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Abstract. The multi-item multi-period capacitated lot sizing problem
with setups (CLST) is a well known optimization problem with wide
applicability in real-world production planning problems. Based on a
recently proposed Dantzig-Wolfe approach we present a novel math-
heuristic algorithm for the CLST. The major contribution of this paper
lies in the presentation of an algorithm that exploits exact techniques
(Dantzig-Wolfe) in a metaheuristic fashion, in line with the novel trend
of math-heuristic algorithms. To the best of the authors knowledge, it
is the first time that such technique is employed within a metaheuris-
tic framework, with the aim of tackling challenging instances in short
computational time.

1 Introduction

The Multi-Item Multi-Period Capacitated Lot Sizing Problem with Setups
(CLST) is a well known optimization problem that finds a wide variety of
real-world applications. The CLST belongs to the class of NP-hard problems
[1,15,12]. A mixed-integer formulation of the CLST is:

(CLST):min z =

n∑

j=1

T∑

t=1

(fjtyjt + cjtxjt + hjtsjt) +

n∑

j=1

hj0sj0

s.t.

n∑

j=1

(ajtxjt +mjtyjt) ≤ bt ∀t

sjt−1 + xjt = djt + sjt ∀j, t
xjt ≤ Myjt ∀j, t
yjt ∈ {0, 1} ∀j, t
xjt, sjt ≥ 0 ∀j, t

where items j = 1, . . . , n should be produced over time periods t = 1, . . . , T .
In the CLST formulation, fjt, cjt, and hjt indicate the fixed cost, the unitary
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production cost and the unitary inventory holding cost for item j in period t,
respectively. Parameters mjt and ajt indicate the setup time and the unitary
production time, respectively, while bt stands for the production capacity in
period t. Parameter djt indicates the demand of item j in period t. Finally, in
the model, three sets of decision variables are employed, i.e., yjt ∈ {0, 1}, which
takes value 1 if there is a setup for item j in period t; as well as xjt ≥ 0 and
sjt ≥ 0, indicating the production volume and the inventory level for item j in
period t, respectively. Note that sj0 is given as data indicating initial inventory.

Due to its vast industrial applicability, researchers have devoted special atten-
tion to the CLST (see, e.g., [5], [13], [6], and [4]). Since the CLST is still difficult
to solve to optimality, many researchers have tried to tackle the problem by
working on relaxations of the same. A good description of some well studied
relaxations of the CLST is provided by [11]. A recent discussion of solution
approaches for the CLST can be found in [8].

In recent years, a lot of attention has been devoted to the integration, or hy-
bridization, of metaheuristics with exact methods. This exposition also relates to
the term math-heuristics (see, e.g., [9]) which describes works which are, e.g., ex-
ploiting mathematical programming techniques in (meta)heuristic frameworks or
on granting to mathematical programming approaches the cross-problem robust-
ness and constrained-CPU-time effectiveness which characterize metaheuristics.
Discriminating landmark is some form of exploitation of the mathematical for-
mulation of the problems of interest. Here we follow the math-heuristic concept
rather than a more general idea of hybridization, where the successful ingredients
of various metaheuristics have been combined.

Based on a recently proposed Dantzig-Wolfe approach of [7], in this paper we
present a novel math-heuristic algorithm for the CLST. The major contribution
of this paper lies in the presentation of an algorithm that exploits exact tech-
niques (Dantzig-Wolfe) in a metaheuristic fashion, in line with the novel trend
of math-heuristic algorithms. To the best of the authors’ knowledge, it is the
first time that such technique is employed within a metaheuristic framework,
with the aim of tackling challenging instances in short computational time. In
addition, the proposed approach constitutes a clear example of the effectiveness
of hybrid approaches, e.g., approaches that intertwine classical mathematical
programming techniques with novel metaheuristics.

To measure the effectiveness of the proposed approach, we have tested the
algorithm to solve standard benchmark instances from [15], in line with what
has been done by a number of authors, e.g., [7], and [3].

The organization of the paper is as follows. In the next section, Section 2, we
present a mathematical formulation and a Dantzig-Wolfe decomposition of the
CLST; Section 3 illustrates the main ingredients of the proposed math-heuristic
algorithm, while Section 4 summarizes the results of the algorithm when tested
on a set of benchmark instances. Finally, Section 5 concludes with some final
remarks.
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2 Mathematical Formulation and Decomposition

Dantzig-Wolfe (DW) decomposition is a well known technique often employed
to address mixed integer programs with substructures. This technique has been
successfully applied in a number of contexts. (For more details on such technique
see, e.g., [16], and [2].) Recently, [7] have presented a DW approach for the CLST,
addressing an important structural deficiency of the standard DW approach for
the CLST proposed decades ago by [10].

In this section, borrowing ideas from [7], we present a DW reformulation and
decomposition for the CLST that is especially suited for the math-heuristic al-
gorithm presented in Section 3. In line with what proposed by [7], we employ
a formulation in which setup variables and production variables are dealt with
separately. Next, we illustrate how such reformulation leads to a natural im-
plementation of a math-heuristic algorithm aimed at speeding up the column
generation phase.

Let us consider the DW decomposition and its associated reformulation. We
identify the capacity constraints as the “hard” constraints. Thus, if we eliminate
such hard constraints, we obtain a problem that can easily be decomposed into
smaller (easy) subproblems, one per item. Let us indicate with:

Xsub
j =

⎧
⎪⎪⎨

⎪⎪⎩

sjt−1 + xjt = djt + sjt
xjt ≤ Myjt

yjt ∈ {0, 1}
xjt, sjt ≥ 0

⎫
⎪⎪⎬

⎪⎪⎭

the set of feasible solutions for the jth subproblem. It is easy to observe that Xsub
j

defines the feasible region for the single item uncapacitated lot sizing problem.
Let us now indicate with

{
xk
j

}
, where xk

j =
(
ykjt, x

k
jt, s

k
jt

)
, with k = 1, . . . ,Kj ,

the set of extreme points of conv(Xsub
j ). That is, for each item j, the set of ex-

treme points of the corresponding polytope is defined by all the possible feasible
schedules and the corresponding dominant production schedules, i.e., produc-
tion schedules satisfying the Wagner-Whitin condition sjt−1xjt = 0 (also known
as zero-inventory property). Thus, variables x, y, and s of the CLST can be
rewritten as convex combination of such extreme points. Therefore, we rewrite
the CLST as:

(M):min z =

n∑

j=1

Kj∑

k=1

⎡

⎣
T∑

t=1

(
fjty

k
jt + cjtx

k
jt + hjts

k
jt

)
+

n∑

j=1

hj0sj0

⎤

⎦ λjk (1)

s.t.
n∑

j=1

Kj∑

k=1

(
ajtx

k
jt +mjty

k
jt

)
λjk ≤ bt, t = 1, . . . , T (2)

Kj∑

k=1

λjk = 1, j = 1, . . . , n (3)

λjt ∈ {0, 1} , j = 1, . . . ,K, k = 1, . . . ,Kj (4)
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The original CLST is rewritten in such a way that every extreme point of the
polyhedron of subproblems Xsub

j is enumerated and the corresponding weight
variable is either set to 1, if the extreme point is selected, or to 0 otherwise.
However, it is a well-known fact that, if the capacity constraint is binding for
at least one time period, the extreme points of the polytope of the single item
uncapacitated lot sizing problem will not necessarily provide an optimal solution
to the overall problem [7]. Thus, when imposing the binary constraints on the
reformulation variables, i.e., constraint (4), the optimal solution to the original
CLST could be missed. In other words, there is not a strict correspondence
between the original setup variables yjt and the newly introduced reformulation
variables λjk. As pointed out by [7], the key point here is that the dominant
plans are only a subset of the set of extreme points needed to completely define
the search space of the original CLST.

What we would need is a convex combination of the setup plans for each single
item problem, i.e., we should eliminate constraint (4) from the master problem
(M) and, instead of it, we should impose the binary conditions on the original
setup variables. This approach is called convexification approach to the DW de-
composition [16]. Alternatively, one could use a discretization approach, in which
all the integer solutions are enumerated (including interior points of the subsys-
tem polyhedron, i.e., including solutions that make use of non-dominant pro-
duction plans and yet satisfy the Wagner-Whitin property). The discretization
approach would allow to re-introduce constraint (4) into the master problem.

As pointed out by [7], it is also possible to use a third approach, i.e., a discretiza-
tion approach for the binary variables of the CLST and a convexification approach
for the continuous variables. That is, given a feasible setup plan, a convex combi-
nation of production plans respecting that setup plan is generated. Therefore, the
set of extreme points included in themaster program includes non-dominant plans
satisfying the Wagner-Whitin property, i.e., there will be solutions for which, in
some periods, it is possible that there exists a setup but no production.

Consequently, in the sequel, we will introduce two sets of reformulation vari-
ables, i.e., (i) λjk, to select exactly one setup plan among the ones included in
the master problem, and (ii) μjkw , to select a convex combination of production
schedules (dominant and non-dominant) arising from a given setup schedule.

An Example. Let us consider a single-item lot sizing problem with five time
periods. Let us fix dt = 10, for t = 1, . . . , 5. Let us assume we are given a setup
schedule, in which there exists a setup in the first, third, and fifth period (as
presented in Table 1). In the sequel, for the sake of clarity, inventory levels st
are omitted. In the table, the row associated to solution x1 corresponds to the
dominant production plan associated to the given setup plan. However, in the
reformulation, we also want to consider non-dominant production plans that are
still feasible with respect to the given setup plan, e.g., production plans x2 to
x4. Every production plan presented in Table 1 still satisfies the Wagner-Whitin
property. However, except for the production schedule indicated by x1, all the
production schedules are non-dominant plans, i.e., there exist some periods in
which a setup is not accompanied by production.
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Table 1. An example of the convexification-discretization approach

t 1 2 3 4 5
dt 10 10 10 10 10

yk
t 1 0 1 0 1

xk
1 20 0 20 0 10

xk
2 50 0 0 0 0

xk
3 20 0 30 0 0

xk
4 40 0 0 0 10

In line with what is mentioned above, the convexification-discretization ap-
proach defines two sets of dual variables, one for the setup plan and one for the
production plan. Therefore, with respect to Table 1, we will use:

– A binary variable λk ∈ {0, 1} to determine whether the setup plan described
by yk should be selected; and

– A set of continuous variables μk
w, with w = 1, . . . , 4, to define a convex

combination of production plans arising from the same setup plan.

To formalize, and in line with what is presented in [7], let us assume we are
considering a single-item lot sizing problem, e.g., item j ∈ [1, n]. Let us also
assume we indicate with

Y =
{
y1, . . . ,yk, . . . ,yKj

}

the set of all feasible setup plans for item j. Let us now consider a setup schedule
yk =

(
yk1 , . . . , y

k
T

) ∈ Y and let us define the set of induced setup schedules as:

Y(k) = {
(y1, . . . , yT ) : yt ≤ ykt , yt ∈ {0, 1} , t = 1, . . . , T

}

That is, given a setup schedule yk, the set of induced setup schedules, indi-
cated with Y(k), is built by taking all the possible schedules dominated by yk,
i.e., assuming that yk defines s setups, the set Y(k) contains 2s setup sched-
ules. Obviously, for each setup schedule in Y(k) there exists a unique dominant
Wagner-Whitin production plan. Thus, the set of extreme points defined by the
setup schedule yk is defined by all the combinations of the Wagner-Whitin pro-
duction plans arising from the induced set Y(k) with the original setup plan
yk.

With respect to the example provided inTable 1,we have thatyk = (1, 0, 1, 0, 1).
Thus, the set of induced setup schedules is:

Y(k) = {(1, 0, 1, 0, 1) , (1, 0, 0, 0, 0) , (1, 0, 1, 0, 0) , (1, 0, 0, 0, 1)} .

As previously mentioned, since the setup schedule yk defines three setups, and
considering the setup in the first period as fixed, the setup schedule yk gives
rise to 23−1 = 4 induced setup plans. Each setup plan in Y(k), in turn, defines a
unique Wagner-Whitin schedule, as indicated in Table 1. Thus, we now have four
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extreme points that could be added to the master plan, i.e.,
(
yk,xk

1

)
,
(
yk,xk

2

)
,(

yk,xk
3

)
, and

(
yk,xk

4

)
.

Finally, with respect to the dual variables of the master problem, i.e., the
new columns of program (M), we generate the following 2s−1 new columns, i.e.,(
λk, μ

k
1

)
,
(
λk, μ

k
2

)
,
(
λk, μ

k
3

)
, and

(
λk, μ

k
4

)
.

Finally, once we generated a set of (dominant and non-dominant) produc-
tion plans associated to a given setup plan, the relation between these two is
established using the following constraints (considering a single-item problem):

Kj∑

k=1

λk = 1 (5)

|Y(k)|∑

w=1

μk
w = λk, k = 1, . . . ,Kj (6)

λk ∈ {0, 1} , k = 1, . . . ,Kj (7)

μk
w ≥ 0, w = 1, . . . , |Y(k)|, k = 1, . . . ,Kj (8)

Thus, via Equations (5) and (7) we enforce the discretization mechanism for the
(binary) setup variables, i.e., one setup plan must be selected; on the other hand,
with Equations (6) and (8), we enforce the convexification mechanism, i.e., once
a setup plan is selected (e.g., λk = 1 for any k ∈ [1,Kj]), we allow for a convex
combination of (dominant and non-dominant) induced production plans to be
selected.

Let us now present the Dantzig-Wolfe master reformulation and the derived
subproblems.

min z =
n∑

j=1

Kj∑

k=1

⎡

⎣
T∑

t=1

⎛

⎝fjty
k
jtλjk +

|Y(k)|∑

w=1

(
cjtx

w
jt + hjts

w
jt

)
μw
jk

⎞

⎠

⎤

⎦ (9)

s.t.
n∑

j=1

Kj∑

k=1

⎛

⎝mjty
k
jtλjk +

|Y(k)|∑

w=1

ajtx
w
jtμ

w
jk

⎞

⎠ ≤ bt, t = 1, . . . , T (10)

Kj∑

k=1

λjk = 1, j = 1, . . . , n (11)

|Y(k)|∑

w=1

μw
jk = λjk, j = 1, . . . , n, k = 1, . . . ,Kj (12)

λjt ∈ {0, 1} , j = 1, . . . ,K, k = 1, . . . ,Kj (13)

μw
jk ≥ 0, j = 1, . . . ,K, k = 1, . . . ,Kj, w = 1, . . . , |Y(k)| (14)

Due to the large number of variables of the master problem, the linear program-
ming relaxation of the master is solved using column generation. The subproblem
used to price in new columns is (separable over single items j):
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min rj =

T∑

t=1

((fjt − utmjt) yjt + (cjt − utajt)xjt + hjtsjt)− αj (15)

s.t. xjt + sjt−1 = djt + sjt, t = 1, . . . , T (16)

xjt ≤ Myjt, t = 1, . . . , T (17)

yjt ∈ {0, 1} , t = 1, . . . , T (18)

xjt, sjt ≥ 0, t = 1, . . . , T (19)

where u are the dual variables associated to the constraint (10) and α are the dual
variables associated to constraint (11). As long as the pricing problem returns
negative reduced costs for at least one item j, with j = 1, . . . , n, these columns
are added to the master, and the linear programming relaxation of the mas-
ter is re-optimized. However, it is worth noting that, due to the discretization-
convexification approach, the number of new columns generated every time the
subproblem is solved can become large. Thus, in the next section, we propose
a metaheuristic approach, based on the corridor method, aimed at finding a
“good” set of new columns to be added to the master problem within a prespec-
ified amount of computational time.

3 A Math-Heuristic Approach

Let us now present in detail the math-heuristic column generation approach used
to solve the subproblems.

The proposed approach belongs to the class of math-heuristic algorithms,
since we use mathematical programming techniques in a heuristic fashion [9].
The basic steps of a column generation approach are here briefly highlighted:

1. Populate the master problem with an initial set of columns.
2. Solve the LP relaxation of the master.
3. Solve the subproblems defined using the current dual values obtained from

the master.
4. Price in new columns: If there exists at least one new column with negative

reduced cost, add such column(s) to the master. Otherwise, stop.

The main contribution of this paper is related to the use of a corridor method-
inspired scheme [14] to address step 3. As presented in Section 2, we use a
discretization-convexification approach for the master problem, i.e., we employ
discretization for the selection of the setup variables and convexification for the
selection of a combination of induced production plans. Therefore, in phase 3 of
the column generation approach, we need to devise an efficient method aimed at
obtaining a “good” setup plan and a sufficiently large set of induced production
plans. Given a current setup plan yk, there exist 2s−1 induced production plans,
i.e., |Y(k)| = 2s−1, where s is the total number of setups in yk, i.e.

∑T
t=1 y

k
t = s.

Therefore, a complete enumeration of all the induced production plans for a given
setup plan yk is infeasible for practical, real-world size instances.
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Due to the aforementioned drawback, we propose here a math-heuristic ap-
proach to generate a sufficiently large set Y(k) of induced production plans in
a controlled amount of computational time. Let us present here the steps of the
corridor method-inspired scheme used to generate new columns (the scheme is
presented for a single item). In Figure 1, we present in details the steps of the
third phase of the algorithm. Basically, we first generate a Wagner-Whitin solu-
tion for the current subproblem. Then, we apply a corridor method algorithm to
collect a set of induced solutions. Such solutions are stored in a pool of solutions
Ω. The corridor method phase stops when either the optimal solution to the con-
straint problem or a maximum running time have been reached. Subsequently,
the solutions in the pool Ω are priced in and, whenever a solution with negative
reduced cost is found, such solution is added to the master.

The overall algorithm begins by creating an initial set of columns for the
master problem. We first add to the master a set of Wagner-Whitin solutions
obtained fixing all the dual values equal to zero, along with the solutions in
which all the demand is satisfied using initial inventory sj0. Once these columns
are added to the master, the linear programming relaxation of problem (9)-(14)
is solved to optimality using a standard LP solver. The dual values obtained
after solving problem (M) are then used to define the subproblems (15)-(19)
(one per item). Each subproblem is then solved with the proposed algorithm
of Figure 1 and new columns are priced into the master problem (9)-(14). The
master-subproblem cycle is repeated until there exist no new columns with neg-
ative reduced cost. In that case, the algorithm stops and problem (9)-(14) is
finally solved to optimality and the best feasible solution for the original CLST
is returned.

4 Computational Results

In this section we present the computational results of the algorithm on a set of
well-known benchmark instances. We report results on six instances taken from
the test set used by [15], as reported by [3]. The same instances have been tackled
by [7] and, therefore, constitute an interesting test bed for the preliminary eval-
uation of the proposed algorithm. As reported by [7], these instances are hard
to solve to optimality. However, as presented in Table 2, we could solve all these
instances to optimality in a reasonable amount of computational time using IBM
CPLEX. Thus, we could also measure how far our heuristic solution was from
an optimal solution. Optimal values for these instances were also reported by
[11].

The algorithm proposed in this paper was coded in C++ and compiled using
the GNU g++ 4.5.2 compiler on a dual core Pentium 1.8GHz Linux worksta-
tion with 4Gb of RAM. Throughout the computational experiment phase, the
maximum running time for each “constrained” subproblem rj(u, α,y

k) was kept
fixed to one second, while the number of columns generated in each iteration δ
was fixed to 100.

In Table 2, the first column reports the instance name, columns two and three
report the optimal value and the running time obtained using IBM CPLEX 12.1
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S1. Initialization

1. Solve problem rj(u, α) using Wagner-Whitin ⇒ (
yk,xk

1

)

2. If rj(u, α) ≥ 0, STOP.

S2. Corridor Method
(
yk, δ

)

1. Define a neighborhood around the Wagner-Whitin solution as:

N (yk) =
{
y ∈ {0, 1}T : yjt ≤ yk

jt

}
(20)

2. Add the following corridor constraint to the subproblem rj(u, α):

yjt ≤ yk
jt, t = 1, . . . , T (21)

and solve the resulting “constrained” subproblem rj(u, α,y
k).

3. While solving to optimality rj(u, α,y
k), collect the best δ ≥ 1 feasible

solutions and store them in a pool:

Ω =
{
(ykw,xkw) : ykw ∈ N (yk)

}
(22)

where ykw is a setup plan satisfying constraint (21), and xkw is the dom-
inant Wagner-Whitin solution associated to the setup plan ykw.

4. Stop the corridor method when one of the two criteria has been reached:
a. maximum running time, or
b. optimal solution.

S3. Pricing
(
yk, Ω

)

1. Price in new columns until all the solutions in Ω have been examined and
Ω is empty:
(a) Select a solution from the pool Ω and compute the reduced cost of

the composed solution
(
yk,xkw

)
, with w = 1, . . . , |Ω|

(b) If the reduced cost of the current solution is negative, i.e., rj < 0, add
the column

(
yk,xkw

)
to the master. Otherwise, discard the column,

eliminate it from Ω, and go back to step 1a.

Fig. 1. Outline of the proposed corridor method-inspired algorithm for the generation
of new columns

as MIP solver. Columns four and five provide the best value and the running time
of [3], while columns six and seven provide the same information as presented
in [7]. Finally, the last two columns provide the best result and the running time
of the proposed algorithm. With respect to running times, [3] has a limit of 900
seconds, while [7] stopped the algorithm after vising 2000 nodes.

From the table, we can observe that the proposed algorithm is competitive in
terms of both solution quality and running time, especially for larger instances.
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Table 2. Results on six instances from [15]. The optimal values and corresponding
running times reported here have been obtained using CPLEX 12.1.

Instance
Optimal BW DJ CM

z∗ T� z T† z T‡ z T�

Tr6-15 37,721 1.24 37,721 38.4 38,162 29 37,721 1.62
Tr6-30 61,746 126.2 61,806 900 62,644 359 62,885 6.45
Tr12-15 74,634 2.67 74,799 900 75,035 66 74,727 29.65
Tr12-30 130,596 154.41 132,650 900 131,234 215 131,185 19.91
Tr24-15 136,509 23.70 136,872 900 136,860 44 136,556 9.34
Tr24-30 287,929 110.99 288,424 900 288,383 306 287,974 40.73

� : time on a dual core pentium 1.8GHz Linux workstation.
† : time on a 200MHz Windows workstation.
‡ : time on a pentium III 750MHz Windows workstation.

Running times among the three algorithms cannot be meaningfully compared,
due to the huge differences in machines speed. However, we can conclude that
the proposed approach is faster than CPLEX alone in solving these instances,
of course at a price of delivering a near-optimal solution.

While it is true that no robust conclusions can be drawn on a such a limited
benchmark test, the results presented in this paper do show that the proposed
approach is promising.

5 Conclusions

In this paper, we have presented a novel math-heuristic for a well known op-
timization problem, the lot sizing problem with setup times and setup costs.
The main contribution of the work lies in the introduction of a math-heuristic
approach for the column generation phase of a Dantzig-Wolfe algorithm.

Starting from an observation of [7], we presented a Dantzig-Wolfe reformu-
lation in which the setup variables and the production variables are dealt with
separately. More specifically, for any given setup plan, we generate columns in
which the production plan needs not be a dominant plan, i.e., we introduce into
the master problem columns corresponding to solutions in which, for certain
periods, there might be a setup without having a production. Thus, a single
setup plan induces a number of non-dominant production plans. However, due
to the large size of the set of non-dominant plans induced by each setup plan,
we designed a mechanism inspired in the corridor method to bound the search
of non-dominant production plans in the neighborhood of the Wagner-Whitin
dominant plan associated to the current setup plan. By adding an exogenous
constraint to the pricing problem, we collect a set of new columns and, subse-
quently, we price into the master problem those columns with negative reduced
costs. Finally, the column generation approach is repeated until no new columns
with negative reduced costs are found.
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The proposed algorithm has been tested on a well-known set of benchmark
instances and the results obtained have been compared with two approaches from
the literature, as well as with the optimal solutions obtained by IBM CPLEX
12.1. While additional results on other problems are still needed, the results
presented in the computational section allow to conclude that the proposed
approach is promising, both in terms of solution quality and running time, and
leaves various options for future applicability in other types of problems.
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