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Abstract. When the function to be optimized is characterized by a
limited and unknown number of interactions among variables, a con-
text that applies to many real world scenario, it is possible to design
optimization algorithms based on such information. Estimation of Dis-
tribution Algorithms learn a set of interactions from a sample of points
and encode them in a probabilistic model. The latter is then used to
sample new instances. In this paper, we propose a novel approach to
estimate the Markov Fitness Model used in DEUM. We combine model
selection and model fitting by solving an ¢;-constrained linear regression
problem. Since candidate interactions grow exponentially in the size of
the problem, we first reduce this set with a preliminary coarse selection
criteria based on Mutual Information. Then, we employ ¢:-regularization
to further enforce sparsity in the model, estimating its parameters at the
same time. Our proposal is analyzed against the 3D Ising Spin Glass
function, a problem known to be NP-hard, and it outperforms other
popular black-box meta-heuristics.

Keywords: Estimation of Distribution Algorithms, Markov Fitness
Model, DEUM, /;-constrained Linear Regression, Least Angle
Regression.

1 Introduction

Black-box optimization consists of a set of meta-heuristics used to search for the
optimum of a function when no information about its structure is available. Such
approach to optimization can be used to define general purpose algorithms that
do not depend on the function to be optimized, and it becomes the only pos-
sible approach when the mathematical formulation of the function is unknown.
In particular model based meta-heuristics [25] introduce a statistical model to
represent correlations among variables and to guide the search for the optimum.

Most of the model based meta-heuristics [25] use a probabilistic description
of the problem to drive their search towards solutions with the best value. The
most general model is the joint probability distribution p which characterizes
the correlations among all the variables involved in the objective function f. In
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the discrete setting, the probability simplex is able to capture any possible order
of interactions among the variables; however, its dimension equals the cardinality
of the search space, and the estimation of its parameters is unfeasible.

Many problems are characterized by a limited set of correlations among the
variables, even NP-hard problems. It follows that model based search in a black-
box context, to be really effective, must face the problem of selecting a lower
dimensional model, which is computationally tractable, and would be able to
capture all, or at least most, of relevant correlations. The family of the model
and the way in which it is chosen define the particular class of meta-heuristics.

Once the model has been selected, model based algorithms implement different
techniques to search for the optimal distribution in the model, for instance by
applying estimation and sampling techniques, as in Estimation of Distribution
Algorithm (EDA) [I0], or by following the gradient of the expected value of f
as in CMA-ES [§ and SNGD [1I]. Within EDAs, a distinctive feature of the
algorithms that belong to the Distribution Estimation Using Markov Networks
(DEUM) [1§] framework is the direct use of a probabilistic model of the objective
function, which is sampled to search for a global minimum.

Selecting a model and estimating the parameters correspond, respectively,
to a model selection and a model fitting problem, and in the general case are
computationally expensive to address. On the other hand being able to recover
the correct set of interactions, or at least a model that capture most of them,
allows to work with tractable models with good properties, i.e., from any point
the gradient of the expected value of the original function points in the direction
of the global optimum, so that different optimization algorithms are less prone
to end up with local minima, [12].

In DEUM, the joint probability distribution is represented using the formalism
of Markov Networks (MNs) [22], also known as Markov Random Fields (MRFs),
an example of undirected Probabilistic Graphical Models (PGMs). The structure
of the MN, i.e., the set of conditional independences, can be either fixed a pri-
ori [I8/T9], in which case we refer to fixed structure DEUM algorithms, or learned
from scratch using model selection criteria such as Mutual Information [I7] or
x2-independence test [4]. Once the structure is identified, the parameters of the
model are estimated from a subset of points with least square method, and then
the model is sampled to look for a global optimum.

A common hypothesis when learning a model in EDAs is to limit the search
to pairwise interactions. This reduces the number of possible interactions to (g)
Other additional hypothesis [4[17] limit the maximum size of the neighborhood
of each variable to force a sparse pattern of interactions. A different approach to
model selection in DEUM has been proposed in [I3] where ¢;-regularized logis-
tic regression is employed to recover the neighborhood of each variable, cf. [16].
This choice allows to shrink the conditional probability distribution of a vari-
able given its neighborhood through a regularization parameter. The approach
showed promising results both in terms of model selection and optimization
performance. However, the computational effort was still very expensive.
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The aim of this paper is to provide a novel method to estimate the statis-
tical model used in DEUM by introducing a sparse model selection approach
when estimating the Markov Fitness Model, thus dealing with model selection
and model fitting at the same time. To obtain this result, we formalize the es-
timation problem as an £;-constrained linear regression problem, also known as
the Lasso [20]. In this formulation, the penalizing ¢;-constraint addresses model
selection, while the least square error minimization allows to estimate the co-
efficients of the model. Since candidate interactions grows exponentially in the
problem size in the general case and quadratically if we restrict to pairwise in-
teractions, we firstly use a preliminary coarse selection criteria based on Mutual
Information to reduce the size of this set, similarly to the approach in [I7], but
with no constraint on the size of the neighborhood.

The remaining of the paper is organized as follows. In Section [21 we describe
the Markov Fitness Model underlying the DEUM framework. In Section [B] we
introduce our approach based on {i-constrained linear regression to estimate
the set of interactions and associated parameters of the model. In Section [ we
present the Sparsified DEUM algorithm (sDEUM), while in Section [l we provide
an empirical analysis of its performance using the well-known 3D Ising Spin Glass
function [2] as a benchmark. The paper ends in Section [6] with conclusions and
future directions of research.

2 Objective Function Modeling by Markov Networks

EDAs and more in general most model-based meta-heuristics make use of a sta-
tistical model, i.e., a set of probability distributions, to represent the interactions
among the variables of an optimization problem. Usually the model is estimated
from a subset of points, selected from a larger sample according to the value
of f. The same applies for the algorithms in the DEUM framework, with the
difference that the statistical model is employed to learn a model of f, rather
than to estimate the correlations among its variables.

We consider the unconstrained optimization problem of minimizing a real-
valued function f defined over a vector of n binary variables X = (X3,...,X,,)
with values in £2 = {—1,+1}". Since the domain is finite, and 2% = 1, any f can
be written as a square-free polynomial

fla) =) cax®. (1)

Here, we employ a notation based on the multi-index o = (aq,...,a,) € I C
{0,1}", with * = [[;_, 2. The associated real coefficients ¢, € R\ {0} are
indexed by a. Each monomial represents an interaction among a set of variables
in f. We say that the set of interactions in function f is sparse if # (I) < 2",
where # (I) represents the cardinality of I. Many well known functions belong
to this class, and even if the number of interactions is limited the optimization of
such functions can be an NP-hard problem. For instance, the energy function of

an Ising Spin glass problem [2] defined over a 3D toroidal lattice has # (I) = 3n
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interactions, where [ = ¥/n is the size of the grid. In the maximum cut [23]
problem the cardinality of I corresponds to the number of edges in the graph,
and in general # (I) < (3).
In the DEUM framework, probabilities of points in the search space {2 are
assigned under the hypothesis that the probability of  should be proportional

to the value of f, i.e.,
p(z) = f(Zx), with Z =" f(x). (2)

e

In particular, DEUM uses the Gibbs distribution as a statistical model, which
is an example in the exponential family of distributions that can be equivalently
represented with the formalism of MNs. The Gibbs distribution is used to learn
a model of the objective function, by means of the Markov Fitness Model [3].

2.1 Markov Networks and Gibbs Distribution

Most EDAs make use of PGMs to represent the statistical model they use. In
particular, the algorithms in the DEUM framework employ undirected graphical
models called MNs. One of the advantages of a PGM is that the graph represents
the conditional independence structure of the random variables, and provides a
way to factorize the joint probability distribution associated to the graph.

Given a vector X = (Xq,...,X,) of random variables, a MN is defined by a
pair (G, ®), where G = (V, £) is an undirected graph and @ is a set of local energy
functions ¢ associated to the cliques. Each random variable X; in X corresponds
to a vertex v; € V, while the edges e;; € £ define the topology of the graph. We
denote with N; the neighborhood of a variable X, i.e., the set of vertices v; such
that e;; € £. A set X¢ of fully connected vertexes of G is called clique. A clique
is maximal if it is not contained in the set of vertices of any other clique.

The topology of the MN determines a set of conditional independence state-
ments according to the absence of edges in the graph. As stated in the Hammersley-
Clifford theorem [7], a positive probability distribution satisfies all the Markov
properties with respect to the graph G if and only if it factorizes according to the
graph itself. This implies that the joint probability distribution of X can be ex-
pressed as the product of a set of non-negative functions ¢, called potential func-
tions, defined over the clique C' € C, i.e.,

v =, [] wetec) g

cec

where Z is a normalization constant that ensures the probabilities sum to 1.
Without loss of generality, by absorbing cliques in maximal cliques, in the rest
of the paper we restrict the factorization to the product of potential functions
defined over the maximal cliques of G.

Moreover, the Hammersley-Clifford theorem implies the equivalence of the
probability distribution p in ([B]) associated to G and the Gibbs (or Boltzmann)
distribution of the form
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1
LV with 2= Y e VT, (4)

e

p(x) =

In statistical physics, the normalizing constant Z is called partition function,
T > 0 is the temperature of the distribution, and U(x) the energy function.
The temperature parameter controls the sharpness of the distribution. Indeed,
for T — oo, Equation (@) tends to the uniform distribution over {2, while for
T — 0 the probability mass concentrates over the global minima of the energy
function. The energy function of the Gibbs distribution is defined as the sum of
local functions u¢ associated to p¢ defined over the maximal cliques of G, i.e.,

U(x) = 3 uclae). (5)

cec

In EDAs, the search space {2 is explored by sampling from a density in a statis-
tical model. However, sampling from () is non trivial due to the presence of the
partition function Z, whose computation requires a summation over the entire
space {2, and thus is unfeasible since it is exponential in n. Nevertheless, the
Gibbs distribution can be sampled using a Gibbs sampler, and exploiting the
local Markov property, so that the conditional probability of X; only depends
on its neighborhood AN;. Moreover, due to the {+1} encoding, we have

A ING) — — = 6
pi(xi|N;) S P@)  Tcquy e V@/T T 14 emdl@)/T (6)

where A;U(z) is the difference between U(z) and U(z'), where &’ equals x
except for the sign of z; that has been changed. Since all terms in U(z) and
U(z%) agree except those containing x;, and thus A;U(z) only depends on A,
its computation can be further simplified.

2.2 The Markov Fitness Model

In the DEUM framework, probabilities are assigned to points in {2 proportionally
to the value of f, and a model is chosen in the family of Gibbs distributions. By
setting T' = 1, in order to simplify the formulas, and combining Equations (2),

@) and (@), we have
f(.’L‘) e 2 cecuc(zo)

pla) = >0 f@) >ae Yoecuo(ze)’
that in particular is implied by setting
—In(f(2)) = Y uc(zo), (7)
cecC

i.e., when U(x) is supposed to be a good model for f. This relationship between
the energy function of the Gibbs distribution and f is called Markov Fitness
Model (MFM) [3]. Notice that Equation () defines a probabilistic model of f.
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Every uc is defined over a subset of the variables in = according to the nodes
in the maximal clique. Thus uc admits a polynomial expansion as for f in
Equation (), and

~(f(@) =Y > b,z (8)
ceCaclc
where the set of interactions identified by I~ depends on the variables in the
maximal clique. Every 6,,c € R is a parameter associated to the expansion of
uc. By grouping similar terms and introducing a set M for all the monomials
that appear in Equation (8]), the expression can be simplified to

—ln(f(z)) = Y oz (9)

aeM

The statistical model used in the MFM in (@) can be written as an m-dimensional
exponential family, with m = # (M),

p(x;0) = exp { > bar® — ¢(9)} ; (10)

aeM

where () = In Z(6) is the normalizing factor and z® are the sufficient statistics.

In order to reduce the number of parameters of the statistical model, further
assumptions can be made in the choice of the monomials that appear in u¢ in
Equation (8). For instance, in the Ising DEUM algorithm [19], where the G is a
toroidal 2D lattice and all maximal cliques have size 2, every u;;(z;, z;) takes
the form of 0;;z;z;, so that all linear terms are not included among the sufficient
statistics of the exponential model since they are not required to capture such
class of Ising Spin Glass functions.

3 Sparse Learning of the Markov Fitness Model

To make the estimation of the MFM computationally feasible, we need to con-
sider a reduced set of monomials as support statistics in ([I0) by imposing sparsity
on the interactions pattern of the variables. This can be done a priori by making
proper assumptions on the model, for instance limiting the neighborhood size
of each variable or the total number of interactions in the graph. On the other
hand sparsity can be obtained by employing machine learning techniques such as
{1-regularization in the estimation of the model. For instance, Ravikumar et al.
[16] address sparse model selection by solving a set of n ¢1-constrained logistic
regression problems. Other approaches, such as [9], solve the problem of sparse
structure learning by evaluating pseudo-likelihoods. In the literature of discrete
EDAs, some related methods have been applied in LIBOA [24] and DEUMy, [13].

3.1 Problem Statement and Theoretical Approach

Let consider the MFM in Equation (§)), where the set of monomials identified
by indices in M defines a set of interactions among the variables in f. In the
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DEUM framework the coefficients 6 are estimated by solving a linear system
of equations. More in general the estimation of 6 can be seen as a linear re-
gression problem where, given a sample of observations, —In(f(z)) corresponds
to the response variable, and z® to the covariates. By introducing a shrinkage
regression technique in estimating the value of the parameters we can perform
model selection by zeroing a subset of coefficients, and thus obtaining a sparse
model. As a consequence, by applying a shrinkage technique in estimation, we
can perform model selection at the same time of model fitting.

In particular we learn the MFM by solving an ¢;-constrained linear regres-
sion problem, also known as the Lasso [20]. The solution of the Lasso gives a
sparse estimation of €, hence, it selects a set of sufficient statistics for the sta-
tistical model of f in (I0). The ¢;-constrained linear regression problem can be
formalized as the minimization problem

min {;| —In(f(x)) — Z anO‘H% +)\|9|1}, (11)

GER‘NL
aeM

where the first term represents the residual sum of squares, and the second
term is an ¢1-constraint weighted by a control parameter X, called reqularization
parameter. The value of the regularization parameter strongly affects the sparsity
pattern of the vector of coefficients. Indeed, for A — oo all coefficients will vanish,
while, for A — 0 the solution of the Lasso corresponds to the usual least square
estimation of the MFM, which in general is not sparse.

To correctly dimension the value of the regularization parameter A we refer
to the asymptotic results presented in [5]. In particular dimensioning \ as

A K\/ los(m), (12)

where K is a constant, m is the number of monomials in the exponential family,
and N is the size of the sample used for the regression, guarantees that the
correct correlations can be identified as N — oo. The same result has been
applied in [I6], where the authors show how N may depend on the topology of
the graph. Such result is obtained under the hypothesis that the sample is i.i.d.
from to an unknown probability distribution. Usually such hypothesis cannot be
satisfied in black-box optimization, since f is unknown. In order to deal with
this issue, we propose to perform ¢;-constrained linear regression over a subset
of samples selected from a randomly generated initial sample according to the
value of f. This procedure can only approximate an i.i.d. sample, but from our
experiments it was sufficient to correctly reconstruct the topology of the MN.
A solution of the minimization problem defined in Equation (I gives an
estimation of the MFM that approximates a statistical model of f. However, the
number of potential covariates in the regression problem grows exponentially
with n, making the minimization problem computationally unfeasible. Indeed
its complexity is bounded by O(m?). Even under the hypothesis of limiting the
maximum order of interactions to the second, we have m = (g) and the problem
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does not scale very well. For this reason, we propose to apply a rough selection
procedure to reduce the set of covariates in the MFM before solving the Lasso.

3.2 Taking Care of Dimensionality: Candidate Edges Reduction

In order to reduce the complexity of the ¢1-constrained linear regression problem
we only consider pairwise interactions among variables, so that the MFM in
Equation (®]) can be represented as a complete pairwise graph G(V, £), such that
(i,7) € & for every j > i. However, the number of terms to consider still grows
quadratically with n. In order to further reduce the number of edges before
solving the Lasso, we select first a subset with a computationally lighter but yet
less accurate method based on a measure of correlation among the variables.

Similarly to [17], we evaluate Mutual Information (MI) for each pair of ran-
dom variables in the original function. MI is a metric that measures the mutual
dependence between random variables. Given a pair of discrete random variables
X; and X, their Mutual Information Z is defined as

I(X, X)) = > pij(xi,xj)mg( Py (@i, ;) > (13)

xi,me{+1} pi(zi)p;(x;)

where p; and p; are the marginal probabilities, and p;; is their joint probability.
If the MI between X; and X is higher than a given threshold, then we include
the associated monomial during the solution of the Lasso; otherwise, we remove
the edge (4,7) from the graph.

The overall procedure can be summarized as follow. Given a sample we com-
pute the Mutual Information matrix A, which is symmetric and has dimension
n X n. Then, we proceed by removing from the initial complete graph every edge
(¢,7) whose Mutual Information a,; is lower than the threshold b - a, where b is
a weight coefficient and a is the average Mutual Information of variables in X.

Such procedure allows us to reduce the candidate set of interactions in the
regression problem. The optimal value of b such that only real interactions are
recovered, strongly depends from both the original function f and the sample.
In principle, correctly dimensioning b represents a hard task to address. Higher
values of b cut most of the edges, while less restrictive choices give a dense net-
work, that in turn, is more like to contain all the relevant interactions of the
problem together with many undesired ones. We choose non-restrictive values
for b since the purpose of this preliminary selection is to reduce the number
of edges rather then selecting a good model for X. Shakya et al. [I7] reduce
furthermore the density of the network by making hypothesis on the maxi-
mum neighborhood size of the nodes. We do not apply such step here, since
we would like model selection to be as much independent as possible on prior
knowledge about f, and leave to the Lasso the task of identifying the correct
interactions.
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Algorithm 1. SDEUM(P, b, sy, S, )

Let € be the set of edges of a fully connected pairwise MN

Randomly generate initial sample P of size P

Evaluate f for each point in P

Select a subset P,,; from P of size sy P

Compute the MI matrix A and the average MI a given Pp:

Select a subset of edges Em; from £ according to A and the threshold ba
Let m = # (5mi)

Select a subset Py, from P of size N = s¢, P

Estimate a distribution p in the MFM, by solving the Lasso with covariates

associated to Em; and observations in Py, , with A = K \/ loi,m, as in Eq. ([T
10 Sample p with the Gibbs sampler by evaluating conditional probabilities in Eq. (@)

© 00 N O AW N

4 Shrinkage DEUM Optimization Algorithm

In this section, in the light of the machine learning techniques described in
the first part of the paper, we present the Shrinkage Distribution Estimation
Using Markov Networks algorithm (sDEUM). The sDEUM algorithm consists
of a black-box meta-heuristics able to learn from scratch a sparse probabilistic
model of the function to be minimized. The use of £;-penalized linear regression
allows SDEUM to shrinkage the size of the 6 parameters of the MFM. Due to
the ¢ constraint and according to the size of the A parameter, some coefficients
are fixed to zero with high probability, so that an implicit model selection is
performed while solving the regression problem. The model is then sampled to
generate new points, possibly with optimal values for f.

Algorithm [I] summarizes the procedure implemented in sDEUM. The meta-
heuristic is characterized by some parameters: the population size P, the MI
coefficient b, the percentages of selection s,,; and sy, , and the constant K. Two
different subsets are selected from the same initial random sample: P,,; for the
computation of the MI matrix and Py, for solving the Lasso, respectively. This
choice allows a better sizing of observations for the two different estimation
tasks. In both cases a truncation selection operator is employed, other policies
are possible, but they are not investigated here.

Once the MFM is estimated, next step in the DEUM framework consists of
sampling the distribution to search for the optimum of f. In sSDEUM, as in [T9J13],
we use a Gibbs sampler, i.e., a Monte Carlo Markov Chain sampling method. The
Gibbs sampler allows to generate instances with minimum values for the energy
U of the Gibbs distribution by cooling the temperature during sampling. Refer
to [19] for a presentation of the sampling schema employed in DEUM.

When the estimated model is good enough, repeatedly sampling the model
with an adequate cooling schema yields with high probability the global optima
of f. As a consequence, as in most of the DEUM framework algorithms, model
learning in sSDEUM is performed only once, and the learned model is repeatedly
sampled using the Gibbs sampler (single generation approach).
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5 Empirical Performance Analysis

In this section we present the results of an empirical analysis of the performance
of SDEUM. We set up a series of experiments in order to evaluate the ability of
the algorithm to reconstruct the correct set of interactions among the variables in
the model and to find the global minimum of the function. In all the experiments,
we evaluated the performance using the 3D Ising spin glass problem [2] as a
benchmark, whose interaction structure is known and can be used to determine
a set of model selection statistics, such as precision, recall and F1 score. First we
analyse the behavior of SDEUM when its parameters are changed, in order to find
the best configuration, then we compare its performance in solving the energy
minimization problem with those of DEUMce [I7], Simulated Annealing [I] and
hBOA [I5]. DEUMce and Simulated Annealing have been tuned to achieve best
performance, while results of hBOA are taken from [I4]. Since the difficulty of
the 3D Ising spin glass problem may depend from the particular instance, we
averaged the results over 10 different instances, and for each of them we run 30
independent executions of every algorithm. In order to simplify the experimental
comparison and evaluation, sSDEUM, DEUMce and Simulated Annealing were
implemented within the Evoptool toolkit [2I]. The source code of the algorithms
and the Ising spin glass instances can be found on the Evoptool homepag.

5.1 Experimental Setting and 3D Ising Spin Glass Problem

In statistical physics, the Ising spin glass problem is an energy minimization
problem in the space of binary configurations of a set of spins o = (o1,...,04),
where each spin can be either up, o; = +1, or down, o; = —1. The optimal
solutions, i.e., the ground states of the spin glass, are those configurations that
minimize the energy function

E(O’) = — Zhiai — Z JZ‘]‘O'Z‘O']‘, (14)
i€L i<jeL

where L is a toroidal lattice of n sites, while h; and J;; are coupling constants
respectively of a single spin o; and a pair of spins (o;,0;). The difficulty of the
problem is strongly related to the dimensionality of the lattice. Indeed, even if
with particular choices of h and J the problem in 1D and 2D can be solved in
polynomial time, it becomes NP-hard for all kind of coupling constants, as soon
as it reaches the third dimension, and in particular when the edge degree of each
vertex equals 6, see [2].

In our experiments we use spin glasses defined over a 3D grid with periodic
boundaries [2]. The contribution to the energy given by singleton spins is not
taken into account, therefore h; = 0 for every spin. The instances of the problem
are randomly generated with couplings J;; that takes values in {41} with equal
probability. Instances of the problem and their optimal solutions are generated
using the spin glass ground states server by the group of Prof. Michael J ﬁngex@.

1 Available at http://airwiki.ws.dei.polimi.it/index.php/Evoptool
2 Available at http://www.informatik.uni-koeln.de/ls juenger/research/sgs/
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Fig. 1. F1 measure of model selection based on MI vs preliminary selection based on
MI followed by ¢i-constrained linear regression for the Ising spin glass problem for
n = 64, (left) 2D lattice; (right) 3D lattice

The sDEUM algorithm has been run for different values of its parameters: the
sample size P, the threshold coefficient of MI b, and the percentages of selection
Smi and sj1. After preliminary tests, the constant K in (I2)) has been fixed to
the value of K = 16. In particular, to solve the ¢;-constrained linear regression
problem, we employed the R package lars available on CRAN, implementing
the Least Angle Regression (LARS) [6] algorithm.

The performance of sSDEUM is compared with those of DEUMce, Simulated
Annealing (SA) and the Hierarchical Bayesian Optimization Algorithm (hBOA).
DEUMce is a DEUM algorithm with model learning capability based on the
evaluation of the Mutual Information plus a structure refinement mechanism
that bounds the maximum edge degree of each node. SA is a meta-heuristic
characterized by the number P of starting points, by the initial temperature T
and the cooling rate ¢ of the Metropolis sampler. The hBOA algorithm is an
optimization meta-heuristic belonging to the family of EDAs based on Bayesian
Networks (BNs). At each generation, hBOA employs a niching mechanism to
select individuals in the population. Once the BN has been estimated, the next
population is sampled. Further details on the implementations of DEUMce, SA,
and hBOA can be found in [I7], [I], and [15], respectively.

The performance of the algorithm is evaluated according to a set of statistics
that concern the F1 measure, the probability of success and the average number of
evaluations of f required to find the first ground state at each execution. The F1
measure is defined as the harmonic mean of precision and recall, and the probabil-
ity of success is computed as the rate of successful executions, i.e., the percentage
of runs in which at least an optimal solution is found.

5.2 Impact of Learning Parameters

In order to consistently find the minimum of f, it is essential to recover a good
statistical model for the variables in the problem, i.e., to learn most of the
interactions present in f and to correctly estimate the value of their parameters.
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Fig. 2. Probability of success over normalized size of initial population (P/n). Bench-
mark: 3D Ising Spin Glass function, n € {27,64,125}. sDEUM parameters: spy,; = 0.3;
(left) b =1.5,s,, = 0.1; (center) b = 1.5, s, = 0.3; (right) b =1.1,s,, = 0.3.

The threshold coefficient b of the preliminary selection based on MI, as well
as the \ parameter of the Lasso, determine the sparsity level of the recovered
structure. To correctly dimension b a preliminary tuning phase which depends
on the problem is usually required, while, in contrast, the A\ parameter can be
chosen according to Equation (I2]) to ensure good theoretical performance.

In Fig. [l we compared the model selection performances of our approach with
those of the model selection based on MI, when solving the Spin Glass function
with 2D and 3D structure and 64 variables. As we can see, in case of model
selection based only on MI the results vary greatly according to the value of b.
In contrast, when MI is followed by the ¢;-constrained regression, the choice of
value for b is less problem dependent.

In Fig. @l we can see the probability of success plotted against the size of the
initial population P for problem size n € {27,64,125}, and for different values
of the threshold coefficient b € {1.1,1.5}, that determines how dense the MFM
is after preliminary model selection based on MI. When n = 27 or n = 64, a
less restrictive value of b provides better performance, see Fig. [ (right); while
when the size of the problem increases, n = 125, a higher value of the coefficient
b results in earlier convergence, see Fig. 2] (center).

These results suggest that the value of b should increase with n. A possible
explanation is given by the fact that the number of interactions grows linearly as
3n for a 3D lattice, while the number of total interactions is quadratic, for this
reason a more restrictive choice of b helps to reduce the number of candidate
interaction before the Lasso is solved.

In a black-box scenario an i.i.d. sample is not available to solve the lasso.
Instead we choose a subset of the sample based on the value of the function f,
and we compared the performance of the algorithm for different values of sy, . In
Fig. (left) and Fig. Pcenter) we show the results for sy, equal to 0.1 and 0.3,
respectively. It is possible to notice that even if selection helps identify a good
sample with respect to the random observations generated when the algorithms
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Fig. 3. Average number of evaluations of f (log scale) over problem size required to
find first optimal solution with probability 1. Benchmark: 3D Ising Spin Glass function,
n € {27,64,125}. Algorithms: sDEUM, DEUMce, SA, hBOA.

starts, decreasing that percentage too much results in lower performances. This
result suggests that if the sample after selection is not informative enough, then
we have preliminary convergence and a larger population is necessary.

5.3 Analysis of Optimization Performance

In this section we compare the performance of sSDEUM to find the ground states
of the 3D Ising Spin Glass function with those of DEUMce, SA and hBOA. We
analyze the results in terms of average number of function evaluations required to
find the optimum with a probability of success equals to 1 for each algorithm on
10 instances of the problem. The parameters of sSDEUM, DEUMce, and SA have
been chosen after a preliminary tuning phase, while for the hBOA algorithm,
the results are taken from [14]@?,

The trend highlighted in Fig. Bl suggests that sDEUM algorithm requires a
lower number of evaluations of f with respect to other meta-heuristics on this
benchmark. Indeed, the overall number of evaluations for sDEUM appears to
grow polynomially as O(n?%), while the same metric grows as O(n?16), O(n3-9¢)
and O(n?%1), for DEUMce, SA and hBOA [14], respectively.

The lower requirements in terms of fitness evaluations of both sDEUM and
DEUMce with respect to SA and hBOA are due to the single iteration ap-
proach characteristic of the DEUM algorithms. Indeed, most of the evaluations
in DEUM concern the initial sample, before selection. Moreover, the shrinkage
method used in SDEUM compared with the approach of DEUMece based on MI
and structure refinement is able to recover a good model with a smaller sample
and thus further reduce the number of function evaluations.

3 The performance of hBOA in [I4] are evaluated over a set of instances of the 3D Ising
Spin Glass function different from our set but with the same setting: 3D toroidal
lattice, hy =0, Ji; € {£1}.
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6 Conclusions

In this paper we presented a novel approach to the estimation of the MFM
based on {¢;-regularized linear regression. Our proposal allows to perform both
model selection and model fitting at the cost of solving a single regularized linear
regression problem. The advantage of this approach is due to theoretical results
on the dimensioning of A, that in contrast to the threshold parameter of Mutual
Information, permits to be more robust and less problem dependent.

In the context of the DEUM framework, we developed a novel algorithm
called sSDEUM that estimates the MFM using an approach based on shrinkage
regression. In order to make Lasso more efficient, SDEUM uses a preliminary
o coarse selection based on Mutual Information in order to find a candidate
set of interactions for the MFM. This candidate set is then used to solve the
regularized regression problem by means of Least Angle Regression (LARS). We
showed that sSDEUM is able to learn a probabilistic description of the objective
function and to successfully use it to address optimization. We remark lower
requirements in terms of number of evaluations of f to reach optimality with
respect to other popular algorithms in the EDA framework. In particular, solving
the Lasso defined on the MFM allows to reduce the sample size with respect
to performing /¢;-regularized logistic regression on the conditional probability
distribution of each variable, as previously done in DEUM,, [13].
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