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Abstract. The community detection in complex networks is an important prob-
lem in many scientific fields, from biology to sociology. This paper proposes
a new algorithm, Differential Evolution based Community Detection (DECD),
which employs a novel optimization algorithm, differential evolution (DE) for
detecting communities in complex networks. DE uses network modularity as the
fitness function to search for an optimal partition of a network. Based on the
standard DE crossover operator, we design a modified binomial crossover to ef-
fectively transmit some important information about the community structure in
evolution. Moreover, a biased initialization process and a clean-up operation are
employed in DECD to improve the quality of individuals in the population. One
of the distinct merits of DECD is that, unlike many other community detection
algorithms, DECD does not require any prior knowledge about the community
structure, which is particularly useful for its application to real-world complex
networks where prior knowledge is usually not available. We evaluate DECD on
several artificial and real-world social and biological networks. Experimental re-
sults show that DECD has very competitive performance compared with other
state-of-the-art community detection algorithms.

Keywords: Community structure, graph partitioning, evolutionary computation,
Differential Evolution.

1 Introduction

In the fields of science and engineering, there exist various kinds of complex systems
which can be represented as complex networks naturally, such as social networks [26]
and the Internet [7]. A complex network consists of nodes (or vertices) and edges (or
links) which respectively represent the individual members and their relationships in
systems [5]. In recent years, the study of complex networks has attracted more and
more attention [1,13,16,30].
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Complex networks possess many distinctive properties [12], of which community
structure [4] is one of the most studied. The community structure is usually considered
as the division of networks into subsets of vertices within which intra-connections are
dense while between which inter-connections are sparse [4,12]. Identifying the commu-
nity structure is very helpful to obtain some important information about the relation-
ship and interaction among nodes.

To detect the underlying community structure in complex networks, many success-
ful algorithms have been proposed so far [4,12]. However, the community detection in
networks is a nondeterministic polynomial (NP) hard problem. Most of current commu-
nity detection algorithms based on greedy algorithms perform poorly on large complex
networks. Moreover, many algorithms for community detection also require some prior
knowledge about the community structure, e.g., the number of the communities, which
is very difficult to be obtained in real-world networks.

To overcome these drawbacks, this paper proposes a new community detection algo-
rithm based on Differential Evolution (DE), named DECD. To the best of our knowl-
edge, it is the first time DE is introduced for community detection. In DECD, DE is
used to evolve a population of potential solutions for network partitions to maximize
the network modularity [20]. It is worth mentioning that DECD does not require any
prior knowledge about the community structure when detecting communities in net-
works, which is is beneficial for its applications to real-world problems where prior
knowledge is usually not available.

Apart from introducing DE for community detection, other key contributions of this
paper include: 1) the design of an improved version of the standard binomial crossover
in DE to transmit some important information about the community structure during
evolution in DECD; 2) a biased process and a clean-up operation similar to [31] is
introduced to DECD to improve the quality of the individuals in the population; 3) a
thorough evaluation of the performance of DECD on artificial and two real-world social
networks, which achieved better results than other state-of-the-art community detection
algorithms. 4) the application of DECD to a Yeast interacting protein dataset [10], which
achieve the best results in the literature.

The remainder of this paper is organized as follows. Section 1.1 introduces some
basic ideas of DE. In Section 1.2, some of the most popular algorithms for community
detection are briefly reviewed. Section 2 presents a detailed description of DECD. In
Section 3, the performance of DECD is tested on artificial and real-world networks and
then the experimental results are discussed. Finally, Section 4 concludes this paper.

1.1 Differential Evolution

Differential evolution (DE) is a very simple yet efficient evolutionary algorithm pro-
posed by Storn and Price in 1995 [29]. DE starts the search with an initial population
containing NP individuals randomly sampled from the search space. Then, one individ-
ual called the target vector in the population is used to generate a mutant vector by the
mutation operation. The most popular mutation strategy [17,18] which is also employed
in DECD is the ”rand/1” strategy as follows:

vi = xr1 + F × (xr2 − xr3), (1)
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where i ∈ {1, 2, . . . , NP}, r1, r2 and r3 are integers randomly selected from
1, 2, . . . , NP and satisfy r1 �= r2 �= r3 �= i, the scaling factor F is usually a real
number between 0 and 1, the decision vector xi = (xi,1, xi,2, . . . , xi,n) with n deci-
sion variables is the individual in the population and also called the target vector, and
vi = (vi,1, vi,2, . . . , vi,n) is the mutant vector.

After mutation, all the components of the mutant vector are checked whether they vi-
olate the boundary constraints. If the jth component vi,j of the mutant vector vi violates
the boundary constraint, vi,j is reflected back from the violated boundary constraint as
follows [14]:

vi,j =

⎧
⎪⎨

⎪⎩

2LBj − vi,j , if vi,j < LBj

2UBj − vi,j , if vi,j > UBj

vi,j otherwise ,

(2)

where LBj and UBj are the lower and upper bounds of the ith decision variable xi,
respectively.

Subsequently, the crossover operation is implemented on the mutant vector vi and
the target vector xi to generate a trial vector ui. A commonly used crossover operation
is the binomial crossover which is executed as follows:

ui,j =

{
vi,j , if rand ≤ CR or j = jrand

xi,j , otherwise ,
, (3)

where i ∈ 1, 2, . . . , NP , j ∈ 1, 2, . . . , n, rand is a uniformly distributed random num-
ber between 0 and 1, jrand is a randomly selected integer from 1 to n, CR is the
crossover control parameter, and ui,j is the jth component of the trial vector ui.

Finally, the target vector xi is compared with the trial vector in terms of the objective
function value and the better one survives into the next generation:

xi =

{
ui, if f(ui) ≤ f(xi)

xi, otherwise.
(4)

1.2 Related Work

During the past decade, the research on analyzing the community structure in complex
networks has drawn a great deal of attention. Meanwhile, various kinds of algorithms
have been proposed. Some of the most known algorithms are reviewed as follows.

Girvan and Newman [12] proposed the Girvan-Newman (GN) algorithm which is
one of the most known algorithms proposed so far. This algorithm is a divisive method
and iteratively removes the edges with the greatest betweenness value based on be-
tweenness centrality [9]. Newman [19] presented an agglomerative hierarchical cluster-
ing method based on the greedy optimization of the network modularity. This method
iteratively joins communities of nodes in pairs and chooses the join with the greatest
increase in the network modularity at each step. Moreover, based on the original strate-
gies, its faster version [4] was proposed by using some shortcuts and some sophisticated
data structures. Radicchi et al. [24] presented the definitions of communities in both a
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strong sense and a weak sense. Moreover, in their paper a division algorithm [24] was
proposed to detect communities by removing edges with the smallest value of edge clus-
ter coefficient. Duch and Arenas [6] presented a division method which uses a heuristic
search based on the extremal optimization to optimize the network modularity to detect
communities in networks. Rosvall and Bergstrom [25] developed an algorithm based
on an information-theoretic framework which identifies the communities by finding an
optimal compression of the topology and capitalizing on regularities in the structure of
networks.

However, some of the above community detection algorithms have large computa-
tional complexity and are unsuitable for very large networks. Moreover, a priori knowl-
edge about the community structure (e.g., the number of communities) which is not
easy or impossible to obtain in real-world networks is also required in most of the
above algorithms [31]. To overcome the drawbacks, algorithms based on evolutionary
algorithms have been proposed. These algorithms are very effective for community de-
tection especially in very large complex networks. Tasgin and Bingol [31] presented
an approach based on a genetic algorithm to optimize the network modularity in order
to find community structures in networks. Pizzuti [21] proposed a method based on a
genetic algorithm to discover communities in networks. This method defines the com-
munity score to measure the quality of a partitioning in communities of networks and
uses a genetic algorithm to optimize the community score. Chen et al. [3] presented an
algorithm based on the immune clone selection algorithm which is employed to opti-
mize the modularity density [15] to identify communities in networks.

2 The Proposed Algorithm

In this paper, a new algorithm based on DE called DECD is proposed for community
detection in complex networks. DECD uses DE as the search engine and employs the
network modularity as the fitness function to evolve the population. Next, DECD is
described in detail.

2.1 Individual Representation

DECD uses the community identifier-based representation proposed in [31] to repre-
sent individuals in the population for the community detection problem. For a graph
G = (V,E) with n nodes modeling a network, the kth individual in the population is
constituted of n genes xk = {x1, x2, . . . , xn} in which each gene xi can be assigned
an allele value j in the range {1, 2, . . . , n}. The gene and allele represent the node and
the community identifier (commID) of communities in G respectively. Thus, xi = j
denotes that the node i belongs to the community whose commID is j, and nodes i and
d belong to the same community if xi = xd. Since DECD puts nodes in communities
randomly when initializing, at most n communities exist in G and then the maximum
value of commID is n.

In the above representation, all the communities in G and all the nodes belonging to
each community can be identified straightforwardly from individuals in the population.
The community identifier-based representation is very simple and effective. Moreover,
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the number of communities is automatically determined by the individuals and no de-
coding process is required in this representation.

For example, Figure 1.(a) shows a network containing 12 nodes numbered from 1 to
12. According to the definition of the community structure, the network is divided into
three communities visualized by different colors of nodes. Figure 1.(b) is the genotype
of the optimal solution for the community structure of the network, while the graph
structure of the genotype is given in Figure 1.(c).

Fig. 1. (a) a graph model of a network; (b) the community identifier-based representation of a
genotype; (c) the graph structure of the genotype

2.2 Fitness Function

Newman and Girvan [20] proposed the network modularity to measure the strength
of the community structure found by algorithms. The network modularity is a very
efficient quality metric for estimating the best partition of a network into communities.
It has been used by many community detection algorithms recently [4,19,31].

DECD also employs the network modularity which is maximized as the fitness func-
tion to evaluate individuals in the population. The network modularity is defined as
follows [31].

Q =

m∑

j=1

[
lj
L

−
(
dj
2L

)2
]

, (5)
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where j is the commID, m is the total number of communities, lj is the number of links
in module j, L is the total number of edges in the network and dj is the degree of all
nodes in module j.

2.3 Initialization

At the beginning of the initialization process, DECD places each node into a random
community by assigning a random commID and generates individuals in the initial
population.

However, the above random generation of individuals is likely to cause some unrea-
sonable results such that a community contains some nodes having no connectivity with
each other in the original graph. Considering that nodes in the same community should
connect with each other and in the simple case are neighbors, a biased process [31] is
used to overcome the above drawbacks, that is, once an individual is generated, some
nodes represented by genes in the individual are randomly selected and their commIDs
are assigned to all of their neighbors. By the biased process, the space of the possi-
ble solutions is restricted and the convergence of DECD is improved. Through these
operations, the initial population P0 is generated.

2.4 Mutation

DECD employs the ”rand/1” strategy to mutate individuals in the population. The
”rand/1” strategy is a very efficient mutation strategy. It has no bias to any special
search directions and chooses new search directions in a random manner by randomly
selecting individuals for mutation [33].

When implementing the ”rand/1” strategy, firstly three different individuals xr1 ,
xr2 and xr3 are randomly selected from Pt, where r1, r2, r3 ∈ {1, . . . , NP}, NP is
the population size and t is the generation number. Then these three individuals follow
the equation (1) and generate a mutant vector v which is put into the mutant population
Vt. The above two steps are executed iteratively until the population size of Vt is NP .

Subsequently, all the components of each mutant vector in Vt are checked whether
they violate the boundary constraints. If violating the boundary constraint, the compo-
nent is reflected back from the violated boundary by following the equation (2). Then,
a mutant population Vt satisfying all the boundary constraints is obtained.

2.5 Crossover

Since DECD randomly assigns an integer in the range {1, 2, . . . , n} to each individual
in the population as its commID, no one-to-one absolute corresponding relationship ex-
ists between the communities and commIDs. That is, for different individuals the same
community may have different commIDs while the same commID is likely to repre-
sent different communities. For example, with respect to two individuals (1, 2, 1, 3)
and (2, 1, 2, 3), the community with the commID equals to 1 for the first individual and
the one with the commID equals to 2 for the second individual are the same community.
Meanwhile, the communities with the commID equals to 1 for these two individuals are
different although they have the same commID.
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For individuals represented by the community identifier-based representation, the
traditional crossover operators (e.g., the binomial crossover) do not work well. This
is because they just simply change the commIDs and never consider nodes in their
communities. As a result, the offspring individuals fail to inherit good genes from the
parent individuals and the search ability is heavily impaired.

Considering the above reasons, DECD designs a modified binomial crossover based
on the binomial crossover to enhance the search ability. Inspired by the modified
crossover operation [31], the modified binomial crossover assigns the commIDs of
some nodes in an individual to those corresponding nodes in another individual. The
implementation of the modified binomial crossover is as follows.

Firstly, the trial vector ui = xi is set for every i ∈ 1, 2, . . . , NP . Subsequently,
the jth components in ui and the mutant vector vi are considered for every j ∈
{1, 2, . . . , n} and every i ∈ {1, 2, . . . , NP}. If rand ≤ CR or j = jrand, all the
nodes in the community whose commID is vi,j of v are found, and then the commIDs
of all those corresponding nodes of ui are assigned the value vi,j which means all those
corresponding nodes of ui are put into the community whose commID is vi,j ; other-
wise, no operation will be performed on ui . Therein, rand is a uniformly distributed
random number between 0 and 1, jrand is a randomly selected integer from 1 to n, and
CR is the crossover control parameter. Finally, the trial vectors Ut = {u1, . . . ,uNP }
are obtained.

From the above process, it can be seen that the trial vectors are able to obtain some
useful information about the community structure from both the target vectors and the
trial vectors. Therefore, the modified binomial crossover is very helpful for identifying
communities in networks.

2.6 Clean-Up Step

Since DE is a stochastic optimization algorithm, the solutions for the community di-
vision are likely to have some mistakes in evolution, that is, some nodes may be put
into wrong communities. These mistakes impair the search ability of DECD and make
it get stuck in a local optimum, ultimately leading to community divisions with inferior
quality.

To solve the above problem, DECD adopts the clean-up operation proposed by Tas-
gin and Bingol [31], which effectively corrects the mistakes of putting nodes into wrong
communities in both mutant and trial vectors and improves the search ability of. The
clean-up operation is based on the community variance CV (i), which is defined as the
fraction of the number of different communities among the node i and its neighbors to
the degree of the node i as follows:

CV (i) =

∑
(i,j)∈E neq(i, j)

deg(i)
, (6)

where neq(i, j) =

{
1, if commID(i) �= commID(j)

0, otherwise
, deg(i) is the degree of the ith

node, E is the set of edges, and commID is the community containing ith node.
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According to the classic definition of the community structure, a community should
contain more internal edges among nodes inside the community than external edges
with other communities. Thus, a node and all its neighbors should be in the same com-
munity with a high probability, and then the community variance of this node should be
low in a good community division. Based on the above analysis, the clean-up operation
is performed as follows. Firstly, some nodes are randomly selected. Then, for each of
these nodes, its community variance is computed and compared with a threshold value
η which is a predefined constant obtained after some experiments. If the community
variance of this node is larger than this threshold value η, which indicates that the node
has been put into a wrong community, then this node and all its neighbors are placed
into the same community containing the highest number of nodes in the neighborhood
of this node. Otherwise, no operation is executed for this node.

2.7 DECD Algorithm Framework

Finally, the framework of DECD is described as follows:
Step 1) Set t = 0 where t denotes the generation number.
Step 2) Generate the initial population P0 = {x1, . . . ,xNP } by uniformly and ran-

domly sampling NP points from the search space S.
Step 3) Compute the network modularity value Q(xi) of each individual xi in P0.
Step 4) Perform the mutation operation (see Section 2.4 for details) on each individ-

ual xi in Pt and obtain the mutant vectors Vt = {v1, . . . ,vNP }.
Step 5) Correct the mistakes in each mutant vector vi in Vt by executing the clean-up

operation (see Section 2.6 for details).
Step 6) Execute the modified binomial crossover (see Section 2.5 for details) on each

mutant vector vi in Vt and generate the trial vectors Ut = {u1, . . . ,uNP }.
Step 7) Correct the mistakes in each trail vector ui in Ut by executing the clean-up

operation (see Section 2.6 for details).
Step 8) Calculate the network modularity value Q(ui) of each trial vector ui in Ut.
Step 9) Compare xi with ui (i = 1, . . . , NP ) in terms of the network modularity

value by following the equation (4), and put the winner into the next population Pt+1.
Step 10) Set t = t+ 1.
Step 11) If the termination criterion is not satisfied, go to Step 4; otherwise, stop and

output the best individual xbest in Pt.

3 Experiments and Results

In this section, the performance of DECD is tested on a class of widely used artifi-
cial networks and some well studied real world social and biological networks. DECD
is implemented in MATLAB and all the experiments are performed on Windows XP
SP2 with Pentium Dual-Core 2.5GHz processor and 2.0GB RAM. The parameters in
DECD are set as follows: the population size NP = 200, the scaling factor F = 0.9,
the control crossover parameter CR = 0.3, the threshold value η = 0.35 and the maxi-
mum number of generations is 200. In each run, DECD is stopped when the maximum
number of generations is reached.
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Fig. 2. The fraction of vertices correctly classified by DECD, GACD and GN as the average zout
of inter-community edges per vertex is varied for the computer-generated networks

For comparison, we implement another community detection algorithm based on
GA, named GACD. We adopt the MATLAB Genetic Algorithm Optimization Toolbox
(GAOT) to optimize the network modularity to detect communities in networks. The
GA we use is real encoded GA with heuristic crossover and uniform mutation. More-
over, for the sake of fairness, the same biased process and the clean-up
operation in DECD are employed. The values of all the parameters use in the ex-
periments are the default parameters in GAOT. We also adopt MATLAB implemen-
tations of Girvan-Newman (GN) algorithm from Matlab Tools for Network Analysis
(http://www.mit.edu/˜gerganaa) for comparison.

3.1 Artificial Networks

To evaluate the performance of DECD of detecting network community structure, ar-
tificial computer-generated networks are employed. The computer-generated networks
were proposed by Girvan and Newman and have been widely used to benchmark the
community detection algorithms [12]. Each network has 128 nodes which are divided
into 4 communities each with 32 nodes. Each node has an average zin edges connecting
it to members of the same community and zout edges to members of other communi-
ties. Moreover, zin and zout are chosen to satisfy the total expected degree of a node
zin + zout = 16. The community detection algorithms with good performance should
discover all the communities in the network with zin > zout which indicates that the
neighbors of a node inside its community are more than the neighbors contained by the
other three communities. According to the definition of the community structure, the
community structure in the network becomes vaguer with the zout increases.
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Figure 2 summarizes the experimental results and shows the fraction of nodes cor-
rectly divided into the four communities with respect to zout by DECD, GACD and GN
[12], respectively.

From Figure 2, it can be seen that DECD performs significantly better than GN when
zout > 6 while they perform the same when zout ≤ 6. Comparing with GACD, DECD
also performs much better when zout > 7 and they have the same performance when
zout ≤ 7. The results show that DECD is very effective for detecting communities in
networks, even those with very vague community structures.

3.2 Real-World Social Networks

In this paper, two real-world social networks, i.e., the Zachary’s karate club network
[36] and the American college football network cite8Girvan2002, are also employed
to further verify the performance of DECD. Both these two real-world social networks
are well-known benchmark examples for the community detection algorithms and have
been well studied in the literatures. Both networks have known (true) community struc-
tures, which provide gold-standard for validating our DECD algorithm.

The first social network is the Zachary’s karate club network, which shows the friend-
ships between the members of a karate club at an University. The network contains 34
nodes and 78 edges. The most interesting feature of the network is that the club split
into two as a result of an internal dispute, which provides a ground-true community
division of the network.

The American college football network [12] has a known community structure. The
network is a representation of the schedule of Division I games for the 2000 games. In
the football network, there are 115 nodes and 616 edges divided into 12 communities,
where nodes and edges represent the teams (identified by their college names) and the
regular season games between the two teams they connect, respectively. The teams are
divided into ”conferences” and each conference contains around 8 to 12 teams. The
teams play an average of about 4 inter-conference games and 7 intra-conference games
which indicates that games are more frequent between members of the same conference
than between members of different conferences.

As pointed out in [28] and [34], performance metrics based on network modularity
Q is not reliable. Therefore, apart from Q, we also adopt accuracy as a quantitative
measure for validating DECD as used in [28]:

Accuracy =

∑n
k=1 equal(tk, pk)

n
, (7)

where

equal(x, y) =

{
1, if commID(x) = commID(y)

0, otherwise
,

and tk is the kth node in the true (known) network structure, and pk is the kth node in
the predicted network structure.

Since DECD and GACD are stochastic optimization algorithms, we perform the ex-
periments 30 times on these two networks. The average values Qavg and Accavg of Q
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and accuracy and their best values Qbst and Accbst, are compared with that obtained
by GN (a deterministic algorithm) from one run of experiment in Table 1. In order to
run the GN algorithm, we need to specify the number of communities. In our experi-
ment, we use the number of known communities in the two networks, e.g., 2 for the
karate network and 12 for the football network as number of communities for the GN
algorithm.

Table 1. Experimental results of the Zachary’s karate club network and the American college
football network. Npr is the average number of communities; Qavg and Qbst are the average
and best values of modularity Q, respectively; and Accavg and Accbst are the average and best
accuracy, respectively.

Network Algorithm Npr Qavg Qbst Accavg Accbst

Karate
DECD 3.467± 0.730 0.385± 0.013 0.416 0.972± 0.009 1
GACD 2.900± 1.094 0.369± 0.022 0.402 0.959± 0.020 0.971

GN 2 0.360 0.360 0.971 0.971

Football
DECD 11.233± 0.504 0.596± 0.003 0.605 0.930± 0.004 0.939
GACD 8.767± 1.073 0.587± 0.015 0.605 0.913± 0.010 0.930

GN 12 0.455 0.455 0.904 0.904

From Table 1, it can be seen that DECD perform better than the two competitors,
i.e., GACD and GN on both the karate and football networks. It is interesting to see
that, for the smaller scale karate network, the performance of DECD is just slightly
better than GN. However, for the larger football network, the performance of DECD
is significantly better than GN. Such results indicate that DECD is more effective in
detecting communities in larger complex networks than GN.

In [28], the authors tested several state-of-the-art community detection algorithms.
In the paper, for the karate network, the best algorithm in terms of Q was Fast GN
(denoted as FastQ in their paper) [4], which generated Q value of 0.381 from one run of
experiment, which is slightly better than that from the GN algorithm used in our paper
but still worse than that from our DECD. In terms of accuracy, their best algorithm
(Random walks) achieved 1, which is as same as Accbst found by our DECD in 30
runs. In [28], for football network, the best result in terms of Q was 0.604 (WalkTrap
[22]), which is slightly worse than Qbst generated by our DECD. In terms of accuracy,
DECD also generated the same Accbst = 0.939 as the best result in [28], which was
generated by Random walks and MCL [32].

3.3 Yeast Protein-Protein Interaction Network

We apply our DECD algorithm to a Yeast Protein-Protein Interaction (PPI) Network
[11], which contains 1430 proteins and 6535 interactions. We use CYC2008 [23], a
complete and up-to-date set of yeast protein complexes (also called modules or com-
munities) as reference set to evaluate the predicted modules by DECD (In the following
text, we will use module and complex instead of community, which is a less popular
term in bioinformatics). We compute precision, recall and F-measure to measure the
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Table 2. Experimental results of the Yeast Protein-Protein Interaction Network

ω Algorithm #. pred. complex Precision Recall F-measure

0.2

DECD 115 0.6696 0.4976 0.5709
GACD 106 0.6132 0.4902 0.5488
GECSS 157 0.5063 0.2802 0.3608

MCODE 39 0.2278 0.4871 0.3104
MCL 200 0.5063 0.2050 0.2918

0.5

DECD 115 0.4696 0.2390 0.3168
GACD 106 0.4340 0.2220 0.2937

GN 65 0.5231 0.0568 0.1025
CMCD 65 0.6154 0.0691 0.1242

performance of DECD. The performance of DECD is compared with GACD and GN.
We also adopt results from recent literature, e.g., [35,27] for comparison.

Similar to the experiments in [35,27], we use affinity score to decide whether a pre-
dicted module is matched with a reference complex:

Affinity(A,B) =
|A⋃

B|2
|A| × |B| , (8)

where A and B are two modules of proteins, e.g., one of predicted module or reference
complexes. We assume a module A matches module B if and only if Affinity(A,B) is
above a predefined threshold ω. Then we can define Hit(A,B) which contains all the
matched modules:

Hit(A,B) = {Ai ∈ A|Affinity(Ai, Bj) > ω, ∃Bj ∈ B}. (9)

We define precision, recall and F-measure as follows:

Recall =
|Hit(R,P)|

|R| , (10)

Precision =
|Hit(P ,R)|

|P| , (11)

F-measure =
2× Recall× Precision

Recall + Precision
, (12)

where P is the predicted module set and R is the reference complex set.
Following the experimental settings in [35,27], we set ω = 0.2 and 0.5 in order

to compare with their algorithms fairly. We adopt the results of algorithms tested in
[35,27], which include Critical Module Community Detection algorithm (CMCD) [27],
Gene Expression Condition Set Similarity (GECSS) algorithm [35], Molecular Com-
plex Detection (MCODE) algorithm [2] and Markov clustering (MCL) algorithm [32]
. It is worth mentioning that, due to the large size of the PPI network, the GN algo-
rithm in Matlab Tools for Network Analysis (http://www.mit.edu/˜gerganaa) failed to
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produce results in reasonable time. Therefore, we adopt the results of the GN algorithm
from [27] for comparison.

From Table 2, we can see that compared with GACD and other algorithms tested in
[35,27], DECD has better performance. It is interesting to see that, the performance gap
between DECD and GACD is not as significant as those between DECD and other non-
population-based algorithms, e.g., MCL. Such results indicate that, at least for medium
size networks, population-based algorithms are preferred because of their better predic-
tive performance.

4 Conclusion

In this paper, we have introduced differential evolution (DE) to detect community struc-
ture in complex networks. To the best of our knowledge, it is the first time DE has been
applied to community detection problems. The proposed algorithm DECD uses DE to
search the best network partition of a complex network that can achieve an optimal net-
work modularity value. Based on the standard binomial crossover of DE, we designed a
modified binomial crossover to transmit some important information about the commu-
nity structure during evolution. We have also introduced a biased process and a clean-up
operation similar to [31] to improve the quality of the individuals in the population.

We have tested our DECD on the artificial networks and the real-world social and bi-
ological networks in comparison with GACD and GN algorithms. Apart from the mod-
ularity value, for the real-world networks, we have also employed accuracy based on
true community structure as a performance metric [28], which provided reliable per-
formance information. The experimental results have demonstrated that DECD is very
effective for community detection in complex networks, including those with very vague
community structures, e.g., the artificial networks with larger values of zout. In addition
to its excellent performance, another merit of DECD is that it does not require any prior
knowledge about the community structure when detecting communities in networks.

The limitation of this work is that we only used modularity as the objective function
to find the optimal community structure of a network. However, it has been recently
pointed out that such approach might suffer from the so-called resolution limit prob-
lem, that is, some modules smaller than a specific scale will not be detected by the
algorithms that only optimize modularity [8]. Although we have achieved better com-
munity detection results than many other algorithms on 4 complex networks, we do not
anticipate DECD can avoid this resolution limit problem. We will further investigate
this problem in our future work.
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17. Mezura-Montes, E., Miranda-Varela, M., Gómez-Ramón, R.: Differential evolution in con-
strained numerical optimization: An empirical study. Information Sciences 180, 4223–4262
(2010)

18. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental
analysis. Artificial Intelligence Review 33, 61–106 (2010)

19. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical
Review E 69, 026113 (2004)

20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69, 026113 (2004)

21. Pizzuti, C.: GA-Net: A Genetic Algorithm for Community Detection in Social Networks.
In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)

22. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. of
Graph Alg. and App. Bf 10, 284–293 (2004)

23. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein
complexes. Nucleic Acids Res. 37, 825–831 (2009)

24. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences 101, 2658–
2663 (2004)

25. Rosvall, M., Bergstrom, C.: An information-theoretic framework for resolving community
structure in complex networks. Proceedings of the National Academy of Sciences 104, 7327–
7331 (2007)



Community Detection in Social and Biological Networks Using DE 85

26. Scott, J.: Social network analysis: A Handbook. Sage Publications, London (2000)
27. Sohaee, N., Forst, C.V.: Modular clustering of protein-protein interaction networks. In: 2010

IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Bi-
ology, CIBCB (2010)

28. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex
networks. Pattern Recognition Letters 31, 413–421 (2009)

29. Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

30. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
31. Tasgin, M., Bingol, H.: Community detection in complex networks using genetic algorithm.

In: Proceedings of the European Conference on Complex Systems (2006)
32. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht

(2000)
33. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation

strategies and control parameters. IEEE Transactions on Evolutionary Computation 15, 55–
66 (2011)

34. Yang, Y., Sun, Y., Pandit, S., Chawla, N.V., Han, J.: Is objective function the silver bullet? a
case study of community detection algorithms on social networks. In: International Confer-
ence on Advances in Social Network Analysis and Mining, pp. 394–397 (2011)

35. Yeu, Y., Ahn, J., Yoon, Y., Park, S.: Protein complex discovery from protein interaction net-
work with high false-positive rate. In: Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics 2011, EvoBio 2011 (2011)

36. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal
of Anthropological Research 33, 452–473 (1977)


	Community Detection in Social and Biological Networks Using Differential Evolution
	Introduction
	Differential Evolution
	Related Work

	The Proposed Algorithm
	Individual Representation
	Fitness Function
	Initialization
	Mutation
	Crossover
	Clean-Up Step
	DECD Algorithm Framework

	Experiments and Results
	Artificial Networks
	Real-World Social Networks
	Yeast Protein-Protein Interaction Network

	Conclusion
	References




