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Abstract. Most publications on surrogate models have focused either
on the prediction quality or on the optimization performance. It is still
unclear whether the prediction quality is indeed related to the suitabil-
ity for optimization. Moreover, most of these studies only employ low-
dimensional test cases. There are no results for popular surrogate models,
such as kriging, for high-dimensional (n > 10) noisy problems. In this
paper, we analyze both aspects by comparing different surrogate models
on the noisy 22-dimensional car setup optimization problem, based on
both, prediction quality and optimization performance. In order not to
favor specific properties of the model, we run two conceptually different
modern optimization methods on the surrogate models, CMA-ES and
BOBYQA. It appears that kriging and random forests are very good
modeling techniques with respect to both, prediction quality and suit-
ability for optimization algorithms.

Keywords: Computer Games, Design and Analysis of Computer Ex-
periments, Kriging, Model-Based Optimization, Sequential Parameter
Optimization, The Open Racing Car Simulator.

1 Introduction

Over the last 15 years, the use of surrogate-model-assisted optimization ap-
proaches has obtained a high popularity in almost all application areas [12, 13,
17,23]. Within this period, the research on model-based optimization has mainly
focused on low-dimensional problems and noise-free evaluations. In particular,
kriging has been shown to be well-suited for modeling deterministic data of com-
puter experiments (design and analysis of computer experiments, DACE [21])
with low or moderate input dimension n ∈ [1, 10]. In the modeling and optimiza-
tion of practical problems, however, e. g., in the computer games community,
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high-dimensional parameter spaces and noisy responses have to be considered.
Consequently, the modern kriging models of DACE have been enhanced to cope
with noisy data in recent years [5, 6, 11]. For high-dimensional data, however,
almost no results of kriging-based modeling approaches have been reported.

In this paper we thus investigate how these kriging variants and other popular
surrogate modeling techniques can assist in optimizing a 22-dimensional problem
from the domain of computer games - the car setup optimization problem based
on the open racing car simulator (TORCS). The response to be modeled is
the distance obtained by a racing car with a specific car setup encoded by the
input parameters. Based on a short evaluation time on TORCS with a quasi-
random starting point on the track, this response is very noisy. The analysis
and evaluation of the surrogate models is two-fold. First, their global prediction
qualities based on the initial design are evaluated. Then, the capability of the
models to guide and tune the optimization [19] is assessed by performing a
global optimization on the model and compare the predicted optimum with the
quality of the evaluation on TORCS (one-step approach). Almost all previous
studies using a one-step approach have focused only on one of these aspects –
the prediction quality or the results of a model-based optimization. Based on
the combined analysis, some important questions can be addressed:

1. Is the prediction quality a good indicator for the optimization capability of
a surrogate model?

2. Are certain surrogate models particularly well suited for high-dimensional
noisy problems?

3. Can the successful results of kriging-based optimization approaches be trans-
ferred to higher dimensions and noisy data?

In the following section, the basic principles of the considered surrogate models
are described. The car setup optimization problem and TORCS are briefly sum-
marized in section 3. The two main sections of the papers address the prediction
quality and the optimization results obtained by the different surrogate models.
In the final section 6, the results are summarized, conclusions are drawn, and an
outlook on future research topics is given.

2 Surrogate Models

For almost all real-world applications, the evaluation of parameter vectors is
time-consuming and/or expensive, e. g., because a finite-element analysis, a com-
putational fluid dynamics calculation or a real-world experiment have to be per-
formed. In these cases, a model-based approach is often used. Here, we focus
on one-step approaches. Based on an initial design of the problem parameters,
a model is fitted which is then used as a surrogate for the actual experiment,
e. g., the parameter vector resulting in the optimal model prediction is directly
used as a solution or the model is used as a surrogate for tuning optimization
algorithms in order to use the tuned variant on the actual problem [19]. For both
kinds of applications, the surrogate model should



High-Dimensional MBO Based on Noisy Evaluations of Computer Games 147

1. be as close to the true response as possible (prediction quality), and

2. reflect the characteristics of the optima of the true response surface (model
optimization).

In the following subsections, some popular surrogate models are described and
discussed. Due to the extremely high number of approaches, we restrict our
description to the models considered in our experiments. More methods and
additional details to the presented approaches can be found in Hastie et al. [9].

2.1 First Order Response Surface

In the first order (linear) response surface model (LM), the relationship between
the control variables xi and the corresponding observations yi is described by

yi = xiβ + εi. (1)

Equation 1 is set up for each pair of parameter vector xi and observation yi
(i = 1, . . . , N) in the initial design. The least-squares estimate β̂ of the coeffi-
cients β is then calculated as the solution to the corresponding system of linear
equations [10, p. 11]. With this β̂, equation 1 can be used for prediction of
unknown parameter vectors x.

2.2 Generalized Additive Model

The Generalized Additive Model (GAM) [8] replaces the linear form of equa-
tion 1 by a sum of smoothing functions for single parameters β +

∑
sj(xj)

(j = 1, . . . , k), where an iterative algorithm is employed to decide about the
important variables xj and the corresponding smooth functions sj . Contrary to
the first order response surface (LM), the GAM also allows nonlinear smoothing
functions to be specified. The employed R package GAM1 supports local polyno-
mial regression and smoothing splines.

2.3 Random Forest

Random forests [2] consist of huge ensembles (typically 500 or more) of deci-
sion trees, whereby each of them is trained on a randomly chosen subset of the
available observations. The prediction of the random forest is then computed as
the average of the predictions of the individuals trees. Random forests are usu-
ally used for classification, but also regression can be realized by implementing
regressing decision trees, as done in the R package randomForest2.

1 http://cran.r-project.org/web/packages/gam/index.html
2 http://cran.r-project.org/web/packages/randomForest/index.html

http://cran.r-project.org/web/packages/gam/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
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2.4 Kriging

Kriging is a surrogate model originated from geosciences [4] which has become
popular in the DACE [21] and machine learning [20] communities. In ordinary
kriging, the response of interest can be considered as one realization of a random
variable Y (x) = μ + Z(x), where μ ∈ R is an intercept used for centering the
stationary zero-mean Gaussian process (GP) Z. Z depends on a covariance kernel
of the form (x,x′) → D2 : k(x,x′) �→ σ2r(x − x′;ψ) for a correlation function r
with parameters ψ.

The predictions of the kriging model can be obtained by taking the conditional
expectation m(x) = E[Y (x)|Y (xi) = yi] of Y based on the N current pairs of
parameter vectors xi and observations yi. Consequently, m(x) is also denoted as
the kriging mean. It provides a prediction for each observation x by enhancing
the constant trend using the correlation to the existing observations. It thus
explicitly uses the information of each observation. For an efficient evaluation,
the kriging mean can be computed in closed form

m(x) = μ̂+ k(x)TK−1(y − μ̂1), (2)

using the observations y = (y1, . . . , yn)
T , the covariance matrix of the experi-

ments K = (k(xi1 ,xi2)), the covariance vector kn(x) = (k(x,x1), . . . , k(x,xn))
T

of x and the existing design points, and the maximum likelihood estimation of
the trend

μ̂ =
1TK−1y

1TK−11
.

For noisy evaluations Ỹi := Y (xi) + εi, the GP is conditioned based on a sum
of random variables – one following a GP and one for the noise. Assuming
independence between the random variables as well as between different real-
izations of the noise, the kriging mean can still be computed using equation 2,
only the intercovariance matrix K is replaced by K̄ = K + τ2I at every occur-
rence. The additional term τ2 denotes the noise variance which is only added
for identical observations. In the case of heterogeneous noise variances, i.e.,
var(ε1) = τ21 �= . . . �= var(εN ) = τ2N , K is replaced by K̄ = K+diag(

[
τ21 . . . τ

2
n

]
).

Contrarily to the noiseless case, these models do not interpolate the noisy ob-
servations.

The choice of the covariance kernel and its parameters determines the shape
(smoothness, modality) and the flexibility of the response surfaces predicted by
the kriging model. In this paper, two popular kernels implemented in the R
package DiceKriging3 are considered:

1. the Gaussian kernel:

k(x,x′) = σ2 exp

⎡

⎣−
n∑

j=1

(
xj − x′j
θj

)2
⎤

⎦ (3)

3 cran.r-project.org/web/packages/DiceKriging/index.html

cran.r-project.org/web/packages/DiceKriging/index.html
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2. the Matérn kernel with ν = 5/2:

k(x,x′) = σ2
n∏

j=1

[

1 +
√
5Dj +

5

3
D2

j

]

exp
[
−
√
5Dj

]
, Dj =

∣
∣xj − x′j

∣
∣

θj
(4)

Both kernels depend on a set of parameters, σ2 and {θ1, . . . , θd}, which are
often referred to respectively as process variance and ranges. They have to be
fitted based on the available evaluations, for which we use maximum-likelihood
estimation in the experiments.

3 Car Setup Optimization Problem

The car setup optimization problem originates from a competition held at the
EvoStar 2010 conference4. It is based on the open source car racing simulator
(TORCS)5 which is used as simulation engine for the evaluations. The task in
this competition is to find a near optimal setting for the 22 car parameters listed
in Table 1. Performance is measured by the track distance covered within this
time frame. In order to avoid handling different parameter ranges within the
optimization, all parameters are scaled to the interval [0, 1] by the interface.

Table 1. The 22 car setup optimization parameters of the EvoStar 2010 competition
and their original ranges, taken from [3]

parameter section name unit min max

1 gearbox/gears/2 ratio SI 0 5
2 gearbox/gears/3 ratio SI 0 5
3 gearbox/gears/4 ratio SI 0 5
4 gearbox/gears/5 ratio SI 0 5
5 gearbox/gears/6 ratio SI 0 5
6 rear wing angle deg 0 18
7 front wing angle deg 0 12
8 brake system front-rear brake repartition SI 0.3 0.7
9 brake system max pressure kPa 100 150000

10 front anti-roll bar spring lbs/in 0 5000
11 rear anti-roll bar spring lbs/in 0 5000
12 front left-right wheel ride height mm 100 300
13 front left-right wheel toe deg -5 5
14 front left-right wheel camber deg -5 -3
15 rear left-right wheel ride height mm 100 300
16 rear left-right wheel camber deg -5 -2
17 front left-right suspension spring lbs/in 0 10000
18 front left-right suspension suspension course m 0 0.2
19 rear left-right suspension spring lbs/in 0 10000
20 rear left-right suspension suspension course m 0 0.2
21 front left-right brake disk diameter mm 100 380
22 rear left-right brake disk diameter mm 100 380

In the competition, a time frame of one million tics of 20ms each was allowed
as budget for the optimization algorithm. The algorithm can distribute the avail-
able time arbitrarily between different settings, i. e., each evaluation can take as

4 http://cig.ws.dei.polimi.it/?page_id=103
5 http://torcs.sourceforge.net/

http://cig.ws.dei.polimi.it/?page_id=103
http://torcs.sourceforge.net/
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long as desired. For comparable results, however, the evaluation time should be
fixed. The evaluations are made in a row while the game is running, where short
breaks are required in order to brake down the car to a standstill. Therefore,
different parts of the track are used for measuring the performance, which is
a major source of the noise in the evaluations. Recent parameter studies [16]
have shown that below a certain limit of around 250 tics (5 s), measured values
become so noisy that they are unsuitable for optimization. Longer evaluations
spent the budget more quickly so that Kemmerling recommends evaluations of
2000 tics (40 s), resulting in only 500 evaluations of the simulator. In this time,
around one third of the Suzuka F1 track (wheel-2 in TORCS) can be covered.
This track is shown in Fig. 1. It combines many challenges, such as high speed
parts and different curve types, and is, thus, used for evaluations in this paper.

Fig. 1. Screenshot of TORCS, in which the solution obtained from the model-based
optimization on the (Matérn covariance) kriging model is driving the reference track
(Suzuka F1). A minimap of the track is shown in the top right corner.

Summarizing, the car setup optimization problem can be regarded as a high-
dimensional noisy practical problem with a very limited budget of evaluations.
Consequently, it is hard to solve6. In the computer games context, such problems
appear whenever an implemented, parameterizable component (as a car driving
bot) must be adapted to other components, be they provided by the user or
procedurally generated [16]. As known from the formula 1 races, the optimal
setup will change whenever one of the components (car, driver, track) is modified.
Thus, the results of the EvoStar2010 competition where other tracks then the
Suzuka F1 were considered cannot be directly compared to our setup.

6 See also the results of the EvoStar 2010 competition at
http://www.slideshare.net/dloiacono/

car-setup-oprimization-competition-evostar-2010

http://www.slideshare.net/dloiacono/car-setup-oprimization-competition-evostar-2010
http://www.slideshare.net/dloiacono/car-setup-oprimization-competition-evostar-2010
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4 Prediction Quality of the Models

In the first part of the experimental analysis, the prediction quality of the sur-
rogate models on the car setup problem is evaluated. The results build the basis
for the combined analysis in the next section.

Setup. In order to evaluate the prediction quality of the models, sets for the
training and the validation of the surrogate model had to be prepared. The
budget for the training set was chosen according to the specification of the car
setup competition, where 20000 s of running the simulator had been allowed.
We chose an evaluation time of 40 s which resulted in a size of 500 design
points in the training set. As mentioned in the previous section, the evaluations
of a car setup were noisy. In order to allow the effect of the accuracy of an
evaluation to be considered, two different training sets were used, one having 125
mutual design points with 4 replicationsX125,4 and one having 500 mutual design
points without replications X500,1. For validation, a larger and more accurate
set of N = 440 randomly distributed design points with 20 replications was

employed. The root mean squared error RMSE =
√∑N

i=1(ŷi − ȳi)2 was used

as performance measure, where ŷi denotes the prediction of the model for the
i-th design point and ȳi is the mean of the 20 observations in the validation set.
For some parameter vectors, the damage of the car exceeds a specified threshold.
In these cases, the output of the simulator is not the distance reached by the
car, but a high penalty encoding the damage. In order to not deteriorate the
quality of the models by integrating discontinuities and different scales, these
values were removed from the training and validation sets. If a subset of the
repeats of a parameter vector is penalized, only the remaining results were used
for the computation of the mean performance.

For kriging,we analyzed the effect of the covariance kernel and the use of the esti-
mated variances of setX125,4 in a heterogeneous kriging model. More specifically,
we consider the Gaussian and the Matérn kernel with ν = 5/2 and the homoge-
neous (single τ2) and heterogeneous (vector of τ2i ) formulation of kriging for noisy
observations, as presented in section 2.4. The other surrogatemodels have been run
with their standard parameters. For LM and GAM, the setX125,4 was tested with
andwithout using variance-dependingweightswi = 1/var(yi) of the observations,
where the latter approach results in a weighted least squares fit.

Pre-experimental Planning. The 22 design variables of the car setup problem
directly result in 23 model parameters (θj and σ) in the likelihood optimization.
In order to avoid a deterioration of the kriging results based on a bad fit of the
internal parameters, the optimization of the kriging parameters was analyzed be-
fore the experiments. Accounting for the multimodality of the log likelihood, the
global optimization strategy of the DICEKriging package based on the Genetic
Optimizer Using Derivatives (RGenOUD)7 was considered. It was observed that

7 http://cran.r-project.org/web/packages/rgenoud/index.html

http://cran.r-project.org/web/packages/rgenoud/index.html
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the standard parameters, population size P = 20, wait generationsW = 2, max-
imum generation limit L = 5, and the generation in which the gradient-based
refinement is performed for the first time (BFGS burnin) B = 0 did not robustly
find the maximum of the log likelihood for the large data set X500,1. Thus, a
small experiment was conducted in preparation for the actual study. Based on
a 43 point Latin hypercube design (LHD) [14] of the four RGenOUD parame-
ters, the performance of log likelihood optimization was analyzed. The results
of the set X500,1 were defined as the test case. The experiment was conducted
for the Gaussian and the Matérn kernel with ν = 5/2. Based on the results
and allowing a slightly larger computational budget for ensuring robust results,
we recommend to use (P,W,L,B) = (10, 1, 120, 40). The computation time for
X500,1 is still below 4 minutes on a 3 GHz PC.

The focus of the experiments reported in the paper is clearly on surrogate
models based on or related to kriging. This originates from our experience in
using these models. Other popular surrogate models, such as support vector re-
gression and neural networks, were also used in the beginning of the study, but
since the results of standard R implementations (e1071 package8 based on the
libsvm9 and the nnet package10) were much worse and we did not manage to ap-
propriately adjust these models, we excluded them from the paper. Nevertheless,
our results are based on open R packages and the test sets can be downloaded
online11, which allows a comparison of experts in these areas with our results to
be realized.

Task. According to the scope of the experiment, four hypotheses were established:

1. More inaccurate points are better than a few with higher accuracy.
2. The use of the estimated noise variances can improve the results on training

set X125,4.
3. The Matérn kernel with ν = 5/2 is superior to the standard Gaussian kernel.
4. Kriging is the superior model with respect to prediction quality.

The first hypothesis was based on former results of kriging on noisy data sets [1]
and is generally related to the bias-variance tradeoff in machine learning [9]. The
second one was straightforward, but surprises with respect to a bad estimation of
the variances or an increase of model complexity might occur. The third one was
based on the weaker assumptions of the Matérn kernel compared to the Gaussian
with respect to the differentiability of the response surface – twice compared to
infinitely often. The fourth one was driven by the hope to transfer the results of
kriging in lower dimensions to higher ones. However, this was questionable due
to former results in the literature [22].

Results/Visualization. The results of the experiments with regard to the predic-
tion quality are summarized in Table 2.

8 http://cran.r-project.org/web/packages/e1071/index.html
9 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

10 http://cran.r-project.org/web/packages/nnet/index.html
11 http://ls11-www.cs.uni-dortmund.de/rudolph/kriging/

applications?&#video game data

http://cran.r-project.org/web/packages/e1071/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://cran.r-project.org/web/packages/nnet/index.html
http://ls11-www.cs.uni-dortmund.de/rudolph/kriging/applications?&#video_game_data
http://ls11-www.cs.uni-dortmund.de/rudolph/kriging/applications?&#video_game_data
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Table 2. Summary of the results with respect to the prediction quality of the models

method data set var. used? repeats mean RMSE std RMSE

LM X125,4 no 1 0.1835478 -
X125,4 yes 1 0.2428571 -
X500,1 no var. 1 0.1699225 -

GAM X125,4 no 1 0.1346388 -
X125,4 yes 1 0.1803923 -
X500,1 no var. 1 0.0976035 -

Random Forest X125,4 no 10 0.1259052 0.0010350
X500,1 no 10 0.1066116 0.0007794

X125,4 no 10 0.1447966 0.0329848
Kriging, Gauss X125,4 yes 10 0.1283082 0.0000040

X500,1 no var. 10 0.0935839 0.0000007

X125,4 no 10 0.1202643 0.0000065
Kriging, Matérn X125,4 yes 10 0.1283162 0.0273566

X500,1 no var. 10 0.0937369 0.0000006

Observations. Based on the results of Table 2, the hypotheses can be tested12:

1. More inaccurate points are indeed better than a few with higher accuracy.
The results of the training set X500,1 are significantly improving the predic-
tion quality for all considered surrogate models.

2. The results concerning this hypothesis show no clear trend. For the LM and
the GAM, the results of the weighted least squares fit are worse compared to
the standard one. For the Gaussian kernel, the mean prediction quality is im-
proved by using the estimated variances while still being robust with respect
to the model fitting. For the Matérn kernel, the mean prediction quality and
the robustness of the model fitting decrease with estimated variances. This
result, however, is based on the fact that the best model (RMSE ≈ 0.115)
is only found in 8 of the 10 repeats. In the two remaining cases, bad models
(RMSE > 0.178) are returned which result in the observed decrease in mean
performance.

3. The only situation in which the Matérn kernel with ν = 5/2 is indeed su-
perior to the usually applied Gaussian kernel is the one for the set X125,4

with unknown variances. In all other scenarios, no significant results can
be obtained with respect to the covariance kernel which is of course also
based on the high standard deviation of the Matérn kernel on set X125,4

with estimated variances.

4. Kriging is indeed the superior model with respect to prediction quality. Al-
though the superiority is significant, the improvement over Random Forests
(set X125,4) and the GAM (set X500,1) is only small.

12 Due to the partly deterministic results and very low variances of the stochastic
approaches, no additional statistical tests have been performed.
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Discussion. The most important effect with respect to the prediction quality is
the one of the training set. A diverse set of many inaccurate solutions results
in a higher prediction quality for all considered models. This effect may be
caused by the diminishing gain of information obtained by replications [11]. In
addition, four repeats are not enough for a sensible approximation of the variance
corresponding to an observation. This conjecture is also based on the bad results
of the weighted least squares approaches.

5 Model-Based Optimization

Related to the questions formulated in the introduction, we now analyze whether
the established models are useful for optimization, and if there is a relation to
the prediction quality we can exploit to predict this suitability.

Pre-experimental Planning. Based on the results of the previous section, we
only focused on models based on the set X500,1. We used a stationary approach
in which the surrogate model is not refined. Our focus is on the capability of
the model to reflect the characteristics of the true response surface based on
the large initial design, e. g., for a one-step optimization approach or for tuning
optimization algorithms [19]. In order not to bias the results by the choice of
the optimizer, two different optimization strategies were used. The covariance-
matrix-adaptation evolution strategy (CMA-ES)13 [7] is a powerful evolutionary
algorithm for global optimization, whereas boundary optimization by quadratic
approximation (BOBYQA)14 [18] is a modern gradient-free local search strategy
for box-constrained optimization.

Task. We want to decide if model quality may be employed as a guideline for
choosing a model for optimization, namely by judging these two hypotheses:

1. The prediction quality can be used as an indicator for the suitability for a
one-step optimization.

2. The Kriging models offering a high prediction quality are particularly suited
for reflecting the characteristics of nonlinear problems and finding its optima.

The first hypothesis expresses the common belief of just considering one of these
indicators for assessing surrogate models. The last one was based on the huge
number of publications on kriging metamodeling [23].

Setup. In order to evaluate the suitability for optimization, one model of each
type was chosen as representative. This choice was made based on the internal
quality criterion of the model – log likelihood for kriging, out-of-bag error for
random forest. For the other approaches, no variation in the model fitting exists.
On each representative, 20 runs of BOBYQA and the CMA-ES were conducted.
The obtained local optima were then evaluated on TORCS for 10 times.

13 http://cran.r-project.org/web/packages/cmaes/
14 http://cran.r-project.org/web/packages/minqa/

http://cran.r-project.org/web/packages/cmaes/
http://cran.r-project.org/web/packages/minqa/
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Fig. 2. Comparison of the predicted (’model’, x-axis) and actual performance (’valida-
tion’, y-axis) of the local optima (top: CMA-ES, bottom: BOBYQA.). The potentially
global optimum on the model is colored in red.

The resulting values provided the basis for the analysis. If the predicted values
of the potential optima also result in locally or globally optimal values on the
simulator, the characteristics of the model are well reflected. The assessment of
the correlation between the prediction quality and the optimization performance
is performed by comparing the RMSE of the representative model and the actual
quality of the approximated optima.

Results/Visualization. The results of the optimization on the representative
models are shown in Fig. 2. The correlation between the prediction quality and
the optimization performance can be assessed based on Fig. 3. It looks conspicu-
ous that a lot of the potential optima on the models result in a validated value of
zero. These values are caused by parameter vectors that could not be evaluated
properly on TORCS because the damage threshold of the car is exceeded (cf.
section 3), making this parameter vector infeasible.

Observations. The first hypothesis can clearly be rejected. Based on Fig. 3,
the random forest provides a better optimization performance than Gaussian
kriging and GAM, whereas its RMSE is worse. The RMSE can only successfully
distinguish between the worst (LM) and the best (Matérn kriging) approach
with respect to both indicators.
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Fig. 3. Correlation between the RMSE of the representative model and the actual
averaged distance achieved in TORCS by the approximated optimum parameter setting

With respect to the second hypothesis, no objective results can be seen from
Fig. 2. Whereas the CMA-ES on the Gaussian kriging model returned many lo-
cal optima with an almost equal performance on the model, but high variation on
the actual problem, the optimization on the model using the Matérn kernel always
resulted in the same optimum which is indeed a good parameter setting. All other
nonlinear surrogatemodels also resulted in amultimodal response surfacewith dif-
ferent local optima,where the performance variation on the actual problem is huge.

Discussion. The high number of infeasible solutions proposed by LM, GAM, and
Gaussian kriging is based on the extrapolation properties of these approaches.
Since the parameter vectors of the infeasible solutions are not used for fitting the
model, no points for interpolation are provided in these parameter regions. Nev-
ertheless, the assumption of an underlying model (LM and GAM) or the strong
differentiability assumed by Gaussian kriging result in local optima within these
areas. This is highly undesired for the focused application setting, where only
one iteration of model-based optimization is performed, because it may result in
an infeasible solution after optimization. In contrast, the Matérn kernel seems
to result in a more data-dependent prediction without extrapolation effects.

The difference between the RMSE and the optimization performance may con-
sequently be caused by the different extrapolation properties of the approaches.
Because the infeasible values are also removed from the validation set, no pre-
dictions in these areas are considered. In addition, the predictions of the random
forest seem to be more conservative. Whereas all other modeling approaches
predict their local optimal values between 0.8 and 1, the optimal values of the
random forest are between 0.6 and 0.8. It seems like the characteristics of the
problem are well covered, but the variation of the response values is decreased
which results in an increased RMSE.

In order to judge whether the response surfaces reflect the characteristics of
the true problem, the true modality of the problem is of interest. In figure 4, we
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Fig. 4. Visualizations of the 4 best of the 440 solutions of our validation set (blue)
together with the best initial solutions from the 125 point design (gray) and the 500
point design (black) and the best solutions obtained from the CMA-ES runs, GAM
(red), Kriging Gauss (orange), Kriging Matern (green), LM (violet), random forest
(indianred). Left: scatter plot of the 4 most important variables as indicated in [15].
Note the different range for parameter 13 due to infeasible solutions outside this range.
Right: parallel coordinate plot over all 22 parameters.

depict the best 4 of the 440 solutions in the validation set (together with the
best initials solutions and the best from the optimization runs). The plots clearly
show that there are several distinct local optima – even if only the four most
important variables according to importance estimations of the GAM model and
further studies [15] are considered. There is seemingly not one dominant basin of
attraction. Based on this fact, employing the Matérn kriging model that always
leads the optimization algorithm to one search space region may become risky.
Obtaining different local optima – if they indeed exist – is surely preferable in
order to have alternatives for the optimal solution on the model, in case it is
infeasible on the actual problem. In particular since the optimization on the
surrogate model is very fast compared to an evaluation on the original problem.
However, the validated result of the Matérn kriging is extremely good (0.912).
The best of the initial points only obtains a validated score of 0.900. The model
thus manages to find better solutions. Only four of the space-filling 440 points of
the validation set (0.938, 0.928, 0.918, 0.915) are better. For the best validated
solution of the random forest (0.917), the situation is similar. However, this
solution is not identified as the global optimum of the model (cf. Figure 2).

Summarizing, the second hypothesis cannot be completely accepted. The krig-
ing models either simplify the characteristics of the true problem (Matérn) or
result in undesired solutions (Gauss), whereby the Matérn model is surely the
better choice. It may just have the empirical information to detect only one of
the basins. The multimodality predicted by the Gaussian kernel is also based on
undesired extrapolation effects.
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6 Conclusion and Outlook

With respect to three questions posed in the introduction, the first question has
to be negated. The prediction quality can only roughly distinguish the suitability
of a model for optimization. As an answer to the second question, the Matérn
kriging model obtained the best results for both, prediction quality and opti-
mization performance. The performance of the approximated optimum is com-
petitive with the best results of the large validation set which required around
20 times more resources to compute. This achievement, however, comes with
a simplification of the model characteristics, maybe caused by a smoothing of
true response surface. As a consequence, the successful results of kriging-based
optimizers could be transferred to higher dimensions and noisy data, although
there is a strong dependence on the applied covariance kernel. For a more robust
optimization performance, sequential approaches, which refine the model based
on the additional evaluations, can be considered [5, 11, 13, 14].

The results obtained in this study are a first step towards a combined analy-
sis of prediction quality and optimization capability on complex practical prob-
lems. Their generality is of course questionable due to the restriction to a single
problem instance. In the future, automatically generated instances of the car
optimization problem with different tracks, cars, and bots and also instances
from other related problems can be used to perform a much broader simulation
study in order to improve on this drawback. Results of other surrogate modeling
approaches on the open test cases defined in this paper can assist in providing
guidelines for applications. In any case we would like to emphasize that modeling
difficult noisy high-dimensional problems is obviously useful and possible.
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