 12])(2)
]
+Q

[
768 + (P [j � 12])(3)

])⊕ P [j].

Suppose we inject a fault at Q[f ] before P [0] is updated in P -block. We rerun
the key generation algorithm 1024 times to generate 1024 faulty keystream words
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corresponding to the current P -block. We compare sP,j with s′P,j for j = 0, . . . ,
511. Whenever sP,j 
= s′P,j , we know that the faulty keystream has been accessed.

The noticeable faults observed in the keystream are either due to a faulty
value of Q entering the h1 function or a faulty value of Q entering the update
function of P .

Definition 1. When a faulty Q (or P ) array element enters in h1 (or h2), we
call this an opportune event.

Definition 2. When a faulty Q (or P ) array element is referred inside g1 (or
g2), we all this a traverse event.

We consider these cases one by one.

5.1 Faulty Q Entering in Computation of h1

Suppose an opportune event occurs and f is the location of the fault, i.e., Q[f ] is
the faulty value accessed inside h1. Here the location of a faulty Q element gives
information of a byte of P . The keystream index j where sP,j and s′P,j differs,
refers to byte 0 of P [j� 12] if 0 ≤ f ≤ 255, byte 1 of P [j� 12] if 256 ≤ f ≤ 511,
byte 2 of P [j � 12] if 512 ≤ f ≤ 767 or byte 3 of P [j � 12] if 768 ≤ f ≤ 1023.

Since all the four bytes of P are used inside h1 (as indices into Q), one could
retrieve all the bytes of P by injecting faults at all the 1024 entries of Q in turn,
had the faulty value never entered in the update of P . But in practice, the faulty
value enters in the update of P and therefore the keystream indices where sP,j

and s′P,j differs do not correspond to distinct bytes of the words of P . Assuming
the P and the Q arrays to be uniformly random, we can theoretically estimate
how many words of the P array would actually be revealed for the proposed
attack model.

Theorem 1. The expected number of bytes of P [i] leaked through h1 function
is given by 4(10231024 )

i+1, 0 ≤ i ≤ 1023.

Proof. Before P [i] is used in the keystream generation, all the i + 1 elements
from P [0] to P [i] are updated using the function g. The faulty Q[f ] enters in
each of these updates with probability 1/1024, assuming the array elements to be
uniformly random. Thus, the probability that it does not enter in any particular
one of these updates is 1 − 1

1024 = 1023
1024 . Assuming the events corresponding

to Q[f ] entering into the updates of different rounds to be independent, the
probability that it does not enter in any of the i + 1 updates is given by αi =
(10231024 )

i+1. For 0 ≤ b ≤ 3, let Xi,b = 1, if the byte b of P [i] is revealed successfully;
otherwise Xi,b = 0. The total number of bytes of P [i] revealed is given by Yi =∑3

b=0 Xi,b. The expectation of Xi,b is given by E[Xi,b] = Prob(Xi,b = 1) = αi,

for any b, 0 ≤ b ≤ 3. By linearity of expectation, E[Yi] =
∑3

b=0 E[Xi,b] = 4αi.
��

In Fig. 1, we compare the theoretical estimate with the empirical values of the
number of bytes of P [i] leaked from the h1 function, 0 ≤ i ≤ 1023, when each
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element of Q is faulted once. We see that the plots are almost identical. The
empirical values were obtained by averaging over 1 million iterations, and each
time HC-256 was run with a new randomly generated secret key.

An immediate consequence of Theorem 1 is Corollary 1, that gives the theo-
retical estimate of the number of words of the array P that are actually leaked.

Corollary 1. The expected number of words of the array P leaked through h1

function is 647.

Proof. Refer to Yi defined in the proof of Theorem 1. Total number of bytes
revealed is given by

∑1023
i=0 Yi, whose expected value is given by 4

∑1023
i=0 (10231024 )

i+1.

Thus, the expected number of words revealed is given by
∑1023

i=0 (10231024 )
i+1 =

646.84 ≈ 647. ��

Fig. 1. Number of bytes of P array elements leaked from h1 function

5.2 Faulty Q Entering in Update of P

Since the update of P involves Q (unlike HC-128), faulty Q[f ] is eventually
referred inside g1. When such a traverse event happens, it does not yield any
more information within the particular update. However, this case assists in
finding elements of the previous updates as follows. Recall the update of P .

P [j] = P [j] + P [j � 10] + g1(P [j � 3], P [j � 1023]),

where g1(x, y) = ((x ≫ 10)⊕ (y ≫ 23)) +Q[(x⊕ y) mod 1024].
So whenever we observe a mismatch between sP,j and s′P,j, that may be due

to the fact that P [j � 3],⊕P [j � 1023] mod 1024 refers to the faulty element of
Q. Since the index of the faulty Q element is known, if any one of the elements
P [j � 3] and P [j � 1023] is known, the other element can be easily computed.
Except for P [0], all the elements of the form P [j� 1023] are from the previously
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updated P array. Similarly, all the elements of the form P [j � 3] refer to the
updated values of P array, except for P [0], P [1] and P [2]. While keeping track of
these indices, the elements found in subsequent updates can be used for finding
elements of the previous updates. We find that when we propagate the knowledge
from the second update into the first update, the probability increases. Similar
trend continues as one increases the number of updates. Our experimental results
reveal that after faulting four successive updates of P and Q, the first ten bits
of approximately 85% elements of P and Q pertaining to first update can be
obtained. Fig. 2 shows how the values obtained from the first, the second and
the fifth updates help in finding values in the current update. Table 2 gives the
numerical data for all the five updates. All the values were obtained by averaging
over 10000 simulations with randomly generated secret keys.

Fig. 2. Probability of finding the first ten bits of P array elements from several updates

Table 2. Number of words with first ten bits leaked vs. number of subsequent updates
incorporated

Type No. of updates No. of words with first 10 bits leaked

only h fault 1 646.8

both h and g fault 1 805.1

both h and g fault 2 860.0

both h and g fault 3 871.0

both h and g fault 4 875.0

both h and g fault 5 877.6

Thus, we are able to get approx. 877 values of the first ten bits, fourth array
update onwards. Thus, a total 647 × 22 + 8776 bits ≈ 719 words for each array
are known.
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5.3 Differentiating the Two Cases and Obtaining Additional
Elements

Experiments show that if the opportune event occurs, then the keystream dif-
ferences (sP,j vs. s

′
P,j) occur at random indices (j), whereas if the traverse event

occurs then the keystream differences follow a sequential pattern. This is because
a fault in keystream position si due to faulty P [i], which in turn is caused via
an update involving the faulty Q[f ], would result in its being used in the update
function of P [i + 3], thereby altering the value of si+3. This in turn creates a
fault in position si+6 by virtue of the faulty value being used in the update of
P [i+ 6].

Since the first ten bits of both P and Q function are known, by propagating
these values across many updates of P array, one can endeavor to find the missing
bits by guess and determine strategy. We leave it as an open problem here.
It would be interesting to look at the combinatorial aspects of this guess and
determine attack.

6 Conclusion

We showed how the cache analysis of HC-256 [18] can be extended to HC-128
and how the differential fault analysis of HC-128 [4] can be extended to HC-
256. The first attack leads to half state recovery of HC-128 and when combined
with the differential fault analysis can lead to the full state recovery and key
recovery of HC-128.With the second attack, we have been able to perform partial
state recovery of HC-256. Two interesting future works would be to study the
feasibility of using the cache analysis alone to achieve full state recovery of HC-
128 and that of mounting the differential fault attack alone to achieve full state
recovery of HC-256.

Our findings show that the side channel vulnerability for a particular imple-
mentation of a cipher may percolate to its variants also, albeit in a different
degree. This vulnerability is still exploitable through refinement of the attack
vectors. So, while selecting a cipher variant to thwart side channel vulnerabili-
ties, extra caution must be exercised.

References

1. Bernstein, D.: Cache-timing attacks on AES (2005), http://cr.yp.to/

papers.html#cachetiming

2. Boneh, D., Demillo, R.A., Lipton, R.J.: On the Importance of Checking Cryp-
tographic Protocols for Faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 37–51. Springer, Heidelberg (1997)

3. eSTREAM: the ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/
stream

4. Kircanski, A., Youssef, A.M.: Differential Fault Analysis of HC-128. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 261–278.
Springer, Heidelberg (2010)

http://cr.yp.to/papers.html#cachetiming
http://cr.yp.to/papers.html#cachetiming
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream


44 G. Paul and S. Raizada

5. LAN/MAN Standard Committee. ANSI/IEEE standard 802.11b: Wireless LAN
Medium Access Control (MAC) and Physical Layer (phy) Specifications (1999)

6. LAN/MAN Standard Committee. ANSI/IEEE standard 802.11i: Amendment 6:
Wireless LAN Medium Access Control (MAC) and Physical Layer (phy) Specifi-
cations, Draft 3 (2003)

7. LAN/MAN Standard Committee. ANSI/IEEE standard 802.11i: Amendment 6:
Wireless LAN Medium Access Control (MAC) and Physical Layer (phy) Specifi-
cations (2004)

8. Liu, Y., Qin, T.: The key and IV setup of the stream ciphers HC-256 and HC-128.
In: International Conference on Networks Security, Wireless Communications and
Trusted Computing, Wuhan, Hubei China, April 25-26, pp. 430–433 (2009)

9. Maitra, S., Paul, G., Raizada, S., Sen, S., Sengupta, R.: Some observations on
HC-128. In: Designs, Codes and Cryptography, vol. 59(1-3), pp. 231–245 (2011)

10. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–20.
Springer, Heidelberg (2006)

11. Paul, G., Maitra, S., Raizada, S.: A Theoretical Analysis of the Structure of HC-
128. In: Iwata, T., Nishigaki, M. (eds.) IWSEC 2011. LNCS, vol. 7038, pp. 161–177.
Springer, Heidelberg (2011)

12. Sekar, G., Preneel, B.: Improved Distinguishing Attacks on HC-256. In: Takagi, T.,
Mambo, M. (eds.) IWSEC 2009. LNCS, vol. 5824, pp. 38–52. Springer, Heidelberg
(2009)

13. Stankovski, P., Ruj, S., Hell, M., Johansson, T.: Improved distinguishers for HC-
128. In: Designs, Codes and Cryptography, vol. 63(2), pp. 225–240 (2012)

14. Skorobogatov, S.P., Anderson, R.J.: Optical Fault Induction Attacks. In: Kaliski
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Abstract. Physical(ly) Unclonable Functions (PUFs) are expected to
represent a solution for secure ID generation, authentication, and other
important security applications. Researchers have developed several kinds
of PUFs and self-evaluated them to demonstrate their advantages. How-
ever, both performance and security aspects of some proposals have not
been thoroughly and independently evaluated. Third-party evaluation is
important to discuss whether a proposal performs according to what the
developers claim, regardless of any accidental bias. In this paper, we fo-
cus on Glitch PUFs (GPUFs) that use an AES S-Box implementation as
a glitch generator, as proposed by Suzuki et al. [1]. They claim that this
GPUF is one of themost practically feasible and secure delay-based PUFs.
However, it has not been evaluated by other researchers yet. We evaluate
GPUFs implemented on FPGAs and present three novel results. First, we
clarify that the total number of challenge-response pairs of GPUFs is 219,
instead of 211. Second, we show that a GPUF implementation has low ro-
bustness against voltage variation. Third, we point out that the GPUF
has “weak” challenges leading to responses that can be more easily pre-
dictable than others by an adversary. Our results indicate that GPUFs
that use the AES S-Box as the glitch generator present almost no PUF-
behavior as both reliability and uniqueness are relatively low. In conclu-
sion, our case study on FPGAs suggests that GPUFs should not use the
AES S-Box as a glitch generator due to performance and security reasons.

Keywords: Glitch PUF, FPGA, Security, Performance, Key Genera-
tion, Authentication.

1 Introduction

Secure identification/authentication technology using integrated circuits (ICs)
is very important for a secure information infrastructure. One is often con-
cerned with finding solutions for anti-counterfeiting devices on medical supplies,
prepaid-cards and public ID cards such as passports and driver’s licenses. The
IC card is a well-known solution for this kind of application. Counterfeiting is
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prevented by storing a secret key on the IC card and using a secure cryptographic
protocol to make the key invisible to the outside. In theory, however, the possi-
bility of counterfeiting still remains if the IC design is revealed and reproduced.
Recently, interest has been focused on Physical(ly) Unclonable Functions (PUFs)
as a solution to the aforementioned issue [2]. In a PUF realized in an IC (silicon
PUF), the output value (response) to the input value (challenge) is unique for
each individual IC. This uniqueness is provided by random process variations
that occur in the manufacturing process of each IC [3] [4]. It is expected that
PUFs will represent a breakthrough in technology for anti-counterfeiting devices
through its use for ID generation, key generation and authentication protocols,
making cloning impossible even when the design is revealed.

The silicon PUFs are basically classified into two categories [5]. One uses the
characteristics of memory cells such as SRAM-PUFs [6] [7], Butterfly PUFs [8],
Flip-flop PUFs [9], Mecca PUFs [10] and Latch PUFs [11] [12]. The other uses
the characteristics of delay variations such as Ring Oscillator PUFs [13], Arbiter
PUFs [14] and Glitch PUFs (GPUFs) [1]. This paper focuses on the latter. Ring
Oscillator PUFs derive entropy from the difference in oscillator frequencies. Ar-
biter PUFs have an arbiter circuit that generates a response determined by the
difference in the signal delay between two paths set by a challenge. However,
a machine learning attack can predict responses of Arbiter PUFs by using a
number of challenge-response pairs (CRPs), as it has been shown that the re-
lationship between challenges and responses is linear [15]. The GPUF [1] was
proposed to solve this problem of ease of prediction. A glitch is a pulse of short
duration which may occur before the signal settles to a value. The GPUF gen-
erates a one-bit response by using the parity of the number of glitches obtained
from an 8-bit AES S-Box implementation used as a glitch generator. Part of
the challenges correspond to 8-bit inputs to the S-Box. Since the response to
challenges behaves like a non-linear function, the developers claim that machine
learning attacks are prevented.

Although PUF developers evaluate their proposals themselves, some of them
may either accidentally exaggerate on good results or not mention undesirable
ones. Hence it is quite important not only to propose and evaluate new PUFs,
but also to get the proposals evaluated and analyzed by third-party researchers.

Our Contributions. In this paper, we evaluate both performance and security
aspects of the GPUF developed by Suzuki et al. [1] (i.e. “developers”) imple-
mented on FPGAs. The reason why we focus on this PUF is that it is one of the
most feasible and secure delay-based PUFs because of the resistance against ma-
chine learning attacks. However, it has not been evaluated by other researchers
yet. Our main contribution consists of three parts. First, we propose a general
method to generate responses because the original paper is somewhat obscure
about it. To the best of our knowledge, the developers used only 28 challenges
as input to the 8-bit AES S-Box glitch generator. Hence they relied on a total
of 256× 8 = 2, 048 responses since the AES S-Box has 8 1-bit outputs. We point
out that glitches normally appear when an 8-bit input value of the S-Box is
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transitioned from one value to another. The glitches thus depend on the input
values both before and after the transition. Consequently, a GPUF based on
an 8-bit AES S-Box has 256 × 256 × 8 = 219 CRPs. It means that the perfor-
mance results presented by the developers are insufficient as they evaluated only
a subset of all CRPs. Second, we evaluate the performance of GPUFs using all
CRPs. We clarify that both reliability and uniqueness strongly depend on the
Hamming distance between the AES S-Box input values before and after the
transition. Therefore, GPUF designers have to carefully select the set of CRPs
meeting their security requirements, which increases design costs. Additionally,
if the supply voltages are changed within the rated voltage range of FPGAs
(1.14V ∼ 1.26V), GPUFs present low reliability – meaning that the intra-chip
variation is greater than 30%. This value exceeds the error correction range when
using a Fuzzy Extractor with a reasonable size of redundant data. This indicates
that GPUFs present almost no PUF-behavior. Third, we analyze the security of
GPUFs. If the AES S-Box input value after the transition is chosen to be one
out of 16 specific values, then the number of glitches is almost zero regardless
of the input value before the transition. AES S-Box-based GPUFs have “weak”
challenges (like a weak key for a block cipher) leading to responses that are more
easily predictable than others by an attacker, which could compromise the whole
security of a GPUF-based system.

Organization of the Paper. The rest of the paper is organized as follows.
Section 2 gives an outline of the original GPUF proposed by the developers, and
our proposed method to generate responses using all CRPs. Section 3 evaluates
the performance of the GPUF implemented on an FPGA platform. We evalu-
ate both reliability and uniqueness in various voltages. Section 4 evaluates the
security of the GPUF, and discusses weak challenges that should not be used.
Finally, in Section 5 we summarize our work and comment on future directions.

2 Glitch PUF

2.1 Original GPUF Proposal by Suzuki et al. [1] [16]

Different GPUFs have been proposed until now. In 2008, Crouch et al. [17]
[18] first proposed the concept of extracting a unique digital identification us-
ing glitches obtained from a 32-bit combinational multiplier. In 2010, Anderson
[19] proposed a glitch-based PUF design specifically targeted for FPGAs. This
GPUF generates a one-bit response based on the delay differences between two
multiplexer (MUX) chains. Then, a new glitch-based PUF using one AES S-Box
as a glitch generator was proposed in 2010 [1], and improved in 2012 [16] by
Suzuki et al. In this paper, we focus only on the third GPUF proposal (and refer
to it as only GPUF) because of its good performance, good security features –
such as resistance against machine learning attacks, and practical advantages as
it can be implemented on ASIC and FPGA platforms, as claimed by the authors.
Figure 1 presents this GPUF. It uses one 8-bit AES S-Box based on composite
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Galois field as a glitch generator. The challenge input to the GPUF has 11 bits
and is composed of two parts. The first part of the challenge contains 8 bits
inputted from the data registers to the AES S-Box. Each of the 8 output bits of
the S-Box generates a different number of glitches due to the complicated non-
linearity of the AES S-Box implementation. The second part of the challenge
contains 3 bits to select one out of the 8 AES S-Box output bits. A toggle flip-
flop (TFF) eventually outputs the GPUF response by evaluating the parity of
the number of glitches that appear in the selected AES S-Box output bit. To the
best of our knowledge, the developers have evaluated 211 CRPs. The masking
scheme is used to select stable challenges that output the same responses at nor-
mal operating condition (room temperature and standard supply voltage) most
of the times. For each challenge, the developers evaluated its response 10 times.
A challenge was considered stable if all 10 responses were equal. According to
their strict methodology, challenges yielding at least one different response were
discarded.

8-bit

AES S-Box

(Composite Field)

1-bit

TFF

First Challenge

(8 bits)

Second

Challenge

(3 bits)

Response

(1 bit)

8-bit

Data 

Registers

Glitch Generator Parity of number 

of glitches

Fig. 1. Glitch PUF

2.2 Our Response Generation Method

In this paper, glitches appear right after the first 8-bit part of the challenge is
transitioned from one value (previous 8-bit challenge: Cp) to another (current
8-bit challenge: Cc). Figure 2 depicts a conceptual explanation of two cases.
For example, for the same value of Cc (e.g. 31), the number of glitches are
respectively 5 or 2 for Cp equal to 246 or 97. Actually, the number of glitches
strongly depends on both Cp and Cc according to our experiments (details in
Sect. 3). Therefore, we claim that the first part of the GPUF challenge has not 8,
but 16 bits (8 bits from Cp and 8 bits from Cc). The combination of all values of
Cp and Cc leads to 256× 256 = 65, 536 CRPs per S-Box output bit. However, if
both Cp and Cc are equal, then no glitch occurs since there is no bit transition,
making the responses always equal to zero. Thus, the valid number of CRPs is
reduced to 256 × 255 = 65, 280. As the second part of the challenge has 3 bits,
the AES S-Box-based GPUF has in fact a total of 65, 280× 23 = 522, 240 CRPs.
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Fig. 2. Number of glitches with respect to Cp and Cc

3 Performance Evaluation

3.1 Experimental Environment

Figure 3 shows our experimental evaluation system, which uses a Spartan-3E
starter kit board [20] with a Xilinx Spartan-3E FPGA (XC3S500E-4FG320C)
and a custom-made expansion board with a Xilinx Spartan-6 FPGA (XC6SLX16-
2CSG324C). The developers implemented both peripheral circuits such as the
block RAM, RS232C module and GPUF circuit on the same FPGA chip. In con-
trast, we implement the peripheral circuits separately on a Spartan-3E (SP3E)
FPGA, and the GPUF circuit on a Spartan-6 (SP6) FPGA. Such configuration
enables us to change only the core voltage of the SP6 FPGA chip. The voltage
change does not impact the peripheral circuits and does not cause data garbling,
which enhances the confidence of our experimental results. An SP6 FPGA chip
is put on a socket of the expansion board, being therefore easily replaceable by
another chip. A programmable ROM (PROM) is implemented on the expansion
board, allowing us to download our circuit design on the PROM through a JTAG
port. The core voltage of an SP6 chip can be changed by 0.01V using a stabilized
power supply. The two boards are connected with user I/O interfaces through
a connector. The clock signal is provided from the SP3E to the SP6 through a
SMA cable and port in order to prevent signal degradation. A micro SD adapter
and card are also connected to the SP3E board to store the responses from the
GPUF. We evaluate 20 GPUFs implemented on 20 SP6 FPGA chips.

Figure 4 shows the details of our circuit designs realized on the SP3E and
SP6 FPGA chips. The AES S-Box implementation based on composite Galois
field techniques was obtained from the RTL code from [21]. A 50-MHz clock
signal generated by an on-board oscillator is applied to a Digital Clock Manager
(DCM) primitive yielding a 2.5-MHz clock signal that is applied to the GPUF.
The data acquisition process is as follows. When the RS232C module from the
SP3E chip receives a start command from a user PC, the module sends a start
signal to the CTRL module. The module initializes the values of Cp and Cc
to zero, and stores them into two registers dedicated for Cp (P1 ∼ P8) and Cc
(C1 ∼ C8) on the SP6, respectively. After that, registers storing the inputs to the
S-Box (R1 ∼ R8) are transitioned from Cp to Cc in one cycle. We evaluate not
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the parity but the actual number of glitches output from the glitch generator.
This does not influence the GPUF performance. The number of glitches is stored
into eight 8-bit counters with TFFs (T1,1 ∼ T8,8). Then, the total amount of 64
bits coming from eight 8-bit counters are sent to a block RAM on the SP3
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bit-sequentially. The values of the block RAM are sent to a SD write module,
and written into a micro SD card. This process is repeated with the same Cp
and Cc 100 times as in [1] [16]. Then both Cp and Cc are incremented by 1
from 0 to 255 and the process is repeated 100 times analogously. Note that the
responses are meaningful when Cp is not equal to Cc, as mentioned in Sect. 2.2.

In Sect. 3.2, we evaluate the following performance-related figure of merits [22]
of GPUFs operating at 1.20V: reliability, uniqueness, uniformity and bit-aliasing.
We choose 1.20V as the standard voltage because the rated voltage range of
the SP6 FPGA (XC6SLX16-2CSG324C) is 1.20 ± 0.06V (1.14V ∼ 1.26V). In
the standard voltage of 1.20V our GPUF implementations present performance
results in accordance with the developers’ ones. Later, in Sect. 3.3 we evaluate
our GPUF implementations operating at the maximum allowed FPGA rated
voltages of 1.14V and 1.26V.

3.2 Performance at the Standard Voltage of 1.20V

The reliability and uniqueness results of our GPUF implementations are shown
in Figs. 5 and 6, respectively. In order to evaluate the reliability, 101 responses
are generated per SP6 FPGA chip (see Appendix). One response is used as the
reference, and the remaining are used for analysis. The response space size is
65, 280× 8 bits. Figure 5 shows a histogram of normalized Hamming distances
between the reference response and each repeated one (i.e. 100 × 20(chips) =
2,000 elements). The average error rate when masking is on is approximately
1.38% with a standard deviation (S.D.) of 0.11%, which is much less than the
15% assumed in [23] for stable responses based on a Fuzzy Extractor with a
reasonable size of redundant data. Hence our result shows that the GPUF yields
highly reliable responses, in accordance with the developers’ results. Next, in
order to evaluate the uniqueness, a total of 20 responses using all 20 FPGAs
(one response per FPGA) is generated. Figure 6 shows a histogram of normalized
Hamming distances between every combination of two responses, i.e. 20C2 = 190
combinations. This evaluation is a general way of showing the extent to which
the responses of the chips are different. The difference in the responses of two
arbitrary PUFs is approximately 39.8% with a S.D. of 1.1% when masking is on.
GPUF yields responses with a lower level of uniqueness than the ideal difference
of 50%. This result also corresponds to the developers’ one.

Next, we evaluate both the uniformity and bit-aliasing of GPUFs – a contri-
bution that has not been addressed by the developers in [1] [16]. The uniformity
evaluates how uniform the proportion of ‘0’s and ‘1’s is in the response bits
of a PUF. For our GPUF implementations, the average uniformity is approx-
imately 50.6% and 50.7% when masking is off and on, respectively. Since the
ideal uniformity is 50%, our GPUFs satisfy the requirement for uniformity. The
bit-aliasing evaluates how different the proportion of ‘0’s and ‘1’s is in the 20
response bits extracted respectively from the 20 PUFs given the same challenge.
The ideal bit-aliasing is also 50% with a S.D. of 0%. Figures 7 (I) and (II) show
histograms of the proportion of ‘1’s when masking is off and on, respectively.
The bit-aliasing S.D. is approximately 4.7% larger when masking is used than
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when it is not used. This is because the masking scheme discards the responses
whose proportion of ‘1’s is around 50%. Hence Fig. (II) lacks the peak of the
normal distribution. It turns out that there are many responses fixed to 0 or 1 in
the GPUF implementations on the 20 chips. This means that GPUFs have many
useless CRPs due to the predictability of the responses. Hence GPUF designers
should not use all CRPs due to security reasons. This result is implied by the
low uniqueness of GPUFs as shown in Fig. 6. The fact that the S.D. becomes
larger when masking is being used is related to the lower uniqueness and entropy
of responses, as previously mentioned by the developers.
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3.3 Performance at Non-standard Voltages (1.14V and 1.26V)

In this section, we evaluate the robustness of the GPUF against voltage varia-
tion – the reliability of GPUFs when their supply voltage is changed to 1.14V
and 1.26V. Figure 8 (I) shows the response error rates (see Appendix) of our
GPUF implementations in comparison to the developers’ ones. At 1.14V, our
response error rate is approximately 35% when masking is on, differently from
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the developer’s results (≈10%) [16]. A possible reason for the difference in the
results could have been caused by our expansion board. However, the proper
operation of our expansion board was verified by implementing Latch PUFs on
the SP6 FPGAs and confirming that the response error rates are less than 15%
even when changes in the supply voltage occur. Consequently, according to our
evaluation, the robustness against voltage variation of GPUFs is much lower
than the one provided by the developers. This is partly because they evaluated
only 256 × 8 CRPs, while we consider all 256 × 255 × 8 CRPs. In fact, if we
choose only 256 × 8 CRPs satisfying the following two conditions: the Hamming
distance between Cp and Cc being equal to 1 (HD(Cp, Cc)=1), and the different
bit position being the least significant bit, then the robustness against voltage
variation becomes remarkably better than the developers’ results, as shown in
Fig. 8 (II). In the following, we discuss the relationship between both reliability
and uniqueness to the CRPs. The CRPs are divided into 8 groups based either
on each value of HD(Cp, Cc) (excluding HD(Cp, Cc) = 0, as no glitches occur)
or on which S-Box bit is used to generate a response.
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Fig. 8. Response error rates against various voltages

Figures 9 (I)-(III) and (IV) show the response error rates (reliability) and
the uniqueness of CRPs extracted from each S-Box bit (S-Box[0] ∼ S-Box[7]),
respectively. The reliability is evaluated at three voltages (1.14V, 1.20V and
1.26V), while the uniqueness is evaluated only at the standard voltage of 1.20V.
The results when masking is on and off are shown in the left and right histograms,
respectively. At 1.14V and 1.26V, the reliability ranges from 30 to 40% depending
on the S-Box bit even when masking is on. At 1.20V, the uniqueness ranges from
35 to 45% also depending on the S-Box bit when masking is on. The reliability
and uniqueness distributions are thus close to each other, possibly overlapping.
Therefore, our GPUF implementations show almost no PUF behavior as an
authentication protocol free of errors cannot be implemented. As both reliability
and uniqueness of GPUFs strongly depend on the S-Box bits used to generate
responses, if GPUFs are used for key generation, suitable challenges should be
carefully chosen based on security requirements.
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Fig. 9. Reliability and Uniqueness vs. S-Box output bits (left histograms: with masking,
right: w/o masking)

Figures 10 (I) and (II) show the reliability and uniqueness of CRPs with
respect to HD(Cp, Cc) = 1, . . . , 8, respectively. Due to space constraints, we
show: the average of 8 results (from S-Box[0] to S-Box[7]), the results of S-Box[2]
(lowest reliability), and the results of S-Box[7] (highest reliability), as shown in
Fig. 9 (I). The smaller HD(Cp, Cc) is, the higher the reliability is, and the
lower the uniqueness is. This is because if HD(Cp, Cc) is small, the number of
changed bits in the S-Box is also small. As a result, the transition from Cp to Cc
has little influence on the generation of glitches. As GPUFs perform differently
with regard to HD(Cp, Cc), the need for a designer to select appropriate CRPs
meeting a system’s requirement leads to an additional increase in the design
cost. The reliability at 1.20V can be dramatically enhanced by using the masking
scheme proposed by the developers. However, the reliability cannot be enhanced
effectively at 1.14V and 1.26V using the masking scheme. Consequently, there is
no correlation between unstable CRPs at 1.20V and at 1.14V or 1.26V. GPUF
designers should thus remove, i.e. mask, CRPs that are unstable not only at
1.20V but also at 1.14V and 1.26V. However, this is not realistic and practical.
Such solution not only increases the manufacturing costs as well, but also reduces
the number of CRPs, which causes loss of information entropy in the responses.

Finally, we evaluate the side effects of using the masking scheme: how many
responses are unstable and therefore discarded. The three types of bar graphs in
Fig. 11 show the number of stable responses in three cases: without masking (all
responses), with masking at 1.20V (stable responses at 1.20V) and with masking
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(III) S-Box[7] (highest reliability)

Fig. 11. Number and ratio of stable responses in three cases

at three voltages (stable responses at 1.14V, 1.20V and 1.26V). In fact, the third
case is not realistic and practical since the masking processes at all voltages
have to be applied. We, however, show this case to evaluate the actual number
of valid and stable CRPs in the GPUF. The line graphs in Fig. 11 show the
ratio of stable responses in each group of HD(Cp, Cc). We show once more the
average results for S-Box[2] and S-Box[7] due to space constraints, over the 20
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SP6 FPGAs. The larger HD(Cp, Cc) is, the lower the ratio of stable responses
is (i.e. the larger the number of discarded responses is). That is why the larger
HD(Cp, Cc) is, the higher the response error rate is, as shown in Fig. 10 (I).
Also, there are large gaps between the two lines in Figs. 11 (I)-(III). This means
that the stable responses at 1.20V are not always stable at 1.14V and 1.26V.
Hence the response error rate is high and the voltage resistance of the GPUF is
quite low, as shown in Fig. 10 (I). By comparing Fig. 11 (II) and Fig. 11 (III),
the lower the reliability is, the larger the number of discarded responses is. Out
of a total of 65,280 × 8 responses, the ratios of stable responses at 1.20V and
at the three voltages are 61.7% and 30.1%, respectively. Consequently, GPUFs
have in fact a number of useless CRPs that should be removed by the masking
scheme. This masking reduces the total number of CRPs or the total pattern
of keys generated by multiple GPUFs. The low total number of CRPs or keys
might facilitate an attacker to succeed in her modeling attack. In conclusion, our
GPUFs implemented on FPGAs have a low robustness against voltage variation
according to our evaluation results. In addition, both reliability and uniqueness
strongly depend on the selected CRPs.

4 Security Analysis

In this section, we evaluate the security of AES S-Box-based GPUFs. Con-
cretely, we clarify that the GPUF has “weak” challenges that are associated
with more easily predictable responses. Figure 12 depicts the number of glitches
generated from S-Box[6] on a single specific chip (i=1). This figure represents a
256 × 256 matrix, where the horizontal axis represents Cp and the vertical axis
represents Cc. Each element is colored from black to gray according to the num-
ber of glitches. For example, there are less glitches (≈ 0 ∼ 1) when we choose
a challenge corresponding to a black element. The response is unstable when
we choose a challenge corresponding to a white element. Note that the element
means not the parity but the number of glitches. Naturally, a black diagonal
line can be observed in this figure because no glitch occurs when both Cp and
Cc are equal. Note that there are also a few black “horizontal lines”, marked by
arrows (A1 ∼ A8). All 20 chips present the same pattern of lines. This means
that some values of Cc lead to a small number of glitches independently of Cp.
Hence if we use such values of Cc as challenges to the GPUF, then adversaries
will have the advantage of knowing that the number of glitches is small, which
may help them succeed more easily with an attack aiming at predicting GPUF
responses.

The following discusses the reason why such non-secure challenges exist using
Fig. 13. An AES S-Box implementation using composite field consists of three
sub-parts: isomorph δ, Galois Field (GF) inverter, and a combination module
of inverse isomorph δ−1 and affine transformation. Let the 8-bit variables x
and y be the input and output of the AES S-Box, respectively. Also, let the
8-bit variables a and b be the outputs of the isomorph δ and the GF inverter,
respectively. Our goal is to find special values of x making the 6-th output bit
of the S-Box (y[6]) zero. In step 1 from Fig. 13, according to the properties of



Performance and Security Evaluation of AES S-Box-Based Glitch PUFs 57

Fig. 12. Number of glitches (S-Box[6], Chip i=1)
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Fig. 13. An AES S-Box implementation using composite field

the combination module, the output value y[6] satisfies:

y[6] = b̃[4]⊕ b[5]⊕ b[6]⊕ b[7].

Hence y[6] depends on the upper 4 bits of b.
Next, in step 2, we focus on the GF inverter. The value b[7 : 4], which repre-

sents the four most significant bits of b, satisfies:

b[7] = tn[0]⊕ tn[1]⊕ tn[3]⊕ tn[4],

b[6] = tn[0]⊕ tn[2]⊕ tn[3]⊕ tn[5],

b[5] = tn[0]⊕ tn[1]⊕ tn[7]⊕ tn[8],

b[4] = tn[0]⊕ tn[2]⊕ tn[6]⊕ tn[7].
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Here, the 9-bit variable tn is an internal variable in the GF inverter. The variable
tn satisfies:

tn[8] = (v[3]) & (a[7]),

tn[7] = (v[2]⊕ v[3]) & (a[6]⊕ a[7]),

tn[6] = (v[2]) & (a[6]),

tn[5] = (v[1]⊕ v[3]) & (a[5]⊕ a[7]),

tn[4] = (v[0]⊕ v[1]⊕ v[2]⊕ v[3]) & (a[4]⊕ a[5]⊕ a[6]⊕ a[7]),

tn[3] = (v[0]⊕ v[2]) & (a[4]⊕ a[6]),

tn[2] = (v[1]) & (a[5]),

tn[1] = (v[0]⊕ v[1]) & (a[4]⊕ a[5]),

tn[0] = (v[0]) & (a[4]).

The 4-bit variable v is an internal variable in the GF inverter. Let us focus on
the 4-bit variables, a[4], a[5], a[6] and a[7], on the right-hand side of the above-
mentioned equations of tn. If the values of the 4-bit variables are all zero, tn also
becomes zero. So the glitches caused by the variable v do not propagate to tn,
b[7 : 4] and y[6]. Consequently, if the most significant 4 bits of a are zero, then
no glitch is expected to appear in y[6].

In step 3, our goal is to find special values of x which make a[7 : 4] equal to
zero. The variable a[7 : 4] satisfies:

a[7] = x[5]⊕ x[7],

a[6] = x[1]⊕ x[2]⊕ x[3]⊕ x[4]⊕ x[6]⊕ x[7],

a[5] = x[2]⊕ x[3]⊕ x[5]⊕ x[7],

a[4] = x[1]⊕ x[2]⊕ x[3]⊕ x[5]⊕ x[7].

Hence the following holds:

x[1] = 0,

(x[5], x[7]) = (0, 0) or (1, 1),

(x[2], x[3]) = (0, 0) or (1, 1),

(x[4], x[6]) =

{
(0, 0) or (1, 1) (if x [7] = 0),
(0, 1) or (1, 0) (if x [7] = 1).

Finally, we obtain the 16 patterns of the input x that are expected to generate
almost no glitches in the S-Box bit y[6], as shown in Table 1. They correspond
to the 16 specific values of Cc marked by the eight arrows in Fig. 12. There are
actually 16 black horizontal lines in Fig. 12, but only eight lines corresponding to
the eight arrows can be visually observed. This is because the 16 specific values
consist of eight pairs of consecutive numbers. In our GPUF implementations,
the number of glitches whose challenges Cc and Cp are one of the 16 × 255
patterns is zero or one, which is smaller than for other challenges. However, the
GPUF responses include zero and one with almost the same ratio. This means
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that such 16 patterns of Cc are secure if the parity of the number of glitches is
used as response. Some GPUFs implemented on other kinds of FPGAs or ASICs,
however, have a possibility to generate no glitch if using the above values of Cc.
Hence we suggest that such values of Cc should not be used.

Table 1. The 16 patterns of the input x generating almost no glitches in y[6]

(x[5], x[7]) (x[2], x[3]) (x[4], x[6]) x[1] x (binary) (†) x (decimal) Arrows in Fig. 12

(0, 0)
(0, 0) 0 0000000∗ 0, 1 A1

(1, 1) 0 0101000∗ 80, 81 A3
(0, 0)

(1, 1)
(0, 0) 0 0000110∗ 12, 13 A2

(1, 1) 0 0101110∗ 92, 93 A4

(0, 0)
(0, 1) 0 1110000∗ 224, 225 A7

(1, 0) 0 1011000∗ 176, 177 A5
(1, 1)

(1, 1)
(0, 1) 0 1110110∗ 236, 237 A8

(1, 0) 0 1011110∗ 188, 189 A6

(†) Asterisks mean ‘0’ or ‘1’.

5 Conclusion

This paper experimentally analyzed GPUFs using a composite field-based AES
S-Box implementation as a glitch generator on FPGAs. First, we clarified that
the number of glitches depends on both the previous and current states of the
registers dedicated to storing the challenge bits that are input to the AES S-
Box. As a consequence, GPUFs have a total of 219 CRPs, which is much more
than the 211 CRPs evaluated by the GPUF developers [1] [16]. According to
our experiments with 20 FPGAs, GPUFs using all 219 CRPs showed a low ro-
bustness against voltage variation. Within the rated voltage range of the FPGAs
(1.14∼1.26V), response error rates approached 35%. The result exceeds the error
correction range of a Fuzzy Extractor with a reasonable size of redundant data.
Our results also indicated that GPUFs present almost no PUF-behavior as both
reliability and uniqueness are relatively low. Finally, we found that our GPUF
implementations have 16 × 255 weak challenges leading to almost no glitches
regardless of the previous challenge bits stored in the registers. In conclusion,
the AES S-Box implementation using composite field may not represent the best
option for generating glitches for the GPUF due to issues with robustness against
voltage variation and easily predictable responses.

To the best of our knowledge, other well-known AES S-Box implementations,
such as sum of product (SOP), product of sum (POS), table lookup (TBL), pos-
itive polarity Reed-Miller (PPRM) [24] and 3-stage PPRM [25], are not suitable
for GPUFs either. Although SOP, POS or TBL are able to generate glitches,
these implementations have larger area size than a composite field-based im-
plementation. Hence these designs are not suitable for PUFs on IC cards with
limited resources. PPRM or 3-stage PPRM are designed to reduce the power
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consumption by preventing the generation of glitches. These are obviously not
suitable for GPUFs. Thus we suggest that the AES S-Box should not be used
as a glitch generator for GPUFs on FPGAs.

An ASIC implementation of the AES S-Box would probably not behave like-
wise FPGAs. The performance, such as reliability and uniqueness, has a possibil-
ity to improve if GPUFs are implemented on ASICs. Future work should include
a discussion of performance and security evaluation of GPUFs on ASICs.
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Appendix

In order to evaluate the reliability, we extract an n-bit (65,280 × 8) reference
response (Ri) from i-th FPGA chip (1 ≤ i ≤ w, w = 20 in this work) at normal
operating condition (room temperature and standard supply voltage of 1.20V).
The same n-bit response is extracted at a different operating condition (different
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temperature and/or supply voltage) with a value R′
i. Then, m samples (m = 100

in this work, as in [1] [16]) of R′
i are collected. Here, R

′
i,t is the t-th (1 ≤ t ≤ m)

sample of R′
i. For the chip i and the sample t, each data element of the reliability

histogram is calculated as follows:

HDi,t =
1

n

255∑
Cp=0

255∑
Cc=0

HD{R′
i(Cp, Cc), R

′
i,t(Cp, Cc)}.

Note that we exclude the responses where Cp equals Cc because no glitch occurs.
The reliability histograms shown in Fig. 5 and Fig. 9 (I) include 2,000 data
elements, resulted from i and t. The response error rate shown in Fig. 8 and Fig.
10 (I) is calculated as follows:

ErrorRate =
1

w ·m
w∑
i=1

m∑
t=1

HDi,t.
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Abstract. The definition of IND-CCA security model for public key
encryption allows an adversary to obtain (adaptively) decryption of ci-
phertexts of its choice. That is, the adversary is given oracle access to
the decryption function corresponding to the decryption key in use. The
adversary may make queries that do not correspond to a valid ciphertext,
and the answer will be accordingly (i.e., a special “failure” symbol).

In this article, we investigate the case where we restrict the oracle
to only determine if the query made is a valid ciphertext or not. That
is, the oracle will output 1 if the query string is a valid ciphertext (do
not output the corresponding plaintext) and output 0 otherwise. We call
this oracle as “ciphertext verification oracle” and the corresponding secu-
rity model as Indistinguishability against chosen ciphertext verification
attack (IND-CCVA). We point out that this seemingly weaker security
model is meaningful, clear and useful to the extent where we motivate
that certain cryptographic functionalities can be achieved by ensuring
the IND-CCVA security where as IND-CPA is not sufficient and IND-
CCA provides more than necessary. We support our claim by providing
nontrivial construction (existing/new) of:

– public key encryption schemes that are IND-CCVA secure but not
IND-CCA secure,

– public key encryption schemes that are IND-CPA secure but
not IND-CCVA secure.

– public key encryption schemes that are IND-CCA1 secure but not
IND-CCVA secure.

Our discoveries are another manifestation of the subtleties that make the
study of security notions for public key encryption schemes so attractive
and are important towards achieving the definitional clarity of the target
security.

Keywords: PKE security notions, IND-CPA, IND-CCA, IND-CCVA.

1 Introduction

The IND-CCA (also known as IND-CCA2) security (security against adaptive
chosen ciphertext attacks [16,18,3,8,20]) is now a days considered the de facto
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level of security required for public key encryption schemes used in practice.
Unfortunately, only a handful of approaches are known for constructing encryp-
tion schemes that meet this notion of security, thus showing the strongness of
this security model. In practice, there are certain cryptographic functionalities
for which the security requirement is apparently less stronger than IND-CCA.
There had been some research [25,24,23] to quantify the gap between the IND-
CPA and IND-CCA security.

The most common threat to IND-CCA security is that of a query on a mal-
formed ciphertext causing the decryption oracle to leak damaging information,
either about the private key, or about the plaintext. Understanding, the ex-
plicit behaviour of the decryption oracle could be the keypoint. In the IND-
CCA model, the decryption oracle provides decryption of the ciphertexts of our
choice. In this work, we limit the output of the decryption oracle: it will only
verify whether or not a query string is a valid ciphertext or not. Consider a
setting where a server has the secret key, receives and decrypts ciphertext and
sends to the client an accept/reject message depending on whether the cipher-
text was valid or not. This setting actually occurs in real life, some schemes can
be broken in this setting, and Bleichenbacher’s [4] attack is an example of this.

1.1 Background

The security for public key encryption was first formally defined by Goldwasser
and Micali [12]. Their notion of semantic security, roughly speaking, requires
that observation of a ciphertext does not enable an adversary to compute any-
thing about the underlying plaintext message that it could not have computed
on its own (i.e., prior to observing the ciphertext). Goldwasser and Micali (see
also [10,11]) proved that semantic security is equivalent to the notion of indis-
tinguishability that requires (roughly) the following: given a public key pk, a
ciphertext C, and two possible plaintexts m0,m1, it is infeasible to determine if
C is an encryption of m0 or an encryption of m1. We will refer to these notions
using the commonly accepted term “IND-CPA” security.

IND-CPA security does not guarantee any security against chosen cipher-
text attacks by which an adversary may obtain decryption of ciphertexts of its
choice. Indistinguishability based definitions appropriate for this setting were
given by Naor and Yung [16] and Rackoff and Simon [18]. Naor and Yung con-
sider non-adaptive chosen ciphertext attack in which the adversary may request
decryptions only before it obtains the challenge ciphertext. Rackoff and Simon
define the stronger notion of security against adaptive chosen ciphertext attacks
whereby the adversary may request decryptions even after seeing the challenge
ciphertext, under the natural limitation that the adversary may not request de-
cryption of the challenge ciphertext it self. We will refer to the later notion as
“IND-CCA” security. Lots of research have been done in this direction (see [21]
and references there in). Loffus et al. [15] have studied IND-CCA and showed the
importance of CCA-like notions in the security of cloud computing. Recently,
in [22], CCA has been extended where adversary can not only exploit the de-
cryption oracle queries but also the intermediate calculations stored in hardware
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(especially RAM). This new notion, where decryption oracle is referred as glass
box decryption oracle, is known as Glass-Box-CCA.

1.2 Motivation

In the literature the paradigms that construct IND-CCA secure cryptosystems
are few in number. Among them, the paradigms introduced by Naor and Yung
in [16] and by Cramer and Shoup in [5,6] are very famous. The proofs of well-
formedness of ciphertexts have been shown to underlie the constructions that
were instantiated by both of the above paradigms. Informally it speaks of a
validity check step for ciphertexts in the decryption algorithm. Infact, Elkind and
Sahai have observed [7] that both the above approaches for constructing CCA-
secure encryption schemes can be viewed as special cases of a single paradigm.
In this paradigm one starts with a CPA-secure cryptosystem in which certain
ill-formed ciphertexts are indistinguishable from honestly-generated ciphertexts.
A CCA-secure cryptosystem is then obtained by having the sender honestly
generate a ciphertext using the underlying CPA-secure scheme, and then append
a proof of well-formedness (satisfying certain criteria) to this ciphertext. Thus
having a validity check seems a sufficient condition to achieve IND-CCA security
and became a common practice until Bleichenbacher’s [4] attack showed that this
is not the case; the attack broke the IND-CCA security of the underlying scheme
using a oracle that confirms just the validity of the ciphertext. Thus for the class
of public key encryption schemes with validity check in the decryption could
give rise to a meaningful security model (less stronger than IND-CCA) where
the adversary has access to a oracle of the above nature. We name this security
model as IND-CCVA.

In this article we search for IND-CCVA secure public key encryption schemes.
Beside its theoretical importance, there are some practical benefits as well. For
example, consider the scenario where one has to pick a encryption scheme be-
tween E1 and E2, where both are IND-CPA secure but not IND-CCA and both
of them are efficient. Suppose E2 differs with E1 by having a validity checking
step in its decryption algorithm. In this case one may tend to prefer E2 over E1,
but our findings will show that this may not be a wiser decision always.

1.3 Summary of Our Results

In the definition of IND-CCA security model for public key encryption, the ad-
versary is given oracle access to the decryption function corresponding to the
decryption key in use. The adversary may make queries that do not correspond
to a valid ciphertext, and the answer will be accordingly (i.e., a special “failure”
symbol). In this article, we investigate the case where we restrict the oracle to
only verify if the query made is a valid ciphertext or not. That is, the oracle
will output 1 (not the corresponding plaintext) if the query string is a valid
ciphertext and output 0 otherwise. We will denote this oracle by the name “ci-
phertext verification oracle” and the corresponding security model by the name
Indistinguishability against chosen ciphertext verification attack (IND-CCVA).
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We point out that this seemingly weaker security model is meaningful, clear and
useful to the extent where we observe that certain cryptographic functionalities
can be achieved by ensuring the IND-CCVA security where IND-CPA is not
sufficient and IND-CCA provides more than necessary. We further support our
claim by providing generic construction of:

– public key encryption schemes that are IND-CCVA secure but not IND-CCA
secure,

– public key encryption schemes that are IND-CPA secure but not IND-CCVA
secure,

– public key encryption schemes that are IND-CCA1 secure but not IND-
CCVA secure.

1.4 Organization

In the following section, we fix notations, recall some notations from number
theory, and provide an informal overview of public key encryption and the IND-
CCA security model. Formal definition of IND-CCVA security model appear in
Section 3. The separation results will appear through sections 4, 5, and 6.

2 Preliminaries

In this section we first fix the notations. We write x
R← X to denote the action

of assigning a value to the variable x sampled uniformly from the set X . If A
is a probabilistic algorithm which takes an input x, A(x) denotes the output

distribution of A on input x. Hence, y
R← A(x) denotes the assignment of a value

to the variable y from the output distribution of algorithm A on input x. We can
denote any probabilistic algorithmA by a deterministic algorithmA′ which takes
additional input, random coins, uniformly sampled from some set R.

Let n be a positive integer. The number of positive integers less than n and
relatively prime to n is denoted φ(n). We take any string x as a {0, 1}-string. If
u and v are two strings, then uv or u||v denotes the concatenation of strings u
and v. |x| denotes the length of the string x.

PKE. A public key encryption scheme
∏
= (KeyGen, Enc, Dec) is a triple of

algorithms. The key generation algorithm KeyGen takes a security parameter 1λ

and returns a pair (pk, sk) of matching public and secret keys. The encryption
algorithm Enc takes a public key pk and a message m ∈ {0, 1}∗ to produce a ci-
phertext C. The deterministic decryption algorithm Dec takes sk and ciphertext
C to produce either a message m ∈ {0, 1}∗ or a special symbol ⊥ to indicate that
the ciphertext was invalid. The consistency requirement is that for all λ ∈ N, for
all (pk, sk) which can be output by KeyGen(1λ), for all m ∈ {0, 1}∗ and for all
C that can be output by Enc(pk,m), we have that Dec(sk, C) = m.

Remark: In the definition of the decryption algorithm we assume the standard
practice that it returns ⊥ if the input ciphertext is invalid. Our assumption
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(which is implicit throughout this paper) is a special case of the standard def-
inition where the decryption algorithm may return any arbitrary value (string)
for a given invalid ciphertext.

IND-CCA.We recall the definitional template of the IND-CCA security model.
In this definition, the underlying experiment picks a public key pk and matching
secret key sk, and then provides pk to the adversary A. The latter runs in two
phases in both of which A has access to an oracle for decryption under sk. It
ends its first phase by outputting a pair m0,m1 of messages. The experiment
picks a challenge bit b ∈ {0, 1} at random, encrypts mb under pk, and returns
the resulting challenge ciphertext C∗ to A. The latter now enters its second
phase, which it ends by outputting a bit b̄. We say that A wins if b = b̄. Security
requires that the probability of winning minus 1

2 is negligible.

IND-CCA1. This security notion is slightly milder than IND-CCA; the decryp-
tion requests can be made only before the challenge ciphertext (for which the
adversary should gain knowledge) is presented.

3 IND-CCVA: Indistinguishability against Chosen
Ciphertext Verification Attack

We now present a formal definition of security against chosen ciphertext verifi-
cation attacks. This is a weaker form of attack when compared to a full CCA
attack: the adversary has access to a oracle which is weaker than a decryption
oracle. We name this oracle as ciphertext verification oracle and denoted it by
OCV . The oracle is described as follows:

OCV : {0, 1}∗ → {0, 1}

The output is 1 if and only if the input string is a valid ciphertext. We now
describe this new attack model formally as follows. For a public key encryption
scheme

∏
and an adversary A, consider the following experiment:

The IND-CCVA Experiment

– KeyGen(1λ) is run to obtain keys (pk, sk).
– Beside the public key pk, the adversary A is given access to ciphertext veri-

fication oracle OCV .
– The adversary outputs a pair of messages m0,m1 of the same length from

the plaintext space.
– A random bit b ← {0, 1} is chosen, and then a ciphertext c ← Encpk(mb) is

computed and given to A.
– A continues to interact with OCV .
– Finally, A outputs a bit b̄.
– The output of the experiment is defined to be 1 if b̄ = b, and 0 otherwise.
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We define the advantage of A in the IND-CCVA experiment as a function of the
security parameter as follows:

AdvIND−CCVA∏
,A (λ)

Δ
= |Prob[b̄ = b]− 1

2
| (1)

Definition 1. A public key encryption scheme
∏
=(KeyGen, Enc, Dec) has in-

distinguishable encryption under a decisional chosen ciphertext attack (or is
IND-CCVA secure) if for all probabilistic polynomial time adversaries A, we
have that AdvIND−CCVA∏

,A (λ) is negligible.

Note that our oracle may become constant (always output 1) for certain class of
public key encryption schemes. Let

∏
be a public key encryption scheme with

K as key space, M as message space, and C as ciphertext space. In general, we
have

∪k∈KEnc(M) � C.
The equality between ∪k∈KEnc(M) and C means that any element from C is a
valid ciphertext (encryption of some message under some key). Thus in this case,
the verification oracle will always output 1 for any random query from C. This
will imply that the IND-CPA and IND-CCVA security are both equivalent for
such public key encryption schemes (as oracle is of no use), for example, ElGamal.

In this article we consider public keys encryption schemes with ∪k∈KEnc(M)
� C. Infact, achieving IND-CCA security requires this kind of setup in general.

Remark: One may note that the security model of IND-CCVA immediately
confirms the following:

– IND-CCA implies IND-CCVA and
– IND-CCVA implies IND-CPA

4 The Separating Scheme: IND-CCVA Secure But Not
IND-CCA Secure

In this section we describe a public key encryption scheme which was originally
proposed by Cramer and Shoup [5] as the light version of their main scheme (the
first practical IND-CCA secure scheme). The scheme was shown to be IND-CPA
secure by Cramer and Shoup and not IND-CCA secure. We observed that this
scheme is infact IND-CCVA secure, thus settling the claim of this section.

4.1 Cramer-Shoup Light Version

– KG(1λ): The key generation algorithm runs as follows.
• Choose a group G of prime order p, where 2λ−1 < p < 2λ

• Choose g1, g2
R← G and x1, x2, z ∈ Zp.

• Compute c = gx1
1 gx2

2 and h = gz1 .
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• The public key, PK, for this scheme is tuple (g1, g2, c, h), with corre-
sponding secret key, SK, is (x1, x2, z).

• message space = G.
– ENC(m,PK): To encrypt a message m ∈ G, the encryption algorithm runs

as follows.
• Choose r

R← Zp.
• Compute u1 = gr1 , u2 = gr2, e = hrm, v = cr.
• The ciphertext, C, is (u1, u2, e, v).

– DEC(C, SK, PK): Decryption works in the following way: given the cipher-
text (u1, u2, e, v) and secret key (x1, x2, z),

• It first tests if ux1
1 ux2

2
?
= v.

• If this condition does not hold, the decryption algorithm outputs ⊥;
otherwise, it outputs

m =
e

uz
1

.

Correctness. If (u1, u2, e, v) is a valid ciphertext, then we have:

ux1
1 ux2

2 = gr1
x1gr2

x2 = gx1
1 gx2

2
r = cr = v and

e

uz
1

=
hrm

gr1

z

=
gz1

rm

grz1
=

grz1 m

grz1
= m.

4.2 IND-CCVA Security

We show that this scheme is IND-CCVA secure based on the hardness of the
Decisional Diffie-Hellman (DDH) problem in G.

DDH problem can be formulated as follows. Let D be an algorithm that takes
triples of group elements as input and outputs a bit. The DDH-advantage of D
is defined as∣∣∣Pr[x, y R← Zp : D(gx, gy, gxy) = 1]− Pr[x, y, z

R← Zp : D(gx, gy, gz) = 1]
∣∣∣

Then DDH assumption for G assumes that for any efficient algorithm D, it is
DDH-advantage is negligible.

Theorem 1. The scheme described in Section 4.1 is IND-CCVA secure assum-
ing that the DDH assumption holds in G.

Proof. The proof goes by reduction which shows that if an adversary is able to
break the IND-CCVA security, it can be used to solve the DDH problem. Let us
assume, there is an adversary A which can break the IND-CCVA security of the
scheme. Using A, we can construct an algorithm B that solves the DDH problem.

B is given as input a 4-tuple (g, ga, gb, Z), where a, b are chosen randomly from
Zp. The task of B is to determine whether Z is equal to gab or a random element
of G. B solves this problem by interacting with A in the IND-CCVA game as
follows.
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– Simulation of Key Generation (KG): B proceeds as follows:
• Sets g1 = g.

• Chooses s
R← Zp and sets g2 = gs1.

• Chooses x1, x2
R← Zp and sets c = gx1

1 gx2
2 .

• Sets h = gb.
• Finally the 4-tuple (g1, g2, c, h) is made available as public key to A by

B.

– Simulation of Ciphertext Verification Oracle for Ciphertext Valid-
ity Check:
• Knowledge of (x1, x2) ensures that B can perfectly answer the ciphertext
verification queries asked by A.

– Simulation of Challenge Ciphertext:
• In Challenge Phase, A chooses and outputs two messages m0 and m1 to

B.
• B then chooses a bit τ

R← {0, 1} and it proceeds to encrypt mτ .
• B sets

u1 = ga, u2 = (ga)s, e = Z ·mτ and v = (ga)x1(ga)sx2 .

• The challenge ciphertext (u1, u2, e, v) is given to A by B.
Finally in the Guess Phase, A answers a bit τ ′. If τ = τ ′ then B announces the
input instance to be a valid DDH tuple, else (τ 
= τ ′) B announces invalid tuple.
This completes the description of B. We show that

Adv(B) = Adv(A).

For this it is enough to show that simulation of challenge ciphertext is perfect
given a valid DDH instance. This is true as for valid DDH tuple (i.e., z = gab)
we have

– u1 = ga = ga1 .
– u2 = (ga)s = (gs)a = ga2 .
– e = Z ·mτ = gab ·mτ = (gb)a ·mτ = ha ·mτ .
– v = (ga)x1(ga)sx2 = (gx1gsx2)a = ca.

Thus the simulation of challenge ciphertext is perfect. This proves the theorem.
��

Lemma 1. The scheme described in Section 4.1 is not IND-CCA secure.

Proof. In IND-CCA game, if C = (u1, u2, e, v) be the challenge ciphertext, ad-
versary A chooses any message m′ 
= 1 (identity in G) and creates another
ciphertext C′ = (u1, u2,m

′e, v) which is indeed different than challenge cipher-
text. Decryption oracle returnsm′m if C′ is queried to it. A then easily calculates
the original message by calculating m′mm′−1 = m. Hence, the lemma. ��
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5 The Separating Scheme (Known): IND-CPA Secure
But Not IND-CCVA Secure

It is well-known that plain-old RSA does not hide partial information about
the plaintext, is malleable, and is also insecure against chosen ciphertext attack.
Indeed, plain-old RSA is never used in practice, precisely because of these well-
known weaknesses. Instead, what people actually use is plain-old RSA with a
few modifications attempt to fix these problems.

One idea that is often advocated to improve the security of plain-old RSA is
to use a randomized “encoding” or “padding” scheme. That is, we encrypt m as
C = f(m, r)e, where f(m, r) encodes the message m using some random bits r.
Note that f is not a cryptographic encoding: it is easy for anyone to compute
m from f(m, r). The hope is that this enhancement improves the security of
RSA. However, if one is not extremely careful, the resulting scheme may become
insecure.

One simple way to define f(m, r) is just to concatenate the two bit strings m
and r. This is a popular idea. RSA, Inc. has a very popular encryption function,
called PKCS #1, which did essentially this until the well-known attack by Ble-
ichenbacher [4] had surfaced. This encryption function is used by the security
protocol SSL over internet.

In literature, Bleichenbacher’s attack on SSL has been termed as chosen ci-
phertext attack on RSA’s PKCS #1. But we observe that, his attack is actually
a chosen ciphertext verification attack. We first describe briefly the RSA en-
cryption standard PKCS #1; refer to [19] for details. It has three block formats:
Block types 0 and 1 are reserved for digital signatures, and block type 2 is used
for encryption. As we are interested in encryption only, we describe the block 2.

– KG(1λ): Choose primes p, q (4k bit each) and compute n = pq (n is k byte
number). Choose e, d, such that ed ≡ 1 (mod φ(n)). The public key, PK, is
(n, e) and the secret key, SK, is (p, q, d).

– ENC(m,PK): A data block D, consisting of |D| bytes, is encrypted as
follows:
• First, a padding string PS, consisting of k − 3 − |D| nonzero bytes, is
generated pseudo-randomly (the byte length of PS is atleast 8).

• Now, the encryption block EB = 00||02||PS||00||D is formed, is con-
verted into an integer x, and is encrypted with RSA, giving the cipher-
text c = xe (mod n).

– DEC(c, SK, PK) A Ciphertext c is decrypted as follows:
• Compute x′ = cd (mod n).
• Converts x′ into an encryption block EB′.
• Check, if the encryption block is PKCS conforming ( An encryption
block EB consisting of k bytes, EB = EB1|| . . . ||EBk, is called PKCS
conforming, if it satisfies the following conditions: EB1 = 00, EB2 = 02,
EB3 through EB10 are nonzero and at least one of the bytes EB11

through EBk is 00).
• If the encryption block is PKCS conforming, then output the data block;
otherwise an error sign.
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5.1 Security

It is well-known that the least significant bit of plain RSA encrypted message
is as secure as the whole message [13,1]. In particular, there exists an algorithm
that can decrypt a ciphertext if there exists another algorithm that can predict
the least significant bit of a message given only the corresponding ciphertext
and the public key. H̊astad and Näslund extended this result to show that all
individual RSA bits are secure [14].

Bleichenbacher’s attack assumes that the adversary has access to an oracle
that, for every ciphertext, returns whether the corresponding plaintext is PKCS
conforming. If the plaintext is not PKCS conforming, the oracle outputs an error
sign. Given just these error signs, because of specific properties of PKCS #1,
Bleichenbacher showed how a very clever program can decrypt a target ciphertext
(the oracle answer will reveal the first two bytes of the corresponding plaintext
of the chosen ciphertext). Though, at this point the algorithm of H̊astad and
Näslund can use this oracle to decrypt the target ciphertext, Bleichenbacher’s
attack, different from H̊astad and Näslund, was aimed at minimizing the number
of oracle queries; thus, showing the practicality of the attack.

Hence, all the attacker needs is the verification about the validity of the chosen
ciphertext (and not the corresponding whole plaintext). Thus this is clearly a
chosen ciphertext verification attack.

6 Separating Schemes: Generic Constructions

In this section we provide generic constructions of public key encryption schemes
that are

– IND-CPA secure but not IND-CCVA secure,
– IND-CCVA secure but not IND-CCA secure,
– IND-CCA1 secure but not IND-CCVA secure.

The constructions are based on the existence of (enhanced) trapdoor permu-
tations (see Appendix C in [11]). We refer the reader to [11] (pages 413-422)
for the encryption schemes, based on the existence of trapdoor permutations,
that are IND-CPA secure but not IND-CCA secure with the property that
∪k∈KEnc(M) = C. Constructions, based on enhanced one-way trapdoor per-
mutation, that are IND-CCA1 secure but not IND-CCA secure are also given in
[11] (pages 452-461).

6.1 Generic Construction: IND-CPA Secure But Not IND-CCVA
Secure

Let ECPA be a public key encryption scheme described by the key generation al-
gorithmKeyGenCPA, encryption algorithmENCCPA and decryption algorithm
DECCPA. Now define a new public key encryption E as follows
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– KeyGen: Same as KeyGenCPA.
– Enc: Encryption of a message m under a public key PK is give as

c = c1||c2 = ENCCPA(m,PK)||ENCCPA(m,PK)

– Dec: Decryption of a ciphertext c = c1||c2 with the corresponding secret key
SK will proceed as follows:
• m′

1 ← DECCPA(c1, SK, PK)
• m′

2 ← DECCPA(c2, SK, PK)
• If m′

1 = m′
2, return m′

1, else
• return ⊥

Theorem 2. If ECPA is IND-CPA secure then E is also IND-CPA secure.

Proof. Straightforward.

Lemma 2. Encryption scheme E is not IND-CCVA secure.

Proof. We construct an efficient IND-CCVA adversary A against E . In the chal-
lenge phase of the IND-CCVA security game, A outputs two equal length mes-
sagesm0,m1 and request the challenger to encrypt one of the message. The chal-
lenger picks a challange bit b ∈ {0, 1} at random, encrypts mb under the public
key PK, and returns the challenge ciphertext cb = cb1 ||cb2 . The adversary A
now picks one of the message, say m1, and computes c1 = ENCCPA(m1, PK).
A now submits the modified ciphertext c̄ = c1||cb2 to the Chosen Ciphertext
Verification Oracle. Now A will return 1 if and only if the oracle returns 1. It is
easy to verify that A’s guess is correct with probability 1. Hence the encryption
scheme E is not IND-CCVA secure.

6.2 Generic Construction: IND-CCVA Secure But Not IND-CCA
Secure

In [11] (pages 413-422), the one way trapdoor permutation based constructions
that are IND-CPA secure but not IND-CCA secure also possesses the following
property

∪k∈KEnc(M) = C.
Let us denote this scheme by E = (KeyGen,ENC,DEC). The IND-CCVA
adversary against E will not gain anything new by using the verification oracle
and thus E is IND-CCVA secure but not IND-CCA secure. But we assumed in
this article to work on schemes that satisfy ∪k∈KEnc(M) 
= C. We now give such
a construction.

Let us build a new public key encryption Ê = (KeyGenÊ , ENCÊ , DECÊ)
based on E as follows.

– KeyGenÊ : Same as KeyGen.
– ENCÊ : Encryption of a message m under a public key PK is give as

ĉ = 1||c, where c = ENC(m,PK).
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– DECÊ : Decryption of a ciphertext ĉ with the corresponding secret key SK
will proceed as follows:

DECÊ(ĉ, SK, PK) = DEC(c, SK, PK) if ĉ = 1||c, otherwise return ⊥.

It is easy to check that Ê is IND-CPA secure but not IND-CCA secure with
the added property that every ciphertext need not be valid. Since it is trivial
to distinguish valid ciphertexts from invalid ciphertexts (by just looking at the
most significant bit), CCVA oracle does not give any extra advantage to the
adversary and thus Ê is IND-CCVA secure.

6.3 Generic Construction: IND-CCA1 Secure But Not IND-CCVA
Secure

In this section, we give a generic construction of IND-CCA1 secure encryption
scheme which is not IND-CCVA secure. Let ECCA1 be a IND-CCA1 secure en-
cryption scheme. Let (PK, SK) be the public key-secret key pair, ENCCCA1 be
the encryption algorithm and DECCCA1 be the decryption algorithm of ECCA1.
We construct an encryption scheme, say S from SCCA1 whose public key-secret
key pair is (PK, SK). Encryption algorithm of E , say ENC, takes a message m
and outputs ciphertext c.

– c = c1||c2 ← ENC(m,PK)

where c1 ← ENCCCA1(m,PK), c2 ← ENCCCA1(m,PK), and PK = PK1.
Decryption algorithm of E , say DEC, for an input c = c1||c2 is defined as
following:

– m′
1 ← DECCCA1(c1, SK, PK)

– m′
2 ← DECCCA1(c2, SK, PK)

– If m′
1 = m′

2, return m′
1, else

– return ⊥

Theorem 3. If ECCA1 is IND-CCA1 secure then E is also IND-CCA1 secure.

Proof. Straightforward.

Lemma 3. The Encryption scheme E is not IND-CCVA secure.

Proof. Similar to the proof of lemma 2.

Remark: The question of an IND-CCVA secure encryption that is not IND-
CCA1 may be worth exploring.
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Abstract. In group key agreement protocols, it is desired that every
honest participant is assured of its contribution to the shared session key.
This property ensures that no dishonest insider or a group of dishonest
insiders can predetermine the key. In this paper we propose attacks on
the Dutta-Barua protocol in which one or more dishonest insiders are
able to control the key. We use the algebraic approach given by Delicata
and Schneider to formally analyze the attacks on the protocol.

1 Introduction

Group key agreement protocols aim to establish a common shared secret key
between members of a group. In such protocols it is desirable to have the con-
tributions of all the honest participants in the session key. In a poorly designed
protocol, a dishonest participant or group of dishonest participants may have
varying degrees of control over the key. Pieprzyk and Wang in [1] defined differ-
ent types of control that dishonest participant(s) can have on the session key.

Strong Key Control. A dishonest principal or a group of dishonest principals
can select any value of their choice as the group key. They may adjust their
public values such that the computed key is the selected value.

Selective Key Control. Contribution of some, but not all, honest members is
removed from the session key.

Unfortunately there exist many key agreement protocols that allow dishon-
est insiders to control the key. For example, strong key control was found in
Biswas’ protocol [2] by Tseng and Wu [3]. Similarly, attacks were found on
Burmester-Desmedt (BD) and Just-Vaudenay (JV) group key agreement proto-
cols by Pieprzyk and Wang in [1].

An unauthenticated static group key agreement protocol, based on basic DH
protocol was proposed by Burmester and Desmedt. Later on strong key control
by two dishonest insiders was found in the protocol by Pieprzyk and Wang [1].
In [4], Dutta and Barua proposed an authenticated protocol that establishes the
same key as the Burmester-Desmedt (BD) protocol [5]. The protocol is claimed
to be better than BD in terms of efficiency and security. It involves an extra
verification step that aims to detect the presence of a dishonest insider.

A. Bogdanov and S. Sanadhya (Eds.): SPACE 2012, LNCS 7644, pp. 77–93, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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We use the Delicata-Schneider (DS) model [6], [7] to analyze key control in DB
and BD protocols. The model is based on algebraic approach. It has been used
to analyze different classical properties in two party protocols but to the best
of our knowledge it has not been used to analyze key control. DB protocol has
been analyzed for different security properties in the literature but has not been
studied from the point of view of key control. Attacks were found in the dynamic
DB protocol in [8,9]. In [10], an unknown key share attack was described on the
protocol.

Our Contributions:We show that in the DB protocol a single dishonest insider
and two dishonest insiders have selective and strong key control respectively. We
also formally show that the protocol is free of key control if all the participants
behave honestly in the first phase and a single dishonest insider misbehaves only
in the second phase.

In the next section, we describe the BD protocol and an attack against it
proposed by Pieprzyk and Wang. We also describe the modification proposed by
Dutta and Barua to allow detection of malicious insider. In section 3, we give
an overview of the Delicata-Schneider model used for formal analysis. In section
4, we show the formal analysis of the attack on BD in DS model for a group of
four members. Analysis of key control in DB in the presence of single and two
dishonest insiders is given in section 5. In section 6 we prove, using DS model
that the protocol detects a dishonest insider misbehaving in the second phase.
We conclude in section 7.

Table 1 shows the notations used throughout the paper.

Table 1. Notations used

p, q : Two large primes such that q|p− 1
G : A subgroup of Z∗

p , having prime order q
g : Generator of group G
zI : Ephemeral public key of I I ∈ {A,B,C}
rI : Ephemeral private key of I
zi : message template in DS model i ∈ N
ri : Ephemeral private key of Mi

ti : Ephemeral public key of Mi

2 Review of BD and DB Protocols

2.1 BD Protocol

The protocol proposed by Burmester and Desmedt [5] extends the basic two
party Diffie Hellman key agreement protocol to group key agreement. It assumes
the presence of authenticated channels. For a group of n members, the protocol
assumes that all the members, M1,M2, . . . ,Mn are arranged in a circle, such
that Mn+1 = M1 and M0 = Mn.
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The protocol consists of two phases:

1. In phase 1, each member, Mi, computes its ephemeral public key ti = gri

and sends it to its left and the right neighbors.

2. In phase 2, each member computes Xi =
(

ti+1

ti−1

)ri
and broadcasts it. We let

KR
i = trii+1 and KL

i = trii−1, then Xi = KR
i /KL

i . The values KR
i and KL

i are
essentially the pairwise Diffie-Hellman keys shared by Mi with its right and
left neighbhours, respectively. Note that KL

i+1 = KR
i and KL

i = KR
i−1.

3. The group key is defined as the product of the pairwise DH keys shared
between each pair of adjacent members. After receiving the values Xj , 0 <
j ≤ n, j 
= i, Mi computes the group key as

GK = (KL
i )

nXn−1
i Xn−2

i+1 · · ·Xi−1
n Xi−2

1 · · ·Xi−2

= (KR
i−1)

n

(
KR

i

KR
i−1

)n−1 (
KR

i+1

KR
i

)n−2

· · ·
(

KR
n

KR
n−1

)i−1 (
KR

1

KR
n

)i−2

· · ·
(
KR

i−2

KR
i−3

)

= KR
i−1K

R
i · · ·KR

n KR
1 · · ·KR

i−2

= gr1r2+r2r3+···+rn−1rn+rnr1

As shown by Pieprzyk and Wang [1], the BD protocol fails to ensure contribution
of each honest member if there are some dishonest insiders. A single dishonest
insider can cheat an honest member to compute the group key which is predeter-
mined by the insider. In case of attack due to single dishonest insider different
members compute different key. If there are two dishonest insiders, they can
force all the honest members to compute the same predetermined value as the
group key. Here we define the attack in the presence of single dishonest insider
for a group of four members.

Consider a group of four members, M1,M2,M3,M4. Suppose M4 is dishon-
est and it wants to force M2 to compute the session key which is predeter-
mined by M4. It executes the first phase honestly, but in the second phase,
it first waits for public ratios, X1, X2 and X3 from all other honest mem-
bers. Using them it computes X ′

4 as t4/(t
4r4
1 X2

3X
3
2X

4
1 ) and broadcasts it. Fi-

nally, M2 computes the session key using this value as (KL
2 )

4(X2)
3(X3)

2X ′
4

=(gr1r2)4(X2)
3(X3)

2(t4/(t
4r4
1 X2

3X
3
2X

4
1 )) = t4 = gr4 . As r4 is chosen by M4, it

has strong control of the key.
Note that in the attack described above, M1 computes the correct key as it

does not use X4 to compute it. It can be seen that different members compute
different key. Thus, the attacker does not have control on the keys computed
by other members. As the keys are different, it may be argued that it can be
detected when the established key is used in further communication. However,
as in the case of attack on AGDH protocol [11,12], where the session key does
not remain same for all members, we regard the attack described above as a
successful one. We say that attacker has key control if the key computed by
any honest participant does not have that participant’s contribution. Formal
derivation of the above attack in DS model is given in section 4.
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2.2 DB Protocol

The first phase of Dutta-Barua (DB) protocol [4] is the same as BD. The second
phase differs in the computation of the key from Xi values received from other
participants. Here we only show the part of the protocol that is different from BD.

– After receiving the Xj values of all the other members in phase 2, Mi com-
putes the right keys of the other members as follows:

KR
i+1 = KR

i Xi+1

KR
i+2 = KR

i+1Xi+2

...

KR
i−1 = KR

i−2Xi−1

– Mi compares computed KR
i−1 with KL

i . If the two are same then Mi proceeds
further else aborts the protocol. This step is aimed at detecting the presence
of a dishonest insider.

– If above step is successful then compute the group key as GK =
∏n

k=1 K
R
k

= gr1r2+r2r3+···+rn−1rn+rnr1 .

In section 5 we will show that the extra verification step above does not suffice
to protect against key control attack by dishonest insiders.

3 Delicata-Schneider Model

Delicata and Schneider presented an algebraic approach to provide proofs of
security for a class of Diffie-Hellman based protocols [6], [7]. We describe the
model in this section. Their model is based on a construct called message tem-
plate, which suitably instantiated, can represent any value that an attacker can
derive from the information available to it. A value that cannot be obtained via
any possible instantiation of the message template is assumed to be secret.

The messages exchanged in a protocol belong to a group G, in which the
Decisional Diffie-Hellman problem is believed to be hard. Let g be the generator
of G agreed upon by all principals and e be the identity element. Let C be the
adversary. Define two sets: P and E. P consists of all those exponents, x, where
C knows gx, but not the x (excluding the case where x belongs to E). E consists
of those random values y, which are known to C.

Power of Adversary
Given initial sets P and E, the adversary can expand the set P as follows: (1)
Given m1,m2 ∈ P , add m1 +m2 to P ; (2) Given m ∈ P and n ∈ E, add mn
and (mn−1) to P ; and (3) Given m ∈ P , add (−m) to P . The attacker’s entire
knowledge can be represented as the closure of P under deductions of above
rules and set E. To represent all possible values derivable by the attacker, a
polynomial is defined over the sets E and P , as follows.
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1. Let F be a finite family of functions that map elements of E to integer
powers: Given E = {xc}, for e.g., we may define F = {f}, where, f =
{xc → −1}.

2. Let h be higher order function which, for a member of F , maps elements of
P to integers. As an example given F = {f}, where, f = {xc → −1}, h can
be defined as h(f) = h({xc → −1}) = {rA → 1}.

3. (message template) Fix some E and P then:

v(F, h) =
∑
f∈F

⎛⎝∑
p∈P

hf,p.p

⎞⎠(∏
e∈E

efe

)

Here v is message template for the system defined by E and P
4. A value m is realisable if it can be expressed as v(F, h) for some F and h.

In 2-party DH protocol, a principal U performs some key computation function,
k on input z to derive secret ZUV , which is supposed to be shared with V . This
is denoted as ZUV = kUV (z). For system given by E and P , a key computation
function k is said to provide secrecy iff ∀m.realisable(m) ⇒ ¬ realisable(k(m)).

The analysis using the model proceeds as follows.

– For a given protocol and an adversary, first the sets P and E are initialized
according to the knowledge of the adversary. The group identity is always
included in P ; this ensures that all elements appearing in E are realisable.

– The session secret and the incoming messages for the target victim (in case
of an active adversary), are represented in the form of message templates
defined over the sets P and E. (These sets can be different for different
message templates based on the type of attribute being analyzed.)

– An equation is then formed using above message templates and the key
derivation equation. If a solution exists then the adversary is successful else
not.

Example: Analysis of IKA in Basic DH
In the protocol, A sends zA = grA to B, B sends zB = grB to A. Key computed
by A is zrAB = grArB . Suppose, C be an adversary attacking A against implicit
key authentication (IKA). The sets representing the knowledge of C can be
defined as: P = {1, rA, rB} and E = {rC}, where rC is chosen by C. (Here 1
denotes the group identity.) To mount the attack, C sends gz1 as input from B
to A. Using this, A computes the key as gz1rA . Let this value be gz2 . Here, z1 and
z2 are message templates defined over the sets P and E. For C to be successful,
there should exist such values of z1 and z2 such that gz2 = gz1rA . This gives us
following equation

z2 = z1rA (1)

Let z1 = v(F1, h1), where F1 = {f1}, f1 = {rC → p1}, h1(f1) = {1 → n1, rA →
n2, rB → n3}. Let z2 = v(F2, h2), where F2 = {f2}, f2 = {rC → q1}, h2(f2) =
{1 → m1, rA → m2, rB → m3}. Thus, z1 = (n1 + n2rA + n3rB)r

p1

C and z2 =
(m1 +m2rA +m3rB)r

q1
C . Putting these values in (1), we have

(m1 +m2rA +m3rB)r
q1
C = (n1 + n2rA + n3rB)r

p1

C rA (2)
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One solution to the above equation is: m2 = n1 = q1 = p1 = 1, rest of the
values are zero. This results in z1 = rC and z2 = rArC . This shows that C
can successfully mount the attack by sending gz1 = grC as input to A. The key
computed is gz2 = grArC . C computes this value as zrCA .

4 Analysis of Key Control in BD Protocol

Consider a group of four members, M1,M2,M3,M4. Assume M4 is dishonest
and wants M2 to compute the session key a value that it has pre-computed.
For this it sends some manipulated value of X4 in the second phase. Let this
value be X ′

4. To compute this value, it first waits to receive X1, X2 and X3.
Let X ′

4 be equal to gz1 . Here z1 is the message template defined over following
sets: P1 = {1, r1, r2, r3, x1, x2, x3} and E1 = {r4} (x1, x2, x3 are the exponents
of g in X1, X2, X3 respectively). Sets P1 and E1 represent M4’s knowledge at
the time of computing X ′

4. Note that r2 is the exponent of g in t2, which is
not broadcast. We assume that the attacker eavesdrops on the communication
between M2 and M1 (M3) in phase 1 in order to learn t2. M2 can exploit knowl-
edge of t1, t2, t3, X1, X2, X3, r4 to compute X ′

4. Group key computed by M2 is
(KL

2 )
4(X2)

3(X3)
2X ′

4 = g4r1r2+3r2r3−3r1r2+2r3r4−2r2r3+z1 = gr1r2+r2r3+2r3r4+z1 .
Let it be gz2. Since M4 wants to compute this value before the protocol starts,
z2 is computed over the sets, P2 and E2 that represents the knowledge of M4

at that time, when it only knows the values chosen by itself. So, P2 = {1} and
E2 = {r4}.

For M4 to be successful there should exist such values for z1 and z2 so that
the key computed by M2 using gz1 in the form of X ′

4 is equal to gz2 . Thus, we
have following equation:

z2 = r1r2 + r2r3 + 2r3r4 + z1 (3)

z1 = v(F1, h1) where F1 = {f11, f12}; f11 = {r4 → p11}, f12 = {r4 → p21};
h1(f11) = {1 → n10, r1 → n11, r2 → n12, r3 → n13, x1 → n14,

x2 → n15, x3 → n16}

h1(f12) = {1 → n20, r1 → n21, r2 → n22, r3 → n23, x1 → n24,

x2 → n25, x3 → n26}
z2 = v(F2, h2) where F2 = {f2}; f2 = {r4 → q1}; h2(f2) = {1 → m1}
z1 =

∑i=2
i=1 (ni0 + ni1r1 + ni2r2 + ni3r3 + ni4x1 + ni5x2 + ni6x3)r

pi1

4 ; and z2 =
m1r

q1
4 .

Putting values of z1 and z2 in equation (3), we have

m1r
q1
4 = r1r2 + r2r3 + 2r3r4+

i=2∑
i=1

(ni0 + ni1r1 + ni2r2 + ni3r3 + ni4x1 + ni5x2 + ni6x3)r
pi1

4
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Replacing xi with riri+1 − ri−1ri in the above equation,

m1r
q1
4 = r1r2+r2r3+2r3r4+

i=2∑
i=1

(ni0+ni1r1+ni2r2+ni3r3+ni4(r1r2−r4r1)+

ni5(r2r3 − r1r2) + ni6(r3r4 − r2r3))r
pi1

4 (4)

Following values of the mapping coefficients satisfy the above equation: n20 =
m1 = q1 = p21 = 1; n21 = −4; n16 = −2; n15 = −3; n14 = −4; rest of all the
coefficients are equal to zero. This solution gives z1 = r4−4r1r4−2x3−3x2−4x1

and z2 = r4. Thus, X
′
4 = gz1 = gr4−4r1r4−2x3−3x2−4x1 . It can be seen that

X ′
4 = gr4/(t4r41 X2

3X
3
2X

4
1 ). It follows from the analysis thus far that we have

derived the attack given by Pieprzyk and Wang described in section 2.1.

5 Analysis of Key Control in DB Protocol

As discussed before, this protocol has a verification step to detect the presence
of dishonest insider. In this section we show that the detection fails if there are
two or more dishonest insiders or a single dishonest participant misbehaves in
the first phase. A single dishonest insider has selective control and two dishonest
insiders have strong control over the key. We formally show these results in this
section.

Attack with Single Dishonest Participant
As shown above, if any dishonest participant, Mi sends wrong value of Xi, then
it would be detected.

But the dishonest member can behave maliciously in the first phase and can
send such values to its left and the right neighbors so that the key computed does
not contain the contribution of some honest participants. Then, Mi computes
Xi value as per the protocol specification and hence the comparison done by the
honest participants fails to detect the presence of malicious participant.

The position of the honest members that can be attacked by the dishonest
insider are different in case of group of three, four and more than four members.
Table 2 lists the maximal group of the honest participants that can be attacked.
In all the case without loss of generality we have assumed M1 to be dishonest.
Here we describe the attack in case of five or more members. Attacks for three
and four member groups are given in appendix A. In the attacks defined in
the presence of a single dishonest insider, the incorrect messages sent by the
dishonest insider in the first phase are found heuristically. For other analysis
required to analyze the attack, we have used the DS model.

Attack on a Group of Five or More Members. In a group of five or more
members, the dishonest participant can remove the contribution of its left and
right neighbours from the session key. Consider a group of n members, where
M1 is dishonest. The victims are M2 and Mn. M1 first waits for other members
to send their ephemeral public key in first phase. Then it computes and sends
its ephemeral public keys to its neighbours as:
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Table 2. Possible victims against key control for single dishonest insider

Group Size (n) Malicious Victims
participant

3 M1 {M2} or {M3}
4 M1 {M2,M3} or {M3,M4}

> 4 M1 {M2,Mn}

Phase 1:
M1 → M2 : t12 = t−1

3 = g−r3 (t3 is public and hence known to M1.)
M1 → Mn : t1n = t−1

n−1 = g−rn−1 (tn−1 is public and hence known to M1.)
Here, the ephemeral public values are different for the left and the right neigh-
bours and M1 does not know the corresponding exponents.
Now, to send X1 in phase 2, it cannot compute it directly as described in the
protocol because it does not know the keys shared with its left and the right
neighbours. This is because it does not know the exponents of its own ephemeral
public keys sent in phase 1. Note that

∏n
i=1 Xi = 1. Hence, M1 can compute X1

as: X1 = 1/
∏n

i=2(Xi)
M1 broadcasts X1.
Since the value of X1 is computed correctly, the comparison performed by the
honest participants cannot detect the malicious behaviour.
The key computed by every member is the product of the keys shared between
each pair of neighbouring participants, i.e. tr212 ·gr2r3+r3r4+···+rn−2rn−1+rn−1rn ·trn1n.
Here tr212 is the right shared key of M1 and trn1n is the right shared key of Mn.
The resulting key will be equal to g−r3r2+r2r3+r3r4+···+rn−2rn−1+rn−1rn−rnrn−1 =
gr3r4+···+rn−2rn−1 . Clearly, the victim honest participants, M2 and Mn have no
contribution in this session key.
Note that M1 does not know its left and right key. So, it cannot compute the
session key in the way it is described in the protocol. To compute the key it has
to make use of all the available information, (i.e. X2, X3, . . . , Xn, t2, t3, . . . , tn).
To check whether this is feasible, we make use of the of formal technique.
Here, M1 has following information: X2, X3, . . . , Xn, t2, t3, . . . , tn. But it does
not know their corresponding exponents.
M1 does not know any secret exponent of other members.
P = {1, x2, x3, . . . , xn, r2, r3, . . . , rn}. Here, xi represents the exponent of g in
Xi, i.e. Xi = gxi .
E = {r1}.
For the adversary to be able to compute the session key, the key must be equal
to gz1, where z1 is a message template for some F and h defined over the sets
P and E.
Thus, we have following equation:

z1 = r3r4 + r4r5 + · · ·+ rn−2rn−1 (5)
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Let the mappings for functions F and h be defined as:
F = {f1}; f1 = {r1 → p1}. (Set F can have more than one function. For

now we start with one function and if required we can add more functions with
appropriate mappings.)

h(f1) = {1 → n1, x2 → n2, . . . , xn → nn, r2 → nn+2, . . . , rn → nn+n}.
Thus, using above mappings, we have:

z1 = v(F, h) = (n1 + n2x2 + · · ·+ nnxn + nn+2r2 + · · ·+ nn+nrn)r
p1

1 (6)

Putting this value in equation (5), we have

(n1+n2x2+ · · ·+nnxn+nn+2r2+ · · ·+nn+nrn)r
p1

1 = r3r4+r4r5+ · · ·+rn−2rn−1

(7)
Putting the values of x1, x2, . . . in equation (7) and then solving, we get following
values for constants:
n1 = nn−1 = nn = 0;n2 = (n− 4)/2;ni = n− (i+ 1); ∀3 ≤ i ≤ n− 2
all the remaining values are 0. The above solution implies that M1 can compute

the key as: X
(n−4)/2
2 Xn−4

3 Xn−5
4 Xn−6

5 · · ·X2
n−3Xn−2.

Attack in Presence of Two Dishonest Participants
If there are two or more dishonest participants in the group then they can to-
gether broadcast their changed values of X i.e. ratio of right and left shared key
so that they remain undetected by the honest participants and also, the group
key computed by the honest members is a value that was predetermined by the
dishonest participants.

Consider a group of n members. Two members are dishonest. The dishonest
members arrange themselves adjacent to each other in the group. Without loss
of generality, we assume that M1 and M2 are dishonest.

The messages sent by M1 and M2 are as described below:

1. M1 and M2 select a key K ′ = gr, which they want to be established as the
group session key.

2. In the first phase, both M1 and M2 behave honestly and send gr1 and gr2

respectively to their neighbours.
3. In phase 2, M1 and M2, first wait to receive Xi values from all the honest

participants.
Then using these values, they generate X1 and X2 as follows:
(a) X1 = gr/(gr2r3gr3r4 · · · grn−1rng2rnr1)
(b) X2 = gr2r3/(gr1rnX1)
(We have shown how to get this particular combination of values and then
to compute them from other Xi values in the analysis in appendix B using
formal technique.)

4. Broadcast X1 and X2.
5. Let KR

j denote the correct value of right shared key of Mj and K ′
j
R

the

value computed by Mi. Then K ′
j
R

= KR
j for 2 ≤ j ≤ n as the product

of X1 and X2 is gr2r3/gr1rn , which it should actually be in an honest run.
KR

1 =KR
n X1 = gr1rn+r−r2r3−r3r4−···−rn−1rn−2rnr1

= gr−r2r3−r3r4−···−rn−1rn−rnr1 .
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6. All the honest members compute the session key equal to K ′ =
∏j=n

j=1

(
K ′

j
R
)

= g(r−r2r3−r3r4−···−rn−1rn−rnr1)+(r2r3+r3r4···+rnr1) = gr.

Note that the product of X1 and X2 is g
r2r3/gr1rn , which it should actually be in

an honest run. All the honest participants in their computation for computing
the right key of its left neighbour makes use of the same product. Since, the
product is correct, the malicious activity remains undetected.

The key computed by all the honest participants is gr, the preselected value
of M1 and M2. We have shown this result in the analysis part.

Above attack shows that two or more dishonest participants can strongly
control the key as it does not contain the contribution of any honest member.
Note that in the attack that we discussed, the dishonest members were assumed
to be adjacent to each other. If the two dishonest members are not adjacent then
in that case also, none of the honest participant would be able to detect the attack
in the verification step. However, key computed by the honest members will be
different. Let Mi and Mi+k, i + k > i + 1 be the dishonest participants. Then
we have two subsets of the honest members: first from Mi+k+1 to Mi−1, and
the other from Mi+1 to Mi+k−1. The key computed by these two sets will be
different in the form of attack we have discussed. One of the group will compute
gr as the group key, while other set of members will have some different key,
that depends on the value of z1. As, it can be noticed that z1 is not independent
of honest members’ contribution, the key will also contain the contribution of
honest members. But, still the dishonest members can perform the attack against
a subset of honest members and none of the honest member can detect this.

6 Detection of a Corrupted Group Member Misbehaving
in Second Phase

In this section we show that if the following conditions hold, then the protocol
is free of key control.

– There is a single dishonest party;
– The dishonest party misbehaves only in phase 2.

Consider a group of n members, M1,M2, . . . ,Mn. Here we assume that all the
participants execute the first phase honestly and any dishonest participant mis-
behaves only in the second phase. Assuming this condition to be true we formally
prove, using the DS model, that the protocol can detect the presence of a sin-
gle dishonest insider. Let M1 be a dishonest participant and Mi, 2 ≤ i ≤ n
be a victim honest participant. M1 wants the session key to be a value that is
independent of Mi’s contribution. Let this value be g

z2 . For this it sends manip-
ulated value of X1 in the second phase. Let it be gz1 . Here, z1 and z2 are message
templates. M1 first waits for Xj from all Mj ; 2 ≤ j ≤ n. Using these values,
it computes X1 = gz1 . Let xj represents the exponent over g in Xj . Then, for
computing X1, M

′
1s knowledge can be represented using following sets in the DS

model:
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P1 = {1, r2, r3, . . . , ri, . . . , rn, x2, x3, . . . , xi, . . . , xn}; E1 = {r1}.
Since M1 wants the session key gz2 to be independent of Mi’s contribution, mes-
sage template, z2 is defined over following sets. These sets contain those values
that represent the knowledge of M1 such that the closure of set P2 does not
contain any value that includes Mi’s contribution.
P2 = {1, r2, r3, . . . , ri−1, ri+1, . . . , rn, (ri+1ri+2 − ri−1ri−2), x2, x3, . . . , xi−2,
xi+2, . . . , xn}; E2 = {r1}. In set P2, we have included the term (ri+1ri+2 −
ri−1ri−2). This term is obtained by simplifying (xi−1 + xi + xi+1) which cor-
responds to the product Xi−1XiXi+1. All the individual terms in the product
depend on ri, but the product is independent of it. The attacker knows all these
terms, but cannot use any of them alone while computing the key, as it will result
in a value with Mi’s contribution. But all these values together in the product
form can be used.
Let z1 = v(F1, h1), where, F1 = {f11}; f11 = {r1 → p1}; h1(f11) = {1 → n1,
rj → nj (2 ≤ j ≤ n), xj → nn+j (2 ≤ j ≤ n)}.
z2 = v(F2, h2), where, F2 = {f21}; f21 = {r1 → q1}; h2(f21) = {1 → m1,
rj → mj (2 ≤ j ≤ n; j 
= i), (ri+1ri+2 − ri−1ri−2) → mn+1,
xj → mn+j (2 ≤ j ≤ n; j 
= i− 1, i, i+ 1)}.
Thus, z1 = (n1 +

∑n
j=2 njrj +

∑n
j=2 nn+jxj)r

p1

1 ; z2 = (m1 +
∑n

j=2; j �=i mjrj +

mn+1(ri+1ri+2−ri−1ri−2)+
∑n

j=2; j �=i−1,i,i+1 mn+jxj)r
q1
1 For M1 to be success-

ful, there should exist some value of z1 and z2 as defined above so that the two
equations (8) and (9) are satisfied. The first equation captures the verification
step in the protocol, where each participant compares the computed right key
of its left neighbour with its own left key and the second equation captures the
key computation function. We denote by K

′R
j , the right key of Mj as computed

by Mi. Then, K
′R
j = K

′R
j−1Xj = K

′R
j−2Xj−1Xj = · · · = KR

i Xi+1 · · ·Xj−1Xj .

Notice that in the computation of K
′R
j , for i + 1 ≤ j ≤ n, Mi does not need

X1. So, K
′R
j = KR

j = grjrj+1 for i ≤ j ≤ n; and K
′R
j = K

′R
n (X1X2 · · ·Xj) =

grnr1+z1+rjrj+1−r1r2 for 1 ≤ j ≤ i− 1.
Hence, KL

i = gri−1ri and K
′R
i−1 = grnr1+z1+riri−1−r1r2 . Since, KL

i should be

equal to K
′R
i−1 we have,

ri−1ri = rnr1 + z1 + riri−1 − r1r2 (8)

Session key computed by Mi is
∏n

j=1 K
′R
j = KR

i

∏i−1
j=i+1 K

′R
j =

KR
i

∏n
j=i+1 K

′R
j

∏i−1
j=1 K

′R
j = griri+1+

∑n
j=i+1(rjrj+1)+

∑i−1
j=1(rnr1+z1+rjrj+1−r1r2)

= g
∑n

j=1(rjrj+1)+(i−1)z1+(i−1)r1rn−(i−1)r1r2 . This should be equal to gz2 . Hence,
we have following equation.

z2 =

n∑
j=1

(rjrj+1) + (i− 1)z1 + (i− 1)r1rn − (i− 1)r1r2 (9)

Substituting the value of z1 in equation (8),

ri−1ri = rnr1 + (n1 +
n∑

j=2

njrj +
n∑

j=2

nn+jxj)r
p1

1 + riri−1 − r1r2 (10)
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One possible solution to the above equation is nn = −1, n2 = 1, p1 = 1 rest are
zero. This makes z1 = r1r2 − rnr1. Note that all other possible solutions too will
give the same value for z1. Substituting the value of z2 and the computed value
of z1 in equation (9), we have

(m1 +
n∑

j=2; j �=i

(mjrj) +mn+1(ri+1ri+2 − ri−1ri−2) +
n∑

j=2,
j �=i−1,i,i+1

(mn+jxj))r
q1
1

=
n∑

j=1

(rjrj+1) + (i− 1)r1r2 − (i− 1)rnr1 + (i− 1)r1rn − (i− 1)r1r2 (11)

Simplifying equation (11),

(m1 +
n∑

j=2,
j �=i

mjrj +mn+1(ri+1ri+2 − ri−1ri−2)+

n∑
j=2,

j �=i−1,i,i+1

mn+jxj)r
q1
1 =

n∑
j=1

rjrj+1 (12)

Note that the terms riri+1 and ri−1ri on RHS cannot be balanced as there is no
other term containing ri on either side in the equation except these two. There-
fore equation (12) has no solution. This shows that the dishonest participant
cannot find two such messages that simultaneously satisfy both the equations.
This proves that the protocol is free of key control under the given condition.

7 Conclusions

In this paper we considered formal modeling of key control attacks on group key
protocols. As we have shown, the Dutta-Barua protocol suffers from key control
problems. We showed that in the case of a single dishonest participants key
control can be removed if we assume that the parties send the correct ephemeral
public values during the first phase.
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A Single Dishonest Insider

Group of Three Members:
In this case,M1 can attack either of its two neighbours. Removing the contribution
of both the neighbours results in the group key having value 1, which is generally
not accepted. So, we have not considered that condition in other cases too.
Attack:
Following steps shows the messages sent by M1. Suppose M2 is the victim.
Phase 1:
M1 → M2 : t12 = t−1

3 = g−r3 (t3 is public and hence known to M1.)
M1 → M3 : t13 = gr1 (r1 is chosen by M1)
Phase 2:
M1 cannot compute KR

1 , needed to compute X1, therefore, it uses X2 & X3

to compute X1.
M1 computes X1 = (X2X3)

−1 (X2 = tr23 /tr212 = g2r2r3

and X3 = tr313/t
r3
2 = gr1r3−r2r3)

M1 → * : X1.

tij represents ephemeral public key sent by Mi for Mj .
X → ∗ represents broadcast message from X .
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Here, it can be seen that KR
1 computed using X1, X3 by M2 is equal to

gr2r3X3X1 = gr2r3gr1r3−r2r3(g2r2r3gr1r3−r2r3)−1 = g−r2r3 , which is same as
KL

2 = tr212 = g−r3r2 , hence the malicious act is not caught. Similarly it can
be verified that M3 also gets the two values to be same.
The key computed by M2 is:
gr2r3(gr2r3X3)(g

r2r3X3X1) = gr1r3 . It can be verified that the same key is com-
puted by other honest members too. Clearly, this does not have r2 and thus does
not involves the contribution of M2 as intended by M1.
M1 computes the key as: tr13

Group of Four Members:
In case of four member group, the dishonest participant can make the session
key independent of any two honest participant’s contribution who are adjacent
to each other. Again suppose M1 is dishonest. Thus, it can make the session key
independent of the contribution of both M2 and M3 or M3 and M4. Following
steps shows the message sent by M1. Here we have shown the messages sent by
M1 only. All the other messages and notations are as per the protocol standards.
Suppose M2 and M3 are victims.
Phase 1:
M1 → M2 : t12 = t−1

3 = g−r3 (t3 is public and hence known to M1.)
M1 → M4 : t14 = gr1/t3 = gr1−r3 (r1 is chosen by M1)
Phase 2:
M1 cannot compute KR

1 and KL
1 ,needed to compute X1, therefore it uses X2,

X3 and X4 to compute X1.
M1 computes X1 = (X2X3X4)

−1 (X2 = tr23 /tr212 = g2r2r3 ; X3 = tr34 /tr32
= gr4r3−r2r3 and X4 = tr414/t

r4
3 = gr1−2r3r4)

M1 → * : X1.

Here again, it can be seen that KR
1 computed using X1, X3, X4 by M2 is equal

to
gr2r3X3X4X1 = gr2r3gr4r3−r2r3gr1−2r3r4(g2r2r3gr4r3−r2r3gr1−2r3r4)−1 = g−r2r3 ,
which is same as KL

2 = tr212 = g−r3r2 , hence the malicious act is not caught. Sim-
ilarly it can be verified that other honest participants also gets the two values
to be same, because X2 is computed according to the protocol steps.
The key computed is:
gr2r3(gr2r3X3)(g

r2r3X3X4)(g
r2r3X3X4X1) = gr1r4 . Clearly, this does not have

r2 and r3. Thus the key does not involve the contribution of M2 and M3 as
intended by M1.
M1 computes the key as: tr14 .

B Two Dishonest Insiders

We have a group of n members, where M1 and M2 are dishonest. Suppose they
want a fixed value K ′ = gr to be established as the session key. In the second
phase they behave maliciously.
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Suppose X1 = gz1 and X2 = gz2 . z1, z2 are some exponents that can be
expressed as message templates in the DS model and the dishonest members
should be able to compute gz1 and gz2.
M1 and M2 now have to compute the values for z1 and z2 such that both of the
following conditions:

1. The test performed by the honest participants does not detect the misbe-
haviour, i.e. KL

i is equal to the computed value of KR
i−1 by Mi using X1 and

X2 for all i; where, Mi is an honest member.
2. The session key, GK is K ′ = gr

are satisfied.
We first find a possible solution w.r.t. to any one honest participant and then

verify that the same is true for all other honest participants.
Consider the computations done by M3:

KL
3 = gr2r3 and KR3

2 i.e KR
2 as computed by M3 is gr3r4X4X5 · · ·XnX1X2 =

gr3r4+(r4r5−r3r4)+(r5r6−r4r5)+···+(rnr1−rn−1rn)+z1+z2 = gr1rn+z1+z2

The two values, KL
3 and KR3

2 must be equal. Hence, we have this equation:

r2r3 = r1rn + z1 + z2 (13)

The right key, KR
j of Mj , 3 ≤ j ≤ n computed by M3 does not use either of X1

or X2. Hence, M3 computes these values correctly. For M1 and M2, it computes
KR

1 = KR
n X1 = grnr1+z1 and KR

2 = KR
1 X2 = grnr1+z1+z2 .

The group key computed by M3 is
∏j=n

j=1 (KR
j ), which will be equal to

gr3r4+r4r5+···+rn−1rn+rnr1+(rnr1+z1)+(rnr1+z1+z2). The dishonest participants
want it to be equal to gr. So, we have following equation

r =
n∑

i=3

(riri+1) + (rnr1 + z1) + (rnr1 + z1 + z2) (14)

Solving equation (13) and (14), we get following values of z1 and z2:
z1 = r −∑n

i=2(riri+1)− rnr1 and
z2 = r2r3 +

∑n
i=2(riri+1)− r from these, values, X1 and X2 are computed as

gz1 and gz2 respectively.
Now, we verify, using DS model, that if it is possible for M1 and M2 to

compute these values using the information available to them.
M1 and M2 have following values:

1. Xi and ti, 3 ≤ i ≤ n (Note that M1 and M2 do not know the corresponding
exponents.)

2. r1, r2, r

Suppose xi represents the exponent over g in Xi, i.e. Xi = gxi . Thus, xi =
riri+1 − riri−1 for 3 ≤ i ≤ n.
Then we have following set definitions for the model:

P = {1, x3, x4, . . . , xn, r3, r4, . . . , rn}
E = {r1, r2, r}
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For M1 and M2 to be able to compute gz1 and gz2, z1 and z2 should be equal
to some message template defined over sets P and E. Let the above computed
value of z1 is equal to some message template z3 = v(F3, h3) and that of z2 is
z4 = v(F4, h4)
Let F3, h3, F4, h4 be defined as:

F3 = {f31, f32, f33}, f3k = {r1 → pk1, r2 → pk2, r → pk3};

h(f3k) = {1 → nk1, x3 → nk3, x4 → nk4, . . . , xi → nki, . . . , xn → nkn,

r3 → nkn+3, . . . , ri → nkn+i, rn → nkn+n}

for k = 1, 2, 3.

F4 = {f41, f42, f43}, f4k = {r1 → qk1, r2 → qk2, r → qk3};

h(f4k) = {1 → mk1, x3 → mk3, x4 → mk4, . . . , xi → mki, . . . , xn → mkn,

r3 → mkn+3, . . . , ri → mkn+i, rn → mkn+n}

for k = 1, 2, 3.
Thus, z3 = v(F3, h3) =

∑k=3
k=1(nk1+nk3x3+ · · ·+nkixi+ · · ·+nknxn+nkn+3r3+

nkn+4r4 + · · ·+ nkn+iri + · · ·+ nkn+nrn)r
pk1

1 rpk2

2 rpk3

and z4 = v(F4, h4) =
∑k=3

k=1(mk1+mk3x3+· · ·+mkixi+· · ·+mknxn+mkn+3r3+
mkn+4r4 + · · ·+mkn+iri + · · ·+mkn+nrn)r

qk1

1 rqk2

2 rqk3

So, we have following equations (from z1 = z3; z2 = z4):

r −
n∑

i=2

(riri+1)− rnr1 =

k=3∑
k=1

(nk1 + nk3x3 + · · ·+ nkixi + · · ·+ nknxn+

nk(n+3)r3 + nk(n+4)r4 + · · ·+ nk(n+i)ri + · · ·+ nk(n+n)rn)r
pk1

1 rpk2

2 rpk3 (15)

r2r3 +

n∑
i=2

(riri+1)− r =

k=3∑
k=1

(mk1 +mk3x3 + · · ·+mkixi + · · ·+mknxn+

mk(n+3)r3 +mk(n+4)r4 + · · ·+mk(n+i)ri + · · ·+mk(n+n)rn)r
qk1

1 rqk2

2 rqk3 (16)

Equations (15) and (16) can be balanced for following values of the mapping
constants.
n11 = p13 = 1;
n23 = 1, n24 = 2, . . . , n2i = i− 2, n2n = n− 2;
n3(n+n) = −n; p31 = 1. rest of all values are 0 in equation (15).

m11 = −1; q13 = 1;
m23 = −2,m24 = −3, . . . ,m2i = −(i− 1),m2n = −(n− 1);
m3(n+n) = n; q31 = 1. Rest of all values are 0 in equation (16)
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This gives, z3 = r + x3 + 2x4 + 3x5 + · · ·+ (n− 2)xn − nr1rn
z4 = −r − 2x3 − 3x4 · · · − (n− 1)xn + rnr1

Thus, X1 and X2 are computed as:
X1 = grX3X

2
4X

3
5 · · ·X i−2

i · · ·Xn−2
n /tr1n

and X2 = tr1n /(grX2
3X

3
4 · · ·X i−1

i · · ·Xn−1
n )

Now, we have to verify that KL
i is equal to the computed value of KR

i−1 by
Mi using X1 and X2. for all i, where, Mi is an honest member.
For this, consider an honest member Mi.
KL

i = gri−1ri

KR
i−1 = KR

i Xi+1Xi+2 · · ·XnX1X2X3 · · ·Xi−1

=griri+1+(ri+1ri+2−riri+1)+···+(rnr1−rn−1rn)+z1+z2+(r3r4−r2r3)+···+(ri−1ri−ri−1ri−2)

= gr1rn+z1+z2−r2r3+riri−1

= gr1rn+r2r3−rnr1−r2r3+riri−1 (from equation (13))
= griri−1 , which is same as KL

i .
Thus, we can see that none of the honest member can detect the malicious be-
haviour, as all of them compute KR

i−1 equal to their left key KL
i

Group Key Computed by Mi

The key computed by Mi is
∏i+n−1

j=i+1 (K
Ri
j )KR

i , where KRi
j is KR

j as computed
by Mi.
KRi

j = (
∏j

k=i+1 Xk)K
R
i . Note that members are arranged in a circle and there-

fore, X0 = Xn and Xn+1 = X1.
Mi computes correct value of right shared key of all the honest members till n,
as their computation does not involve X1 and X2.

KRi
j = KR

j (i ≤ j ≤ n) (17)

= gr1rn+z1 (j = 1) (18)

= gr1rn+z1+z2−r2r3+rjrj+1 (2 ≤ j < i) (19)

Thus, the group key computed by Mi is:

g
∑n

k=i (rkrk+1)+(rnr1+z1)+(rnr1+z1+z2)+
∑i−1

l=3
(rnr1+z1+z2−r2r3+rlrl+1)

From equation (13), z1 + z2 = r2r3 − r1rn. Substituting this in the above ex-
pression,

GKi = g
∑n

k=i (rkrk+1)+r2r3−z2+r2r3+
∑i−1

l=3 (rlrl+1)

= g
∑n

k=3 (rkrk+1)+(rnr1+z1)+(rnr1+z1+z2) = gr. (from equation (14))
Thus, it can be seen that all the honest members accept the predetermined value
of dishonest members as the group key. This shows that a pair of dishonest in-
siders have strong key control in DB protocol.
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Abstract. In this paper we explain how one can obtain Key-IV pairs
for Grain family of stream ciphers that can generate output key-streams
which are either (i) almost similar in the initial part or (ii) exact shifts of
each other throughout the generation of the stream. Let lP be the size of
the pad used during the key loading of Grain. For the first case, we show
that in expected 2lP many invocations of the Key Scheduling Algorithm
and its reverse routine, one can obtain two related Key-IV pairs that
can produce same output bits in 75 (respectively 112 and 115) selected
positions among the initial 96 (respectively 160 and 160) bits for Grain
v1 (respectively Grain-128 and Grain-128a). Similar idea works for the
second case in showing that given any Key-IV, one can obtain another
related Key-IV in expected 2lP many trials such that the related Key-IV
pairs produce shifted key-streams. We also provide an efficient strategy
to obtain related Key-IV pairs that produce exactly i-bit shifted key-
streams for small i. Our technique pre-computes certain equations that
help in obtaining such related Key-IV pairs in 2i many expected trials.

Keywords: Grain v1, Grain-128, Grain-128a, LFSR, NFSR, Related
Key-IV pairs, Sequences, Keystream, Stream Cipher.

1 Introduction

The Grain v1 stream cipher is in the hardware profile of the eStream portfolio [1]
that has been designed by Hell, Johansson and Meier in 2005 [12]. It is a syn-
chronous bit oriented cipher, although it is possible to achieve higher throughput
at the expense of additional hardware. The physical structure of Grain is simple
as well as elegant and it has been designed so as to require low hardware com-
plexity. Following certain attacks on the initial design of the cipher, the modified
versions Grain v1 [12], Grain-128 [13] and Grain-128a [2] were proposed after
incorporating certain changes. For detailed cryptanalytic results related to this
family, the reader may refer to [3–10, 14–17, 19].

Our results in this paper are motivated to study how given a Key-IV, one can
efficiently obtain another Key-IV so that the generated output key-streams are

– almost similar in the initial part or
– exact shifts of each other throughout the key-stream generation.

We call these Key-IV pairs “related” following [6, Section 3].

A. Bogdanov and S. Sanadhya (Eds.): SPACE 2012, LNCS 7644, pp. 94–110, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Since the Grain family of stream ciphers are essentially finite state machines,
we can make several interesting observations. Any pair of internal states during
the key-stream production stage (say S and S′) that differ only in a few bit
positions (say not exceeding three), produce very similar key-stream bits at-
least in the first few output rounds. The idea therefore is to come up with two
distinct Key-IV pairs (K, IV ) and (K ′, IV ′), that after the key initialization
round, produce the states S, S′ respectively. These Key-IV pairs would then
produce key-stream which would be initially very similar to one another.

On the other hand, since the state update functions of the cipher are one-to-
one and invertible, two distinct Key-IV pairs (K, IV ) and (K ′, IV ′) will never
produce exactly the same state S after the key initialization round. However,
it may be possible that the Key-IV pair (K ′, IV ′), after producing a certain
number of output bits (say i), lands on the state S which is the same state that
(K, IV )) lands on after Key initialization. Since Grain is a finite state machine,
the key-stream produced by (K ′, IV ′) after these i rounds is exactly the same
as that produced by (K, IV ). These Key-IV pairs will then produce i bit shifted
key-stream.

Though our work does not have any immediate implication towards breaking
any cipher of the Grain family, the observations are relevant in cryptographic
scenario.

1.1 Structure of Ciphers in Grain Family

The exact structure of the Grain family is explained in Figure 1. It consists of an
n-bit LFSR and an n-bit NFSR. Certain bits of both the shift registers are taken
as inputs to a combining Boolean function, whence the key-stream is produced.
The update function of the LFSR is given by the equation yt+n = f(Yt), where
Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR state at the
tth clock interval and f is a linear function on the LFSR state bits obtained
from a primitive polynomial in GF (2) of degree n. The NFSR state is updated
as xt+n = yt + g(Xt). Here, Xt = [xt, xt+1, . . . , xt+n−1] is an n-bit vector that
denotes the NFSR state at the tth clock interval and g is a non-linear function
of the NFSR state bits.

The output key-stream is produced by combining the LFSR and NFSR bits
as zt = h′(Xt, Yt) =

⊕
a∈A xt+a + h(Xt, Yt), where A is some fixed subset of

{0, 1, 2, . . . , n− 1}.

Key Loading Algorithm (KLA). The Grain family uses an n-bit key K, and
an m-bit initialization vector IV , with m < n. The key is loaded in the NFSR
and the IV is loaded in the 0th to the (m−1)th bits of the LFSR. The remaining
mth to (n−1)th bits of the LFSR are loaded with some fixed pad P ∈ {0, 1}n−m.
Hence at this stage, the 2n bit initial state is of the form K||IV ||P .

Key Scheduling Algorithm (KSA). After the KLA, for the first 2n clocks,
the key-stream produced at the output point of the function h′ is XOR-ed to both
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the LFSR and NFSR update functions, i.e., during the first 2n clock intervals, the
LFSR and the NFSR bits are updated as yt+n = zt+f(Yt), xt+n = yt+zt+g(Xt).

Pseudo-Random Key-stream Generation Algorithm (PRGA). After
the completion of the KSA, zt is used as the Pseudo-Random key-stream bit. It
is no longer XOR-ed to the LFSR and the NFSR. Therefore during this phase,
the LFSR and NFSR are updated as yt+n = f(Yt), xt+n = yt + g(Xt).

NFSR LFSR

g(Xt) f(Yt)

h(Xt, Yt)/

/

zt

⊕

⊕

Fig. 1. Structure of Stream Cipher in Grain Family

One may note that given any arbitrary state and the information about its
evolution (the number of clocks in KSA or PRGA), one can calculate the corre-
sponding state SK

0 at the beginning of the KSA. This is because the state update
functions in both the KSA and PRGA in the Grain family are one-to-one and
invertible. Hence one can construct the KSA−1 routine that given an input 2n
bit vector denoting the internal state of the cipher at the end of the KSA, re-
turns the 2n bit vector giving internal state of the cipher at the beginning of the
KSA. One can similarly describe a PRGA−1 routine that inverts one round of
the PRGA. Note that this is not any problem in the design, but this is a valid
approach for design of stream ciphers with small states.

1.2 Related Key-IV Pairs

Let us now explain our interpretation of related Key-IV pairs. This is in line
of what explained in [6, Section 3]. For this we need the construction of the
related Key-IV function φ as illustrated in Figure 2. Note that we require both
routines KSA and KLA to be uniquely reversible for a successful construction
of φ. The goal of constructing φ is to obtain a pair of related Key-IVs (K, IV )
and (K, IV )Δ such that they produce either almost similar initial key-streams
or shifted key-streams throughout the generation. With explicit construction of
such functions φ, we will show that given any Key-IV (K, IV ) in the Grain
family, it is possible to find related Key-IV pair (K, IV )Δ.
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(K, IV )
KLA

SK
0

KSA
S0

(K, IV )Δ
KLA−1

SK
0,Δ

KSA−1

S0,Δ

Δφ

Fig. 2. Construction of the Related Key-IV function

2 Related Key-IV Pairs in Grain Family

The general structure of Grain family as explained in Figure 1. In particular,
Grain v1 consists of an 80 bit LFSR and an 80 bit NFSR. It uses an 80-bit Key
and a 64-bit IV, and a 16-bit pad P = 0x ffff. Certain bits of both the shift
registers are taken as inputs to a combining Boolean function, whence the key-
stream is produced. The update function of the LFSR is given by the equation

yt+80 = yt+62 + yt+51 + yt+38 + yt+23 + yt+13 + yt
Δ
= f(Yt).

The NFSR state is updated as follows

xt+80 = yt + g(xt+63, xt+62, xt+60, xt+52, xt+45, xt+37, xt+33, xt+28, xt+21, xt+15

xt+14, xt+9, xt),

where g(xt+63, xt+62, . . . , xt)

Δ
= g(Xt) = xt+62 + xt+60 + xt+52 + xt+45 + xt+37 + xt+33 + xt+28 + xt+21+

xt+14 + xt+9 + xt + xt+63xt+60 + xt+37xt+33 + xt+15xt+9+

xt+60xt+52xt+45 + xt+33xt+28xt+21 + xt+63xt+45xt+28xt+9+

xt+60xt+52xt+37xt+33 + xt+63xt+60xt+21xt+15+

xt+63xt+60xt+52xt+45xt+37 + xt+33xt+28xt+21xt+15xt+9+

xt+52xt+45xt+37xt+33xt+28xt+21.

The output key-stream is produced by combining the LFSR and NFSR bits as
follows

zt =
⊕
a∈A

xt+a + h(yt+3, yt+25, yt+46, yt+64, xt+63)
Δ
=

⊕
a∈A

xt+a + h(Xt, Yt)

where A = {1, 2, 4, 10, 31, 43, 56} and h(s0, s1, s2, s3, s4)
= s1 + s4 + s0s3 + s2s3 + s3s4 + s0s1s2 + s0s2s3 + s0s2s4 + s1s2s4 + s2s3s4.

2.1 Search for Related Key-IV Pairs in Grain V1

The non-linear function h that takes inputs from both the linear and non-linear
registers to produce the key-stream, taps the 64th bit of the LFSR and no bit
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in between 65th and the 79th. This implies that if there exist two initial states
S0 and S0,Δ ∈ {0, 1}160 during the PRGA, such that S0 and S0,Δ differ in a
few positions, then there is a good possibility that some initial bits (may not
be contiguous) of the key-stream corresponding to the PRGA will be same. We
explain the complete scenario with a specific case here, when the last bit of the
two states are different, and all other bits are identical. So, this is single-bit
differential for the state S0. However, there are many other such possibilities
that may also be explored.

Let us consider that S0 and S0,Δ differ only in the 79th LFSR position. In
such a case, it is easy to check that they will produce identical key-stream for
some initial points. We will also show that it is possible to produce Key-IV pairs
(K0, IV0) and (K1, IV1) with Ki ∈ {0, 1}80 and IVi ∈ {0, 1}64 so that after
key-scheduling the pair (K0, IV0) produces the initial state S0 of the key-stream
production stage and the pair (K1, IV1) produces the initial state S0,Δ so that
S0 and S0,Δ differ only in the 79th LFSR position.

First, we will look at a method to compute such related pairs (K0, IV0) and
(K1, IV1). The method works because the KSA is invertible, i.e., given an initial
state of the key-stream production stage it is possible to back-track and deter-
mine the Key-IV pair that produced it. The following method is, in principle,
similar to the technique used by Zhang et al [19]. The basic idea is to generate at
random Key-IV pair K0, IV0 ∈ {0, 1}80 × {0, 1}64 and calculate the initial state
S0 of the PRGA. Then after flipping the y79 bit of S0 we produce the state S0,Δ

and backtrack to find out if there exists a Key-IV pair that produces S0,Δ. We
will state the algorithm formally now.

Output: Key-IV pair’s that produces almost similar initial key-stream or
Failure

Randomly choose a Key-IV pair (K, IV ) ∈ {0, 1}80 × {0, 1}64;1

Obtain the initial state of the KSA SK
0 = [K || IV || 0x ffff];2

Run the KSA for 160 clocks to produce an initial state S0 ∈ {0, 1}160;3

Construct S0,Δ from S0 by flipping the bit y79;4

Compute SK
0,Δ = KSA−1(S0,Δ) as the KSA routine is invertible;5

If SK
0,Δ is of the form [K̃ || ˜IV || 0x ffff], return (K, IV ) and6

(K, IV )Δ = (K̃, ˜IV ) as the related Key-IV pairs;
Else return failure;7

Algorithm 1: Search for related Key-IV pairs in Grain v1

Given that lP is the length of the Pad P (which is a specific pattern among
all the lP bit patterns), it is expected that we will be able to obtain related Key-
IV pairs in 2lP = 216 many runs of the algorithm (as if obtaining the specific
pattern through random search). The next thing that we need to check is the
propagation of the single-bit differential into the key-stream of the cipher. This
is described in the following technical result.
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Theorem 1. For Grain v1, the two initial states S0, S0,Δ ∈ {0, 1}160 which
differ only in the 79th position of the LFSR, produce identical output bits in 75
specific positions among the initial 96 key-stream bits produced during the PRGA.

Proof. Any input differential introduced in the 79th LFSR position takes 15
clocks before appearing at the 64th position, and hence the first 15 bits z0
to z14 will be exactly the same. In the 16th round, the differential arrives
at the 64th position of the LFSR, which contributes an input to the Boolean
function h and hence this bit may be different. Hereafter, the differential pro-
ceeds to the 63rd LFSR position, which does not provide an input to h and
hence in this round the output is the same. In the next round the differen-
tial is at the 62nd position, which although does not feed the output func-
tion h, provides an input to the LFSR update function, due to which a dif-
ference reappears in the 79th position. This new difference will now affect the
key-stream after 15 rounds. Thus by keeping track of the propagation of the
differential for the first 96 PRGA rounds it is possible to determine which
rounds produce the same output bit. At all rounds numbered k ∈ [0, 95] \
{15, 33, 44, 51, 54, 57, 62, 69, 72, 73, 75, 76, 80, 82, 83, 87, 90, 91, 93, 94, 95}, the dif-
ference exists only in positions that do not provide input to the Boolean function
h and hence at these clocks the key-stream bit produced by the two states are
essentially the same. At all other clock rounds the difference appears at positions
which provide input to h. Hence the key-stream produced at these clocks may
be different. After 96 rounds the input difference is fed to the non-linear update
function g of the NFSR, and hereafter the propagation of the difference would
depend on the particular NFSR state at that point. ��

2.2 Examples of Related Key-IV Pairs in Grain V1

In case of a practical search for related pairs of Key-IV, we notice that the
Algorithm 1 is expected to run 216 times for obtaining one pair of related Key-
IV’s. Now, this invocation may be accomplished in many ways. First we consider
the example for the situation as mentioned in Algorithm 1.

MultipleKey-IVTrials with a FixedDifferential. Consider a fixed differen-
tialΔ for all the (Key−IV ) pairs. In this case, Algorithm 1 needs to run expected
216 times with different randomly chosen (K, IV )’s to obtain a related Key-IV pair
(K, IV ) and (K, IV )Δ. In case of Grain v1, this Δ represents ‘flipping the last bit
of the LFSR’. With expected 216 queries in each case, we obtained related Key-IV
pairs during the experiments. One such example is as follows.

Key IV S

bf6689cead5ece39758c bdfa0025ac44a4fe 52f71a93959ff900ffa9 15c61a47522fffaf8a77

e166bc5aa1952733ab2a aed6838b948399a0 52f71a93959ff900ffa9 15c61a47522fffaf8a76

One can check that out of the initial 96 key-stream bits, 75 specific bits are
same as per Theorem 1 and in particular, 78 many are same in this case.
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Single Key-IV Trial with a Multiple Differentials. Now suppose a more
practical situation, where a single pair of Key-IV is provided, and one has to
produce a related pair of Key-IV corresponding to the one given. In this situation,
one may experiment with different values of Δ. If around 216 different Δ’s can
be used, then given a specific (K, IV ) a related Key-IV pair may be expected.
In this case, the expected number of invocations of KSA−1 is 216, one for each
Δ. However, the number of KSA invocation is only one as we have only a single
Key-IV pair for the complete strategy.

In case of Grain v1, we first observed that the single-bit change in the LFSR
results towards related initial bits of the key-stream. Similar situation is expected
to happen for 1, 2 or 3-bit changes in the LFSR, as the changes are still minor
compared to the total size of the state. Thus, we chose a simple family ofΔ where
at most 3 bits out of the 75 bits of the LFSR are taken; the LFSR has 80 bits and
we exclude the 4 bits (3rd, 25th, 46th, 64th) that go to the Boolean function h and
the 0th bit that goes to the NFSR. One may note that

(
75
1

)
+
(
75
2

)
+
(
75
3

)
> 216

and thus it is expected to obtain a related Key-IV pair.
Below we present an example, where the states differ in three bit positions of

the LFSR, namely 47, 52, 54. Out of the initial 80 key-stream bits produced, 55
are same.

Key IV S

bde8d3c319ff4d234706 f363180e262b6cc5 a74e7c7799b00f3c94e1 bf0315b589691f82085a

b223a57ce1578708677a 371d2d93363b014b a74e7c7799b00f3c94e1 bf0315b589681582085a

2.3 Related Key-IV’s in Grain-128

The structure of Grain-128 is similar to its previous versions. The only differences
are in the update functions of the LFSR, NFSR and the combining output
function. It uses an 128-bit Key and a 96-bit IV, and a 32-bit pad P = 0x ffff

ffff. The LFSR of Grain-128 is updated as

yt+128 = yt+96 + yt+81 + yt+70 + yt+38 + yt+7 + yt,

where the NFSR is updated as

xt+128 = yt+xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13+

xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84.

The output key-stream bit is produced as

zt =
⊕
j∈B

xt+j+yt+93+h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+95)

where B = {2, 15, 36, 45, 64, 73, 89} and h(x0, . . . , x8) = x0x1 + x2x3 + x4x5 +
x6x7 + x0x4x8.
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The key is loaded in the NFSR and the IV is loaded in the 0th to the 95th

bits of the LFSR. The remaining 96th to 127th bits of the LFSR are loaded
with 1’s (the 32-bit pad P , i.e., lP = 32). Here 256 rounds of KSA are executed
after which the key-stream is produced. As in Grain v1, here too, the KSA is
invertible. After an expected number of 2lP = 232 trials two related Key-IV pairs
(K0, IV0) and (K1, IV1) can be found. For these Key-IV pairs, the KSA gives
initial states S0 and S0,Δ that differ only in the 127th bit position.

Propagation of theDifferential. The following result describes the differential
propagation characteristics of the single-bit differential Δ in case of Grain-128.

Theorem 2. For the Grain-128 stream cipher, two initial states S0, S0,Δ ∈
{0, 1}256 which differ only in the 127th position of the LFSR, produce identi-
cal output bits in 112 specific positions among the initial 160 key-stream bits
produced during the PRGA.

Proof. As described in Theorem 1, a similar analysis applies in the case of Grain-
128. By tracking the evolution of the single bit differential introduced at the
127th LFSR position, it is possible to determine the clock rounds for which the
output key-stream is exactly similar for the related Key-IV pairs which give rise
to such a differential after the KSA. In Grain-128, the output key-stream for the
following rounds numbered

k ∈ [0, 159] \ {32, 34, 48, 64, 66, 67, 79, 80, 81, 85, 90, 92, 95, 96, 98, 99, 106, 107,
112, 114, 117, 119, 122, 124, 125, 126, 128, 130, 131, 132, 138, 139,

142, 143, 144, 145, 146, 148, 149, 150, 151, 153, 154, 155, 156, 157,

158, 159}
for a related Key-IV pair are identical. ��
Below we present a related Key-IV pair for Grain-128. One can verify that out of
the first 160 keystream bits produced by the Key-IV pairs in the given example,
112 specific bits are same as per Theorem 2 and 132 bits are same in total.

Key IV S

60287a5ecf99724716a83bf81a9735cf 62b6f21aa5d6511f43cb51f0 7bb026436bc29b585e676e90961830e0
7e86e48d2370eeda43ddd098a4b3e7d2

dc260a0042112620772443311b933f08 c026cf1526950adee08fbe14 7bb026436bc29b585e676e90961830e0
7e86e48d2370eeda43ddd098a4b3e7d3

2.4 Related Key-IV’s in Grain-128a

The LFSR update functions of Grain-128 and Grain-128a are the same. There
is a slight difference in the NFSR update function and the output function. Also
Grain-128a uses the pad 0x ffff fffe in the last 32 bits of the LFSR instead
of the all 1 pad. The NFSR update function for Grain-128a is given by

xt+128 =yt + xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13+

xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84+

xt+88xt+92xt+93xt+95 + xt+22xt+24xt+25 + xt+70xt+78xt+82.
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The output key-stream bit is generated as

zt=
⊕
j∈B

xt+j+yt+93+h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+94),

where the function h and the set B are same as defined for Grain-128.
It is known that the first 64 output bits of Grain-128a are used for initializing

the MAC and thereafter each alternative bit is used as the key-stream and the
other bit is used for constructing the MAC. Let us first refer to all these bits as
as output bits (these are referred as pre-output stream in [2]) and then analyse
the exact scenario. Then we will concentrate on the key-stream bits.

Propagation of the Differential. The following result describes the dif-
ferential propagation characteristic of the single-bit differential Δ in case of
Grain-128a.

Theorem 3. For the Grain-128a stream cipher, two initial states S0, S0,Δ ∈
{0, 1}256 which differ only in the 127th position of the LFSR, produce identical
output bits in 115 specific positions among the initial 160 output bits produced
during the PRGA.

Proof. The proof follows a similar analysis as done for Grain v1 and Grain-128.
The output bits for rounds

k ∈ [0, 159] \ {33, 34, 48, 65, 66, 67, 80, 81, 85, 91, 92, 95, 97, 98, 99, 106, 107, 112,
114, 117, 119, 123, 124, 125, 127, 128, 129, 130, 131, 132, 138, 139,

142, 143, 144, 145, 146, 149, 150, 151, 154, 155, 156, 157, 159}
for a related Key-IV pair are identical. ��
In case of Grain-128a, the Pad is of length lP = 32 bits, and the number of
bits that are same in the key-streams Z and ZΔ is 115. Thus, the complexity
of getting related pairs in these cases is expected 232. Moreover, 11 bits in the
key-stream, the bits {34, 66, 81, 92, 98, 124, 128, 130, 145, 150, 156} are always dif-
ferent in Z and ZΔ. This is because at these rounds the difference appears on
one of the NFSR state bits which are linearly added to the output of the h(·)
function to produce the keystream.

Out of the initial 160 output bits from Grain-128a, the initial 64 are used for
MAC. Thus we are now left with 160 − 64 = 96 bits. Again out of those, half
of them will be used for MAC and half of them will be used as key-stream bits.
Thus, we have actually considered 48 key-stream bits. The first 160 output bits
are indexed as 0 to 159. Among them the even numbered bits from 64 to 159 are
the key-stream bits. One may note that given two related Key-IV pairs, for the
initial 48 key-stream bits, 30 will be exactly same, 8 will be exactly complement
of each other and rest 10 cannot be determined before-hand.
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Below we present a related Key-IV pair for Grain-128a. One can verify that
out of the first 48 keystream bits produced by the Key-IV pairs in the given
example, 30 specific bits are same as per Theorem 3 and 33 bits are same in
total.

Key IV S

54fd23a7e54f8fb096a45189b65f0fff 5a7fb7b76c303592b74422c3 36a0589046e177ae325a4b60154084cd
fc74e3c99cad9a2f2fcbf394d44f15fd

1c21c39e9404b1c347ee8dc594f3d040 9db86204107b9ac4d401cc2d 36a0589046e177ae325a4b60154084cd
fc74e3c99cad9a2f2fcbf394d44f15fc

3 Occurrence of Key-IV Pairs That Produce Shifted
Key-Streams

The size of the Key-IV space in Grain being {0, 1}n × {0, 1}m, one may expect
that the cipher produces 2n+m different key-streams. However, many of these
key-streams are finite bit-position shifts of one another, that is natural in this
kind of design. We have already noted that both the KSA and PRGA routines
in the Grain family are invertible. Thus, given any Key-IV in the Grain fam-
ily, it may be possible to find another Key-IV pair that produces a bit-shifted
key-stream.

Let ψ : {0, 1}2n → {0, 1}2n be the state update function during the PRGA of
Grain. The goal is to construct a related key function φ : {0, 1}n × {0, 1}m →
{0, 1}n×{0, 1}m such that (K0, IV0) and φ(K0, IV0) produce shifted key-streams.
The construction of φ in our constrained model of the stream cipher is as in
Algorithm 2.

Thus, given any Key-IV in the Grain family, it is possible to find another
Key-IV such that both of them produce key-streams which are finite bit shifts
of one another, in an expected 2lP iterations where lP is the length of the
pad P . This holds under the assumption that, after the reverse KSA routine
the last lP bits of the LFSR are uniformly distributed. Hence, it is expected
that we will be able to obtain related Key-IV pairs in 2lP many iterations of
the loop.

We present a set of examples here for each of the stream cipher in the Grain
family. Given the Key-IV pairs in column 1 of the following table, column 2
gives a related Key-IV pair that produces shifted key-stream. Column 3 gives
the length of the shift.

Grain Key-IV Key-IV Shift

v1 4567b66f51b956542319 f0f9d3bc4f2d0001e11d 72343
96b81c6c97ed8853 67e95df014caf50a ≈ 216.14

128 fca5c3705794a26266f58d06f7e87b9f 990aa66d1d816db4d81cf42ab62937b2 236757088
cf74e27475fc36e159069606 54345cb47fed0997dc1a73d4 ≈ 227.82

128a 2b953abc7427e1c260b2995039766123 01f8cda5aa35dece20154a986e24e4d8 2642097831
81a25f710a9a24aed1644d9f 4bf4f64d462d379453928a7a ≈ 231.30
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Output: Key-IV pair that produces shifted key-stream or return failure
Randomly choose a Key-IV pair (K, IV ) ∈ {0, 1}n × {0, 1}m;1

Obtain the initial state of the KSA SK
0 = [K || IV || P ];2

Run the KSA for 2n clocks to produce an initial state S0 ∈ {0, 1}2n;3

Initialize i = 1;4

Construct the state Si by running one more round of the PRGA;5

Reverse the KSA routine to generate the initial state SK
i = KSA−1(Si);6

If SK
i is of the form [K̃ || ˜IV || P ] then return related Key-IV pair (K, IV ),7

(K, IV )i = (K̃, ˜IV ), and the shift i;
i ← i+ 1;8

If i is greater than some predefined threshold then return failure;9

Return to step 2 and repeat the process after running another round of the10

PRGA;

Algorithm 2: Related Key-IV function φ for shifted key-streams in Grain

3.1 Improved Strategy over [6] for Small Shift

In [6], Key-IV pairs in Grain v1, that produce shifted key-streams, were demon-
strated. The idea is as follows. First we demonstrate the idea for for 1-bit shift
for simplicity of explanation. If K0 ∈ {0, 1}n and IV0 ∈ {0, 1}m denote a
Key-IV, then the initial state of the KSA is denoted by B0 = K0 and C0 =
IV0||P . After the first round of KSA, the updated initial states are denoted by
B1||C1.

– If C1 can be written in the form IV1||P for IV1 ∈ {0, 1}m, then B1||C1 =
K1||IV1||P is another valid initial state of the KSA. So if the KSA starts
with the state B1||C1 instead of B0||C0, it may produce one bit-shifted key-
streams.

– An added sufficiency condition is required. The 1st output bit produced
during the PRGA must be 0 that appears from the KSA initial state B0, C0.
This is required to ensure that the state after the 2nth round of the KSA
using B1||C1, is the same as the state after the 1st PRGA round using
(B0, C0).

If both the above conditions are satisfied then (K0, IV0) and (K1, IV1) will in-
deed produce 1-bit shifted key-streams. Both the events have a probability of
occurrence of 1

2 and hence a related Key-IV pair may be found with probability
1
4 by randomly choosing Key-IV pairs. This idea extends to i rounds, so that
two Key-IV pairs which produce i-bit shifted key-stream may be obtained with
probability (14 )

i.
However, in this section we show that the probability may be improved to (12 )

i

by explicitly characterizing the structure of the Key-IV which, in every round of
KSA out of those i rounds, produce valid internal states.

To analyse this, let us study the KSA in more detail. Given a key IV pair
K0 = x0, x1, . . . , xn−1 and IV0 = y0, y1, . . . , ym−1, the state update function

during the KSA can be presented in the following way. Consider that x
[j]
i (y

[j]
i )

is the value in the ith cell of the NFSR (LFSR) in the jth KSA round. Denote

B0
Δ
= x

[0]
0 , x

[0]
1 , . . . , x

[0]
n−1, C0

Δ
= y

[0]
0 , y

[0]
1 , . . . , y

[0]
m−1||P = y

[0]
0 , y

[0]
1 , . . . , y

[0]
n−1.
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Input: B0, C0

Output: Bi, Ci, for i = 1 to u

for i = 1 to u do

y[i] ← f(Y [i−1]) where Y [i−1] = y
[i−1]
0 , y

[i−1]
1 , . . . , y

[i−1]
n−1

x[i] ← y
[i−1]
0 + g(X [i−1]) where X [i−1] = x

[i−1]
0 , x

[i−1]
1 , . . . , x

[i−1]
n−1

z[i] ← ⊕
a∈A x

[i−1]
a + h(X [i−1], Y [i−1])

Bi = (x
[i]
0 , x

[i]
1 , . . . , x

[i]
n−2, x

[i]
n−1) ← (x

[i−1]
1 , x

[i−1]
2 , . . . , x

[i−1]
n−1 , x

[i] + z[i])

Ci = (y
[i]
0 , y

[i]
1 , . . . , y

[i]
n−2, y

[i]
n−1) ← (y

[i−1]
1 , y

[i−1]
2 , . . . , y

[i−1]
n−1 , y[i] + z[i])

end

Algorithm 3: Obtaining Grain KSA Relations

In Grain v1, for B1||C1 to represent a valid initial state of the KSA it must
be of the form [K̃ || ˜IV || P ], Thus following Algorithm 3, this will occur if
y[1] + z[1] = 1 in the first iteration of the KSA (where y[i], z[i] are as defined in
Algorithm 3). This implies

y62 + y51 + y38 + y23 + y13 + y0 +
⊕
a∈A

xa + h(y3, y25, y46, y64, x63) = 1, (1)

that evaluates to

y62 =((y25 + x63 + 1)y3 + y25x63 + x63 + 1)y46 + y23 + y25 + x10 + y38 + y51+

x1 + x2 + x31 + x43 + x4 + x56 + y0 + y3 + y13 + 1.

This covers the case of [6] for 1-bit shift. Now, towards the extension, let us
consider the case for 2-bit shift.

For both B1||C1 and B2||C2 to be valid initial states, in addition to (1), we
need the following condition (y[2] + z[2] = 1) to hold:

y63 + y52 + y39 + y24 + y14 + y1 +
⊕
a∈A

xa+1 + h(y4, y26, y47, y65, x64) = 1. (2)

Solving (1) and (2), we obtain

y62 =((y25 + x63 + 1)y3 + y25x63 + x63 + 1)y46 + y23 + y25 + x10 + y38 + y51+

x1 + x2 + x31 + x43 + x4 + x56 + y0 + y3 + y13 + 1,

y63 =((y26 + x64 + 1)y4 + y26x64 + x64 + 1)y47 + y24 + y26 + x11 + y39 + y52+

x2 + x3 + x32 + x44 + x5 + x57 + y1 + y4 + y14 + 1.

Similarly, by solving together equations of the form y[i]+z[i] = 1 for each succes-
sive round of the KSA, we would be able to determine the necessary conditions
that need to be satisfied for each successive internal state (Bi||Ci), i = 1, 2, . . .
to be valid initial states of the Grain v1 KSA. In Appendix A, we present the
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equations required for 11-bit shift. Using mathematical tools like SAGE [18], we
could arrive at the solution to the simultaneous equations y[i]+ z[i] = 1 for upto
i = 12. Beyond that the equations are becoming quite complicated and we need
further investigations.

Satisfying these equations are necessary but not sufficient to find a chain of
Key-IV pairs that produce shifted key-streams. In order for valid Key-IV pairs
derived fromB0||C0, B1||C1, . . . , Bi||Ci to produce shifted key-streams, the first i
output bits produced by the Key-IV derived from B0||C0 during the PRGA must
be zero. By randomly choosing Key-IV pairs satisfying the above conditions, it
is expected that after 2i trials one such pair will be obtained that outputs i
zeros in the first i rounds of the PRGA. This is precisely the complexity of the
routine needed to find a chain of i such related Key-IV pairs. Thus it improves
the complexity of 22i presented in [6, Section 3].

Example 1. In the Grain family of stream cipher given the Key-IV pairs in col-
umn 1 of the following table, column 2 gives a related Key-IV pair that produces
shifted key-stream. Column 3 gives the length of the shift. We could successfully
obtained related Key-IV pairs for shifts upto 12. Below, we provide examples for
12-bit shifts.

Grain Key-IV Key-IV Shift

v1 8ca87875d334c9de694a 87875d334c9de694abbc 12
5246f9d65f5eaef9 6f9d65f5eaef9fff

128 b8d3dac27cbfeae545a508e9e551c095 3dac27cbfeae545a508e9e551c095753 12
bba4d4a0465a4448627e22ed 4d4a0465a4448627e22edfff

Non-applicability of Such Analysis on Grain-128a. It has already been
pointed out in [6, Section 3.4] that such a strategy will not work if the self-
similarity of the pad (initialization constant) is eliminated. Subsequently, this
has been implemented in Grain 128a [2]. The Grain-128a resists this due to the
asymmetric nature of the pad P used during the KLA. In this cipher, the pad
length is 32 bits and the value of P =0x ffff fffe, i.e., it consists of 31 ones
followed by a zero. Therefore after one round of KSA the last 32 bits of the
LFSR may either be 0x ffff fffc or 0x ffff fffd depending on whether the
feedback value was 0 or 1. A similar analysis for the first 32 rounds of the KSA
will show that it is not possible for the last 32 bits of the LFSR to have the
value P =0x ffff fffe in any of these rounds. This is because P is such that
it cannot be written in the form Ps||A, where Ps is any s bit suffix of P and A is
any (32− s)-bit string over {0, 1}. It is however possible that in the 33rd round
of the KSA, the last 32 bits of the LFSR is equal to P . However, finding such
Key-IV pairs by solving equations as above may not be possible in real time due
to large degree and number of monomials in these equations. If one attempts
to find such Key-IV pairs by choosing the initial states randomly, then too the
complexity of the task is expected to be (232)2 = 264.
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4 Conclusion

Here we have studied a model of stream cipher where the key and IV are directly
loaded in the state variables and the remaining part of the state is filled up with
some kind of padding. Considering the length of the padding as lP , it can be
shown that given any Key-IV one can easily construct another pair with expected
2lP time complexity that produces same bits at a significant amount of initial
key-stream. With expected 216 invocations of the KSA and its inverse routine,
we could recover related Key-IV pairs of Grain v1 that produce key-streams
with 75 identical bits out of the first 96 bits. The effect of our work on Grain-
128 and Grain-128a is also similar and we could obtain related Key-IV pairs for
both the ciphers within an expected complexity of 232 such that the two output
streams match at 112 and 115 bits out of the first 160 bits in Grain-128 (here it is
key-stream) and Grain-128a (here it is pre-output stream instead of key-stream)
respectively.

Further, we have studied the related Key-IV pairs of Grain that produce
shifted key-streams. We demonstrate how one can obtain a related Key-IV in
expected 2lP trials for any given Key-IV such that the pair can generate key-
streams that are finite shifts of one another. This idea works for all the versions
of Grain. We could also construct Key-IV pairs that produce i-bit shifted key-
streams in 2i many trials and our experiments work for upto i = 12. This is
applicable for Grain v1 and Grain-128, but not for Grain-128a.
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y53 =
(
(r108 + r66 + 1)r129 + 1

)
r86 +

(
r108r66 + r66 + 1

)
r129 + r106 + r108 + r121 + r13

+r34 + r4 + r46 + r5 + r59 + r7 + r83 + r96

y54 =
(
(r109 + r67 + 1)r130 + 1

)
r87 +

(
r109r67 + r67 + 1

)
r130 + r107 + r109 + r122 + r14

+r35 + r47 + r5 + r6 + r60 + r8 + r84 + r97

y55 =
(
(r110 + r68 + 1)r131 + 1

)
r88 +

(
r110r68 + r68 + 1

)
r131 + r108 + r110 + r123 + r15 +

r36 + r48 + r6 + r61 + r7 + r85 + r9 + r98

y56 =
(
(r111 + r69 + 1)r132 + 1

)
r89 +

(
r111r69 + r69 + 1

)
r132 + r10 + r109 + r111 + r124

+r16 + r37 + r49 + r62 + r7 + r8 + r86 + r99

y57 =
(
(r112 + r70 + 1)r133 + 1

)
r90 +

(
r112r70 + r70 + 1

)
r133 + r100 + r11 + r110 + r112

+r125 + r17 + r38 + r50 + r63 + r8 + r87 + r9

y58 =
[
(r71 + 1)r91 + r71 + 1

]
r106 +

[
(r71 + 1)r91 + r71 + 1

]
r108 +

[
(r71 + 1)r91 + r71

+1
]
r83 +

[
(r71 + 1)r91 + r71 + 1

]
r96 +

[
(r71 + 1)r91 + (r71 + r91)r113 + r71 + 1

]

r121 +
[
(r71 + 1)r91 + (r71 + r91)r113 +

(
(r66 + 1)r71 + ((r66 + 1)r71 + r66 + 1)r91 +

((r71 + 1)r91 + r71 + 1)r108 + ((r66 + 1)r71 + (r66 + 1)r91 + (r71 + r91)r108)r113 + r66

+1
)
r129 + r71 + 1

]
r86 +

[
(r66 + 1)r71 +

(
(r66 + 1)r71 + r66 + 1

)
r91 +

(
(r66r71

+r66)r91 + r66r71 + r66
)
r108 +

(
(r66 + 1)r71 + (r66 + 1)r91 + (r66r71 + r66r91)r108

)

r113 + r66 + 1
]
r129 +

[
(r71 + r91)r106 + (r71 + r91)r108 + (r71 + r91)r83 + (r71 + r91)

r96 +
(
r13 + r34 + r4 + r46 + r5 + r59 + r7

)
r71 +

(
r13 + r34 + r4 + r46 + r5 + r59

+r7
)
r91 + 1

]
r113 +

[
r13 + r34 + r4 + r46 + r5 + r59 + r7

]
r71 +

[(
r13 + r34 + r4 +

r46 + r5 + r59 + r7
)
r71 + r13 + r34 + r4 + r46 + r5 + r59 + r7 + 1

]
r91 + r10 + r101 + r111

+r12 + r126 + r13 + r18 + r34 + r39 + r4 + r46 + r5 + r51 + r59 + r64 + r7 + r88 + r9

y59 =
[
(r72 + 1)r92 + r72 + 1

]
r107 +

[
(r72 + 1)r92 + r72 + 1

]
r109 +

[
(r72 + 1)r92 + r72 + 1

]

r84 +
[
(r72 + 1)r92 + r72 + 1

]
r97 +

[
(r72 + 1)r92 + (r72 + r92)r114 + r72 + 1

]
r122 +

[
(r72 + 1)r92 + (r72 + r92)r114 +

(
(r67 + 1)r72 + ((r67 + 1)r72 + r67 + 1)r92 + ((r72 + 1)

r92 + r72 + 1)r109 +
(
(r67 + 1)r72 + (r67 + 1)r92 + (r72 + r92)r109

)
r114 + r67 + 1

)
r130

+r72 + 1
]
r87 +

[
(r67 + 1)r72 + ((r67 + 1)r72 + r67 + 1)r92 +

(
(r67r72 + r67)r92 + r67

r72 + r67
)
r109 +

(
(r67 + 1)r72 + (r67 + 1)r92 + (r67r72 + r67r92)r109

)
r114 + r67 + 1

]

r130 +
[
(r72 + r92)r107 + (r72 + r92)r109 + (r72 + r92)r84 + (r72 + r92)r97 +

(
r14 + r35

+r47 + r5 + r6 + r60 + r8
)
r72 +

(
r14 + r35 + r47 + r5 + r6 + r60 + r8

)
r92 + 1

]
r114

+
[
r14 + r35 + r47 + r5 + r6 + r60 + r8

]
r72 +

[
(r14 + r35 + r47 + r5 + r6 + r60 + r8)r72
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+r14 + r35 + r47 + r5 + r6 + r60 + r8 + 1
]
r92 + r10 + r102 + r11 + r112 + r127 + r13 +

r14 + r19 + r35 + r40 + r47 + r5 + r52 + r6 + r60 + r65 + r8 + r89

y60 = (r73 + 1)r9 +
[
(r73 + 1)r93 + r73 + 1

]
r108 +

[
(r73 + 1)r93 + r73 + 1

]
r110 +

[
(r73 + 1)

r93 + r73 + 1
]
r98 +

[
(r73 + 1)r93 + (r73 + r93)r115 + r73 + 1

]
r123 +

[
(r73 + 1)r93 +

(r73 + r93)r115 + r73 + 1
]
r85 +

[
(r73 + 1)r93 + (r73 + r93)r115 +

(
(r68 + 1)r73 + ((r68 +

1)r73 + r68 + 1)r93 + ((r73 + 1)r93 + r73 + 1)r110 +
(
(r68 + 1)r73 + (r68 + 1)r93 + (r73

+r93)r110
)
r115 + r68 + 1

)
r131 + r73 + 1

]
r88 +

[
(r68 + 1)r73 + ((r68 + 1)r73 + r68 + 1)r93

+
(
(r68r73 + r68)r93 + r68r73 + r68

)
r110 +

(
(r68 + 1)r73 + (r68 + 1)r93 + (r68r73 + r68

r93)r110
)
r115 + r68 + 1

]
r131 +

[
r15 + r36 + r48 + r6 + r61 + r7

]
r73 +

[
(r73 + r93)

r108 + (r73 + r93)r110 + (r73 + r93)r98 +
(
r15 + r36 + r48 + r6 + r61 + r7

)
r73 +

(
r15

+r36 + r48 + r6 + r61 + r7 + r9
)
r93 + r73r9 + 1

]
r115 +

[
(r73 + 1)r9 +

(
r15 + r36 +

r48 + r6 + r61 + r7
)
r73 + r15 + r36 + r48 + r6 + r61 + r7 + 1

]
r93 + r103 + r11 + r113 +

r12 + r128 + r14 + r15 + r20 + r36 + r41 + r48 + r53 + r6 + r61 + r66 + r7 + r90

y61 = (r74 + 1)r10 +
[
(r74 + 1)r94 + r74 + 1

]
r109 +

[
(r74 + 1)r94 + r74 + 1

]
r111 +

[
(r74 + 1)r94

+r74 + 1
]
r99 +

[
(r74 + 1)r94 + (r74 + r94)r116 + r74 + 1

]
r124 +

[
(r74 + 1)r94 + (r74 + r94)

r116 + r74 + 1
]
r86 +

[
(r74 + 1)r94 + (r74 + r94)r116 +

(
(r69 + 1)r74 + ((r69 + 1)r74 + r69

+1)r94 + ((r74 + 1)r94 + r74 + 1)r111 +
(
(r69 + 1)r74 + (r69 + 1)r94 + (r74 + r94)r111

)
r116

+r69 + 1
)
r132 + r74 + 1

]
r89 +

[
(r69 + 1)r74 + ((r69 + 1)r74 + r69 + 1)r94 +

(
(r69r74 + r69)

r94 + r69r74 + r69
)
r111 +

(
r69 + 1)r74 + (r69 + 1)r94 + (r69r74 + r69r94)r111

)
r116 + r69

+1
]
r132 +

[
r16 + r37 + r49 + r62 + r7 + r8

]
r74 +

[
(r74 + r94)r109 + (r74 + r94)r111 +

(r74 + r94)r99 +
(
r16 + r37 + r49 + r62 + r7 + r8

)
r74 +

(
r10 + r16 + r37 + r49 + r62

+r7 + r8
)
r94 + r10r74 + 1

]
r116 +

[
r74 + 1)r10 +

(
r16 + r37 + r49 + r62 + r7 + r8

)
r74

+r16 + r37 + r49 + r62 + r7 + r8 + 1
]
r94 + r104 + r114 + r12 + r129 + r13 + r15 + r16 + r21

+r37 + r42 + r49 + r54 + r62 + r67 + r7 + r8 + r91

y62 =
(
r106 + r64 + 1)r84 + r106r64 + r64 + 1

)
r127 + r104 + r106 + r11 + r119 + r132 + r2 + r3 +

r32 + r44 + r5 + r57 + r81 + r84 + r94 + 1

y63 =
(
(r107 + r65 + 1)r85 + r107r65 + r65 + 1

)
r128 + r105 + r107 + r12 + r120 + r133 + r3 + r33

+r4 + r45 + r58 + r6 + r82 + r85 + r95 + 1
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Abstract. The 32-bit MAC of Grain-128a is a linear combination of
the first 64 and then the alternative keystream bits. In this paper we
describe a successful differential fault attack on Grain-128a, in which
we recover the Secret Key by observing the correct and faulty MACs
of certain chosen messages. The attack works due to certain properties
of the Boolean functions and corresponding choices of the taps from
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1 Introduction

The Grain-128a authentication scheme was proposed in SKEW 2011 [1] by Ågren
et al. It was later described in [2]. Any message in {0, 1}∗ can be mapped to a
32-bit tag using this authenticated-encryption scheme. Grain-128a is essentially
part of the Grain family which was first proposed by Hell, Johansson and Meier
in 2005 [13] as a part of the eStream project. The physical structure of the Grain
family is simple as well as elegant and has been designed so as to require low
hardware complexity. In response to cryptanalysis against the initial design of
the cipher, the modified versions Grain v1 [13], Grain-128 [14] and Grain-128a [1]
were proposed in due course. Analysis of this cipher is an area of recent interest
as evident from number of cryptanalytic results [3–12, 16–19, 22, 23].

Fault attacks on stream ciphers have received attention in recent crypto-
graphic literature since the work of Hoch and Shamir [15]. For differential fault
attack scenario in stream ciphers, the attacker is allowed to inject faults in the in-
ternal state, and then by analyzing the difference in the faulty and the fault-free
keystreams, he attempts to deduce the complete or partial information about
the internal state/Secret Key. The most common method of injecting faults is by
using laser shots or clock glitches [20, 21] (see these and the references therein).
Though fault attacks usually rely on optimistic assumptions and study the ci-
pher in a model that is weaker than the original version, they are not unrealistic

A. Bogdanov and S. Sanadhya (Eds.): SPACE 2012, LNCS 7644, pp. 111–125, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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as evident from literature. In this paper too, the model we study is a follow
up of existing state-of-the-art literature [4, 6, 16]. A detailed justification of the
feasibility of such fault model is presented in [6, Section IIIB].

Grain-128 and Grain v1 have been successfully cryptanalyzed by employing
fault attacks [4, 6, 16]. In these ciphers, the attacker has the advantage of ac-
cessing and analyzing the entire fault-free and faulty keystreams. In Grain-128a,
this is not the case as it accommodates authentication too. The scheme does
not make the first 64 keystream bits available to the attacker. Thereafter the
keystream bits are used for encryption and authentication alternatively. The
scheme outputs 32-bit MAC of any message and this can be used by the at-
tacker. In our work, we have described an approach to find the Secret Key used
in the authentication scheme by observing the correct and faulty MACs of certain
specific messages. In particular, our attack works in the same broad framework
described in [4], but due to the added restriction of the first 64 keystream bits
and every alternate keystream bit thereafter not being available to the attacker,
the ground level details of the attack with respect to fault location identification,
construction of linear equations to deduce the LFSR and the NFSR state are
entirely different.

We proceed with the description of the Grain family, and in particular Grain-
128a, in this section. The implementation of the attack on Grain-128a along with
the fault location identification routine is explained in Section 2.

1.1 Brief Description of Grain Family

The exact structure of the Grain family is explained in this section. It consists
of an n-bit LFSR and an n-bit NFSR. Certain bits of both the shift registers
are taken as inputs to a combining Boolean function, whence the keystream is
produced. The update function of the LFSR is given by the equation yt+n =
f(Yt), where Yt = [yt, yt+1, . . . , yt+n−1] is an n-bit vector that denotes the LFSR
state at the tth clock interval and f is a linear function on the LFSR state bits
obtained from a primitive polynomial in GF (2) of degree n.

We abuse the + notation for Boolean XOR, i.e., GF(2) addition as well as
standard arithmetic addition. However, that will be clear from the context.

The NFSR state is updated as xt+n = yt + g(Xt). Here, the n-bit vector
Xt = [xt, xt+1, . . . , xt+n−1] denotes the NFSR state at the tth clock interval and
g is a non-linear function of the NFSR state bits.

The output keystream is produced by combining the LFSR and NFSR bits
as zt = h′(Xt, Yt) =

⊕
a∈A xt+a + h(Xt, Yt), where A is some fixed subset of

{0, 1, 2, . . . , n− 1}.
The Grain family uses an n-bit Key K, and an m-bit initialization vector IV ,

with m < n. The Key is loaded in the NFSR and the IV is loaded in the 0th to
the (m−1)th bits of the LFSR. The remaining mth to (n−1)th bits of the LFSR
are loaded with some fixed pad P ∈ {0, 1}n−m. Hence at this stage, the 2n bit
initial state is of the form K||IV ||P . Then, for the first 2n clocks, the keystream
produced at the output point of the function h′ is XOR-ed to both the LFSR
and NFSR update functions, i.e., during the first 2n clock intervals, the LFSR
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and the NFSR bits are updated as yt+n = zt + f(Yt), xt+n = yt + zt + g(Xt).
This is the Key Scheduling Algorithm (KSA).

After the completion of the KSA, zt is no longer XOR-ed to the LFSR and the
NFSR but it is used as the Pseudo-Random keystream bit. This is the Pseudo-
Random Generation Algorithm (PRGA). Therefore during this phase, the LFSR
and NFSR are updated as yt+n = f(Yt), xt+n = yt + g(Xt).

For Grain-128a authenticated encryption scheme the exact parameters are as
follows. The size of Key n = 128 bits and the IV is of size m = 96 bits. The
value of pad used is P = 0xFFFF FFFE. The LFSR update rule is given by

yt+128
Δ
= f(Yt) = yt+96 + yt+81 + yt+70 + yt+38 + yt+7 + yt.

The NFSR state is updated as follows

xt+128 = yt + g(xt+96, xt+95, xt+93, xt+92, xt+91, xt+88, xt+84, xt+82, xt+78,

xt+70, xt+68, xt+67, xt+65, xt+61, xt+59, xt+48, xt+40, xt+27,

xt+26, xt+25, xt+24, xt+22, xt+13, xt+11, xt+3, xt),

where g(xt+96, xt+95, . . . , xt) is defined as

g(Xt) = xt + xt+26 + xt+56 + xt+91 + xt+96 + xt+3xt+67 + xt+11xt+13

+ xt+17xt+18 + xt+27xt+59 + xt+40xt+48 + xt+61xt+65 + xt+68xt+84

+ xt+88xt+92xt+93xt+95 + xt+22xt+24xt+25 + xt+70xt+78xt+82.

The keystream bit zt is defined as

zt =
⊕
j∈A

xt+j+yt+93+h(xt+12, yt+8, yt+13, yt+20, xt+95, yt+42, yt+60, yt+79, yt+94)

where A = {2, 15, 36, 45, 64, 73, 89} and h(s0, . . . , s8) = s0s1 + s2s3 + s4s5 +
s6s7 + s0s4s8.

Authentication. Assume that we have a message of length L defined by the bits
m0, . . . ,mL−1. Set mL = 1 as padding. To provide authentication, two registers,
called accumulator and shift register of size 32 bits each, are used. The content of
accumulator and shift register at time t is denoted by a0t , . . . , a

31
t and rt, . . . , rt+31

respectively. The accumulator is initialized through aj0 = zj, 0 ≤ j ≤ 31 and the
shift register is initialized through rj = z32+j , 0 ≤ j ≤ 31. The shift register is

updated as rt+32 = z64+2t+1. The accumulator is updated as ajt+1 = ajt +mtrt+j

for 0 ≤ j ≤ 31 and 0 ≤ t ≤ L. The final content of accumulator, a0L+1, . . . , a
31
L+1

is used for authentication. Here we follow the description given in [2].

2 Differential Fault Analysis on Grain-128a

We like to point out that to the best of our knowledge there is no existing
fault attack on Grain-128a available in literature. Moreover, our attack strategy
works using the MAC of certain messages instead of exploiting the keystream
bits directly. Before proceeding further, let us now formalize the fault model.
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1. The attacker is able to reset the system with the original Key-IV (as in [4,
6]) or the original Key and different IVs (as in [16]) and start the cipher
operations again.

2. The attacker can inject a fault at any one random bit location of the LFSR or
NFSR. As a result of the fault injection, the binary value in the bit-location
(where the fault has been injected) is toggled. The attacker is not allowed to
choose the location where he wants to inject the fault. However, as assumed
in both [4, 6, 16] the fault in any bit may be reproduced at any later stage
of operation, once injected.

3. Similar to [4, 6], the attacker can inject faults in the LFSR only, whereas the
NFSR has been used for fault injection in [16].

4. The attacker has full control over the timing of fault injection, i.e., it is
possible to inject the fault precisely at any stage of the cipher operation.

5. The attacker can obtain the MAC of any message of his choice including the
empty message.

2.1 Obtaining the Location of the Fault

Our attack model assumes that the attacker is allowed to toggle the value at
exactly one random location of the LFSR. The attacker, however can not explic-
itly choose the location where the fault is to be injected. In order for the attack
to succeed, it is very important that it will be possible to identify the location
of the LFSR where the fault has been induced.

Let S0 ∈ {0, 1}256 be the initial state of the Grain-128a PRGA, and S0,Δφ

be the initial state resulting after injecting fault in LFSR location φ ∈ [0, 127].

Let Z = [z0, z1, . . . , z65] and Zφ = [zφ0 , z
φ
1 , . . . , z

φ
65] be the first 66 keystream bits

produced by S0 and S0,Δφ
respectively. Then as per the authentication scheme

the MAC σ(∅) of the empty message ∅ is given by the vector

σ(∅) = [z0 + z32, z1 + z33, . . . , z31 + z63],

and similarly the MAC for the singular message bit 0 will be given by

σ(0) = [z0 + z33, z1 + z34, . . . , z30 + z63, z31 + z65].

The corresponding faulty MACs are

σφ(∅) = [zφ0 + zφ32, z
φ
1 + zφ33, . . . , z

φ
31 + zφ63],

σφ(0) = [zφ0 + zφ33, z
φ
1 + zφ34, . . . , z

φ
30 + zφ63, z

φ
31 + zφ65]

The task for the fault location identification routine is to determine the fault
location φ by analyzing the difference between [σ(∅), σ(0)] and [σφ(∅), σφ(0)].

Definition 1. We define a 64-bit vector Eφ over GF(2) as follows. Let E1
φ be

the bitwise logical XNOR (complement of XOR) of the MACs of σ(∅) and σφ(∅),
i.e., E1

φ = 1 + σ(∅) + σφ(∅), (here + should be interpreted as ⊕) and similarly

E2
φ = 1 + σ(0) + σφ(0). Then Eφ = E1

φ||E2
φ.
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Since S0 can have 2224 values (each arising from a different combination of the
128 bit Key and 96 bit IV, rest 32 padding bits are fixed), each of these choices
of S0 may lead to different patterns of Eφ. The bitwise logical AND of all such
vectors Eφ is denoted as the Signature vector Sgnφ for the fault location φ.

Since it is computationally infeasible to generate 2224 patterns and compute their
logical AND, below we present a technique to achieve this efficiently. Whenever
Sgnφ(i) is 1 for 0 ≤ i ≤ 31, this implies that the ith MAC bit produced by
S0 and S0,Δφ

for the empty message is equal for all choices of S0. Similarly if

Sgnφ(i) is 1 for 32 ≤ i ≤ 63 this implies that the (i − 32)th MAC bit produced
by S0 and S0,Δφ

for the zero message is equal for all choices of S0.
For Grain-128a, two initial states of the PRGA S0, S0,Δ127 ∈ {0, 1}256 which

differ only in the 127th position of the LFSR, produce identical output bits in
62 specific positions among the initial 66 keystream bits produced during the
PRGA. If an input differential is introduced in the 127th LFSR position, then at
all rounds numbered k ∈ [0, 65]\{33, 34, 48, 65}, the difference exists in positions
that do not provide input to the Boolean function h and hence at these clocks
the keystream bit produced by the two states are essentially the same. At all
other clock rounds the difference appears at positions which provide input to h.
Hence the keystream produced at these clocks may be different. Since

σ(∅) = [z0+z32, z1+z33, . . . , z31+z63], σ
φ(∅) = [zφ0 +zφ32, z

φ
1 +zφ33, . . . , z

φ
31+zφ63],

this implies that all bits of σ(∅) and σ127(∅) are equal except for the bits indexed
by 1, 2, 16. Also since

σ(0) = [z0 + z33, z1 + z34, . . . , z30 + z63, z31 + z65] and

σφ(0) = [zφ0 + zφ33, z
φ
1 + zφ34, . . . , z

φ
30 + zφ63, z

φ
31 + zφ65],

we can say that all bits of σ(0) and σ127(0) are equal except for the bits indexed
by 0, 1, 15, 31. Following the explanation given above, we can write Sgn127 in
hexadecimal notation, Sgn127 = 9FFF 7FFF 3FFE FFFE, which has 64− 3− 4 =
57 many 1’s and rest 0’s.

Generalizing the above idea, for two PRGA initial states S0, S0,Δφ
∈ {0, 1}256

which differ only in the φth LFSR location, an analysis of the differential trails
shows that out of the first 66 keystream bits produced by them, the bits at a
certain fixed rounds are guaranteed to be equal. Thus by performing the above
analysis for all fault locations φ (0 ≤ φ ≤ 127), it is possible to calculate all the
Signature vectors. Table 1 presents the vectors for each fault location φ, where
the Fault Signature Vectors Sgnφ for 0 ≤ φ ≤ 127 are written in hexadecimal
notation.

Steps for Location Identification. As mentioned above, the task for the fault
identification routine is to determine the value of φ given the vector Eφ, i.e.,
obtaining a unique Sgnφ. For any l-bit vector V , let BV = {i : 0 ≤ i < l, V (i) =
1}. Now define a relation � in {0, 1}l such that for 2 elements V1, V2 ∈ {0, 1}l,
we will have V1 � V2 if BV1 ⊆ BV2 .
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Table 1. Signature Vectors for different fault locations

φ Sgnφ φ Sgnφ φ Sgnφ φ Sgnφ

0 8EFF BEFF 1DFF 7DFE 32 FFF7 EF67 FFF7 EF4E 64 F7F7 ED73 F7EF DCE7 96 D7FF 9DF3 8FFF 3BE7

1 C77F DF7F 8EFF BEFE 33 FFFB F7B3 FFFB F7A7 65 FBFB F6B9 FBF7 EE73 97 EBFF CEF9 C7FF 9DF2

2 E3BF EFBF C77F DF7F 34 FFFD FBD9 FFFD FBD3 66 FDFD FB5C FDFB F739 98 F5FF E77C E3FF CEF9

3 F1DF F7DF E3BF EFBF 35 FFFE FDEC FFFE FDE9 67 FEFE FDAE FEFD FB9D 99 FAFF F3BE F1FF E77D

4 F8EF FBEF F1DF F7DF 36 FFFF 7EF6 FFFF 7EF5 68 FF7F 7ED7 FF7E FDCE 100 FD7F F9DF F8FF F3BE

5 FC77 FDF7 F8EF FBEF 37 FFFF BF7B FFFF BF7A 69 FFBF BF6B FFBF 7EE6 101 FEBF FCEF FC7F F9DE

6 FE3B FEFB FC77 FDF7 38 CFFF 9FBD 9FFF 5FBC 70 CFDF 9FB5 9FDF 3F73 102 FF5F FE77 FE3F FCEF

7 CF1D BF7D 9E3B 7EFB 39 E7FF CFDE CFFF AFDE 71 E7EF CFDA CFEF 9FB9 103 FFAF FF3B FF1F FE77

8 678E DFBE 4F1D BF7D 40 73FF E7EF E7FF D7EF 72 F3F7 E7ED E7F7 CFDD 104 FFD7 FF9D FF8F FF3B

9 B3C7 6FDF A78E DFBF 41 B9FF F3F7 73FF EBF7 73 F9FB F3F6 F3FB E7EE 105 FFEB FFCE FFC7 FF9D

10 D9E3 B7EF D3C7 6FDE 42 5CFF F9FB 39FF F5FB 74 7CFD F9FB F9FD F3F7 106 FFF5 FFE7 FFE3 FFCF

11 ECF1 DBF7 E9E3 B7EF 43 AE7F FCFD 9CFF FAFD 75 BE7E FCFD 7CFE F9FB 107 FFFA FFF3 FFF1 FFE6

12 F678 EDFB F4F1 DBF7 44 D73F FE7E CE7F FD7E 76 DF3F 7E7E BE7F 7CFD 108 FFFD 7FF9 FFF8 FFF3

13 7B3C 76FD 7A78 EDFB 45 6B9F FF3F E73F FEBF 77 EF9F BF3F DF3F BE7F 109 FFFE BFFC FFFC 7FF9

14 BD9E 3B7E BD3C 76FD 46 B5CF FF9F 739F FF5F 78 F7CF DF9F EF9F DF3E 110 FFFF 5FFE FFFE 3FFC

15 DECF 1DBF DE9E 3B7F 47 DAE7 FFCF B9CF FFAF 79 7BE7 EFCF 77CF EF9F 111 7FFF AFFF FFFF 1FFE

16 EF67 8EDF EF4F 1DBE 48 ED73 FFE7 DCE7 FFD7 80 BDF3 F7E7 BBE7 F7CF 112 BFFF D7FF 7FFF 8FFE

17 F7B3 C76F F7A7 8EDF 49 F6B9 FFF3 EE73 FFEB 81 CEF9 BBF3 9DF3 7BE7 113 DFFF EBFF BFFF C7FF

18 FBD9 E3B7 FBD3 C76F 50 FB5C FFF9 F739 FFF5 82 E77C DDF9 CEF9 BDF3 114 EFFF F5FF DFFF E3FF

19 FDEC F1DB FDE9 E3B7 51 FDAE 7FFC FB9C FFFA 83 F3BE 6EFC E77C DEF9 115 F7FF FAFF EFFF F1FF

20 7EF6 78ED 7EF4 F1DB 52 7ED7 3FFE FDCE 7FFD 84 F9DF 377E F3BE 6F7D 116 FBFF FD7F F7FF F8FF

21 BF7B 3C76 BF7A 78ED 53 BF6B 9FFF 7EE7 3FFF 85 FCEF 9BBF F9DF 37BE 117 FDFF FEBF FBFF FC7F

22 DFBD 9E3B DFBD 3C77 54 DFB5 CFFF BF73 9FFE 86 FE77 CDDF FCEF 9BDE 118 FEFF FF5F FDFF FE3F

23 EFDE CF1D EFDE 9E3A 55 EFDA E7FF DFB9 CFFF 87 FF3B E6EF FE77 CDEF 119 FF7F FFAF FEFF FF1F

24 F7EF 678E F7EF 4F1D 56 F7ED 73FF EFDC E7FF 88 FF9D F377 FF3B E6F7 120 FFBF FFD7 FF7F FF8F

25 FBF7 B3C7 FBF7 A78F 57 FBF6 B9FF F7EE 73FF 89 FFCE F9BB FF9D F37B 121 FFDF FFEB FFBF FFC7

26 FDFB D9E3 FDFB D3C6 58 FDFB 5CFF FBF7 39FF 90 FFE7 7CDD FFCE F9BD 122 FFEF FFF5 FFDF FFE3

27 FEFD ECF1 FEFD E9E3 59 FEFD AE7F FDFB 9CFF 91 FFF3 BE6E FFE7 7CDE 123 FFF7 FFFA FFEF FFF1

28 FF7E F678 FF7E F4F1 60 7F7E D73F 7EFD CE7F 92 7FF9 DF37 FFF3 BE6F 124 FFFB FFFD FFF7 FFF8

29 FFBF 7B3C FFBF 7A79 61 BFBF 6B9F BF7E E73F 93 3FFC EF9B 7FF9 DF37 125 7FFD FFFE FFFB FFFC

30 FFDF BD9E FFDF BD3C 62 DFDF B5CF DFBF 739F 94 1FFE 77CD 3FFC EF9B 126 3FFE FFFF 7FFD FFFE

31 FFEF DECF FFEF DE9E 63 EFEF DAE7 EFDF B9CF 95 8FFF 3BE6 9FFE 77CD 127 9FFF 7FFF 3FFE FFFE

So we start with a Key-IV pair K, IV0 and record the MACs of the empty
and zero messages. We then reset the cipher with K, IV0 and apply a fault at
some location φ (that is selected randomly and not known at this point) at the
beginning of the PRGA, and obtain the corresponding faulty MACs of the empty
and zero message. Using these we compute the Eφ vector as given in Definition 1.
The entire process requires 4 invocations of the MAC routine. Now we check the
elements in BEφ

. By the definition of Signature vector proposed above, we know
that for the correct value of φ, BSgnφ

⊆ BEφ
and hence Sgnφ � Eφ. So our

strategy would be to search all the Signature vectors and formulate the candidate
set Ψ0 = {ψ : 0 ≤ ψ ≤ 127, Sgnψ � Eφ}. If |Ψ0| is 1, then the single element
in Ψ0 will give us the fault location φ. However, this may not necessarily be the
case always. If |Ψ0| > 1, we will be unable to decide conclusively at this stage.

In such a scenario we reset the cipher with K, IV1 (IV1 different from IV0) and
record the fault-free MAC of the empty and zero messages. We then reset the
cipher with K, IV1 again and apply the fault at the location φ (our fault model
considers that the fault can be applied at the same location without knowing
it) at the beginning of the PRGA round and record the corresponding faulty
MACs. Now we recalculate the vector Eφ as defined previously. We now search
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over the Signature vectors in the candidate set Ψ0 and narrow down the set of
possible candidates to Ψ1 = {ψ : ψ ∈ Ψ0, Sgnψ � Eφ}. Clearly, |Ψ1| ≤ |Ψ0|, and
so if |Ψ1| = 1 then the fault location φ is the single element in Ψ1. If not, we
repeat the above process for another round for a different Key-IV pair K, IV2. If
after k rounds of this process, |Ψk−1| = 1, then the single element in Ψk−1 gives
us the desired location φ.

With detailed experiments taking on average over 220 uniformly randomly
chosen Key-IV pairs, we found that the average value of k is 1.31 to uniquely
identify a fault location in the LFSR. Since we are working with the MAC of
empty and zero message, thus, for each location we need to inject μ = 2 · 1.31 =
2.62 faults.

Now let us argue that the LFSR fault location can be uniquely identified
by the signature scheme proposed here. The signature scheme is based on both
the empty and the zero message. Now a simple exhaustive search through the
Signature vectors for all fault locations, will show that Sgnφ1 � Sgnφ2 for any
two fault locations 0 ≤ φ1 
= φ2 ≤ 127. This implies that for any value of the
fault location φ ∈ [0, 127] the fault identification scheme will eventually narrow
down the candidate set Ψk−1 to just one element for some value of k.

One may wonder if the Signature vector were to be based on the difference of
MAC of just the empty or the 0 message, whether a location identification scheme
could have been proposed. The answer is no. Take the signature scheme based
on the MAC difference of just the empty message in which l = 32. Studying the
Signature vectors, one can check that the first 32 bits of Sgn21 = BF7B 3C76 and
Sgn36 = FFFF 7EF6. Note that, for all locations i ∈ [0, 31] such that Sgn21(i) =
1, the value of Sgn36(i) is also 1. This implies that Sgn21 � Sgn36. Now consider
the case with the fault location φ = 36. Then by the definition of the signature
vector we have Sgn36 � Eφ. Since � is a partial order on {0, 1}l, this implies that
Sgn21 � Eφ and so whenever φ = 36 the fault location identification routine will
never be able to narrow down the set of possible candidates Ψk to only {36} for
any value of k. So the signature scheme can not be based on the MAC difference
of the empty message only. If we were to base the signature scheme on the MAC
difference of the 0 message bit, then a look at the signature tables will show us
that Sgn16 � Sgn111 and the scheme would fail by the above argument. It will
be very interesting to find out a message for which the signature scheme will
work just by looking at the fault-free and faulty MACs on it.

3 Determining the LFSR State

Towards this, let us present a few more notations at this point.

1. St = [xt
0, x

t
1, . . . , x

t
127 yt0, y

t
1, . . . , y

t
127] is used to denote the internal state

of the cipher at the beginning of round t of the PRGA when initialized
with the Key-IV pair K, IV0. Thus xt

i (yti) denotes the ith NFSR (LFSR)
bit at the start of round t of the PRGA. When t = 0, we use S0 =
[x0, x1, . . . , x127 y0, y1, . . . , y127] to denote the internal state for convenience.
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2. Sφ
t is used to denote the internal state of the cipher at the beginning of round

t of the PRGA when initialized with the Key-IV pair K, IV0, if a fault has
been injected in LFSR location φ at the beginning of the PRGA round.

3. zφi denotes the keystream bit produced in the ith PRGA round, after faults
have been injected in LFSR location φ at the beginning of the PRGA round.
zi is the fault-free ith keystream bit.

We start by making the following observations about the output Boolean func-
tion h in Grain-128a:

h(s0, s1, s2, s3, s4, s5, s6, s7, s8) + h(s0, s1, 1 + s2, s3, s4, s5, s6, s7, s8) = s3 (1)

h(s0, s1, s2, s3, s4, s5, s6, s7, s8) + h(s0, s1, s2, 1 + s3, s4, s5, s6, s7, s8) = s2 (2)

h(s0, s1, s2, s3, s4, s5, s6, s7, s8) + h(s0, s1, s2, s3, s4, s5, 1 + s6, s7, s8) = s7 (3)

h(s0, s1, s2, s3, s4, s5, s6, s7, s8) + h(s0, s1, s2, s3, s4, s5, s6, 1 + s7, s8) = s6 (4)

Let us now explain in detail how we can obtain the bit-value at a specific location
of the LFSR, say for example y108. Note that s0, s4 correspond to the NFSR
locations 12, 95 respectively and s1, s2, s3, s5, s6, s7, s8 correspond to the LFSR
locations 8, 13, 20, 42, 60, 79, 94 respectively. Now look at (1) above and note
that s2 corresponds to the LFSR location 13. If two internal states S and SΔ be
such that they differ in the LFSR location 13 (and in no other tap locations that
contribute to the keystream bit generation), then the difference of the keystream
bit produced by them will be equal to the value in LFSR location 20. Similar
analysis can be done corresponding to (2), (3), (4).

Assume that the attacker has injected a fault at location 127 of the LFSR at
the beginning of the PRGA. Then at round 48 of the PRGA the input differential
travels to location 79 of the LFSR, i.e., at round 48 the original state S48 and the
faulty state S127

48 differ in location 79 of the LFSR and in no other location that
contributes inputs to the output keystream bit at round 48. Then by equation
(4), the sum of the corresponding fault-free and faulty bits produced at round
48 is given by z48 + z12748 = y4860 = y108.

Also, at round 16 of the PRGA, the differential does not sit on any LFSR
location that contributes input to the output keystream bit at that round. Hence
z16 = z12716 .

Now consider the fault-free and faulty MAC (due to the fault at φ = 127 at
the beginning of the PRGA) of the empty message σ(∅) and σ127(∅). From the
definition of the MAC of empty message, it can be deduced that the bit number
16 of σ(∅)⊕ σ127(∅) is given by z16 + z48 + z12716 + z12748 = y108.

Hence by looking at the difference in the correct and faulty MACs of the
empty messages one can deduce the LFSR state bit y108 at the beginning of the
PRGA.

In Table 2 we give a list of 115 LFSR state bits yi that can be recovered by
observing the difference of the faulty and correct dth (0 ≤ d ≤ 31) MAC bit
of the empty message for different values of the fault location φ. There are 301
(more than 115) entries in the table and this is due to the fact that there are
multiple fault options for identifying some of the LFSR bits.
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Table 2. LFSR state bits recovered

φ d yi φ d yi φ d yi φ d yi φ d yi φ d yi

0 17 y109 26 13 y33 47 27 y40 66 6 y85 80 1 y40 94 15 y75
1 18 y110 27 7 y20 47 2 y54 66 14 y59 80 20 y54 94 2 y113
2 19 y111 27 14 y34 47 26 y118 66 21 y73 80 27 y118 94 30 y122
3 20 y112 28 8 y21 48 28 y41 67 7 y86 80 28 y41 95 16 y76
4 21 y113 28 15 y35 48 3 y55 67 15 y60 81 2 y55 95 3 y114
5 22 y114 29 9 y22 48 27 y119 67 22 y74 81 21 y119 95 31 y123
6 23 y115 29 16 y36 49 29 y42 68 8 y87 81 17 y42 96 17 y77
7 17 y109 30 10 y23 49 4 y56 68 16 y61 81 28 y56 96 4 y115
7 24 y116 30 17 y37 49 28 y120 68 23 y75 81 29 y120 97 18 y78
8 18 y110 31 11 y24 50 30 y43 69 9 y88 82 3 y43 97 5 y116
8 25 y117 31 18 y38 50 5 y57 69 17 y62 82 22 y57 98 19 y79
9 19 y111 32 12 y25 50 29 y121 69 24 y76 82 18 y121 98 6 y117
9 26 y118 32 19 y39 51 31 y44 70 10 y89 82 29 y44 99 20 y80
10 20 y112 33 13 y26 51 6 y58 70 17 y109 82 30 y58 99 7 y118
10 27 y119 33 20 y40 51 30 y122 70 18 y63 83 4 y122 100 21 y81
11 21 y113 34 14 y27 52 0 y45 70 25 y77 83 23 y45 100 8 y119
11 28 y120 34 21 y41 52 7 y59 71 11 y90 83 19 y59 101 22 y82
12 22 y114 35 15 y28 52 31 y123 71 18 y110 83 30 y123 101 9 y120
12 29 y121 35 22 y42 53 1 y46 71 19 y64 83 31 y46 102 23 y83
13 0 y20 36 16 y29 53 8 y60 71 26 y78 84 5 y60 102 10 y121
13 23 y115 36 23 y43 54 2 y47 72 12 y91 84 24 y47 103 24 y84
13 30 y122 37 17 y30 54 9 y61 72 19 y111 84 20 y61 103 11 y122
14 1 y21 37 24 y44 55 3 y48 72 20 y65 84 31 y48 104 25 y85
14 24 y116 38 18 y31 55 10 y62 72 27 y79 85 6 y62 104 12 y123
14 31 y123 38 25 y45 56 4 y49 73 13 y92 85 25 y49 105 26 y86
15 2 y22 38 17 y109 56 11 y63 73 20 y112 85 21 y63 105 13 y124
15 25 y117 39 19 y32 57 5 y50 73 21 y66 86 7 y50 106 27 y87
16 3 y23 39 26 y46 57 12 y64 73 28 y80 86 26 y64 106 14 y125
16 26 y118 39 18 y110 58 6 y51 74 14 y93 86 22 y51 107 28 y88
17 4 y24 40 20 y33 58 13 y65 74 21 y113 87 8 y65 107 15 y126
17 27 y119 40 27 y47 59 7 y52 74 22 y67 87 27 y52 108 29 y89
18 5 y25 40 19 y111 59 14 y66 74 29 y81 87 23 y66 108 16 y127
18 28 y120 41 21 y34 60 0 y79 75 15 y94 88 9 y79 109 30 y90
19 6 y26 41 28 y48 60 8 y53 75 22 y114 88 28 y53 110 31 y91
19 29 y121 41 20 y112 60 15 y67 75 23 y68 88 24 y67 111 0 y92
20 0 y13 42 22 y35 61 1 y80 75 30 y82 89 10 y80 112 1 y93
20 7 y27 42 29 y49 61 9 y54 76 16 y95 89 29 y54 113 2 y94
20 30 y122 42 21 y113 61 16 y68 76 23 y115 89 25 y68 114 3 y95
21 1 y14 43 23 y36 62 2 y81 76 24 y69 90 11 y81 115 4 y96
21 8 y28 43 30 y50 62 10 y55 76 31 y83 90 30 y55 116 5 y97
21 31 y123 43 22 y114 62 17 y69 77 17 y96 90 26 y69 117 6 y98
22 2 y15 44 24 y37 63 3 y82 77 24 y116 91 12 y82 118 7 y99
22 9 y29 44 31 y51 63 11 y56 77 25 y70 91 31 y56 119 8 y100
23 3 y16 44 23 y115 63 18 y70 78 18 y97 91 27 y70 120 9 y101
23 10 y30 45 25 y38 64 4 y83 78 25 y117 92 13 y83 121 10 y102
24 4 y17 45 0 y52 64 12 y57 78 26 y71 92 0 y57 122 11 y103
24 11 y31 45 24 y116 64 19 y71 79 0 y60 92 28 y71 123 12 y104
25 5 y18 46 26 y39 65 5 y84 79 19 y98 93 14 y84 124 13 y105
25 12 y32 46 1 y53 65 13 y58 79 26 y118 93 1 y58 125 14 y106
26 6 y19 46 25 y117 65 20 y72 79 27 y72 93 29 y72 126 15 y107

127 16 y108
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Finding y0, y1, y2, . . . , y12. The LFSR state bits not present in Table 2 are
y0, y1, . . . , y12. However it can be verified that ∀i ∈ [0, 12], by applying a fault
at location φ = 109 + i the (17 + i)th bit in difference of σ(∅) and σ109+i(∅) is
equal to the state bit y1+i

127 . Since y1+i
127 is a linear function of y0, y1, . . . , y127, we

can derive y0 to y12 as follows. By the LFSR update rule of Grain-128a, we have
the following 13 equations

y1+i
127 = y96+i + y81+i + y70+i + y38+i + y7+i + yi, ∀i ∈ [0, 12].

In the last equation y12 is the only unknown and its value can be calculated
easily. Similarly y11 is the only unknown in the previous equation. Solving the
equations in this manner one can obtain the entire LFSR state at the beginning
of the PRGA.

4 Determining the NFSR State

Once the LFSR internal state of the initial PRGA round is known, one can
then proceed to determine the NFSR internal state. In [5] it was shown, that
this could have been done efficiently for the initial version of the cipher, i.e.,
Grain v0. After the attack in [5] was reported, the designers made the necessary
changes to Grain v1, Grain-128 and Grain-128a so that for these new ciphers,
determining the NFSR state form the knowledge of the LFSR state was no
longer straightforward. In order to determine the NFSR bits, we look into the
decomposition of the Boolean function h in more detail.

One may note that for Grain-128a, h(s) = s0 · u(s) + v(s), where u(s) =
s1 + s4s8, and v(s) = s2s3 + s4s5 + s6s7. Thus we note that

u(s0, s1, s2, s3, s4, s5, s6, s7, s8) + u(s0, 1 + s1, s2, s3, s4, s5, s6, s7, s8) = 1, (5)

v(s0, s1, s2, s3, s4, s5, s6, s7, s8) + v(s0, 1 + s1, s2, s3, s4, s5, s6, s7, s8) = 0. (6)

Also h can be written as h(s) = s4 · U(s) + V (s), where U(s) = s5 + s0s8, and
V (s) = s2s3 + s4s5 + s6s7. We also have

U(s0, s1, s2, s3, s4, s5, s6, s7, s8) + U(s0, s1, s2, s3, s4, 1 + s5, s6, s7, s8) = 1, (7)

V (s0, s1, s2, s3, s4, s5, s6, s7, s8) + V (s0, s1, s2, s3, s4, 1 + s5, s6, s7, s8) = 0. (8)

As before, assume the scenario in which the attacker has injected a fault at
location 8 of the LFSR at the beginning of the PRGA. Then at this round of the
PRGA the input differential travels sits on location 8 of the LFSR, i.e., at round
0 of the PRGA the original state S0 and the faulty state S8

0 differ in location
8 of the LFSR and in no other location that contributes inputs to the output
keystream bit at round 0. Then by (5,6), the sum of the corresponding fault-free
bits produced at round 0 is given by z0 + z80 = x0

12 · 1 + 0 = x12.
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Also note that at round 32 of the PRGA the differential does not sit on any
LFSR location that contributes input to the output keystream bit at that round.
Hence z32 = z832.

Now consider the fault-free and faulty MAC (due to fault at φ = 8 at the
beginning of the PRGA) of the empty message σ(∅) and σ8(∅). From the defi-
nition of MAC of empty message it can be deduced that the bit number 16 of
σ(∅)⊕ σ8(∅) is given by z0 + z32 + z80 + z832 = x12.

Hence by looking at the difference in the correct and faulty MACs of the
empty messages one is able to deduce the NFSR state bit x12 at the beginning
of the PRGA. In Table 3 we give an exhaustive list of the NFSR state bits xi

that can be recovered by observing the difference of the faulty and correct dth

MAC bit of the empty message for different values of the fault location φ.

Table 3. NFSR state bits recovered

φ d xi φ d xi φ d xi φ d xi φ d xi φ d xi

8 0 x12 24 16 x28 40 0 x44 49 7 x102 57 15 x110 65 23 x118

9 1 x13 25 17 x29 41 1 x45 49 9 x53 57 17 x61 65 25 x69

10 2 x14 26 18 x30 42 0 x95 50 8 x103 58 16 x111 66 24 x119

11 3 x15 27 19 x31 42 2 x46 50 10 x54 58 18 x62 66 26 x70

12 4 x16 28 20 x32 43 1 x96 51 9 x104 59 17 x112 67 25 x120

13 5 x17 29 21 x33 43 3 x47 51 11 x55 59 19 x63 67 27 x71

14 6 x18 30 22 x34 44 2 x97 52 10 x105 60 18 x113 68 26 x121

15 7 x19 31 23 x35 44 4 x48 52 12 x56 60 20 x64 68 28 x72

16 8 x20 32 24 x36 45 3 x98 53 11 x106 61 19 x114 69 27 x122

17 9 x21 33 25 x37 45 5 x49 53 13 x57 61 21 x65 69 29 x73

18 10 x22 34 26 x38 46 4 x99 54 12 x107 62 20 x115 70 28 x123

19 11 x23 35 27 x39 46 6 x50 54 14 x58 62 22 x66 70 30 x74

20 12 x24 36 28 x40 47 5 x100 55 13 x108 63 21 x116 71 29 x124

21 13 x25 37 29 x41 47 7 x51 55 15 x59 63 23 x67 71 31 x75

22 14 x26 38 30 x42 48 6 x101 56 14 x109 64 22 x117 72 30 x125

23 15 x27 39 31 x43 48 8 x52 56 16 x60 64 24 x68 73 31 x126

74 0 x127

4.1 Finding the Remaining Bits

From Table 3, all state bits of the NFSR can be found except x0, x1, . . . , x11 and
x76, x77, . . . , x94. These bits may be found as follows.

Finding x77, x79, x81, . . . , x93. It can be verified that ∀i ∈ [0, 8], by applying a
fault at location φ = 73+2i at the beginning of the PRGA, the difference travels
to the LFSR location 8 at round 65+2i. It can also be checked that at this PRGA
round the differential does not affect any other location that contributes to the
output bit, i.e., the states S65+2i and S73+2i

65+21 differ in only the LFSR location 8
and no other location that affects the output bit at this round. Then by (5,6)

z65+2i + z73+2i
65+2i = x65+2i

12 · 1 + 0 = x77+2i, ∀i ∈ [0, 8].
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It can also be verified that as a result of applying the fault at 73+2i, ∀i ∈ [0, 8] at
round 31 of the PRGA, the differential does not affect any location that provides
inputs to the output bit. Hence, z31 = z73+2i

31 . Now consider the fault-free and
faulty MAC of the message 0i+1 (string of i+1 zeros) obtained by faulting LFSR
location 73 + 2i at the beginning of the PRGA. From definition

σ(0i+1) = [z0 + z33+i, z1 + z34+i, . . . , z30−i + z63, z31−i + z65, z32−i + z67, . . . ,

z31 + z65+2i], ∀i ∈ [0, 8]

Hence the last bit in difference of σ(0i+1) and σ73+2i(0i+1) is equal to

z31 + z65+2i + z73+2i
31 + z73+2i

65+2i = x77+2i, ∀i ∈ [0, 8].

This gives us the values of 9 more state bits. Thus far we have recovered 106 of
the 128 NFSR state bits.

Finding x2. Consider the 0th bit of the fault-free σ(∅) given by

z0 + z32 =
⊕
t∈B

xt + y93 + y125 + h(x12, y8, y13, y20, x95, y42, y60, y79, y94)

+ h(x44, y40, y55, y75, x127, y74, y92, y111, y126).

Here B = {2, 15, 36, 45, 64, 73, 89, 34, 47, 68, 77, 96, 105, 121}. Note that x2 is the
only unknown linear term in the above equation, and so its value can be calcu-
lated immediately.

Finding x78, x80, x82, . . . , x94. Define x127+i = xi
127, y127+i = yi127 for all

i ≥ 1. Again, it can be verified that the ith bit of

σ(∅) + σ74+i(∅) = x127+i, ∀i ∈ [0, 31]. (9)

Now consider the 0th bit of σ(02j+1) for 0 ≤ j ≤ 8, given by z0 + z33+2j

z0 + z33+2j =
⊕
t∈Bj

xt + y93 + y126+2j + h(x12, y8, y13, y20, x95, y42, y60, y79, y94)

+ h(x45+2j , y41+2j , y56+2j , y76+2j , x128+2j , y75+2j, y93+2j , y112+2j ,

y127+2j), ∀j ∈ [0, 8] and

Bj = {2, 15, 36, 45, 64, 73, 89, 35+ 2j, 48 + 2j, 69 + 2j, 78 + 2j, 97 + 2j,

106 + 2j, 122 + 2j}.
In the above set of equations any xk with k > 127 may be calculated from (9).
Any yk with k > 127 is a linear function of y0, . . . , y127 which are already known.
Hence x78+2j with 0 ≤ j ≤ 8 are the only unknown linear terms in each of these
equations and their values are also immediately determined.
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Finding x3, x4, x6, x7, . . . , x11. At this point the only unknown state bits
are x0, x1, x3, . . . , x11, x76. Consider the pth bit of σ(∅) given by zp + z32+p for
p ∈ [1, 9] \ {3}.

zp + z32+p =
⊕
t∈B

xt+p + y93+p + y125+p

+ h(x12+p, y8+p, y13+p, y20+p, x95+p, y42+p, y60+p, y79+p, y94+p)

+ h(x44+p, y40+p, y55+p, y75+p, x127+p, y74+p, y92+p, y111+p, y126+p),

∀p ∈ [1, 9] \ {3}.
In all these equations x2+p is the only unknown term and its value can also be
determined immediately (the strategy does not work for p = 3 as x76 is still
unknown).

Finding x0, x1, x5, x76. We are left with x0, x1, x5, x76 as the only unknowns.
Note that the NFSR update function g(·) in Grain-128a can be written in the
form g(X) = x′+g′(X ′) where x′ is the variable that taps the 0th NFSR location.
Now consider the following equation for x128 which have been derived from the
NFSR update rule of GRAIN-128a

x128 = y0 + g(x96, x95, x93, x92, x91, x88, x84, x82, x78, x70, x68, x67, x65, x61,

x59, x48, x40, x27, x26, x25, x24, x22, x13, x11, x3, x0)

= y0 + x0 + g′(x96, x95, . . . , x11, x3).

Note that x0 is the only unknown term in the equation, and hence its value can
be determined by solving this equation. Similarly the values of x1, x5 may be
determined from the update equations for x129, x133. Consider now, the equation
for bit number 3 of σ(∅) = z3 + z35

z3 + z35 =
⊕
t∈C

xt + y96 + y128 + h(x15, y8, y16, y23, x98, y45, y63, y82, y97)

+ h(x47, y43, y58, y78, x130, y77, y95, y114, y129).

where C = {5, 18, 39, 48, 67, 76, 92, 37, 50, 71, 80, 99, 108, 124}. As one can see x76

is the only unknown in this equation and thus its value can be determined by
solving it. Thus we have determined the whole of S0.

4.2 Finding the Secret Key and Complexity of the Attack

It is known that the KSA and PRGA routines in the Grain family are invertible.
Once we have all the bits of S0, by running the inverse KSA routine one can
recover the Secret Key.

First we need to hit each of the locations of the LFSR. We inject the fault
randomly in the LFSR locations and thus, we need τ = 128 · ∑128

i=1
1
i ≈ 695.4
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expected number of fault injections. For each of these injected faults, we need
to identify the fault locations. Taking the value of μ from Section 2.1 that is the
required number of expected faults for each LFSR location, the total number of
faults to be injected = τμ = 695.4 · 2.62 ≈ 1822. Additionally, as described in
Section 4, 9 more fault injections are required for the locations φ = 73, 75, . . . , 89
to recover certain NFSR bits. Therefore, the expected number of faults that our
attack needs is 1822 + 9 = 1831 < 211.

For each fault during the location identification stage, two MAC invocations
are required, that amounts to 1822 · 2 = 3644. Additionally, 20 more invocations
are required during some cases of NFSR bit recovery. Thus the total number of
invocations is less than 212.

5 Conclusion

In this paper we present a differential fault attack on the Grain 128a authenti-
cated encryption scheme using certain properties of the Boolean function h used
in the cipher design. The attack requires practical time and space complexity
and can be mounted efficiently under the fault model we use. Although there
already exist results describing Differential Fault Attack of Grain v1 and Grain-
128, the cryptanalysis of Grain-128a is vastly different as the attacker is not able
to directly access the first 64 keystream bits and every alternate keystream bit
thereafter. Cryptanalysis of the scheme using stricter fault models is an open
problem and needs to be explored further.
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Abstract. Many Radio Frequency IDentification (RFID) applications
such as car immobilizers and access control systems make use of the pro-
prietary stream cipher Hitag 2 from the company NXP. Previous analy-
sis has shown that the cipher is vulnerable to different attacks due to the
low complexity of the cipher and its short 48-bit secret key. However, all
these attacks either rely on expensive reconfigurable hardware, namely
the Field Programmable Gate Array (FPGA) cluster COPACOBANA,
or are impractical. In this paper we develop the first bit-sliced OpenCL
implementation for the exhaustive key search of Hitag 2 that runs on off-
the-shelf hardware. Our implementation is able to reveal the secret key of
a Hitag 2 transponder in less than 11 hours on a single Tesla C2050 card
in the worst case. The speed of our approach can be further improved
due to its scalability, i.e., we estimate a speed of less than one hour on a
heterogeneous platform cluster consisting of CPUs and GPUs that can
be realized with a budget of less than 5,000 e. This result enables anyone
to obtain the secret key with only two sniffed communications in shorter
time and with significantly less cost compared to systems such as the
COPACOBANA.

Keywords: Brute-force Attacks, HITAG2, GPU, Cryptanalysis,
OpenCL.

1 Introduction

Since a strong increase of car theft in the early nineties all major car manufac-
turers incorporated electronic immobilizers. These systems usually consist of an
RFID transponder in the car key and a reader around the ignition lock. Each
time the car is started, the transponder is being read by the reader and verified
if it is a genuine key. Early systems just used plain messages for authentication,
while later systems started to have encryption schemes implemented.

One particular immobilizer system makes use of the proprietary stream cipher
Hitag 2 from NXP. According to the NXP website, it is still in production
and deployed in many areas which emphasizes the importance of this system.
Previous analysis has shown the vulnerability of the cipher, nevertheless it is
still being advertised to offer “main stream security” [8].

All existing attacks focus on obtaining recorded communications to deter-
mine the key via an analytical attack or exhaustive key search. Obtaining these
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recorded communications is fairly simple, as anyone being in possession of the car
and the key can record the communication. This is even of interest for legitimate
car owners in case they want to have a cheap extra key for their car.

Due to that, some companies offer key copy machines and sniffing devices
such as SILCA’s P-Box and SNOOP[10], which may eventually copy keys using
the Hitag 2 cipher, though the inner working mechanism is not known publicly.

1.1 Previous Work

Hitag 2 was kept secret by the manufacturer but it was reverse engineered and
presented in 2008 [5]. Together with the description of the cipher, a reference
program was made available and allowed further research. On that score, several
attacks evolved. A type of successful attack is based on algebraic attacks.

One such attack was carried out by Nicolas Courtois, Sean O’Neil, and Jean-
Jacques Quisquater in their paper “Practical Algebraic Attacks on the HITAG2
Stream Cipher” which was presented at the Information Security Conference
(ISC) in 2009 [6]. The first part of their work details the weaknesses of Hitag 2
with regard to algebraic attacks and explains the principle on how to transform
the problem into a Satisfiability (SAT) problem, which may then be solved using
the SAT solver MiniSat 2.0. The second part of their paper presents different
attacks of which the following was the most practical: 14 bits of the key are
fixed/guessed; for four known IVs the problem is then represented in equations
solvable by a SAT solver. According to their paper, the attack takes 2 days which
was recently confirmed by Mate Soos, developer of CryptoMiniSat2 [11].

Another algebraic attack by Karsten Nohl and Henryk Plötz presented during
the HAR2009 lacks detailed information about the restrictions of their attack,
which is successful in 6 hours on a standard PC [7]. Hence, we did not take their
result into further consideration.

An attack by using the brute-force technique was implemented by Petr Stem-
bera on the FPGA cluster COPACOBANA [12]. The runtime of the attack is
less than 2 hours (103.5 minutes) in the worst case and requires two recorded
authenticator values. All successful attacks are summarized in Table 1 and com-
pared to the estimation of a brute-force attack implemented in software, running
on a single CPU requiring approximately 800 operations per key [12].

Other attacks by time-memory-trade-off (TMTO) [2] are not feasible in real
world attacks (because of the amount of required keystream) and protocol weak-
nesses as shown in [4] cannot be applied to recover the key (plus, the memory
page containing the key can be locked against reading).

Table 1. Summary of known attacks on the Hitag 2 cipher

Publication Method Runtime Prerequisites Platform
[6] Algebraic attack 2 days 4 authenticators PC (2GHz)
[12] Brute-force 2 hours 2 authenticators FPGA cluster
[12] Brute-force 4 years (est.) 2 authenticators PC (1.8 GHz)
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1.2 Contribution of This Paper

Our paper explains the steps necessary to realize an OpenCL implementation to
break Hitag 2 by exhaustive key search. We show how to efficiently compute and
verify all possible key candidates by using a bit-sliced approach, hence breaking
the stream cipher in less than 11 hours on a single Tesla C2050 graphics card.

We also demonstrate the benefit of using a heterogenous computing environ-
ment consisting of CPUs and GPUs by estimating the runtime of our approach
on heterogenous cluster systems. Our analysis shows that our implementation
outperforms any previous attack. It runs on off-the-shelf hardware and can be
realized with a budget of less than 5,000e, thus setting a new lower bound in
cost, speed, and practicability for cloning car keys.

1.3 Outline

At first, we introduce the fundamentals of bit-slicing and the cipher itself in Sec-
tion 2. Afterwards, in Section 3, we sketch the important properties of OpenCL
and the available hardware architectures. We then pinpoint the implementa-
tion details in Section 4 and explain how to efficiently map the attack to the
hardware.

Finally, in Section 5 we conduct practical experiments and measure the exe-
cution time of our implementation on different hardware platforms. In addition
to that, we evaluate the practical feasibility of realizing a heterogenous cluster
in comparison to the costs and speed of the COPACOBANA.

2 Fundamentals

In the following section we introduce the bit-slicing technique that enables us
to efficiently implement the cipher, which is explained thereafter. In addition to
that, we describe the authentication protocol and the messages that need to be
recorded for a successful attack.

2.1 Bit-Slicing

Many algorithms, especially stream ciphers, operate on bits instead of bytes or
words, which would be optimal for n bit wide registers of general purpose proces-
sors. To allow an efficient implementation of these hardware-oriented algorithms,
Eli Biham introduced a concept named bit-slicing [3]. The idea is to perform a
chunk-wise serial to parallel bit transposition of the input blocks, thus obtaining
a matrix where the n-th column represents the n-th input block and each n-th
row containing all bits of the n-th bit position of each input block. By doing this
bit-slicing, one achieves a Single Instruction Multiple Data (SIMD) processing
of the input data, hence processing more than one data block at a time per com-
putation. The rearrangement can be fitted to the native register width of the
underlying processing unit. For many algorithms the bit-slice implementation
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48 bit (Data Block Size)

Data block 2
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(a) Non-sliced input data
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Pointer 1
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Data bits 47

slice 32 31 2 1

32 bit registers

(b) Bit-sliced input data

Fig. 1. Comparison of the different data representations. To the left is the non-sliced
form, to the right the bit-sliced form. Each slice represents one block of data and each
bit position is put into a single register.

is the fastest, even with the extra cost of the rearrangement. For illustration
purposes, we assume a data block size of 48 bit as can be seen in Figure 1a.

Since the register width of current processors is either 32 or 64 bit1, it is
necessary to partition all input data blocks accordingly to the targeted platform.
For n bit registers this means packing all bits of the same input position within
the n input blocks together in one register. This process is then repeated for all
bit positions and results in a representation as depicted in Figure 1b.

For algorithms using functions other than bitwise operations, it is necessary to
modify these functions accordingly to only use bitwise operations (if possible).
Moreover, the rearrangement must be done for the plaintext, as well as the
key (for cryptographic schemes). Furthermore, it is necessary to transpose the
ciphertext to ensure compatibility with non-sliced implementations (if required).

2.2 Hitag 2 Stream Cipher and Protocol

Stream Cipher: The Hitag 2 cipher is a bit-oriented stream cipher and used
to encrypt transmissions within the Hitag 2 protocol. The cipher, as shown in
Figure 2, consists of a 48 bit secret key, a 48 bit Linear Feedback Shift Register
(LFSR), and a non-linear output function with 20 input bits and 1 output bit
per clock.

This output function can be considered as two different levels of multiplexors.
The four input bits to the functions fa and fb serve as address bits and select
one of the contained data bits. The function fc works respectively. To generate
key stream, one has to run through an initial processing which is now explained:

1. LFSR initialization: At first, the LFSR is being initialized by loading the 32
bit serial number (SN) and bits 0..15 of the key into the LFSR.

1 In this paper, we always assume a native register width of 32 bit.
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2. State randomization: Subsequently, the LFSR is clocked 32 times, each time
using the output bit of the non-linear output function as a feedback bit
Exclusive OR (XOR) the remaining bits of the key XOR the Initialization
Vector (IV) (one bit each cycle). This process is illustrated in Figure 2. Please
note that the feedback function of the LFSR is not used during this stage.

3. Keystream generation: To generate keystream, the feedback function (which
is an XOR of all taps) of the LFSR is now in use, in addition to the output
function. All other parts of the cipher remain inactive. The first 32 output
bits are inverted and represent an authenticator used during a protocol run.
The consecutively generated keystream is then used for encryption.

Alternatively, the output function can be described as an S-box, in Algebraic
Normal Form (ANF) or in boolean logic. This ultimately leads to the description
for the bit-sliced filter functions2, as given in [13]:

– Filter function fa: (∼(((a|b)&c)ˆ(a|d)ˆb))
– Filter function fb: (∼(((d|c)&(aˆb))ˆ(d|a|b)))
– Filter function fc: (∼((((((cˆe)|d)&a)ˆb)&(cˆb))ˆ(((dˆe)|a)&((dˆb)|c))))

Fig. 2. Graphical description of the Hitag 2 cipher comprising the different compo-
nents, namely the LFSR and the filter functions fa, fb, fc[13]

Protocol: Within the Hitag 2 protocol, there are two modes for authentica-
tion: password and crypto [9]. During the password based authentication, a pass-
word in plaintext is being transmitted. Obviously, this mode offers no protection
2 Here, the operands ∼, &, | and ˆ represent the equivalent bitwise operands of the

C programming language. The variables a, b, c, and d denote the input values that
are determined by the tap position of the LFSR.
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against eavesdropping. We therefore concentrate our effort on the crypto mode
authentication, as it is sketched in Figure 3.

This authentication mode works as follows: If a Hitag 2 transponder is placed
within the interrogation zone of a reader, the transponder needs a certain time to
power up and is in a wait state. The reader now issues a Start_Auth command
which consists of the 5 bits: ‘11000’. The transponder responds with its 32 bit
serial number (SN) and a preceding 5 bit header, where all bits are set to ‘1’.
The base station then chooses an IV (32 bit) and generates the authenticator
which consists of the first 32 bitwise inverted keystream bits.

During the reception of the IV and authenticator AuthB , the transponder
computes the same authenticator (denoted as AuthT ) and checks if AuthB

matches the one that was computed. If they match, the transponder responds
with a header and the encryption of Page 3 (a configuration memory page).

A successful authentication implies an entity authentication of the reader
towards the transponder and causes the transponder to go in an authorized
state. This state permits to read/write the tag using encrypted communication.

To break the authentication protocol, we only need to record two pairs of IV
and authenticator and may even use an emulation device to trigger the output
of a valid IV and authenticator pair (for a given serial number). If the key is
successfully recovered, it is easy to decrypt previously recorded communication.
In case no memory read/write locks are set, one may read/write the transponder
memory or emulate the complete device using the recovered key.

Reader Transponder

−−−−−−−−Start_Auth ‘11000’−−−−−−−−−−−−−−−−−−−−−−−→
←−Header ‘11111’, Serial Number [31..0]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

compute AuthB −−−−−IV [31..0], AuthB [31..0]−−−−−−−−−−−−−−−−−−−−−−−−−−→ compute AuthT
generate IV verify(AuthB

?
= AuthT )

←−−−
Header ‘11111’, Page 3 [31..0]k−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 3. Authentication messages of the Hitag 2 protocol in crypto mode [9]

3 Overview of OpenCL

In the past decade, multicore processors emerged and both CPUs as well as
GPUs have undertaken a swift development, especially GPUs in adding mas-
sively parallel computational power. In contrast to the programming language
CUDA which is only geared towards GPU platforms, is OpenCL a framework
that executes across heterogeneous platforms consisting of CPUs and GPUs.

Therefore, it is beyond scope to cover all details of all platforms that are
able to run OpenCL. However, they share a common abstraction layer as it is
depicted in Figure 4. In this architecture, a host device is the control instance
for several compute devices, for example, a CPU or GPU.
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Fig. 4. This figure illustrates the generic OpenCL architecture and the different mem-
ory address spaces

These compute devices can be organized in different sets, namely a platform
or a context, to ease the management and identify the correct device. The me-
mory of the compute devices is partitioned into four different address spaces:
private, local, constant, global which is primarily based on recent GPU
architectures. To run a program on these devices, a pre-compiled function called
kernel is loaded onto the device and executed by a user-specified number (which
is the global work size). Each thread is assigned a global identification number
(GlobalId). The global work size can be partitioned into blocks by a parameter
named local work size that (should) evenly divide the global work size. These
blocks, called work-group (GroupId or BlockId), contain threads with a local
identification number (LocalId) that are called work-item.

Work-items or sub-sets (so called warps) of work-groups are executed on the
compute units provided by the compute device. The actual parallelism is real-
ized by the device and depends on its architecture and kernel code. Within a
work-group, inter-thread communication may take place using local memory.
Each work-item uses its own private memory space for computations. Globally
available memory is the read-only constant memory and the read-write global
memory.

Limitations of OpenCL may vary due to the different hardware architectures.
For GPU devices, memory size and bandwidth, inefficient memory access pat-
terns and cache size are common limitations. Path divergencies of work-items
under branching also result in performance penalties. Due to that, it is important
to tailor the kernel to a specific device family to address these problems.

4 Implementation

At first, we reason about the techniques used to implement the cipher in Sec-
tion 4.1. Afterwards, an overview of the system used for our implementation is
given in Section 4.2. A difficulty to overcome is the cost of the bit transposition
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because of the bit-slicing, especially for the key candidates, which is shown in
Section 4.3. In a next step, we describe the computation that is carried out by
our kernel in Section 4.4.

4.1 Implementation Considerations

To efficiently implement a brute-force attack, we make the following important
observation about the cipher: Keys that have a common part (from their ‘be-
ginning’ on) may share steps of the cipher setup. As an example, keys that have
their 16 least significant bit in common may operate on a memory copy of the
LFSR that is initialized only once. By taking this idea to the maximum extent,
we could possibly use many nested for-loops, each time using a memory copy of
the upper loop and using each loop index as next portion of the key.

Alternatively, instead of having (too) many loops, we can also make use of
the general idea to initialize the LFSR of the cipher up to a certain point, where
we can load this partially initialized LFSR onto a compute device and finish
the computation (thus, using parallelization). On our compute device, we can
then simply use the identification numbers of each work-item or work-group as
potential key guess.

Also relevant for the efficient implementation is to have fast building blocks
in software. This can be achieved by using bit-slicing. The LFSR of the cipher
is denoted as the array lfsr[48], representing 32 LFSR states of the cipher
in parallel. Furthermore, we need to implement the bit-sliced non-linear output
function and the feedback function of the LFSR. The latter is simply imple-
mented by 15 XOR operations (cf. function hitag2bs_round, Appendix D),
whereas the former is realized by the bit-sliced filter functions fa, fb, fc, and
results in 46 boolean operations (cf. function f20bs, Appendix D).

Also necessary to implement is the ‘clocking’ of the LFSR. In hardware, this
causes a shift of each bit to the next position. In software, an array shift fulfills
the same purpose if operating on bit-sliced data. However, by unrolling all sub-
sequent function calls one can omit the array shift by manually adjusting the
indices to imitate the shift, thus saving a significant amount of operations3.

4.2 System Overview

Our system consists of one host device and an arbitrary count of compute devices.
On the host device, we perform the necessary steps to access the compute devices
and partially initialize/randomize the LFSR to finish the computation on the
compute device. This process is described as pseudo-code in Algorithm B.1.

Together with the partially randomized LFSR data, we load the kernel onto
the compute device that finishes the cipher computation up to the point, where
the output is compared to the sliced authenticator. The result of the computation
is then retrieved by the host device and evaluated, i.e., the result contains the
3 Due to that, by referring to ‘clocking’ we mean the processing of the LFSR (and

inputs) accordingly to the cipher description.
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number of possible key candidates found (a counter) and information to recover
the key on the host to verify it. The computation carried out by the kernel is
described in detail in Section 4.4.

We highlight the fact that with one authenticator and IV pair, one may find
up to 248/232 = 216 key candidates. These candidates are therefore verified against
a second authenticator and IV pair. This verification takes place in parallel to
the continuous execution of the kernel(s) and causes only negligible overhead.

4.3 Key Space Partitioning

To circumvent the transformation overhead of the key challenges, we carefully
partitioned the key space of 248 based on the ideas given in [1]. Moreover, we
are able to distribute the load between host and compute device to benefit from
the shared computational cost during the initialization phase.

The details of this process are given in Appendix A and result in a partitioned
key space as it is illustrated in Figure 5. We emphasize that the computational
cost on the host is minimal by using memory copies.

outer for-loop
[load index to LFSR]

bit-slicing
[clock 5x]

inner for-loop
[clock 7x]

LocalId
[each work item]

GroupId
[computed by single work item]

16 bit 5 bit 7 bit 8 bit12 bit

Host  (initChallenge) Host (updateChallenge) Compute Device

Global Work Size = 220

0 47bit 15 16 20 21 27 28 39 40

Fig. 5. This figure illustrates the partitioned key space and how the different parts of
the systems are used to create the key challenges

4.4 Kernel Implementation

The purpose of the kernel is to finalize the state randomization and then to
interleave the authenticator generation with a verification to stop execution if
all key candidates have been shown invalid.

The input arguments of the kernel are in sequential order: precomputed LFSR,
remaining bits of IV, precomputed key guess XOR IV for each work group, sliced
authenticator, result data. For a detailed analysis, the actual (annotated) code
is given in Appendix D with only obvious gaps to keep it short.

Finalize State Randomization: As a first step, only the first work item of
each work group further randomizes the LFSR by processing the key and IV bits
in addition to performing the bit-sliced non-linear output function. The resulting
12 output slices are stored in local memory. Consistency is guaranteed by using
a synchronization barrier to allow other work items in the same group to access
the previously computed output slices.

Afterwards, the last portion of the key is loaded from constant memory
(precomputed on the host) and processed by each work item of a group. This
puts the LFSR in a state ready for keystream generation.
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Keystream Generation and Output Verification: The keystream genera-
tion consists of the round function and is also fully unrolled. Each time the round
function is carried out we get one output slice which is a 32 bit value. This value
represents 32 times 1 output bit per key candidate per cipher clock cycle.

To verify this output and track the valid key candidates, we make use of the
Not Exclusive Or (NXOR) logical function by applying this operation to the
output of the round function and one register of the authenticator. Afterwards,
we AND the result with a bit mask which is initialized with 0xFFFFFFFF. By doing
so, we keep ones in all the bit positions where a valid key candidate remains.

After 8 times ‘clocking’ the LFSR, we check if any key candidates are left
(bit mask must be non-zero). If not, we terminate. If key candidates are left, we
repeat the process until we generated 32 slices of output, each time checking after
8 outputs if any key candidates are left by checking the bit mask. By checking
only every 8th mask, we reduce path divergencies (by minimizing if-else clauses)
that are costly on GPU hardware.

The concept of the bit mask was also introduced to directly verify the sliced
output by only causing 3 extra operations per slice. Finally, if the mask is still
non-zero after all steps, we increment a counter and return the mask(s) and the
globalId(s) of the thread, to be able to recover the possible key candidate.

4.5 Analysis of Our Kernel Implementation

To rate our kernel and verify the efficiency, it is our goal to have very few opera-
tions per key. To estimate this, we carry out the following simplified calculation.

The state randomization within the kernel is split in two stages. The first
contributes only 12·46/256 = R1 ≈ 2 to the overall operations (first thread of a
group only). The second is executed by each thread resulting in 8·46 = R2 = 368.
The subsequent key stream generation results in 32 · (46 + 3 + 15) = C = 2048,
completely disregarding the fact that with each if clause the amount of threads
actually running significantly reduces (but possibly inducing serialization). Ta-
king the bit-slicing into consideration, we can divide the sum of R1 +R2 +C =
2418 by 32 which yields approximately 75.56 operations per key.

While running on SIMT architectures (e.g., Tesla C2050), we could possibly
further divide this number by the number of processors (e.g., 448), resulting
in hypothetical 0.169 operations per key. Besides the fact that we ignored the
operations contributed by the host, we did not consider amongst other factors:
architectural properties (possible serialization on GPU, dual dispatch units on
Fermi), memory operations, and cache size.

However, this estimation indicates that our implementation is highly efficient
in terms of operations per key. All this can be implemented using 63 regis-
ters (C2050) with negligible register spilling, resulting in an occupancy of each
streaming processor (SM) of 33 % (with 2 active thread blocks per SM).
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5 Experimental Results and Costs

In this section we conduct practical experiments on different hardware platforms
and present the obtained results. We evaluate the practical feasibility of realizing
a heterogeneous cluster running on off-the-shelf hardware to break the cipher.

5.1 Throughput Evaluation on a Single Device

Our evaluation aimed at comparing the speed of our OpenCL implementation
on the different architectures offered by Nvidia, AMD and Intel. For each GPU
platform, minor modifications to the kernel were applied to optimize the result.
For CPUs, more significant changes were necessary, e.g., we changed the data
type from 32 bit to 64 bit and as a consequence, the overall distribution between
host and compute device. The platform details are given in Appendix C.

It was not our goal to write native assembly code (e.g., PTX, IL, x86 assem-
bly), even though we expect a certain performance benefit from that. Instead,
we analyzed the speed by using our generic OpenCL kernel as starting point, to
find out how well the attack performs on the different architectures.

Further changes were manual loop unrolling on AMD hardware, as we noticed
a significant speedup by doing so. Due to the manually unrolled code, it is neither
possible to change the global nor local work size on the fly.

Our obtained results are shown in Table 2. The first three columns specify
the brand, device, and name (type) of the architecture followed by the number
of compute units and cores provided by each platform. The last column shows
the kernel runtime and already includes the overhead to set, write, and read the
kernel arguments as well as the time to execute the function updateChallenge.
Any other computational overhead is negligible.

As one can see, a single Tesla C2050 is the fasted compute device, however the
keys per e ratio of the GTX295 is much better. In terms of keys per watt, the
mobile graphics chipset 6750M offers a competitive ratio of 225.7, even compared
to the COPACOBANA (226.17). Of course, the overall runtime is different.

Table 2. Comparison of the evaluated compute devices, their technical specifications
and the obtained runtimes per kernel execution (including overhead)

Chipset Architecture Clock TDP Release Kernel
Brand Device Name (Type) #CUsa #Coresb [MHz] [W] [Date] [ms]
Nvidia GTX295 GT200 (SIMT) 30 30 · 16 = 480 1242 289 Jan 2009 7.5
Nvidia C2050 GF100 (SIMT) 14 14 · 32 = 448 1150 238 Nov 2009 4.5
Amd 6750M TeraScale2 (VLIW) 6 6 · 16 · 5 = 480 600 25 Jan 2011 24.5
Intel 2820QM SandyBridge (SIMD) 8 4 2300 45 Jan 2011 50c

Intel 2xE5540 Nehalem (SIMD) 2 · 8 2 · 4 = 8 2530 80 Q1’ 2009 30c

a ComputeUnit (CU): NVIDIA: StreamingMultiprocessor (SM), AMD:SIMDEngine, Intel: Siblings.
b Cores: NVIDIA: Streaming Processor (SP), AMD: Stream Core (SC), Intel: Core.
c Runtime of 100ms resp. 60ms scaled with 1/2 for comparison reasons (due to 64 bit registers).
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5.2 Cost Evaluation of a Heterogeneous Platform Cluster

A great advantage of using OpenCL is the possibility to realize a heterogeneous
platform cluster consisting of CPUs and GPUs. Hence, one is able to better
utilize the given hardware in comparison to GPU only clusters. We now consider
the financial effort to break the cipher by realizing such a cluster with a budget
of less than 5,000e.

By considering the throughput results for a single device, we estimate the
runtime of a particular cluster to show that we can easily outperform the COPA-
COBANA with less budget using off-the-shelf hardware. For our cost estimation,
we assume that one workstation contains two video cards and one CPU.

Table 3 shows the results of our cost analysis. The first two columns report
the models of both GPU and CPU, followed by two columns reporting the price
of each device. The next column is a cost analysis and presents the number of
workstations affordable within the given price range.

Table 3. Overview of two different heterogeneous cluster systems with cost and run-
time estimation to break HITAG 2

Device Cost/Device # of Workstations Affordable Estimated
GPU CPU GPU CPU with budget of 5000 e Runtime [hours]

GTX295 i7-860 299 229 5 0.5
GTX295 i3-540 299 76 6 0.3

For our analysis, we suppose an overhead of 150e per workstation, plus the
costs for two graphics cards and the CPU. Because we lacked suitable hardware,
we assumed a moderate performance gain by 10% when using the i7-860 and
a gain by 5% when using the i3-540. We emphasize that no communication
between the workstations is required, thus no performance penalty affects the
scalability.

6 Conclusion

In this paper, we propose the first bit-sliced OpenCL implementation of Hitag 2
to perform an exhaustive key search on heterogeneous platforms. We present
results of our experimental evaluation and show that breaking the cipher is a
matter of hours on a single GPU. We emphasize that our hardware setup was
rather outdated and more recent hardware would perform even more promising.

Due to the nature of our approach, we can easily make use of more hardware
resources and provide data on building a heterogeneous cluster to break the
cipher within an hour using off-the-shelf hardware. Given the fact that we did
not use platform dependable code, we can assume that future versions may run
even faster by using hand-written IL or PTX assembly code. In order to improve
the results on CPUs, vector data types could be used to exploit the width of
SSE or AVX registers.
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– The outer-for-loop (from 0 to 216 − 1): This loop contains the function
initChallenge that takes the index of the loop as key candidate. Each
candidate is sliced and used as the quantity of the key that is directly loaded
into the LFSR together with the serial number. Of course, loading the serial
number can be done once and a memory copy used for all loop iterations.

for(i=0; i<32; i++) { // slice serial number and load into LFSR
if(serial&1) { lfsr[i] = ~lfsr[i]; }
serial >>= 1;

}
// ... keyGuess is the index of the outer-for-loop ...
for(i=0; i<16; i++) { // slice index and load into LFSR

if(keyGuess&1) { lfsr[32+i] = ~lfsr[32+i]; }
keyGuess >>= 1;

}
// ... keyGuess represents keyChallenge[0..15]

– The next 5 bits are all possible values in this range (read column-wise), due
to bit-slicing and the native register width of 32 bit (25 = 32, for GPUs):

fixedBits[0]=0x55555555; // 01010101010101010101010101010101 //=keyChallenge[16]
fixedBits[1]=0x33333333; // 00110011001100110011001100110011 //=keyChallenge[17]
fixedBits[2]=0x0F0F0F0F; // 00001111000011110000111100001111 //=keyChallenge[18]
fixedBits[3]=0x00FF00FF; // 00000000111111110000000011111111 //=keyChallenge[19]
fixedBits[4]=0x0000FFFF; // 00000000000000001111111111111111 //=keyChallenge[20]

These bits are fixed and can be directly clocked into the LFSR on the host as
part of the function initChallenge. This step represents the first 5 out of
32 clock cycles to randomize the state of the LFSR. We later take advantage
of the fact that we can check for the valid keys by verifying a bit mask.

– The inner-for-loop (from 0 to 27 − 1): These 7 bit represent the number of
kernel calls within each outer loop and are clocked into the LFSR by applying
the function updateChallenge.

– For the remaining 20 bit, the kernel is sent to the compute device. Hence,
our global work size is 220, whereas:
• 12 bit are represented by the blockId and
• 8 bit by the localId (the maximum size of a work group on some devices).

Together, they specify the unique key challenges of each work item. We
stress that the global work size was limited to 220 due to the fact that some
compute devices refused to work with larger values (e.g., Amd 6750M).
We notice that the 8 bit determining the localId are a fixed index for each
thread and thus can be precomputed by XORing all (sliced) indices with the
corresponding (sliced) IV bits. This precomputed data is then loaded onto
the device as array workGroupSlices (size of 256 · 8 · 32 bit).

B Pseudocode of the Host Attack Algorithm

To implement this algorithm, we wrote two functions, namely initChallenge
and updateChallenge. These functions are incorporated in the basic structure
of our program which consists of the set-up stage and two for-loops.
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The first for-loop named outer-for-loop represents the LFSR initialization and
calls the function initChallenge. The inner-for-loop creates a memory copy of
the data provided by the outer-for-loop and continues the state randomization
(clocking the LFSR) by calling the function updateChallenge.

The pseudo-code implementation can be further improved by using the idea
of nested for-loops, each time operating on a memory copy of the upper loop.

Algorithm B.1: Host Attack Algorithm
Input : SN , (IV1, Auth1), (IV2, Auth2), fixedBits[5]
Output: Key

1 Discover and set up compute device;
2 Create sliced representation of IV1 and Auth1;
3 Precomputation of workGroupSlices;
4 for i ← 0 to 216 − 1 do
5 lfsri ← initChallenge(i, fixedBits, SN);
6 for j ← 0 to 27 − 1 do
7 lfsrj ← memcpy(lfsri);
8 lfsrj ← updateChallenge(j, lfsrj);
9 Send data to compute device;

10 counter ← Retrieve result data if kernel finishes;
11 if counter > 0 then
12 verify data with (IV2,Auth2) in parallel and continue execution;
13 end
14 end
15 end
16 return key;

C Platform Specifications

The specifications of the platforms used for testing are as follows:

– MacBook Pro: Intel i7 2820QM, AMD 6750M, OS X 10.7.4, Apple LLVM compiler 3.1

– Server #1: 2x Intel Xeon X5680 3.33GHz, Nvidia Tesla C2050, Ubuntu 11.10, Driver 290.10

– Server #2: 2x Intel Xeon E5540 2.53GHz, Nvidia GTX295, Ubuntu 10.04, Driver 295.40

D Kernel Implementation

The following source code is a working kernel to be executed on GPUs:
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/* C preprocessor defines for the filter functions */
#define ht2bs_4a(a,b,c,d) (~(((a|b)&c)^(a|d)^b))
#define ht2bs_4b(a,b,c,d) (~(((d|c)&(a^b))^(d|a|b)))
#define ht2bs_5c(a,b,c,d,e) (~((((((c^e)|d)&a)^b)&(c^b))^(((d^e)|a)&((d^b)|c))))

__kernel void
hitag_worker(__constant const unsigned int *preSlicedLFSR, // 48*32 bit

__constant const unsigned int *ivInput, // 12*32 bit
__constant const unsigned int *workGroupSlices, // 256*8*32 bit, __global on GF100
__constant const unsigned int *cmpSlicedArray, // 32*32 bit
__global unsigned int *numCollisions) // [0]=cnt, [>0]=data

{
const unsigned int lid = get_local_id(0); // 0 ... 255
unsigned int keyChallenge[20]; // store key challenges (note: index is shifted)
unsigned int lfsr[48]; // store LFSR state
unsigned int bitMask = 0xFFFFFFFF; // check for valid key candidates

__local unsigned int groupPreComp[12];

if (lid==0) { // Execute the following code only for the first work item of each work group
unsigned int blockId = get_group_id(0); // 0 ... ((2^20)/(2^8))

/* Assign key challenges based on blockId (0 ... 2^12) */
keyChallenge[ 0] = (blockId&1) ? 0xFFFFFFFF : 0x00000000;
blockId >>= 1;
// [...] unrolled code [...]
keyChallenge[10] = (blockId&1) ? 0xFFFFFFFF : 0x00000000;
blockId >>= 1;
keyChallenge[11] = (blockId&1) ? 0xFFFFFFFF : 0x00000000;

/*
Continue state randomization and store result in local memory.
The following code is basically the unrolled version of:

// for (j = 0; j < 47; j++) lfsr[j] = lfsr[j+1]; // extra shift done on host
for(i=0; i<12; i++) {

for (j = 0; j < 47; j++) lfsr[j] = lfsr[j+1];
lfsr[47] = ivInput[i] ^ keyChallenge[i] ^ f20bs(lfsr);

}
*/

groupPreComp[11] = ivInput[ 0] ^ keyChallenge[ 0] ^ ht2bs_5c(
ht2bs_4a(preSlicedLFSR[ 1],preSlicedLFSR[ 2],preSlicedLFSR[ 4],preSlicedLFSR[ 5]),
ht2bs_4b(preSlicedLFSR[ 7],preSlicedLFSR[11],preSlicedLFSR[13],preSlicedLFSR[14]),
ht2bs_4b(preSlicedLFSR[16],preSlicedLFSR[20],preSlicedLFSR[22],preSlicedLFSR[25]),
ht2bs_4b(preSlicedLFSR[27],preSlicedLFSR[28],preSlicedLFSR[30],preSlicedLFSR[32]),
ht2bs_4a(preSlicedLFSR[33],preSlicedLFSR[42],preSlicedLFSR[43],preSlicedLFSR[45]));

groupPreComp[ 0] = ivInput[ 1] ^ keyChallenge[ 1] ^ ht2bs_5c(
ht2bs_4a(preSlicedLFSR[ 2],preSlicedLFSR[ 3],preSlicedLFSR[ 5],preSlicedLFSR[ 6]),
ht2bs_4b(preSlicedLFSR[ 8],preSlicedLFSR[12],preSlicedLFSR[14],preSlicedLFSR[15]),
ht2bs_4b(preSlicedLFSR[17],preSlicedLFSR[21],preSlicedLFSR[23],preSlicedLFSR[26]),
ht2bs_4b(preSlicedLFSR[28],preSlicedLFSR[29],preSlicedLFSR[31],preSlicedLFSR[33]),
ht2bs_4a(preSlicedLFSR[34],preSlicedLFSR[43],preSlicedLFSR[44],preSlicedLFSR[46]));

// [...] unrolled code [...]
groupPreComp[10] = ivInput[11] ^ keyChallenge[11] ^ ht2bs_5c(

ht2bs_4a(preSlicedLFSR[12],preSlicedLFSR[13],preSlicedLFSR[15],preSlicedLFSR[16]),
ht2bs_4b(preSlicedLFSR[18],preSlicedLFSR[22],preSlicedLFSR[24],preSlicedLFSR[25]),
ht2bs_4b(preSlicedLFSR[27],preSlicedLFSR[31],preSlicedLFSR[33],preSlicedLFSR[36]),
ht2bs_4b(preSlicedLFSR[38],preSlicedLFSR[39],preSlicedLFSR[41],preSlicedLFSR[43]),
ht2bs_4a(preSlicedLFSR[44],groupPreComp[ 5],groupPreComp[ 6],groupPreComp[ 8]));

}
barrier(CLK_LOCAL_MEM_FENCE); // Synchronize all work items of work group
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/* Hint: Use for-loops for NVIDIA, manually unrolled loops for AMD-GPU. */
for(unsigned int i=0; i<11; i++) { lfsr[i] = groupPreComp[i]; }
lfsr[47] = groupPreComp[11];
for(unsigned int i=11; i<47; i++) { lfsr[i] = preSlicedLFSR[i]; }

keyChallenge[12] = workGroupSlices[lid+(256*0)]; // coalesced if global mem
keyChallenge[13] = workGroupSlices[lid+(256*1)]; // coalesced if global mem
// [...] unrolled code [...]
keyChallenge[19] = workGroupSlices[lid+(256*7)]; // coalesced if global mem

lfsr[11] = keyChallenge[12] ^ ht2bs_5c(ht2bs_4a(lfsr[13],lfsr[14],lfsr[16],lfsr[17]),
ht2bs_4b(lfsr[19],lfsr[23],lfsr[25],lfsr[26]),
ht2bs_4b(lfsr[28],lfsr[32],lfsr[34],lfsr[37]),
ht2bs_4b(lfsr[39],lfsr[40],lfsr[42],lfsr[44]),
ht2bs_4a(lfsr[45],lfsr[ 6],lfsr[ 7],lfsr[ 9]));

lfsr[12] = keyChallenge[13] ^ ht2bs_5c(ht2bs_4a(lfsr[14],lfsr[15],lfsr[17],lfsr[18]),
ht2bs_4b(lfsr[20],lfsr[24],lfsr[26],lfsr[27]),
ht2bs_4b(lfsr[29],lfsr[33],lfsr[35],lfsr[38]),
ht2bs_4b(lfsr[40],lfsr[41],lfsr[43],lfsr[45]),
ht2bs_4a(lfsr[46],lfsr[ 7],lfsr[ 8],lfsr[10]));

// [...] unrolled code [...]
lfsr[18] = keyChallenge[19] ^ ht2bs_5c(ht2bs_4a(lfsr[20],lfsr[21],lfsr[23],lfsr[24]),

ht2bs_4b(lfsr[26],lfsr[30],lfsr[32],lfsr[33]),
ht2bs_4b(lfsr[35],lfsr[39],lfsr[41],lfsr[44]),
ht2bs_4b(lfsr[46],lfsr[47],lfsr[ 1],lfsr[ 3]),
ht2bs_4a(lfsr[ 4],lfsr[13],lfsr[14],lfsr[16]));

read_mem_fence(CLK_LOCAL_MEM_FENCE);

/*
We now compute 32 bits of output (the authenticator) and immediately
check the output bits against the expected value. We make special use
of the NXOR to track the valid key candidates (result in bitMask).

The following code is basically the unrolled version of:
for(i=0; i<8; i++) { bitMask &= (~(cmpSlicedArray[i+ 0] ^ hitag2bs_round(lfsr))); }
if(bitMask!=0)

for(i=0; i<8; i++) { bitMask &= (~(cmpSlicedArray[i+ 8] ^ hitag2bs_round(lfsr))); }
if(bitMask!=0)

for(i=0; i<8; i++) { bitMask &= (~(cmpSlicedArray[i+ 16] ^ hitag2bs_round(lfsr))); }
if(bitMask!=0)

for(i=0; i<8; i++) { bitMask &= (~(cmpSlicedArray[i+ 24] ^ hitag2bs_round(lfsr))); }
*/

lfsr[19] ^= lfsr[21] ^ lfsr[22] ^ lfsr[25] ^ lfsr[26] ^ lfsr[27] ^ lfsr[35] ^ lfsr[41] ^
lfsr[42] ^ lfsr[45] ^ lfsr[1] ^ lfsr[12] ^ lfsr[13] ^ lfsr[14] ^ lfsr[17] ^ lfsr[18];

bitMask &= (~(cmpSlicedArray[0] ^ ht2bs_5c(ht2bs_4a(lfsr[21],lfsr[22],lfsr[24],lfsr[25]),
ht2bs_4b(lfsr[27],lfsr[31],lfsr[33],lfsr[34]),
ht2bs_4b(lfsr[36],lfsr[40],lfsr[42],lfsr[45]),
ht2bs_4b(lfsr[47],lfsr[ 0],lfsr[ 2],lfsr[ 4]),
ht2bs_4a(lfsr[5],lfsr[14],lfsr[15],lfsr[17]))));

// [...] unrolled code [...]
lfsr[26] ^= lfsr[28] ^ lfsr[29] ^ lfsr[32] ^ lfsr[33] ^ lfsr[34] ^ lfsr[42] ^ lfsr[0] ^

lfsr[1] ^ lfsr[4] ^ lfsr[8] ^ lfsr[19] ^ lfsr[20] ^ lfsr[21] ^ lfsr[24] ^ lfsr[25];
bitMask &= (~(cmpSlicedArray[7] ^ ht2bs_5c(ht2bs_4a(lfsr[28],lfsr[29],lfsr[31],lfsr[32]),

ht2bs_4b(lfsr[34],lfsr[38],lfsr[40],lfsr[41]),
ht2bs_4b(lfsr[43],lfsr[47],lfsr[ 1],lfsr[ 4]),
ht2bs_4b(lfsr[ 6],lfsr[ 7],lfsr[ 9],lfsr[11]),
ht2bs_4a(lfsr[12],lfsr[21],lfsr[22],lfsr[24]))));

/*
After computing the first 8 output bits, we check if there are any
key candidates left. If so, continue, else, terminate.
*/

if(bitMask!=0) {
lfsr[27] ^= lfsr[29] ^ lfsr[30] ^ lfsr[33] ^ lfsr[34] ^ lfsr[35] ^ lfsr[43] ^ lfsr[1] ^

lfsr[2] ^ lfsr[5] ^ lfsr[9] ^ lfsr[20] ^ lfsr[21] ^ lfsr[22] ^ lfsr[25] ^ lfsr[26];
bitMask &= (~(cmpSlicedArray[ 8] ^ ht2bs_5c(ht2bs_4a(lfsr[29],lfsr[30],lfsr[32],lfsr[33]),

ht2bs_4b(lfsr[35],lfsr[39],lfsr[41],lfsr[42]),
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ht2bs_4b(lfsr[44],lfsr[ 0],lfsr[ 2],lfsr[ 5]),
ht2bs_4b(lfsr[ 7],lfsr[ 8],lfsr[10],lfsr[12]),
ht2bs_4a(lfsr[13],lfsr[22],lfsr[23],lfsr[25]))));

// [...] unrolled code [...]
}
read_mem_fence(CLK_LOCAL_MEM_FENCE);

if(bitMask!=0){ // first check, then continue computation
// [...] unrolled code [...]

}

read_mem_fence(CLK_LOCAL_MEM_FENCE);

if(bitMask != 0) { // first check, then continue computation
lfsr[43] ^= lfsr[45] ^ lfsr[46] ^ lfsr[1] ^ lfsr[2] ^ lfsr[3] ^ lfsr[11] ^ lfsr[17] ^

lfsr[18] ^ lfsr[21] ^ lfsr[25] ^ lfsr[36] ^ lfsr[37] ^ lfsr[38] ^ lfsr[41] ^ lfsr[42];
bitMask &= (~(cmpSlicedArray[24] ^ ht2bs_5c(ht2bs_4a(lfsr[45],lfsr[46],lfsr[ 0],lfsr[ 1]),

ht2bs_4b(lfsr[ 3],lfsr[ 7],lfsr[ 9],lfsr[10]),
ht2bs_4b(lfsr[12],lfsr[16],lfsr[18],lfsr[21]),
ht2bs_4b(lfsr[23],lfsr[24],lfsr[26],lfsr[28]),
ht2bs_4a(lfsr[29],lfsr[38],lfsr[39],lfsr[41]))));

// [...] unrolled code [...]
lfsr[2] ^= lfsr[4] ^ lfsr[5] ^ lfsr[8] ^ lfsr[9] ^ lfsr[10] ^ lfsr[18] ^ lfsr[24] ^

lfsr[25] ^ lfsr[28] ^ lfsr[32] ^ lfsr[43] ^ lfsr[44] ^ lfsr[45] ^ lfsr[0] ^ lfsr[1];
bitMask &= (~(cmpSlicedArray[31] ^ ht2bs_5c(ht2bs_4a(lfsr[ 4],lfsr[ 5],lfsr[ 7],lfsr[ 8]),

ht2bs_4b(lfsr[10],lfsr[14],lfsr[16],lfsr[17]),
ht2bs_4b(lfsr[19],lfsr[23],lfsr[25],lfsr[28]),
ht2bs_4b(lfsr[30],lfsr[31],lfsr[33],lfsr[35]),
ht2bs_4a(lfsr[36],lfsr[45],lfsr[46],lfsr[ 0]))));

}
read_mem_fence(CLK_LOCAL_MEM_FENCE);

/* If the bitMask is still non-zero, we have found valid key candidate(s) */
if(bitMask !=0) {

numCollisions[0]++; //atomic_inc(&numCollisions[0]); // not necessary, see below
numCollisions[1] = bitMask;
numCollisions[2] = get_global_id(0);
// Eventually, we would have to dynamically adjust the indices. However, in
// our tests, not more than one possible key candidate per kernel run showed up.
// As a safety measure, one can use the atomic_inc and check for a counter > 1.
// Depending on the platform, this causes no overhead and results in same speed.

}
}

For the sake of completeness, we provide the two functions referenced within
comments in the above source code:
// This function computes a complete round (output and feedback) function of the cipher
unsigned int hitag2bs_round (unsigned int * lfsr) {

unsigned int i, y;

y = lfsr[ 0] ^ lfsr[ 2] ^ lfsr[ 3] ^ lfsr[ 6] ^ lfsr[ 7] ^ lfsr[ 8] ^ lfsr[16] ^ lfsr[22] ^
lfsr[23] ^ lfsr[26] ^ lfsr[30] ^ lfsr[41] ^ lfsr[42] ^ lfsr[43] ^ lfsr[46] ^ lfsr[47];

for (i = 0; i < 47; i++) { lfsr[i] = lfsr[i+1]; } // omit if unrolled by adjusting indices

lfsr[47] = y;
return f20bs (lfsr);

}

// This function computes the (bit-sliced) non-linear output function of the cipher
static unsigned int f20bs (const unsigned int *x) {
return ht2bs_5c (ht2bs_4a(x[ 1],x[ 2],x[ 4],x[ 5]),

ht2bs_4b(x[ 7],x[11],x[13],x[14]),
ht2bs_4b(x[16],x[20],x[22],x[25]),
ht2bs_4b(x[27],x[28],x[30],x[32]),
ht2bs_4a(x[33],x[42],x[43],x[45]));

}
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Abstract. We consider the lossiness of RSA trapdoor permutation stud-
ied by Kiltz, O’Neill and Smith in Crypto 2010. In Africacrypt 2011, Her-
rmann improved the cryptanalytic results of Kiltz et al. In this paper,
we improve the bound provided by Herrmann, considering the fact that
the unknown variables in the central modular equation of the problem
are not balanced. We provide detailed experimental results to justify our
claim. It is interesting that in many situations, our experimental results
are better than our theoretical predictions. Our idea also extends the
weak encryption exponents proposed by Nitaj in Africacrypt 2012.
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1 Introduction

1.1 Multi-Prime Φ-Hiding Assumption

Multi-Prime RSA is a generalization of the RSA public key cryptosystem [13]
where the modulus is a product of more than two primes, i.e., N = p1 · · · pm,
with pi (for 1 ≤ i ≤ m) primes of same bitsize. Note that for a fixed bit length
of Multi-Prime RSA modulus N , the number of primes m can not be very large
since, in that case one may efficiently extract the smallest factor of N using the
Elliptic Curve Method for factorization [10].

Φ-Hiding Assumption is one of the most well known assumptions in modern
cryptography. It is used in various applications to produce secure primitives. For
an RSA modulus N = pq and a prime e, the Φ-Hiding Assumption states that

“it is hard to decide whether e divides Φ(N) = (p− 1)(q − 1),”

where Φ(·) denotes the Euler’s totient function. So the Φ-Hiding Problem is to
deterministically predict whether a given prime e is a factor of Φ(N) or not,
where only the knowledge of e and N is available.

It is well known that Φ-Hiding problem can be solved efficiently using the idea
of Coppersmith [1] if e ≥ N0.25. In Asiacrypt 2008, Schridde and Freisleben [14]
proved that the Φ-Hiding Assumption does not hold for the composite integers
of the form N = pq2k for k > 0. These kind of moduli are known to be used in
a variant of RSA called Takagi’s RSA [15], which provides faster decryption.
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Multi-Prime Φ-Hiding Assumption has been proposed by Kiltz et al [8] in
Crypto 2010, where they obtained standard model instantiations of RSA-OAEP
by constructing a lossy trapdoor permutation from RSA, based on the multi-
prime generalization of the Φ-Hiding Assumption.

In their protocol, they considered Multi-Prime RSA with modulus N =
p1 · · · pm. The prime e is chosen such that e divides p1 − 1, . . . , pm−1 − 1. The
lossy trapdoor permutation then relies on the Multi-Prime Φ-Hiding Assump-
tion, which states that

“it is hard to decide whether e divides pi − 1 for all but one prime factor of N”.

1.2 Cryptanalysis of Multi-Prime Φ-Hiding Assumption

Kiltz et al. [8] present a cryptanalysis of the Multi-Prime Φ-Hiding Assumption
using the idea of Herrmann et al. [3]. Note that if e divides all pi−1 for 1 ≤ i ≤ m,
N ≡ 1 mod e. It gives a polynomial time distinguisher. To decide if e is Multi-
Prime Φ-Hidden in N , consider the system of equations

ex1 + 1 ≡ 0 mod p1, ex2 + 1 ≡ 0 mod p2, . . . , exm−1 + 1 ≡ 0 mod pm−1.

Kiltz et al. [8] construct a polynomial equation

em−1

(
m−1∏
i=1

xi

)
+ · · ·+ e

(
m−1∑
i=1

xi

)
+ 1 ≡ 0 mod

m−1∏
i=1

pi (1)

by multiplying all given equations. Then they linearize the polynomial and solve
it using a result due to Herrmann and May [3]. However, the work of [3] provides
an algorithm with runtime exponential in the number of unknown variables. So
for large m, the idea of [3] will not be efficient.

Note that the coefficients of the polynomial in Equation (1) are all powers
of e. In Africacrypt 2011, Herrmann [4] used this fact to improved the attack
of [8], by considering a different linearization to reduce the number of variables.
Suppose we have (ex1 + 1)(ex2 + 1)(ex3 + 1) ≡ 0 mod p1p2p3. Then instead of
considering the polynomial equation

e3x1x2x3 + e2(x1x2 + x1x3 + x2x3) + e(x1 + x2 + x3) + 1 ≡ 0 mod p1p2p3, (2)

Herrmann [4] considered the polynomial equation

e2x+ ey + 1 ≡ 0 mod p1p2p3, (3)

where x = ex1x2x3+x1x2+x1x3+x2x3 and y = x1+x2+x3 are the unknowns.
One positive aspect of Equation (3) is that it has only two variables x, y instead
of the original three x1, x2, x3. On the negative side, the size of the variable x is
increased by a factor of e compared to the original unknown variables x1, x2, x3.
However, the problem remains similar, as finding x, y allows one to factor N .
In [4], it has been proved that considering Equation (3) provides an advantage
in terms of better upper bounds on xi than in the case with Equation (2).
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In the general case, instead of considering the polynomial em−1ym−1 +
em−2ym−2 + · · · + ey1 + 1 over the variables y1, . . . , ym−1 with root

(y1, . . . , ym−1) =

(
m−1∏
i=1

xi, . . . ,
m−1∑
i=1

xi

)
,

Herrmann [4] considered the polynomial e2x + ey + 1 over the variables x, y
with root

(x0, y0) =

⎛⎝em−3
m−1∏
i=1

xi + · · ·+
∑
j>i

xixj ,
m−1∑
i=1

xi

⎞⎠ (4)

to obtain the improvement over the work of Kiltz et al. [8].

1.3 Our Contribution

In summary, we obtain the following attempts in analyzing the Multi-Prime
Φ-Hiding problem for an RSA modulus with m factors:

– Kiltz et al. [8] used linear modular equation over m− 1 variables. As in this
case dimension of lattice will be exponential in m − 1, method will not be
efficient at all for large value of m.

– Herrmann [4] considered a bivariate modular polynomial. This makes the
method efficient for larger values of m too. Also this gives better theoretical
bound than the work of [8].

However, note that in Equation (4) used by Herrmann [4], the variable y0 is
much smaller than x0. It was already indicated in [3] that one may get better
bound for these unbalanced variables. However this option has not been analyzed
systematically in the literature till date. In this work we analyzed this issue
carefully, and use the unbalanced property of the variables x, y to get further
improvement over the result of Herrmann [4].

Our improvement originates from providing extra shifts over the variable y
in the same bivariate scenario as Herrmann has considered. This reduces the
lossiness of the work of Kiltz et al. [8] even further. In Table 1, we present the
impact of our result on the work of Kiltz et al.

Table 1. Impact of our results on the lossiness of Kiltz et al. [8] for different values of
m, with 2048 bit N and for 80 bit security.

Value Lossiness in the work of Kiltz et al. [8]

of m Before the work of [4] After the work of [4] After our work

4 806 778 768

5 872 822 778
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We present the main technical result, our attack on the Multi-Prime Φ-Hiding
Assumption, in Section 2, and the respective experimental results in Section 3.
But before proceeding with the main content of this paper, let us state the
following two existing results on lattices that will be required for our work. We
first state the following due to Howgrave-Graham [5].

Lemma 1. Let h(x1, x2) ∈ Z[x1, x2] be the sum of at most ω monomials. Sup-

pose that h(x
(0)
1 , x

(0)
2 ) ≡ 0 (mod Nm) where |x(0)

1 | ≤ X1, |x(0)
2 | ≤ X2 and

||h(x1X1, x2X2)|| < Nm

√
ω
.

Then h(x
(0)
1 , x

(0)
2 ) = 0 over the integers.

We also note that the basis vectors of an LLL-reduced basis fulfill the following
property (as explained in [9]).

Lemma 2. Let L be an integer lattice of dimension ω. The LLL algorithm ap-
plied to L outputs a reduced basis of L spanned by {v1, . . . , vω} with

||v1|| ≤ ||v2|| ≤ 2ω/4 det(L)1/(ω−1)

in polynomial time of dimension ω and the bit size of the entries of L.

Now we move on to the main technical content of this paper.

2 Our Attack on the Multi-Prime Φ-Hiding Assumption

Note that from Equation (4), value of y0 is much smaller than x0. We use this
fact to get the improvement over [4]. Our approach is exactly the same as [3]
except that we use extra shifts over the variable y.

Theorem 1. Let N = p1 · · · pm be a Multi-Prime RSA modulus where pi are of
same bit size for 1 ≤ i ≤ m. Let e be a prime such that e > N

1
m−δ. Then one

can solve Multi-Prime hidden Φ problem in polynomial time if there exist two
non-negative real numbers τ1, τ2 such that

Ψ(τ1, τ2, δ,m) =3τ1τ
2
2m− τ32m+ 3τ21 δm− 6τ1τ2m+ 3τ22m+ 9τ1δm+

6τ1τ2 + 3τ1m− 3τ2m+ 3δm− 9τ1 + 3τ2 +m− 3 < 0.

Proof. To decide if e is Multi-Prime Φ-hidden in N , consider the system of
equations

ex1 + 1 ≡ 0 mod p1, . . . , exm−1 + 1 ≡ 0 mod pm−1

As pi are of same bit size and e > N
1
m−δ, we have |xi| ≤ N δ for 1 ≤ i ≤ m− 1.

Denote P =
∏m−1

i=1 pi. Now consider the polynomial g(x, y) = e2x+ ey+ 1. It is
clear that g(x0, y0) ≡ 0 mod P where

(x0, y0) =

⎛⎝em−3
m−1∏
i=1

xi + · · ·+
∑
j>i

xixj ,
m−1∑
i=1

xi

⎞⎠ .
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From g(x, y), one can obtain a polynomial f(x, y) of the form x+ a1y+ a2 such
that f(x0, y0) ≡ 0 mod P . It is clear that the size of x0 is dominated by the term
em−3x1 . . . xm−1. Hence we have

|x0| ≤ N (m−3)( 1
m−δ)+(m−1)δ = N

m−3
m +2δ and |y0| ≤ (m− 1)N δ.

As m < log2 N , we can assume |y0| ≤ N δ, neglecting m− 1 term.

Take two integers X = N
m−3
m +2δ and Y = N δ. Clearly X,Y is an upper

bound on x0, y0 respectively.
Now consider the set of polynomials

gk,i(x, y) = yifk(x, y)Nmax{s−k,0},

for k = 0, . . . , u, i = 0, . . . , u − k + t where u is a positive integer and s, t are
non-negative integers. Note that gk,i(x0, y0) ≡ 0 mod P s.

Now we construct the lattice L spanned by the coefficient vectors of the poly-
nomials gk,i(xX, yY ). One can check that the dimension of the lattice L is

ω =

u∑
k=0

u−k+t∑
i=0

1 ≈ u2

2
+ tu.

The determinant of L is

det(L) =

u∏
k=0

u−k+t∏
i=0

Xk · Y i ·Nmax{s−k,0} = XsXY sY NsN , (5)

where sX =
u∑

k=0

u−k+t∑
i=0

k ≈ t
u2

2
+

u3

6
,

sY =

u∑
k=0

u−k+t∑
i=0

i ≈ t2u

2
+

tu2

2
+

u3

6
,

sN =

u∑
k=0

u−k+t∑
i=0

max{s− k, 0} ≈ us2

2
+

ts2

2
− s3

6
assume t ≤ u.

Using Lattice reduction on L by LLL algorithm [9], one can find two non-zero

vectors b1, b2 such that ||b1|| ≤ ||b2|| ≤ 2
ω
4 (det(L))

1
ω−1 . The vectors b1, b2 are the

coefficient vector of the polynomials h1(xX, yY ), h2(xX, yY ) with

||h1(xX, yY )|| = ||b1|| and ||h2(xX, yY )|| = ||b2||,

where h1(x, y), h2(x, y) are the integer linear combinations of the polynomials
gk,i(x, y). Hence

h1(x0, y0) ≡ h2(x0, y0) ≡ 0 mod P s.
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To find two polynomials h1(x, y), h2(x, y) which share the root (x0, y0) over
integers, using Lemma 1 we get the condition

2
ω
4 (det(L))

1
ω−1 <

P s

√
ω
. (6)

Note that ω is the dimension of the lattice which we may consider as small
constant with respect to the size of P and the elements of L. Thus, neglecting
2

ω
4 and

√
ω, we can rewrite (6) as det(L) < (P s)ω−1. In general [7], it is con-

sidered that the condition det(L) < (P s)ω is sufficient to find two polynomials
h1(x, y), h2(x, y) such that h1(x0, y0) = h2(x0, y0) = 0.

Under the assumption that gcd(h1, h2) = 1, we can collect the root (x0, y0)
using resultant method. Let t = τ1u and s = τ2u where τ1, τ2 are non-negative
reals. Now putting the value of t, s in the condition det(L) < P sω, we get the
required condition. ��
Remark 1. For fixed δ and m, we will take the partial derivative of Ψ with
respect to τ1, τ2 and equate each of them to 0 to get non-negative solutions of
τ1, τ2. Given any pair of such non-negative solutions, if Ψ is less than zero, then
for that δ, x0, y0 can be obtained efficiently.

Comparison with [4] and [8]: In the work of [4], the variable τ1 was not
involved. The bound on δ in [4] is presented as

δ <
2

3
√
m3

.

The bound on δ in the work of [8] is

δ <
2
(
m−1/(m−1) −m−m/(m−1)

)
m(m− 1)

.

In Table 2, we present a comparison of the upper bounds of δ as in our case
(Theorem 1) with those in [4] and [8], for different values of m.

From Table 2, it is clear that upper bound of δ in our case is higher than
that of [4]. Hence our new attack solves the Multi-Prime Φ-Hidding Problem for
more values of e. Also note that when m becomes larger, difference between the
upper bound of δ in Theorem 1 and the upper bound of [4] increases.

Recently Tosu and Kunihiro [16] have studied Multi-Prime Φ-Hiding Prob-
lem. In [16, Section 4.4], authors have mentioned that their bound is same as
Herrmann Method for m = 3, 4, 5. Hence for m = 4, 5, our method is better
than that of [16]. Also when m = 10 with 4096 bit modulus, attack of [16] works
when size of e is more than 314. However, in our case lower bound on size of e is
(0.1− 0.0248)× 4096 = 308. Hence in this situation too, our method is better.

3 Experimental Results

We have implemented the programs in SAGE 3.1.1 over Linux Ubuntu 8.04 on
a laptop with Dual CORE Intel(R) Pentium(R) D CPU 1.83 GHz, 2 GB RAM
and 2 MB Cache. The results are as follows.
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Table 2. Comparison of upper bound on δ between our result and those of [4] and [8]

Value Upper bound on δ

of m Our result (Theorem 1) Herrmann [4] Kiltz et al. [8]

3 0.1283 0.1283 0.1283

4 0.0835 0.0833 0.0787

5 0.0608 0.0596 0.0535

6 0.0475 0.0454 0.0388

7 0.0387 0.0360 0.0295

8 0.0327 0.0295 0.0232

9 0.0283 0.0247 0.0188

10 0.0248 0.0211 0.0154

In Table 3, we present few experimental results for different values of m.

Table 3. Experimental results for different values of m with 2048 bit N

m δ u t s dim(L) time (sec.)

3 0.120 8 2 4 63 209.35

4 0.085 7 3 4 60 206.90

5 0.065 7 3 4 60 140.42

6 0.054 6 4 4 56 87.34

7 0.044 6 4 4 56 73.97

8 0.039 5 4 5 51 45.41

9 0.034 5 4 5 51 39.05

10 0.029 5 4 5 51 30.43

From Table 3, it may be noted that form ≥ 4 we get much better results in the
experiments than the theoretical bounds. This is because, for the parameters we
consider here, the shortest vectors may belong to some sublattice. However, the
theoretical calculation in Theorem 1 cannot capture that and further, identifying
such optimal sublattice seems to be difficult.

In [8, Proposition 5.3], Kiltz et al. proved that their construction provides
(m − 1)(1/m − δ − ε) log2 N bits of lossiness for ε log2 N bit security. One can
achieve 80 bit security by taking ε = 0.04 for 2048 bit modulus. In this case
for m = 3, 4, 5, Kiltz et al. showed that one can obtain 676, 778 and 822 bits
lossiness respectively, considering the upper bound of δ as 2

3
√
m3

. For m = 4, we

achieve the bound of δ as 0.085. This implies that actual lossiness in this case
is less than 3× (0.25− 0.085− 0.04)× 2048 = 768 instead of 778. Similarly for
m = 5, actual lossiness is less than 778 instead of 822.
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In many situations (like [6]), experimental results provide better bound than
the theoritical prediction. Thus, any concrete parameters given in [8] for instan-
tiating RSA-OAEP that depends on the Multi-Prime Φ-Hidding problem should
need experimental verification.

3.1 Weak Encryption Exponents

Recently in Africacrypt 2012, Nitaj [12] proposed a new class of weak Encryption
Exponents for RSA. The flow of the algorithm in [12] that exploits these weak
keys is as follows.

– Consider that the public exponent e satisfies ex+y ≡ 0 mod p with |x| < Nγ ,
|y| < N δ and ex+ y 
= 0 mod N .

– Use the idea of [3] to find x, y.
– Calculate p = gcd(N, ex+ y)

Nitaj [12] proved that when γ+δ ≤
√
2−1
2 ≈ 0.207, one can find x, y in the above

algorithm. He also estimated that the number of such encryption exponent is at
least N0.707−ε where ε → 0.

Note that when γ and δ are not same, i.e., x, y are of different bitsizes, we
can improve the upper bound of γ + δ using our idea as in Theorem 1. In fact,
when either γ → 0 or δ → 0, it is already mentioned in [3] that the upper bound
of γ + δ would be 0.25. Hence we have the following result, using an approach
similar to that of [12, Theorem 5].

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Let public
exponent e satisfy ex + y ≡ 0 mod p with |x| < N ε1 and |y| < N δ. If ex + y 
=
0 mod N and δ < 0.25, one can factor N in polynomial time where ε1 → 0. The
number of such encryption exponents is atleast N0.75−ε, where ε → 0.

4 Conclusion

In this paper we consider Multi-Prime Φ-Hidding problem and provide better
theoretical results than what were obtained by Herrmann [4]. For m ≥ 4, the
experimental results are better than our theoretical prediction. In this direc-
tion, an interesting open problem would be to provide a theoretical model for
constructing the sublattice.
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Abstract. Independent work by Chatterjee and Sarkar [9] and Naccache
[16] provided a variant of Waters’ IBE to reduce public parameters. The
idea is to divide an l-bit identity into l′ blocks of l/l′ so that size of

the vector
−→
V can be reduced from l elements of G to l′ elements of

G. We name this technique as blocking technique. This leads to some
associated degradation in security reduction. In this paper our contri-
bution is two fold: First we apply Waters’ [21] idea to convert Agrawal
et al. [1] selective-ID secure lattice HIBE to adaptive-ID secure HIBE
then using blocking technique we reduce the public parameters. Second
we present efficient lattice identity based encryption in standard model
with smaller public key size which is variant of [1]. Using blocking tech-
nique our scheme reduces public key size by a factor of β at the cost
of increasing (β − lg(β))2 number of bits in q where q is size of field
Zq . There is an interesting trade-off between reducing the public param-
eter size and increase in the computational cost. For 160-bit identities
we show that compared to scheme [1] the public parameter size can be
reduced by almost 90% while increasing the computation cost by only
8.71% for appropriate choice of β.

Keywords: Lattice, Hierarchical Identity Base Encryption, Standard
model, Learning with error(LWE).

1 Introduction

The concept of identity-based cryptosystem was introduced by Adi Shamir in
1984 [20]. In this new paradigm users’ public key can be any string which
uniquely identifies the user. For example email or phone number can be public
key. As a result, it significantly reduces system complexity and cost of establish-
ing public key infrastructure. Although Shamir constructed an identity-based
signature scheme using RSA function but he could not construct an identity-
based encryption and this became a long-lasting open problem. Only in 2001,
Shamir’s open problem was independently solved by Boneh and Franklin [6] and
Cocks [11].
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c© Springer-Verlag Berlin Heidelberg 2012
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First Canetti et al. [7] presented identity-based encryption in standard model.
They proved the security of scheme in selective-ID model. In the selective-ID
model the adversary must first declare which identity it wishes to be challenged
before the global parameters are generated. Boneh and Boyen [4] then provided
an efficient secure scheme in selective-ID model. Boneh and Boyen [5] describe a
scheme that is fully secure in standard model, but their scheme is too inefficient
to practical use. Finally, the first practical and fully secure IBE scheme was
proposed by Waters [21] in the standard model under the Decisional Bilinear
Diffie-Hellman assumption. However, one drawback was that the public param-
eters is very large: namely, the public parameters contain l + 4 group elements,
where l is the size of the bit-string representing identities. In that scheme, if the

identities are n-bit string then one needs
−→
V consists of n group elements. Inde-

pendent work by Chatterjee and Sarkar [9] and Naccache [16] provided a variant
of Waters’ IBE. The idea is to divide an l-bit identity into l′ blocks of l/l′ so
that size of the vector

−→
V can be reduced from l elements of G to l′ elements of

G. We name this technique as blocking technique. This leads to some associated
degradation in security reduction.

The task of Public Key Generator (PKG) in IBE is to authenticate identity of
the entity, generate the private key corresponding to identity of the entity and
finally transmit the private key securely to the entity. In large network PKG
has a burdensome job. So the notion of Hierarchical IBE (HIBE) was intro-
duced in [13,14,5] to distribute the workload by delegating private key generation
and identity authentication to lower-level PKGs. However, lower level PKGs do
not have their own public parameters. Only root PKG has some set of public
parameters.

Lattice based cryptogrphy have arisen in recent years. Lattice based cryptog-
raphy are attractive due to their worst case hardness assumption and their poten-
tial resistance to quantum computers. Recently Regev [19] defined the learning
with errors (LWE) problem and proved that it enjoys similar worst-case hardness
properties, under a quantum reduction.

Based on LWE problem, Gentry et al. [18] constructed lattice based IBE
scheme in random oracle model. Recently Cash et al. [8], Peikert [17], and Agar-
wal et al. [2] have constructed secure IBE in the standard model from LWE
problem. Their construction view an identity as a sequence of bits and then
assign a matrix to each bit, which resulted into less efficient scheme compared
to Gentry et al.[18]. Recently Agarwal et al.[1] constructed a efficient lattice
based selective-ID secure IBE scheme in standard model. They have consid-
ered identities as one chunk rather than bit-by-bit. As Water modified Boneh
Boyen selective-ID secure IBE scheme (BB-IBE1)[5] to obtain an adaptive-ID
(full model) secure IBE scheme [21], similarly Agarwal et al.[1] in their full ver-
sion paper constructed an adaptive secure IBE using LWE problem. Similar to
Waters [21], it has large public parameters of size l n×m matrices, where l is
the size of the bit-string representing identities.

Recently Cash et al. [8] and Peikert [17] have constructed secure HIBE in
the standard model using basis delegation technique. Their construction view
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an identity as a sequence of bits and then assign a matrix to each bit, which
resulted into less efficient scheme. Recently Agarwal et al. [1] constructed a ef-
ficient lattice based secure HIBE scheme in standard model in weaker security
notion i.e. selective-ID. They have considered identities as one chunk rather than
bit-by-bit.

Our Contributions. Our contribution is two fold: First we apply Waters’ [21]
idea to convert Agrawal et al. [1] selective-ID secure lattice HIBE to adaptive-ID
secure HIBE. Then using blocking technique we reduce the public parameters.
Second one drawback of Agarwal et al. adaptive secure IBE scheme[1] was that
the public parameters is very large: namely, the public parameters contain l+1
n×m matrices, where l is the size of the bit-string representing identities. Using
blocking technique we can reduce n×mmatrices by factor β or public parameters
is reduced by around factor β; encryption and decryption are almost as efficient
as in [1]. This is associated with increase in size of q by 2β where q is a prime
number and size of field Zq. We show that compared to scheme [1] the public
parameter size can be reduced by almost 90% while increasing the computation
cost by only 8.71% for appropriate choice of β.

2 Preliminaries

2.1 Hierarchical IBE and IBE

Here definitions and security model of HIBE and IBE are similar to [13,14,5,1].
User at depth l is defined by its tuple of ids : (id/idl) = (id1, ..., idl). The user’s
ancestors are the root PKG and the prefix of id tuples (users/lower level PKGs).

HIBE consists of four algorithms.

Setup(d, λ:) On input a security parameter d(maximum depth of hierarchy tree)
and λ, it outputs the public parameters and master key of root PKG.

Derive(PP,(id/idl), SK(id/idl)): On input public parameters PP, an identity
(id/idl) = (id1, ..., idl) at depth l and the private key SK(id/idl−1) corresponding
to parent identity (id/idl−1) = (id1, ..., idl−1) at depth l − 1 ≥ 0 the algorithm
outputs private key for the identity (id/idl) at depth l.

If l = 1 then SK(id/id0) is defined to be master key of root PKG.
The private key corresponding to an identity (id/idl) = (id1, ..., idl) at depth

l can be generated by PKG or any ancestor (prefix) of an identity (id/idl).

Encrypt(PP,(id/idl),M): On input public parameters PP, an identity (id/idl),
and a message M outputs ciphertext C.

Decrypt(PP,SK(id/idl),C): On input public parameters PP, a private key
SK(id/idl), and a ciphertext C outputs message M.

Identity Based Encryption. IBE is special case of HIBE when depth of
hierarchy tree is one.
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2.2 Adaptive-ID (Full) Security Model of HIBE and IBE

We define adaptive-ID security model using a game that the challenge ciphertext
is indistinguisable from a random element in the ciphertext space. This property
implies both semantic security and recipient anonymity. The game proceeds as
follows.

Setup: The challenger runs Setup(1λ, 1d) and gives the public parameters PP
to adversary and keeps master key MK to itself.

Phase 1: The adversary issues a query for a private key for identity (id/idk) =
(id1, ..., idk), k ≤ d. Adversary can repeat this multiple times for different iden-
tities adaptivly.

Challenge: The adversary submits identity id∗ and message M. Identity id∗ and
prefix of id∗ should not be one of the identity query in phase 1. The challenger
picks a random bit r ∈ {0, 1} and a random ciphertext C. If r = 0 it sets the
challenge ciphertext to C∗ := Encrypt(PP, id∗,M). If r = 1 it sets the challenge
ciphertext to C∗ := C. It sends C∗ as challenge to the adversary.

Phase 2: Phase 1 is repeated with the restriction that the adversary can not
query for id∗ and prefix of id∗.

Guess: Finally, the adversary outputs a guess r′ ∈ {0, 1} and wins if r = r′.
We refer an adversary A as an IND-ID-CPA adversary. We define the advan-

tage of the adversary A in attacking an IBE scheme ξ as

Advd,ξ,A(λ) = |Pr[r = r′]− 1/2|
Definition 1. We say that depth d HIBE scheme ξ is adaptive-ID, indistinguish-
able from random if for all IND-ID-CPA PPT adversaries A we have Advd,ξ,A(λ)
is a negligible function.

Full Security Model of IBE. Security model of IBE is same as security model
of HIBE with depth of hierarchy tree is one.

2.3 Integer Lattices

A lattice is defined as the set of all integer combinations

L(b1, ..., bn) =

{
n∑

i=1

xibi : xi ∈ Z for 1 ≤ i ≤ n

}
of n linearly independent vectors b1, ..., bn ∈ Rn. The set of vectors {b1, ..., bn}
is called a basis for the lattice. A basis can be represented by the matrix B =
[b1, ..., bn] ∈ Rn×n having the basis vectors as columns. Using matrix notation,
the lattice generated by a matrix B ∈ Rn×n can be defined as L(B) = {Bx : x ∈
Zn}, where Bx is the usual matrix-vector multiplication. The determinant of a
lattice is the absolute value of the determinant of the basis matrix det(L(B)) =
|det(B)|.
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Definition 2. For q prime, A ∈ Zn×m
q and u ∈ Zn

q , define:

Λq(A) := {e ∈ Zm s.t. ∃ s ∈ Zn
q where AT s = e (mod q)}

Λ⊥
q (A) := {e ∈ Zm s.t. Ae = 0 (mod q)}

Λu
q (A) := {e ∈ Zm s.t. Ae = u (mod q)}

2.4 The Gram-Schmidt Norm of a Basis

Let S be a set of vectors S = {s1, ..., sk} in Rm. We use the following notation:

– |S| denotes the L2 length of the longest vector in S, i.e. ‖S‖ := maxi|si| for
1 ≤ i ≤ k.

– S̃ := {s̃1, ..., s̃k} ⊂ Rm denotes the Gram-Schmidt orthogonalization of the
vector s1, ..., sk taken in that order.

We refer to ‖̃S‖ as the Gram-Schmidt norm of S.

Lemma 1([15, Lemma 7.1]). Let Λ be an m-dimensional lattice. There is a
deterministic polynomial-time algorithm that, given an arbitrary basis of Λ and
a full-rank set S = {s1, ..., sm} in Λ, returns a basis T of Λ satisfying

‖T̃‖ ≤ ‖S̃‖ and ‖T ‖ ≤ ‖S‖√m/2

Theorem 1([3, Theorem 3.2]). Let q ≥ 3 be odd and m := �6nlog q�.
There is probabilistic polynomial-time algorithm TrapGen(q, n) that outputs

a pair (A ∈ Zn×m
q , S ∈ Zn×m) such that A is statistically close to a uniform

matrix in Zn×m
q and S is a basis for Λ⊥

q (A) satisfying

‖S̃‖ ≤ O(
√

n log q) and ‖S‖ ≤ O(n log q)

with all but negligible probability in n.

Theorem 2([17]). For i = 1, 2, 3 let Ai be a matrix in Zn×mi
q and A =

(A1|A2|A3). Let T2 be a basis of Λ⊥
q (A2). There is deterministic polynomial

time algorithm ExtendBasis(A1, A2, A3, T2) that outputs a basis T for Λ⊥
q (A)

such that ‖T̃‖ = ‖T̃2‖.

2.5 Discrete Gaussians

Let L be a subset of Zm. For any vector c ∈ Rm and any positive parameter
σ ∈ R > 0, define:

ρσ,c(x) = exp(−π ‖x−c‖
σ2 ) : a Gaussian-shaped function on Rm with center c

and parameter σ,
ρσ,c(L) =

∑
x∈L ρσ,c(x) : the (always converging) ρσ,c over L,

DL,σ,c : the discrete Gaussian distribution over L with parameters σ and c,

∀y ∈ L , DL,σ,c =
ρσ,c(y)

ρσ,c(L)
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we abbreviate ρσ,0 and DL,σ,c will most often be defined over the Lattice L = Λ⊥
q

for a matrix A ∈ Zn×m
q or over a coset L = t+ Λ⊥

q (A) where t ∈ Zm.

Lemma 2 ([17, Lemma 2.4]). Let q ≥ 2 and let A be a matrix in Zn×m
q

with m > n. Let TA be a basis for Λ⊥
q (A) and σ ≥ ‖T̃A‖ω(

√
(logm)). Then for

c ∈ Rm and u ∈ Zn
q :

1. There is a PPT algorithm SampleGaussian (A, TA, σ, c) that returns x ∈
Λ⊥
q (A) drawn from a distribution statistically close to DΛ,σ,c.

2. There is a PPT algorithm SamplePre (A, TA, u, σ) that returns x ∈ Λu
q (A)

sampled from a distribution statistically close to DΛu
q ,σ.

2.6 The LWE Hardness Assumption

The LWE (learning with error) hardness assumption is defined by Regev[19].

Definition 3. Consider a prime q, a positive integer n, and a distibution χ over
Zq, typically taken to be normal distribution. The input is a pair (A, v) from an
unspecified challenge oracle ©,where A ∈ Zm×n

q is chosen uniformly. v is chosen
uniformly from Zm

q or chosen to be As+ e for a uniformly chosen s ∈ Zn
q and a

vector e ∈ Zm
q . When v is chosen to be As+e for a uniformly chosen s ∈ Zn

q and
a vector e ∈ Zm

q an unspecified challenge oracle © is a noisy pseudo-random
sampler ©s. When v is chosen uniformly an unspecified challenge oracle © is a
truly random sampler ©$.

Goal of the adversary is to distinguish with some non-negligible probability
between these two cases.

Or we say that an algorithm A decides the (Zq, n, χ)-LWE problem if |Pr[A©s

= 1]− Pr[A©$ = 1]| is non-negligible for a random s ∈ Zn
q .

Definition 4. Consider a real parameter α = α(n) ∈ {0, 1} and a prime q. De-
note by T = R/Z the group of reals [0,1) with addition modulo 1. Denote by ψα

the distribution over T of a normal variable with mean 0 and standard deviation
α/

√
2π then reduced modulo 1. Denote by �x� = �x+ 1

2 the nearest integer to

the real x ∈ R. We denote by ψα the discrete distribution over Zq of the random
variable �qX�mod q where the random variable X ∈ T has distribution ψα.

Lemma 3([3]). Suppose that m > (n+1) log2 q+w(logn) and that q is prime.
Let A,B be matrices chosen uniformly in Zn×m

q and let R be an m×m matrix
chosen uniformly in {1,−1}m×m mod q. Then, for all vectors w in Zm

q , the

distribution (A,AR,RTw) is statistically close to the distribution (A,B,RTw).

3 Sampling Algorithms

Let A and B be matrices in Zn×m
q and let R be a matix in {−1, 1}m×m. Our

construction makes use of matrices of the form F = (AR+B) ∈ Zn×2m
q and we

will need to sample short vectors in Λu
q (F ) for some u in Zn

q . This can be done
either a SampleLeft or SampleRight algorithm.



Efficient Lattice (H)IBE in Standard Model with Short Public Parameters 159

3.1 SampleLeft Algorithm ([1,Theorem 17])

SampleLeft Algorithm(A,M1, TA, u, σ):

Inputs:
a rank n matrix A in Zn×m

q and a matrix M1 in Zn×m1
q .

a “short” basis TA of Λ⊥
q (A) and a vector u ∈ Zn

q .

a gaussian parameter σ > ‖T̃A‖ω(
√
(log(m+m1))).

Output: Let F1 := (A|M1). The algorithm outputs a vector e ∈ Zm+m1 sampled
from a distribution statistically close to DΛu

q (F1),σ.

3.2 SampleRight Algorithm ([1,Theorem 18])

SampleRight Algorithm(A,B,R, TB, u, σ):

Inputs:
matrices A in Zn×k

q and B in Zn×m
q where B is rank n,

a matrix R in Zk×m
q , let sR := ‖R‖.

a basis TB of Λ⊥
q (B) and a vector u ∈ Zn

q ,

a gaussian parameter σ > ‖T̃B‖sRω(
√
log(m)).

Output: Let F2 := (A|AR + B). The algorithm outputs a vector e ∈ Zm+k

sampled from a distribution statistically close to DΛu
q (F2),σ.

4 Adaptively Secure HIBE Scheme in Standard Model

The new scheme is a variant of Agarwal et al. HIBE [1], but with short public
parameter. In our scheme, identity id/idl is represented as id/idl = (id1, ..., idl)
= ((b1,1||...||b1,l′′), ..., (bl,1||...||bl,l′′ )) where idi is l′ bit string and bi,j is l

′/l′′ = β
bit string. We apply Waters’[21] idea to convert Agrawal et al. [1] selective-ID
secure lattice HIBE to adaptive-ID secure HIBE. Then using blocking technique
we reduce the public parameters.

4.1 The HIBE Construction

Now we describe our adaptive secure HIBE scheme as follows.

Setup(d, λ). On input a security parameter λ and a maximum hierarchy depth
d, set the parameters q, n,m, σ, α as specified in section 4.2 below. The vectors
σ and α live in Rd and we use σl and αl to refer to their t-th coordinate. Next
do following.

1. Use algorithm TrapGen(q, n) to generate a matrix A0 ∈ Zn×m
q and a short

basis TA0 for Λ⊥
q (A0) such that ‖T̃A0‖ ≤ O(

√
n log q).

2. Select l′′d + 1 uniformly random n×m matrices A1,1, ..., A1,l′′ , ..., Ad,1, ...,
Ad,l′′ and B ∈ Zn×m

q .
3. Select a uniformly random n - vector u ∈ Zn

q .
4. Output the public parameters and master key,

PP = A1,1, ..., A1,l′′ , ..., Ad,1, ..., Ad,l′′ and B, MK = (TA0).
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Derive(PP,(id/idl), SK(id/id(l−1))). On input public parameters PP, a pri-
vate key SK(id/idl−1) corresponding to an identity (id/idl−1) at depth l − 1
the algorithm outputs a private key for the identity (id/idl) at depth l. From
equation (1),

Fid/idl
= (A0|

l′′∑
i=1

A1,ib1,i +B|...|
l′′∑
i=1

Al,ibl,i +B) (1)

Or Fid/idl
= (Fid/idl−1

|∑l′′

i=1 Al,ibl,i + B) Given short basis SK(id/id(l−1)) for

Λ⊥
q (Fid/idl−1

) and Fid/idl
as defined in (1), we can construct short basis SK(id/idl)

for Λ⊥
q (Fid/idl

) by invoking

S ←− SampleLeft(Fid/idl−1
,

l′′∑
i=1

Al,ibl,i +B,SK(Id/id(l−1)), 0, σl)

and output SK(id/idl) ←− S.
The private key corresponding to an identity (id/idl) = (id1, ..., idl) at depth

l can be generated by PKG or any ancestor (prefix) of an identity (id/idl) by
repeatedly calling SampleLeft algorithm.

Encrypt(PP,Id,b). On input public parameters PP, an identity (id/idl) of
depth l and a message b ∈ {0, 1},do following:

1. Build encryption matrix

Fid/idl
= (A0|

l′′∑
i=1

A1,ib1,i +B||...||
l′′∑
i=1

Al,ibl,i +B) ∈ Zn×(l+1)m
q .

2. Choose a uniformly random vector s
R←− Zn

q .

3. Choose ll′′ uniformly random matrices Ri,j
R←− {−1, 1}m×m for i = 1, ..., l

and j = 1, ..., l′′. Define Rid
1 =

∑l′′

i=1 b1,iR1,i||...||
∑l′′

i=1 bl,iRl,i ∈ Zm×ll′′m

4. Choose noise vector x
ψαl←− Zq, y

ψ
m
αl←− Zm

q and z←−RT
idy ∈ Z lm

q ,
5. Output the ciphertext,

CT =

(
C0 = uT

0 s+ x+ b� q
2
 , C1 = FT

ids+

[
y

z

])
∈ Zq × Z(l+1)m

q

Decrypt(PP,SK(id/idl),CT). On input public parameters PP, a private key
SKid/idl

, and a ciphertext CT = (C0, C1), do following.

1 In security proof, Rid is used to answer adversary’s secret key query and also for
valid challenge ciphertext, error vector has to be

[ y

RT
id

y

]
.



Efficient Lattice (H)IBE in Standard Model with Short Public Parameters 161

1. Set τl = σl

√
m(l + 1)w(

√
log(lm)). Then τl ≥ ‖S̃K‖w(√log(lm)).

2. eid ←− SamplePre(Fid/idl
, SK(Id/idl), u, τl) Then Fideid = u and ‖eid‖ ≤

τl
√
m(l + 1)

3. Compute C0 − eTidC1 ∈ Zq.
4. compare w and � q

2 treating them as integers in Z. If they are close, i.e., if
|w − � q

2 | < q
4 in Z, output 1 otherwise output 0.

During Decryption:
w0 = C0 − eTidC1 = b� q

2 + x− eTid
[
y
z

]
.

4.2 Parameters and Correctness

We have during decryption, w = C0 − eTidc1 = b� q
2 + x− eTid

[
y
z

]
.

And x− eTid
[
y
z

]
is called error term.

Lemma 4. Norm of the error term is bounded by [q2βl′′l2σlmαlω(
√
logm) +

O(2βl′′l2σlm
3/2)].

Proof : Lemma is essentially same as lemma 32 of [1] except now Rid is uniformly
random matrix in {−2βl′′, 2βl′′}m×lm. So now |Rid| will be equal to 2βl′′Rid.
Hence error term will have extra factor 2βl′′.

Now, for the system to work correctly we need to ensure that:

– the error term is less than q/5 i.e. αl < [2βl′′l2σlmω(
√
logm)]−1 and q =

Ω(2βl′′l2σlm
3/2).

– that TrapGen can operate (i.e m > 6n log q).
– That σl is sufficiently large for SimpleLeft and SimpleRight

(i.e. σl > ‖T̃B‖sRω(
√
logm) ) = 2βl′′

√
lmω(

√
logm).

– that Regev’s reduction applies (i.e. (q2β)l > 2Q, where Q is the number of
identity queries from the adversary)

To satisfy these requirements we set the parameters (q,m, σl, αl) as follows,
taking n to be the security parameter:

m = 6n1+δ, σl = l′′
√
lmω(

√
logn)

q = max((2Q/2β)1/l, (2βl′′)2l2.5m2.5ω(
√

log n)), αl = [(2β l′′)2l2.5m2ω(
√

logm)]−1

(2)

From above requirements, we need q = (2βl′′)2l2.5m2.5ω(
√
logn).

4.3 Security Proof

Our proof of theorem will require an abort-resistant hash functions defined as
follows.
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Abort-Resistant Hash Functions

Definition 5. Let H = {� : X −→ Y } be family of hash functions from X to Y
where 0 ∈ Y . For a set of Q + 1 inputs x = (x0, x1, ..., xQ) ∈ XQ+1, define the
non-abort probability of x as the quantity

α(x) = Pr [�[x0] = 0 ∧ �[x1] 
= 0 ∧ ... ∧ �[xQ] 
= 0]

where the probability is over the random choice of � in H .
We say that H is (Q,αmin, αmax) abort-resistance if for all x =

(x0, x1, ..., xQ) ∈ XQ+1 with x0 /∈ {x1, ..., xQ} we have α(x) ∈ [αmin, αmax].
we use the following abort-resistant hash family very similar to [1].

For a prime q let (Z l′′
q )∗ = Z l′′

q -{0l} and define the family

H : {� : ((Z l′′
q )∗|...|(Z l′′

q )∗) −→ (Zq|...|Zq)}

�(id) = �(id1|...|idl) = (1 +
l′′∑
i=1

h1,ib1,i)|...|(1 +
l′′∑
i=1

hl,ibl,i) (3)

where hk,i and bk,i are defined in section 4.1.

Lemma 5. let q be a prime and 0 < Q < q. Then the hash family H defined in
(4) is (Q, 1

ql
(1 − Q

ql
), 1

ql
) abort-resistant.

Proof: The proof is samilar to [1]. Consider a set of id of Q+1 inputs id0, ..., idQ

in (Z ll′′
q )∗ where id0 /∈ {id1, ..., idQ} and idi = {id1, ..., idl}. Since number of

functions in H = (q2β)l
′′l and for i = 0, ..., Q+1 let Si be the set of functions �

in H such that �(idi) = 0. Hence number of such functions = |Si| = (q2β)l
′′l

ql
.

And
|S0∧Sj| ≤ (q2β)l

′′l

q2l
for every j > 0. Number of functions in H such that

�(id0) = (0|...|0) but �(idi) 
= 0 for i = 1, ..., Q. = |S| and

|S| = |S0 − (S1 ∨ ...SQ)| ≥ |S0| −
Q∑
i=1

|S0 ∧ Si|

≥ (q2β)l
′′l

ql
−Q

(q2β)l
′′l

q2l

Therefore the no-abort probability of identities is atleast equal to
(q2β )l

′′l
ql

−Q(q2β )l
′′l

q2l

(q2β)l′′l
= 1

ql
(1− Q

ql
) Since |S| ≤ |S0|, so the no-abort probability is

atmost |S0|
(q2β)l′′l =

1
ql
.

Now we show that our lattice-based IBE construction is indistinguishable from
random under a adaptive identity attack (IND-ID-CPA).
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Theorem 3. The Full-HIBE scheme with parameters(q, n,m, σ, α) as in (3) is
IND-ID-CPA secure provided that the (Zq, n, ψ̄αd

)-LWE assumptions holds.

Or Suppose there exists a probabilistic algorithm A (Adversary) that wins the
IND-ID-CPA game with advantage ε, making no more than Q ≤ ql/2 adaptive
chosen-identity queries. Then there is a probabilistic algorithm B that solves the
(Zq, n, ψα)-LWE problem in about the same time as A and with ε′ ≥ ε/4ql.

Proof. Here proof is very similar to proof of theorem 25 and theorem 33 of
[1]. We assume that Wi denote the event that the adversary correctly guessed
the challenge bit, namely that r = r′ at the end of Game i. The adversary’s
advantage in Game i is |Pr[Wi]− 1

2 |. We proceed the proof in a sequence of games.

Game 0. Game 0 is the IND-ID-CPA game between an attacker against our
scheme and IND-ID-CPA challenger.

Game 1. In Game 0 the challenger generates public parameters PP by choosing
ll′′ + 2 uniformly random matrices A0, A1,1, ..., Al,l′′ , B in Zn×m

q . In Game 1,
challenger generates uniformly random matrices A0, B same as Game 0. But
challenger generates matrices Ak,j , k ∈ [1, l] and i ∈ [1, l′′] in slightly different
way. The Game 1 challenger choose R∗

k,d, k ∈ [1, l], i ∈ [1, l′′] at the set up
phase and chooses ll′′ random scalars hk,i ∈ Zq for k ∈ [1, l], i ∈ [1, l′′]. Next it
constructs the matrices Ak,i as

Ak,i ←− A0Rk,i + hk,iB

By lemma 3, the distribution (A0, A0R
∗, (R∗)T y) and (A0, (A

′
1,1|, ..., |A′

l,l′′),

(R∗)T y) are statistically close, where R∗ = (R′
1,1|...|R′

l,l′′ ) ∈ Zm×lm
q and A′

k,i, i ∈
[1, l′′], k ∈ [1, l] are uniformly independent matrices in Zn×m

q . It follows that with

z = (R∗
id)

T y the distributions A0, A0R
∗
1,1, ..., A0R

∗
l,l′′ and A0, A

∗
1,1, ..., A

∗
l,l′′ are

statistically close. So in the attacker’view, Game 0 is same as Game 1. This
shows that

Pr[W0] = Pr[W1] (4)

Game 2. We introduce an abort event that is independent of the adversary’s
view and rest is same as Game 1. We will see in later part of the proof that abort
event is directly related to abort-resistant family of hash functions H introduced
in Lemma(6). From Lemma(6) H is a {Q,αmin.αmax} abort-resistant family,
where αmin = 1

ql (1 − Q
ql ). For αmin ≥ 0 we must have ql > Q. We assume

ql ≥ 2Q so αmin ≥ 1
2ql

. For a (Q + 1)-tuple of identities I = (id∗, id1, ..., idQ),
Game 2 challenger behaves as follows:

– The setup phase is identical to Game 1 except that the challenger also
chooses a random hash function � ∈ H and keeps it to itself.

– The challenger responds to identity queries and issues the challenge cipher-
text exactly as in Game 1.
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– In the final guess phase, the challenger now does following:
1. Abort check: The challenger checks if H(id∗) = 0 and H(idi) 
= 0

for i = 1, ..., Q, where identity id∗ is the challenge identity and id∗ /∈
{id1, ..., idQ}. If not, it returns random bit from {0, 1} and game is
aborted. Adversary does not know about abort condition i.e. H.

2. Artificial abort: This technique was introduced by Waters [21]. Abort
condition could be correlated with the adversary’s query. The goal of the
artificial abort step is to make the probability of abort “independent”
of the adversaries queries by ensuring that in all cases its probability of
abort is the maximum possible. Function γ(id∗, id1, ..., idQ) or γ(I) is
defined in such a way that when there is no artificial abort γ(I) is zero
else γ(I) = 1. When γ(I) = 1, challenger returns random bit from {0, 1}
and game is aborted.

If game is not aborted, the attacker outputs its guess r′ ∈ {0, 1} for r.

Let ε(I) be the probability that an abort (either real or artificial) does not
happen when the adversary makes these queries. Let εmax and εmin be scalars
such that ε(I) ∈ [εmin, εmax] for all (Q+ 1) tuples of identities I.

Lemma 6 (Lemma 28 of [1]). For i = 1, 2 let Wi be the event that r = r′ at
the end of Game i. Then∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ εmin

∣∣∣∣Pr[W1]− 1

2

∣∣∣∣− 1/2(εmax − εmin).

Obviously [εmax − εmin] = [αmax − αmin], when there was no artificial abort.
With artificial abort, (εmin − εmax) is less than αmin|Pr[W1]− 1

2 | and therefore∣∣∣∣Pr[W2]− 1

2

∣∣∣∣ ≥ 1/2.αmin

∣∣∣∣Pr[W1]− 1

2

∣∣∣∣ ≥ (1/4ql)

∣∣∣∣Pr[W1]− 1

2

∣∣∣∣ . (5)

Game 3. Game 3 differs from Game 2 how A0 and B are chosen. In Game 3,
A0 is generated as a random matrix in Zn×m

q . Matrix B is generated by using
algorithm TrapGen, which returns random matrix B in Zn×m

q and a Trapdoor

TB for Λ⊥
q (B). From adversary’s point of view, Game 2 and Game 3 are identical,

hence adversary’s advantage against Game 2 and Game 3 will be same. So

Pr[W2] = Pr[W3] (6)

Game 4. In Game 4 the challenge ciphertext (C∗
0 , C

∗
1 ) is always chosen as a ran-

dom independent element in Zq×Z2m
q . Rest is same as Game 3. Since ciphertext

is random element, hence Adversary’s advantage against Game 4 is zero.
Now we have to show that Game 3 and Game 4 are computationally indistin-

guishable. We can show it in following way.
Suppose there exist an Adversary who can distinguish Games 3 and 4 with

non-negligible then simulator can construct an algorithm which can solve LWE
hard problem.
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Reduction from LWE. In instance of LWE a sampling oracle © is provided.
Sampling oracle © can be either truly random ©$ or a noisy pseudorandom
©S for some secret random s ∈ Zn

q .

Instance. Simulator request from © and receives a fresh pair (ui, vi) ∈ Zn
q ×Zq

for each i = 0, ...,m.

Setup. B constructs the system’s public parameters PP as follows:

1. The random matrix A0 ∈ Zn×m
q is constructed by assembling LWE sample

ui for all i = 1, ...,m, where ith column of A is ui.
2. Public random n-vector u0 is the zeroth LWE sample.
3. Rest of public parameters are constructed as in Game 3.

Queries. Matrices A0 and B are generated as in Game 3. Since B was generated
using KeyGen algorithm so challenger knows trapdoor TB. Matrices Ak,i are
constructed as in Game 1.

Ak,i = A0Rk,i + hk,iB for k = 1, ..., l and i = 1, ..., l′′. (7)

where all the matricesRk,i are random in {1,−1}m×m and hk,i is a random scalar
coefficient in Zq. Encryption matrix to encrypt to an identity id = (id1, ..., idl)
at depth l ≤ d is

Fid/idl
= (A0|

l′′∑
i=1

A1,ib1,i +B||...||
l′′∑
i=1

Ad,ibd,i +B) (8)

Substituting the value of matrices Ak,i from equation(7)

Fid/idl
= (A0|A0(

l′′∑
i=1

R1,ib1,i) +B(1 +

l′′∑
i=1

h1,ib1,i)||...

||A0(

l′′∑
i=1

Rl,ibl,i) +B(1 +

l′′∑
i=1

hl,ibl,i))

Or Fid = (A0|A0Rid + Bhid) where Rid =
∑l′′

i=1 R1,ib1,i||...||
∑l′′

i=1 Rl,ibl,i

and Bid = B�id = (1 +
∑l′′

i=1 h1,ib1,i)||...||(1 +
∑l′′

i=1 hl,ibl,i)
If hid is not equal to zero then challenger responds the private key query of
id = (id1, id2, ..., idl) by running

SKid ←− SampleRight(A0, Bid, Rid, TB, 0, σl)

and sending SKid to A. hid is equal to zero will be part of abort resistant hash
function.

Challenge. Adversary declares target identity id∗ = (id1, id2, ..., idl) and mes-
sage bit b∗ ∈ {0, 1}. Simulator B creates challenge ciphertext for the target
identity as follows:
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1. Let v0, ..., vm be entries from LWE instance. Set

v∗ =

⎛⎜⎜⎜⎝
v0
v1
...
vm

⎞⎟⎟⎟⎠ ∈ Zm
q

2. Blind the message bit by letting

C∗
0 = v0 + b∗� q

2
� ∈ Zq

3. Let
Rid∗ = (R∗

1|...|R∗
l )

where

Rj∗ =

l′′∑
j=1

Ri,jbi,j

and set

C∗
1 =

(
v∗

(Rid∗)T v∗

)
∈ Zm+lm

q

4. Choose a random bit r ← {0, 1}. If r = 0 send CT ∗ = (C∗
0 , C

∗
1 ) to the

adversary. If r = 1 choose a random (C0, C1) ∈ Zq × Zm+lm
q and send

(C0, C1) to the adversary.

When the LWE oracle is pseudorandom then Fid∗ = (A0|A0Rid∗) since hid∗ =
0 and

v∗ = AT
0 s+ y

for some random noise vector y ∈ Zm
q distributed as ψ̄m

α . Therefore

C∗
1 =

(
AT

0 s+ y
(A0Rid∗)T s+ (Rid∗)T y

)
= (Fid∗)T s+

(
y

(Rid∗)T y

)
Above C∗

1 is a valid C1 part of challenge ciphertext. Again C∗
0 = uT

0 +x+b∗� q
2� is

also a valid C0 part of challenge ciphertext. Therefore (C∗
0 , C

∗
1 ) is valid challenge

ciphertext as in Game 3.
When LWE oracle is random oracle, v0 is uniform in Zq and v∗ is uniform in

Zm
q . Therefore challenge ciphertext is always uniform in Zq ×Z2m

q as in Game 4.

Guess. Adversary is again allowed to make private key extraction query as
in Game 3 except prefix of id∗. Then Adversary guess if it is valid ciphertext
(Game 3) or random string (Game 4). Hence simulator’s advantage in solving
LWE hard problem is same as Adversary’s advantage in distinguishing valid
ciphertext (Game 3) and random string (Game 4). Since Pr[W4] = 1/2, So

|Pr[W3]− Pr[W4]| = |Pr[W3]− 1

2
| ≤ LWE-adv(B) (9)

Combining equation (4),(5),(6) and (9), we get

|Pr[W0]− 1

2
| ≤ 4ql LWE-adv(B)
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5 New Full-IBE Scheme in Standard Model

The new scheme is a variant of Agarwal et al. IBE [1], but with short public
parameter. In Agrawal et al. IBE scheme identities are represented as l-bit string.
Because of this representation, scheme requires l n×m matrices. In our scheme,
identity id is represented as id = (b1, ..., bl′), where each bi is an l/l′ = β bit
string.

5.1 The New Full-IBE Construction

Now we describe our new Full-IBE Scheme in the standard model as follows.

Setup(λ). On input a security parameter λ, set the parameters q, n,m, σ, α as
specified in section 5.2 below. Next do following.

1. Use algorithm TrapGen(q, n) to generate a matrix A0 ∈ Zn×m
q and a short

basis TA0 for Λ⊥
q (A0) such that ‖T̃A0‖ ≤ O(

√
n log q).

2. Select l′ + 1 uniformly random n×m matrices A1, A2, ..., Al′ , B ∈ Zn×m
q .

3. Select a uniformly random n - vector u ∈ Zn
q .

4. Output the public parameters and master key,
PP = (A1, A2, ..., Al′ , B, u), MK = (TA0).

Extract(PP,MK,Id). On input public parameters PP, a master secret key
MK, and an identity id = (b1, ..., bl′), where each bi is an l/l′ = β bit string.

1. Let Aid = B +
∑l′

i=1 biAi ∈ Zn×m
q .

2. Sample e ∈ Z2m
q as e ←− SampleLeft(A0, Aid, TA0 , u, σ).

3. Output SKid = e ∈ Z2m.

Let Fid = (A0|Aid), then Fid.e = u in Zq and e is distributed as DΛu
q (Fid),σ by

lemma 2.

Encrypt(PP,Id,b). On input public parameters PP, an identity id, and a
message b ∈ {0, 1},do following:

1. Let Aid = B +
∑l′

i=1 biAi ∈ Zn×m
q and Fid = (A0|Aid) ∈ Zn×2m

q .

2. Choose a uniformly random s
R←− Zn

q .

3. Choose l′ uniformly random matrices Ri
R←− {−1, 1}m×m for i = 1, ..., l′ and

define Rid
2 =

∑l′

i=1 biRi ∈ {−l′(2β − 1), ..., l′(2β − 1)}.
4. Choose noise vectors x

ψα←− Zq, y
ψ

m
α←− Zm

q and z←−RT
idy ∈ Zm

q ,

5. Set C0 ←− uT s+ x+ b� q
2 ∈ Zq and C1 ←− FT

ids+
[
y
z

] ∈ Z2m
q and .

6. Output the ciphertext CT = (C0, C1) ∈ Zq × Z2m
q .

2 In security proof, Rid is used to answer adversary’s secret key query and also for
valid challenge ciphertext, error vector has to be

[ y

RT
id

y

]
.
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Decrypt(PP,SKid,CT). On input public parameters PP, a private key SKid =
eid, and a ciphertext CT = (C0, C1), do following.

1. Compute w ←− C0 − eTidC1 ∈ Zq. If they are close, i.e., if |w − � q
2 | < q/4

in Z, output 1 otherwise output 0.

During Decryption:
w0 = C0 − eTidC1 = b� q

2 + x− eTid
[
y
z

]
.

5.2 Parameters and Correctness

We have during decryption, w = C0 − eTidc1 = b� q
2 + x− eTid

[
y
z

]
.

And x− eTid
[
y
z

]
is called error term.

Lemma 7. For an l-bit identity id = (b1, ..., bl′), where each bi is an l/l′ = β
bit string. Norm of the error term is bounded by qσ2βl′mαω(

√
logm) +

O(σ2βl′m3/2).

Proof: The proof is identical to the proof of Lemma 22 in [1] except that ma-

trix R is replaced by Rid =
∑l′

i=1 biAi. Since ‖Rid‖ ≤ ∑l′

i=1 ‖bi‖‖Ai‖ and by
[1,theorem 15],‖R‖ ≤ O(

√
m) .

So ‖Rid‖ ≤ O(2βl′
√
m). This leads to the extra factor 2βl′ in the error bound.

Now, for the system to work correctly we need to ensure that:

– the error term is less than q/5 i.e. α < [σ2βl′mαω(
√
logm)]−1 and q =

Ω(σ2βl′m3/2).

– that TrapGen can operate (i.e m > 6n log q).

– That σ is sufficiently large for SimpleLeft and SimpleRight
(i.e. σ > ‖T̃B‖2βl′√mω(

√
logm) ) = 2βl′

√
mω(

√
logm).

– that Regev’s reduction applies (i.e. q > 2Q, whereQ is the number of identity
queries from the adversary)

To satisfy these requirements we set the parameters (q,m, σ, α) as follows, taking
n to be the security parameter:

m = 6n1+δ, σ = 2βl′
√
mω(

√
logn)

q = max(2Q,m2.5(2βl′)2ω(
√
logn)), α = [2βl′mω(

√
logm)]−1. (10)

From above requirements, we need q = m2.5(2βl′)2ω(
√
log n). But in [1], required

value of q = m2.5l2ω(
√
logn). In this scheme value of q is increased by (2β l′

l )
2 =

(2
β

β )2. This means that when public parameters are reduced by factor β, the value

of q is increased by (2
β

β )2 or number of bits in q is increased by (β − lg(β))2.
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5.3 Efficiency

Here efficiency analysis is similar to [9]. Difference between our scheme and
scheme [1] is computation of Aid and Rid. Rest of the algorithm for key gener-
ation, encryption and decryption algorithms etc are same. Let |Zq| be the size
of the representation of an element of Zq. We assume that cost of adding two
n×m matrices is approximately equal to nm|Zq|. Cost of computing Aid is
adding two n×m matrices and l′ multiplication where each multiplication is
multiplication of (l/l′)-bit string and n×m matrix. On an average, cost of each
such multiplication will be l/2l′ addition and (l/l′−1) doubling. Hence, the total
cost of computing Aid is l/l′ addition and (l− l′) doubling. This cost is equal to
cnm(3l2 − l′)|Zq| for some constant c. This cost is minimum when l′ = l (as in

[1]). Minimum value is cnm l
2 |Zq|. Maximum value is less than cnm 3l

2 |Zq|. Cost
of computing FT

ids is equal to dnmn|Zq| for some constant d. Cost of encryption
is equal to cnm(3l2 − l′)|Zq|+dnmn|Zq|. Cost of encryption in IBE [1] is equal to

cnm( l
2 )|Zq|+ dnmn|Zq|. Value of q is less than poly(n) assume n5. If q is more

than 512 bit then value of n is atleast 2100, which is much greater than size of
identity l(160). So cost of encryption is enmn|Zq| for some constant e, which
does not depend on l′. There is no effect of l′ on computation of Aid. Similarly
There is no effect of l′ on computation of Rid. Hence there is no effect of l′ on
cost of key generation and encryption. Decryption algorithm is same in both
scheme. Computational cost increases because of increase in value of q or size
of |Zq|.

5.4 Space/Time Trade-Off

Our scheme reduces public size by a factor β. The relative decrease in amount
of space (expressed in percentage) required to store the public parameter in case

of our scheme with respect to scheme [1] is equal to l−l′
l . Our scheme reduces

public size by a factor of β at the cost of increasing value of q by a factor of

(2
β

β )2 with same security as [1]. By making same security as [1], new q or q′ is

q(2
β

β )2. Size of Zq′ = |Zq′ | = |Zq|+ (β − lg(β))2. Relative increase in encryption

cost in case of our scheme with respect to [1] is
|Zq′−Zq|

|Zq| = (β−lg(β))2

|Zq| .

In table 1, we give the results for l = 160 and |Zq| = 512 for different values
of l′ ranging from 8 to 64. Overall, we suggest l′ = 16 to be good choice for
implementing the protocol.

Table 1. Relative decrease in space and relative increase in time for different values of l′

l′ Relative decrease in space Relative increase in time

8 95 48

16 90 8.71

32 80 1.40

64 60 0.27
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5.5 Security Proof

Our proof of theorem will require an abort-resistant hash functions defined as
follows.

Abort-Resistant Hash Functions([1])

Definition 6. Let H = {� : X −→ Y } be family of hash functions from X to Y
where 0 ∈ Y . For a set of Q + 1 inputs x = (x0, x1, ..., xQ) ∈ XQ+1, define the
non-abort probability of x as the quantity

α(x) = Pr [�[x0] = 0 ∧ �[x1] 
= 0 ∧ ... ∧ �[xQ] 
= 0]

where the probability is over the random choice of � in H .
We say that H is (Q,αmin, αmax) abort-resistance if for all x =

(x0, x1, ..., xQ) ∈ XQ+1 with x0 /∈ {x1, ..., xQ} we have α(x) ∈ [αmin, αmax].
we use the following abort-resistant hash family very similar to [1]. For a

prime q let (Z l′
q )

∗ = Z l′
q − {0l} and define the family

H : {� : ((Z l′
q )

∗) −→ (Zq)}

�(id) = (1 +

l′∑
i=1

hibi) ∈ Zq (11)

where hi and bi are defined in section 4.1.

Lemma 8. Let q be a prime and 0 < Q < q. Then the hash family H defined
in (4) is (Q, 1

q (1− Q
q ),

1
q ) abort-resistant.

Proof: The proof is very similar to [1]. Consider a set of id of Q + 1 inputs
id0, ..., idQ in (Z l′

q )
∗ where id0 /∈ {id1, ..., idQ}. For i = 0, ..., Q + 1 let Si be

the set of functions � in H such that �(idi) = 0. We know that number of such

functions = |Si| = (q2β)l
′

q .

And |S0 ∧ Sj| ≤ (q2β)l
′

q2 for every j > 0. Number of functions in H such that

�(id0) = 0 but �(idi) 
= 0 for i = 1, ..., Q. = |S| and

|S| = |S0 − (S1∨, ..., SQ)| ≥ |S0| −
Q∑
i=1

|S0 ∧ Si|

≥ (q2β)l
′

q
−Q

(q2β)l
′

q2

Since number of functions in H = (q2β)l
′
, therefore the no-abort probability of

identities is atleast equal to
(q2β )l

′
q −Q (q2β )l

′

q2

(q2β)l′
= 1

q (1− Q
q ) Since |S| ≤ |S0|, so the

no-abort probability is atmost |S0|
(q2β)l′ = 1

q .

Now we show that our lattice-based IBE construction is indistinguishable from
random under a adaptive identity attack (IND-ID-CPA).



Efficient Lattice (H)IBE in Standard Model with Short Public Parameters 171

Theorem 4. The Full-HIBE Scheme with parameters(q, n,m, σ, α) as in (10)
is IND-ID-CPA secure provided that the (Zq, n, ψ̄αd

)-LWE assumptions hold.
Or Suppose there exists a probabilistic algorithm A (Adversary) that wins

the IND-ID-CPA game with advantage ε, making no more than Q ≤ q/2
adaptive chosen-identity queries, then there is a probabilistic algorithm B that
solves the (Zq, n, ψα)-LWE problem in about the same time as A and with
ε′ ≥ ε/(4q).

Proof. Since limits of no-abort probability (Lemma 5) of identity is same as
lemma 27 of [1] so security proof will be same as security proof of [1,theorem 25].

6 Conclusion

We have shown that by converting selective-ID HIBE to adaptive-ID HIBE secu-
rity degradation is exponential in number of levels. In our efficient lattice based
IBE scheme we have also shown that there is an interesting trade-off between
reducing the public parameter size and increase in the value of q (computa-
tional cost). The main open problem in the construction of lattice based IBE
protocols is to reduce the public parameter size without increasing the value of
q(computational cost).

Acknowledgments. We would like to thank anonymous reviewer and PC chairs
for their useful comments.
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