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Foreword

This LION conference (Learning and Intelligent OptimizatioN) was the sixth
in a series of conferences that target the interface between optimization and
machine learning, and the ever increasing success of these events bears witness
to the growing interest of the scientific community in this research area today,
as confirmed by the 109 submissions from 39 different countries that we received
for this year’s event. We would like to thank all of the authors for submitting
some of their best work to LION 6.

Of the 109 submissions, there were 78 long papers and 21 short papers pre-
senting original work, and 10 papers presenting work that had already been
published. Due to this very high pressure, and the single-track format of the
conference, we chose to give room to original works rather than works already
published, regardless of the quality of the papers.

Out of these 99 original submissions, 24 papers were accepted as long papers
(hence an acceptance rate of 31%), and 30 papers were accepted as short papers
(19 that had been submitted as long papers, and 5 that had been submitted as
short papers). All long papers were assigned to 3 independent reviewers, and all
papers received at least 2 reviews. Note that the papers submitted to the special
sessions were assigned by the special session chairs, except the ones that were
authored by some of the session chairs. These were handled by the conference
chairs, to ensure the anonymity of the reviewers (similarly, papers authored
by one of the conference co-chairs were handled by the other co-chair and one
member of the steering committee, unknown by the authors). We wish to heartily
thank here all the reviewers (not anonymous any more, see next pages) for their
hard and timely work, emphasizing the importance of such peer review, the best
(if not only) way we know today to make a review process as fair as possible.

Because LION is a unique occasion for people from different research com-
munities, the conference was single track (no parallel sessions) and the program
left room for interaction among attendees with long coffee breaks. For the same
reason, though the presentations of long papers (resp. short papers) were sched-
uled with 25minute (resp. 15minute) slots, the presentations themselves were
not allowed more than 20minutes (resp. 12minutes), allowing time for questions
and discussions. We want to thank here the session chairs, who were very strict
on respecting these constraints, and thus made sure that the conference ran
smoothly.

The final program of the conference also included 3 invited speakers, who
presented forefront research results and frontiers, and 3 tutorial talks, which were
crucial in bringing together the different components of the LION community.
We wish to thank all these speakers who focused on different aspects of LION
themes, and thus contributed to a better view and understanding of intelligent
optimization at large.



VI Foreword

Beside the authors, the reviewers, and the invited speakers, there are other
people who made this event possible whom we wish to thank: Pierre-Louis Xech
(Microsoft France), for arranging the venue at Microsoft France Technology Cen-
ter, and smoothing out many small details that would otherwise have become
incredibly time-consuming; Pietro Zanoni (Reactive Search Inc.), for setting up
and diligently maintaining the conference Web site; Mireille Moulin (INRIA
Saclay Île-de-France, Finance Department), for taking care of all the financial de-
tails with efficiency and flexibility; Esther Slamitz (INRIA Saclay Île-de-France,
Events Department), for looking up and planning all local arrangements; Em-
manuelle Perrot (INRIA Saclay Île-de-France, Communication Department), for
providing many goodies, . . . including the printing of the conference booklet;
Chantal Girodon (INRIA Rocquencourt, Conferences & Seminars Office), for
managing the registration system; and last but not least, Marie-Carol Lopes, for
her tremendous help in gathering and formatting the material for these proceed-
ings.

Finally, we would like to thank our sponsors, Microsoft Research, Microsoft
France, and INRIA Saclay Île-de-France, for their financial support, which helped
to keep the registration fees reasonable.

January 2012 Youssef Hamadi
Marc Schoenauer
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Dirk Thierens Utrecht University, The Netherlands
Jose Torres Jimenez CINVESTAV, Mexico
Tamara Ulrich ETH Zurich, Switzerland
Greet Vanden-Berghe CODeS - KAHO Sint-Lieven, Belgium
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Invited Talks

Optimization problems and algorithms for the
high-level control of dynamic systems
Gérard Verfaillie
ONERA, France

Abstract: The high-level control of dynamic systems, such as aircraft, airports,
air traffic, or spacecraft, consists in deciding at each control step on which ac-
tion(s) to be performed as a function of current observations and objectives.
Successive decisions must entail that the dynamics of the controlled system sat-
isfies user objectives as best as possible. To do so, a usual approach, inspired from
the Model Predictive Approach in Automatic Control consists at each control
step in (i) collecting current observations and objectives (ii) solving a determin-
istic planning problem over a given horizon ahead, (iii) extracting the first action
from the best plan produced, (iv) applying it, and (v) considering the next step.
From the optimization point of view, this implies to be able to solve quickly
many successive similar planning problems over a sliding horizon, maybe not in
an optimal way. I will try to present and illustrate this approach and to explain
the potential impact of learning techniques.

Short bio:
Graduated from école Polytechnique (Paris) in 1971 and from SUPAéRO

(French national engineering school in aeronautics and space, Computer science
specialization, Toulouse) in 1985, Gérard Verfaillie is now Research supervisor at
ONERA (The French Aerospace Lab). His research activity is related to models,
methods, and tools for combinatorial optimization and constrained optimization,
especially for planning and decision-making.

Autonomous Search
Frédéric Saubion
Université d’Angers, France

Abstract: Decades of innovations in combinatorial problem solving have pro-
duced better and more complex algorithms. These new methods are better since
they can solve larger problems and address new application domains. They are
also more complex, which means that they are hard to reproduce and often
harder to fine tune to the peculiarities of a given problem. This last point has
created a paradox where efficient tools became out of reach for practitioners.
Autonomous search represents a new research field defined to precisely address
the above challenge. Its major strength and originality consist in the fact that
problem solvers can now perform self-improvement operations based on analysis
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of the performances of the solving process – including short-term reactive recon-
figuration and long-term improvement through self-analysis of the performance,
offline tuning and online control, and adaptive control and supervised control.
Autonomous search “crosses the chasm” and provides engineers and practition-
ers with systems that are able to autonomously self-tune their performance while
effectively solving problems. In this talk, we review existing works and we at-
tempt to classify the different paradigms that have been proposed during past
years to build more autonomous solvers. We also draw some perspectives and
futures directions.

Short bio: Frédéric Saubion coheads the Metaheuristics, Optimization and Ap-
plications team at the Université d’Angers (France); his research topics include
hybrid and adaptive evolutionary algorithms and applications of metaheuristics
to various domains such as information retrieval, nonmonotonic reasoning and
biology. www.info.univ-angers.fr/pub/saubion

Surrogate-Assisted Evolutionary Optimisation:
Past, Present and Future
Yaochu Jin
Nature-Inspired Computing and Engineering Group, Department
of Computing,
University of Surrey, UK

Abstract: Surrogate-assisted (or meta-model based) evolutionary computation
uses efficient computational models, often known as surrogates or meta-models,
for approximating the fitness function in evolutionary algorithms. Research on
surrogate-assisted evolutionary computation began over a decade ago and has re-
ceived considerably increasing interest in recent years. Very interestingly, surrogate-
assisted evolutionary computation has found successful applications not only in
solving computationally expensive single- or multi-objective optimization prob-
lems, but also in addressing dynamic optimization problems, constrained opti-
mization problems and multi-modal optimization problems. This talk provides
an up-to-date overview of the history and recent developments in surrogate-
assisted evolutionary computation and suggests a few future trends in this re-
search area.

Short bio: Yaochu Jin received the B.Sc., M.Sc., and Ph.D. degrees from Zhe-
jiang University, China, in 1988, 1991, and 1996, respectively, and the Dr.-Ing.
Degree from Ruhr University Bochum, Germany, in 2001. He is a Professor of
Computational Intelligence and Head of the Nature Inspired Computing and
Engineering (NICE) Group, Department of Computing, University of Surrey,
UK. He was a Principal Scientist with the Honda Research Institute Europe in
Germany. His research interests include understanding evolution, learning and
development in biology and bio-inspired approaches to solving engineering prob-
lems. He (co)authored over 130 peer-reviewed journal and conference papers. He
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is an Associate Editor of BioSystems, IEEE Transactions on Neural Networks,
IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on Nanobioscience, and IEEE Computational
Intelligence Magazine. He has delivered over ten Plenary/Keynote speeches at
international conferences on multi-objective machine learning, computational
modeling of neural development, morphogenetic robotics and evolutionary de-
sign optimization. He is the General Chair of the 2012 IEEE Symposium on
Computational Intelligence in Bioinformatics and Computational Biology. He
presently chairs the Intelligent System Applications Technical Committee of the
IEEE Computational Intelligence Society. Professor Jin is a Fellow of BCS and
Senior Member of IEEE.



Tutorial Talks

Addressing Numerical Black-Box
Optimization: CMA-ES
Anne Auger and Nikolaus Hansen
INRIA Saclay Île-de-France

Abstract: Evolution Strategies (ESs) and many continuous domain Estimation
of Distribution Algorithms (EDAs) are stochastic optimization procedures that
sample a multivariate normal (Gaussian) distribution in the continuous search
space, IRn. Many of them can be formulated in a unified and comparatively
simple framework. This introductory tutorial focuses on the most relevant algo-
rithmic question: how should the parameters of the sample distribution be chosen
and, in particular, updated in the generation sequence? First, two common ap-
proaches for step-size control are reviewed, one-fifth success rule and path length
control. Then, Covariance Matrix Adaptation (CMA) is discussed in depth: rank-
one update, the evolution path, rank-mu update. Invariance properties and the
interpretation as natural gradient descent are touched upon. In the beginning,
general difficulties in solving non-linear, non-convex optimization problems in
continuous domain are revealed, for example non-separability, ill-conditioning
and ruggedness. Algorithmic design aspects are related to these difficulties. In the
end, the performance of the CMA-ES is related to other well-known evolutionary
and non-evolutionary optimization algorithms, namely BFGS, DE, PSO,...

Short bios: Anne Auger is a permanent researcher at the French National In-
stitute for Research in Computer Science and Control (INRIA). She received
her diploma (2001) and PhD (2004) in mathematics from the Paris VI Univer-
sity. Before to join INRIA, she worked for two years (2004–2006) at ETH in
Zurich. Her main research interest is stochastic continuous optimization includ-
ing theoretical aspects and algorithm designs. She is a member of ACM-SIGECO
executive committee and of the editorial board of Evolutionary Computation.
She has been organizing the biannual Dagstuhl seminar “Theory of Evolution-
ary Algorithms” in 2008 and 2010. Nikolaus Hansen is researcher at The French
National Institute for Research in Computer Science and Control (INRIA). He
received a Ph.D. in civil engineering in 1998 from the Technical University Berlin
under Ingo Rechenberg. Before joining INRIA, he has been working in applied
artificial intelligence and in genomics, and he has been researching in evolution-
ary computation and computational science at the Technical University Berlin
and the ETH Zurich. His main research interests are learning and adaptation
in evolutionary computation and the development of algorithms applicable in
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practice. He has been a main driving force behind the development of CMA-ES
over many years.

Intelligent Optimization with
Submodular Functions
Andreas Krause
ETH Zurich, Switzerland

Abstract: In recent years, submodularity, a discrete analogue of convexity, has
emerged as very useful in a variety of machine learning problems. Similar to
convexity, submodularity allows to efficiently find provably (near-) optimal so-
lutions. In this tutorial, I will introduce the notion of submodularity, discuss
examples and properties of submodular functions, and review algorithms for
submodular optimization. I will also cover recent extensions to the online (no-
regret) and adaptive (closed-loop) setting. A particular focus will be on relevant
applications such as active learning and optimized information gathering, rank-
ing and algorithm portfolio optimization.

Short bio: Andreas Krause received his Diplom in Computer Science and Math-
ematics from the Technical University of Munich, Germany (2004) and his Ph.D.
in Computer Science from Carnegie Mellon University (2008). He joined the Cal-
ifornia Institute of Technology as an assistant professor of computer science in
2009, and is currently assistant professor in the Department of Computer Science
at the Swiss Federal Institute of Technology Zurich. His research is in adaptive
systems that actively acquire information, reason and make decisions in large,
distributed and uncertain domains, such as sensor networks and the Web. Dr.
Krause is a 2010 Kavli Frontiers Fellow, and received an NSF CAREER award,
the Okawa Foundation Research Grant recognizing top young researchers in
telecommunications, as well as awards at several premier conferences (AAAI,
KDD, IPSN, ICML, UAI) and the ASCE Journal of Water Resources Planning
and Management.

Symmetry in Mathematical
Programming
Leo Liberti
Ecole Polytechnique, Palaiseau, France

Abstract: This tutorial will introduce some basic concepts about group theory
and how it applies to mathematical programming. We shall give an overview of
the main existing research streams on this subjects, and then discuss the lat-
est developments. We shall show how to put together existing computational
tools (GAP, AMPL, CPLEX, Couenne, Rose, kept together using shell scripts)
in order to automatically detect and exploit symmetry in a given mathematical
programming instance.
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Short bio: Leo Liberti received his PhD in 2004 from Imperial College, Lon-
don. He then obtained a postdoctoral fellowship at Politecnico di Milano, and
has been at LIX, Ecole Polytechnique ever since 2006, where he is an asso-
ciate professor. He co-founded (and currently heads) the System Modelling and
Optimization (SYSMO) team, he is co-director of the Optimization and Sustain-
able Development (OSD) Microsoft-CNRS sponsored chair, and is vice-president
of the Computer Science department. He is Editor-in-Chief of 4OR, and holds
associate editorships with several international journals (DAM, JOGO, ITOR,
EURJCO, CMS). He has published more than 100 papers on mathematical pro-
gramming and optimization techniques and applications.
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Constraint-Based Local Search for the Costas Array Problem . . . . . . . . . . 378
Daniel Diaz, Florian Richoux, Philippe Codognet, Yves Caniou, and
Salvador Abreu

Evaluation of a Family of Reinforcement Learning Cross-Domain
Optimization Heuristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Luca Di Gaspero and Tommaso Urli

Autonomous Local Search Algorithms with Island Representation . . . . . . 390
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Abstract. The memory requirements of best-first graph search algo-
rithms such as A* often prevent them from solving large problems. The
best-known approach for coping with this issue is iterative deepening,
which performs a series of bounded depth-first searches. Unfortunately,
iterative deepening only performs well when successive cost bounds visit
a geometrically increasing number of nodes. While it happens to work
acceptably for the classic sliding tile puzzle, IDA* fails for many other
domains. In this paper, we present an algorithm that adaptively chooses
appropriate cost bounds on-line during search. During each iteration, it
learns a model of the search tree that helps it to predict the bound to use
next. Our search tree model has three main benefits over previous ap-
proaches: 1) it will work in domains with real-valued heuristic estimates,
2) it can be trained on-line, and 3) it is able to make predictions with
only a small number of training examples. We demonstrate the power
of our improved model by using it to control an iterative-deepening A*
search on-line. While our technique has more overhead than previous
methods for controlling iterative-deepening A*, it can give more robust
performance by using its experience to accurately double the amount of
search effort between iterations.

1 Introduction

Best-first search is a fundamental tool for automated planning and problem
solving. One major drawback of best-first search algorithms, such as A* [1],
is that they store every node that is generated. This means that for difficult
problems in which many nodes must be generated, A* runs out of memory. If
optimal solutions are still required, however, iterative deepening A* (IDA*) [3]
can often be used instead. IDA* performs a series of depth-first searches where
each search expands all nodes whose estimated solution cost falls within a given
bound. As with A*, the solution cost of a node n is estimated using the value
f(n) = g(n) + h(n) where g(n) is the cost accrued along the current path from
the root to n and h(n) is a lower-bound on the cost that will be required to
reach a goal node, which we call the heuristic value of n. After every iteration
that fails to expand a goal, the bound is increased to the minimum f value of
any node that was generated but not previously expanded. Because the heuristic
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Fig. 1. Geometric versus non-geometric growth

estimator is defined to be a lower-bound on the cost-to-go and because the bound
is increased by the minimum amount, any solution found by IDA* is guaranteed
to be optimal. Also, since IDA* uses depth-first search at its core, it only uses an
amount of memory that is linear in the maximum search depth. Unfortunately,
it performs poorly on domains with few nodes per f layer as it will re-expand
many interior nodes in order to expand only a very small number of new frontier
nodes on each iteration.

One reason why IDA* performs well classic academic benchmarks like the
sliding tiles puzzle and Rubik’s cube is that both of these domains have a geo-
metrically increasing number of nodes that fall within the successive iterations
as the bound used for the search is increased by the minimum possible amount.
This means that each iteration of IDA* will re-expand not only all of the nodes
of the previous iterations but it will also expand a significant number of new
nodes that were previously out-of-bounds. Sarkar et al. [10] show that, in a do-
main with this geometric growth, IDA* will expand O(n) nodes where n is the
number of nodes expanded by A*. They also show, however, that in a domain
that does not exhibit geometric growth, IDA* may expand as many as O(n2)
nodes. Figure 1 shows this graphically. The diagram on the left shows a tree with
three f -layers each of an integer value and each layer encompasses a sufficient
portion of the tree such that successive iterations of IDA* will each expand many
new nodes that were not expanded previously. The right diagram in Figure 1, on
the other hand, shows a tree with real-valued f layers where each layer contains
only a very small number of nodes and therefore IDA* will spend a majority of
its time re-expanding nodes that it has expanded previously. Because domains
with real-valued edge costs tend to have many distinct f values, they fall within
this later category in which IDA* performs poorly.

The main contribution of this work is a new type of model that can be used to
estimate the number of nodes expanded in an iteration of IDA*. While the state-
of-the-art approach to estimating search effort is able to predict the number of
expansion with surprising accuracy in several domains it has two drawbacks: 1) it
requires a large amount of off-line training to learn the distribution of heuristic
values and 2) it does not extend easily to domains with real-valued heuristic
estimates. Our new model, which we call an incremental model, is able to predict
as accurately as the current state-of-the-art model for the 15-puzzle when trained
off-line. Unlike the previous approaches, however, our incremental model can
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also handle domains with real-valued heuristic estimates. Furthermore, while the
previous approaches require large amounts of off-line training, our model may be
trained on-line during a search.We show that our model can be used to control an
IDA* search by using information learned on completed iterations to determine
a bound to use in the subsequent iteration. Our results show that our new
model accurately predicts IDA* search effort. While IDA* guidance using our
model tends to be expensive in terms of CPU time, the gain in accuracy allows
the search to remain robust. Unlike the other IDA* variants which occasionally
give very poor performance, IDA* using an incremental model is the only IDA*
variant that can perform well over all of the domains used in our experiments.

2 Previous Work

Korf et al. [4] give a formula (henceforth abbreviated KRE) for predicting the
number of nodes IDA* will expand with a given heuristic when searching to a
given cost threshold. The KRE method uses an estimate of the heuristic value
distribution in the search space to determine the percentage of nodes at a given
depth that are fertile. A fertile node is a node within the cost bound of the
current search iteration and hence will be expanded by IDA*.

The KRE formula requires two components: 1) the heuristic distribution in
the search space and 2) a function for predicting the number of nodes at a
given depth in the brute-force search tree. They showed that off-line random
sampling can be used to learn the heuristic distribution. For their experiments,
a sample size of ten billion states was used to estimate the distribution of the 15-
puzzle. Additionally, they demonstrate that a set of recurrence relations, based
on a special feature that they called the type of a node, can be used to find
the number of nodes at a given depth in the brute-force search tree for a tiles
puzzle or Rubik’s cube. The node type used by the KRE method for the 15-
puzzle is the location of the blank tile: on a side, in a corner, or in the middle.
Throughout this paper, a node type can be any feature of a state that is useful
for predicting information about its offspring. The results of the KRE formula
using these two techniques gave remarkably accurate predictions when averaged
over a large number of initial states for each domain.

Zahavi et al. [14] provide a further generalization of the KRE formula called
Conditional Distribution Prediction (CDP). The CDP formula uses a conditional
heuristic distribution to predict the number of nodes within a cost threshold.
The formula takes into account more information than KRE such as the heuris-
tic value and node type of the parent and grandparent of each node as conditions
on the heuristic distribution. This extra information enables CDP to make pre-
dictions for individual initial states and to extend to domains with inconsistent
heuristics. Using CDP, Zahavi et al. show that substantially more accurate pre-
dictions can be made on the sliding tiles puzzle and Rubik’s cube given different
initial states with the same heuristic value.
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While the KRE and CDP formulas are able to give accurate predictions,
their main drawback is that they require copious amounts of off-line training
to estimate the heuristic distribution in a state space. Not only does this type
of training take an excessive amount of time but it also does not allow the
model to learn any instance-specific information. In addition, the implementation
of these formulas as specified by Zahavi et al. [14] assumes that the heuristic
estimates have integer values so that they can be used to index into a large
multi-dimensional array. Many real-world domains have real-valued edge costs
and therefore these techniques are not applicable in those domains.

2.1 Controlling Iterative Search

The problem with IDA* in domains with many distinct f values is well known
and has been explored in past work. Vempaty et al. [12] present an algorithm
called DFS*. DFS* is a combination of IDA* and depth-first search with branch-
and-bound that sets the bounds between iterations more liberally than standard
IDA*. While the authors describe a sampling approach to estimate the bound
increase between iterations, in their experiments, the bound is simply increased
by doubling.

Wah et al. [13] present a set of three linear regression models to control an
IDA* search. Unfortunately, intimate knowledge of the growth properties of f
layers in the desired domain is required before the method can be used. In many
settings, such as domain-independent planning for example, this knowledge is
not available in advance.

IDA* with Controlled Re-expansion (IDA*CR) [10] uses a method similar to
that of DFS*. IDA*CR uses a simple model of the search space that tracks the
f values of the nodes that were pruned during the previous iteration and uses
them to find a bound for the next iteration. IDA*CR uses a histogram to count
the number of nodes with each out-of-bound f value during each iteration of
search. When the iteration is complete, the histogram is used to estimate the f
value that will double the number of nodes in the next iteration. The remainder
of the search proceeds as in DFS*, by increasing the bound and performing
branch-and-bound on the final iteration to guarantee optimality.

While IDA*CR is simple, the model that it uses to estimate search effort relies
upon two assumptions about the search space to achieve good performance. The
first is that the number of nodes that are generated outside of the bound must
be at least the same as the number of nodes that were expanded. If there are
an insufficient number of pruned nodes, IDA*CR sets the bound to the greatest
pruned f value that it has seen. This value may be too small to significantly
advance the search. The second assumption is that none of the children of the
pruned frontier nodes of one iteration should fall within the bound on the next
iteration. If this happens, then the next iteration may be much larger than twice
the size of the previous. As we will see, this can cause the search to overshoot the
optimal solution cost on its final iteration, giving rise to excessive search effort.
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3 Incremental Models of Search Trees

To estimate the number of nodes that IDA* will expand when using a given cost
threshold, we would like to know the distribution of f values in the search space.
Assuming a consistent heuristic1, all nodes with f values within the threshold
will be expanded. If this distribution is given as a histogram that contains the
number of nodes with each f value, then we can simply find the bound for which
the number of nodes with f values less than the bound matches our desired value.
Our new incremental model performs this task and has the ability to be trained
both off-line with sampling and on-line during a search.

We will estimate the distribution of f values in two steps. In the first step, we
learn a model of how the f values are changing from nodes to their offspring. In
the second step, we extrapolate from the model of change in f values to estimate
the overall distribution of f values. This means that our incremental model
manipulates two main distributions: we call the first one the Δf distribution
and the second one the f distribution. In the next section, we will describe the
Δf distribution and give two techniques for learning it. We will then describe
how the Δf distribution can be used to estimate the f distribution.

3.1 The Δf Distribution

The goal of learning the Δf distribution is to predict how the f values in the
search space change between nodes and their offspring. The advantage of storing
Δf values instead of storing the f values themselves is that it enables our model
to extrapolate to portions of the search space for which it has no training data, a
necessity when using the model on-line or with few training samples. We will use
the information from the Δf distribution to build an estimate of the distribution
of f values over the search nodes.

The CDP technique of Zahavi et al. [14] learns a conditional distribution of
the heuristic value and node type of a child node c, conditioned on the node type
and heuristic estimate of the parent node p, notated P (h(c), t(c)|h(p), t(p)). As
described by [14], this requires indexing into a multi-dimensional array according
to h(p) and so the heuristic estimate must be an integer value. Our incremental
model also learns a conditional distribution, however in order to handle real-
valued heuristic estimates, our incremental model uses the integer valued search-
space-steps-to-go estimate d of a node instead of its cost-to-go lower bound, h.
In unit-cost domains, d, also known as the distance estimate, will typically be
the same as h, however in domains with real-valued edge costs they will differ.
d is typically easy to compute while computing h [11]. The distribution that is
learned by the incremental model is P (Δf(c), t(c), Δd(c)|d(p), t(p)), that is, the
distribution over the change in f value between a parent and child, the child

1 A heuristic is consistent when the change in the h value between a node and its
successor is no greater than the cost of the edge between the nodes. If the heuristic is
not consistent then a procedure called pathmax [6] can be used to make it consistent
locally along each path traversed by the search.
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node type and the change in d estimate between a parent and child, given the
distance estimate of the parent and the type of the parent node.

The only non-integer term used by the incremental model is Δf(c). Our im-
plementation uses a large multi-dimensional array of fixed-sized histograms over
Δf(c) values. Each of the integer-valued features is used to index into the array,
resulting in a histogram of the Δf(c) values. By storing counts, the model can
estimate the branching factor of the search space by dividing the total number of
nodes with a given d and t by the total number of their offspring. This branching
factor will be used below to estimate the number of successors of a node when
building the f distribution.

Zahavi et al. [14] found that it is often important to take into account infor-
mation about the grandparent of a node for the distributions used in CDP. We
accomplish this with the incremental model by rolling together the node types
of the parent and grandparent into a single type. For example, on the 15-puzzle,
if the parent state has the blank in the center and it was generated by a state
with the blank on the side, then the parent type would be a side–center node.
This allows us to use an array with the same dimensionality across domains that
take different amounts of ancestry into account.

Learning Off-Line. We can learn an incremental Δf model off-line using the
same method as with KRE and CDP. A large number of random states from
a domain are sampled, and the children (or grandchildren) of each sampled
state are generated. The change in distance estimate Δd(c) = d(c)− d(p), node
type t(c) of the child node, node type t(p) of the parent node, and the distance
estimate d(p) of the parent node are computed and a count of 1 is then added to
the appropriate histogram for the (possibly real-valued) change in f , Δf(c) =
f(c)− f(p) between parent and child.

Learning On-Line. An incremental Δf model can also be learned on-line
during search. Each time a node is generated, the Δd(c), t(c), t(p) and d(p)
values are computed for the parent node p and child node c and a count of 1
is added to the corresponding histogram for Δf(c), as in the off-line case. In
addition, when learning a Δf model on-line, the depth of the parent node in
the search tree is also known. We have found that this feature greatly improves
accuracy in some domains (such as the vacuum domain described below) and so
we always add it as a conditioning feature when learning an incremental model
on-line.

Each iteration of IDA* search will expand a superset of the nodes expanded
during the previous iteration. To avoid duplicating effort, our implementation
tracks the bound used in the previous iteration and the model is only updated
when expanding a node that would have been pruned on the previous iteration.
Additionally, the search spaces for many domains form graphs instead of trees.
In these domains, our implementation of depth-first search does cycle checking
by using a hash table of all of the nodes along the current path. In order for our
model to take this extra pruning into account, we only train the model on the
successors of a node that pass the cycle detection.



Iterative-Deepening Search with On-Line Tree Size Prediction 7

Learning a Backed-Off Model. Due to data sparsity, and because the Δf
model will be used to extrapolate information about the search space for which it
may not have any training data, a backed-off version of the model may be needed
that is conditioned on fewer features of each node. When querying the model, if
there is no training data for a given set of features, the more general backed-off
model is consulted instead. When learning a model on-line, because the model
is learned on instance-specific data, we found that it was only necessary to learn
a model that backs off the depth feature. When training off-line, however, we
learn a series of two back-off models, first eliminating the parent node distance
estimate and then eliminating both the parent distance and type.

3.2 The f Distribution

Our incremental model predicts a bound that will result in expanding the desired
number of nodes for a given start state by estimating the distribution of f
values of the nodes in the search space. The f value distribution of one search
depth and the model of Δf are used to generate the f value distribution for the
next depth. By beginning with the root node, which has a known f value, our
procedure simulates the expansions of each depth layer to incrementally compute
estimates of the f value distribution at the next layer. The accumulation of these
depth-based f value distributions can then be used to make our prediction.

To increase accuracy, the distribution of f values at each depth is conditioned
on node type t and distance estimate d. We begin our simulation with a model of
depth 0 which is simply a count of 1 for f = f(root), t = t(root) and d = d(root).
Next, theΔf model is used to find a distribution overΔf , t andΔd values for the
offspring of the nodes at each combination of t and d values at the current depth.
By storingΔ values, we can compute d(c) = d(p)+Δd(c) and f(c) = f(p)+Δf(c)
for each parent p with a child c. This gives us the number of nodes with each f ,
t and d value at the next depth of the search.

Because the Δf values may be real numbers, they are stored as histograms by
our Δf model. In order to add f(p)+Δf(c), we use a procedure called additive
convolution [9,8]. Each node, i.e. every count in the histogram for the current
layer, will have offspring whose f values differ according the Δf distribution.
The additive convolution procedure sums the distribution of child f values for
every count in the current layer’s f histogram, resulting in a histogram of f
values over all successors. More formally, the convolution of two histograms ωa

and ωb, where ωa and ωb are functions from values to weights, is a histogram ωc,
where ωc(k) =

∑
i∈Domain(ωa)

ωa(i) · ωb(k− i). By convolving the f distribution
of a set of nodes with the distribution of the change in f values between these
nodes and their offspring, we get the f distribution of the offspring.

Since the maximum depth of a shortest-path search tree is typically unknown,
our simulation must use a special criterion to determine when to stop. With a
consistent heuristic the f values of nodes will be non-decreasing along a path [7]
and therefore the change in f stored in our model will always be positive. Since
the change in f is always positive, the f values encountered during the simulation
will always increase between layers. As soon as the simulation estimates that a
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Simulate(bound , desired , depth , accum ,nodes)
1. nodes ′ = SimExpand(depth ,nodes)
2. accum ′ = add(accum ,nodes − nodes ′)
3. bound ′ = find bound(accum ′, bound , desired)
4. if weight left of (bound ′,nodes − nodes ′) > ε
5. depth ′ = depth + 1
6. Simulate(bound ′, desired , depth ′, accum ′,nodes ′)
7. else return accum ′

SimExpand(depth,nodes)
8. nodes ′ = new2dhistogramarray
9. for each t and d with weight(nodes [t, d]) > 0 do

10. fs = nodes [t, d]
11. SimGen(depth, t, d, fs,nodes ′)
12. return nodes ′

SimGen(depth, t, d, fs,nodes ′)
13. for each type t′ and Δd
14. Δfs = delta f model [t′,Δd, d, t]
15. if weight(Δfs) > 0 then
16. d′ = d+Δd
17. fs ′ = Convolve(fs,Δfs)
18. nodes ′[t′, d′] = add(nodes ′[t′, d′], fs ′)
19. done

Fig. 2. Pseudo code for the simulation procedure used to estimate the f distribution

sufficient number of nodes will be generated to meet our desired count, the
maximum f value can be fixed as an upper bound since selecting a greater f
value can only give more nodes than desired. As the simulation proceeds further,
we re-evaluate the f value that gives our desired number of nodes to account new
node generations. This upper bound will continue to decrease and the simulation
will estimate fewer and fewer new nodes within the bound at each depth. When
the expected number of new nodes is only a fractional value smaller than some
ε the simulation can stop. In our experiments we use ε = 10−3. Additionally,
because the d value of a node can never be negative, we can prune all nodes that
would be generated with d ≤ 0.

Figure 2 shows the pseudo-code for the procedure that estimates the f dis-
tribution. The entry point is the Simulate function which has the following
parameters: the cost bound, desired number of nodes, the current depth, a his-
togram that contains the accumulated distribution of f values so far and a
2-dimensional array of histograms which stores the conditional distribution of f
values among the nodes at the current depth. Simulate begins by simulating
the expansion of the nodes at the current depth (line 1). The result of this is
the conditional distribution of f values for the nodes generated as offspring at
the next depth. These f values are accumulated into a histogram of all f values
seen by the simulation thus far (line 2). An upper bound is determined (line 3)
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and if greater than ε new nodes are estimated to be in the next depth then the
simulation continues recursively (lines 4–6), otherwise the accumulation of all f
values is returned as the final result.

The Sim-Expand function is used to build the conditional distribution of the
f values for the offspring of the nodes at the current simulation-depth. For each
node type t and distance estimate d for which there exist nodes at the current
depth, the Sim-Gen function is called to estimate the conditional f distribution
of their offspring (lines 9–11). Sim-Gen uses the Δf distribution (line 14) to
compute the frequency of f values for nodes generated from parents with the
specified combination of type and distance-estimate. Because this distribution
is over Δf , t and Δd, we have all of the information that is needed to construct
the conditional f distribution for the offspring (lines 16–18).

Warm Starting. As an iterative deepening search progresses, some of the
shallower depths become completely expanded: no nodes are pruned at that depth
or any shallower depth. All of the children of nodes in a completely expanded
depth are completely generated. When learning the Δf distribution on-line, our
incremental model has the exact depth, d and f values for all of the layers that
have been completely generated. We “warm start” the simulation by seeding it
with the perfect information for completed layers and beginning at the first depth
that has not been completely generated. This can speed up the computation of
the f distribution and can increase accuracy.

4 Empirical Evaluation

In the following sections we show an empirical study of our new model and
some of the related previous approaches. We begin by evaluating the accuracy
of the incremental model when trained off-line. We then show the accuracy of
the incremental model when used on-line to control an IDA* search.

4.1 Off-line Learning

We evaluate the quality of the predictions given by the incremental model when
using off-line training by comparing the predictions of the model with the true
node expansion counts. For each problem instance the optimal solution cost is
used as the cost bound. Because both CDP and the incremental model estimate
all of the nodes within a cost bound, the truth values are computed by running
a full depth-first search of the tree bounded by the optimal solution cost. This
search is equivalent to the final iteration of IDA* assuming that the algorithm
finds the goal node after having expanded all other nodes that fall within the
cost bound.

Estimation Accuracy. We trained both CDP [14] and an incremental model
off-line on ten billion random 15-puzzle states using the Manhattan distance
heuristic. We then compared the predictions given by each model to the true
number of nodes within the optimal-solution-cost bound for each of the standard
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Fig. 3. Accuracy when trained off-line

100 15-puzzle instances due to Korf [3]. The leftmost plot of Figure 3 shows the
results of this experiment. The x axis is on a log scale; it shows the actual
number of nodes within the cost bound. The y axis is also on a log scale; it
shows the ratio of the estimated number of nodes to the actual number of nodes,
we call this metric the estimation factor. The closer that the estimation factor
is to one (recall that log101 = 0) the more accurate the estimation was. The
median estimation factor for the incremental model was 1.435 and the median
estimation factor for CDP was 1.465 on this set of instances. From the plot we
can see that, on each instance, the incremental model gave estimations that were
nearly equivalent to those given by CDP, the current state-of-the-art predictor
for this domain.

To demonstrate our incremental model’s ability to make predictions in do-
mains with real-valued edge costs and with real-valued heuristic estimates, we
created a modified version of the 15-puzzle where each move costs the square
root of the tile number that is being moved. We call this problem the square root
tiles puzzle and for the heuristic we use a modified version of the Manhattan
distance heuristic that takes into account the cost of each individual tile.

As presented by Zahavi et al. [14], CDP is not able to make predictions on
this domain because of the real-valued heuristic estimates. The second panel in
Figure 3 shows the estimation factor for the predictions given by the incremental
model trained off-line on fifty billion random square root tiles states. The same
100 puzzle states were used. Again, both axes are on a log scale. The median
estimation factor on this set of puzzles was 2.807.

Small Sample Sizes. Haslum et al. [2] use a technique loosely based on the
KRE formula to select between different heuristics for domain independent plan-
ning. When given a choice between two heuristic lower bound functions, we would
like to select the heuristic that will expand fewer nodes. Using KRE (or CDP)
to estimate node expansions requires a very large off-line sample of the heuristic
distribution to achieve accurate predictions, which is not achievable in applica-
tions such as Haslum et al.’s. Since the incremental model uses Δ values and a
backed-off model, however, it is able to make useful predictions with very little
training data. To demonstrate this, we created 100 random pairs of instances
from Korf’s set of 15-puzzles. We used both CDP and the incremental model
to estimate the number of expansions required by each instance when given its
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Fig. 4. IDA*, IDA*CR and IDA*IM growth rates and number of instances solved

optimal solution cost. We rated the performance of each model based on the
fraction of pairs for which it was able to correctly determine the more difficult
of the two instances.

The third plot in Figure 3 shows the fraction of pairs that were ordered
correctly by each model for various sample sizes. Error bars represent 95% con-
fidence intervals on the mean. We can see from this plot that the incremental
model was able to achieve much higher accuracy when ordering the instances
with as few as ten training samples. CDP required 10,000 training samples or
more to achieve comparable accuracy. The rightmost plot in this figure shows
the log10 estimation factor of the estimates made by each model. While CDP
achieved higher quality estimates when given 10,000 or more training instances,
the incremental model was able to make much more accurate predictions when
trained on only 10, 100 and 1,000 samples.

4.2 On-Line Learning

In this section, we evaluate the incremental model when trained and used on-
line during an IDA* search. When it comes time to set the bound for the next
iteration, the incremental model is consulted to find a bound that is predicted
to double the number of node expansions from that of the previous iteration. We
call this algorithm IDA*IM . As we will see, because the model is trained on the
exact instance for which it will be predicting, the estimations tend to be more
accurate than the off-line estimations, even with a much smaller training set.
In the following subsections, we evaluate the incremental model by comparing
IDA*IM to the original IDA*[3] and IDA*CR[10].

Sliding Tiles. The unit-cost sliding tiles puzzle is a domain where standard
IDA* search works very well. The minimum cost increase between iterations
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is two and this leads to a geometric increase in the number of nodes between
subsequent iterations.

The top left panel of Figure 4 shows the median growth factor, the relative
size of one iteration compared to the next, on the y axis, for IDA* , IDA*CR and
IDA*IM . Ideally, all algorithms would have a median growth factor of two. All
three of the lines for the algorithms are drawn directly on top of one another in
this plot. While both IDA*CR and IDA*IM attempted to double the work done
by subsequent iterations, all algorithms still achieved no less than 5x growth.
This is because, due to the coarse granularity of f values in this domain, no
threshold can actually achieve the target growth factor. However, the median
estimation factor of the incremental model over all iterations in all instances
was 1.029. This is very close to the optimal estimation factor of one. So, while
granularity of f values made doubling impossible, the incremental model still
predicted the amount of work with great accuracy. The bottom panel shows
the percentage of instances solved within the time given on the x axis. Because
IDA*IM and IDA*CR must use branch-and-bound on the final iteration of search
they are unable to outperform IDA* in this domain.

Square Root Tiles. While IDA* works well on the classic sliding tile puzzle, a
trivial modification exposes its fragility: changing the edge costs. In this section,
we look at the square root cost variant of the sliding tiles. This domain has many
distinct f values, so when IDA* increases the bound to the smallest out-of-bound
f value, it will visit a very small number of new nodes with the same f in the
next iteration. We do not show the results for IDA* on this domain because it
gave extremely poor performance. IDA* was unable to solve any instances with
a one hour timeout and at least one instance requires more than a week to solve.

The second column of Figure 4 presents the results for IDA*IM and IDA*CR.
Even with the branch-and-bound requirement, IDA*IM and IDA*CR easily out-
perform IDA* by increasing the bound more liberally between iterations. While
IDA*CR gave slightly better performance with respect to CPU time, its model
was not able to provide very accurate predictions. The growth factor between
iterations for IDA*CR was no smaller than eight times the size of the previous
iteration when the goal was to double. The incremental model, however, was
able to keep the growth factor very close to doubling. The median estimation
factor was 0.871 for the incremental model which is much closer to the optimal
estimation factor of one than when the model was trained off-line. We conjecture
that the model was able to learn features that were specific to the instance for
which it was predicting.

One reason why IDA*CR was able to achieve competitive performance in this
domain is because, by increasing the bound very quickly, it was able to skip
many iterations of search that IDA*IM performed. IDA*CR performed no more
than 10 iterations on any instance in this set whereas IDA*IM performed up
to 33 iterations on a single instance. Although the rapid bound increase was
beneficial in the square root tiles domain, in a subsequent section we will see
that increasing the bound too quickly can severely hinder performance.
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Vacuum Maze. The objective of the vacuum maze domain is to navigate a
robot through a maze in order for it to vacuum up spots of dirt. In our experi-
ments, we used 20 instances of 500x500 mazes that were built with a depth-first
search. Long hallways with no branching were then collapsed into single edges
with a cost equivalent to the hallway length. Each maze contained 10 pieces of
dirt and any state in which all dirt had been vacuumed was a goal. The median
number of states per instance was 56 million and the median optimal solution
cost was 28, 927. The heuristic was the size of the minimum spanning tree of the
locations of the dirt and vacuum. The pathmax procedure [6] was used to make
the f values non-decreasing along a path.

The third column of Figure 4 shows the median growth factor and number
of instances solved by each algorithm for a given amount of time. Again, IDA*
is not shown due to its very poor performance in this domain. Because there
are many dead ends in each maze, the branching factor in this domain is very
close to one. The model used by IDA*CR gave very inaccurate predictions and
the algorithm often increased the bound by too small of an increment between
iterations. IDA*CR performed up to 386 iterations on a single instance. With
the exception of a dip near iterations 28–38, the incremental model was able to
accurately find a bound that doubled the amount of work between iterations.
The dip in the growth factors may be attributed to histogram inaccuracy on the
later iterations of the search. The median estimation factor of the incremental
model was 0.968, which is very close to the perfect factor of one. Because of the
poor predictions given by the IDA*CR model, it was not able to solve instances
as quickly as IDA*IM on this domain.

While our results demonstrate that the incremental model gave very accurate
predictions in the vacuum maze domain, it should be noted that, due to the
small branching factor, iterative searches are not ideal for this domain. A simple
implementation of frontier A* [5] was able to solve each instance in this set in
no more than 1,887 CPU seconds.

Uniform Trees. We also designed a simple synthetic domain that illustrates
the brittleness of IDA*CR. We created a set of trees with 3-way branching where
each node has outgoing edges of cost 1, 20 and 100. The goal node lies at a depth
of 19 along a random path that is a combination of 1- and 20-cost edge and the
heuristic h = 0 for all nodes. We have found that the model used by IDA*CR will
often increase the bound extremely quickly due to the large 100-cost branches.
Because of the extremely large searches created by IDA*CR we use a five hour
time limit in this domain.

The top right plot in Figure 4 shows the growth factors and number of in-
stances solved in a given amount of time for IDA*IM , IDA*CR and IDA*. Again,
the incremental model was able to achieve very accurate predictions with a me-
dian estimation factor of 0.978. IDA*IM was able to solve ten of twenty instances
and IDA* solved eight within the time limit. IDA*IM solved every instance in
less time than IDA*. IDA*CR was unable to solve more than two instances within
the time limit. It grew the bounds in between iterations extremely quickly, as
can be seen in the growth factor plot on the bottom right in Figure 4.
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Although IDA* tended to have reasonable CPU time performance in this
domain, its growth factors were very close to one. The only reason that IDA*
achieved reasonable performance is because expansions in this synthetic tree
domain required virtually no computation. This would not be observed in a
more realistic domain where expansion required any reasonable computation.

4.3 Summary

When trained off-line, the incremental model was able to make predictions on
the 15-puzzle domain that were nearly indistinguishable from CDP, the current
state-of-the art. In addition, the incremental model was able to estimate the
number of node expansions on a real-valued variant of the sliding tiles puzzle
where each move costs the square root of the tile number being moved. When
presented with pairs of 15-puzzle instances, the incremental model trained with
10 samples was more accurately able to predict which instance would require
fewer expansions than CDP when trained with 10,000 samples.

The incremental model made very accurate predictions across all domains
when trained on-line and when used to control the bounds for IDA*, our model
made for a robust search. While the alternative approaches occasionally gave
extremely poor performance, IDA* controlled by the incremental model achieved
the best performance of the IDA* searches in the vacuum maze and uniform tree
domains and was competitive with the best search algorithms for both of the
sliding tiles domains.

5 Discussion

In search spaces with small branching factors such as the vacuum maze domain,
the backed-off model seems to have a greater impact on the accuracy of predic-
tions than in search spaces with larger branching factor such as the sliding tiles
domains. Because the branching factor in the vacuum maze domain is small,
however, the simulation must extrapolate out to great depths (many of which
the model has not been trained on) to accumulate the desired number of ex-
pansions. The simple backed-off model used here merely ignored depth. While
this tended to give accurate predictions for the vacuum maze domain, a different
model may be required for other domains.

6 Conclusion

In this paper, we presented a new incremental model for predicting the dis-
tribution of solution cost estimates in a search tree and hence the number of
nodes that bounded depth-first search will visit. Our new model is comparable
to state-of-the-art methods in domains where those methods apply. The three
main advantages of our new model are that it works naturally in domains with
real-valued heuristic estimates, it is accurate with few training samples, and it
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can be trained on-line. We demonstrated that training the model on-line can
lead to more accurate predictions. Additionally, we have shown that the incre-
mental model can be used to control an IDA* search, giving a robust algorithm,
IDA*IM . Given the prevalence of real-valued costs in real-world problems, on-
line incremental models are an important step in broadening the applicability of
iterative deepening search.
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0812141) and the DARPA CSSG program (grant HR0011-09-1-0021).
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Abstract. Using a heuristic optimization module based upon Variable Neighbor-
hood Search (VNS), the system AutoGraphiX’s main feature is to find extremal or
near extremal graphs, i.e., graphs that minimize or maximize an invariant. From
the so obtained graphs, conjectures are found either automatically or interactively.
Most of the features of the system relies on the optimization that must be efficient
but the variety of problems handled by the system makes the tuning of the opti-
mizer difficult to achieve. We propose a learning algorithm that is trained during
the optimization of the problem and provides better results than all the algorithms
previously used for that purpose.

Keywords: extremal graphs, learning algorithm, combinatorial optimization.

1 Introduction

A graph G is defined by a set V of vertices and a set E of edges representing pairs
of vertices. A graph invariant is a function I(G) that associates a numerical value to
each graph G = (V,E) regardless of the way vertices or edges are labelled. Examples
of invariants are the number of vertices |V | = n, the number of edges |E| = m, the
maximum distance between two vertices (diameter), the chromatic number (minimum
number of colors needed so that each vertex is colored and two adjacent vertices do not
share a color). Some more sophisticated invariants are related to spectral graph theory
such as the index (largest eigenvalue of the adjacency matrix), the energy (sum of the
absolute values of the eigenvalues of the adjacency matrix). A graph that minimizes
or maximizes an invariant (or a function of invariants, which is also an invariant) is
called extremal graph. The system AutoGraphiX (AGX) for computer assisted graph
theory was developed at GERAD, Montreal. Since 1997, AGX led to the publication of
more than 50 papers. The search for extremal graphs is the first goal of AGX and it is
an important tool for graph theorists and mathematical chemists as it may be used to
handle the following other goals:

– Find a graph given some constraints, achieved by the use of Lagrangian relaxation.
– Refute or strengthen a conjecture. Suppose a conjecture says that the invariant I1

is larger than the invariant I2 (I1 ≥ I2), minimizing I1− I2 could provide a counter-
example if a negative value is obtained. Whether a counter-example is found or not,
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looking at the extremal values and the corresponding graphs could help strengthen-
ing or correcting the original conjecture.

– Find conjectures. Structural or numerical conjectures may be obtained automati-
cally or interactively by analyzing or looking at the extremal graphs obtained.

Based upon the Variable Neighborhood Search metaheuristic (VNS) [16][17], Caporossi
and Hansen [9] developped AGX. The extremal graphs obtained by AGX are studied
either directly by the researchers or by automated routines that may identify properties
of the extremal graphs and deduce conjectures on the problem under study [8][10].

Several graph theorists have used AGX (and the recent AGX2) for study of invari-
ants which most interested them. Applications to mathematics concern spectral graph
theory, i.e., the index [11] and the algebraic connectivity [3], as well as several standard
graphs invariants [2] and a property of trees [5]. Applications in mathematical chem-
istry concern the Randić (or connectivity) index [6,7,13,14], the energy [4], indices of
irregularity [15] and the HOMO-LUMO gap [12]. This work has led to many extensions
by several mathematicians and chemists.

AGX relies on the VNS but also on a large number of transformations used within
the search for a local optimum in the Variable Neighborhood Descent (VND) phase of
the algorithm. The good performance of the system depends on the user’s knowledge to
select the correct transformations to use. If the transformations are not appropriate, the
optimization will have a poor performance, either because it fails to obtain good solu-
tions or because it takes much too long time. Indeed, choosing a transformation that is
too sophisticated will result in a waste of time while a transformation that is too simple
will be fast but inefficient. The authors of the system, aware of this problem, proposed
in the second version of AGX (called AGX 2) an algorithm that selects automatically
its transformations [1], the Adaptive Local Search (ALS). While ALS is a step toward
the automation of the selection of the transformations, it cannot as such be considered
as a learning algorithm since it is unable to learn on large graphs (its learning is very
time consuming on graphs with more than 12 vertices).

In this paper, we propose a new learning algorithm that could replace the original
VND used in AGX 1 or the Adaptive Local Search (ALS) of AGX 2. As the ALS,
the new Learning Descent (LD) does not require any knowledge in combinatorial opti-
mization and is based upon the concept of transformation matrix. However, its learning
capabilities are much more powerful. The next section of the paper describes the various
optimization algorithms that have been used to search for extremal graphs. A compar-
ison of the performance of the different algorithms is done in the third section and a
short conclusion is drawn at the end of the paper.

2 The Variable Neighborhood Search in AGX

The optimization in AGX is done by VNS which is well suited to handle a wide variety
of problems with little tuning, compared to most other methods such as tabu search or
genetic algorithms.

Let G be a graph and consider a transformation, for example move that consists in re-
moving an edge from G and inserting it in another place on G. This transformation may
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be used to define N(G), the neighborhood of G, or set of all graphs that may be con-
structed from G by the transformation move. Such neighborhoods could be extended to
a succession of transformations. One thus defines the nested neighborhoods Nk(G), the
set of graphs that could be constructed by applying k times the chosen transformation
to G. This concept of neighborhoods plays an important role in VNS and the defini-
tion of a multitude of these neighborhoods is plainly used in the AGX implementation
to handle efficiently a wide variety of different problems that would require different
neighborhoods (or transformations) for good results.

In AGX, the standard implementation of VNS is used, alternating Local Search and
variable magnitude perturbations as described on figure 1.

Initialization:
• Select the neighborhood structure Nk and a stopping condition.
• Let G be an initial (usually random) graph.
• Let G∗ denote the best graph obtained to date.

Repeat until condition is met:
• Set k← 1;
• Until k = kmax,do:

(a) Generate a random graph G′ ∈ Nk(G);
(b) Apply LS to G′

Denote G′′ the obtained local optimum G′′ = LS(G′);
(c) If G′′ is better than G,

Let G∗ ← G′′ and
k← 1

otherwise,
set k← k+1.

done

Fig. 1. Rules of Variable Neighborhood Search

2.1 The VND Algorithm in AGX 1

The choice of a good transformation within the local search is a key to success. To add
flexibility to the system, different transformations are implemented that could be used
one after the other on the same problem. Thus, the Variable Neighborhood Descent is
a succession of local searches involving different transformations used for the search.
The program performs a local search for each transformation in the list until none of
them succeeds. VND could be considered as an extension of local search as it provides
a local optimum with respect to each of the transformations used in the search. The
VND algorithm is described on figure 2.

While the general VNS parameter k could often be set to the default value, the choice
of the list of transformations in VND is much more critical. For instance, if the number
of vertices and edges are fixed, any transformation that results in a modification of these
numbers will be useless.

A variety of neighborhoods are implemented in AGX to adapt the system to different
kinds of problems. Some of these transformations were specially designed to handle
special classes of problems (for example, 2-Opt is well suited for problems with fixed
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Initialization:
Select a list of neighborhood structures
Nl(G), ∀l = 1 . . .L, that will be used.
Consider an initial graph G,
set improved← true.
Until improved = f alse do

Set improved = f alse
Set l = 1
Until l = L do

(a) Find the best graph G′ ∈ Nl(G).
(b) If G′ is better than G,

set G← G′,
set improved ← true and
return to step (a).

Otherwise,
set l← l+1;

done
done

Fig. 2. Rules of Variable Neighborhood Descent

numbers of edges where simple move is very inefficient). The set of transformations
used in AGX is described in [9].

To take advantage of the capabilities of AGX, the researcher must have sufficient
knowledge in combinatorial optimization, which is not necessarily the case.

2.2 The Adaptive Local Search in AGX 2

The Adaptive Local Search (ALS) may be viewed as meta-transformations that could
eventually be used within the VND frame. However, by themselves, ALS replaces most
of the transformations available within AGX 1. Each transformation is described as a
replacement of an induced subgraph g′ of G by another subgraph g”. Considering 4 ver-
tices, at most 6 edges could be present in any graph. It is therefore possible to consider
up to 26 = 64 labelled subgraphs on 4 vertices. ALS enumerates all the subgraphs g′

with 4 vertices in G. It then considers replacing g′ by an alternative subgraph g′′. As
enumerating and evaluating all the alternative subgraphs g′′ to replace g′ would be very
time consuming, replacing g′ by g′′ will only be evaluated if there are good reasons to
believe it is worthwhile. The implementation of this method encodes each subgraph g′

or g′′ as a label (number) based upon the 64 patterns as follows.
After relabeling its vertices from 1 to 4 by preserving their order, each subgraph g′

is characterized by a unique label from 0 to 63 as follows:
pattern 0 (vector = 000000): empty subgraph
pattern 1 (vector = 000001): E = {(1,2)}
pattern 2 (vector = 000010): E = {(1,3)}
:
pattern 13 (vector = 001101): E = {(1,2),(1,4),(2,3)}
:
pattern 63 (vector = 111111): complete subgraph on 4 vertices.
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A 64× 64 transformation matrix T = {ti j} is used to store information on the perfor-
mance of each possible transformation from pattern i to pattern j.

In ALS, T is a binary matrix indicating whether a transformation ti j from the pattern
i to the pattern j was ever found useful.

Based upon this definition of patterns, the principle of the ALS is to use the selected
transformations to try to obtain a better graph. Once the graph could no more be im-
proved by the selected transformations (a local optimum is found with respect to the
considered transformations), the algorithm searches for transformations that were not
considered but that could improve the current solution. For this search, all potential
transformations are considered and those that could improve the graph are added to
the set of selected transformations (by setting the corresponding ti j = true). This step
is very time consuming and is only done for small graphs (12 vertices or less). After
selection of new transformations the matrix T is updated to take symmetry into account
(the same graph g′ may correspond to different patterns according to the labeling of the
vertices). A formal description of the algorithm is given on figure 3.

When working on large graphs, ALS has to be trained before the optimization as
this training will never be modified when optimizing large graphs. The training and
optimization phases are thus well separated in ALS (for large graphs, steps 2 and 3 of
the algorithm are omitted).

2.3 The Learning Descent

As opposed to the ALS algorithm, the LD algorithm performs the training during the
optimization phase and always continues learning. The training and optimization phases
occurs at the same time.

The LD algorithm on figure 5 could be described by the following observations:

1. The pertinence of changing g′ into g′′ (replacing pattern p′ by pattern p′′) is mem-
orized in a 64× 64 matrix T which is initially set to T = {ti j = 0}.

2. During the optimization, each induced subgraph g′ is considered for replacement
by any possible alternative subgraph g” but this replacement will not necessarily be
evaluated.

3. The probability to test the replacement of pattern i (g′) by j (g”) is p = sig(ti j) =
1

1+e−ti j
. The initial probability to test a replacement is 50% according to point 1.

4. For any tested transformation, if changing g′ (with pattern p′) to g′′ (with pattern
p′′) improves the solution, the entry tp′,p′′ of T is increased by δ+ (and reduced
by δ− otherwise), with δ+ > δ− because it is more important to use an improv-
ing transformation than to avoid a bad one. Also, a good transformation may fail,
specially if the graph already has a good performance (here, we use δ+ = 1 and
δ− = 0.1). The probability to test a transformation increases when it succeeds, but
decreases if it does not.

As often used in neural networks, the sigmoid function sig(x) allows the probability
to test a transformation to change according to its performance without completely
avoiding any transformation (which allows the system to always continue learning).
The figure 4 represents the replacement of pattern 60 by pattern 27 on a given graph G
for the induced subgraph g′ defined by vertices 1, 3, 5 and 6.
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Step 1: Initialization
Load the last version of the matrix T for the problem under study if it exists initialize T = {ti j = 0}
otherwise.
Step 2: Find interesting transformations
Set f ← f alse (this flag indicates that no pattern was added to the list at this iteration).
For each subgraph of the current graph with n′ vertices do:

Let pi be the corresponding pattern
for each alternative pattern p j do:

if replacing the subgraph pi by the pattern p j

would improve the current solution:
update the matrix T by setting ti j ← true
set f ← true.

done
done
Step 3: Update T for symmetry
If f = true: Update the matrix T to take symmetry into account:

for each ti j = true do:
for each pattern (i′, j′) obtained from (i, j)
by relabelling the vertices do:

set ti′ j′ ← true.
done

done
If f = f alse:

Stop; a local optimum is found.
Save the matrix T

Step 4: Apply Local Search
set improved← true
while improved = true do:

set improved ← f alse
For each subgraph g′ of G on n′ vertices do:

let pi be the corresponding pattern
For each alternative pattern p j:

if ti j = true do:
if replacing pi by p j in G improves the
solution:

apply the change
set improved ← true

done
done

done
Go to Step 2

Fig. 3. Rules of the Adaptive Local Search
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Fig. 4. Illustration of the transformation of G (left) to G’(right)

Note that if the algorithm were restricted to Step 2, it would tend to reduce the
probability to use any transformation when good solutions are encountered since few
transformations would improve such solutions. To avoid this problem, the matrix T is
centered after each local search to an average value t̄ = 0.

3 Performance Comparison

In order to compare the performance of the different versions of the optimization mod-
ule in AGX-1 and AGX-2, the AGX-1 moves were added to AGX-2. The various differ-
ence in the AGX-1 and AGX-2 program are thus not taken into account, which allows
a more realistic comparison of both methods.

3.1 Experiments Description

AGX-1 needs an input from the user for good performance. The program was run with
two different settings. The novice setting consists in using all the available neighbor-
hoods for the VND, except those that modify the number of vertices. The expert setting
consists in properly chosen neighborhoods. To ensure the reliability of a result stating
that new methods are better than older ones, the experimental protocol always has a bias
in favor of older methods. The choice of the neighborhoods used in the expert mode of
AGX 1 is done after results obtained by all the combinations of the 4 transformations
(add/remove, move, detour/short cut and 2-Opt) are known. The chosen strategy for
AGX-1-e (expert strategy) was the one providing the best result in success rate as first
criterion, using average value and finally cpu time in case of ties. We noticed that the
best performance for a given problem but with different number of vertices was not
necessarily due to the same scheme. This indicates clearly a bias favorable to AGX 1-e
since it is difficult that an expert would identify this choice before the tests are done.
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Step 1: Initialization
Load the last version of the matrix T for the problem under study if it exists and initialize T =
{ti j = 0} otherwise.
Step 2: Apply Local Search
set improved← true
while improved = true do:

set improved ← f alse
For each subgraph g′ of G on n′ vertices do:

let pi be the corresponding pattern
For each alternative pattern p j
(corresponding to g′′):

let x be an uniform 0-1random number.
if x≤ sig(ti j) do:

if replacing g′ by g′′ in G improves the
solution:

apply the change
set improved ← true
set ti j = ti j +δ+.

otherwise:
set ti j = ti j−δ−.

done
done

done
Step 3: Scale the matrix T

Let t̄ be the average value of the terms ti j 
= 0.
For each ti j 
= 0:

set ti j = ti j− t̄ .
Step 4: Save the matrix T for future usage

Fig. 5. Rules of the Learning Descent

AGX-2 is designed to run without knowledge from the user and was also run in
the three following modes : the ”complete” mode AGX 2-c in which all the possible
transformations involving 4 vertices are considered, the adaptive mode AGX 2-als in
which the software chooses the useful neighborhoods from 5 runs on the same problem
restricted to 10 and 12 vertices, and the learning descent mode AGX 2-ld in which the
probability to use a given transformation is adjusted during the optimization.

To avoid any bias favorable to AGX 2-ld, the training on small graphs for AGX 2-als
is done prior to the experiments and the training time (time needed by the system to
identify which transformations to use) is not considered. On the opposite, the results
of training during the optimization with AGX 2-ld was systematically erased after each
optimization, so that the benefits from previous runs is avoided, which is a bias against
AGX 2-ld.

The five optimization schemes compared are noted as follows.

– 1 b : version using the all neighborhoods available in AGX-1,
– 1 e : version using the best combination of neighborhoods available in AGX-1

(expert mode),
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– 2 c : version using AGX-2 considering all the possible transformations on 4 vertices
(with the statistics matrix T = {ti j = true}),

– 2 als : version using AGX-2 and the adaptive local search,
– 2 ld : version using AGX-2 and the learning descent.

The performance of these various algorithms was tested against 12 different and rep-
resentative problems. The problems used are described in the following section. Each
problem was solved 10 times for graphs with 13, 15 and 20 vertices with each of the 5
optimization scheme. In all cases, the total CPU time allowed was 300 seconds and the
program was stopped if no improvement was encountered for 60 consecutive seconds.
To reduce bias due to the implementation, all the tests were achieved with the same
program in which the different versions of the optimizer are available thru parameters.
All these tests were achieved on a Sun with 2 Dual Core AMD Opteron(tm) Processor
275 (2.2 GHz) with 4Go RAM memory running Linux CentOS-4 operating system.
The performance of each strategy was measured in 3 ways. The first part (Average Z)
of each table indicates the average value obtained among the 10 runs; the second (Suc-
cess) indicates the number of times the best value was obtained and the last (CPU Time)
indicates the average CPU time required to reach the best value found. If the best value
was never attained by a given strategy, a ”-” is displayed.

3.2 Results Analysis

Among the 360 instances tested, AGX 2-ld succeeded 275 times (76.4 %), which is the
best performance, followed by AGX 2-als with 255 successes (70.8 %), AGX 2-c with
229 (63.6 %) successes and AGX 1-e with 176 (48.8 %) successes, followed by AGX 1-b
which was only successful 61 times (16.9 %).

Regardless of the problem under study, AGX 1-b (which was often before AGX 2
was developed) shows very poor performance. Even with the experimental bias, the
AGX 2 strategies are far better, first because they involve a wide range of transfor-
mations that were not implemented in AGX 1, and also because the VND used with
AGX 1 spends some time trying to unsuccessfully optimize with a transformation be-
fore switching to the next, which is not the case in any of the AGX 2 local search
scheme. If one should compare the strategies that do not involve any knowledge of the
problem or of the optimization procedure (1 b, 2 als, 2 c and 2 ld), which is the most
important for the novice point of view, AGX 2 with its stochastic local search seems to
be the best choice.

The ”Best Z” line on the tables indicates the best obtained value during the whole
experiment, which may be (but is not always) the best possible value. The Min or Max at
the top left of each table recalls wether the objective is to be minimized or maximized.

– Problem 1 : Minimize the energy E among trees, where E = ∑n
i=1 |λi| is the sum

of the absolute values of the eigenvalues of the adjacency matrix of the graph. For
this problem, the number of edges is fixed by the number of vertices ; not all the
transformations are therefore needed. The optimal solution to this problem, is a
path and the corresponding value of the energy is E = 2

√
n− 1.
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– Problem 2 : Minimize the value of the Randić index [18] among bicyclic connected
graphs. The Randić index is defined as χ = ∑(i j)∈E

1√
did j

where di is the degree of

vertex i. The solution to this problem is a star to which are added two edges adjacent
to the same vertex. The optimal value is χ = n−4√

n−1
+ 2√

2n−2
+ 1√

3n−3
.

– Problem 3 : Same as problem 2, except that the objective function is maximized
instead of being minimized. The optimal solution is known to be two cycles sharing
an edge or two cycles joined by an edge and the corresponding value is χ = 4√

6
+

3n−10
6 .

– Problem 4 : Minimize the sum of the average degree of the graph d̄ and the prox-
imity p, where d̄ = ∑n

i=1
di
n and p = 1

n−1 mini(∑n
j=1 di j) where di j is the distance

between the vertices i and j. In this case, the search space is only restricted by the
connexity constraint. The optimal solution to the problem is a star and the optimal
value is Z = n+ 1− 2

n .
– Problem 5 : Maximize the size of the maximum stable set, the maximum number

of vertices to select such that no selected vertex is adjacent to another selected
vertex, among connected graphs with number of edges equals twice the number of
vertices (m = 2n).

– Problem 6 : Maximize the matching number, the number of edges to be selected
such that no vertex is adjacent to two selected edges, among the same set of graphs
as problem 5 (m = 2n). There are lots of graphs maximizing this invariant under the
given constraints, but the maximal value cannot exceed Z = � n

2, which is attained
here.

– Problem 7 : Maximize the index, value of the largest eigenvalue of the adjacency
matrix, among the same set of graphs as problem 5 or problem 6 (m = 2n).

– Problem 8 : This problem is the same as problem 7 except that the objective func-
tion is to be minimized instead of being maximized.

– Problem 9 : Minimize the index among trees.
– Problem 10 : Maximize the diameter, maximum distance between two vertices of

the graph, among the same set of graphs as problems 5, 6, 7 and 8.
– Problem 11 : Maximize the diameter among connected graphs graphs with m≥ 2n.
– Problem 12 : Maximize the size of the maximum stable set among connected

graphs graphs with m≥ 2n.

Problems 1 to 10 (except problem 4) have a fixed number of edges and of vertices.
This corresponds to the problems we encounter most often, particularly for parametric
analysis on the order and the size of the graph. In problems 5,6,7,8 and 10, the number
of edges is fixed to twice the number of vertices. The number of graphs satisfying this
condition is rather large, which makes the combinatorial aspect of the optimization
important. Such problems are interesting benchmarks for the optimization routine.

The Problems 5 and 12 are NP-Complete. These two problems provide information
on the capability of various strategies to handle problems which are more time con-
suming. AGX 1-b completely fails, and AGX 2-c is not very efficient either; this is
because they are among all the two strategies that perform a large number of useless
computations of the objective function.
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Table 1. Results for problem 1 (the graphic represents the number of successes)

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 9.36 12.63 15.69 5 1 0 55.1 50 -
1 e 6.93 7.48 11.60 10 10 1 17.2 47.7 121.8
2 c 6.93 7.48 8.72 10 10 10 0 0 39.2

2 als 6.93 7.48 8.72 10 10 10 0 0 0
2 ld 6.93 7.48 8.72 10 10 10 0.5 0.9 2.4

Best Z 6.93 7.48 8.72

Table 2. Results for problem 2

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 4.56 5.74 6.95 4 1 0 76.3 99 -
1 e 3.99 4.29 5.53 10 10 2 26.3 78.3 149
2 c 3.99 4.29 4.94 10 10 10 5.4 11.2 71.1

2 als 3.99 4.29 4.94 10 10 10 0.4 0.9 3.7
2 ld 3.99 4.29 4.94 10 10 10 0.5 0.8 2.9

Best Z 3.99 4.29 4.94

Table 3. Results for problem 3

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 6.02 6.09 7.67 0 0 0 - - -
1 e 6.47 7.46 9.88 10 9 1 22.7 0 0
2 c 6.47 7.47 9.97 10 10 10 4.3 14.1 92.3

2 als 6.47 7.47 9.97 10 10 10 0.3 0.6 3.6
2 ld 6.47 7.47 9.97 10 10 10 0.7 1.3 5.4

Best Z 6.47 7.47 9.97

Table 4. Results for problem 4

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 2.85 2.89 3.26 10 7 0 18 35.9 -
1 e 2.85 2.87 2.95 10 9 4 0.7 25.4 33.4
2 c 2.85 2.87 2.9 10 10 10 4.4 10.7 82.4

2 als 2.85 2.87 2.9 10 10 10 0.6 1.4 6.6
2 ld 2.85 2.87 2.9 10 10 10 0.7 1.2 6.2

Best Z 2.85 2.87 2.9
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Table 5. Results for problem 5

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 7.2 8.6 12.1 0 0 0 - - -
1 e 8.4 9.4 12.8 5 2 2 24 57.3 5.7
2 c 8.2 9.4 11.5 3 0 0 21.8 - -

2 als 8.3 9.8 12.7 3 1 2 2.9 10.3 35.4
2 ld 8.7 10 13.1 7 2 4 24.4 39.8 38.9

Best Z 9 11 14

Table 6. Results for problem 6

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 6 7 8.6 10 10 2 0 0.3 48.5
1 e 6 7 10 10 10 10 0.1 0 0
2 c 6 7 9.8 10 10 8 0 0.5 53.6

2 als 6 7 10 10 10 10 0 0 4.3
2 ld 6 7 10 10 10 10 0 0.1 4.3

Best Z 6 7 10

Table 7. Results for problem 7

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 4.92 5.28 5.91 0 0 0 - - -
1 e 5.91 6.2 6.57 1 0 0 100.9 - -
2 c 5.92 6.18 6.59 10 4 0 27 84.3 -

2 als 5.92 6.29 6.95 10 10 0 3.5 15.8 -
2 ld 5.92 6.28 6.99 10 9 2 6.4 20.9 53.3

Best Z 5.92 6.29 7.25

Table 8. Results for problem 8

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 4.86 5.13 5.65 0 0 0 - - -
1 e 4.02 4.03 4.13 4 1 0 0 0 -
2 c 4 4 4.3 10 10 0 11.2 48.3 -

2 als 4 4 4.01 10 10 7 2.7 8.5 131.2
2 ld 4 4 4 10 10 10 3.3 9.6 74.1

Best Z 4 4 4
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Table 9. Results for problem 9

Min Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 2.35 2.68 3.26 0 0 0 - - -
1 e 1.95 1.96 2.02 10 10 3 0 18.6 52.6
2 c 1.95 1.96 1.98 10 10 10 4.3 12.3 82.3

2 als 1.95 1.96 1.98 10 10 10 0.4 0.7 3.6
2 ld 1.95 1.96 1.98 10 10 10 0.6 1.1 3.6

Best Z 1.95 1.96 1.98

Table 10. Results for problem 10

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 5.6 5 4.9 1 0 0 84.3 - -
1 e 6.1 6.7 7 2 0 0 35.4 - -
2 c 5.9 6.8 10.7 1 0 1 6.9 - 66.6

2 als 6.3 7.5 11.4 3 1 5 19.3 8.6 30.5
2 ld 6.8 7.7 11.1 8 2 4 26.3 45.4 15.6

Best Z 7 9 12

Table 11. Results for problem 11

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 5.2 3.1 3 0 0 10 - - 0.5
1 e 6.5 4.3 3 6 1 10 26.3 57.1 0.1
2 c 4.8 3.5 3 0 0 10 - - 3.4

2 als 4.7 3.6 3 1 0 10 20.7 - 6.7
2 ld 6.1 4.2 3 6 0 10 70.5 - 6.1

Best Z 7 8 3

Table 12. Results for problem 12

Max Average Z Success CPU Time
n 13 15 20 13 15 20 13 15 20

1 b 6.5 6.9 6.4 0 0 0 - - -
1 e 8.4 8.6 7.7 1 2 0 81.5 42.7 -
2 c 8.1 8.9 7.9 0 2 0 - 58 -

2 als 8.2 8.9 8.1 0 2 0 - 42.6 -
2 ld 8.4 8.1 8.5 0 0 1 - - 6.4

Best Z 10 10 10
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We notice that problems 10 and 11 have a low success rate. The problem 11 on 20
vertices was completely missed by all the strategies as the best found value is only
3 even if the optimal value should be at least as good as that of problem 10. This is
an important phenomenon for researchers using AGX; even if the diameter is easy to
compute, it has really bad properties from the optimization point of view. Depending on
the current graph, changing the value of the diameter by 1 may involve a large number
of transformations and no strategy is powerful enough in this case. This phenomena is
called plateau and some practical ways to handle it are described in [9,1].

4 Conclusion

From these experiments, we first notice that the VNS-LD and VNS-ALS algorithms are
clearly more efficient even if the performance of VNS-VND e is overestimated. The good
performance of the VNS-LD may be due to the wide range of transformations implicitly
considered in VNS-LD that are not implemented in VNS-VND. However, this is not
the only reason because some tests were achieved always using all the transformations
available in LD (by artificially setting the probability to select any of them to 1) and
the best results were only found 269 times. Indeed, one of the forces of LD and ALS
are that unlike VND which wastes some time trying to unsuccessfully optimize with a
transformation before switching to the next one, LD uses any interesting transformation
and concentrates on the most performing ones. Overall, VNS-LD performs better than
VNS-ALS even if this last algorithm’s training time is not considered here (training was
achieved before the tests on smaller graphs); furthermore, VNS-LD’s training was erased
between two tests and the system had to learn from scratch at each run.
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Abstract. The multi-item multi-period capacitated lot sizing problem
with setups (CLST) is a well known optimization problem with wide
applicability in real-world production planning problems. Based on a
recently proposed Dantzig-Wolfe approach we present a novel math-
heuristic algorithm for the CLST. The major contribution of this paper
lies in the presentation of an algorithm that exploits exact techniques
(Dantzig-Wolfe) in a metaheuristic fashion, in line with the novel trend
of math-heuristic algorithms. To the best of the authors knowledge, it
is the first time that such technique is employed within a metaheuris-
tic framework, with the aim of tackling challenging instances in short
computational time.

1 Introduction

The Multi-Item Multi-Period Capacitated Lot Sizing Problem with Setups
(CLST) is a well known optimization problem that finds a wide variety of
real-world applications. The CLST belongs to the class of NP-hard problems
[1,15,12]. A mixed-integer formulation of the CLST is:

(CLST):min z =

n∑
j=1

T∑
t=1

(fjtyjt + cjtxjt + hjtsjt) +

n∑
j=1

hj0sj0

s.t.

n∑
j=1

(ajtxjt +mjtyjt) ≤ bt ∀t

sjt−1 + xjt = djt + sjt ∀j, t
xjt ≤Myjt ∀j, t
yjt ∈ {0, 1} ∀j, t
xjt, sjt ≥ 0 ∀j, t

where items j = 1, . . . , n should be produced over time periods t = 1, . . . , T .
In the CLST formulation, fjt, cjt, and hjt indicate the fixed cost, the unitary
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production cost and the unitary inventory holding cost for item j in period t,
respectively. Parameters mjt and ajt indicate the setup time and the unitary
production time, respectively, while bt stands for the production capacity in
period t. Parameter djt indicates the demand of item j in period t. Finally, in
the model, three sets of decision variables are employed, i.e., yjt ∈ {0, 1}, which
takes value 1 if there is a setup for item j in period t; as well as xjt ≥ 0 and
sjt ≥ 0, indicating the production volume and the inventory level for item j in
period t, respectively. Note that sj0 is given as data indicating initial inventory.

Due to its vast industrial applicability, researchers have devoted special atten-
tion to the CLST (see, e.g., [5], [13], [6], and [4]). Since the CLST is still difficult
to solve to optimality, many researchers have tried to tackle the problem by
working on relaxations of the same. A good description of some well studied
relaxations of the CLST is provided by [11]. A recent discussion of solution
approaches for the CLST can be found in [8].

In recent years, a lot of attention has been devoted to the integration, or hy-
bridization, of metaheuristics with exact methods. This exposition also relates to
the term math-heuristics (see, e.g., [9]) which describes works which are, e.g., ex-
ploiting mathematical programming techniques in (meta)heuristic frameworks or
on granting to mathematical programming approaches the cross-problem robust-
ness and constrained-CPU-time effectiveness which characterize metaheuristics.
Discriminating landmark is some form of exploitation of the mathematical for-
mulation of the problems of interest. Here we follow the math-heuristic concept
rather than a more general idea of hybridization, where the successful ingredients
of various metaheuristics have been combined.

Based on a recently proposed Dantzig-Wolfe approach of [7], in this paper we
present a novel math-heuristic algorithm for the CLST. The major contribution
of this paper lies in the presentation of an algorithm that exploits exact tech-
niques (Dantzig-Wolfe) in a metaheuristic fashion, in line with the novel trend
of math-heuristic algorithms. To the best of the authors’ knowledge, it is the
first time that such technique is employed within a metaheuristic framework,
with the aim of tackling challenging instances in short computational time. In
addition, the proposed approach constitutes a clear example of the effectiveness
of hybrid approaches, e.g., approaches that intertwine classical mathematical
programming techniques with novel metaheuristics.

To measure the effectiveness of the proposed approach, we have tested the
algorithm to solve standard benchmark instances from [15], in line with what
has been done by a number of authors, e.g., [7], and [3].

The organization of the paper is as follows. In the next section, Section 2, we
present a mathematical formulation and a Dantzig-Wolfe decomposition of the
CLST; Section 3 illustrates the main ingredients of the proposed math-heuristic
algorithm, while Section 4 summarizes the results of the algorithm when tested
on a set of benchmark instances. Finally, Section 5 concludes with some final
remarks.
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2 Mathematical Formulation and Decomposition

Dantzig-Wolfe (DW) decomposition is a well known technique often employed
to address mixed integer programs with substructures. This technique has been
successfully applied in a number of contexts. (For more details on such technique
see, e.g., [16], and [2].) Recently, [7] have presented a DW approach for the CLST,
addressing an important structural deficiency of the standard DW approach for
the CLST proposed decades ago by [10].

In this section, borrowing ideas from [7], we present a DW reformulation and
decomposition for the CLST that is especially suited for the math-heuristic al-
gorithm presented in Section 3. In line with what proposed by [7], we employ
a formulation in which setup variables and production variables are dealt with
separately. Next, we illustrate how such reformulation leads to a natural im-
plementation of a math-heuristic algorithm aimed at speeding up the column
generation phase.

Let us consider the DW decomposition and its associated reformulation. We
identify the capacity constraints as the “hard” constraints. Thus, if we eliminate
such hard constraints, we obtain a problem that can easily be decomposed into
smaller (easy) subproblems, one per item. Let us indicate with:

Xsub
j =

⎧⎪⎪⎨⎪⎪⎩
sjt−1 + xjt = djt + sjt

xjt ≤ Myjt
yjt ∈ {0, 1}
xjt, sjt ≥ 0

⎫⎪⎪⎬⎪⎪⎭
the set of feasible solutions for the jth subproblem. It is easy to observe that Xsub

j

defines the feasible region for the single item uncapacitated lot sizing problem.
Let us now indicate with

{
xk
j

}
, where xk

j =
(
ykjt, x

k
jt, s

k
jt

)
, with k = 1, . . . ,Kj ,

the set of extreme points of conv(Xsub
j ). That is, for each item j, the set of ex-

treme points of the corresponding polytope is defined by all the possible feasible
schedules and the corresponding dominant production schedules, i.e., produc-
tion schedules satisfying the Wagner-Whitin condition sjt−1xjt = 0 (also known
as zero-inventory property). Thus, variables x, y, and s of the CLST can be
rewritten as convex combination of such extreme points. Therefore, we rewrite
the CLST as:

(M):min z =

n∑
j=1

Kj∑
k=1

⎡⎣ T∑
t=1

(
fjty

k
jt + cjtx

k
jt + hjts

k
jt

)
+

n∑
j=1

hj0sj0

⎤⎦ λjk (1)

s.t.
n∑

j=1

Kj∑
k=1

(
ajtx

k
jt +mjty

k
jt

)
λjk ≤ bt, t = 1, . . . , T (2)

Kj∑
k=1

λjk = 1, j = 1, . . . , n (3)

λjt ∈ {0, 1} , j = 1, . . . ,K, k = 1, . . . ,Kj (4)
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The original CLST is rewritten in such a way that every extreme point of the
polyhedron of subproblems Xsub

j is enumerated and the corresponding weight
variable is either set to 1, if the extreme point is selected, or to 0 otherwise.
However, it is a well-known fact that, if the capacity constraint is binding for
at least one time period, the extreme points of the polytope of the single item
uncapacitated lot sizing problem will not necessarily provide an optimal solution
to the overall problem [7]. Thus, when imposing the binary constraints on the
reformulation variables, i.e., constraint (4), the optimal solution to the original
CLST could be missed. In other words, there is not a strict correspondence
between the original setup variables yjt and the newly introduced reformulation
variables λjk. As pointed out by [7], the key point here is that the dominant
plans are only a subset of the set of extreme points needed to completely define
the search space of the original CLST.

What we would need is a convex combination of the setup plans for each single
item problem, i.e., we should eliminate constraint (4) from the master problem
(M) and, instead of it, we should impose the binary conditions on the original
setup variables. This approach is called convexification approach to the DW de-
composition [16]. Alternatively, one could use a discretization approach, in which
all the integer solutions are enumerated (including interior points of the subsys-
tem polyhedron, i.e., including solutions that make use of non-dominant pro-
duction plans and yet satisfy the Wagner-Whitin property). The discretization
approach would allow to re-introduce constraint (4) into the master problem.

As pointed out by [7], it is also possible to use a third approach, i.e., a discretiza-
tion approach for the binary variables of the CLST and a convexification approach
for the continuous variables. That is, given a feasible setup plan, a convex combi-
nation of production plans respecting that setup plan is generated. Therefore, the
set of extreme points included in themaster program includes non-dominant plans
satisfying the Wagner-Whitin property, i.e., there will be solutions for which, in
some periods, it is possible that there exists a setup but no production.

Consequently, in the sequel, we will introduce two sets of reformulation vari-
ables, i.e., (i) λjk, to select exactly one setup plan among the ones included in
the master problem, and (ii) μjkw , to select a convex combination of production
schedules (dominant and non-dominant) arising from a given setup schedule.

An Example. Let us consider a single-item lot sizing problem with five time
periods. Let us fix dt = 10, for t = 1, . . . , 5. Let us assume we are given a setup
schedule, in which there exists a setup in the first, third, and fifth period (as
presented in Table 1). In the sequel, for the sake of clarity, inventory levels st
are omitted. In the table, the row associated to solution x1 corresponds to the
dominant production plan associated to the given setup plan. However, in the
reformulation, we also want to consider non-dominant production plans that are
still feasible with respect to the given setup plan, e.g., production plans x2 to
x4. Every production plan presented in Table 1 still satisfies the Wagner-Whitin
property. However, except for the production schedule indicated by x1, all the
production schedules are non-dominant plans, i.e., there exist some periods in
which a setup is not accompanied by production.



Dantzig-Wolfe Math-Heuristic for Lot Sizing 35

Table 1. An example of the convexification-discretization approach

t 1 2 3 4 5
dt 10 10 10 10 10

yk
t 1 0 1 0 1

xk
1 20 0 20 0 10

xk
2 50 0 0 0 0

xk
3 20 0 30 0 0

xk
4 40 0 0 0 10

In line with what is mentioned above, the convexification-discretization ap-
proach defines two sets of dual variables, one for the setup plan and one for the
production plan. Therefore, with respect to Table 1, we will use:

– A binary variable λk ∈ {0, 1} to determine whether the setup plan described
by yk should be selected; and

– A set of continuous variables μk
w, with w = 1, . . . , 4, to define a convex

combination of production plans arising from the same setup plan.

To formalize, and in line with what is presented in [7], let us assume we are
considering a single-item lot sizing problem, e.g., item j ∈ [1, n]. Let us also
assume we indicate with

Y =
{
y1, . . . ,yk, . . . ,yKj

}
the set of all feasible setup plans for item j. Let us now consider a setup schedule
yk =

(
yk1 , . . . , y

k
T

)
∈ Y and let us define the set of induced setup schedules as:

Y(k) =
{
(y1, . . . , yT ) : yt ≤ ykt , yt ∈ {0, 1} , t = 1, . . . , T

}
That is, given a setup schedule yk, the set of induced setup schedules, indi-
cated with Y(k), is built by taking all the possible schedules dominated by yk,
i.e., assuming that yk defines s setups, the set Y(k) contains 2s setup sched-
ules. Obviously, for each setup schedule in Y(k) there exists a unique dominant
Wagner-Whitin production plan. Thus, the set of extreme points defined by the
setup schedule yk is defined by all the combinations of the Wagner-Whitin pro-
duction plans arising from the induced set Y(k) with the original setup plan
yk.

With respect to the example provided inTable 1,we have thatyk = (1, 0, 1, 0, 1).
Thus, the set of induced setup schedules is:

Y(k) = {(1, 0, 1, 0, 1) , (1, 0, 0, 0, 0) , (1, 0, 1, 0, 0) , (1, 0, 0, 0, 1)} .

As previously mentioned, since the setup schedule yk defines three setups, and
considering the setup in the first period as fixed, the setup schedule yk gives
rise to 23−1 = 4 induced setup plans. Each setup plan in Y(k), in turn, defines a
unique Wagner-Whitin schedule, as indicated in Table 1. Thus, we now have four



36 M. Caserta and S. Voß

extreme points that could be added to the master plan, i.e.,
(
yk,xk

1

)
,
(
yk,xk

2

)
,(

yk,xk
3

)
, and

(
yk,xk

4

)
.

Finally, with respect to the dual variables of the master problem, i.e., the
new columns of program (M), we generate the following 2s−1 new columns, i.e.,(
λk, μ

k
1

)
,
(
λk, μ

k
2

)
,
(
λk, μ

k
3

)
, and

(
λk, μ

k
4

)
.

Finally, once we generated a set of (dominant and non-dominant) produc-
tion plans associated to a given setup plan, the relation between these two is
established using the following constraints (considering a single-item problem):

Kj∑
k=1

λk = 1 (5)

|Y(k)|∑
w=1

μk
w = λk, k = 1, . . . ,Kj (6)

λk ∈ {0, 1} , k = 1, . . . ,Kj (7)

μk
w ≥ 0, w = 1, . . . , |Y(k)|, k = 1, . . . ,Kj (8)

Thus, via Equations (5) and (7) we enforce the discretization mechanism for the
(binary) setup variables, i.e., one setup plan must be selected; on the other hand,
with Equations (6) and (8), we enforce the convexification mechanism, i.e., once
a setup plan is selected (e.g., λk = 1 for any k ∈ [1,Kj]), we allow for a convex
combination of (dominant and non-dominant) induced production plans to be
selected.

Let us now present the Dantzig-Wolfe master reformulation and the derived
subproblems.

min z =
n∑

j=1

Kj∑
k=1

⎡⎣ T∑
t=1

⎛⎝fjty
k
jtλjk +

|Y(k)|∑
w=1

(
cjtx

w
jt + hjts

w
jt

)
μw
jk

⎞⎠⎤⎦ (9)

s.t.
n∑

j=1

Kj∑
k=1

⎛⎝mjty
k
jtλjk +

|Y(k)|∑
w=1

ajtx
w
jtμ

w
jk

⎞⎠ ≤ bt, t = 1, . . . , T (10)

Kj∑
k=1

λjk = 1, j = 1, . . . , n (11)

|Y(k)|∑
w=1

μw
jk = λjk, j = 1, . . . , n, k = 1, . . . ,Kj (12)

λjt ∈ {0, 1} , j = 1, . . . ,K, k = 1, . . . ,Kj (13)

μw
jk ≥ 0, j = 1, . . . ,K, k = 1, . . . ,Kj, w = 1, . . . , |Y(k)| (14)

Due to the large number of variables of the master problem, the linear program-
ming relaxation of the master is solved using column generation. The subproblem
used to price in new columns is (separable over single items j):
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min rj =

T∑
t=1

((fjt − utmjt) yjt + (cjt − utajt)xjt + hjtsjt)− αj (15)

s.t. xjt + sjt−1 = djt + sjt, t = 1, . . . , T (16)

xjt ≤Myjt, t = 1, . . . , T (17)

yjt ∈ {0, 1} , t = 1, . . . , T (18)

xjt, sjt ≥ 0, t = 1, . . . , T (19)

where u are the dual variables associated to the constraint (10) and α are the dual
variables associated to constraint (11). As long as the pricing problem returns
negative reduced costs for at least one item j, with j = 1, . . . , n, these columns
are added to the master, and the linear programming relaxation of the mas-
ter is re-optimized. However, it is worth noting that, due to the discretization-
convexification approach, the number of new columns generated every time the
subproblem is solved can become large. Thus, in the next section, we propose
a metaheuristic approach, based on the corridor method, aimed at finding a
“good” set of new columns to be added to the master problem within a prespec-
ified amount of computational time.

3 A Math-Heuristic Approach

Let us now present in detail the math-heuristic column generation approach used
to solve the subproblems.

The proposed approach belongs to the class of math-heuristic algorithms,
since we use mathematical programming techniques in a heuristic fashion [9].
The basic steps of a column generation approach are here briefly highlighted:

1. Populate the master problem with an initial set of columns.
2. Solve the LP relaxation of the master.
3. Solve the subproblems defined using the current dual values obtained from

the master.
4. Price in new columns: If there exists at least one new column with negative

reduced cost, add such column(s) to the master. Otherwise, stop.

The main contribution of this paper is related to the use of a corridor method-
inspired scheme [14] to address step 3. As presented in Section 2, we use a
discretization-convexification approach for the master problem, i.e., we employ
discretization for the selection of the setup variables and convexification for the
selection of a combination of induced production plans. Therefore, in phase 3 of
the column generation approach, we need to devise an efficient method aimed at
obtaining a “good” setup plan and a sufficiently large set of induced production
plans. Given a current setup plan yk, there exist 2s−1 induced production plans,
i.e., |Y(k)| = 2s−1, where s is the total number of setups in yk, i.e.

∑T
t=1 y

k
t = s.

Therefore, a complete enumeration of all the induced production plans for a given
setup plan yk is infeasible for practical, real-world size instances.



38 M. Caserta and S. Voß

Due to the aforementioned drawback, we propose here a math-heuristic ap-
proach to generate a sufficiently large set Y(k) of induced production plans in
a controlled amount of computational time. Let us present here the steps of the
corridor method-inspired scheme used to generate new columns (the scheme is
presented for a single item). In Figure 1, we present in details the steps of the
third phase of the algorithm. Basically, we first generate a Wagner-Whitin solu-
tion for the current subproblem. Then, we apply a corridor method algorithm to
collect a set of induced solutions. Such solutions are stored in a pool of solutions
Ω. The corridor method phase stops when either the optimal solution to the con-
straint problem or a maximum running time have been reached. Subsequently,
the solutions in the pool Ω are priced in and, whenever a solution with negative
reduced cost is found, such solution is added to the master.

The overall algorithm begins by creating an initial set of columns for the
master problem. We first add to the master a set of Wagner-Whitin solutions
obtained fixing all the dual values equal to zero, along with the solutions in
which all the demand is satisfied using initial inventory sj0. Once these columns
are added to the master, the linear programming relaxation of problem (9)-(14)
is solved to optimality using a standard LP solver. The dual values obtained
after solving problem (M) are then used to define the subproblems (15)-(19)
(one per item). Each subproblem is then solved with the proposed algorithm
of Figure 1 and new columns are priced into the master problem (9)-(14). The
master-subproblem cycle is repeated until there exist no new columns with neg-
ative reduced cost. In that case, the algorithm stops and problem (9)-(14) is
finally solved to optimality and the best feasible solution for the original CLST
is returned.

4 Computational Results

In this section we present the computational results of the algorithm on a set of
well-known benchmark instances. We report results on six instances taken from
the test set used by [15], as reported by [3]. The same instances have been tackled
by [7] and, therefore, constitute an interesting test bed for the preliminary eval-
uation of the proposed algorithm. As reported by [7], these instances are hard
to solve to optimality. However, as presented in Table 2, we could solve all these
instances to optimality in a reasonable amount of computational time using IBM
CPLEX. Thus, we could also measure how far our heuristic solution was from
an optimal solution. Optimal values for these instances were also reported by
[11].

The algorithm proposed in this paper was coded in C++ and compiled using
the GNU g++ 4.5.2 compiler on a dual core Pentium 1.8GHz Linux worksta-
tion with 4Gb of RAM. Throughout the computational experiment phase, the
maximum running time for each “constrained” subproblem rj(u, α,y

k) was kept
fixed to one second, while the number of columns generated in each iteration δ
was fixed to 100.

In Table 2, the first column reports the instance name, columns two and three
report the optimal value and the running time obtained using IBM CPLEX 12.1
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S1. Initialization

1. Solve problem rj(u, α) using Wagner-Whitin ⇒ (
yk,xk

1

)
2. If rj(u, α) ≥ 0, STOP.

S2. Corridor Method
(
yk, δ

)
1. Define a neighborhood around the Wagner-Whitin solution as:

N (yk) =
{
y ∈ {0, 1}T : yjt ≤ yk

jt

}
(20)

2. Add the following corridor constraint to the subproblem rj(u, α):

yjt ≤ yk
jt, t = 1, . . . , T (21)

and solve the resulting “constrained” subproblem rj(u, α,y
k).

3. While solving to optimality rj(u, α,y
k), collect the best δ ≥ 1 feasible

solutions and store them in a pool:

Ω =
{
(ykw,xkw) : ykw ∈ N (yk)

}
(22)

where ykw is a setup plan satisfying constraint (21), and xkw is the dom-
inant Wagner-Whitin solution associated to the setup plan ykw.

4. Stop the corridor method when one of the two criteria has been reached:
a. maximum running time, or
b. optimal solution.

S3. Pricing
(
yk, Ω

)
1. Price in new columns until all the solutions in Ω have been examined and

Ω is empty:
(a) Select a solution from the pool Ω and compute the reduced cost of

the composed solution
(
yk,xkw

)
, with w = 1, . . . , |Ω|

(b) If the reduced cost of the current solution is negative, i.e., rj < 0, add
the column

(
yk,xkw

)
to the master. Otherwise, discard the column,

eliminate it from Ω, and go back to step 1a.

Fig. 1. Outline of the proposed corridor method-inspired algorithm for the generation
of new columns

as MIP solver. Columns four and five provide the best value and the running time
of [3], while columns six and seven provide the same information as presented
in [7]. Finally, the last two columns provide the best result and the running time
of the proposed algorithm. With respect to running times, [3] has a limit of 900
seconds, while [7] stopped the algorithm after vising 2000 nodes.

From the table, we can observe that the proposed algorithm is competitive in
terms of both solution quality and running time, especially for larger instances.
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Table 2. Results on six instances from [15]. The optimal values and corresponding
running times reported here have been obtained using CPLEX 12.1.

Instance
Optimal BW DJ CM

z∗ T� z T† z T‡ z T�

Tr6-15 37,721 1.24 37,721 38.4 38,162 29 37,721 1.62
Tr6-30 61,746 126.2 61,806 900 62,644 359 62,885 6.45
Tr12-15 74,634 2.67 74,799 900 75,035 66 74,727 29.65
Tr12-30 130,596 154.41 132,650 900 131,234 215 131,185 19.91
Tr24-15 136,509 23.70 136,872 900 136,860 44 136,556 9.34
Tr24-30 287,929 110.99 288,424 900 288,383 306 287,974 40.73

� : time on a dual core pentium 1.8GHz Linux workstation.
† : time on a 200MHz Windows workstation.
‡ : time on a pentium III 750MHz Windows workstation.

Running times among the three algorithms cannot be meaningfully compared,
due to the huge differences in machines speed. However, we can conclude that
the proposed approach is faster than CPLEX alone in solving these instances,
of course at a price of delivering a near-optimal solution.

While it is true that no robust conclusions can be drawn on a such a limited
benchmark test, the results presented in this paper do show that the proposed
approach is promising.

5 Conclusions

In this paper, we have presented a novel math-heuristic for a well known op-
timization problem, the lot sizing problem with setup times and setup costs.
The main contribution of the work lies in the introduction of a math-heuristic
approach for the column generation phase of a Dantzig-Wolfe algorithm.

Starting from an observation of [7], we presented a Dantzig-Wolfe reformu-
lation in which the setup variables and the production variables are dealt with
separately. More specifically, for any given setup plan, we generate columns in
which the production plan needs not be a dominant plan, i.e., we introduce into
the master problem columns corresponding to solutions in which, for certain
periods, there might be a setup without having a production. Thus, a single
setup plan induces a number of non-dominant production plans. However, due
to the large size of the set of non-dominant plans induced by each setup plan,
we designed a mechanism inspired in the corridor method to bound the search
of non-dominant production plans in the neighborhood of the Wagner-Whitin
dominant plan associated to the current setup plan. By adding an exogenous
constraint to the pricing problem, we collect a set of new columns and, subse-
quently, we price into the master problem those columns with negative reduced
costs. Finally, the column generation approach is repeated until no new columns
with negative reduced costs are found.
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The proposed algorithm has been tested on a well-known set of benchmark
instances and the results obtained have been compared with two approaches from
the literature, as well as with the optimal solutions obtained by IBM CPLEX
12.1. While additional results on other problems are still needed, the results
presented in the computational section allow to conclude that the proposed
approach is promising, both in terms of solution quality and running time, and
leaves various options for future applicability in other types of problems.
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Abstract. In this paper, we are interested in the minimization of the
travel cost of the traveling salesman problem with time windows. In
order to do this minimization we use a Nested Rollout Policy Adaptation
(NRPA) algorithm. NRPA has multiple levels and maintains the best
tour at each level. It consists in learning a rollout policy at each level.
We also show how to improve the original algorithm with a modified
rollout policy that helps NRPA to avoid time windows violations.

Keywords: Nested Monte-Carlo, Nested Rollout Policy Adaptation,
Traveling Salesman Problem with Time Windows.

1 Introduction

In this paper we are interested in the minimization of the travel cost of the
Traveling Salesman Problem with Time Windows. Recently, the use of a Nested
Monte-Carlo algorithm (combined with expert knowledge and an evolutionary
algorithm) gave good results on a set of state of the art problems [13]. However,
as it has been pointed out by the authors, the effectiveness of the Nested Monte-
Carlo algorithm decreases as the number of cities increases. When the number
of cities is too large (greater than 30 for this set of problems), the algorithm is
not able to find the state of the art solutions.

A natural extension to the work presented in [13], which consists in the ap-
plication of the Nested Monte-Carlo algorithm on a set of Traveling Salesman
Problems with Time Windows, is to study the efficiency of the Nested Rollout
Policy Adaptation algorithm on the same set of problems.

In this work we study the use of a Nested Rollout Policy Adaptation algorithm
on the Traveling Salesman Problem with Time Windows. The Nested Rollout
Policy Adaptation algorithm has recently been introduced in [15], and provides
good results, including records in Morpion Solitaire and crossword puzzles.

We improve this algorithm by replacing the standard random policy used in
the rollouts with a domain-specific one, defined as a mixture of heuristics. These
domain-specific heuristics are presented in Section 4.2.

The paper is organized as follows. Section 2 describes the Traveling Sales-
man Problem with Time Windows, Section 3 presents the Nested Monte-Carlo

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 42–54, 2012.
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algorithm (Section 3.1) and its application to the Traveling Salesman Problem
with Time Windows (Section 3.2). Section 4 presents the Nested Rollout Policy
Adaptation algorithm (Section 4.1) and its application to the Traveling Sales-
man Problem with Time Windows (Section 4.2). Section 5 presents a set of
experiments concerning the application of the Nested Rollout Policy Adaptation
algorithm on the Traveling Salesman Problem with Time Windows.

2 The Traveling Salesman Problem with Time Windows

The Traveling Salesman Problem (TSP) is a famous logistic problem. Given a
list of cities and their pairwise distances, the goal of the problem is to find the
shortest possible path that visits each city only once. The path has to start
and finish at a given depot. The TSP problem is NP-hard [8]. In this work, we
are interested in a similar problem but more difficult, the Traveling Salesman
Problem with Time Windows (TSPTW). In this version, a difficulty is added.
Each city has to be visited within a given period of time.

A survey of efficient methods for solving the TSPTW can be found in [9].
Existing methods for solving the TSPTW are numerous. First, branch and bound
methods were used [1,3]. Later, dynamic programing based methods [5] and
heuristics based algorithms [17,7] have been proposed. More recently, methods
based on constraint programming have been published [6,10].

An algorithm based on the Nested Monte-Carlo Search algorithm has been
proposed [13] and is summarized in Section 3.2.

The TSPTW can be defined as follow. Let G be an undirected complete graph.
G = (N,A), where N = 0, 1, . . . , n corresponds to a set of nodes and A = N×N
corresponds to the set of edges between the nodes. The node 0 corresponds to the
depot. Each city is represented by the n other nodes. A cost function c : A→ R is
given and represents the distance between two cities. A solution to this problem
is a sequence of nodes P = (p0, p1, . . . , pn) where p0 = 0 and (p1, . . . , pn) is a
permutation of [1, N ]. Set pn+1 = 0 (the path must finish at the depot), then
the goal is to minimize the function defined in Equation 1.

cost(P ) =

n∑
k=0

c(apk
, apk+1

) (1)

As said previously, the TSPTW version is more difficult because each city i
has to be visited in a time interval [ei, li]. This means that a city i has to be
visited before li. It is possible to visit a cite before ei, but in that case, the
new departure time becomes ei. Consequently, this case may be dangerous as it
generates a penalty. Formally, if rpk

is the real arrival time at node pk, then the
departure time dpk

from this node is dpk
= max(rpk

, epk
).

In the TSPTW, the function to minimize is the same as for the TSP (Equation
1), but a set of constraint is added and must be satisfied. Let us define Ω(P ) as
the number of violated windows constraints by tour (P).
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Two constraints are defined. The first constraint is to check that the arrival
time is lower than the fixed time. Formally,

∀pk, rpk
< lpk

.

The second constraint is the minimization of the time lost by waiting at a city.
Formally,

rpk+1
= max(rpk

, epk
) + c(apk,pk+1

).

With the algorithm used in this work, paths with violated constraints can be
generated. As presented in [13] , a new score Tcost(p) of a path p can be defined
as follow:

Tcost(p) = cost(p) + 106 ∗Ω(p),

with, as defined previously, cost(p) the cost of the path p and Ω(p) the number of
violated constraints. 106 is a constant chosen high enough so that the algorithm
first optimizes the constraints.

The TSPTW is much harder than the TSP, consequently new algorithms have
to be used for solving this problem.

In the next sections, we define two algorithms for solving the TSPTW. The
first one, in Section 3, is the Nested Monte-Carlo algorithm from [13], and the
second one, in Section 4, is the Nested Rollout Policy Adaptation algorithm,
which is used in this work to solve the TSPTW. We eventually present results
in Section 5.

3 The Nested Monte-Carlo Search Algorithm

First, in Section 3.1 we present the Nested Monte-Carlo Search, and then in
Section 3.2 the application done in [13] to the Traveling Salesman Problem with
Time Windows.

3.1 Presentation of the Algorithm

The basic idea of Nested Monte-Carlo Search (NMC) is to find a solution path
of cities with the particularity that each city choice is based on the results of
a lower level of the algorithm [2]. At level 1, the lower level search is simply a
playout (i.e. each city is chosen randomly).

Figure 1 illustrates a level 1 Nested Monte-Carlo search. Three selections of
cities at level 1 are shown. The leftmost tree shows that, at the root, all possible
cities are tried and that for each possible decision a playout follows it. Among
the three possible cities at the root, the rightmost city has the best result of 30,
therefore this is the first decision played at level 1. This brings us to the middle
tree. After this first city choice, playouts are performed again for each possible
city following the first choice. One of the cities has result 20 which is the best
playout result among his siblings. So the algorithm continues with this decision
as shown in the rightmost tree. This algorithm is presented in Algorithm 1.
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Algorithm 1. Nested Monte-Carlo search

nested (level,node)
if level==0 then

ply ← 0
seq ← {}
while num children(node) > 0 do

CHOOSE seq[ply] ← child i with probability 1/num children(node)
node ← child(node,seq[ply])
ply ← ply+1

end while
RETURN (score(node),seq)

else
ply ← 0
seq ←{}
best score ← ∞
while num children(node) > 0 do

for children i of node do
temp ← child(node,i)
(results,new) ← nested(level-1,temp)
if results<best score then

best score ← results
seq[ply]=i
seq[ply+1. . .]=new

end if
end for
node=child(node,seq[ply])
ply←ply+1

end while
RETURN (best score,seq)

end if

40 504040 30 5020 2040

Fig. 1. This figure explains three steps of a level 1 search. At each step of the playout
of level 1 shown here with a bold line, an NMC of level 1 performs a playout (shown
with wavy lines) for each available decision and selects the best one.



46 T. Cazenave and F. Teytaud

At each choice of a playout of level 1 it chooses the city that gives the best
score when followed by a single random playout. Similarly for a playout of level
n it chooses the city that gives the best score when followed by a playout of level
n− 1.

3.2 Application to the TSPTW

In [13], a NMC algorithm is used in order to solve a set of TSPTW. With the
intention of having a competitive algorithm they add expert-knowledge to the
NMC algorithm. Three heuristics are added and used to bias the Monte-Carlo
simulations thanks to a Boltzmann softmax policy. The principle is to define a
new policy for the rollout phase. This policy is defined by the probability πθ(p, a)
of choosing the action a in a position p:

πθ(p, a) =
eφ(p,a)

T θ∑
b e

φ(p,b)T θ
,

where φ(p, a) is a vector of heuristics and θ is a vector of heuristic weights.
The three heuristics used are the same as the ones defined in [17], and are

summarised as follows:

– The distance to the last city.
– The amount of wasted time because a city is visited too-early.
– The amount of time left until the end of the time window of a city.

For the tuning of the weights of each heuristic, they used an evolution strategy
[12], more precisely a Self-Adaptive Evolution Strategy [12,16], known for its
robutsness.

4 The Nested Rollout Policy Adaptation Algorithm

First, in Section 4.1, we present the Nested Rollout Policy Adaptation algorithm.
In Section 4.2 we present some modifications done on this algorithm in order to
improve it on the Traveling Salesman Problem with Time Windows.

4.1 Presentation of the Algorithm

The Nested Rollout Policy Adaptation algorithm (NRPA) is an algorithm that
learns a playout policy. There are different levels in the algorithm. Each level
is associated to the best sequence found at that level. The playout policy is a
vector of weights that are used to calculate the probability of choosing a city. A
city is chosen proportionally to exp(pol[code(node,i)]). pol(x) is the adaptable
weight on code x. code(node,i) is a unique domain-specific integer leading from a
situation node to its ith child. This is comparable with previous known learning
of Monte-Carlo simulations [4,14].

Learning the playout policy consists in increasing the weights associated to
the best cities and decreasing the weights associated to the other cities. The
algorithm is given in algorithm 2.
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Algorithm 2. Nested Rollout Policy Adaptation

NRPA (level,pol)
if level = 0 then

node ← root
ply ← 0
seq ← {}
while there are possible moves do

CHOOSE seq[ply] ← child i the with probability proportional to
exp(pol[code(node,i)])
node ← child(node, seq [ply])
ply ←ply + 1

end while
return (score (node), seq)

else
bestScore ← ∞
for N iterations do

(result,new) ← NRPA (level − 1, pol)
if result ≤ bestScore then

bestScore ← result
seq ← new

end if
pol ← Adapt(pol,seq)

end for
end if
return (bestScore,seq)

Adapt (pol,seq)
node ← root
pol′ ← pol
for ply ← 0 to length(seq) - 1 do

pol′[code(node,seq[ply])] += Alpha
z ← SUM exp(pol[code(node,i)]) over node’s children i
for children i of node do

pol′[code(node,i)] -= Alpha × exp(pol[code(node,i)]) / z
end for
node ← child(node, seq [ply])

end for
return pol′
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4.2 Application to the TSPTW

As for the NMC algorithm, adding expert-knowledge is possible in order to
improve this generic algorithm. Consequently, the generality of the resulting
algorithm is lower. We implement a NRPA algorithm with a specific Monte-
Carlo policy.

The idea of this algorithm is first to force to visit cities as soon as they go
after their window end. The reason is that cities that are after their window
end should have been visited earlier and that must be taken into account for
the continuation of the playout. If we force to visit them, the algorithm will try
more to visit them in time.

The second idea of the algorithm is to avoid visiting a city if it makes another
city go after its window end. It considers all the moves that do not make any
city go after its window end.

Algorithm 3. Playout policy for NRPA EK

possibleMoves ()
s ← {}
for all not yet visited cities c do

if going to the city c arrives after the window end of the city then
add the city c to the set s

end if
end for
if s = {} then

for all not yet visited cities c do
tooLate ← false
for all not yet visited cities d different from c do

if going to the city d arrives before the window end of the city d and going
to the city c arrives after the window end of the city d then

tooLate ← true
end if

end for
if not tooLate then

add the city c to the set s
end if

end for
end if
if s = {} then

for all not yet visited cities c do
add the city c to the set s

end for
end if
return s
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These moves that avoid some cities can never be moves that force the algo-
rithm into a suboptimal answer. These moves always imply a violation of the
time window. Therefore they only change invalid solutions of the problem. An
optimal move will not be pruned by our expert knowledge since it does not
violate a constraint.

If there are still no possible moves after these two tests, the algorithm considers
all the possible moves.

The resulting algorithm is labeled NRPA EK and is given in algorithm 3.

5 Experiments

First, in Section 5.1, we study the behaviour of the NRPA algorithm. Second,
in Section 5.2, we compare it with the version defined in Section 4.2 on two
problems among the set of problems from [11]. Finally, in Section 5.3, we provide
a comparison of the two algorithms studied in this work, the NMC algorithm in
[13] and the state of the art results found in [9].

In all our experiments we set α = 1 for the NRPA and the NRPA EK
algorithms.

5.1 The Behaviour of the NRPA Algorithm

It has been found for the NMC algorithm and the NRPA algorithm (both on
Morpion Solitaire) that a plateau is reached for each level of the algorithms,
and then consequently, that increasing the level improves the results of the al-
gorithms. In figure 2, similar results are shown for a TSPTW (on the problem
rc204.1 from the set of problems from [11]). We measure the score of a NRPA
algorithm as a function of the time T for different levels. The time T represents
the number of evaluations done for each level. Formally, T = N level. We recall
that N is the number of iterations done for each level (> 0) of the NRPA algo-
rithm. Each point is the average of 30 runs. Plateaus are here well represented.
For the level 1, T = N , and we can note that increasing N beyond 1000 does
not improve the algorithm. The level 2 of the NRPA algorithm is quickly better
than a level 1. It is better to use the level 3 of the algorithm than the level 2
around T = 30000, this means, approximately for N = 170 for the level 2 and
N = 30 for the level 3. The level 4 of the algorithm becomes better than the
level 3 around T = 330000, so it corresponds to N = 575 for the level 3 and
N = 70 for the level 4.

5.2 NRPA against NRPA EK

In this experiment we compare the NRPA algorithm (as defined in Algorithm 2)
and the version of NRPA with expert knowledge, presented in Section 4.2. This
last algorithm is labeled NRPA EK in all our experiments.
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Fig. 2. Score as a function of T . Average on 30 runs. Plateaus are reached for the first
three levels, and increasing the level of the algorithm improves the results.

We test these two algorithms on two problems from the set of problems from
[11], the problem rc204.3 and the problem rc204.1. This last problem is the
hardest one among all the problems of the set, and has 46 cities. In all this
experiment, N is fixed at 50. Results are presented in Figure 3 for the problem
rc204.3 and in Figure 4 for the problem rc204.1.

Results of the rc204.3 problem (Figure 3) are close, because this problem
is simple enough for both algorithms and they are able to quickly find good
solutions. However, the NRPA EK is slightly better for both the levels 3 and
4. On the hardest problem (Figure 4), results are much more significant. The
level 3 of both the algorithms are not able to find a path with respect to all
the time constraints. In average, the NRPA EK version is able to solve one more
constraint than the NRPA algorithm. For the level 4 comparison, the NRPA EK
is by far better than the classic version of the algorithm and is able to find a
path without any violated constraint in all the runs.
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Fig. 3. Comparison between the NRPA algorithm and the NRPA EK algorithm of the
problem rc204.3. For both the algorithms N = 50.

Fig. 4. Comparison between the NRPA algorithm and the NRPA EK algorithm of the
problem rc204.1. For both the algorithms N = 50.
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5.3 State of the Art Problems

We experiment the NRPA algorithm on all the problems from the set of [11].
Results are presented in Table 1. Problems are sorted according to n (i.e. the
number of cities). The state of the art results are found by the ant colony al-
gorithm from [9]. The fourth column represents the best score found in [13].

Table 1. Results on all problems from the set from Potvin and Bengio [11]. First
Column is the problem, second column the number of nodes, third column the best
score found in [9], fourth column the best score found by the NMC algorithm with
heuristics from [13], fifth column is the best score found by the NRPA algorithm and
sixth column is its corresponding RPD. Seventh and eighth columns are respectively
the score of the NRPA EK algorithm and the corresponding RPD. The problems for
which we find the state of the art solutions are in bold.

Problem n
State of NMC NRPA

RPD
NRPA EK

the art score score

rc206.1 4 117.85 117.85 117.85 0 117.85 0
rc207.4 6 119.64 119.64 119.64 0 119.64 0
rc202.2 14 304.14 304.14 304.14 0 304.14 0
rc205.1 14 343.21 343.21 343.21 0 343.21 0
rc203.4 15 314.29 314.29 314.29 0 314.29 0
rc203.1 19 453.48 453.48 453.48 0 453.48 0
rc201.1 20 444.54 444.54 444.54 0 444.54 0
rc204.3 24 455.03 455.03 455.03 0 455.03 0
rc206.3 25 574.42 574.42 574.42 0 574.42 0
rc201.2 26 711.54 711.54 711.54 0 711.54 0
rc201.4 26 793.64 793.64 793.64 0 793.64 0
rc205.2 27 755.93 755.93 755.93 0 755.93 0
rc202.4 28 793.03 793.03 800.18 0.90 793.03 0
rc205.4 28 760.47 760.47 765.38 0.65 760.47 0
rc202.3 29 837.72 837.72 839.58 0.22 839.58 0.22
rc208.2 29 533.78 536.04 537.74 0.74 533.78 0
rc207.2 31 701.25 707.74 702.17 0.13 701.25 0
rc201.3 32 790.61 790.61 796.98 0.81 790.61 0
rc204.2 33 662.16 675.33 673.89 1.77 664.38 0.34
rc202.1 33 771.78 776.47 775.59 0.49 772.18 0.05
rc203.2 33 784.16 784.16 784.16 0 784.16 0
rc207.3 33 682.40 687.58 688.50 0.83 682.40 0
rc207.1 34 732.68 743.29 743.72 1.51 738.74 0.83
rc205.3 35 825.06 828.27 828.36 0.40 825.06 0
rc208.3 36 634.44 641.17 656.40 3.46 650.49 2.53
rc203.3 37 817.53 837.72 820.93 0.42 817.53 0
rc206.2 37 828.06 839.18 829.07 0.12 828.06 0
rc206.4 38 831.67 859.07 831.72 0.01 831.67 0
rc208.1 38 789.25 797.89 799.24 1.27 793.60 0.55
rc204.1 46 868.76 899.79 883.85 1.74 880.89 1.40
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[13] uses an evolutionary algorithm for tuning heuristics used to bias the level
0 of a Nested Monte-Carlo algorithm. The NRPA algorithm is somehow close
to the NMC algorithm, and a comparison between these two algorithms on a
set of TSPTW is interesting. The classic version of the NRPA algorithm does
not use any expert knowledge, but is still able to achieve good results on a lot
of problems (Table 1, fifth column). We provide the Relative Percentage Devia-
tion (RPD) for both NRPA (column 6) and NRPA EK (column 8). The RPD is
100× value - record

record . Here again, we show that adding expert knowledge is useful
and improves the algorithm. The NRPA EK version is able to find most state of
the art results (76.66%), as shown in column 7. For difficult problems, the best
results were obtained after 2 to 4 runs of the algorithm.

6 Conclusion

In this paper we study the generality of a nested rollout policy adaptation algo-
rithm by applying it to traveling salesman problems with time windows. Even
with no expert knowledge at all, the NRPA algorithm is able to find state of
the art results for problems for which the number of nodes is not too large. We
also experiment the addition of expert knowledge in this algorithm. With the
good results of the algorithm NRPA EK, we show the feasability of guiding the
rollout policy using domain-specific knowledge.

We show that adding expert knowledge significantly improves the results. It
has been shown in our experiments that the NRPA EK algorithm (the expert
knowledge version of the NRPA algorithm) is able to find most state of the art
results (76.66%), and has good results on other problems.

An extension of this work is the use of a pool of policies (instead of just having
one), in order to have an algorithmmore robust in front of local optima. Adapting
the parameters of the NRPA algorithm according to the problem difficulty is also
an interesting work.

Acknowledgement. This work has been supported by French National Re-
search Agency (ANR) through COSINUS program (project EXPLORA ANR-
08-COSI-004).
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Abstract. State-of-the-art algorithms for solving hard computational problems
often expose many parameters whose settings critically affect empirical perfor-
mance. Manually exploring the resulting combinatorial space of parameter set-
tings is often tedious and unsatisfactory. Automated approaches for finding good
parameter settings are becoming increasingly prominent and have recently lead
to substantial improvements in the state of the art for solving a variety of com-
putationally challenging problems. However, running such automated algorithm
configuration procedures is typically very costly, involving many thousands of
invocations of the algorithm to be configured. Here, we study the extent to which
parallel computing can come to the rescue. We compare straightforward paral-
lelization by multiple independent runs with a more sophisticated method of par-
allelizing the model-based configuration procedure SMAC. Empirical results for
configuring the MIP solver CPLEX demonstrate that near-optimal speedups can
be obtained with up to 16 parallel workers, and that 64 workers can still accom-
plish challenging configuration tasks that previously took 2 days in 1–2 hours.
Overall, we show that our methods make effective use of large-scale parallel
resources and thus substantially expand the practical applicability of algorithm
configuration methods.

1 Introduction

Heuristic algorithms are often surprisingly effective at solving hard combinatorial prob-
lems. However, heuristics that work well for one family of problem instances can per-
form poorly on another. Recognizing this, algorithm designers tend to parameterize
some of these design choices so that an end user can select heuristics that work well in
the solver’s eventual domain of application. The way these parameters are chosen often
makes the difference between whether a problem ends up being “easy” or “hard”, with
differences in runtime frequently spanning multiple orders of magnitude.

Traditionally, the problem of finding good parameter settings was left entirely to the
end user (and/or the algorithm designer) and was solved through manual experiments.
Lately, automated tools have become available to solve this algorithm configuration
(AC) problem, making it possible to explore large and complex parameter spaces (in-
volving up to more than seventy parameters with numerical, categorical, ordinal and
conditional values; e.g., [1, 2, 3]). Procedures for automated algorithm configuration
have advanced steadily over the past few years, and now can usually outperform default
settings determined by human experts even in very large and challenging configuration
scenarios. However, automated algorithm configuration is computationally expensive:
AC procedures involve repeatedly running the algorithm to be configured (the so-called
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target algorithm) with different parameter settings, and hence consume orders of mag-
nitude more computing time than a single run of the target algorithm.

Substantial amounts of computing time are now readily available, in the form of
powerful, multi-core consumer machines, large compute clusters and on-demand com-
modity computing resources, such as Amazon’s Elastic Compute Cloud (EC2). Nev-
ertheless, the computational cost of AC procedures remains a challenge—particularly
because the wall-clock time required for automated algorithm configuration can quickly
become a limiting factor in real-world applications and academic studies. As ongoing
increases in the amount of computing power per cost unit are now almost exclusively
achieved by means of parallelization, the effective use of parallel computing resources
becomes an important issue in the use and design of AC procedures.

Most AC procedures are inherently sequential in that they iteratively perform target
algorithm runs, learn something about which parameters work well, and then perform
new runs taking this information into account. Nevertheless, there are significant oppor-
tunities for parallelization, in two different senses. First, because all state-of-the-art AC
procedures are randomized, the entire procedure can be run multiple times in parallel,
followed by selection of the best configuration thus obtained. Second, a finer-grained
form of parallelism can be used, with a centralized process distributing sets of target
algorithm runs over different processor cores. Indeed, the literature on algorithm con-
figuration already contains examples of both the first [1, 4, 2, 3] and second [4, 5] forms
of parallelization.

Here, we present a thorough investigation of parallelizing automated algorithm con-
figuration. We explore the efficacy of parallelization by means of multiple indepen-
dent runs for two state-of-the-art algorithm configuration procedures, PARAMILS [4]
and SMAC [6], investigating both how to make the best use of wall-clock time (what
if parallel resources were free?) and CPU time (what if one had to pay for each CPU
hour?). We present a method for introducing fine-grained parallelism into model-based
AC procedures and apply it to SMAC. We evaluate the performance of the resulting
distributed AC procedure, D-SMAC, as in contrast to and in combination with paral-
lelization by means of multiple independent runs. Overall, we found that D-SMAC out-
performed independent parallel runs and achieved near-perfect speedups when using up
to 16 parallel worker processes. Using 64 parallel workers, we still obtained 21-fold to
52-fold speedups and were thus able to solve AC problems that previously took 2 days
in 1-2 hours.

2 Methods for Parallelizing Algorithm Configuration

In this section, we describe two methods for parallelizing algorithm configuration: per-
forming multiple independent runs and distributing target algorithms runs in the model-
based configuration procedure SMAC.

2.1 Multiple Independent Runs

Any randomized algorithm with sufficiently large variation in runtime can usefully
be parallelized by a simple and surprisingly powerful method: performing multiple
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independent runs (see, e.g., [7, 8, 9]). In particular, it has been shown that the runtime
of certain classes of local search procedures closely follows an exponential distribu-
tion [10], implying that optimal speedups can be achieved by using additional processor
cores. Likewise, some complete search procedures have been shown to exhibit heavy-
tailed runtime distributions, in which case multiple independent runs (or, equivalently,
random restarts) can yield parallelization speedups greater than the number of parallel
processes [8].

Multiple independent runs have also been used routinely in algorithm configuration
(although we are not aware of any existing study that characterizes the runtime distribu-
tions of these procedures). In our research on PARAMILS, we have adopted the policy
of performing 10 to 25 parallel independent runs, returning the configuration found by
the run with best training performance [1, 4, 2, 3], which can be formalized as follows:

Definition 1 (k-fold independent parallel version of configurator C). The k-fold
independent parallel version of configurator C, denoted k × C, is the configurator that
executes k runs of C in parallel, and whose incumbent at each time t is the incumbent
of the run with the best training performance at time t.

For a given time budget, PARAMILS may not be able to evaluate target algorithm per-
formance on all given training instances. In previous work, in such cases, we would
sometimes measure training performance on the entire training set at the end of each
of the independent configuration runs, selecting the final configuration based on those
data. To keep computational costs manageable, we did not do this in the work described
here. Also in previous work, we have observed that PARAMILS runs occasionally stag-
nate at rather poor configurations, and that in such cases k×PARAMILS can dramatically
improve performance. However, to the best of our knowledge, this effect has never been
quantified for PARAMILS, nor for any other AC procedure.

2.2 D-SMAC: SMAC with Distributed Target Algorithm Runs

Any state-of-the-art AC procedure could in principle be parallelized by distributing tar-
get algorithm runs over multiple cores. However, we are only aware of two examples
from the literature describing AC solvers that implement such fine-grained parallelism.
The first is the genetic algorithm GGA [5]; however, GGA always uses eight local work-
ers, regardless of machine architecture, and is unable to distribute runs on a cluster. Sec-
ond, in our own PARAMILS variant BASICILS [4], target algorithm runs were distributed
over a cluster with 110 CPUs [11]. This, however, took advantage of the fact that BASIC-
ILS performs a large number of runs for every configuration considered, and the same
fact explains why our standard PARAMILS variant FOCUSEDILS typically outperforms
BASICILS. 1 To the best of our knowledge, the effect of the number of parallel processes
on overall performance has not been studied for any of these configurators.

Here, we present a general and principled method for adding fine-grained paralleliza-
tion to SMAC, a recent model-based AC procedure [6]. SMAC is the focus of our current
work, because (1) it achieves state-of-the-art performance for AC [6] and (2) its explicit

1 The latest implementation of iterated F-Race [12] also supports parallelization of target algo-
rithm runs, but this feature has not (yet) been described in the literature.
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Algorithm 1. Sequential Model-Based Algorithm Configuration (SMAC)
R keeps track of all performed target algorithm runs and their performances (i.e., SMAC’s
training data); M is SMAC’s model; and Θnew is a list of promising configurations.

Input :Target algorithm with parameter configuration space Θ; instance set Π ; cost
metric ĉ

Output :Optimized (incumbent) parameter configuration, θinc

1 [R, θinc] ← Initialize(Θ, Π);
2 repeat
3 M ← FitModel(R);
4 Θnew ← SelectConfigurations(M, θinc, Θ);
5 [R, θinc] ← Intensify(Θnew , θinc, R, Π , ĉ);
6 until total time budget for configuration exhausted;
7 return θinc;

model of algorithm performance promises to be useful beyond merely finding good
configurations (e.g., for selecting informative problem instances or for gaining deeper
insights into the impact of parameter settings on target algorithm performance).

SMAC operates in 4 phases (see Algorithm 1). First, it initializes its data and incum-
bent configuration θinc—the best configuration seen thus far—using algorithm runs
from an initial design. Then it iterates between learning a new model, selecting new
configurations based on that model and performing additional runs to compare these
selected configurations against the incumbent.

The selection of new configurations is performed by optimizing a desirability func-
tion d(θ) defined in terms of the model’s predictive distribution for θ. This desirability
function serves to address the exploration/exploitation tradeoff between learning about
new, unknown parts of the parameter space and intensifying the search locally in the
best known region. Having found an incumbent with training performance fmin, SMAC
uses a classic desirability function measuring the expected positive improvement over
fmin, E[I(θ)] = E[max{0, fmin−f(θ)}]. Many other desirability functions have been
defined, such as the probability of improvement P[I(θ) > 0] [13], generalizations of
expected improvement E[Ig(θ)] for g > 1 [14], and the optimistic confidence bound
(−μθ + λσθ) for λ > 0 [13, 15].2 High values of all of these desirability functions re-
ward low predictive mean (to encourage minimization of the performance metric) and
high predictive variance (to encourage exploration of new regions).

Several methods have been proposed for identifying multiple desirable inputs to be
evaluated in parallel. Ginsbourger et al. [16] introduced the multipoints expected im-
provement criterion, as well as the “constant liar approach”: greedily select one new
input θ, using expected improvement, hallucinate that its response equals the current
model’s predictive mean μθ , refit the model, and iterate. Jones [13] demonstrated that
maximizing the optimistic confidence bound (−μθ + λσθ) with different values of λ
yields a diverse set of points whose parallel evaluation is useful.

2 For maximization problems, this desirability function is (μθ + λσθ) and is called the upper
confidence bound (UCB).
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In our distributed version of SMAC we follow this latter approach (slighly deviat-
ing from it by sampling λ uniformly at random from an exponential distribution with
mean 1 instead of using a fixed set of values for λ), since it also allows for the selection
step to be parallelized: each of k workers can sample a value for λ and then optimize
(−μθ + λσθ) independently. Surprisingly, although we originally chose it in order to
facilitate parallelization, in our experiments we found that this modified desirability
function sometimes substantially improved SMAC’s performance and never substan-
tially degraded it compared to the expected improvement criterion we used previously
(see Table 2 in Section 4).

The simplest way to parallelize SMAC would be to maintain the structure of Algo-
rithm 1, but to execute each major component in parallel, synchronizing afterwards.
The initialization can be parallelized easily, as it consists of randomly chosen target al-
gorithm runs. Model fitting also parallelizes, as SMAC uses random forest models: each
tree can be learned independently, and even subtrees of a single tree are independent.
Gathering k desirable and diverse configurations can be parallelized as described above,
and one can also parallelize the comparison of these configurations against the incum-
bent. We experimented with this approach, but found that when running on a compute
cluster, it suffered from high communication overhead: learning the model requires the
full input data, and optimizing the desirability function requires the model. Furthermore,
the model learning phase is unlikely to parallelize perfectly, since a constant fraction
of the time for building a regression tree is spent at the root of the tree. While we can
still parallelize perfectly across trees, we typically only use 10 trees in practice and are
interested in scaling to much larger numbers of parallel processes.

The parallelized version of SMAC we present here (dubbed D-SMAC) is therefore
based on a different approach, slightly changing the structure of SMAC to bypass the
chokepoint wherein more workers are available than can meaningfully be used to learn
the model. Algorithm 2 illustrates the new control flow. The important difference is
that D-SMAC maintains a queue of algorithm runs that is replenished whenever its cur-
rent state drops below the number of runs than can be handled in one iteration by the
parallel processes available. The intensification step—which compares challengers to
the incumbent—now merely queues up runs rather than executing them. The benefit
is that a master process can learn the model and select desirable new configurations
while worker processes are performing target algorithm runs (typically the most ex-
pensive operation in SMAC). The master could also execute target runs or parallelize
model learning and selecting configurations as necessary, to further balance load with
the workers. In our current implementation, we simply use a separate processor for
SMAC’s master thread; since the model overhead was low in our experiments, these
master threads spent most of their time idling, and we started several master processes
on a single CPU.3

We employed a lightweight solution for distributing runs on compute clusters. The
D-SMAC master writes command line call strings for target algorithm runs to desig-
nated files on a shared file system. Worker jobs submitted via the respective cluster’s

3 The model overhead grows with the number of data points, meaning that for long enough
configuration runs it could become a chokepoint. In such settings, the master could delegate
model learning to a slave, and update its model whenever the slave completed this work.
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Algorithm 2. Distributed Sequential Model-Based Algorithm Configuration
(D-SMAC)
Q is a queue of target algoritm runs to be executed; A is a set of runs currently assigned to
workers; R keeps track of all executed runs and their performances (i.e., SMAC’s training
data); M is SMAC’s model, and Θnew is a list of promising configurations. Initialize
performs

√
k runs for the default configuration and one run each for other configurations

from a Latin Hypercube Design.

Input :Target algorithm with parameter configuration space Θ; instance set Π ; cost
metric ĉ; number of workers, k

Output :Optimized (incumbent) parameter configuration, θinc

1 Q ← Initialize(Θ, Π , 2k);
2 A ← ∅; Move first k runs from Q to A and start the workers;
3 repeat
4 Wait for workers to finish, move the finished runs from A to R;
5 Θnew ← {θ | R received at least one new run with θ};
6 [Q, θinc] ← Intensify(Θnew , θinc, Q, R, Π , ĉ);
7 Move first k runs from Q to A and start the workers;
8 if |Q| < k then
9 M ← FitModel(R);

10 Θnew ← SelectConfigurations(M, θinc, Θ, k − |Q|);
11 [Q, θinc] ← Intensify(Θnew , θinc, Q, R, Π , ĉ);

12 until total time budget for configuration exhausted;
13 return θinc;

queueing software (in our case, Torque) listen on the designated files, carry out the re-
quested target run, and write the resulting performance to designated output files to be
read by the master. On the cluster we used, we found the overhead for this job dispatch
mechanism to be comparable to starting jobs on the local machine. Larger-scale deploy-
ment of D-SMAC would benefit from the use of an experimental framework such as
HAL [17] or EDACC [18].

3 Experimental Setup

Our configuration experiments in this paper focus on the optimization of the solution
quality that the mixed integer solver CPLEX can achieve in a fixed runtime. Specifi-
cally, we employed the five solution quality AC scenarios introduced in [2], as well as
one additional scenario described below. All of these AC scenarios use a lexicographic
objective function that first minimizes the number of instances for which no feasible
solution was found, and then breaks ties by the average optimality gap. To use this ob-
jective function in SMAC and D-SMAC (whose modelling step requires scalar objective
functions), we counted the “optimality gap” of runs that did not find a feasible solution
as 1010%. For a configuration scenario with test instance set S and fixed time limit per
CPLEX run L, we defined the test performance of a configuration run R as the aver-
age optimality gap CPLEX achieved on S in runs with time limit L when using the
incumbent parameter configuration of R.
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Table 1. Overview of CPLEX parameters and MIP benchmark sets used

Parameter type # parameters of this type # values considered Total # configurations
Boolean 6 (7) 2

Categorical 45 (43) 3–7
1.90 · 1047

Integer 18 5–7
Continuous 7 5–8

Benchmark Description
# instances Default performance

training test % infeasible mean opt. gap when feasible
MIK Mixed integer knapsack [19] 60 60 0% 0.142%
CLS Capacitated lot-sizing [20] 50 50 0% 0.273%

REGIONS200 Combinatorial winner determination [21] 1000 1000 0% 1.87%
CORLAT Wildlife corridor [22] 1000 1000 28% 4.43%

MASS Multi-activity shift scheduling [23] 50 50 64% 1.91%
RCW Spread of red-cockaded woodpecker [24] 1000 1000 0% 49%

Throughout our experiments, in order to study the test performance of k × C, the k-
fold independent parallel version of AC procedure C, we employed a bootstrap analysis.
Given a large population P of independent runs of C, we evaluated k×C by repeatedly
drawing k runs of C from P (with repetitions) and computing the test performance of
the best of the k runs (best in terms of training performance). This process yielded a
bootstrap distribution of test performance; we plot the median of this distribution at
each time step, show boxplots for the final state and carry out a Mann-Whitney U-test
for differences across different configurators (or different parallelization options).

To carry out a robust bootstrap analysis of k × C, a population of roughly 3 · k
runs of C is required. Since we wanted to evaluate the benefit of up to 64 independent
runs, we had to run each configurator 200 times on each configuration scenario. As a
result, we carried out over 5000 configuration runs, more than in all of our previously
published works on AC combined. Note that each individual configuration run involved
thousands of target algorithm runs. In total, the experiments for this paper (including
offline validation) took roughly 20 CPU years.

To fit within this time budget, we kept the original, relatively small configuration
budget for the five AC scenarios taken from [2]: five hours per AC run and ten seconds
per CPLEX run. Since the machines we used4 are a (surprisingly constant) factor of
just above 2 times faster than the machines used in [2], we divided both the runtime for
configuration runs and for individual CPLEX runs by 2 to keep the characteristics of the
AC scenarios as similar as possible to previously published work.

For the same reason, we used exactly the same parameter configuration space of
CPLEX 12.1, and the same mixed integer problems (MIPs) as in the original scenarios
from [2]. Briefly, we considered 76 parameters that directly affect the performance of
CPLEX. We carefully kept all parameters fixed that change the problem formulation
(e.g., numerical precision parameters). The 76 parameters we selected affect all aspects
of CPLEX. They include 12 preprocessing parameters; 17 MIP strategy parameters; 11

4 All of our experiments were carried out on the Westgrid Orcinus cluster
(http://www.westgrid.ca/), comprising 384 nodes with two Intel X5650 six-core
2.66 GHz processors each.
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cut parameters; 9 MIP limits parameters; 10 simplex parameters; 6 barrier optimization
parameters; and 11 further parameters. Table 1 gives an overview of these parameters
and of the MIP benchmarks we used; full details can be found in [2].

To study whether our findings for the short configuration runs above translate to
longer runs of the most recent CPLEX version (12.3) on more challenging benchmark
sets, we also carried out experiments on a new configuration scenario. The MIP in-
stances in this scenario come from the domain of computational sustainability; they
model the spread of the endangered red-cockaded woodpecker (RCW), conditional on
decisions about certain parcels of land to be protected. We generated 2000 instances us-
ing the generator from [24] (using the five hardest of their eleven maps). CPLEX 12.3’s
default configuration could solve 7% of these instances in two minutes and 75% in one
hour. The objective in our RCW configuration scenario was to minimize the optimality
gap CPLEX could achieve within two minutes, and the AC budget was two days.

Throughout our experiments, we accounted for the inherent runtime overheads for
building and using models, but we did not count the constant overhead of starting jobs
(either as part of the per-run budget or of the configuration budget), since this can be
reduced to almost zero in a production system. We computed the wall clock time for
each iteration of D-SMAC as the maximum of the master’s model learning time and the
maximum of the CPU times of the parallel algorithm runs it executed in parallel.

4 Experiments

We studied the parallelization speedups obtained by using multiple independent runs
and by using fine-grained parallelism in D-SMAC. As a side result, we were able to
show for the first time that SMAC (in its sequential version) achieves state-of-the-art
performance for optimizing a measure of solution quality that can be obtained in a
fixed time (rather than minimizing the runtime required to solve a problem).

4.1 Multiple Independent Runs

First, we assessed the baseline performance of the three sequential AC procedures
we used: PARAMILS, SMAC, and D-SMAC(1). PARAMILS has been shown to achieve
state-of-the-art performance for the five configuration scenarios we study here [2], and
Table 2 demonstrates that SMAC and D-SMAC(1) perform competitively, making all
procedures natural candidates for parallelization. The right part of Table 2 compares the
performance of the multiple independent run versions 25×PARAMILS, 25×SMAC, and
25×D-SMAC, showing that PARAMILS benefitted more from multiple runs than the two
SMAC versions. The raw data (not shown) explains this: the variance of PARAMILS’s
performance was higher than for either SMAC version.

Table 3 quantifies the speedups gained by multiple independent runs of the AC
procedures. For the two versions of SMAC, speedups were consistent and sometimes
near-perfect with up to 4 independent runs. Due to larger performance variation
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Table 2. Statistics for baseline comparison of configuration procedures. We show median test
performances achieved by the base AC procedures (left), and their k-fold parallel independent
run versions with k = 25 (recall that test performance is the average optimality gap across test
instances, counting runs with infeasible solutions as a gap of 1010%). We bold-faced entries
for configurators that are not significantly worse than the best configurator for the respective
configuration space, based on a Mann-Whitney U test.

Scenario Unit
Median test performance Median test performance
PILS SMAC d-SMAC(1) 25×PILS 25×SMAC 25×d-SMAC(1)

CLS [0.1%] 2.36 2.43 2.00 1.38 1.41 1.35
CORLAT [108%] 17.6 3.17 2.95 4.20 0.82 0.72

MIK [0.01%] 6.56 6.59 2.78 0.44 2.08 0.73
Regions200 [1%] 1.69 1.8 1.83 0.85 1.16 1.14

MASS [109%] 6.40 3.68 3.47 4.00 2.36 2.29

Table 3. Speedups achieved by using independent parallel runs of various AC procedures C. We
give the speedups of 4 × C over C, 16 × C over 4 × C, and 64 × C over 16 × C. The speedup
of procedure C1 over procedure C2 is defined as the time allocated to C2 divided by the time C1

required to reach (at least) C2’s final solution quality. We do not report speedups of 16 × C and
64 × C over C directly since C often found very poor results in the small configuration budget
allowed, the time to find which is not indicative of a procedure’s ultimate performance.

Scenario
PARAMILS SMAC D-SMAC(1)

1→4× 4→16× 16→64× 1→4× 4→16× 16→64× 1→4× 4→16× 16→64×
CLS 5.02 2.87 1.66 5.72 2.33 1.50 1.92 2.09 1.75

CORLAT 12.1 4.75 4.22 2.45 2.10 1.15 3.93 2.31 1.00
MIK 8.29 3.10 2.29 3.22 3.45 4.01 2.37 2.91 1.02

Regions200 5.59 3.65 2.94 3.04 1.49 1.76 3.14 3.08 2.39
MASS 4.00 5.78 1.00 1.62 1.44 1.36 2.24 1.49 1.00

between independent runs, the parallelization speedups obtained for PARAMILS were
more pronounced: perfect or higher-than-perfect speedups were observed for all scenar-
ios with up to 4 independent runs, and the speedup factor obtained when moving from
4 to 16 independent parallel runs was still almost 4.

Figures 1 and 2 visualize the speedups achieved for two representative configuration
scenarios. As the left column of Figure 1 shows, for benchmark set Regions200 addi-
tional independent runs yielded consistent speedups in wall clock time for all configura-
tors. The right column shows that, as the runtime spent in a PARAMILS or D-SMAC(1)
run increases for this benchmark set, k×PARAMILS and k×D-SMAC(1) tend to use
their combined CPU time about as well as their respective sequential versions with a
k-fold larger time budget. Figure 2 visualizes the results for benchmark set CORLAT,
showing an interesting effect by which k×PARAMILS and k×SMAC can actually per-
form worse in their early phases as k increases. This effect is due to the fact that training
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Fig. 1. Evaluation of k-fold parallel independent run versions of PARAMILS, SMAC, and D-
SMAC(1) on benchmark set Regions200. For each configurator C, k*C denotes k×C.
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Fig. 2. Evaluation of k-fold parallel independent run versions of PARAMILS, SMAC, and D-
SMAC(1) on benchmark set CORLAT
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Table 4. Wall clock speedups over D-SMAC(1) with different numbers of distributed workers
in SMAC. The speedup of procedure C1 over procedure C2 is defined as the time allocated to C2

divided by the time C1 required to reach (at least) C2’s final solution quality. For consistency with
Table 3, we give the speedups of 4× C over C, 16× C over 4× C, and 64× C over 16 × C. We
also report the speedups of 16× C over C, and of 64× C over C.

Scenario 1→4× 4→16× 16→64× 1→4× 1→16× 1→64×
CLS 6.22 2.87 2.55 6.22 16.2 41.2

CORLAT 4.04 3.35 1.95 4.04 13.7 27.3
MIK 2.40 4.70 1.56 2.40 11.9 21.3

Regions200 2.61 10.9 1.25 2.61 41.3 52.3
MASS 2.21 3.44 2.41 2.21 9.76 21.5

performance can be negatively correlated with progress in the early phase of the search;5

it is clearly visible as the crossing of lines in Figure 2 (left column). Another interest-
ing effect for this scenario is that 4×PARAMILS achieved higher-than-perfect speedups
(visible as the crossing of lines for PARAMILS in the right column of Figure 2).

4.2 Distributed SMAC

We now evaluate the parallelization speedups obtained by D-SMAC with a varying num-
ber of parallel worker processes. As shown in Table 4, these speedups were greater than
those for multiple independent runs, with near-perfect speedups up to 16 workers and
speedup factors between 1.2 and 2.6 for increasing the number of workers by another
factor of 4 to 64. Overall, D-SMAC(64)’s speedups in the time required to find configu-
rations of the same quality as D-SMAC(1) were between 21 and 52. Figure 3 visualizes
the results for three configuration scenarios. The left side of this figure demonstrates
that the substantial speedups D-SMAC achieved with additional workers were consis-
tent across scenarios and across D-SMAC’s trajectory.6 In particular, speedups for early
phases of the search were much more robust than for parallelization by multiple inde-
pendent runs. The right side of Figure 3 demonstrates that D-SMAC(p) used its com-
bined CPU time almost as well as D-SMAC(1) would, but required a factor p less wall
clock time.

5 PARAMILS starts from the default configuration, which finds a feasible solution for 72% of the
instances. The configuration scenario’s objective function heavily penalizes target algorithm
runs that do not find a feasible solution and no configuration is found that finds a feasible
solution for all training instances. Thus, any configuration run that has made enough progress
will have a worse training performance than configuration runs that are still stuck having done
only a few successful runs on the default. The larger we grow k in k×PARAMILS, the more
likely it is that one of the runs will be stuck at the default up to any given time (having seen only
successful runs for the default), making k×PARAMILS’s incumbent the default configuration.

6 The only exception is that D-SMAC(4) performed better than D-SMAC(16) early in the
search for scenario CORLAT. Here, several of the D-SMAC(4) runs started out an order mag-
nitude faster than D-SMAC(1); however, after about 60 seconds of search time D-SMAC(16)
dominated D-SMAC(4) as expected.
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Fig. 3. Parallelization benefits for D-SMAC with different numbers of workers. (Plots in the left
and right columns are based on different bootstrap samples.)

4.3 Multiple Independent Runs of Distributed SMAC

Next, we studied various allocations of a fixed number of N = 64 CPUs to inde-
pendent runs of D-SMAC (that is, different variants of k× D-SMAC(p) with constant
k × p = 64). Figure 4 shows that 1× D-SMAC(64) tended to perform better than the
other combinations across all domains and time budgets. Table 5 shows that, given the
same time budget of 10 CPU hours (or 562.5 wall seconds on 64 processors), 1× D-
SMAC(64) statistically significantly outperformed all other combinations we tested in
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Table 5. Performance comparison of various possibilities of allocating 64 cores for a wall clock
time of 560 seconds in D-SMAC. For each combination of independent runs and number of
workers in D-SMAC, we show median test performance; we bold-faced entries for configurators
that were not significantly worse than the best configurator for the respective configuration space,
based on a Mann-Whitney U test.

Scenario Unit
Bootstrap median of average test set performance

64× d-SMAC(1) 16× d-SMAC(4) 4× d-SMAC(16) d-SMAC(64)
CLS [0.1%] 2.37 1.96 1.76 1.81

CORLAT [108%] 10.9 3.41 1.96 2.26
MIK [0.01%] 8.68 1.2 2.03 2.46

Regions200 [1%] 1.91 1.77 1.58 1.52
MASS [109%] 3.88 4.00 3.39 3.2
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Fig. 4. Comparison of different ways of using 64 cores in d-SMAC

2 of 5 cases, and tied for best on the remaining 3 cases. These results demonstrate that
performing a small number of parallel independent runs of D-SMAC(p) can be useful,
but that using all available processors in D-SMAC(p) tends to yield the best perfor-
mance. While these results do not preclude the possibility that for even higher degrees of
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Fig. 5. Performance comparison of various possibilities of allocating 64 cores in d-SMAC; k*dp
denotes k independent runs of D-SMAC(p), with k ∗ p = 64. For each combination of k and p,
we show boxplots of test set performance, using the same data as underlying Figure 4 .
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(b) Best of 25 independent runs

Fig. 6. Comparison of PARAMILS, SMAC, and D-SMAC(64) for configuration on the challeng-
ing instance set RCW. We plot median performance across 25 configuration runs on the left, and
performance of the run with best training performance on the right.

parallelization multiple independent runs of D-SMAC might be more beneficial, they do
provide evidence that D-SMAC’s fine-grained parallelization strategy is effective.

4.4 Evaluation on a Hard Instance Distribution

Finally, we investigated whether similar speedups could be obtained for configuration
on more challenging benchmark sets, comparing the performance of PARAMILS, SMAC,
D-SMAC(1), and D-SMAC(64) for configuration scenario RCW. We performed 200
runs of PARAMILS and SMAC with a configuration budget of 2 days each, as well
as 25 runs of D-SMAC(64) with a budget of three wall clock hours (for a combined
budget of 8 CPU days). Figure 6 shows median test performance for each of these
procedures. While the SMAC variants did not yield noticeable improvements over the
CPLEX default configuration in its time budget, PARAMILS found somewhat better con-
figurations. D-SMAC(64) already improved over the default configuration after roughly
20 wall clock minutes, required less than one wall clock hour to find a configuration as
good as the one PARAMILS found after 2 days, and consistently improved afterwards.
We also studied the performance of 25×PARAMILS, 25×SMAC, 25×D-SMAC(1), and
25×D-SMAC(64) for this benchmark set. Multiple independent runs improved the per-
formance of all configurators. 25×D-SMAC(64) performed best, requiring roughly two
hours to achieve the performance 25×PARAMILS and 25×D-SMAC(1) achieved in two
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days. It also matched D-SMAC(64)’s final performance in roughly a quarter of the time
and found substantially better configurations afterwards. While a single run of D-SMAC
(1600) might have yielded even better performance (we did not try, for lack of comput-
ing resources), this result shows that even AC procedures that implement large-scale
fine-grained parallelism can benefit from performing multiple independent runs.

5 Conclusion

Parallel computing is key to reducing the substantial amount of time required by auto-
matic algorithm configuration methods. Here, we presented the first comparative study
of the two fundamental approaches for parallelizing automated configuration
procedures—multiple independent runs and fine-grained parallelization—investigating
how effective each of them is in isolation and to which extent they complement each
other. We showed that the generic multiple independent runs parallelization approach
is suprisingly effective when applied to the state-of-the-art configuration procedures
PARAMILS and SMAC. We also introduced D-SMAC, a fine-grained parallelization of
the state-of-the-art model-based algorithm configuration procedure SMAC, and showed
that it achieves even better parallelization efficiencies, with speedups up to around 50
when using 64 parallel worker processes on a cluster of standard quad-core machines.
Overall, we showed that using 64 parallel workers can reduce the wall clock time neces-
sary for a range of challenging algorithm configuration tasks from 2 days to 1-2 hours.
We believe that reductions of this magnitude substantially expand the practical applica-
bility of existing algorithm configuration procedures and further facilitate their integra-
tion into the algorithm design process.
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Abstract. The community detection in complex networks is an important prob-
lem in many scientific fields, from biology to sociology. This paper proposes
a new algorithm, Differential Evolution based Community Detection (DECD),
which employs a novel optimization algorithm, differential evolution (DE) for
detecting communities in complex networks. DE uses network modularity as the
fitness function to search for an optimal partition of a network. Based on the
standard DE crossover operator, we design a modified binomial crossover to ef-
fectively transmit some important information about the community structure in
evolution. Moreover, a biased initialization process and a clean-up operation are
employed in DECD to improve the quality of individuals in the population. One
of the distinct merits of DECD is that, unlike many other community detection
algorithms, DECD does not require any prior knowledge about the community
structure, which is particularly useful for its application to real-world complex
networks where prior knowledge is usually not available. We evaluate DECD on
several artificial and real-world social and biological networks. Experimental re-
sults show that DECD has very competitive performance compared with other
state-of-the-art community detection algorithms.

Keywords: Community structure, graph partitioning, evolutionary computation,
Differential Evolution.

1 Introduction

In the fields of science and engineering, there exist various kinds of complex systems
which can be represented as complex networks naturally, such as social networks [26]
and the Internet [7]. A complex network consists of nodes (or vertices) and edges (or
links) which respectively represent the individual members and their relationships in
systems [5]. In recent years, the study of complex networks has attracted more and
more attention [1,13,16,30].
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Complex networks possess many distinctive properties [12], of which community
structure [4] is one of the most studied. The community structure is usually considered
as the division of networks into subsets of vertices within which intra-connections are
dense while between which inter-connections are sparse [4,12]. Identifying the commu-
nity structure is very helpful to obtain some important information about the relation-
ship and interaction among nodes.

To detect the underlying community structure in complex networks, many success-
ful algorithms have been proposed so far [4,12]. However, the community detection in
networks is a nondeterministic polynomial (NP) hard problem. Most of current commu-
nity detection algorithms based on greedy algorithms perform poorly on large complex
networks. Moreover, many algorithms for community detection also require some prior
knowledge about the community structure, e.g., the number of the communities, which
is very difficult to be obtained in real-world networks.

To overcome these drawbacks, this paper proposes a new community detection algo-
rithm based on Differential Evolution (DE), named DECD. To the best of our knowl-
edge, it is the first time DE is introduced for community detection. In DECD, DE is
used to evolve a population of potential solutions for network partitions to maximize
the network modularity [20]. It is worth mentioning that DECD does not require any
prior knowledge about the community structure when detecting communities in net-
works, which is is beneficial for its applications to real-world problems where prior
knowledge is usually not available.

Apart from introducing DE for community detection, other key contributions of this
paper include: 1) the design of an improved version of the standard binomial crossover
in DE to transmit some important information about the community structure during
evolution in DECD; 2) a biased process and a clean-up operation similar to [31] is
introduced to DECD to improve the quality of the individuals in the population; 3) a
thorough evaluation of the performance of DECD on artificial and two real-world social
networks, which achieved better results than other state-of-the-art community detection
algorithms. 4) the application of DECD to a Yeast interacting protein dataset [10], which
achieve the best results in the literature.

The remainder of this paper is organized as follows. Section 1.1 introduces some
basic ideas of DE. In Section 1.2, some of the most popular algorithms for community
detection are briefly reviewed. Section 2 presents a detailed description of DECD. In
Section 3, the performance of DECD is tested on artificial and real-world networks and
then the experimental results are discussed. Finally, Section 4 concludes this paper.

1.1 Differential Evolution

Differential evolution (DE) is a very simple yet efficient evolutionary algorithm pro-
posed by Storn and Price in 1995 [29]. DE starts the search with an initial population
containing NP individuals randomly sampled from the search space. Then, one individ-
ual called the target vector in the population is used to generate a mutant vector by the
mutation operation. The most popular mutation strategy [17,18] which is also employed
in DECD is the ”rand/1” strategy as follows:

vi = xr1 + F × (xr2 − xr3), (1)
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where i ∈ {1, 2, . . . , NP}, r1, r2 and r3 are integers randomly selected from
1, 2, . . . , NP and satisfy r1 
= r2 
= r3 
= i, the scaling factor F is usually a real
number between 0 and 1, the decision vector xi = (xi,1, xi,2, . . . , xi,n) with n deci-
sion variables is the individual in the population and also called the target vector, and
vi = (vi,1, vi,2, . . . , vi,n) is the mutant vector.

After mutation, all the components of the mutant vector are checked whether they vi-
olate the boundary constraints. If the jth component vi,j of the mutant vector vi violates
the boundary constraint, vi,j is reflected back from the violated boundary constraint as
follows [14]:

vi,j =

⎧⎪⎨⎪⎩
2LBj − vi,j , if vi,j < LBj

2UBj − vi,j , if vi,j > UBj

vi,j otherwise ,

(2)

where LBj and UBj are the lower and upper bounds of the ith decision variable xi,
respectively.

Subsequently, the crossover operation is implemented on the mutant vector vi and
the target vector xi to generate a trial vector ui. A commonly used crossover operation
is the binomial crossover which is executed as follows:

ui,j =

{
vi,j , if rand ≤ CR or j = jrand

xi,j , otherwise ,
, (3)

where i ∈ 1, 2, . . . , NP , j ∈ 1, 2, . . . , n, rand is a uniformly distributed random num-
ber between 0 and 1, jrand is a randomly selected integer from 1 to n, CR is the
crossover control parameter, and ui,j is the jth component of the trial vector ui.

Finally, the target vector xi is compared with the trial vector in terms of the objective
function value and the better one survives into the next generation:

xi =

{
ui, if f(ui) ≤ f(xi)

xi, otherwise.
(4)

1.2 Related Work

During the past decade, the research on analyzing the community structure in complex
networks has drawn a great deal of attention. Meanwhile, various kinds of algorithms
have been proposed. Some of the most known algorithms are reviewed as follows.

Girvan and Newman [12] proposed the Girvan-Newman (GN) algorithm which is
one of the most known algorithms proposed so far. This algorithm is a divisive method
and iteratively removes the edges with the greatest betweenness value based on be-
tweenness centrality [9]. Newman [19] presented an agglomerative hierarchical cluster-
ing method based on the greedy optimization of the network modularity. This method
iteratively joins communities of nodes in pairs and chooses the join with the greatest
increase in the network modularity at each step. Moreover, based on the original strate-
gies, its faster version [4] was proposed by using some shortcuts and some sophisticated
data structures. Radicchi et al. [24] presented the definitions of communities in both a
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strong sense and a weak sense. Moreover, in their paper a division algorithm [24] was
proposed to detect communities by removing edges with the smallest value of edge clus-
ter coefficient. Duch and Arenas [6] presented a division method which uses a heuristic
search based on the extremal optimization to optimize the network modularity to detect
communities in networks. Rosvall and Bergstrom [25] developed an algorithm based
on an information-theoretic framework which identifies the communities by finding an
optimal compression of the topology and capitalizing on regularities in the structure of
networks.

However, some of the above community detection algorithms have large computa-
tional complexity and are unsuitable for very large networks. Moreover, a priori knowl-
edge about the community structure (e.g., the number of communities) which is not
easy or impossible to obtain in real-world networks is also required in most of the
above algorithms [31]. To overcome the drawbacks, algorithms based on evolutionary
algorithms have been proposed. These algorithms are very effective for community de-
tection especially in very large complex networks. Tasgin and Bingol [31] presented
an approach based on a genetic algorithm to optimize the network modularity in order
to find community structures in networks. Pizzuti [21] proposed a method based on a
genetic algorithm to discover communities in networks. This method defines the com-
munity score to measure the quality of a partitioning in communities of networks and
uses a genetic algorithm to optimize the community score. Chen et al. [3] presented an
algorithm based on the immune clone selection algorithm which is employed to opti-
mize the modularity density [15] to identify communities in networks.

2 The Proposed Algorithm

In this paper, a new algorithm based on DE called DECD is proposed for community
detection in complex networks. DECD uses DE as the search engine and employs the
network modularity as the fitness function to evolve the population. Next, DECD is
described in detail.

2.1 Individual Representation

DECD uses the community identifier-based representation proposed in [31] to repre-
sent individuals in the population for the community detection problem. For a graph
G = (V,E) with n nodes modeling a network, the kth individual in the population is
constituted of n genes xk = {x1, x2, . . . , xn} in which each gene xi can be assigned
an allele value j in the range {1, 2, . . . , n}. The gene and allele represent the node and
the community identifier (commID) of communities in G respectively. Thus, xi = j
denotes that the node i belongs to the community whose commID is j, and nodes i and
d belong to the same community if xi = xd. Since DECD puts nodes in communities
randomly when initializing, at most n communities exist in G and then the maximum
value of commID is n.

In the above representation, all the communities in G and all the nodes belonging to
each community can be identified straightforwardly from individuals in the population.
The community identifier-based representation is very simple and effective. Moreover,



Community Detection in Social and Biological Networks Using DE 75

the number of communities is automatically determined by the individuals and no de-
coding process is required in this representation.

For example, Figure 1.(a) shows a network containing 12 nodes numbered from 1 to
12. According to the definition of the community structure, the network is divided into
three communities visualized by different colors of nodes. Figure 1.(b) is the genotype
of the optimal solution for the community structure of the network, while the graph
structure of the genotype is given in Figure 1.(c).

Fig. 1. (a) a graph model of a network; (b) the community identifier-based representation of a
genotype; (c) the graph structure of the genotype

2.2 Fitness Function

Newman and Girvan [20] proposed the network modularity to measure the strength
of the community structure found by algorithms. The network modularity is a very
efficient quality metric for estimating the best partition of a network into communities.
It has been used by many community detection algorithms recently [4,19,31].

DECD also employs the network modularity which is maximized as the fitness func-
tion to evaluate individuals in the population. The network modularity is defined as
follows [31].

Q =

m∑
j=1

[
lj
L
−
(
dj
2L

)2
]
, (5)
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where j is the commID, m is the total number of communities, lj is the number of links
in module j, L is the total number of edges in the network and dj is the degree of all
nodes in module j.

2.3 Initialization

At the beginning of the initialization process, DECD places each node into a random
community by assigning a random commID and generates individuals in the initial
population.

However, the above random generation of individuals is likely to cause some unrea-
sonable results such that a community contains some nodes having no connectivity with
each other in the original graph. Considering that nodes in the same community should
connect with each other and in the simple case are neighbors, a biased process [31] is
used to overcome the above drawbacks, that is, once an individual is generated, some
nodes represented by genes in the individual are randomly selected and their commIDs
are assigned to all of their neighbors. By the biased process, the space of the possi-
ble solutions is restricted and the convergence of DECD is improved. Through these
operations, the initial population P0 is generated.

2.4 Mutation

DECD employs the ”rand/1” strategy to mutate individuals in the population. The
”rand/1” strategy is a very efficient mutation strategy. It has no bias to any special
search directions and chooses new search directions in a random manner by randomly
selecting individuals for mutation [33].

When implementing the ”rand/1” strategy, firstly three different individuals xr1 ,
xr2 and xr3 are randomly selected from Pt, where r1, r2, r3 ∈ {1, . . . , NP}, NP is
the population size and t is the generation number. Then these three individuals follow
the equation (1) and generate a mutant vector v which is put into the mutant population
Vt. The above two steps are executed iteratively until the population size of Vt is NP .

Subsequently, all the components of each mutant vector in Vt are checked whether
they violate the boundary constraints. If violating the boundary constraint, the compo-
nent is reflected back from the violated boundary by following the equation (2). Then,
a mutant population Vt satisfying all the boundary constraints is obtained.

2.5 Crossover

Since DECD randomly assigns an integer in the range {1, 2, . . . , n} to each individual
in the population as its commID, no one-to-one absolute corresponding relationship ex-
ists between the communities and commIDs. That is, for different individuals the same
community may have different commIDs while the same commID is likely to repre-
sent different communities. For example, with respect to two individuals (1, 2, 1, 3)
and (2, 1, 2, 3), the community with the commID equals to 1 for the first individual and
the one with the commID equals to 2 for the second individual are the same community.
Meanwhile, the communities with the commID equals to 1 for these two individuals are
different although they have the same commID.
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For individuals represented by the community identifier-based representation, the
traditional crossover operators (e.g., the binomial crossover) do not work well. This
is because they just simply change the commIDs and never consider nodes in their
communities. As a result, the offspring individuals fail to inherit good genes from the
parent individuals and the search ability is heavily impaired.

Considering the above reasons, DECD designs a modified binomial crossover based
on the binomial crossover to enhance the search ability. Inspired by the modified
crossover operation [31], the modified binomial crossover assigns the commIDs of
some nodes in an individual to those corresponding nodes in another individual. The
implementation of the modified binomial crossover is as follows.

Firstly, the trial vector ui = xi is set for every i ∈ 1, 2, . . . , NP . Subsequently,
the jth components in ui and the mutant vector vi are considered for every j ∈
{1, 2, . . . , n} and every i ∈ {1, 2, . . . , NP}. If rand ≤ CR or j = jrand, all the
nodes in the community whose commID is vi,j of v are found, and then the commIDs
of all those corresponding nodes of ui are assigned the value vi,j which means all those
corresponding nodes of ui are put into the community whose commID is vi,j ; other-
wise, no operation will be performed on ui . Therein, rand is a uniformly distributed
random number between 0 and 1, jrand is a randomly selected integer from 1 to n, and
CR is the crossover control parameter. Finally, the trial vectors Ut = {u1, . . . ,uNP }
are obtained.

From the above process, it can be seen that the trial vectors are able to obtain some
useful information about the community structure from both the target vectors and the
trial vectors. Therefore, the modified binomial crossover is very helpful for identifying
communities in networks.

2.6 Clean-Up Step

Since DE is a stochastic optimization algorithm, the solutions for the community di-
vision are likely to have some mistakes in evolution, that is, some nodes may be put
into wrong communities. These mistakes impair the search ability of DECD and make
it get stuck in a local optimum, ultimately leading to community divisions with inferior
quality.

To solve the above problem, DECD adopts the clean-up operation proposed by Tas-
gin and Bingol [31], which effectively corrects the mistakes of putting nodes into wrong
communities in both mutant and trial vectors and improves the search ability of. The
clean-up operation is based on the community variance CV (i), which is defined as the
fraction of the number of different communities among the node i and its neighbors to
the degree of the node i as follows:

CV (i) =

∑
(i,j)∈E neq(i, j)

deg(i)
, (6)

where neq(i, j) =

{
1, if commID(i) 
= commID(j)

0, otherwise
, deg(i) is the degree of the ith

node, E is the set of edges, and commID is the community containing ith node.
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According to the classic definition of the community structure, a community should
contain more internal edges among nodes inside the community than external edges
with other communities. Thus, a node and all its neighbors should be in the same com-
munity with a high probability, and then the community variance of this node should be
low in a good community division. Based on the above analysis, the clean-up operation
is performed as follows. Firstly, some nodes are randomly selected. Then, for each of
these nodes, its community variance is computed and compared with a threshold value
η which is a predefined constant obtained after some experiments. If the community
variance of this node is larger than this threshold value η, which indicates that the node
has been put into a wrong community, then this node and all its neighbors are placed
into the same community containing the highest number of nodes in the neighborhood
of this node. Otherwise, no operation is executed for this node.

2.7 DECD Algorithm Framework

Finally, the framework of DECD is described as follows:
Step 1) Set t = 0 where t denotes the generation number.
Step 2) Generate the initial population P0 = {x1, . . . ,xNP } by uniformly and ran-

domly sampling NP points from the search space S.
Step 3) Compute the network modularity value Q(xi) of each individual xi in P0.
Step 4) Perform the mutation operation (see Section 2.4 for details) on each individ-

ual xi in Pt and obtain the mutant vectors Vt = {v1, . . . ,vNP }.
Step 5) Correct the mistakes in each mutant vector vi in Vt by executing the clean-up

operation (see Section 2.6 for details).
Step 6) Execute the modified binomial crossover (see Section 2.5 for details) on each

mutant vector vi in Vt and generate the trial vectors Ut = {u1, . . . ,uNP }.
Step 7) Correct the mistakes in each trail vector ui in Ut by executing the clean-up

operation (see Section 2.6 for details).
Step 8) Calculate the network modularity value Q(ui) of each trial vector ui in Ut.
Step 9) Compare xi with ui (i = 1, . . . , NP ) in terms of the network modularity

value by following the equation (4), and put the winner into the next population Pt+1.
Step 10) Set t = t+ 1.
Step 11) If the termination criterion is not satisfied, go to Step 4; otherwise, stop and

output the best individual xbest in Pt.

3 Experiments and Results

In this section, the performance of DECD is tested on a class of widely used artifi-
cial networks and some well studied real world social and biological networks. DECD
is implemented in MATLAB and all the experiments are performed on Windows XP
SP2 with Pentium Dual-Core 2.5GHz processor and 2.0GB RAM. The parameters in
DECD are set as follows: the population size NP = 200, the scaling factor F = 0.9,
the control crossover parameter CR = 0.3, the threshold value η = 0.35 and the maxi-
mum number of generations is 200. In each run, DECD is stopped when the maximum
number of generations is reached.
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Fig. 2. The fraction of vertices correctly classified by DECD, GACD and GN as the average zout
of inter-community edges per vertex is varied for the computer-generated networks

For comparison, we implement another community detection algorithm based on
GA, named GACD. We adopt the MATLAB Genetic Algorithm Optimization Toolbox
(GAOT) to optimize the network modularity to detect communities in networks. The
GA we use is real encoded GA with heuristic crossover and uniform mutation. More-
over, for the sake of fairness, the same biased process and the clean-up
operation in DECD are employed. The values of all the parameters use in the ex-
periments are the default parameters in GAOT. We also adopt MATLAB implemen-
tations of Girvan-Newman (GN) algorithm from Matlab Tools for Network Analysis
(http://www.mit.edu/˜gerganaa) for comparison.

3.1 Artificial Networks

To evaluate the performance of DECD of detecting network community structure, ar-
tificial computer-generated networks are employed. The computer-generated networks
were proposed by Girvan and Newman and have been widely used to benchmark the
community detection algorithms [12]. Each network has 128 nodes which are divided
into 4 communities each with 32 nodes. Each node has an average zin edges connecting
it to members of the same community and zout edges to members of other communi-
ties. Moreover, zin and zout are chosen to satisfy the total expected degree of a node
zin + zout = 16. The community detection algorithms with good performance should
discover all the communities in the network with zin > zout which indicates that the
neighbors of a node inside its community are more than the neighbors contained by the
other three communities. According to the definition of the community structure, the
community structure in the network becomes vaguer with the zout increases.
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Figure 2 summarizes the experimental results and shows the fraction of nodes cor-
rectly divided into the four communities with respect to zout by DECD, GACD and GN
[12], respectively.

From Figure 2, it can be seen that DECD performs significantly better than GN when
zout > 6 while they perform the same when zout ≤ 6. Comparing with GACD, DECD
also performs much better when zout > 7 and they have the same performance when
zout ≤ 7. The results show that DECD is very effective for detecting communities in
networks, even those with very vague community structures.

3.2 Real-World Social Networks

In this paper, two real-world social networks, i.e., the Zachary’s karate club network
[36] and the American college football network cite8Girvan2002, are also employed
to further verify the performance of DECD. Both these two real-world social networks
are well-known benchmark examples for the community detection algorithms and have
been well studied in the literatures. Both networks have known (true) community struc-
tures, which provide gold-standard for validating our DECD algorithm.

The first social network is the Zachary’s karate club network, which shows the friend-
ships between the members of a karate club at an University. The network contains 34
nodes and 78 edges. The most interesting feature of the network is that the club split
into two as a result of an internal dispute, which provides a ground-true community
division of the network.

The American college football network [12] has a known community structure. The
network is a representation of the schedule of Division I games for the 2000 games. In
the football network, there are 115 nodes and 616 edges divided into 12 communities,
where nodes and edges represent the teams (identified by their college names) and the
regular season games between the two teams they connect, respectively. The teams are
divided into ”conferences” and each conference contains around 8 to 12 teams. The
teams play an average of about 4 inter-conference games and 7 intra-conference games
which indicates that games are more frequent between members of the same conference
than between members of different conferences.

As pointed out in [28] and [34], performance metrics based on network modularity
Q is not reliable. Therefore, apart from Q, we also adopt accuracy as a quantitative
measure for validating DECD as used in [28]:

Accuracy =

∑n
k=1 equal(tk, pk)

n
, (7)

where

equal(x, y) =

{
1, if commID(x) = commID(y)

0, otherwise
,

and tk is the kth node in the true (known) network structure, and pk is the kth node in
the predicted network structure.

Since DECD and GACD are stochastic optimization algorithms, we perform the ex-
periments 30 times on these two networks. The average values Qavg and Accavg of Q
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and accuracy and their best values Qbst and Accbst, are compared with that obtained
by GN (a deterministic algorithm) from one run of experiment in Table 1. In order to
run the GN algorithm, we need to specify the number of communities. In our experi-
ment, we use the number of known communities in the two networks, e.g., 2 for the
karate network and 12 for the football network as number of communities for the GN
algorithm.

Table 1. Experimental results of the Zachary’s karate club network and the American college
football network. Npr is the average number of communities; Qavg and Qbst are the average
and best values of modularity Q, respectively; and Accavg and Accbst are the average and best
accuracy, respectively.

Network Algorithm Npr Qavg Qbst Accavg Accbst

Karate
DECD 3.467± 0.730 0.385± 0.013 0.416 0.972± 0.009 1
GACD 2.900± 1.094 0.369± 0.022 0.402 0.959± 0.020 0.971

GN 2 0.360 0.360 0.971 0.971

Football
DECD 11.233± 0.504 0.596± 0.003 0.605 0.930± 0.004 0.939
GACD 8.767± 1.073 0.587± 0.015 0.605 0.913± 0.010 0.930

GN 12 0.455 0.455 0.904 0.904

From Table 1, it can be seen that DECD perform better than the two competitors,
i.e., GACD and GN on both the karate and football networks. It is interesting to see
that, for the smaller scale karate network, the performance of DECD is just slightly
better than GN. However, for the larger football network, the performance of DECD
is significantly better than GN. Such results indicate that DECD is more effective in
detecting communities in larger complex networks than GN.

In [28], the authors tested several state-of-the-art community detection algorithms.
In the paper, for the karate network, the best algorithm in terms of Q was Fast GN
(denoted as FastQ in their paper) [4], which generated Q value of 0.381 from one run of
experiment, which is slightly better than that from the GN algorithm used in our paper
but still worse than that from our DECD. In terms of accuracy, their best algorithm
(Random walks) achieved 1, which is as same as Accbst found by our DECD in 30
runs. In [28], for football network, the best result in terms of Q was 0.604 (WalkTrap
[22]), which is slightly worse than Qbst generated by our DECD. In terms of accuracy,
DECD also generated the same Accbst = 0.939 as the best result in [28], which was
generated by Random walks and MCL [32].

3.3 Yeast Protein-Protein Interaction Network

We apply our DECD algorithm to a Yeast Protein-Protein Interaction (PPI) Network
[11], which contains 1430 proteins and 6535 interactions. We use CYC2008 [23], a
complete and up-to-date set of yeast protein complexes (also called modules or com-
munities) as reference set to evaluate the predicted modules by DECD (In the following
text, we will use module and complex instead of community, which is a less popular
term in bioinformatics). We compute precision, recall and F-measure to measure the
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Table 2. Experimental results of the Yeast Protein-Protein Interaction Network

ω Algorithm #. pred. complex Precision Recall F-measure

0.2

DECD 115 0.6696 0.4976 0.5709
GACD 106 0.6132 0.4902 0.5488
GECSS 157 0.5063 0.2802 0.3608

MCODE 39 0.2278 0.4871 0.3104
MCL 200 0.5063 0.2050 0.2918

0.5

DECD 115 0.4696 0.2390 0.3168
GACD 106 0.4340 0.2220 0.2937

GN 65 0.5231 0.0568 0.1025
CMCD 65 0.6154 0.0691 0.1242

performance of DECD. The performance of DECD is compared with GACD and GN.
We also adopt results from recent literature, e.g., [35,27] for comparison.

Similar to the experiments in [35,27], we use affinity score to decide whether a pre-
dicted module is matched with a reference complex:

Affinity(A,B) =
|A

⋃
B|2

|A| × |B| , (8)

where A and B are two modules of proteins, e.g., one of predicted module or reference
complexes. We assume a module A matches module B if and only if Affinity(A,B) is
above a predefined threshold ω. Then we can define Hit(A,B) which contains all the
matched modules:

Hit(A,B) = {Ai ∈ A|Affinity(Ai, Bj) > ω, ∃Bj ∈ B}. (9)

We define precision, recall and F-measure as follows:

Recall =
|Hit(R,P)|

|R| , (10)

Precision =
|Hit(P ,R)|

|P| , (11)

F-measure =
2× Recall× Precision

Recall + Precision
, (12)

where P is the predicted module set andR is the reference complex set.
Following the experimental settings in [35,27], we set ω = 0.2 and 0.5 in order

to compare with their algorithms fairly. We adopt the results of algorithms tested in
[35,27], which include Critical Module Community Detection algorithm (CMCD) [27],
Gene Expression Condition Set Similarity (GECSS) algorithm [35], Molecular Com-
plex Detection (MCODE) algorithm [2] and Markov clustering (MCL) algorithm [32]
. It is worth mentioning that, due to the large size of the PPI network, the GN algo-
rithm in Matlab Tools for Network Analysis (http://www.mit.edu/˜gerganaa) failed to
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produce results in reasonable time. Therefore, we adopt the results of the GN algorithm
from [27] for comparison.

From Table 2, we can see that compared with GACD and other algorithms tested in
[35,27], DECD has better performance. It is interesting to see that, the performance gap
between DECD and GACD is not as significant as those between DECD and other non-
population-based algorithms, e.g., MCL. Such results indicate that, at least for medium
size networks, population-based algorithms are preferred because of their better predic-
tive performance.

4 Conclusion

In this paper, we have introduced differential evolution (DE) to detect community struc-
ture in complex networks. To the best of our knowledge, it is the first time DE has been
applied to community detection problems. The proposed algorithm DECD uses DE to
search the best network partition of a complex network that can achieve an optimal net-
work modularity value. Based on the standard binomial crossover of DE, we designed a
modified binomial crossover to transmit some important information about the commu-
nity structure during evolution. We have also introduced a biased process and a clean-up
operation similar to [31] to improve the quality of the individuals in the population.

We have tested our DECD on the artificial networks and the real-world social and bi-
ological networks in comparison with GACD and GN algorithms. Apart from the mod-
ularity value, for the real-world networks, we have also employed accuracy based on
true community structure as a performance metric [28], which provided reliable per-
formance information. The experimental results have demonstrated that DECD is very
effective for community detection in complex networks, including those with very vague
community structures, e.g., the artificial networks with larger values of zout. In addition
to its excellent performance, another merit of DECD is that it does not require any prior
knowledge about the community structure when detecting communities in networks.

The limitation of this work is that we only used modularity as the objective function
to find the optimal community structure of a network. However, it has been recently
pointed out that such approach might suffer from the so-called resolution limit prob-
lem, that is, some modules smaller than a specific scale will not be detected by the
algorithms that only optimize modularity [8]. Although we have achieved better com-
munity detection results than many other algorithms on 4 complex networks, we do not
anticipate DECD can avoid this resolution limit problem. We will further investigate
this problem in our future work.
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17. Mezura-Montes, E., Miranda-Varela, M., Gómez-Ramón, R.: Differential evolution in con-
strained numerical optimization: An empirical study. Information Sciences 180, 4223–4262
(2010)

18. Neri, F., Tirronen, V.: Recent advances in differential evolution: a survey and experimental
analysis. Artificial Intelligence Review 33, 61–106 (2010)

19. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Physical
Review E 69, 026113 (2004)

20. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks.
Physical Review E 69, 026113 (2004)

21. Pizzuti, C.: GA-Net: A Genetic Algorithm for Community Detection in Social Networks.
In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS,
vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008)

22. Pons, P., Latapy, M.: Computing communities in large networks using random walks. J. of
Graph Alg. and App. Bf 10, 284–293 (2004)

23. Pu, S., Wong, J., Turner, B., Cho, E., Wodak, S.J.: Up-to-date catalogues of yeast protein
complexes. Nucleic Acids Res. 37, 825–831 (2009)

24. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying
communities in networks. Proceedings of the National Academy of Sciences 101, 2658–
2663 (2004)

25. Rosvall, M., Bergstrom, C.: An information-theoretic framework for resolving community
structure in complex networks. Proceedings of the National Academy of Sciences 104, 7327–
7331 (2007)



Community Detection in Social and Biological Networks Using DE 85

26. Scott, J.: Social network analysis: A Handbook. Sage Publications, London (2000)
27. Sohaee, N., Forst, C.V.: Modular clustering of protein-protein interaction networks. In: 2010

IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Bi-
ology, CIBCB (2010)

28. Steinhaeuser, K., Chawla, N.V.: Identifying and evaluating community structure in complex
networks. Pattern Recognition Letters 31, 413–421 (2009)

29. Storn, R., Price, K.: Differential evolution a simple and efficient adaptive scheme for global
optimization over continuous spaces. Journal of Global Optimization 11, 341–359 (1997)

30. Strogatz, S.H.: Exploring complex networks. Nature 410, 268–276 (2001)
31. Tasgin, M., Bingol, H.: Community detection in complex networks using genetic algorithm.

In: Proceedings of the European Conference on Complex Systems (2006)
32. van Dongen, S.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht

(2000)
33. Wang, Y., Cai, Z., Zhang, Q.: Differential evolution with composite trial vector generation

strategies and control parameters. IEEE Transactions on Evolutionary Computation 15, 55–
66 (2011)

34. Yang, Y., Sun, Y., Pandit, S., Chawla, N.V., Han, J.: Is objective function the silver bullet? a
case study of community detection algorithms on social networks. In: International Confer-
ence on Advances in Social Network Analysis and Mining, pp. 394–397 (2011)

35. Yeu, Y., Ahn, J., Yoon, Y., Park, S.: Protein complex discovery from protein interaction net-
work with high false-positive rate. In: Evolutionary Computation, Machine Learning and
Data Mining in Bioinformatics 2011, EvoBio 2011 (2011)

36. Zachary, W.W.: An information flow model for conflict and fission in small groups. Journal
of Anthropological Research 33, 452–473 (1977)



A Study on Large Population MOEA

Using Adaptive ε-Box Dominance
and Neighborhood Recombination

for Many-Objective Optimization

Naoya Kowatari1, Akira Oyama2, Hernán E. Aguirre1, and Kiyoshi Tanaka1

1 Faculty of Engineering, Shinshu University
4-17-1 Wakasato, Nagano, 380-8553 JAPAN

2 Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency
{kowatari@iplab,ahernan,ktanaka}@shinshu-u.ac.jp, oyama@flab.isas.jaxa.jp

Abstract. Multi-objective evolutionary algorithms are increasingly be-
ing investigated to solve many-objective optimization problems. How-
ever, most algorithms recently proposed for many-objective optimization
cannot find Pareto optimal solutions with good properties on conver-
gence, spread, and distribution. Often, the algorithms favor one prop-
erty at the expense of the other. In addition, in some applications it
takes a very long time to evaluate solutions, which prohibits running
the algorithm for a large number of generations. In this work to obtain
good representations of the Pareto optimal set we investigate a large
population MOEA, which employs adaptive ε-box dominance for selec-
tion and neighborhood recombination for variation, using a very short
number of generations to evolve the population. We study the perfor-
mance of the algorithm on some functions of the DTLZ family, showing
the importance of using larger populations to search on many-objective
problems and the effectiveness of employing adaptive ε-box dominance
with neighborhood recombination that take into account the character-
istics of many-objective landscapes.

1 Introduction

Recently, there is a growing interest on applying multi-objective evolutionary
algorithms (MOEAs) to solve many-objective optimization problems, where the
number of objective functions to optimize simultaneously is considered to be
more than three. Historically, most applications of MOEAs have dealt with two
and three objective problems leading to the development of several evolutionary
approaches that work successfully in these low dimensional objective spaces.
However, it is well known that conventional MOEAs [1, 2] scale up poorly with
the number of objectives of the problem. The poor performance of conventional
MOEAs is attributed to an increased complexity inherent to high dimensional
spaces and to the use of inappropriate selection and variation operators that fail
to take into account the characteristics of many-objective landscapes [3–5].
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MOEAs seek to find trade-off solutions with good properties of convergence
to the Pareto front, well spread, and well distributed along the front. These
three properties are especially difficult to achieve in many-objective problems
and most search strategies for many-objective optimization proposed recently
compromise one in favor of the other [6]. In several application domains, such as
multidisciplinary multi-objective design optimization, a large number of Pareto
optimal solutions that give a good representation of the true Pareto front in
terms of convergence, spread, and distribution of solutions are essential to extract
relevant knowledge about the problem in order to provide useful guidelines to
designers during the implementation of preferred solutions. Moreover, in some
applications it takes a very long time to evaluate solutions, which prohibits
running the evolutionary algorithm for a large number of generations. Thus, in
addition to the difficulties imposed by high-dimensional spaces, we are usually
constrained by time.

From this point of view, in this work to obtain good representations of the
Pareto optimal set we investigate a large population MOEA, which employs
adaptive ε-box dominance for selection and neighborhood recombination for
variation, using a very short number of generations to evolve the population.
The motivation to use large populations is twofold. One is that we need many
more solutions to properly approximate the Pareto optimal set of many-objective
problems. The other one is that large populations may support better the evo-
lutionary search on high dimensional spaces. That is, large populations may be
more suitable to deal with the increased complexity inherent to high dimen-
sional spaces. We assume that all solutions in the population can be evaluated
simultaneously and in parallel, i.e. the time to evaluate one generation equals
the time required to evaluate one solution, independently of the number of so-
lutions we use in the population. So, our limitations on time are directly related
to the number of generations rather than to the total number of fitness function
evaluations. The motivation to use adaptive ε-box dominance for selection and
neighborhood recombination for variation is to enhance the design of the algo-
rithm incorporating selection and recombination operators that interpret better
the characteristics of many-objective landscapes.

We study the performance of the algorithm using some test functions of the
DTLZ family [7]. Our experiments reveal the importance of using a large popu-
lation to search in many-objective problems and the effectiveness of employing
ε-Box dominance and neighborhood recombination.

2 Proposed Method

2.1 Concept

Two important characteristics of many-objective optimization problems are that
the number of non-dominated solutions increases exponentially [3, 4] with the
number of objectives of the problem, and that these solutions become spread over
broader regions in variable space [5]. These characteristics of many-objective
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landscapes must be considered when we design the major components of the
algorithm, namely ranking, density estimators, mating, and variation operators.

In this work, selection is improved by incorporating adaptive ε-box dominance
during the process of ranking and selecting solutions for the next generation. The
effectiveness of the recombination operator is improved by incorporating a neigh-
borhood to mate and cross individuals that are close in objective space. In the
following we describe adaptive ε-box dominance and neighborhood recombina-
tion.

2.2 Adaptive ε-Box Dominance

In the proposed method we use adaptive ε-box dominance to rank solutions and
select a ε-Pareto set [8] of non-dominated solutions for the next generation. In
[8] an archiving strategy that updates a ε-Pareto set with a newly generated
individual was proposed to guarantee convergence and diversity properties of
the solutions found. The principles of the above archiving strategy [8] is applied
to modify non-domination sorting used in NSGA-II [9]. The main steps of ε-box
non-domination sorting are as follow.

Step 1. Similar to [8], ε-box non-domination sorting implicitly divides the ob-
jective space into non-overlapping boxes, where each solution is uniquely

mapped to one box. That is, the box index vector b(i) = (b
(i)
1 , · · · , b(i)m ) of

the i-th solution in the combined population of parents P and offspring Q
is calculated by

b
(i)
k (x) =

⌊
log10 f

(i)
k (x)

log10(1 + ε)

⌋
(k = 1, 2, · · ·m), (1)

where f
(i)
k is the fitness value in the k-th objective of the i-th solution

i = 1, 2, · · · , |P |+ |Q|, m the number of objectives, and ε a parameter that
controls the size of the box.

Step 2. Pareto dominance is calculated using the box indexes b(i) of solution
to get a set of non-dominated ε-boxes.

Step 3. Form a front of solutions by picking one solution from each non-
dominated ε-box. If there is more than one solution in a box, we calcu-
late Pareto dominance among solutions within the box. Thus, in each ε-box
there could be either a dominating solution or several non-dominated solu-
tions, and possibly one or more dominated solutions. To form the front we
chose from each box the dominating solution, or select randomly one of the
non-dominating solutions.

Step 4. Go to Step 2 to form subsequent fronts, excluding solutions already
included in a previous front. Solutions located in a non-dominated ε-box
but not selected as part of a previous front are considered to form the
next front. Thus, compared to conventional non-domination sorting based
on Pareto dominance, the proposed method reduces the ranking of some
non-dominated solutions, namely those located in the same ε-box but not
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Fig. 2. Neighborhood Recombination

chosen to form the front. Note that in the archiving strategy proposed in
[8], dominated solutions and not-selected non-dominated solutions within a
ε-box are eliminated. Here, we keep those solutions but reduce their ranking.

Fig.1 illustrates front non-domination sorting by Pareto dominance and by ε-box
dominance. In our illustration we assume a two-objective maximization problem.
Note that non-dominated solutions that fall within the same ε-box are given
different rank by ε-box non-domination sorting.

The ε-box non-domination sorting groups solutions in fronts of ε-box non-
dominated solutions, denoted as F ε

j , where j indicates the front number. Then,
solutions are assigned a primary rank equal to the front number j it belongs to.

In many-objective problems, the number of Pareto non-dominated solutions
|F1| obtained from the combined population of parents P and offspring Q is
expected to surpass the size of the parent population since early generations, i.e.
|F1| > |P |. Since only one solution is selected from each ε-box to form a front,
the number of solutions in the first front after applying ε-box non-domination
sorting is expected to be smaller than the number of Pareto optimal solutions,
|F ε

1 | < |F1|, and its exact number depends on the value set to ε > 0 and on
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the instantaneous distribution of solutions in objective space. In general, larger
values of ε imply that the ε-boxes cover larger areas, increasing the likelihood of
having more solutions within each box and therefore less solutions in the finally
formed front F ε

1 . However, it is difficult to tell in advance exactly how many
solutions will be in F ε

1 for a given value of ε and trying to set this parameter by
hand to achieve a desired value is a difficult and problem depending task.

Instead of setting ε by hand, the proposed method adapts ε at each generation
so that the actual number of solutions in F ε

1 is close to the size of the parent
population P [10]. Thus, the adaptive method aims to select a sample of non-
dominated individuals for the next population that are distributed according to
the spacing given by Eq. (1). The appropriate value of ε that renders a number
of solutions close to the desired number is expected to change as the evolution
process proceeds and it is affected by the stochastic nature of the search that
alters the instantaneous distributions of solutions in objective space. Thus, in
addition to adapting ε, the step of adaptation Δ is also important to properly
follow the dynamics of the evolutionary process on a given problem. For this
reason, the proposed adaptive procedure adapts ε and its step of adaptation Δ
as well.

The method to adapt ε before it is used in Eq. (1) is as follows. First, before
start searching solutions, we set initial values for ε and the step of adaptation Δ,
set ε’s lower bound εmin > 0.0 and Δ’s lower and upper bound, Δmin and Δmax,
such that 0.0 < Δmin < Δmax. Next, at every generation we count the number
of solutions obtained in the first front F ε

1 by ε-box non-domination sorting and
compare with the size of the population P . If |F ε

1 | < |P | the step of adaptation is
updated to Δ = Δ/2Cand ε = ε−Δ, to make the grid fine grained. Otherwise,
Δ = Δ × 2 and ε = ε +Δ, to make the grid coarser. If after updating ε or Δ
their values go above or below their established bounds, they are reset to their
corresponding bound. In this work, the initial value set to ε is 0.01, its lower
bound εmin is 10−8, the initial step of adaptation Δ is 0.01, its upper bound
Δmax is 1, and its lower bound Δmin is 0.0001.

2.3 Neighborhood Recombination

As mentioned above, it has been shown that in many-objective problems the
number of non-dominated solutions grows exponentially with the number of ob-
jectives of the problem. A side effect of this is that non-dominated solutions in
problems with a large number of objectives tend to cover a larger portion of
objective and variable space compared to problems with less number of objec-
tives. Thus, in many objective problems, the difference between individuals in
the instantaneous population is expected to be larger. This could affect the ef-
fectiveness of recombination because recombining two very different individuals
could be too disruptive.

In this work, we encourage mating between individuals located close to each
other, aiming to improve the effectiveness of recombination in high dimensional
objective spaces. To accomplish that, the proposed method calculates the dis-
tance between individuals in objective space and keeps a record of the |P | ×Rn
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closest neighbors of each individual during the ε-dominance process. However,
note that when the ranked population of size |P |+ |Q| is truncated to form the
new population of size |P |, some individuals would be deleted from the neigh-
borhood of each individual. During mating for recombination, the first parent
pA is chosen from the parent population P using a binary tournament selection,
while the second parent pB is chosen from the neighborhood of pA using another
binary tournament. Then, recombination is performed between pA and pB. That
is, between pA and one of its neighbors in objective space. If all neighbors of in-
dividual pA were eliminated during truncation, the second parent pB is selected
from the population P similar to pA. Fig.2 illustrates the neighborhood creation
and mating for recombination. In this work, we set the parameter Rn that de-
fines the size of the neighborhood of each individual to 2%C5%Cand 10% of the
parent population P .

3 Test Problems and Performance Indicators

3.1 Test Problems

In this work, we study the performance of the algorithms in continuous functions
DTLZ2, DTLZ3, and DTLZ4 of the DTLZ test functions family [7]. These func-
tions are scalable in the number of objectives and variables and thus allow for
a many-objective study. In our experiments, we vary the number of objectives
from m = 4 to 6 and set the total number of variables to n = m+9. DTLZ2 has a
non-convex Pareto-optimal surface that lies inside the first quadrant of the unit
hyper-sphere. DTLZ3 and DTLZ4 are variations of DTLZ2. DTLZ3 introduces
a large number of local Pareto-optimal fronts in order to test the convergence
ability of the algorithm. DTLZ4 introduces biases on the density of solutions to
some of the objective-space planes in order to test the ability of the algorithms
to maintain a good distribution of solutions. For a detailed description of these
problems the reader is referred to [7].

3.2 Performance Indicators

In this work we evaluate the Pareto optimal solutions obtained by the algorithms
using the quality indicators described below.

Proximity Indicator(Ip) [11]: Measures the convergence of solutions using
equation 2, where P denotes the population and x a solution in the population.
Smaller values of Ip indicate that the population P is closer to the Pareto front.
That is, smaller values of Ip mean high convergence of solutions.

Ip = median
x∈P

⎧⎨⎩
[

m∑
i=1

(fi(x))
2

] 1
2

− 1

⎫⎬⎭ (2)
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C-metric [12]: Let us denote A and B the sets of non-dominated solutions
found by two algorithms. C(A,B) gives the fraction of solutions in B that are
dominated at least by one solution in A. More formally,

C(A,B) =
| {b ∈ B|∃a ∈ A : f(a) � f(b)} |

| B | . (3)

C(A,B) = 1.0 indicates that all solutions in B are dominated by solutions
in A, whereas C(A,B) = 0.0 indicates that no solution in B is dominated by
solutions in A. Since usually C(A,B)+C(B,A) 
= 1.0, both C(A,B) and C(B,A)
are required to understand the degree to which solutions of one set dominate
solutions of the other set.

Hypervolume (HV ) [12]: HV calculates the volume of the m-dimensional
region in objective space enclosed by a set of non-dominated solutions and a
dominated reference point r, giving a measure of convergence and diversity of
solutions. In general, larger values of HV indicate better convergence and/or
diversity of solutions. Thus, MOEAs that find Pareto optimal solutions that
lead to larger values of HV are consider as algorithms with better search ability.
We use Fonseca et al. [13] algorithm to calculate the hypervolume.

4 Simulation Results and Discussion

4.1 Preparation

In this work we use NSGA-II, a well known representative of the class of domi-
nance basedMOEAs. In this frameworkwe includeAdaptive ε-Boxdominance and
NeighborhoodRecombination. In the following we call for shortAεB andAεBNR
the MOEAs that include Adaptive ε-Box dominance and Adaptive ε-Box domi-
nance & Neighborhood Recombination, respectively. As genetic operators we use
SBX crossover and Polynomial Mutation, setting their distribution exponents to
ηc = 15 and ηm = 20, respectively. The parameter for the operators are crossover
rate pc = 1.0, crossover rate per variable pv = 0.5, and mutation rate pm = 1/n,
where n is the number of variables. The number of generations is fixed to T = 100
and the population sizes varies from |P | = 100 to 5000 solutions. Result reported
here are average results obtained running the algorithms 30 times.

4.2 Effects of Increasing Population Size

First, we focus our analysis on DTLZ2. Fig.3 shows Ip obtained at the final
generation varying the number of solutions in the population P from 100 to
5000. It could be seen that Ip reduces when a larger population size |P | is used,
regardless of the number of objectives. That is, a larger population size improves
convergence of the algorithm. Especially note that for m = 4, 5 the reduction of
Ip is remarkable and that the values of |P | that lead to a pronounced decline on
Ip are different, depending on the number of objectives. In the case of m = 5
objectives, it can be seen that a larger reduction occurs when the population
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Fig. 3. Effect of increasing population size in NSGA-II (DTLZ2)
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Fig. 4. Distribution of solutions by NSGA-II using various population sizes |P |,
DTLZ2 m = 5 objectives

size increases from |P | = 1000 to 2000Cthan from 2000 to 3000. In the case of
m = 6 objectives, a sharp reduction on Ip is not observed for a population size
of up to 5000. It would be interesting to verify the effects of population sizes
larger than 5000 on m = 6 objectives.

Next, Fig.4 shows for m = 5 objectives the distribution of solutions in objec-
tive space projected to the f1 − f2 plane. In the DTLZ2 problem, keeping the
population fixed and increasing the number of objectives, it is common to see
that solutions tend to concentrate along the axis. These solutions are known as
dominance-resistance solutions [14], which are favored by selection due to its in-
ability to discriminate based on dominance while actively promoting diversity, and
may cause the algorithm to diverge from the true Pareto front. From the figure,
it can be seen that when the population increases the population tends to cluster
towards the central regions of objective space, helping to control the presence of
dominance-resistance solutions and their negative effect on convergence.
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Fig. 5. Effect of increasing population size and including ε-Box Dominance (DTLZ2)
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Fig. 6. Effect of increasing population size and including Adaptive ε-Box and Neigh-
borhood Recombination (DTLZ2)

4.3 Effects of Adaptive ε-Box Dominance

In this section we compare results by conventional NSGA-II, NSGA-II enhanced
with ε-box dominance setting a fixed value of ε = {0.01, 0.1, 0.5, 1}, and the
Adaptive ε-Box dominance algorithm AεB. The Ip by these methods is shown
in Fig.5. Note that ε-Box dominance with fixed ε achieves better or worse Ip
than conventional NSGA-II in m = 4 objectives, depending on the value set
to ε. However, ε-Box dominance improves remarkably Ip in m = 5, 6, showing
a bigger effect for larger population sizes |P |. On the other hand, using AεB
stable and satisfactory performance is achieved, independently of the number
of objectives. Especially, in the case of m = 6 objectives, AεB achieves best
performance, with better effectiveness observed for larger population size.

4.4 Effects of Neighborhood Recombination

Next, we study the effects of incorporating Neighborhood Recombination in ad-
dition to Adaptive ε-Box dominance. Fig.6 shows results by NSGA-II, AεB, and
AεBNR for comparison. From the figure we can see that increases in population
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size |P | and the inclusion of Neighborhood Recombination improves further con-
vergence. Note that the effect of Neighborhood Recombination becomes larger
with the number of objectives. Especially, in m = 6 objectives, comparing with
AεB (Rn = 0), note that the inclusion of Neighborhood Recombination and
increasing population size |P | in AεBNR (Rn > 0) improves convergence re-
markably.

Summarizing, increasing population size |P | improves convergence of MOEAs
in multi-objective problems. In addition, the inclusion of Adaptive ε-Box fur-
ther improves convergence, with larger improvements observed as we increase
the number of objectives. Furthermore, the inclusion of Neighborhood Recom-
bination leads to an additional remarkable improvement in convergence, which
also gets larger as we increase the number of objectives. For example in the case
of m = 6 objectives, a drastic reduction in Ip from 1.84 to 0.026 is observed
if we compare the performance of conventional NSGA-II using population size
|P | = 100 and AεBNR using a population size |P | = 5000.

4.5 Comparison Using the C-Metric and Distribution of Solutions

In this section, we compare the search ability of conventional NSGA-II, AεB
(Rn = 0%) and AεBNR (Rn = 10%) using the C-metric performance indicator
and analyze the distribution of solutions rendered by these algorithms.

Fig.7 shows results of a pairwise comparison between algorithms using the C-
metric. First, from Fig.7 (a) it can be seen that a significant fraction of Pareto
optimal solutions (POS) by the enhanced algorithm with AεBNR dominate
POS by conventional NSGA-II; whereas no solution by conventional NSGA-II
dominates solutions by AεBNR. Also note that the fraction of dominated so-
lutions gets larger as we increase the number of objectives. Second, from Fig.7
(b), comparing conventional NSGA-II and the enhanced AεBNR, a similar ten-
dency as the one describe above can be observed, but with better fractions of
dominated solutions in favor of the enhanced algorithm. Third, from Fig.7 (c),
comparing the enhanced algorithms, note that AεBNR that includes both Adap-
tive ε-Box dominance and Neighborhood Recombination dominates a fraction of
solutions found by the algorithm AεB that only includes Adaptive ε-Box domi-
nance; whereas the opposite is not true. Note that this effect becomes remarkable
when the number of objectives increases. From these results on the C-metric we
conclude that the inclusion of Adaptive ε-Box dominance and Neighborhood Re-
combination leads to remarkable increase on the number of solutions with better
convergence in the POS found by the algorithm.

Next, Fig.8 shows the distribution of solutions in objective space projected to
the f1 − f2 plane by these three algorithms, for m = 6 objectives and popula-
tion size |P | = 5000. Note that solutions by conventional NSGA-II are broadly
spread, however they lack convergence to the true Pareto front as shown in Fig.8
(a). When Adaptive ε-Box is introduced, convergence of solutions improves but
their distribution is biased towards the extreme regions of the Pareto front as
seen in Fig.8 (b). This is because Adaptive ε-Box strengthen the trend to favor
solutions towards the axis of the multi-objective space. On the other hand, when



96 N. Kowatari et al.

 m=4
 m=5
 m=6

 m=4
 m=5
 m=6

C(NSGA-II,Adaptive)

C(Adaptive,NSGA-II)

C

number of individual
5000100 1000

0

0.2

0.4

0.6

0.8

1

(a) NSGA-II vs. AεB

 m=4
 m=5
 m=6

 m=4
 m=5
 m=6

C(NSGA-II,Rn=10%)

C(Rn=10%,NSGA-II)

C

number of individual
5000100 1000

0

0.2

0.4

0.6

0.8

1

(b) NSGA-II vs. AεBNR

 m=4
 m=5
 m=6

 m=4
 m=5
 m=6

C(Adaptive,Rn=10%) C(Rn=10%,Adaptive)

C

number of individual
5000100 1000

0

0.2

0.4

0.6

0.8

1

(c) AεB vs. AεBNR

Fig. 7. Comparison among NSGA-II, AεB, and AεBNR using the C-metric (DTLZ2)
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Fig. 8. Distribution of solutions found by NSGA-II, AεB, and AεBNR (DTLZ2, |P | =
5000, m = 6)

Neighborhood Recombination is added convergence of the population of solutions
improves further, solutions get compactly distributed around the Pareto optimal
region, and the bias towards the axis of objective space becomes almost unno-
ticed as shown in Fig.8 (c). This is because recombination of solutions that are
neighbor in objective space allows a better exploitation of the search, especially
in problems where objective and variable space are not strongly uncorrelated.
However, the different density of solutions in objective space produced by the
uneven granularity of the grid used by Adaptive ε-Box should be investigated
with more detail in the future.

4.6 Comparison Using HV

TheHV measures both convergence and diversity (spread) of solutions. However,
we can emphasize one over the other depending on the reference point r used to
calculate HV . When the reference point is close to the Pareto front, convergence
of solutions is emphasized. On the other hand, when the reference point is far
away from the Pareto from, the diversity of solutions is emphasized.
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Fig. 9. HV on DTLZ2 m = 6 objectives

Fig.9 shows theHV for DTLZ2 withm = 6 objectives, varying population size
|P | from 100 to 5000, and varying the reference point to r=1.25C1.5C3.5. From
this figure, note that when the reference point is set to r = 3.5, which emphasizes
the estimation of diversity of solutions, similar values of HV are observed by the
improved algorithms for all population sizes. This is because spread of solutions
by the improved algorithms is similar. The HV by NSGA-II appears very low for
small populations, but approaches the HV achieved by the improved algorithm
for very large population sizes. These values reflect the fact that a considerable
number of solutions by NSGA-II with small populations are past the reference
point, and thus do not contribute to the hypervolume calculation. In the cases of
r = 1.5 and r = 1.25, where convergence of solutions is emphasized, differences
on HV between the improved algorithms and NSGA-II can be clearly seen even
for very large populations. These results on the hypervolume are in accordance
with our analysis discussed on previous sections.

4.7 Results on DTLZ3 and DTLZ4 Functions

In previous sections we focused our analysis on the DTLZ2 function. Here, we
include and analyze results on DTLZ3 and DTLZ4 functions. Results for DTLZ3
are show in Fig.10, whereas results for DTLZ4 are shown in Fig.11. Results for
DTLZ2 using similar configurations are shown in Fig.6.

From Fig.11 it can be seen that results on DTLZ4 are similar to those observed
on DTLZ2, but note that in DTLZ4 convergence improvement due to bigger
population sizes becomes more significant. This is because DTLZ4 is a problem
that favors diversity of solutions, where an algorithm that selects solutions based
on crowding distance[1] is expected to improve convergence of solutions specially
in extreme regions of the Pareto front. On the other hand, from Fig.10 note that
in DTLZ3 although convergence improves by using AεBNR, compared to the
Ip values achieved on DTLZ2 and DTLZ4 it can be seen that convergence is still
insufficient.
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Fig. 10. Effects on DTLZ3
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Fig. 11. Effects on DTLZ4
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Fig. 12. Ip convergence on DTLZ3 increasing the number of generations to T = 500

To study with more detail the insufficient convergence in DTLZ3, Fig.12 show
Ip by the three algorithms on m = 4, 5, 6 objectives, setting the population size
|P | to 100 and 1000 individuals, and extending the number of generations from
100 to T = 500. From the figure note that independently of the number of objec-
tives, increasing the number of generations is effective to improve convergence of
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AεB and AεBNR. Similarly, better results are observed using a population size
of 1000 individuals than a population size of 100. However, note that the reduc-
tion speed of Ip and its achieved value differ greatly according to the number
of objectives. That is, the algorithms find it more difficult to reduce Ip conform
the number of objectives increases. In the future, it is necessary to investigate
ways to achieve good convergence within a minimum number of generations in
this kind of problem.

5 Conclusions

In this work, we have studied the optimization of m = 4, 5, 6 many-objective
problems under a fixed, restricted, small number of generations. First, we inves-
tigated the effect of population size on a conventional NSGA-II, verifying that
convergence of solutions improves when we increase the population size. Next,
we investigated the effects of including ε-Box dominance and Adaptive ε-Box
dominance into NSGA-II, verifying that Adaptive ε-Box dominance improves
convergence of solutions without the need to set the parameter ε by hand. More-
over, we investigated the effects of Adaptive ε-Box Dominance and Neighborhood
Recombination, verifying that convergence of solutions improves substantially,
especially when bigger populations are used and the number of the objectives of
the problem becomes larger.

In the future, we would like to study the effects of using larger populations,
explore parallelization, and develop MOEAs that can effectively evolve solutions
independently of the characteristics of problem under a restricted number of
generations.
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Abstract. In this work, we present our submission for the Cross-domain
Heuristic Search Challenge 2011. We implemented a stochastic local
search algorithm that consists of several algorithm schemata that have
been offline-tuned on four sample problem domains. The schemata are
based on all families of low-level heuristics available in the framework
used in the competition with the exception of crossover heuristics. Our
algorithm goes through an initial phase that filters dominated low-level
heuristics, followed by an algorithm schemata selection implemented in
a race. The winning schema is run for the remaining computation time.
Our algorithm ranked seventh in the competition results. In this paper,
we present the results obtained after a more careful tuning, and a differ-
ent combination of algorithm schemata included in the final algorithm
design. This improved version would rank fourth in the competition.

1 Introduction

Recent years have seen progressive abstractions in the design of stochastic local
search (SLS) algorithms. From the first heuristics designed to solve instances of
specific hard combinatorial optimisation problems, the community of researchers
moved towards the engineering of more generic algorithm schemata that could
be applied across different problems. Among these SLS methods, also referred
to in the literature as meta-heuristics, there are Tabu Search [6, 7], Memetic
Algorithms [17], Iterated Local Search [15], Iterated Greedy [19], and Variable
Neighbourhood Search [8, 16].

Hyper-heuristics were introduced in 2001 by Cowling et al. [3], and, as meta-
heuristics, they aim at selecting, combining, or adapting low-level heuristics
to solve optimisation problems. Hyper-heuristics are usually classified in two
families: the first one is composed of algorithms that select the best low-level
heuristics for the problem being optimised; the second family is composed of the
algorithms that generate or adapt low-level heuristics for the problem at hand.
For a recent survey on the subject, see [2].

The first Cross-domain Heuristic Search Challenge (CHeSC 2011) is a com-
petition devised by Burke et al. [18], which aims at encouraging the design
of generic heuristic algorithms that can be successfully applied across different
problem domains. In this competition, the distinction between the problem do-
main and the hyper-heuristic is very clear-cut; in fact, the contestants were asked
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to implement a hyper-heuristic using HyFlex [18], a Java framework that has
some design decisions that emphasise the separation between problem domains
and hyper-heuristics.

The framework makes available a series of low-level heuristics for different
problem domains. These low-level heuristics are categorised in four different
families: (i) mutation heuristics, which perturb the current solution without any
guarantee of improving the solution quality; (ii) local search heuristics, which are
hill-climbers that apply mutation heuristics accepting only non-deteriorating so-
lutions; (iii) ruin-and-recreate heuristics, which remove solutions components
from the current solution and reconstruct it with problem specific constructive
heuristics; (iv) crossover heuristics, which combine different solutions to obtain
a new solution. The primitives exposed by the framework allow the develop-
ers to know how many heuristics of each specific family are available, to set
the intensity of mutation of ruin-and-recreate and of mutation heuristics and
the depth of search of local search heuristics, to apply a low-level heuristic to
the current solution, to know the quality of the current solution, to store dif-
ferent solutions in memory, and to know how many CPU-seconds are available
before the end of the allocated time.

Before the competition, four sample problem domains and ten instances for
each domain had been made available to the contestants to test their imple-
mentations. The problem domains were: boolean satisfiability (MAX-SAT), one
dimensional bin packing, permutation flow shop scheduling (PFSP), and per-
sonnel scheduling. During the competition, three instances of the ten sample
instances of each problem domain were selected, and other two instances for
each problem domain were added. Moreover, two hidden problem domains were
revealed with five instances each. The two hidden problem domains were the
traveling salesman problem (TSP) and the vehicle routing problem (VRP).

The competition rules imposed a specific setting in which the submitted SLS
algorithms had no possibility of recognising the problem or the instance being
optimised, and no information about a solution could be extracted, except for
the solution quality. Some limitations imposed by the rules are relatively unre-
alistic, and hardly encountered in real-world scenarios. For example, one way to
enforce the separation between the hyper-heuristic and the problem domain is
to randomly shuffle the low-level heuristics identifier. We decided to participate
to the competition with an off-line tuned algorithm even though competition
rules do not favour such techniques. Our algorithm is based on the rationale
that with an appropriately chosen fixed algorithm schema, a problem can be
solved competitively even when not adapting the heuristic selection mechanisms
at runtime. Obviously, because heuristic identifiers are randomly shuffled in the
framework, we cannot offline tune the sequence of the heuristics to be applied.
As a work-around to this missing information, we applied a heuristic selection
phase, in which we identify dominated heuristics that are eliminated from further
consideration when running our algorithm schemata. The algorithm remains in
the sense non-adaptive, in that there is no adaptation of the parameters and no
selection of the low level heuristics throughout the search. Moreover, experiments
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we performed after the submission showed a rather limited impact of this initial
phase of filtering low level heuristics. To emphasise the aspect that the heuris-
tics selection is not adapted during the main execution phase of the algorithm,
we call it a Non-Adaptive SLS Algorithm (NA-SLS). In the end, our NA-SLS
ranked seventh in the competition. This paper describes an improved version of
our submission, which shares the same code but uses a more thorough off-line
tuning, and adds some more analysis on the algorithm. The version presented
in this paper would rank fourth among the algorithms that participated to the
competition.

The rest of the paper is organised as follows. Section 2 presents the analy-
sis on the low-level heuristics; Section 3 describes the algorithmic schemata we
implemented as building blocks for NA-SLS; Section 4 presents the results of
the tuning of these schemata on the four sample problem domains; Section 5 de-
scribes the design of NA-SLS; and Section 6 presents the results that would have
been obtained at the competition. Eventually, Section 7 draws the conclusion.

2 Analysis of the Low-Level Heuristics

Before actually running NA-SLS, the available low-level heuristics are tested to
identify whether any of the heuristics are dominated. The criterion of dominance
takes into account the computation time and the solution quality. This first
phase of the analysis of the low-level heuristics is run for at most 7.5% of the
total allocated runtime or for at most 25 runs of each heuristic. During each run
a random solution is constructed and heuristics belonging to the local search,
and to ruin-and-recreate families are applied to it. For each low-level heuristic
A, the median run-time tA and the median solution quality qA are computed.
A heuristic A is dominated by heuristic B if tB < tA and qB < qA. The aim
of this phase, is to enforce that only non-dominated heuristics will be available
for the remaining runtime. Nevertheless, in order to avoid that a single heuristic
that dominates all others is the only one available for the following phases, we
make sure that the two heuristics having the lowest median solution quality
are never discarded. Figure 1 shows an example of the analysis performed on an
instance of the personnel scheduling problem. The plot on the left shows all local
search heuristics with different values of the parameter that set the intensity of
mutation. The plot on the right shows the non-dominated heuristics after the
filtering.

3 Design and Implementation of Algorithmic Schemata

We implemented a series of algorithmic schemata that use all low-level heuristics
(except crossovers) as basic building blocks. Among the large number of imple-
mented schemata there are several algorithms that are well established in the
literature. In the following we list the most relevant, with their variants and the
parameters defined for the tuning:
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Fig. 1. Example for the analysis of the low-level heuristics on an instance of the per-
sonnel scheduling domain. LS4(dos=0.7) corresponds to local search heuristic number
4, with the depth of search parameter set to 0.7. Where not specified, the depth of
search is set to the default 0.1. LS4(dos=0.7), LS3(dos=0.3), LS3, and LS2 are the
dominated heuristics.

– Randomized Iterative Improvement (RII) [9]: the parameters defined for the
tuning are two continuos parameters representing the probability of selecting
a mutation or a ruin-and-recreate heuristic, respectively, and a continuous
parameter representing the probability of accepting worsening solutions.

– Probabilistic Iterative Improvement (PII) [9]; this algorithm is the same as
the previous, but it uses a Metropolis condition for computing the probabil-
ity of accepting worsening solutions and has continuous parameter for the
temperature.

– Variable Neighbourhood Descent (VND) [8]; for this algorithm we imple-
mented two versions. The first one uses local search heuristics, and the
second one uses ruin-and-recreate heuristics. In both cases, the heuristics
are applied in the order of decreasing median computation time, which is
computed by running the low-level heuristics several times from an initial
solution. The parameters defined for this schema are a categorical parame-
ter that allows to select among the two variants, and a continuos parameter
representing the probability of accepting worsening solutions as in RII.

– Iterated Local Search (ILS) [15]; few variations of this algorithm have been
implemented. We implemented the ILS described in [1], an ILS that uses the
VND variants described above as subsidiary local search, and a Hierarchical
ILS [10]. Hierarchical ILS uses an ILS as subsidiary local search and applies
a strong perturbation in the outer ILS and a small perturbation in the inner
ILS. We defined a categorical parameter that allows to select among the
variants, a continuous parameter for the probability of accepting a worsening
solution, and an integer parameter for determining the perturbation size,
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which corresponds to the number of times a random mutation heuristic is
applied to the current solution. For the Hierarchical ILS we also used the
same parameters for the inner ILS, and a further continuos parameter for
the time allocated to the inner ILS as a fraction of the total run time.

– Simulated Annealing (SA) [11, 20]; this algorithm estimates the initial tem-
perature by measuring the average solution quality improvement after ap-
plying a fixed number of steps of first improvement. The initial acceptance
probability and the number of steps for this initial phase are a continuos and
an integer parameter respectively. The algorithm continues with a cooling
schedule that is defined by a constant multiplicative factor (continuos param-
eter) applied regularly after a specified number of steps (integer parameter)
until a final temperature is reached (continuous parameter). When the fi-
nal temperature is reached, the algorithm restarts from the initial estimated
temperature.

– Iterated Greedy (IG) [19]; we implemented IG by means of repeated applica-
tions of a random ruin-and-recreate heuristic with a probability of accepting
worsening solutions, which is specified by a continuous parameter. We also
implemented few variations of this algorithmic schema, which differ for a
probabilistic acceptance criterion, and different selection strategies of low-
level heuristics.

For all schemata we defined two continuos parameters that set the intensity of
mutation for the ruin-and-recreate and mutation heuristics, and the depth of
search for local search heuristics. The parameters range from 0 to 1, with 1
representing the maximum intensity of mutation and the maximum depth of
search respectively. If the application of a specific local search heuristic takes
more than 10 CPU-seconds, the depth of search parameter for that specific
heuristic is fixed to the default value defined in the framework, which is 0.1. For
RII, PII, and the ILS variants, we implemented also a fixed restart policy. We
defined a categorical parameter that could select the restart, and a continuous
parameter representing the fraction of the allocated runtime between restarts.

Besides the algorithms that are well-established in the literature, we imple-
mented a further algorithm we called tuneable SLS algorithm (TSA), which is
a juxtaposition of blocks of low-level heuristics. TSA has been designed with
the aim to see how good could perform an algorithm with less rationale in the
design and a larger parameter space for automatic tuning. Listing 1.1 shows the
pseudo-code of TSA with the parameters defined for the tuning. The algorithm
starts from an initial random solution s, and until the allocated time has not
expired, it goes through a series of phases characterised by the application of
heuristics belonging to a specific family. In the first phase, the algorithm applies
sequentially nrr randomly selected ruin-and-recreate heuristics which, if defined
in the framework, exploit constructive heuristics for the problem at hand. Non
improving solutions are accepted with a probability parr . In the following phase,
the solution that is constructed by the ruin-and-recreate heuristics is (possibly)
improved by the application of nls randomly selected local search heuristics.
Non-improving solutions in this phase are accepted with probability pals

. After
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Listing 1.1. Tuneable SLS algorithm pseudo-code.

1 procedure TSA(nrr, parr , nls, pals , pa, pm, prestart, dos, iom, iomrr)
2 s′ ← s ← random initial solution
3 set depth of search of local search heuristics to dos
4 set intensity of mutation of mutation heuristics to iom
5 set intensity of mutation of ruin−and−recreate heuristics to iomrr

6 while time has not expired:
7 for nrr times:
8 apply randomly selected heuristic of type ruin−and−recreate
9 accept non−improving solution with probability parr

10 for nls times:
11 apply randomly selected heuristic of type local search
12 accept non−improving solution with probability pals

13 if f(s) < f(s′) or rand(0, 1) < pa:
14 s′ ← s
15 else
16 s ← s′

17 with probability pm:
18 apply randomly selected heuristic of type mutation
19 with probability prestart:
20 s ← random initial solution

the first two phases, an improving solution is always accepted and stored in s′,
while worsening solutions are accepted with probability pa. Before going again
through the series of ruin-and-recreate heuristics of the first phase, the current
solution is perturbed by the application of a random mutation heuristic with
probability pm. Finally, with probability prestart the algorithm restarts from a
new random solution.

4 Off-line Tuning of the Algorithmic Schemata

After the implementation of the algorithmic schemata, we tuned them on the four
problem domains and the ten instances that were available before the competi-
tion, and selected a small subset that would be part of the NA-SLS algorithm.

For the off-line tuning, we used irace [13], a software package that implements
an iterated racing procedure for the off-line tuning of categorical, integer, and
continuous parameters. Moreover, irace allows to specify conditional parameters
and therefore tune the parameters regarding a specific algorithm schemata, only
when the specific algorithm schemata has been selected by a categorical param-
eter. These characteristics and a number of successful applications [4, 5, 12–14],
made it the natural choice for tuning the parameters of our SLS algorithm.

The off-line tuning is divided in two phases. In the first phase, we tuned the
parameters of each algorithmic schema on the single problem domains. In the
second phase, for each problem domain, we selected the best tuned schemata.
The off-line tuning of both phases was performed with irace on cluster nodes with
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Table 1. Selected algorithmic schemata for the problem domains

Problem domain Algorithmic Schema

MAX-SAT TSA, parameter setting MAX-SAT
Bin packing TSA, parameter setting bin packing
Personnel scheduling TSA, parameter setting personnel scheduling
PFSP IG with probabilistic acceptance criterion

Table 2. Parameters of the tuned TSA schemata on three problem domains

Problem domain
Parameters
nrr parr nls pals pa pm prestart dos iom iomrr

MAX-SAT 1 0.4966 50 0.9265 0.2341 0.0959 0.0008 0.6 0.1063 0.2
Bin packing 4 0.057 4 0.43 0.0001 0.29 0.014 0.46 0.11 0.69
Personnel scheduling 11 0.54 15 0.72 0.54 0.2 0.67 0.85 0.43 0.21

16GB of RAM and 2 AMD Opteron 6128 CPUs, each with eight cores running
at 2GHz. During the two tuning phases, the number of different configurations
tested amounted to 136,276 for a total of 3 years of CPU-time.

Table 1 shows the best performing algorithms for the single domains. Surpris-
ingly, three differently tuned TSA were selected for three out of four problem
domains, namely MAX-SAT, bin packing and personnel scheduling. The param-
eter settings for the TSAs are shown in Table 2. For PFSP, the best schema
is an IG with a probabilistic acceptance criterion. The tuned parameters lead
to an IG that executes at each iteration one or two random ruin-and-recreate
heuristics. If no such heuristics are available for the problem domain, the algo-
rithm executes one or two mutation heuristics. After the perturbation, one local
search heuristic is executed. Worsening solutions are accepted with probability
exp{−Δf/0.87}.

All algorithms in Table 1 were included in the algorithm we submitted for the
competition. In the implementation described in this paper we decided to extend
the pool of available algorithms by looking at the second ranking algorithm
schemata for the four problem domains.

– For MAX-SAT, the second ranking algorithm was an ILS with VND as
subsidiary local search (ILS+VND); the probability of accepting a worsening
solution was 0.99 and the perturbation size amounted to the application of
2 random mutation heuristics. The intensity of mutation was 0.3 and the
depth of search was 0.41.

– For personnel scheduling, it was also an ILS+VND; the tuned probability of
accepting a worsening solution was 0.23 and the perturbation size amounted
to the application of 6 random mutation heuristics. The intensity of mutation
was 0.08 and the depth of search was 0.25.

– For PFSP again an ILS+VND ranked second, with a low probability of
accepting worsening solutions, i.e. 0.39, and large perturbations amounting
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to 11 applications of random mutation heuristics. The intensity of mutation
was 0.59 and the depth of search was 0.022.

– For bin packing an ILS with acceptance probability equal to 0.037 ranked
second; for this schema the amount of perturbation selected was of 4 random
mutation heuristics. The intensity of mutation was 0.033 and the depth of
search was 0.31.

We decided to include in the pool of available schemata three of the four first
ranking algorithms, i.e., TSA for bin packing, TSA for personnel scheduling and
IG for PFSP. We did not include TSA for MAX-SAT since the performances
were pretty close to the second ranking and less tailored ILS+VND. In three
domains out of four, ILS+VND ranked second, therefore we added two differ-
ent ILS+VND schemata, namely the ILS+VND tuned for MAX-SAT and the
ILS+VND tuned for personnel scheduling. The rationale behind this choice is
to add some well-known meta-heuristics that even if tuned on specific problem
domains could be effective on the two hidden problem domains.

5 Final SLS Algorithm

NA-SLS is composed of the following three phases.

Phase 1: Analysis of the low-level heuristics
This phase, which lasts at most 7.5% of the total runtime, is devoted to the
analysis of the low-level heuristics available for the problem being optimised. As
described in Section 2, only non dominated low-level heuristics will be available
for the five selected algorithm schemata in the following phases.

Phase 2: Algorithm selection
In this phase, a fraction of the remaining time is allocated for selecting the best
performing schema for the problem at hand among the schemata with fixed pa-
rameters described in Section 4. The selection is as in a race, where at each
step the worst candidate schema is eliminated. Starting from the best solution
found during the first phase, the algorithmic schemata are run in an interleaved
manner each for a fraction of CPU-seconds that amounts to 2.5% of the time
remaining after the first phase. After each race, the worst performing schema is
discarded, and a new race is performed on the remaining algorithms. The phase
terminates when only one schema remains. In order to keep this phase as short
as possible, if this phase lasts 25% of the total computation time, the phase is
automatically terminated and the best of the remaining algorithms is kept as
the winner of the race. This is a very simplistic algorithm selection, which could
be seen as a workaround to the competition rules. By using a more sophisticated
schema as in [21], we probably would make a faster and better selection.

Phase 3: Run
The best-performing algorithm is executed for the remaining allocated time.
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6 Experimental Results

The competition organisers made available an updated version of the HyFlex
framework with all instances and all domains used during the competition, i.e.,
the four sample ones and the two hidden ones, TSP and VRP. In order to
facilitate the comparison with the algorithms submitted to the competition, the
organisers published also all detailed results obtained by all algorithms on all
instances, and the random seed used to select the five random instances for each
problem domain.

During the competition, algorithms have been run 31 times for 600 seconds
on each domain and each instance. The median values have been selected and
the algorithms have been ranked. The ranking system is mutuated from the
Formula-1 point system. The first eight best heuristics receive 10, 8, 6, 5, 4, 3, 2,
and 1 point respectively. In case of ties, the points of the concerned positions are
summed and equally divided by the algorithms having the same median solution
quality.

We run NA-SLS on one node of the cluster for 1176 CPU-seconds which corre-
spond to 600 CPU-seconds on the competition reference machine. The speedup
between the machines has been computed with a benchmark tool supplied by the
organisers of the competition. We verified that the amount of seconds computed
by the benchmark tool was correct by running on the same node of the cluster

Table 3. Comparison with CHeSC 2011 contestants on MAX-SAT, bin packing, and
PFSP

MAX-SAT Bin packing PFSP
Rank Algorithm Score Rank Algorithm Score Rank Algorithm Score
1 NA-SLS 44.2 1 AdapHH 45 1 ML 38
2 AdapHH 29.28 2 ISEA 30 2 AdapHH 36
3 VNS-TW 28.08 3 NA-SLS 23 3 VNS-TW 32
4 HAHA 27.28 4 ACO-HH 19 4 NA-SLS 26
5 KSATS-HH 19.5 5 GenHive 14 5 EPH 21
6 ML 12.30 6 XCJ 12 6 HAEA 10
7 AVEG-Nep 12.1 6 DynILS 12 7 PHUNTER 9
8 PHUNTER 9.3 6 ML 12 7 ACO-HH 9
9 ISEA 4.10 9 KSATS-HH 11 9 GenHive 7
10 MCHH-S 3.75 10 EPH 9 10 ISEA 3.5
11 XCJ 3.60 11 PHUNTER 3 10 HAHA 3.5
12 GISS 0.75 11 VNS-TW 3 12 AVEG-Nep 0
12 SA-ILS 0.75 13 HAEA 2 12 GISS 0
14 ACO-HH 0 14 AVEG-Nep 0 12 SA-ILS 0
14 GenHive 0 14 GISS 0 12 SelfSearch 0
14 SelfSearch 0 14 SA-ILS 0 12 Ant-Q 0
14 Ant-Q 0 14 HAHA 0 12 XCJ 0
14 EPH 0 14 SelfSearch 0 12 DynILS 0
14 DynILS 0 14 Ant-Q 0 12 KSATS-HH 0
14 HAEA 0 14 MCHH-S 0 12 MCHH-S 0
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Table 4. Comparison with CHeSC 2011 contestants on personnel scheduling, TSP,
and VRP

Personnel scheduling TSP VRP
Rank Algorithm Score Rank Algorithm Score Rank Algorithm Score
1 VNS-TW 39.5 1 AdapHH 41.25 1 PHUNTER 33
2 ML 31 2 EPH 36.25 2 HAEA 28
3 HAHA 25 3 PHUNTER 26.25 3 KSATS-HH 23
4 SA-ILS 18.5 4 VNS-TW 17.25 4 ML 22
5 ISEA 14.5 5 DynILS 13 5 AdapHH 16
6 PHUNTER 12.5 5 ML 13 5 HAHA 16
7 GISS 10 7 NA-SLS 12 7 EPH 12
7 EPH 10 8 ISEA 11 8 AVEG-Nep 10
9 AdapHH 9 8 HAEA 11 9 GISS 6
9 KSATS-HH 9 10 ACO-HH 8 9 GenHive 6
11 GenHive 6.5 11 GenHive 3 9 VNS-TW 6
12 SelfSearch 5 11 SelfSearch 3 12 ISEA 5
13 NA-SLS 2.5 13 AVEG-Nep 0 12 XCJ 5
14 HAEA 2 13 GISS 0 14 SA-ILS 4
15 AVEG-Nep 0 13 SA-ILS 0 15 ACO-HH 2
15 ACO-HH 0 13 HAHA 0 16 DynILS 1
15 Ant-Q 0 13 Ant-Q 0 17 NA-SLS 0
15 XCJ 0 13 XCJ 0 17 SelfSearch 0
15 DynILS 0 13 KSATS-HH 0 17 Ant-Q 0
15 MCHH-S 0 13 MCHH-S 0 17 MCHH-S 0

our original submission and verifying (with the same random seed used in the
competition) that the results obtained in 1176 CPU-seconds corresponded to the
results obtained in the competition.

Table 3 and Table 4 show the results on the different problem domains. On
three out of four of the sample domains we would score high achieving the first,
the third, and the fourth position. For personnel scheduling, we already knew
before the final competition that our results would not be very competitive; this
is confirmed by the thirteenth position achieved by our algorithm with only 2.5
points. On the two hidden domains, we scored relatively good on TSP and for
us surprisingly bad on VRP, where we did not score any point. Future work will
be devoted to understand the reasons behind the poor performances on VRP.
Overall, with a more careful tuning, and a different combination of schemata,
our algorithm would have ranked fourth at the competition.

In order to better understand the results, after the competition, we run an
analysis of the impact of the heuristics selection phase. We ran an identical
copy of NA-SLS where we allowed all low-level heuristics to be used. The results
showed that the impact was more limited than expected. In fact, by allowing
dominated heuristics, the final algorithm would still score fourth in the final
ranking with 108.2 points, which is more than 107.7 points achieved by the
version with the heuristic selection phase. For what concerns the single domains,
the ranking and points would not change on MAX-SAT, bin packing, TSP, and
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Table 5. Comparison with CHeSC 2011 contestants on all problem domains

All problem domains

Rank Algorithm Score

1 AdapHH 176.53
2 ML 128.3
3 VNS-TW 125.83
4 NA-SLS 107.7
5 PHUNTER 93.05
6 EPH 88.25
7 HAHA 71.78
8 ISEA 68.1
9 KSATS-HH 62.5
10 HAEA 53
11 ACO-HH 38
12 GenHive 36.5
13 DynILS 26
14 SA-ILS 23.25
15 AVEG-Nep 22.1
16 XCJ 20.6
17 GISS 16.75
18 SelfSearch 8
19 MCHH-S 3.75
20 Ant-Q 0

VRP. On PFSP the algorithm would actually gain 3 points and still score fourth
with 29 points; and for personnel scheduling it would lose the 2.5 points and
rank fourteenth.

In order to analyse the impact of the algorithm selection, we implemented two
alternative versions of NA-SLS. In the first one, a candidate schema is selected
at random from the pool of the available ones. In the second one, an oracle
always chooses the best a posteriori candidate schema for the problem domain
being optimised. These two variants represent a lower and an upper bound to
the desired behaviour of the algorithm selection we implemented. In the case
of random selection, NA-SLS would rank seventeenth at the competition with
only 8 points; while the version implementing the oracle, would rank second with
138.8 points. Table 6 breaks down the results for the single problems domains.
On the test instances used in the competition, the best algorithmic schema for
MAX-SAT, bin packing, and PFSP correspond to the schemata that had been
tuned for the same problem domains. For personnel scheduling the best schema
would have been an ILS+VND tuned for MAX-SAT, but also the ILS+VND
tuned for personnel scheduling would have scored close and rank fifth with 10.5
points. For the hidden domain TSP the best schema would have been the TSA
tuned for bin packing, and for the hidden domain VRP, both ILS+VND tuned
for MAX-SAT and ILS+VND tuned for personnel scheduling would have ranked
seventeenth with one point.
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Table 6. Results of NA-SLS, where the algorithmic schemata selection is performed
by an oracle that knows which schema will be the best choice for the problem being
optimised

Problem domain Rank Score Algorithmic Schema

MAX-SAT 1 40.8 ILS+VND, parameter setting MAX-SAT
Bin packing 3 24 TSA, parameter setting bin packing
Personnel scheduling 6 12 ILS+VND, parameter setting MAX-SAT
PFSP 1 39 IG with probabilistic acceptance criterion
TSP 4 22 TSA, parameter setting bin packing
VRP 17 1 ILS+VND, parameter setting MAX-SAT

All problem domains 2 138.8 -

The bounds obtained show that our simplistic algorithm selection is already
close to the upper bound, and that there is still a gap for further improvement.
Nevertheless, this gap could be small since the alternative versions of NA-SLS
used to compute the bounds do not spend time for the for the algorithm selection
phase, and have more time available for the search.

7 Conclusions

In this paper we presented in detail a further development of our submission for
the CHeSC 2011 challenge. Our algorithm is composed by different schemata we
tuned on four sample problem domains supplied by the competition organisers.
After tuning each algorithmic schema on each problem domain, we selected a
pool of five schemata that would be part of the final algorithm and that would
be selected at runtime with a simplistic algorithm selection mechanism. The
experimental results shows that our algorithm would have ranked fourth at the
competition. Even if in the end the algorithm did not rank first, the testing
of such a large number of algorithm configurations would have been unfeasible
without the automatic tuning.

There are several ad-hoc choices that were done without much analysis, for
example the algorithm selection schema sounded a reasonable strategy to try,
but it could be replaced with more sophisticated schemes that would probably
allow for a faster and better selection. Heuristics and parameter adaptation
schemes considering the results of the other algorithms could be another step to
apply. Eventually, it would also be interesting to test a different version of the
competition, in which the low level heuristics are not reshuffled and therefore
their choice or the sequence of their execution could be directly tuned.
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Abstract. With this paper we contribute to the understanding of the
success of 2-opt based local search algorithms for solving the traveling
salesman problem (TSP). Although 2-opt is widely used in practice, it
is hard to understand its success from a theoretical perspective. We take
a statistical approach and examine the features of TSP instances that
make the problem either hard or easy to solve. As a measure of problem
difficulty for 2-opt we use the approximation ratio that it achieves on
a given instance. Our investigations point out important features that
make TSP instances hard or easy to be approximated by 2-opt.

Keywords: TSP, 2-opt, Classification, Feature Selection, MARS.

1 Introduction

Metaheuristic algorithms such as local search, simulated annealing, evolutionary
algorithms, and ant colony optimization have produced good results for a wide
range of NP-hard combinatorial optimization problems. One of the most famous
NP-hard combinatorial optimization problems is the traveling salesman problem
(TSP). Given a set of N cities and positive distances dij to travel from city i to
city j, 1 ≤ i, j ≤ N and i 
= j, the task is to compute a tour of minimal traveled
distance that visits each city exactly once and returns to the origin.

The perhaps simplest NP-hard subclass of TSP is the Euclidean TSP where
the cities are points in the Euclidean plane and the distances are the Euclidean
distances between them. We will focus on the Euclidean TSP. It is well known
that there is a polynomial time approximation scheme (PTAS) for this prob-
lem [2]. However, this algorithm is very complicated and hard to implement.

Many heuristic approaches have been proposed for the TSP. Often local search
methods are the preferred methods used in practice. The most successful algo-
rithms rely on the well-known 2-opt operator, which removes two edges from a
current tour and connects the resulting two parts by two other edges such that a
different tour is obtained [9]. Despite the success of these algorithms for a wide
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range of TSP instances, it is still hard to understand 2-opt from a theoretical
point of view.

Theoretical studies regarding 2-opt have investigated the approximation be-
havior as well as the time to reach a local optimum. Chandra et al [4] have stud-
ied the worst-case approximation ratio that 2-opt achieves for different classes
of TSP instances. Furthermore, they investigated the time that a local search
algorithm based on 2-opt needs to reach a locally optimal solution. Englert et
al. [6] have shown that there are even instances for the Euclidean TSP where
a deterministic local search algorithm based on 2-opt would take exponential
time to find a local optimal solution. Furthermore, they have shown polynomial
bounds on the expected number of steps until 2-opt reaches a local optimum
for random Euclidean instances and proved that such a local optimum gives a
good approximation for the Euclidean TSP. These results also transfer to simple
ant colony optimization algorithms as shown in [12]. Most previously mentioned
investigations have in common that they either investigate the worst local opti-
mum and compare it to a global optimal solution or investigate the worst case
time that such an algorithm needs to reach a local optimal solution. Although
these studies provide interesting insights into the structure of TSP instances
they do not provide much insights into what is actually going on in the applica-
tion of 2-opt based algorithms. In almost all cases the results obtained by 2-opt
are much better than the actual worst-case guarantees given in these papers.
These motivates the studies carried out in this paper, which aim to get further
insights into the search behavior of 2-opt and to characterize hard and easy TSP
instances for 2-opt.

We take a statistical meta-learning approach to gain new insights into which
properties of a TSP instance make it difficult or easy to solve for 2-opt. Analyz-
ing different features of TSP instances and their correlation we point out how
they influence the search behavior of local search algorithms based on 2-opt. To
generate hard or easy instances for the TSP we use an evolutionary algorithm
approach similar to the one of [21]. However, instead of defining hardness by
the number of 2-opt steps to reach a local optimum, we define hardness by the
approximation ratio that such an algorithm achieves for a given TSP instance
compared to the optimum solution. This is motivated by classical algorithmic
studies for the TSP problem in the field of approximation algorithms. Having
generated instances that lead to a bad or good approximation ratio, the features
of these instances are analyzed and classification rules are derived, which predict
the type of an instance (easy, hard) based on its feature levels. In addition, in-
stances of moderate difficulty in between the two extreme classes are generated
by transferring hard into easy instances based on convex combinations of both
instances, denoted as morphing. Systematic changes of the feature levels along
this “path” are identified and used for a feature based prediction of the difficulty
of a TSP instance for 2-opt-based local search algorithms.

The structure of the rest of this paper is as follows. In Section 2, we give an
overview about different TSP solvers, features to characterize TSP instances and
indicators that reflect the difficulty of an instance for a given solver. Section 3
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introduces an evolutionary algorithm for evolving TSP instances that are hard
or easy to approximate and carries out a feature based analysis of the hardness
of TSP instances. Finally, we finish with concluding remarks and an outlook on
further research perspectives in Section 4.

2 Local Search and the Traveling Salesman Problem

Local search algorithms are frequently used to tackle the TSP problem. They
iteratively improve the current solution by searching for a better one in its pre-
defined neighborhood. The algorithm stops when there is no better solution in
the given neighborhood or if a certain number of iterations has been reached.

Historically, 2-opt [5] was one of the first successful algorithms to solve larger
TSP instances. It is a local search algorithm whose neighbourhood is defined by
the removal of two edges from the current tour. The resulting two parts of the
tour are reconnected by two other edges to obtain a new solution. Later on, this
idea has been extended to 3-opt [14] where three connections in a tour are first
deleted, and then the best possible reconnection of the network is taken as a
new solution. Lin and Kernighan [13] extended the idea to more complex neigh-
bourhoods by making the number of performed 2-opt and 3-opt steps adaptive.
Nowadays, variants of these seminal algorithms represent the state-of-the-art in
heuristic TSP optimizers.

Among others, memetic algorithms and subpath ejection chain procedures
have shown to be competitive alternatives, with hybrid approaches still being
investigated today. In the bio-inspired memetic algorithms for the TSP problem
(see [16] for an overview) information about subtours is combined to form new
tours via ’crossover operators’. Additionally, tours are modified via ’mutation
operators’, to introduce new subtours. The idea behind the subpath ejection
chain procedures is that in a first step a dislocation is created that requires
further change. In subsequent steps, the task is to restore the system. It has been
shown that the neighbourhoods investigated by the ejection chain procedures
form supersets of those generated by the Lin-Kernighan heuristic [8].

In contrast to the above-mentioned iterative and heuristic algorithms,
Concorde [1] is an exact algorithm that has been successfully applied to TSP
instances with up to 85,900 vertices. It follows a branch-and-cut scheme [17],
embedding the cutting-plane algorithm within a branch-and-bound search. The
branching steps create a search tree, with the original problem as the root node.
By traversing the tree it is possible to establish that the leafs correspond to a
set of subproblems that include every tour for our TSP.

2.1 Characterization of TSP Instances

The theoretical assessment of problem difficulty of a TSP instance at hand a-
priori to optimization is usually hard if not impossible. Thus, research has fo-
cussed on deriving and extracting problem properties, which characterize and
relate to the hardness of TSP instances (e.g. [21,10,20]). We refer to these prop-
erties as features in the following and provide an overview subsequently. Features
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that are based on knowledge of the optimal tour [22,11] cannot be used to char-
acterize an instance a priori to optimization. They are not relevant in the context
of this paper and thus are not discussed in detail.

An intuitive and considered feature is the number of nodes N of the TSP in-
stance [21,10,20]). Kanda et al. [10] assume the number of edges to be important
as well and introduce a set of features that are based on summary statistics of
the edge cost distribution. We will use edge cost or edge weight as a synonym
of distance between nodes in the following. The lowest, highest, mean and me-
dian edge cost are considered as well as the respective standard deviation and
the sum of N edges with lowest edge cost values. Furthermore, the quantity of
edges with costs lower than the mean or median edge cost is taken into account.
Additional features are the number of modes of the edge cost distribution and
related features such as the frequency of the modes and the mean of the modal
values.

Smith-Miles et al. [20,21] list features that assume that the existence and
number of node clusters affect the performance of TSP solvers. Derived features
are the cluster ratio, i.e. the number of clusters divided by N , and the mean
distances to the cluster centers. Uniformity of an instance is further reflected
by the minimum, maximum, standard deviation and the coefficient of variation
of the normalized nearest-neighbor distances (nnd) of each node. The outlier
ratio, i.e. the number of outliers divided by N , and the number of nodes near
the edge of the plane are additionally considered. The centroid together with the
mean distance from the nodes to the centroid and the bounding box of the nodes
reflect the ’spread’ of the instance on the plane. The feature list is completed by
the fraction of distinct distances, i.e. different distance levels, and the standard
deviation of the distance matrix.

Note that in order to allow for a fair comparison of features across instances
of different sizes N the features have to be normalized appropriately. This means
that all distances and edge costs have to be divided by their total sum. Analo-
gously, all quantities have to be expressed relatively to the corresponding maxi-
mum quantity. Ideally, all instances should be normalized to the domain [0, 1]2

to get rid of scaling issues.
We will use the approximation ratio that an algorithm achieves for a given in-

stance as the optimization accuracy. The approximation ratio is given by the rel-
ative error of the tour length resulting from 2-opt compared to the optimal tour
length and is a classical measure in the field of approximation algorithms [23].
Based on the approximation ratio that the 2-opt algorithm achieves, we will
classify TSP instances either as easy or hard. Afterwards, we will analyze the
features of hard and easy instances.

3 Analysis of TSP Problem Difficulty

In this section, we analyze easy and hard instances for the TSP. We start by
describing an evolutionary algorithm that we used to generate easy and hard
instances. Later on, we characterize these instances by the different features
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Algorithm 1. Generate a random TSP instance.

function randomInstance(size)
for i = 1 → size do

instance[i, 1] ← U(0, 1) � Uniform random number between 0 and 1
instance[i, 2] ← U(0, 1) � Uniform random number between 0 and 1

end for
return instance

end function

Algorithm 2. EA for evolving problem easy and hard TSP instances

function EA(popSize, instSize, generations, time limit, digits, repetitions, type)
poolSize ← �popSize/2
for i = 1 → popSize do

population[i] ← randomInstance(instSize)
end for
for generation = 1 → generations do

for k = 1 → popSize do
fitness[k] ← computeFitness(population[k], repetitions)

end for
matingPool ← createMatingPool(poolSize, population, fitness)
nextPopulation[1] ← population[bestOf(fitness)] � 1-elitism
for k = 2 → popSize do

parent1 ← randomElement(population)
parent2 ← randomElement(population)
offspring←uniformMutation(uniformCrossover(parent1, parent2))
nextPopulation[k] ← round(normalMutation(offspring))

end for
population ← nextPopulation
if over time limit time limit then

return population
end if

end for
end function

that we analyzed and point out which features make a TSP instance difficult to
be solved by 2-opt.

3.1 EA-Based Generation of Easy and Hard TSP Instances

As the aim is to identify the features that are crucial for predicting the hardness
of instances for the 2-opt heuristic, a representative set of instances is required
which consists of a wide range of difficulties. It turned out that the construction
of such a set is not an easy task. The generation of instances in a random manner
did not provide a sufficient spread with respect to the instance hardness. The
same is true for instances contained in the TSPLIB [18] of moderate size, i.e.
lower than 1000 nodes, for which, in addition, the number of instances is not high
enough to provide an adequate data basis. Higher instance sizes were excluded
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Algorithm 3. Compute Fitness

function ComputeFitness(instance, repetitions)
optimalTourLength ← concorde(instance)
for j ← 1, repetitions do

twoOptTourLengths[j] ← twoOpt(instance) � Two Opt Tour length
end for
return mean(twoOptTourLengths)

optimalTourLenght

end function

Algorithm 4. Mating pool creation

function createMatingPool(poolSize, population, fitness)
for i = 1 → poolSize do

matingPool[i]
←betterOf(randomElement(population),randomElement(population))

end for
return matingPool

end function

due to the large computational effort required for their analysis, especially the
computation of the optimal tours.

Therefore, two sets of instances are constructed in the [0, 1]-plane, which focus
on reflecting the extreme levels of difficulty. An evolutionary algorithm (EA) is
used for this purpose (see Algs. 1 - 4 for a description), which can be parame-
terized such that its aim is to evolve instances that are either as easy or as hard
as possible for a given instance size. The approach is conceptually similar to
[21] but focusses on approximation quality rather than on the number of swaps.
Since some features depend on equal distances between the cities, we opted to
implement a rounding scheme in the mutation step to force all cities to lie on a
predefined grid. Initial studies also showed, that a second mutation strategy was
necesarry. ”Local mutation” was achieved by adding a small normal pertubation
to the location, ”global mutation” was performed by replacing each coordinate
of the city with a new uniform random value. This later step was performed with
a very low probability. All parameters are given at the end of this section.

The fitness function to be optimized is chosen as the approximation quality
of 2-opt, estimated by the arithmetic mean of the tour lengths of a fixed number
of 2-opt runs, on a given instance divided by the optimal tour length which is
calculated using Concorde [1]. In general other summary statistics instead of the
arithmetic mean could be used as well such as the maximum or minimum ap-
proximation quality achieved. Note that randomness is only induced by varying
the initial tour whereas the 2-opt algorithm is deterministic in always choos-
ing the edge replacement resulting in the highest reduction of the current tour
length. Depending on the type of instance that is desired, the betterOf and
bestOf operators are either chosen to minimze or maximize the approximation
quality.
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We use a 1-elitism strategy such that only the individual with the current
best fitness value survives and will be contained in the next population. The
population is completed by iteratively choosing two parents from the mating
pool, applying uniform crossover, uniform and normal mutation and adding the
offspring to the population. This procedure is repeated until the population size
is reached. Two sequential mutation strategies enable small local as well as global
structural changes of the offspring resulting from the crossover operation.

In the experiments 100 instances each for the two instance classes (easy,
hard) with a fixed instance size of 100 are generated. The remaining param-
eters are set as follows: popSize = 30, generations = 1500, time limit = 22h,
uniformMutationRate = 0.001, normalMutationRate = 0.01, digits = 2, and
the standard deviation of the normal distribution used in the normalMutation
step equals normalMutationSd = 0.025. The parameter levels were chosen
based on initial experiments. However, a matter of future research will be a
systematic tuning of the EA parameters in order to check if the results can
be significantly improved. The number of 2-opt repetitions for calculating the
approximation quality is set to 500.

3.2 Characterization of the Generated Instances

The average approximation qualities and respective standard deviations of the
evolved easy and hard instances are (1.032± 0.0041) and (1.177 ± 0.0044), i.e.
for the easy instances the average tour length of the 2-opt is about three percent
higher than the optimal tour. The corresponding value for the hard instances is
18 percent, which results in a sufficiently high performance discrepancy between
the two evolved sets.

In Figure 1 three EA generated instances of both classes are shown together
with the corresponding optimal tours computed by Concorde. The main visual
observations can be summarized as follows:

– The distances of the cities on the optimal tour appear to be more uniform for
the hard instances than it is the case for the easy ones. This is supported by
Figure 2 that shows boxplots of the standard deviations of the edge weights
on the optimal tour. There we see that respective standard deviations of the
easy instances are roughly twice as high than for the hard instances.

– The optimal tours of the hard instances are more similar to a “U-shape”
whereas the optimal tours of the easy instances rather match an “X-shape”.

– It seems that the easy instances consist of many small clusters of cities
whereas this is not the case for the hard instances up to the same extent.

3.3 Feature-Based Prediction of TSP Problem Hardness

A decision tree [3] is used to differentiate between the two instance classes. This
leads to the following classification rule, which is based on the coefficient of
variation of the nearest neighbor distances (CVND) and the highest edge cost
value (HEC):
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Fig. 1. Examples of the evolved instances of both types (easy, hard) including the
optimal tours computed by Concorde

Fig. 2. Boxplots of the standard deviations of the tour length legs of the optimal tour,
both for the evolved easy and hard instances

coefficient of variation of nnds>=0.5167739 → easy

coefficient of variation of nnds< 0.5167739

↪→ highest edge cost>=0.000485 → easy

↪→ highest edge cost< 0.000485 → hard

The ten-fold cross-validated error rate is very low, i.e. equals 3.02% so that
an almost perfect classification of instances into the two classes based on only
two features is possible. Basically, the classification relies on the single feature
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Fig. 3. Scatterplot of the features CVND and HEC for all evolved instances. Feature
classes predicted by the decision tree are marked by different colors. Incorrectly classi-
fied instances during cross-validation are labeled by a grey circle.

CVND, which is shown in Figure 3. The two-dimensional feature space of the 200
instances is visualized using the features selected by the decision tree and labels
the instances based on the presented classification rule. Incorrectly classified
instances are marked by a grey circle.

It can be seen that the key feature for classifying the evolved instances into
the two classes is CVND, which is perfectly in line with the exploratory analysis
in Section 3.2. As the nearest neighbor of a node is the most likely candidate
to be chosen in the course of the construction of the optimal tour, the CVND
is highly correlated with the standard deviation of the distances on the optimal
tour. In addition, the interpretation of the subrule regarding the feature HEC
allows the same interpretation such that with increasing HEC value the less
likely a uniform distribution of the edge weights becomes.

Classification rules generated for classifying easy and hard instances w.r.t. the
Chained Lin-Kernighan (CLK) and Lin-Kernighan with Cluster Compensation
(LKCC) algorithms in [21] also incorporate the feature CVND but the rule points
into the opposite direction for CLK. Low CVND values characterize instances
that are easy to solve for CLK. Although in [21] the approximation quality
is measured by the number of swaps rather than by the resulting tour length
relative to the optimal one, this is an interesting observation. In contrast, the
results for LKCC are similar to the 2-opt rule, i.e. instances are classified as easy
for high CVND values in combination with a low number of distinct distances.
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3.4 Morphing Hard into Easy Instances

We are now in the position to separate easy and hard instances with the classifi-
cation rule presented in Section 3.3. In this section, instances in between, i.e. of
moderate difficulty, are considered as well. Starting from the result in [6] that a
hard TSP instance can be transformed into an easy one by slight variation of the
node locations, we studied the ’transition’ of hard to easy instances by morphing
a single hard instance IH into an easy instance IE by a convex combination of
the points of both instances, which generates an instance Inew in between the
original ones based on random point matching, i.e.

Inew = α · IH + (1− α) · IE with α ∈ [0, 1].

Fig. 4. Example: Morphing of one instance into a different instance for different α-levels
of the convex combination. Nodes of the same color belong to the same instance.

An example of morphing is shown in Figure 4. The morphing strategy is
applied to all possible combinations of single hard and easy instances of the
two evolved instance sets using 51 levels of α (α ∈ {0, 0.02, 0.04, ..., 1}). Each
generated instance is characterized by the levels of the features discussed in
Section 2.1. Thus, the changes of the feature levels with increasing α can be
studied which is of interest as it should lead to an understanding of the influence
of the different features on the approximation quality.

Figure 5 shows the approximation quality for the instances of all 10 000 morph-
ing sequences for the variousα levels in the bottom subfigure. Starting from a hard
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instance on the left side of the plot (α = 0) the findings of [6] are confirmed. The
approximation quality of 2-opt quickly increases, i.e. the value of approx decreases,
with slight increases of α. Interestingly, roughly for ≈ 0.1 < α < 0.9 the approxi-
mation quality is quite stable, whereas it nonlinearly increases for α >= 0.9. Ad-
ditionally, the feature levels of the generated instances are visualized.

On the one hand features exist that do not show any systematic relation-
ship with the approximation quality, e.g. all features related to the modes,
lowest edge cost or cities near edge ratio one percent. Other features exhibit a
convex or concave shape obtaining similar values for the extreme α-levels and
minimum resp. maximum value at α ≈ 0.5, e.g. mean distance to cluster
centroids 0.1, cities near edge ratio five percent or edges lower than average
cost. The ratio of distinct distances is only low for α ∈ {0, 1} and rather con-
stant on a much higher level in between. A systematic nonlinear relationship
can be detected for the features on which the classification rule is based, i.e.
the CVND and HEC as well as for the mean of normalized nnds and sum of-
lowest edge values.
In order to get a more accurate picture of the relationship between the ap-

proximation quality and the features a Multivariate Adaptive Regression Splines
(MARS) [7] model is constructed in order to directly predict the expected ap-
proximation quality of 2-opt on a given instance based on the candidate features.
Only a subset of the data is considered for the analysis (all morphed instances
with α ∈ {0, 0.2, ..., 1}), in order to adequately balance the data w.r.t. the various
levels of 2-opt approximation quality. Had all 51 α-levels been used, the moder-
ately difficult instances would have been massively overrepresented compared to
the easy and hard instances.

We used a MARS model with interaction effects up to the second degree.
Although this model class consists of an internal variable selection strategy a
forward selection process together with a threefold cross-validation is applied in
order to systematically focus on model validation and minimizing the root mean
squared error (RMSE) of the prediction. Starting from an empty model, succes-
sively the feature that maximally reduces the RMSE is added to the existing
model until the RMSE improvement falls below the threshold t = 0.0005. The
results of the modeling procedure are shown in Table 1. The final root mean
squared error is 0.0113.

The main and interaction effects of the model are visualized in Figure 6. Anal-
ogously to the classification rule the CVND is a key feature in predicting the

Table 1. Results of the MARS model

Feature list RMSE

empty model 0.0484
+ coefficient of variation of nnds (CVND) 0.0246
+ distinct distances (DD) 0.0163
+ highest edge cost (HEC) 0.0119
+ sum of lowest edge values (SLEV) 0.0113
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Fig. 5. Approximation quality and feature values for different α levels of all conducted
morphing experiments. The annotations ” 0.01”,” 0.05” and ” 0.1” identify different
levels of the reachability distance as a parameter of GDBSCAN [19] used for clustering.

approximation quality. From the plots, it is obvious that high values of the ap-
proximation ratio only occur for very low CVND values. However, the main effect
in this case does not reflect the classification rule generated before. The HEC is
only part of an interaction with the remaining features. The problem hardness
tends to be higher for low HEC values combined with high DD values and low
CVND values. In addition, problem hardness decreases with lower SLEV values.
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Fig. 6. Effect plots resulting from the MARS model. Main effects are plotted (top) to-
gether with the feature interactions (bottom). Coefficient of variation of nnds (CVND),
highest edge cost (HEC), distinct distances (DD) and sum of lowest edge values (SLEV)
were selected. In all plots the last axis reflects the approximation quality of 2-opt. The
plots are generated by setting the non-displayed variables to their median values.

The selection of the DD feature seems to be somewhat arbitrary in that the
slope of the effect line could just as well have been negative from visual analysis.
Summarizing, the interpretation of the model results is not straightforward but
nevertheless a quite accurate prediction of 2-opt approximation quality on the
considered instances is achieved.

4 Summary and Outlook

In this paper we investigated concepts to predict TSP problem hardness for
2-opt based local search strategies on the basis of experimental features that
characterize the properties of a TSP instance. A crucial aspect was the genera-
tion of a representative instance set as a basis for the analysis. This turned out
to be far from straightforward. Therefore it was only possible to generate very
hard and very easy instances using sophisticated (evolutionary) strategies. Sum-
marizing, we managed to generate classes of easy and hard instances for which
we are able to predict the correct instance class based on the corresponding
feature levels with only marginal errors. The coefficient of variation of nearest
neighbor distances was identified as the key feature for differentiating between
hard and easy instances, and the results are supported by exploratory analysis
of the evolved instances and the respective optimal tours. However, it should
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be noted that most probably not the whole space of possible hard instances is
covered by using our evolutionary method, i.e. probably only a subset of possible
characteristics or feature combinations that make a problem hard for 2-opt can
be identified by the applied methodology.

Instances of moderate difficulty were constructed by morphing hard into easy
instances where the effects of the transition on the corresponding feature levels
could be studied. A MARS model was successfully applied to predict the ap-
proximation quality of 2-opt based on the features of an adequate subset of the
generated instances with very high accuracy.

The analysis offers promising perspectives for further research. A general-
ization of the results to other instance sizes should be addressed as well as a
systematic comparison to other local and global search as well as hybrid solvers
with respect to the influence of the feature levels of an instance on the perfor-
mance of the respective algorithms. However, it has to be kept in mind that
the computational effort intensely increases with increasing instance size as the
optimum solution, e.g. computable via Concorde, is required to calculate the
approximation quality of 2-opt.

The extension of the feature set is another relevant topic that could be studied.
For example, in the context of benchmarking algorithms on continuous black-box
optimization problems the extraction of problem properties that might influence
algorithm performance is an important and current focus of research, denoted
as exploratory landscape analysis (ELA, [15]). Although the TSP search space is
not continuous, e.g. the ELA feature that tries to capture the number of modes of
an empirical density function, could be transferred to the problem at hand. Fur-
thermore, possible advantages of sophisticated point matching strategies during
the morphing of hard into easy instances can be investigated. Finally, it is open
how representative the generated instances are for real-world TSP instances. It
is therefore very desirable to create a much larger pool of small to medium sized,
real-world, TSP instances for comparison experiments.
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Abstract. A promising approach to tackle intractable problems is given by a
combination of decomposition methods with dynamic algorithms. One such de-
composition concept is tree decomposition. However, several heuristics for ob-
taining a tree decomposition exist and, moreover, also the subsequent dynamic
algorithm can be laid out differently. In this paper, we provide an experimen-
tal evaluation of this combined approach when applied to reasoning problems
in propositional answer set programming. More specifically, we analyze the per-
formance of three different heuristics and two different dynamic algorithms, an
existing standard version and a recently proposed algorithm based on a more in-
volved data structure, but which provides better theoretical runtime. The results
suggest that a suitable combination of the tree decomposition heuristics and the
dynamic algorithm has to be chosen carefully. In particular, we observed that the
performance of the dynamic algorithm highly depends on certain features (be-
sides treewidth) of the provided tree decomposition. Based on this observation
we apply supervised machine learning techniques to automatically select the dy-
namic algorithm depending on the features of the input tree decomposition.

1 Introduction

Many instances of constraint satisfaction problems and other NP-hard problems can
be solved in polynomial time if their treewidth is bounded by a constant. This suggests
two-phased implementations where first a tree decomposition [25] of the given problem
is obtained which is then used in the second phase to solve the problem under consider-
ation by a (usually, dynamic) algorithm traversing the tree decomposition. The running
time of the dynamic algorithm1 mainly depends on the width of the provided tree de-
composition. Hence, the overall process performs well on instances of small treewidth
(formal definitions of tree decompositions and treewidth are given in Section 2), but
can also be used in general in case the running time for finding a tree decomposition re-
mains low. Thus, instead of complete methods for finding a tree decomposition, heuris-
tic methods are often employed. In other words, to gain a good performance for this
combined tree-decomposition dynamic-algorithm (TDDA, in the following) approach
we require efficient tree decomposition techniques which still provide results for which
the running time of the dynamic algorithm is feasible.

1 We use – throughout the paper – the term “dynamic algorithm” as a synonym for “dynamic
programming algorithm” to avoid confusion with the concept of Answer-Set programming.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 130–144, 2012.
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Tree-decomposition based algorithms have been used in several applications includ-
ing probabilistic networks [18] or constraint satisfaction problems such as
MAX-SAT [17]. The application area we shall focus on here is propositional Answer-
Set Programming (ASP, for short) [20,23] which is nowadays a well acknowledged
paradigm for declarative problem solving with many successful applications in the areas
of AI and KR.2 The problem of deciding ASP consistency (i.e. whether a logic program
has at least one answer set) is ΣP

2 -complete in general but has been shown tractable [12]
for programs of bounded treewidth. In this paper, we consider a certain subclass of pro-
grams, namely head-cycle free programs (for more formal definitions, we again refer
to Section 2); for such programs the consistency problem is NP-complete.

Let us illustrate here the functioning of ASP on a typical example. Consider the prob-
lem of 3-colorability of an (undirected) graph and suppose the vertices of a graph are
given via the predicate vertex(·) and its edges via the predicate edge(·, ·). We employ
a disjunctive rule to guess a color for each node in the graph, and then check in the
remaining three rules whether adjacent vertices have indeed different colors:

r(X) ∨ g(X) ∨ b(X)← vertex(X);

⊥← r(X), r(Y ), edge(X,Y );

⊥← g(X), g(Y ), edge(X,Y );

⊥←b(X), b(Y ), edge(X,Y );

Assume a simple input database with facts vertex(a), vertex(b) and edge(a, b). The
above program (together with the input database) yields six answer sets. In fact, the
above program is head-cycle free. Many NP-complete problems can be succinctly
represented using head-cycle free programs (in particular, the disjunction allows for a
direct representation of the guess; in our example the guess of a coloring); see [19] (Sec-
tion 3) for a collection of problems which can be represented with head-cycle free pro-
grams as opposed to problems which require the full power of ASP. However, the above
program contains variables and thus has to be grounded yet. So-called grounders turn
such programs into variable-free (i.e., propositional) ones which are then fed into ASP-
solvers. The algorithms discussed in this paper work on variable-free programs. We
emphasize at this point a valuable side-effect. For our example above, it turns out that if
the input graph has small treewidth, then the grounded variable-free program has small
treewidth as well (see Section 2 for a continuation of the example). This not only holds
for the encoding of the 3-colorability problem, but for many other ASP programs (in
particular, programs without recursive rules). Thus the class of propositional programs
with low treewidth is indeed important also in the context of ASP with variables.

A dynamic algorithm for general propositional ASP has already been presented
in [15]. Recently, a new algorithm was proposed for the fragment of head-cycle free
programs [21]. Their main differences are as follows: the algorithm from [15] is based
on ideas from dynamic SAT algorithms [26] and explicitly takes care of the minimal-
ity checks following the standard definition of answer sets; thus it requires double-
exponential time in the width of the provided tree decomposition. The algorithm

2 See http://www.cs.uni-potsdam.de/˜torsten/asp/ for a collection.

http://www.cs.uni-potsdam.de/~torsten/asp/
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proposed in [21] follows a more involved characterization [5] which applies to head-
cycle free programs and thus calls for a more complex data structure and operations.
However, it runs in single-exponential time wrt. the width of the provided tree de-
composition. Both algorithms have been integrated into a novel TDDA system for
ASP, which we call dynASP3. For the tree-decomposition phase, dynASP offers three
different heuristics, namely Maximum Cardinality Search (MCS) [29], Min-Fill and
Minimum Degree (see [7] for a survey on such heuristics). According to [11], the
min-fill heuristic usually produces tree decompositions of lower width than the other
heuristics.

By the above considerations, one would naturally expect that computing a tree de-
composition with the min-fill heuristic (which usually yields the lowest width) and ap-
plying the dedicated dynamic algorithm from [21] for head-cycle free ASPs (which
is single-exponential wrt. to the width of the tree decomposition) yields the best two-
phased algorithm for head-cycle free ASPs. Surprisingly, extensive testing with our
dynASP system has by no means confirmed these expectations: First, the TDDA al-
gorithm is not always most efficient when the best heuristic for tree decomposition is
used. Second, the specialized algorithm for head-cycle free programs does not always
perform better than the general algorithm, although the worst-case running time of the
latter is double-exponential in the treewidth while the running time of the former is only
single-exponential.

The goal of this paper is to get a deeper understanding of the interplay between tree
decompositions and dynamic algorithms and to arrive at an optimal configuration of the
two-phased dynamic algorithm. The above mentioned experimental results suggest that
the width of the tree decomposition is not the only significant parameter for efficiency
of our dynamic algorithms. Therefore, we identify other important features of tree de-
compositions that influence the running time of the dynamic algorithms. Based on these
observations, we propose the application of machine learning techniques to automati-
cally select the best dynamic algorithm for the given input instance. We successfully
apply classification techniques for algorithm selection in this domain. Additionally, we
exploit regression techniques that are used to predict the runtime of our dynamic algo-
rithms based on input instance features.

Note that the proposed features of tree decompositions are independent of the ap-
plication domain of ASP. We therefore expect that our insights into the influence of
various characteristics of tree decompositions on the performance of TDDAs are gen-
erally applicable to tree-decomposition based algorithms and that they are by no means
restricted to ASPs. The same holds true for the methodology developed here in order to
arrive at an optimal algorithm configuration of such two-phased algorithms.

2 Preliminaries

Answer Set Programming. A (propositional) disjunctive logic program (program, for
short) is a pair Π = (A,R), where A is a set of propositional atoms and R is a set of
rules of the form:

3 A preliminary version of this system has been presented in [22], see
http://dbai.tuwien.ac.at/proj/dynasp.

http://dbai.tuwien.ac.at/proj/dynasp
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a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an (1)

where “¬” is default negation4 n ≥ 1, n ≥ m ≥ l and ai ∈ A for all 1 ≤ i ≤ n. A
rule r ∈ R of the form (1) consists of a head H(r) = {a1, . . . , al} and a body B(r) =
B+(r) ∪ B−(r), given by B+(r) = {al+1, . . . , am} and B−(r) = {am+1, . . . , an}.
A set M ⊆ A is a called a model of r, if B+(r) ⊆ M ∧ B−(r) ∩M = ∅ implies
that H(r) ∩M 
= ∅. We denote the set of models of r by Mod(r) and the models of a
program Π = (A,R) are given by Mod(Π) =

⋂
r∈RMod(r).

The reduct ΠI of a program Π w.r.t. an interpretation I ⊆ A is given by (A, {rI :
r ∈ R, B−(r)∩I = ∅)}), where rI is r without the negative body, i.e., H(rI) = H(r),
B+(rI) = B+(r), and B−(rI) = ∅. Following [10], M ⊆ A is an answer set of a
program Π = (A,R) if M ∈ Mod(Π) and for no N ⊂M , N ∈ Mod(ΠM ).

We consider here the class of head-cycle free programs (HCFPs) as introduced in [5].
We first recall the concept of (positive) dependency graphs. A dependency graph of a
program Π = (A,R) is given by G = (V,E), where V = A and E = {(p, q) | r ∈
R, p ∈ B+(r), q ∈ H(r)}. A program Π = (A,R) is called head-cycle free if its
dependency graph does not contain a directed cycle going through two different atoms
which jointly occur in the head of a rule inR.

Example 1. We provide the fully instantiated (i.e. ground) version of our introductory
example from Section 1, which solves the 3-colorability for the given input database
vertex(a), vertex(b) and edge(a, b), yielding five rules (taking straight forward simpli-
fications as performed by state-of-the-art grounders into account):

r1 : r(a) ∨ g(a) ∨ b(a)←�; r2 : r(b) ∨ g(b) ∨ b(b)←�;
r3 : ⊥← r(a), r(b); r4 : ⊥← g(a), g(b);
r5 : ⊥← b(a), b(b);

Tree Decomposition and Treewidth. A tree decomposition of a graph G = (V,E) is a
pair T = (T, χ), where T is a tree and χ maps each node t of T (we use t ∈ T as a
shorthand below) to a bag χ(t) ⊆ V , such that (1) for each v ∈ V , there is a t ∈ T ,
s.t. v ∈ χ(t); (2) for each (v, w) ∈ E, there is a t ∈ T , s.t. {v, w} ⊆ χ(t); (3) for each
r, s, t ∈ T , s.t. s lies on the path from r to t, χ(r) ∩ χ(t) ⊆ χ(s).

A tree decomposition (T, χ) is called normalized (or nice) [16], if (1) each t ∈ T
has ≤ 2 children; (2) for each t ∈ T with two children r and s, χ(t) = χ(r) = χ(s);
and (3) for each t ∈ T with one child s, χ(t) and χ(s) differ in exactly one element,
i.e. |χ(t)Δχ(s)| = 1.

The width of a tree decomposition is defined as the cardinality of its largest bag minus
one. Every tree decomposition can be normalized in linear time without increasing the
width [16]. The treewidth of a graph G, denoted by tw(G), is the minimum width over
all tree decompositions of G.

For a given graph and integer k, deciding whether the graph has treewidth at most k is
NP-complete [2]. For computing tree decompositions, different complete [27,11,3] and
heuristic methods have been proposed in the literature. Heuristic techniques are mainly

4 We omit strong negation as considered in [5]; our results easily extend to programs with strong
negation.
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r(a) g(a) b(a) r(b) g(b) b(b)

r1 r3 r4 r5 r2

Fig. 1. The incidence graph of the ground program of Example 1

based on searching for a good elimination ordering of graph nodes. Several heuristics
that run in polynomial time have been proposed for finding a good elimination ordering
of nodes. These heuristics select the ordering of nodes based on different criteria, such
as the degree of the nodes, the number of edges to be added to make the node simplicial
(a node is simplicial if its neighbors form a clique) etc. We briefly mention three of
them: (i) Maximum Cardinality Search (MCS) [29] initially selects a random vertex
of the graph to be the first vertex in the elimination ordering (the elimination ordering
is constructed from right to left). The next vertex will be picked such that it has the
highest connectivity with the vertices previously selected in the elimination ordering.
The ties are broken randomly. MCS repeats this process iteratively until all vertices are
selected. (ii) The min-fill heuristic first picks the vertex which adds the smallest number
of edges when eliminated (the ties are broken randomly). The selected vertex is made
simplicial and it is eliminated from the graph. The next vertex in the ordering will be
any vertex that adds the minimum number of edges when eliminated from the graph.
This process is repeated iteratively until the whole elimination ordering is constructed.
(iii) The minimum degree heuristic picks first the vertex with the minimum degree. The
selected vertex is made simplicial and it is removed from the graph. Further, the vertex
that has the minimum number of unselected neighbors will be chosen as the next node
in the elimination ordering. This process is repeated iteratively. MCS, min-fill, and min-
degree heuristics run in polynomial time and usually produce a tree decomposition of
reasonable width. For other types of heuristics and metaheuristic techniques based on
the elimination ordering of nodes, see [7].

Tree Decompositions of Logic Programs. To build tree decompositions for programs,
we use incidence graphs.5 Thus, for program Π = (A,R), such a graph is given by
G = (V,E), where V = A ∪ R and E is the set of all pairs (a, r) with an atom a ∈ A
appearing in a rule r ∈ R. Thus the resulting graphs are bipartite.

For normalized tree decompositions of programs, we thus distinguish between six
types of nodes: leaf (L), join or branch (B), atom introduction (AI), atom removal
(AR), rule introduction (RI), and rule removal (RR) node. The last four types will be
often augmented with the element e (either an atom or a rule) which is removed or
added compared to the bag of the child node.

Figures 1 and 2 show the incidence graph of Example 1 and a corresponding tree
decomposition.

5 See [26] for justifications why incidence graphs are favorable over other types of graphs.
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r1, r5

r1, r5,b(b)

Fig. 2. A normalized tree decomposition of the graph shown in Figure 1

3 Dynamic Algorithms for ASP

Tree-decomposition based dynamic algorithms start at the leaf nodes and traverse the
tree to the root. Thereby, at each node a set of partial solutions is generated by taking
those solutions into account that have been computed for the child nodes. The most
difficult part in constructing such an algorithm is to identify an appropriate data struc-
ture to represent the partial solutions at each node: on the one hand, this data structure
must contain sufficient information so as to compute the representation of the partial
solutions at each node from the corresponding representation at the child node(s). On
the other hand, the size of the data structure must only depend on the size of the bag
(and not on the size of the entire answer set program).

In this section we review two completely different realizations of this data structure,
leading to algorithms which we will call Dyn-ASP1 and Dyn-ASP2.

Dyn-ASP1. The first algorithm was presented in [15]. It was proposed for propositional
disjunctive programs Π which are not necessarily head-cycle free. Its data structure,
called tree interpretation, follows very closely the characterization of answer sets pre-
sented in Section 2. A tree interpretation for tree decomposition T is a tuple (t,M, C),
where t is a node of T , M ⊆ χ(t) is called assignment, and C ⊆ 2χ(t) is called cer-
tificate. The idea is that M represents a partial solution limited to what is visible in the
bag χ(t). That means it contains parts of a final answer set as well as all those rules
which are already satisfied. The certificate C takes care of the minimality criteria for
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answer sets. It is a list of those partial solutions which are smaller than M together with
the rules which are satisfied by them. This means when reaching the root node of T ,
assignment M can only represent a real answer set if the associated certificate is empty
or contains only entries which do not satisfy all rules.

It turns out that due to the properties of tree decompositions it is indeed enough to
store only the information of the partial solution which is still visible in the current bag
of the tree decomposition. Hence, for each node the number of different assignments
M is limited single exponential in the treewidth. Together with the possible exponential
size of the certificate this leads to an algorithm with a worst case running time linear in
the input size and double exponential in the treewidth.

Dyn-ASP2. We recently proposed the second algorithm in [21]. In contrast to Dyn-
ASP1 it is limited to head-cycle free programs. Its data structure is motivated by a new
characterization of answer sets for HCFPs:

Theorem 1 ([21]). Let Π = (A,R) be an HCFP. Then, M ⊆ A is an answer set of Π
if and only if the following holds:

– M ∈ Mod(Π), and
– there exists a set ρ ⊆ R such that, M ⊆

⋃
r∈ρH(r); the derivation graph induced

by M and ρ is acyclic; and for all r ∈ ρ: B+(r) ⊆ M , B−(r) ∩M = ∅, and
|H(r) ∩M | = 1.

Here the derivation graph induced by M and ρ is given by V = M ∪ ρ and E is the
transitive closure of the edge set E′ = {(b, r) : r ∈ ρ, b ∈ B+(r) ∩M} ∪ {(r, a) : r ∈
ρ, a ∈ H(r) ∩M}.

Hence, the data structure used in Dyn-ASP2 is a tuple (G,S), whereG is a derivation
graph (extended by a special node due to technical reasons) and S is the set of satisfied
rules used to test the first condition in Theorem 1. Again it is enough to limit G and S
to the elements of the current bag χ(t). Therefore the number of possible tuples (G,S)
in each node is at most single exponential in the treewidth. This leads to an algorithm
with a worst case running time linear in the input size and single exponential in the
treewidth.

4 Evaluation of Tree Decompositions for ASP

In this section we give an extensive evaluation of dynamic algorithms based on tree de-
compositions for solving benchmark problems in answer set programming. In Figure 3
our solver based on tree decompositions and dynamic algorithms is presented, where
Dyn-ASP1 and Dyn-ASP2 refers to the two algorithms described Section 3. Moreover,
note that tree decompositions have to be normalized to be amenable to the two dynamic
algorithms. The efficiency of our solver depends on the tree decomposition module and
the applied dynamic algorithm. Regarding the tree decomposition we evaluated three
heuristics which produce different tree decompositions. Furthermore, we analyzed the
impact of tree decomposition features on the efficiency of the dynamic algorithms. Ob-
serving that neither dynamic algorithm dominates the other on all instances, we propose
an automated selection of a dynamic algorithm during the solving process based on the
features of the produced tree decomposition.
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Fig. 3. Architecture of the TDDA-based ASP solver

Benchmark Description: To identify tree decomposition features that impact the run-
time of our Dyn-ASP1 and Dyn-ASP2, different logic programs were generated and
different tree decompositions were computed for these programs.

Programs were generated in two ways: Firstly, by generating a random SAT instance
using MKCNF6. These CNF formulas were then encoded as a logic program and passed
to the dynASP program. MKCNF was called with the following parameters: Number
of clauses ranging from 150 to 300, clause-size ranging from 3 to 13 and number of
variables calculated by 10× number of clauses× clause-size.

The second method used for program generation closely follows the one described
in [31]. For rule-length n, from a setA of atoms, a head atom and n− 1 body atoms are
randomly selected. Each of the body atoms is negated with a probability of 0.5. Here
the rule-length ranges from 3 to 7 and the number of rules ranges from 20 to 50. The
number of atoms is always 1

5 of the number of rules, which is, according to [31], a hard
region for current logic program solvers.

For each of these programs, three different tree decompositions are computed using
the three heuristics described below. Each of these tree decompositions is then normal-
ized, as both algorithms currently only handle “nice” tree compositions.

Applied Tree-Decomposition Algorithms: As we described in Section 2 different meth-
ods have been proposed in the literature for constructing of tree decompositions with
small width. Although complete methods give the exact treewidth, they can be used only
for small graphs, and were not applicable for our problems which contains up to 20000
nodes. Therefore, we selected three heuristic methods (MCS, min-fill, and min-degree)
which give a reasonable width in a very short amount of time. We have also considered
using and developing new metaheuristic techniques. Although such an approach slightly
improves the treewidth produced by the previous three heuristics, they are far less ef-
ficient compared to the original variants. In our experiments we have observed that a
slightly improved treewidth does not have a significant impact on the efficiency of the
dynamic algorithm for our problem domain and therefore we decided to use the three
heuristics directly. We initially used an implementation of these heuristics available in a
state-of-the-art libraries [8] for tree/hypertree decomposition. Further, we implemented
new data structures that store additional information about vertices, their adjacent edges
and neighbors to find the next node in the ordering faster. With these new data structures
the performance of Min-fill and MCS heuristics was improved by factor 2–3.

6 ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/
contributed/UCSC

ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC
ftp://dimacs.rutgers.edu/pub/challenge/satisfiability/contributed/UCSC
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4.1 Algorithm Selection

In our experiments we have noted that neither dynamic algorithm dominates the other
in all problem instances. Therefore, we have investigated the idea of automated selec-
tion of the dynamic algorithm based on the features of the decomposition. Automated
algorithm selection is an important research topic and has been investigated by many re-
searchers in the literature (c.f. [28] for a survey). However, to the best of our knowledge,
algorithm selection has not yet been investigated for tree decompositions.

To achieve our goal we identified important features of tree decompositions and ap-
plied supervised machine learning techniques to select the algorithm that should be
used on the particular tree decomposition. We have provided training sets to the ma-
chine learning algorithms and analyzed the performance of different variants of these
algorithms on the testing set. The detailed performance results of the machine learning
algorithm are presented in the next section.

Structural Properties of Tree Decompositions: For every tree decomposition, a number
of features are calculated to identify the properties that make them particularly suitable
for one of the algorithms (or conversely, particularly unsuitable). The following features
(besides treewidth) were used:

– Percentage of join nodes in the normalized tree decomposition (jpct)
– Percentage of join nodes in the non-normalized decomposition (tdbranchpct)
– Percentage of leaf nodes in the non-normalized decomposition (tdleafpct)
– Average distance between two join nodes in the decomposition (jjdist)
– Relative size increase of the decomposition during normalization (nsizeinc)
– Average bag size of join nodes (jwidth)
– Relative size of the tree decomposition (i.e. number of tree nodes) compared to the

size (vertices + edges) of the incidence graph (reltdsize)

We note that our data set also includes features of the graph from which the tree decom-
position is constructed. These features include number of edges of the graph, number
of vertices, minimum degree, maximum degree etc. Because the graph features had a
minor impact on the machine learning algorithms, the discussion in this paper is con-
centrated on tree decomposition features.

Experiments: All experiments were performed on a 64bit Gentoo Linux machine with
an Intel Core2Duo P9500 2.53GHz processor and 4GB of system RAM. For each gen-
erated head-cycle free logic program, 50 tree decompositions were computed with each
of the three heuristics available. For each of these 150 decompositions, the two algo-
rithms described in Section 3 were run in order to determine which one works best
on the given tree decomposition. Thus, a tuple in the benchmark dataset consists of
the generated program and a tree decomposition, and for each tuple it is stored which
algorithm performed better and its corresponding runtime.

Based on this generated dataset, using the WEKA toolkit [13], a machine learning
approach was used to try to automatically select the best dynamic algorithm for an
already computed tree decomposition. Trying to select the best combination of both tree
decomposition heuristic and dynamic algorithm unfortunately seems impractical, as the
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(a) nsizeinc vs. time (b) reltdsize vs. time

(c) tdleafpct vs. time

(d) jpct vs. time (e) jjdist vs. time

Fig. 4. Every benchmark instance (i.e. each calculated tree decomposition) contributes one data-
point to the plots above. Usage of the MCS, Min-Degree and Min-Fill heuristics are represented
by black circles, grey triangles and light grey crosses respectively. Note that the latter two almost
always overlap. The Y scale measures overall running time of the best algorithm in seconds. Plots
(a)–(d) use the full benchmark set, (e) uses MKCNF 21000 300 7.
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underlying graph structure does not seem to provide enough information for a machine
learning approach and calculating multiple tree decompositions is not feasible, as it is
an expensive process.

Algorithm selection based on classification techniques: Based on the performance of
the two algorithms, each tuple in the dataset was either labelled “Dyn-ASP1” or “Dyn-
ASP2”. Given the differences in runtime as shown in extracts in Table 1, the overall
runtime can be improved notably if the better-performing algorithm is run.

Table 1. Exemplary performance differences that can occur in our two algorithms when working
on the same tree decomposition

Heuristic Algorithm TD width Runtime (sec)
Min-Degree Dyn-ASP1 11 53.1629
Min-Degree Dyn-ASP2 11 7.4058
MCS Dyn-ASP1 10 6.2420
MCS Dyn-ASP2 10 268.2940
Min-Fill Dyn-ASP1 10 9.8325
Min-Fill Dyn-ASP2 10 2.6030

By using the well-known CFS subset evaluation approach implemented in WEKA
(see [14] for details), the jjdist and jpct properties were identified to correlate strongly
with the best algorithm, indicating that they are tree decomposition features which have
a high impact on the performance of the dynamic algorithms. When ranked by informa-
tion gain (see Table 2), the reltdsize property ranks second, followed by tdleafpct, td-
branchpct and jwidth indicating that all of these tree decomposition features bear some
influence on the dynamic algorithms’ runtimes. These outcomes can also be seen in
Figure 4, which shows the relationship between runtime and these tree decomposition
properties. Interestingly, a direct influence of the jjdist feature on the overall running
could only be found for the MCS heuristics (see Figure 4(e)). Both other heuristics
produced tree decompositions with almost constant jjdist value. Conversely, for the
tdleafpct feature, MCS was the only heuristic not producing direct results (Figure 4(c)).

In order to test the feasibility of a machine learning approach in this setting, a num-
ber of machine learning algorithms were run to compare their performance. Three such
classifiers were tested: Random decision trees, k-nearest neighbor and a single rule al-
gorithm. The latter serves as a reference point, it always returns the class that occurs
most often (in this case “Dyn-ASP2”). For training, the dataset was split tenfold and
ten training- and validation runs were done, always training on nine folds and validat-
ing with the 10th (10-fold cross-validation). Table 3 shows the classifier performance in
detail. It shows for each classifier, how many tuples of each class (the “correct” class)
were incorrectly classified, e.g. for all training-tuples on which the Dyn-ASP1 algo-
rithm performed better, the k-NN classifier (wrongly) chose the Dyn-ASP2 algorithm
in only 10.8% of the cases.

Algorithm selection based on regression techniques: The second approach that we ap-
plied for selection of the best dynamic algorithm on the particular tree decomposition is
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Table 2. Feature ranking based on Information Gain, using 10-fold cross-validation

Average merit Average rank Attribute
0.436 ± 0.002 1 ± 0 jpct
0.422 ± 0.004 2 ± 0 reltdsize
0.386 ± 0.004 3.2 ± 0.4 jjdist
0.372 ± 0.012 4.2 ± 0.87 tdleafpct
0.357 ± 0.006 5.2 ± 0.6 tdbranchpct
0.354 ± 0.01 5.4 ± 0.8 jwidth

Table 3. Different classifiers and percentages of incorrectly classified instances

Classifier Correct class Incorrectly classified
Single-rule Dyn-ASP1 23.1%
Single-rule Dyn-ASP2 18.4%
k-NN, k=10 Dyn-ASP1 10.8%
k-NN, k=10 Dyn-ASP2 18.5%
Random forest Dyn-ASP1 10.6%
Random forest Dyn-ASP2 18.4%

based on regression techniques. The main idea is to use machine learning algorithms to
first predict the runtime of each dynamic algorithm in a particular instance, and then se-
lect the algorithm that has better predicted runtime. To learn the model for runtime pre-
diction we provide for each dynamic algorithm a training set that consists of instances
that include features of input tree decomposition (and the input graph). Additionally,
for each example are given the information for the time needed to construct the tree
decomposition and the running time of the particular dynamic algorithm.

We experimented with several machine learning algorithms for regression available
in WEKA, and compared their performance regarding the selection accuracy of the
fastest dynamic algorithm for the given input instance. For each machine learning algo-
rithm we provided a training set consisting of 6090 examples. The testing set contained
3045 examples.

The algorithm k-NN (k=5) gave best results among these machine learning algo-
rithms regarding runtime prediction for both dynamic algorithms. To illustrate the per-
formance of k-NN algorithm regarding the runtime prediction we present the actual
runtime and the predicted runtime for both dynamic algorithms in Figure 5. Results for
the first 30 examples in the testing set are given.

Regarding the algorithm selection based on the runtime prediction, we present in
Table 4 the best current results that we could obtain with two machine learning algo-
rithms k-NN (k-nearest neighbors, see [1]) and M5P (Pruned regression tree, see [24]
and [30]). As we can see the accuracy of selecting the right (fastest) dynamic algo-
rithm for a particular instance is good. In particular, the k-NN algorithm selects the best
algorithm for the 88% of the test instances.
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Fig. 5. Actual and predicted time with k-NN for first 30 test examples

Table 4. Two regression algorithms and their accuracy regarding the selection of better dynamic
algorithm

Algorithm Dynamic algorithm selection accuracy
M5P 80.2%
k-NN, k=5 88.1%

5 Discussion

In our experiments, we have identified several important tree decomposition features.
As these features can have a high impact on the performance of a subsequent dynamic
algorithm, heuristics should try to create “good” decompositions also with respect to
these features and not only with respect to the width. It has become apparent that a
higher width can be compensated by such a decomposition, e.g. in our benchmarks, the
MCS heuristic always produced the worst width, but actually speeds up our dynamic al-
gorithms. Moreover, these features have turned out to be well suitable for classification
and regression methods.

The good results that were obtained by our machine learning approach clearly sug-
gest that two-phased algorithms like our dynASP system significantly profit from an
automatic selection of the dynamic algorithm in the second phase – based on the tree
decomposition features identified here. Given the effectiveness of the single-rule clas-
sifier, by simply implementing this rule (which is equivalent to a simple if-statement),
the dynamic algorithm can be effectively selected once the tree decomposition has been
computed. By utilizing a k-nearest neighbor or random decision tree approach, on av-
erage more than 85% of the decisions made are correct, yielding further improvements.
Machine learning approaches (like portfolio solvers) are already in use for ASP (see
e.g. [4,9]), however these are specific to ASP, whereas our approach, using tree decom-
position features for decisions, can generally be used for all TDDA approaches.

6 Conclusion

In this paper we have studied the interplay between three heuristics for the computa-
tion of tree decompositions and two different dynamic algorithms for head-cycle free



Evaluating Tree-Decomposition Based Algorithms 143

programs, an important subclass of disjunctive logic programs. We have identified fea-
tures beside the width of tree decompositions that influence the running time of our
dynamic algorithms. Based on these observations, we have proposed and evaluated al-
gorithm selection via different machine learning techniques. This will help to improve
our prototypical TDDA system dynASP.

For future work, we plan to study the possibilities to not only perform algorithm
selection for the dynamic algorithm but also for the heuristic to compute the tree de-
composition. Furthermore, our results suggest that heuristic methods for tree decom-
positions should not only focus on minimizing the width but should also take some
other features as objectives into account. Finally, we expect that our observations are
independent of the domain of answer set programming. We therefore plan to evaluate
tree-decomposition based algorithms for further problems from various other areas [6].

Acknowledgments. The work was supported by the Austrian Science Fund (FWF):
P20704-N18, and by the Vienna University of Technology program “Innovative Ideas”.
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Abstract. Most publications on surrogate models have focused either
on the prediction quality or on the optimization performance. It is still
unclear whether the prediction quality is indeed related to the suitabil-
ity for optimization. Moreover, most of these studies only employ low-
dimensional test cases. There are no results for popular surrogate models,
such as kriging, for high-dimensional (n > 10) noisy problems. In this
paper, we analyze both aspects by comparing different surrogate models
on the noisy 22-dimensional car setup optimization problem, based on
both, prediction quality and optimization performance. In order not to
favor specific properties of the model, we run two conceptually different
modern optimization methods on the surrogate models, CMA-ES and
BOBYQA. It appears that kriging and random forests are very good
modeling techniques with respect to both, prediction quality and suit-
ability for optimization algorithms.

Keywords: Computer Games, Design and Analysis of Computer Ex-
periments, Kriging, Model-Based Optimization, Sequential Parameter
Optimization, The Open Racing Car Simulator.

1 Introduction

Over the last 15 years, the use of surrogate-model-assisted optimization ap-
proaches has obtained a high popularity in almost all application areas [12, 13,
17,23]. Within this period, the research on model-based optimization has mainly
focused on low-dimensional problems and noise-free evaluations. In particular,
kriging has been shown to be well-suited for modeling deterministic data of com-
puter experiments (design and analysis of computer experiments, DACE [21])
with low or moderate input dimension n ∈ [1, 10]. In the modeling and optimiza-
tion of practical problems, however, e. g., in the computer games community,
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high-dimensional parameter spaces and noisy responses have to be considered.
Consequently, the modern kriging models of DACE have been enhanced to cope
with noisy data in recent years [5, 6, 11]. For high-dimensional data, however,
almost no results of kriging-based modeling approaches have been reported.

In this paper we thus investigate how these kriging variants and other popular
surrogate modeling techniques can assist in optimizing a 22-dimensional problem
from the domain of computer games - the car setup optimization problem based
on the open racing car simulator (TORCS). The response to be modeled is
the distance obtained by a racing car with a specific car setup encoded by the
input parameters. Based on a short evaluation time on TORCS with a quasi-
random starting point on the track, this response is very noisy. The analysis
and evaluation of the surrogate models is two-fold. First, their global prediction
qualities based on the initial design are evaluated. Then, the capability of the
models to guide and tune the optimization [19] is assessed by performing a
global optimization on the model and compare the predicted optimum with the
quality of the evaluation on TORCS (one-step approach). Almost all previous
studies using a one-step approach have focused only on one of these aspects –
the prediction quality or the results of a model-based optimization. Based on
the combined analysis, some important questions can be addressed:

1. Is the prediction quality a good indicator for the optimization capability of
a surrogate model?

2. Are certain surrogate models particularly well suited for high-dimensional
noisy problems?

3. Can the successful results of kriging-based optimization approaches be trans-
ferred to higher dimensions and noisy data?

In the following section, the basic principles of the considered surrogate models
are described. The car setup optimization problem and TORCS are briefly sum-
marized in section 3. The two main sections of the papers address the prediction
quality and the optimization results obtained by the different surrogate models.
In the final section 6, the results are summarized, conclusions are drawn, and an
outlook on future research topics is given.

2 Surrogate Models

For almost all real-world applications, the evaluation of parameter vectors is
time-consuming and/or expensive, e. g., because a finite-element analysis, a com-
putational fluid dynamics calculation or a real-world experiment have to be per-
formed. In these cases, a model-based approach is often used. Here, we focus
on one-step approaches. Based on an initial design of the problem parameters,
a model is fitted which is then used as a surrogate for the actual experiment,
e. g., the parameter vector resulting in the optimal model prediction is directly
used as a solution or the model is used as a surrogate for tuning optimization
algorithms in order to use the tuned variant on the actual problem [19]. For both
kinds of applications, the surrogate model should
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1. be as close to the true response as possible (prediction quality), and

2. reflect the characteristics of the optima of the true response surface (model
optimization).

In the following subsections, some popular surrogate models are described and
discussed. Due to the extremely high number of approaches, we restrict our
description to the models considered in our experiments. More methods and
additional details to the presented approaches can be found in Hastie et al. [9].

2.1 First Order Response Surface

In the first order (linear) response surface model (LM), the relationship between
the control variables xi and the corresponding observations yi is described by

yi = xiβ + εi. (1)

Equation 1 is set up for each pair of parameter vector xi and observation yi
(i = 1, . . . , N) in the initial design. The least-squares estimate β̂ of the coeffi-
cients β is then calculated as the solution to the corresponding system of linear
equations [10, p. 11]. With this β̂, equation 1 can be used for prediction of
unknown parameter vectors x.

2.2 Generalized Additive Model

The Generalized Additive Model (GAM) [8] replaces the linear form of equa-
tion 1 by a sum of smoothing functions for single parameters β +

∑
sj(xj)

(j = 1, . . . , k), where an iterative algorithm is employed to decide about the
important variables xj and the corresponding smooth functions sj . Contrary to
the first order response surface (LM), the GAM also allows nonlinear smoothing
functions to be specified. The employed R package GAM1 supports local polyno-
mial regression and smoothing splines.

2.3 Random Forest

Random forests [2] consist of huge ensembles (typically 500 or more) of deci-
sion trees, whereby each of them is trained on a randomly chosen subset of the
available observations. The prediction of the random forest is then computed as
the average of the predictions of the individuals trees. Random forests are usu-
ally used for classification, but also regression can be realized by implementing
regressing decision trees, as done in the R package randomForest2.

1 http://cran.r-project.org/web/packages/gam/index.html
2 http://cran.r-project.org/web/packages/randomForest/index.html

http://cran.r-project.org/web/packages/gam/index.html
http://cran.r-project.org/web/packages/randomForest/index.html
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2.4 Kriging

Kriging is a surrogate model originated from geosciences [4] which has become
popular in the DACE [21] and machine learning [20] communities. In ordinary
kriging, the response of interest can be considered as one realization of a random
variable Y (x) = μ + Z(x), where μ ∈ R is an intercept used for centering the
stationary zero-mean Gaussian process (GP) Z. Z depends on a covariance kernel
of the form (x,x′)→ D2 : k(x,x′) �→ σ2r(x − x′;ψ) for a correlation function r
with parameters ψ.

The predictions of the kriging model can be obtained by taking the conditional
expectation m(x) = E[Y (x)|Y (xi) = yi] of Y based on the N current pairs of
parameter vectors xi and observations yi. Consequently, m(x) is also denoted as
the kriging mean. It provides a prediction for each observation x by enhancing
the constant trend using the correlation to the existing observations. It thus
explicitly uses the information of each observation. For an efficient evaluation,
the kriging mean can be computed in closed form

m(x) = μ̂+ k(x)TK−1(y − μ̂1), (2)

using the observations y = (y1, . . . , yn)
T , the covariance matrix of the experi-

ments K = (k(xi1 ,xi2)), the covariance vector kn(x) = (k(x,x1), . . . , k(x,xn))
T

of x and the existing design points, and the maximum likelihood estimation of
the trend

μ̂ =
1TK−1y

1TK−11
.

For noisy evaluations Ỹi := Y (xi) + εi, the GP is conditioned based on a sum
of random variables – one following a GP and one for the noise. Assuming
independence between the random variables as well as between different real-
izations of the noise, the kriging mean can still be computed using equation 2,
only the intercovariance matrix K is replaced by K̄ = K + τ2I at every occur-
rence. The additional term τ2 denotes the noise variance which is only added
for identical observations. In the case of heterogeneous noise variances, i.e.,
var(ε1) = τ21 
= . . . 
= var(εN ) = τ2N , K is replaced by K̄ = K+diag(

[
τ21 . . . τ2n

]
).

Contrarily to the noiseless case, these models do not interpolate the noisy ob-
servations.

The choice of the covariance kernel and its parameters determines the shape
(smoothness, modality) and the flexibility of the response surfaces predicted by
the kriging model. In this paper, two popular kernels implemented in the R
package DiceKriging3 are considered:

1. the Gaussian kernel:

k(x,x′) = σ2 exp

⎡⎣− n∑
j=1

(
xj − x′

j

θj

)2
⎤⎦ (3)

3 cran.r-project.org/web/packages/DiceKriging/index.html

cran.r-project.org/web/packages/DiceKriging/index.html


High-Dimensional MBO Based on Noisy Evaluations of Computer Games 149

2. the Matérn kernel with ν = 5/2:

k(x,x′) = σ2
n∏

j=1

[
1 +
√
5Dj +

5

3
D2

j

]
exp

[
−
√
5Dj

]
, Dj =

∣∣xj − x′
j

∣∣
θj

(4)

Both kernels depend on a set of parameters, σ2 and {θ1, . . . , θd}, which are
often referred to respectively as process variance and ranges. They have to be
fitted based on the available evaluations, for which we use maximum-likelihood
estimation in the experiments.

3 Car Setup Optimization Problem

The car setup optimization problem originates from a competition held at the
EvoStar 2010 conference4. It is based on the open source car racing simulator
(TORCS)5 which is used as simulation engine for the evaluations. The task in
this competition is to find a near optimal setting for the 22 car parameters listed
in Table 1. Performance is measured by the track distance covered within this
time frame. In order to avoid handling different parameter ranges within the
optimization, all parameters are scaled to the interval [0, 1] by the interface.

Table 1. The 22 car setup optimization parameters of the EvoStar 2010 competition
and their original ranges, taken from [3]

parameter section name unit min max

1 gearbox/gears/2 ratio SI 0 5
2 gearbox/gears/3 ratio SI 0 5
3 gearbox/gears/4 ratio SI 0 5
4 gearbox/gears/5 ratio SI 0 5
5 gearbox/gears/6 ratio SI 0 5
6 rear wing angle deg 0 18
7 front wing angle deg 0 12
8 brake system front-rear brake repartition SI 0.3 0.7
9 brake system max pressure kPa 100 150000

10 front anti-roll bar spring lbs/in 0 5000
11 rear anti-roll bar spring lbs/in 0 5000
12 front left-right wheel ride height mm 100 300
13 front left-right wheel toe deg -5 5
14 front left-right wheel camber deg -5 -3
15 rear left-right wheel ride height mm 100 300
16 rear left-right wheel camber deg -5 -2
17 front left-right suspension spring lbs/in 0 10000
18 front left-right suspension suspension course m 0 0.2
19 rear left-right suspension spring lbs/in 0 10000
20 rear left-right suspension suspension course m 0 0.2
21 front left-right brake disk diameter mm 100 380
22 rear left-right brake disk diameter mm 100 380

In the competition, a time frame of one million tics of 20 ms each was allowed
as budget for the optimization algorithm. The algorithm can distribute the avail-
able time arbitrarily between different settings, i. e., each evaluation can take as

4 http://cig.ws.dei.polimi.it/?page_id=103
5 http://torcs.sourceforge.net/

http://cig.ws.dei.polimi.it/?page_id=103
http://torcs.sourceforge.net/
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long as desired. For comparable results, however, the evaluation time should be
fixed. The evaluations are made in a row while the game is running, where short
breaks are required in order to brake down the car to a standstill. Therefore,
different parts of the track are used for measuring the performance, which is
a major source of the noise in the evaluations. Recent parameter studies [16]
have shown that below a certain limit of around 250 tics (5 s), measured values
become so noisy that they are unsuitable for optimization. Longer evaluations
spent the budget more quickly so that Kemmerling recommends evaluations of
2000 tics (40 s), resulting in only 500 evaluations of the simulator. In this time,
around one third of the Suzuka F1 track (wheel-2 in TORCS) can be covered.
This track is shown in Fig. 1. It combines many challenges, such as high speed
parts and different curve types, and is, thus, used for evaluations in this paper.

Fig. 1. Screenshot of TORCS, in which the solution obtained from the model-based
optimization on the (Matérn covariance) kriging model is driving the reference track
(Suzuka F1). A minimap of the track is shown in the top right corner.

Summarizing, the car setup optimization problem can be regarded as a high-
dimensional noisy practical problem with a very limited budget of evaluations.
Consequently, it is hard to solve6. In the computer games context, such problems
appear whenever an implemented, parameterizable component (as a car driving
bot) must be adapted to other components, be they provided by the user or
procedurally generated [16]. As known from the formula 1 races, the optimal
setup will change whenever one of the components (car, driver, track) is modified.
Thus, the results of the EvoStar2010 competition where other tracks then the
Suzuka F1 were considered cannot be directly compared to our setup.

6 See also the results of the EvoStar 2010 competition at
http://www.slideshare.net/dloiacono/

car-setup-oprimization-competition-evostar-2010

http://www.slideshare.net/dloiacono/car-setup-oprimization-competition-evostar-2010
http://www.slideshare.net/dloiacono/car-setup-oprimization-competition-evostar-2010
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4 Prediction Quality of the Models

In the first part of the experimental analysis, the prediction quality of the sur-
rogate models on the car setup problem is evaluated. The results build the basis
for the combined analysis in the next section.

Setup. In order to evaluate the prediction quality of the models, sets for the
training and the validation of the surrogate model had to be prepared. The
budget for the training set was chosen according to the specification of the car
setup competition, where 20000 s of running the simulator had been allowed.
We chose an evaluation time of 40 s which resulted in a size of 500 design
points in the training set. As mentioned in the previous section, the evaluations
of a car setup were noisy. In order to allow the effect of the accuracy of an
evaluation to be considered, two different training sets were used, one having 125
mutual design points with 4 replicationsX125,4 and one having 500 mutual design
points without replications X500,1. For validation, a larger and more accurate
set of N = 440 randomly distributed design points with 20 replications was

employed. The root mean squared error RMSE =
√∑N

i=1(ŷi − ȳi)2 was used

as performance measure, where ŷi denotes the prediction of the model for the
i-th design point and ȳi is the mean of the 20 observations in the validation set.
For some parameter vectors, the damage of the car exceeds a specified threshold.
In these cases, the output of the simulator is not the distance reached by the
car, but a high penalty encoding the damage. In order to not deteriorate the
quality of the models by integrating discontinuities and different scales, these
values were removed from the training and validation sets. If a subset of the
repeats of a parameter vector is penalized, only the remaining results were used
for the computation of the mean performance.

For kriging,we analyzed the effect of the covariance kernel and the use of the esti-
mated variances of setX125,4 in a heterogeneous kriging model. More specifically,
we consider the Gaussian and the Matérn kernel with ν = 5/2 and the homoge-
neous (single τ2) and heterogeneous (vector of τ2i ) formulation of kriging for noisy
observations, as presented in section 2.4. The other surrogatemodels have been run
with their standard parameters. For LM and GAM, the setX125,4 was tested with
andwithout using variance-dependingweightswi = 1/var(yi) of the observations,
where the latter approach results in a weighted least squares fit.

Pre-experimental Planning. The 22 design variables of the car setup problem
directly result in 23 model parameters (θj and σ) in the likelihood optimization.
In order to avoid a deterioration of the kriging results based on a bad fit of the
internal parameters, the optimization of the kriging parameters was analyzed be-
fore the experiments. Accounting for the multimodality of the log likelihood, the
global optimization strategy of the DICEKriging package based on the Genetic
Optimizer Using Derivatives (RGenOUD)7 was considered. It was observed that

7 http://cran.r-project.org/web/packages/rgenoud/index.html

http://cran.r-project.org/web/packages/rgenoud/index.html
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the standard parameters, population size P = 20, wait generations W = 2, max-
imum generation limit L = 5, and the generation in which the gradient-based
refinement is performed for the first time (BFGS burnin) B = 0 did not robustly
find the maximum of the log likelihood for the large data set X500,1. Thus, a
small experiment was conducted in preparation for the actual study. Based on
a 43 point Latin hypercube design (LHD) [14] of the four RGenOUD parame-
ters, the performance of log likelihood optimization was analyzed. The results
of the set X500,1 were defined as the test case. The experiment was conducted
for the Gaussian and the Matérn kernel with ν = 5/2. Based on the results
and allowing a slightly larger computational budget for ensuring robust results,
we recommend to use (P,W,L,B) = (10, 1, 120, 40). The computation time for
X500,1 is still below 4 minutes on a 3 GHz PC.

The focus of the experiments reported in the paper is clearly on surrogate
models based on or related to kriging. This originates from our experience in
using these models. Other popular surrogate models, such as support vector re-
gression and neural networks, were also used in the beginning of the study, but
since the results of standard R implementations (e1071 package8 based on the
libsvm9 and the nnet package10) were much worse and we did not manage to ap-
propriately adjust these models, we excluded them from the paper. Nevertheless,
our results are based on open R packages and the test sets can be downloaded
online11, which allows a comparison of experts in these areas with our results to
be realized.

Task. According to the scope of the experiment, four hypotheses were established:

1. More inaccurate points are better than a few with higher accuracy.
2. The use of the estimated noise variances can improve the results on training

set X125,4.
3. The Matérn kernel with ν = 5/2 is superior to the standard Gaussian kernel.
4. Kriging is the superior model with respect to prediction quality.

The first hypothesis was based on former results of kriging on noisy data sets [1]
and is generally related to the bias-variance tradeoff in machine learning [9]. The
second one was straightforward, but surprises with respect to a bad estimation of
the variances or an increase of model complexity might occur. The third one was
based on the weaker assumptions of the Matérn kernel compared to the Gaussian
with respect to the differentiability of the response surface – twice compared to
infinitely often. The fourth one was driven by the hope to transfer the results of
kriging in lower dimensions to higher ones. However, this was questionable due
to former results in the literature [22].

Results/Visualization. The results of the experiments with regard to the predic-
tion quality are summarized in Table 2.

8 http://cran.r-project.org/web/packages/e1071/index.html
9 http://www.csie.ntu.edu.tw/~cjlin/libsvm/

10 http://cran.r-project.org/web/packages/nnet/index.html
11 http://ls11-www.cs.uni-dortmund.de/rudolph/kriging/

applications?&#video game data

http://cran.r-project.org/web/packages/e1071/index.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://cran.r-project.org/web/packages/nnet/index.html
http://ls11-www.cs.uni-dortmund.de/rudolph/kriging/applications?&#video_game_data
http://ls11-www.cs.uni-dortmund.de/rudolph/kriging/applications?&#video_game_data
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Table 2. Summary of the results with respect to the prediction quality of the models

method data set var. used? repeats mean RMSE std RMSE

LM X125,4 no 1 0.1835478 -
X125,4 yes 1 0.2428571 -
X500,1 no var. 1 0.1699225 -

GAM X125,4 no 1 0.1346388 -
X125,4 yes 1 0.1803923 -
X500,1 no var. 1 0.0976035 -

Random Forest X125,4 no 10 0.1259052 0.0010350
X500,1 no 10 0.1066116 0.0007794

X125,4 no 10 0.1447966 0.0329848
Kriging, Gauss X125,4 yes 10 0.1283082 0.0000040

X500,1 no var. 10 0.0935839 0.0000007

X125,4 no 10 0.1202643 0.0000065
Kriging, Matérn X125,4 yes 10 0.1283162 0.0273566

X500,1 no var. 10 0.0937369 0.0000006

Observations. Based on the results of Table 2, the hypotheses can be tested12:

1. More inaccurate points are indeed better than a few with higher accuracy.
The results of the training set X500,1 are significantly improving the predic-
tion quality for all considered surrogate models.

2. The results concerning this hypothesis show no clear trend. For the LM and
the GAM, the results of the weighted least squares fit are worse compared to
the standard one. For the Gaussian kernel, the mean prediction quality is im-
proved by using the estimated variances while still being robust with respect
to the model fitting. For the Matérn kernel, the mean prediction quality and
the robustness of the model fitting decrease with estimated variances. This
result, however, is based on the fact that the best model (RMSE ≈ 0.115)
is only found in 8 of the 10 repeats. In the two remaining cases, bad models
(RMSE > 0.178) are returned which result in the observed decrease in mean
performance.

3. The only situation in which the Matérn kernel with ν = 5/2 is indeed su-
perior to the usually applied Gaussian kernel is the one for the set X125,4

with unknown variances. In all other scenarios, no significant results can
be obtained with respect to the covariance kernel which is of course also
based on the high standard deviation of the Matérn kernel on set X125,4

with estimated variances.

4. Kriging is indeed the superior model with respect to prediction quality. Al-
though the superiority is significant, the improvement over Random Forests
(set X125,4) and the GAM (set X500,1) is only small.

12 Due to the partly deterministic results and very low variances of the stochastic
approaches, no additional statistical tests have been performed.
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Discussion. The most important effect with respect to the prediction quality is
the one of the training set. A diverse set of many inaccurate solutions results
in a higher prediction quality for all considered models. This effect may be
caused by the diminishing gain of information obtained by replications [11]. In
addition, four repeats are not enough for a sensible approximation of the variance
corresponding to an observation. This conjecture is also based on the bad results
of the weighted least squares approaches.

5 Model-Based Optimization

Related to the questions formulated in the introduction, we now analyze whether
the established models are useful for optimization, and if there is a relation to
the prediction quality we can exploit to predict this suitability.

Pre-experimental Planning. Based on the results of the previous section, we
only focused on models based on the set X500,1. We used a stationary approach
in which the surrogate model is not refined. Our focus is on the capability of
the model to reflect the characteristics of the true response surface based on
the large initial design, e. g., for a one-step optimization approach or for tuning
optimization algorithms [19]. In order not to bias the results by the choice of
the optimizer, two different optimization strategies were used. The covariance-
matrix-adaptation evolution strategy (CMA-ES)13 [7] is a powerful evolutionary
algorithm for global optimization, whereas boundary optimization by quadratic
approximation (BOBYQA)14 [18] is a modern gradient-free local search strategy
for box-constrained optimization.

Task. We want to decide if model quality may be employed as a guideline for
choosing a model for optimization, namely by judging these two hypotheses:

1. The prediction quality can be used as an indicator for the suitability for a
one-step optimization.

2. The Kriging models offering a high prediction quality are particularly suited
for reflecting the characteristics of nonlinear problems and finding its optima.

The first hypothesis expresses the common belief of just considering one of these
indicators for assessing surrogate models. The last one was based on the huge
number of publications on kriging metamodeling [23].

Setup. In order to evaluate the suitability for optimization, one model of each
type was chosen as representative. This choice was made based on the internal
quality criterion of the model – log likelihood for kriging, out-of-bag error for
random forest. For the other approaches, no variation in the model fitting exists.
On each representative, 20 runs of BOBYQA and the CMA-ES were conducted.
The obtained local optima were then evaluated on TORCS for 10 times.

13 http://cran.r-project.org/web/packages/cmaes/
14 http://cran.r-project.org/web/packages/minqa/

http://cran.r-project.org/web/packages/cmaes/
http://cran.r-project.org/web/packages/minqa/
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Fig. 2. Comparison of the predicted (’model’, x-axis) and actual performance (’valida-
tion’, y-axis) of the local optima (top: CMA-ES, bottom: BOBYQA.). The potentially
global optimum on the model is colored in red.

The resulting values provided the basis for the analysis. If the predicted values
of the potential optima also result in locally or globally optimal values on the
simulator, the characteristics of the model are well reflected. The assessment of
the correlation between the prediction quality and the optimization performance
is performed by comparing the RMSE of the representative model and the actual
quality of the approximated optima.

Results/Visualization. The results of the optimization on the representative
models are shown in Fig. 2. The correlation between the prediction quality and
the optimization performance can be assessed based on Fig. 3. It looks conspicu-
ous that a lot of the potential optima on the models result in a validated value of
zero. These values are caused by parameter vectors that could not be evaluated
properly on TORCS because the damage threshold of the car is exceeded (cf.
section 3), making this parameter vector infeasible.

Observations. The first hypothesis can clearly be rejected. Based on Fig. 3,
the random forest provides a better optimization performance than Gaussian
kriging and GAM, whereas its RMSE is worse. The RMSE can only successfully
distinguish between the worst (LM) and the best (Matérn kriging) approach
with respect to both indicators.
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Fig. 3. Correlation between the RMSE of the representative model and the actual
averaged distance achieved in TORCS by the approximated optimum parameter setting

With respect to the second hypothesis, no objective results can be seen from
Fig. 2. Whereas the CMA-ES on the Gaussian kriging model returned many lo-
cal optima with an almost equal performance on the model, but high variation on
the actual problem, the optimization on the model using the Matérn kernel always
resulted in the same optimum which is indeed a good parameter setting. All other
nonlinear surrogatemodels also resulted in amultimodal response surfacewith dif-
ferent local optima,where the performance variation on the actual problem is huge.

Discussion. The high number of infeasible solutions proposed by LM, GAM, and
Gaussian kriging is based on the extrapolation properties of these approaches.
Since the parameter vectors of the infeasible solutions are not used for fitting the
model, no points for interpolation are provided in these parameter regions. Nev-
ertheless, the assumption of an underlying model (LM and GAM) or the strong
differentiability assumed by Gaussian kriging result in local optima within these
areas. This is highly undesired for the focused application setting, where only
one iteration of model-based optimization is performed, because it may result in
an infeasible solution after optimization. In contrast, the Matérn kernel seems
to result in a more data-dependent prediction without extrapolation effects.

The difference between the RMSE and the optimization performance may con-
sequently be caused by the different extrapolation properties of the approaches.
Because the infeasible values are also removed from the validation set, no pre-
dictions in these areas are considered. In addition, the predictions of the random
forest seem to be more conservative. Whereas all other modeling approaches
predict their local optimal values between 0.8 and 1, the optimal values of the
random forest are between 0.6 and 0.8. It seems like the characteristics of the
problem are well covered, but the variation of the response values is decreased
which results in an increased RMSE.

In order to judge whether the response surfaces reflect the characteristics of
the true problem, the true modality of the problem is of interest. In figure 4, we
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Fig. 4. Visualizations of the 4 best of the 440 solutions of our validation set (blue)
together with the best initial solutions from the 125 point design (gray) and the 500
point design (black) and the best solutions obtained from the CMA-ES runs, GAM
(red), Kriging Gauss (orange), Kriging Matern (green), LM (violet), random forest
(indianred). Left: scatter plot of the 4 most important variables as indicated in [15].
Note the different range for parameter 13 due to infeasible solutions outside this range.
Right: parallel coordinate plot over all 22 parameters.

depict the best 4 of the 440 solutions in the validation set (together with the
best initials solutions and the best from the optimization runs). The plots clearly
show that there are several distinct local optima – even if only the four most
important variables according to importance estimations of the GAM model and
further studies [15] are considered. There is seemingly not one dominant basin of
attraction. Based on this fact, employing the Matérn kriging model that always
leads the optimization algorithm to one search space region may become risky.
Obtaining different local optima – if they indeed exist – is surely preferable in
order to have alternatives for the optimal solution on the model, in case it is
infeasible on the actual problem. In particular since the optimization on the
surrogate model is very fast compared to an evaluation on the original problem.
However, the validated result of the Matérn kriging is extremely good (0.912).
The best of the initial points only obtains a validated score of 0.900. The model
thus manages to find better solutions. Only four of the space-filling 440 points of
the validation set (0.938, 0.928, 0.918, 0.915) are better. For the best validated
solution of the random forest (0.917), the situation is similar. However, this
solution is not identified as the global optimum of the model (cf. Figure 2).

Summarizing, the second hypothesis cannot be completely accepted. The krig-
ing models either simplify the characteristics of the true problem (Matérn) or
result in undesired solutions (Gauss), whereby the Matérn model is surely the
better choice. It may just have the empirical information to detect only one of
the basins. The multimodality predicted by the Gaussian kernel is also based on
undesired extrapolation effects.
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6 Conclusion and Outlook

With respect to three questions posed in the introduction, the first question has
to be negated. The prediction quality can only roughly distinguish the suitability
of a model for optimization. As an answer to the second question, the Matérn
kriging model obtained the best results for both, prediction quality and opti-
mization performance. The performance of the approximated optimum is com-
petitive with the best results of the large validation set which required around
20 times more resources to compute. This achievement, however, comes with
a simplification of the model characteristics, maybe caused by a smoothing of
true response surface. As a consequence, the successful results of kriging-based
optimizers could be transferred to higher dimensions and noisy data, although
there is a strong dependence on the applied covariance kernel. For a more robust
optimization performance, sequential approaches, which refine the model based
on the additional evaluations, can be considered [5, 11, 13, 14].

The results obtained in this study are a first step towards a combined analy-
sis of prediction quality and optimization capability on complex practical prob-
lems. Their generality is of course questionable due to the restriction to a single
problem instance. In the future, automatically generated instances of the car
optimization problem with different tracks, cars, and bots and also instances
from other related problems can be used to perform a much broader simulation
study in order to improve on this drawback. Results of other surrogate modeling
approaches on the open test cases defined in this paper can assist in providing
guidelines for applications. In any case we would like to emphasize that modeling
difficult noisy high-dimensional problems is obviously useful and possible.
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Abstract. Greedy heuristics may be attuned by looking ahead for each
possible choice, in an approach called the rollout or Pilot method. These
methods may be seen as meta-heuristics that can enhance (any) heuristic
solution, by repetitively modifying a master solution: similarly to what
is done in game tree search, better choices are identified using lookahead,
based on solutions obtained by repeatedly using a greedy heuristic. This
paper first illustrates how the Pilot method improves upon some simple
well known dispatch heuristics for the job-shop scheduling problem. The
Pilot method is then shown to be a special case of the more recent Monte
Carlo Tree Search (MCTS) methods: Unlike the Pilot method, MCTS
methods use random completion of partial solutions to identify promising
branches of the tree. The Pilot method and a simple version of MCTS,
using the ε-greedy exploration paradigms, are then compared within the
same framework, consisting of 300 scheduling problems of varying sizes
with fixed-budget of rollouts. Results demonstrate that MCTS reaches
better or same results as the Pilot methods in this context.

1 Introduction

In quite a few domains related to combinatorial optimization, such as constraint
solving [1], planning or scheduling [2], software environments have been designed
to achieve good performances in expectation over a given distribution of problem
instances. Such environments usually rely on a portfolio of heuristics, leaving
the designer with the issue of finding the best heuristics, or the best heuristics
sequence, for his particular distribution of problem instances.

The simplest solution naturally is to use the default heuristics, assumedly the
best one on average on all problem instances. Another approach, referred to as
Pilot or rollout method, iteratively optimizes the option selected at each choice
point [3,4], while sticking to the default heuristics for other choice points. Yet
another approach, referred to as Monte-Carlo Tree Search (MCTS) [5] and at the
origin of the best current computer-Go players [6], has been proposed to explore
the search space while addressing the exploration versus exploitation dilemma in
a principled way; as shown by [7], MCTS provides an approximation to optimal
Bayes decision. The MCTS approach, rooted in the multi-Armed bandit (MAB)

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 160–174, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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setting [8], iteratively grows a search tree through tree walks. For each tree walk,
in each node (choice point) the selection of the child node (heuristics) is handled
as a MAB problem; the search tree thus asymmetrically grows to explore the
most promising tree paths (the most promising sequences of heuristics).

Whereas increasingly used today in sequential decision making algorithms
including games [9,10], to our best knowledge MCTS methods have rarely been
used within the framework of combinatorial optimization, with the recent ex-
ception of [11]. This paper investigates the application of MCTS to job-shop
scheduling, an NP-hard combinatorial optimization problem. As each job-shop
scheduling problem instance defines a deterministic optimization problem, the
standard upper confidence bound applied to tree (UCT) framework used in [11]
does not apply. More precisely, the sought solution is the one with best payoff
(as opposed to the one with best payoff on average); the MAB problem nested
in the UCT thus is a max k-armed bandit problem [12,9]. Along this line, the
randomized aspects in UCT must be addressed specifically to fit deterministic
problems. Specifically, a critical difficulty lies in the randomized default handling
of the choice points which are outside the current search tree (in contrast, these
choice points are dealt with using the default heuristics in the pilot methods).
Another difficulty, shared with most MCTS applications, is to preserve the explo-
ration/ exploitation trade-off when the problem size increases. A domain-aware
randomized default handling is proposed in this paper, supporting a MCTS-
based scheduling approach called Monte-Carlo Tree Scheduling (MCS). MCS
is empirically validated, using well established greedy heuristics and the pilot
methods based on these heuristics as baselines. The empirical evidence shows
that Pilot methods significantly outperform the best-known default heuristics;
MCS significantly outperforms on the Pilot methods for small problem sizes.
For larger problem sizes, however, MCS is dominated by the best Pilot methods,
which is partly explained from the experimental setting as the computational
cost of the Pilot methods is about 4 times higher than that of the MCS one.
That is, heuristic scheduling is more costly than random scheduling.

The paper is organized as follows. Job-shop scheduling is introduced in Sec-
tion 2, together with some basic greedy algorithms based on domain-specific
heuristics called dispatching rules. The generic pilot method is recalled in section
3. The general MCTS ideas are introduced in section 4; its adaptation to the
job-shop scheduling problem is described and an overview of MCS is given.
and together with its application to combinatorial problems, and to the job-
shop scheduling problem. Section 5 is devoted to the empirical validation of the
proposed approach. After describing the experimental setting, the section reports
on the MCS results on different problem sizes, with the dispatching rules and
the Pilot methods as baselines. The paper concludes with a discussion of these
results and some perspectives for further research.

2 Job Shop Scheduling and Priority Dispatching Rules

Scheduling is the sequencing of the order in which a set of jobs j ∈ J := {1, .., n}
are processed through a set of machines a ∈ M := {1, .., mj}. In a job shop,
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the order in which a job is processed through the machines is predetermined. In
a flow shop this order is the same for all jobs, and in a open shop the order is
arbitrary. We will consider here only the job shop, where the jobs are strictly-
ordered sequences of operations. A job can only be performed by one type of
machine and each machine processes one job at a time. Once a job is started it
must be completed. The performance metric for scheduling problems is generally
based on flow or dues date. Here we will consider the completion time for the
last job or the so called makespan.

Each job has a specified processing time p(j, a) and the order through the
machines is given by the permutation vector σ (σ(j, i) is the ith machine for job
j). Let x(j, a) be the start time for job j on machine a, then

x(j, σ(j, i)) ≥ x(j, σ(j, i− 1) + p(j, σ(j, i− 1)) j ∈ {1, .., n}, i ∈ {2, .., mj} (1)

The disjunctive condition that each machine can handle at most one job at a
time is the following:

x(j, a) ≥ x(k, a) + p(k, a) or x(k, a) + p(k, a) ≥ x(j, a) (2)

for all j, k ∈ J, j �= k and a ∈M . The makespan can then be formally defined as

z = max{x(j, σ(j, mj)) + p(j, mj) | j ∈ J}. (3)

Smaller problems can be solved using a specialized branch and bound procedure
[13] and an algorithmic implementation may be found as part of LiSA [14].
Jobs up to 14 jobs and 14 machines can still be solved efficiently, but at higher
dimensions, the problems rapidly become intractable. Several heuristics have
been proposed to solve job shop problems when their size becomes too large for
exact methods. One such set of heuristics are based on dispatch rules, i.e. rules
to decide which job to schedule next based on the current state of all machines
and jobs. A survey of over 100 such rules may be found in [15]. Commonly used
priority dispatch rules have been compared on a number of benchmark problems
in [16]. When considering the makespan as a performance metric, the rule that
selects a job which has the Most WorK Remaining (MWKR, the job with the
longest total remaining processing time) performed overall best. It was followed
by the rule that selects a job with the Shortest Processing Time (SPT), and by
the rule that selects a job which the Least Operation Number (LOPN). These
rules are among the simplest ones, and are by no means optimal. However, only
these 3 rules will be considered in the remaining of this paper. In particular,
experimental results of the corresponding 3 greedy algorithms can be found in
Section 5.

The simplest way to use any of these rules is to embed them in a greedy
algorithm: the jobs are processed in the order given by the repeated application
of the chosen rule. Algorithm 1 gives the pseudo-code of such an algorithm. The
variable tj represents which machine is next in line for job j (more precisely
machine σ(j, ti)). When starting with an empty schedule, one would set tj ← 1
for j ∈ J and S = ∅. At each step of the algorithm, one job is chosen according
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to the dispatching rule R (line 2), and the job is scheduled on the next machine
in its own list, i.e., the pair (job, machine) is added to the partial schedule S
(line 3) (⊕ denotes the concatenation of two lists).

Algorithm 1. Greedy (Pilot) heuristic

input : Partial sequence S0, t = (t1, . . . , tn), and heuristic R
output: An objective to maximize, for example negative makespan

while ∃j ∈ J ; tj < mj do1

b = R(S , tj ; tj < mj) ; // Apply R to current partial schedule, get next job2

S ← S ⊕ {(b, σ(b, tb))} ; // Schedule job on its next machine3

tb ← tb + 1 ; // Point to next machine for job b4

end5

3 Pilot Method

The pilot method [3,17] or equivalently the Rollout algorithm [18] can enhance
any heuristic by a simple look-ahead procedure. The idea is to add one-step
look-ahead and hence apply greedy heuristics from different starting points. The
procedure is applied repeatedly, effectively building a tree. This procedure is not
unlike strategies used in game playing programs, that search a game trees for
good moves. In all cases the basic idea is to examine all possible choices with
respect to their future advantage. An alternative view is that of a sequential
decision problem or dynamic programming problem where a solution is built
in stages, whereby the components (in our cases the jobs) are selected one-at-a-
time. The first k components form a so called k-solution [18]. In the same way as
a schedule was built in stages in Algorithm 1, where the k-solution is the partial
schedule S. However, for the Pilot method the decisions made at each stage
will depend on a look-ahead procedure. The Pilot method is then described in
Algorithm 2. The algorithm may seem a little more complicated than necessary,
however, as will be seen in the next section this algorithm is a special case of
Monte Carlo tree search. The heuristic rollout is performed B times and each
time adding a node to the tree. Clearly if all nodes can be connected to a terminal
node, the repetition may be halted before the budget B is reached. This is not
shown here for clarity. Furthermore, a new leaf on the tree is chosen such that
those closer to the root have priority else branches are chosen arbitrarily with
equal probability. In some version of the Pilot method, the tree is not expanded
breadth first manner but with some probability allows for depth first search.
This would be equivalent to executing line 8 with some probability. This is also
commonly used in MCTS and is called progressive widening.

The greedy algorithm 1 is then used as the Rollout algorithm on line 23. As
will be seen in the following section, the key difference between the MCTS and
Pilot method is in the way a node is found to expand in the tree and the manner
in which a rollout is performed. Other details of the Algorithm 2 will also become
clearer.
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Algorithm 2. Pilot or rollout algorithm

input : Budget B, partial sequence S0, t = (t1, . . . , tn), and heuristic R
output: Decision, job to dispatch next b

root← node ; // initialize the root node1

node.n← 0, node.t← t, node.child← ∅;2

for n← 1 to B do3

S ← S0 ; // set state to root node state and climb down the tree4

while node.child �= ∅ do5

for j ∈ J ; node.tj < mj do6

if node.n = 0 then7

Q(j) =∞8

else9

Q(j) = U(0, 1) ; // random value between 0 and 110

end11

end12

j′ = arg maxj∈J;tj<mj Q(j) ; // largest Q value, break ties randomly13

S ← S ⊕ {(j′, σ(j′, tj′))} ; // dispatch job j′14

end15

; // expand node if possible, i.e. S is not the complete schedule
for j ∈ J ; node.tj < mj do16

node.child[j].parent ← node ; // keep pointer to parent node17

node.child[j].child ← ∅ ; // this node has not been expanded18

node.child[j].n ← 0 ; // and has not been rolled out19

node.child[j].t ← node.t ; // copy machine counter from parent node20

node.child[j].tj ← node.tj + 1 ; // increment machine counter for job21

end22

R = Rollout (S , node[S ].t, R) ; // Complete the solution via Pilot heuristic23

repeat propagate result of rollout up the tree24

node.n← node.n + 1 ; // number of visits incremented by one25

node.Q← max(node.Q, R) ; // best found solution26

node← node.parent ; // climb up the tree to parent node27

until node �= root ;28

end29

arg maxj∈J;tj<mj root.child(j).Q30

4 MCTS for Combinatorial Optimization

4.1 Monte Carlo Tree Search

Monte-Carlo Tree Search inherits from the so-called Multi-Armed Bandit (MAB)
framework [8]. MAB considers a set of independent k arms, each with a dif-
ferent payoff distribution. Here each arm corresponds to selecting a job to be
dispatched and the payoff the results returned by a rollout or greedy heuristic.
Several goals have been considered in the MAB setting; one is to maximize the
cumulative payoff gathered along time (k-arm bandit) [19]; another one is to
identify the arm with maximum payoff (max-k arm) [20,12,9]. At one extreme
is the exploitation-only strategy (selecting the arm with best empirical reward);
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at the other extreme is the exploration-only strategy (selecting an arm with
uniform probability).

When it comes to find a sequence of options, the search space is structured as
a tree1. In order to find the best sequence, a search tree is iteratively used and
extended, growing in an asymmetric manner to focus the exploration toward the
best regions of the search space. In each iteration, a tree path a.k.a simulation
is constructed through three building blocks: the first one is concerned with
navigating in the tree; the second one is concerned with extending the tree and
assessing the current tree path (reward); the third one updates the tree nodes
to account for the reward of the current tree path.

Descending in the Tree. The search tree is initialized to the root node (cur-
rent partial schedule). In each given node until arriving at a leaf, the point is to
select among the child nodes of the current node (Fig. 1, left). For deterministic
optimization problems, the goal is to maximize the maximum (rather than the
expected) payoff. For this aim, a sound strategy has been introduced in [12]
and used in [9]. This approach, referred to as Chernoff rule, estimates the upper
bound on the maximum payoff of the arm, depending on its number of visits
and the maximum value gathered.

However, the main goal of this work is to bridge the gap between the Pilot
method and MCTS algorithms. Indeed, the Pilot method, as presented in algo-
rithm 2, can be viewed as an MCTS algorithm in which the strategy used to
chose next child to explore is to choose the best child after one deterministic
rollout using the dispatch rule at hand – a rather greedy exploitation-oriented
strategy. Such strategy is very close to a simple rule to balance exploration and
exploitation known in the MCTS world as ε-greedy: with probability 1− ε, one
selects the empirically best child node2 (i.e. the one with maximum empirical
value); otherwise, another uniformly selected child node is retained. Furthermore,
similar to the Pilot method described in the previous section, unexplored nodes
(line: 8 in Algorithm2) will have priority. However, line: 10 should be replaced
by

Q(j)← node.child[j].Q.

Extending the Tree and Evaluating the Reward. Upon arriving in a leaf, a
new option is selected and added as child node of the current one; the tree is thus
augmented of one new node in each simulation (Fig. 1, right). The simulation is
resumed until arriving in a final state (e.g., when all jobs have been processed).
As already mentioned, the choices made in the further choice points in the Pilot
method rely on the default heuristics (and the rollout is hence deterministic). In
the MCTS method however, these choices must rely on randomized heuristics

1 Actually, the search space may be structured as a graph if different paths can lead
to a same state node. In the context of job-shop scheduling however, only a tree-
structured search space needs be considered.

2 Typically ε = 0.1.
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Fig. 1. Monte-Carlo Tree Search: the tree is asymmetrically grown toward the most
promising region (in grey, the known part of the tree). Each simulation is made of a
MAB phase (1); then the simulation is completed until arriving at a final state (2);
finally, the first node of the Monte-Carlo path is added to the known tree, and the
reward is computed and back-propagated to all nodes of the path that are in the
known tree (3).

out of consistency with the MAB setting. The question thus becomes which
heuristics to use in the so-called random phase (see section 4.2). Upon arriving
in a final state, the reward associated to the simulation is computed (e.g., the
makespan of the current schedule).

Updating the Tree. The number of visits of the nodes of the current tree that
were in the path is incremented by 1; likewise, the cumulative reward associated
to these nodes is incremented by the reward associated to the current path. Note
that other statistics can be maintained in each node, such as the RAVE values
[6], and must be updated there too.

4.2 Monte-Carlo Tree Schedule (MCS)

As already pointed out, solving a combinatorial problem can be viewed as a
sequential decision making process, incrementally building a solution by choosing
an element of a partial solution at a time (e.g., next town for TSP problems, of
next machine to schedule for the job shop scheduling problem). In order to solve
this sequential decision problem through a MCTS algorithm, several specific
issues must be considered.

A first issue concerning the reward design has a significant impact on the ex-
ploration versus exploitation dilemma; it might require some instance-dependent
parameter to reach a proper balance (see e.g., [21]). Indeed, in the case of
job-shop scheduling for instance, different instances will have very different
makespans.

A second issue concerns the heuristics to be used in the random phase (section
4.1). The original MCTS method [5] advocates pure random choices. Domain
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knowledge could however be used to propose a smarter procedure, e.g. using
random selected dispatching rules for job-shop scheduling. Still, a lesson con-
sistently learned from MCTS applications [6,9] is that doing many simulations
completed with a brute random phase is more effective than doing less sim-
ulations completed with a smart final phase. For instance in the domain of
computer-Go, the overall results were degraded by using gnuGo in the random
phase, compared to a uniform move selection. Likewise, the use of the three
dispatching rules (described in Section 2) in the random phase was outperformed
by a pure random strategy, uniformly selecting the next job to be considered.
Here we have chosen to follow this path and our rollout phase consists of the
purely random dispatching of jobs. Replacing this with line 23 in Algorithm 2,
along with the ε–greedy policy, and the Pilot method is transformed into MCTS.

Another important detail must be taken into account: When performing
random rollouts, we might forget the best choices found previously during the
building of a schedule. For this reason, a global best found sequence is kept
throughout the scheduling procedure. If a suboptimal choice is found in a later
partial schedule (k-solution), the globally better choice previously found during
a random rollout will be forced. In some sense the idea here is similar to that of
the fortified rollouts used by the Pilot method [17].

Finally, in MCTS, the stopping criterion is defined by the total number of
simulations (i.e., rollouts here), and one single decision is taken after a complete
tree exploration, chosen as the child of the root node with the maximum expected
reward [6]. The situation is rather different here, and, in this first approach to
MCTS for combinatorial optimization, similarly to the Pilot method, a single
tree exploration is done, with a limited budget in terms of number of rollouts.
A complete schedule is then built by descending the tree and always choose the
child with maximum expected reward (makespan).

5 Experimental Results

This section reports on the experimental validation of the proposed approaches.
After detailing the experimental setting, the results of the MCS method is
reported and compared to the baseline methods, the greedy application of the
three dispatching rules MWKR, SPT and LOPN (section 2), and the pilot
methods built on these three dispatching rules (section 3).

5.1 Experimental Settings

All experiments have been conducted using the set of test instances proposed in
[22]. The machine orders for the jobs are randomly generated and the processing
times are discrete values uniformly distributed between 1 and 200. Three different
n×m problem sizes were generated using this setup, 6× 6, 10× 10 and 14× 14.
The optimal makespans for one hundred instances generated of each size was
then found using Brucker’s branch and bound algorithm [13]. A further four
instance of size 20× 20 are also tested [23] and compared with their best known
solution [24].
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Table 1. Greedy algorithms: Performance statistics of the MWKR, SPT and LOPN
rules on three problem sizes

Instance Heuristic min mean median stdev max #opt

6× 6 MWKR 1.000 1.155 1.151 0.084 1.384 2
SPT 1.137 1.399 1.390 0.150 1.816 0
LOPN 1.017 1.176 1.178 0.083 1.369 0

10× 10 MWKR 1.096 1.228 1.222 0.069 1.430 0
SPT 1.303 1.654 1.644 0.166 2.161 0
LOPN 1.103 1.216 1.208 0.061 1.369 0

14× 14 MWKR 1.159 1.264 1.261 0.052 1.399 0
SPT 1.584 2.012 2.015 0.244 2.721 0
LOPN 1.150 1.253 1.250 0.048 1.376 0

For all methods except the greedy ones, the time budget is varied to assess the
convergence behavior of the pilot and MCS optimization methods, considering a
total of 100, 1,000 and 5,000 rollouts a.k.a. simulation. Each rollout corresponds
to designing and evaluating a complete solution (computing its total makespan).
It is worth noting that not all rollouts are equally expensive; the rollout based
on a dispatching rule (as used in the pilot methods) is more computationally
demanding than the random rollout used in MCS, all the more so as the size of
the problem instance increases. Nevertheless, the fixed rollout budget is meant
to allow CPU-independent comparisons and assess the empirical behavior of the
methods under restricted computational resources (e.g. in real-world situations).

For each method, each problem size and each time budget, the result is given
as the average over 100 problem instances of the normalized makespan (1. being
the optimal value), together with the minimum, maximum and median values,
and the standard deviation; the number of times where the optimal value was
found is additionally reported.

While the greedy and pilot algorithms actually are deterministic3, MCS is
not. The usual way to measure the performance of a stochastic algorithm on
a given problem domain is through averaging the result out of a few dozen or
hundred independent runs. For the sake of computational convenience however,
MCS was run only once on each problem instance and the reported result is the
average over the 100 independent instances.

5.2 The Greedy Algorithms

The results of the greedy algorithms are depicted in Table 1 for the three
dispatching rules MWKR, SPT and LOPN (section 2), showing that MWKR
and LOPN behave similarly and significantly outperform SPT. Further, the per-
formances of SPT significantly decrease with the problem size, whereas MWKR
and LOPN demonstrate an excellent scalability in the considered size range.

3 Up to ties between jobs.
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Table 2. Pilot algorithms. Performance statistics for Pilot algorithm using 3 different
Pilot heuristics: MWKR, SPR, and LOPN, on the three different problem sizes.

Instance Heuristic min mean median stdev max #opt

6× 6 Pilot(MWKR,100) 1.000 1.049 1.050 0.038 1.167 14
Pilot(MWKR,1000) 1.000 1.035 1.030 0.034 1.180 23
Pilot(MWKR,5000) 1.000 1.025 1.014 0.029 1.104 33

Pilot(SPT,100) 1.000 1.100 1.093 0.066 1.293 3
Pilot(SPT,1000) 1.000 1.065 1.060 0.050 1.287 7
Pilot(SPT,5000) 1.000 1.052 1.049 0.045 1.265 14

Pilot(LOPN,100) 1.000 1.058 1.057 0.044 1.172 12
Pilot(LOPN,1000) 1.000 1.046 1.036 0.040 1.134 17
Pilot(LOPN,5000) 1.000 1.034 1.024 0.032 1.127 22

10× 10 Pilot(MWKR,100) 1.032 1.109 1.109 0.039 1.217 0
Pilot(MWKR,1000) 1.006 1.097 1.096 0.039 1.215 0
Pilot(MWKR,5000) 1.004 1.082 1.083 0.035 1.158 0

Pilot(SPT,100) 1.102 1.222 1.221 0.063 1.427 0
Pilot(SPT,1000) 1.066 1.188 1.188 0.055 1.332 0
Pilot(SPT,5000) 1.063 1.172 1.168 0.048 1.296 0

Pilot(LOPN,100) 1.044 1.117 1.114 0.041 1.219 0
Pilot(LOPN,1000) 1.028 1.106 1.105 0.042 1.212 0
Pilot(LOPN,5000) 1.022 1.096 1.092 0.032 1.171 0

14× 14 Pilot(MWKR,100) 1.081 1.156 1.155 0.036 1.256 0
Pilot(MWKR,1000) 1.046 1.142 1.138 0.036 1.247 0
Pilot(MWKR,5000) 1.046 1.129 1.129 0.034 1.230 0

Pilot(SPT,100) 1.239 1.389 1.380 0.080 1.595 0
Pilot(SPT,1000) 1.136 1.316 1.319 0.065 1.508 0
Pilot(SPT,5000) 1.153 1.286 1.283 0.060 1.517 0

Pilot(LOPN,100) 1.076 1.160 1.161 0.036 1.285 0
Pilot(LOPN,1000) 1.080 1.149 1.152 0.037 1.264 0
Pilot(LOPN,5000) 1.078 1.145 1.142 0.033 1.248 0

5.3 The Pilot Method

The results of the pilot method (section 3) related to the three above dispatching
rules and three time budgets (100, 1000 and 5000) are displayed in table 2 for all
three problem sizes 6× 6, 10× 10, and 14× 14. For the sake of easy comparison
with the greedy algorithm, the median performances respectively obtained on
the same problem sizes displayed on Table 3.

As was expected, and demonstrated on some TSP instances by [3], the pilot
method does improve on the greedy algorithm. With a time budget 100, a
significant improvement is observed for all three methods, and confirmed by
the number of times the optimal solution is discovered on problem size 6 x 6.

It is worth noting that the performance only very slightly improves when
the time budget increases from 100 to 1000, and from 1000 to 5000, despite
the significant increase in the computational effort. In particular, the optimal
solutions are never discovered for higher problem sizes.
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Table 3. Comparison of median performances of Greedy and Pilot with different
budgets, for the 3 heuristics (from Tables 1 and 2)

Instance Heuristic Algorithm (budget)

Pilot (100) Pilot (1000) Pilot (5000)

6× 6 MWKR 1.151 1.050 1.030 1.014
SPT 1.390 1.093 1.060 1.049
LOPN 1.178 1.057 1.036 1.024

10× 10 MWKR 1.222 1.109 1.096 1.083
SPT 1.644 1.221 1.188 1.168
LOPN 1.208 1.114 1.105 1.092

14× 14 MWKR 1.261 1.155 1.138 1.129
SPT 2.015 1.380 1.319 1.283
LOPN 1.250 1.161 1.152 1.142

Lastly, the performance order of the three rules is not modified when using
the pilot method: MWKR and LOPN significantly outperform SPT. As a con-
sequence the Pilot method can be quite sensitive to the Pilot heuristic chosen.

5.4 Monte-Carlo Tree Schedule

Table 4 reports on the results of the MCS approach described in (section 4).
On problem size 6x6, MCS significantly improves on the best Pilot method
(MKWR with 5000 rollout budget), as also witnessed by the number of times
the optimal solution is found. On problem size 10x10, the average and median
performances are comparable; still, the optimal solution is found twice by MCS
with a 5000 rollout budget, whereas it is never found by the Pilot method.
On problem size 14x14, Pilot (MWKR,5000) is significantly better than MCS.
A first explanation for this fact relies on the computational effort: As already
mentioned, the computational time required for a 5,000 rollout Pilot is circa 4
times higher than for a 5,000 rollout MCS. A second explanation is the fact that,
as the tree depth increases with the problem size, it becomes necessary to adjust
the parameters controlling the branching factor of the MCS tree. This can be
achieved by introducing progressive widening (on-going work).

5.5 Larger Instances

The best known solutions (BKS) for the 20 × 20 benchmark problem [23] are
taken from [24]. Here we demonstrate the performance of the MCS on problems
that cannot be solved using exact methods. Only four instances are considered
here, and the MCS is run 30 times on each instance. The method is unable to
find any best known solution. Nevertheless, the performance does not degrade
significantly when compared to the results obtained on the 10× 10 problems.
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Table 4. Monte-Carlo Tree Schedule. Performance statistics using ε–greedy and
random scheduling.

Instance Heuristic min mean median stdev max #opt

6× 6
MCS(ε–greedy,100) 1.000 1.026 1.020 0.027 1.097 28
MCS(ε–greedy,1000) 1.000 1.014 1.001 0.025 1.150 50
MCS(ε–greedy,5000) 1.000 1.007 1.000 0.017 1.082 72

10× 10
MCS(ε–greedy,100) 1.029 1.141 1.140 0.057 1.378 0
MCS(ε–greedy,1000) 1.014 1.095 1.098 0.036 1.199 0
MCS(ε–greedy,5000) 1.000 1.070 1.070 0.032 1.135 2

14× 14
MCS(ε–greedy,100) 1.173 1.346 1.331 0.083 1.634 0
MCS(ε–greedy,1000) 1.127 1.284 1.280 0.074 1.552 0
MCS(ε–greedy,5000) 1.064 1.232 1.223 0.065 1.471 0

Table 5. Results for the MCS on four 20×20 instances. Performance statistics is given
for 30 independent runs on each instance, yn01,. . . , yn04.

Instance Heuristic min mean median stdev max #BKS

yn01 MCS(ε–greedy,100) 1.166 1.211 1.210 0.020 1.245 0
MCS(ε–greedy,1000) 1.144 1.186 1.183 0.021 1.235 0
MCS(ε–greedy,5000) 1.128 1.167 1.166 0.023 1.209 0

yn02 MCS(ε–greedy,100) 1.135 1.185 1.181 0.024 1.228 0
MCS(ε–greedy,1000) 1.123 1.156 1.153 0.023 1.218 0
MCS(ε–greedy,5000) 1.090 1.130 1.130 0.023 1.174 0

yn03 MCS(ε–greedy,100) 1.156 1.205 1.204 0.022 1.267 0
MCS(ε–greedy,1000) 1.131 1.178 1.180 0.020 1.222 0
MCS(ε–greedy,5000) 1.110 1.151 1.148 0.023 1.199 0

yn04 MCS(ε–greedy,100) 1.063 1.108 1.107 0.025 1.160 0
MCS(ε–greedy,1000) 1.039 1.084 1.090 0.025 1.133 0
MCS(ε–greedy,5000) 1.023 1.067 1.064 0.019 1.102 0

6 Discussion and Perspectives

The main contribution of this paper is to demonstrate the feasibility of using
MCTS to address job-shop scheduling problems. This result has been obtained
by using the simplest exploration/exploitation strategy in MCTS, the ε-greedy
strategy, defining the Monte-Carlo Tree Scheduling approach (MCS). The empir-
ical evidence gathered from the preliminary experiments presented here shows
that MCS significantly outperforms its competitors on small and medium size
problems. For larger problem sizes however, the Pilot method with the best
dispatching rule outperforms this first verions of MCS. This fact is blamed on our
adversary experimental setting, as we compared methods based on the number
of rollouts, whereas the computational cost of a rollout is larger by almost an
order of magnitude in the Pilot framework, as compared to that of the MCS.
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The MCS scalability can also be improved through reconsidering the ex-
ploration vs exploitation trade-off, ever more critical in larger-sized problem
instances. First of all, the MAX-k-arm strategy should be tried in lieu of the
simple ε-greedy rule. Furthermore, this tradeoff can be also adjusted by avoiding
the systematic first trial of all possible children, as this becomes harmful for
large number or arms (jobs here). It is possible to control when a new child
node should be added in the tree, and which one. Regarding the former aspect,
a heuristics referred to as Progressive Widening has been designed to limit the
branching factor of the tree, e.g. [10] . Regarding the second aspect, the use
of a Rapid Action Value Estimate (RAVE), first developed in the computer-
Go context [6] can be very efficient to aggregate the various rewards computed
for the same option (Queen Elisabeth), and guide the introduction of the most
efficient rules/jobs in average.

7 Conclusion and Outlook

This work has shown how the Pilot method may be considered a special case
of MCTS, with an exploratory-only strategy to traversing the tree and using
a deterministic rollout driven by the Pilot heuristic. It has demonstrated that
the Pilot method can be sensitive to the chosen Pilot heuristic. As the chosen
Pilot heuristic becomes more effective, so too may its computational costs. An
extension of the Pilot method in the realm of MCTS algorithms, the MCS,
has been proposed, using a simple ε–greedy strategy to traverse down the tree.
However, more sophisticated strategies, such as the one based on the max-k
bandit problem [12,20], need now be investigated. For larger problems, progres-
sive widening should be an avenue for further research, as similar strategies
have already been investigated in the Pilot framework. Finally, Rapid Action
Value Estimates may not only be used to bias how the tree is traversed, possibly
replacing the exploration term in the bandit formulas, but can also help to
improve over the random rollouts.
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Abstract. Bootstrap resampling is starting to be frequently applied to
contingency tables analysis of Genome-Wide SNP data, to cope with
the bias in genetic effect estimates, the large number of false positive
associations and the instability of the lists of SNPs associated with a
disease. The bootstrap procedure, however, increases the computational
complexity by a factor B, where B is the number of bootstrap samples.

In this paper, we study the problem of minimizing time when
applying bootstrap to contingency tables analysis and propose two levels
of optimization of the procedure. The first level of optimization is based
on an alternative representation of bootstrap replicates, bootstrap his-
tograms, which is exploited to avoid unnecessary computations
for repeated subjects in each bootstrap replicate. The second level of
optimization is based on an ad-hoc data structure, the bootstrap tree,
exploited for reusing computations on sets of subjects which are in com-
mon across more than one bootstrap replicate. The problem of finding
the best bootstrap tree given a set of bootstrap replicates is tackled with
best improvement local search. Different constructive procedures and lo-
cal search operators are proposed to solve it.

The two proposed levels of optimization are tested on a real Genome-
Wide SNP dataset and both are proven to significantly decrease compu-
tation time.

Keywords: Bootstrap, Contingency tables analysis, Genome-Wide SNP
Data, Local Search.

Introduction

In the past few years, the genetic basis of disease susceptibility has started to
be explored through the novel paradigm of Genome Wide Association Stud-
ies (GWASs). A GWAS searches for patterns of genetic variation between a
population of affected individuals (cases) and a healthy control population, for
complex diseases arising from the interaction of a genetic predisposition with
environmental risk factors [11].

The most common form of genetic variation among individuals is Single Nu-
cleotide Polymorphism (SNP), a point variation at a single DNA locus across
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members of the same species. Diploid individuals, such as human, have two ho-
mologous copies of each chromosome and the genetic variation can occur at the
same locus in either of the two chromosomes: human SNPs, thus, are ternary
variables, encoding the three possible configurations of nucleotide pairs, or geno-
types, at a certain locus (AA, BB and AB).

Current technologies allow the simultaneous measurement of O(106) SNPs
for each individual and the usual number of individuals involved in a GWAS is
O(103): the size of the resulting dataset has thus induced the vast majority of
studies to search only for univariate association between each single SNP and
the disease [15, 16] or to rely on univariate SNP association as a ranking and/or
pre-filtering step [6, 12].

All the methodologies proposed in the literature to test for the association
between a SNP and a disease condition require the computation, for each SNP,
of a 2 × 3 contingency table, containing the number of case and control indi-
viduals for each of the three genotypes of the SNP. Test statistics can then be
exploited to select SNPs significantly associated with the disease or to rank SNPs
in decreasing order of genetic effect on the disease [1].

The large number of tests involved in a GWAS, together with the low sample
size relative to the number of variables tested for association, can give rise to
bias in genetic effect estimates, to a large number of false positive associations
and to instability in the ranked list of SNPs [4]. To cope with these limitations,
one of the strategies adopted in the literature consists in coupling bootstrap with
contingency tables creation [4, 12–14].

Bootstrap [2] is a data-based simulation method for statistical inference: given
a dataset X , consisting of n observations of p variables, and a statistic s(X), the
bootstrap method consists in (i) generating B bootstrap replicates of the original
dataset (X1, . . . , XB), each one obtained by sampling with replacement n ob-
servations from X , (ii) computing the test statistic for each bootstrap replicate
and (iii) exploiting the B results for estimating some properties of the statistic,
such as standard error or confidence intervals.

In the context of GWAS data analysis, SNPs are the variables and subjects
are the observations; bootstrap is thus used to obtain B replicates of the dataset,
each with the same set of SNPs and with subjects sampled with replacement from
the original set. The statistic of association is then computed for each SNP in
each sample replicate. In [4], bootstrap is applied to contingency tables analysis
for computing point estimates and confidence intervals of the genetic effect of
each SNP, exploiting the relative rank of each SNP in each bootstrap replicate.
The same approach is further exploited in [14] for estimating the minimum
sample size needed in replication studies. With the aim of estimating the total
number of susceptibility SNPs of a complex disease from GWAS data, bootstrap
is applied in [13] to contingency table analysis for computing confidence intervals
of the estimate. Finally, in [12] an ensemble of Näıve Bayes classifiers is trained
on as many bootstrap replicates of a GWAS dataset, and SNP ranking through
test statistics is exploited for learning classification probabilities and for selecting
the attributes of each Näıve Bayes classifier.
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The bootstrap method has the appealing feature that it can be used ”on top”
of the statistic to be computed, exploiting the statistic computation as a black
box and simply iterating it through the various bootstrap replicates. Suggested
values for B are 50-100 when estimating bias or standard error and 1000 when
estimating confidence intervals [2], thus the main drawback is the O(B) increase
in computational complexity due to the replication of the statistic computation.

Even though the time needed for acquiring and pre-processing a GWAS dataset
is much longer than the time needed for computing a statistic of association be-
tween all SNPs and the disease, an acquired dataset is seldom processed just
once, both because multiple statistics are usually computed on the same dataset
and because separate, smaller datasets are often joined together and re-processed
in larger meta-analyses. Any attempt in reducing the computation time of data
processing is thus definitely worth the effort.

In this paper, we explore the problem of minimizing computation time when
applying bootstrap to contingency table analysis of Genome-Wide SNP data.
The main contributions of the paper are two levels of optimization of the com-
putational procedure: the first level of optimization derives from an alternative
representation of bootstrap replicates as bootstrap histograms, which is exploited
to avoid repeating computations for repeated subjects in each bootstrap repli-
cate. The second level of optimization is based on an ad-hoc data structure, the
bootstrap tree, exploited for reusing computations on sets of subjects which are
in common across more than one bootstrap replicate. The problem of finding the
best bootstrap tree, given a set of bootstrap replicates, is tackled with a best
improvement local search approach [7] and different constructive procedures and
local search operators are proposed to solve it.

We tested our optimized computational procedure on the WTCCC case-
control study on Type 1 Diabetes [15] and indeed observed a significant decrease
in computation time for both levels of optimization, with respect to a standard
bootstrap approach.

The remainder of the paper is organized as follows: Section 1 describes in de-
tails the problem of applying bootstrap to contingency table analysis of GWAS
data and presents the two levels of optimization, Section 2 describes the experi-
mental dataset and reports performance results and Section 3 draws conclusions
and presents some possible future directions.

1 Methods

Given a GWAS dataset X , consisting of p SNPs measured for n = ncases +
ncontrols subjects, and a binary vector of class labels Y of size n, computing
a contingency table like the one in Table 1 for each SNP involves scanning all
subjects and counting the occurencies of the three possible variants of the SNP.
Iterating the process on the whole SNP set has thus computational complexity
O(pn).

The frequency counts in each contingency table are exploited to test for an
association between the corresponding SNP and the disease condition, with a



178 F. Sambo and B. Di Camillo

Table 1. Example of a 2× 3 contingency table for a particular SNP

AA AB BB

cases a b c

controls d e f

certain statistic s. SNPs can then be ranked according to the computed statistics
and the topmost SNPs, or the SNPs whose statistic pass a certain threshold, are
identified as associated with the disease.

The reliability of the statistic and the robustness of the list of associated SNPs
can be assessed with bootstrap.

If we define I = {i1, . . . , in} the original patient set (Figure 1(a)), the boost-
rap procedure generates B bootstrap replicates {I1, . . . , IB}, each of size n and
sampled with replecement from I (Figure 1(b)). For each SNP, B contingency
tables and B corresponding statistics are then computed. The B × p resulting
statistics can be exploited either for calculating bias, squared error or confidence
intervals for each SNP [4, 14], or for computing B ranked lists of SNPs, which
can be merged to obtain a single, more robust list [10].

The pseudocode of the classic bootstrap procedure is given in what follows. As
it is clear from the pseudocode, the computational complexity of the algorithm
is O(Bpn).

ClassicBootstrap(X,Y,B)

1 I = {i1, . . . , in}, original patient set
2 Generate the sets {I1, . . . , IB}, each sampled with replacement from I

// results of the statistics for each SNP and each replicate
3 S = p×B matrix of zeros
4 for b in {1, . . . , B}
5 for k in {1, . . . , p}

// contingency table
6 CT = 2x3 matrix of zeros
7 for j in {1, . . . , n}
8 ij = Ib[j]
9 CT [ Y [ij ], X[k, ij ] ]+=1

// statistic of the association between SNP k and the disease
// for the bootstrap replicate b

10 S[k, b] = s(CT )
11 Use S to estimate properties of the statistic or to obtain a robust SNP ranking

Bootstrap replicates Ib belong to the class of multisets, i.e. sets that allow the
repetition of elements. In the next section, we introduce a convenient representa-
tion for multisets, which will lead to a first level of optimization of the bootstrap
procedure.
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I : i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
(a)

Ib: i1 i1 i3 i5 i5 i5 i7 i8 i9 i9
(b)

Ib: 2 0 1 0 3 0 1 1 2 0
(c)

Fig. 1. (a) example of a patient set I with 10 patients. (b) example of a bootstrap
replicate of I . (c) boostrap histogram of the replicate Ib.

1.1 Level I Optimization: Bootstrap Histograms

Given amultiset Ib withm elements, drawn fromanunderlying set I = {i1, . . . , in}
of n distinct elements, a histogram representation of the multiset is a vector Ib of
length n containing, for each element ij ∈ I, the number of times it appears in the
multiset Ib (Figure 1(c)).We define bootstrap histogram the histogram representa-
tion of a bootstrap replicate.

Bootstrap histograms can be conveniently exploited to avoid unnecessary op-
erations: when computing contingency tables for each bootstrap replicate Ib, in
fact, one needs only to process the elements j such that Ib[j] > 0. Furthermore,
given that each nonzero element of the boostrap histogram counts multiple copies
of the same subject, one needs only to evaluate once the SNPs of the j-th sub-
ject and then add Ib[j] to the corresponding elements of the contingency tables.
The pseudocode of the histogram-based bootstrap procedure is given in what
follows.

HistogramBootstrap(X,Y,B)

1 I = {i1, . . . , in}, original patient set
2 Generate {I1, . . . , IB}, sampled with replacement from I
3 S = p×B matrix of zeros
4 for b in {1, . . . , B}

// tmp storage of indices, values and labels of nonzero elements of Ib

5 tmpInd = ∅, tmpVal = ∅, tmpY = ∅
6 for j in {1, . . . , n}
7 if Ib[j] > 0
8 tmpInd = tmpInd ∪ j

9 tmpVal = tmpVal ∪ Ib[j]

10 tmpY = tmpY ∪ Y [ Ib[j] ]
11 for k in {1, . . . , p}
12 CT = 2x3 matrix of zeros
13 for j in {1, . . . , length(tmpInd)}
14 CT [ tmpY [j], X[k, tmpInd [j]] ]+=tmpVal [j]
15 S[k, b] = s(CT )
16 Use S to estimate properties of the statistic or to obtain a robust SNP ranking
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The preprocessing routine at lines 5−10 extracts, for each bootstrap histogram
Ib, the indices, values and corresponding disease condition of the nonzero ele-
ments of Ib; its computational complexity, O(Bn), can be considered negligible
if n� p, as in our case.

Thanks to the preprocessing routine, the summation at line 14 is now exe-
cuted only B · p · length(tmpInd) times, resulting in an expected relative gain of
computation time equal to the average proportion of zero elements in a boot-
strap histogram: for n sufficiently large, the relative gain approaches e−1 � 0.368
[2].

A further level of optimization, obtained by exploiting the presence of common
elements across multiple bootstrap histograms, is presented in the next section.

1.2 Level II Optimization: Bootstrap Tree

For our second level of optimization, the aim is to group together bootstrap
histograms sharing common elements, so to be able to reuse the results of con-
tingency table computations for multiple bootstrap histograms. To this purpose,
we define intersection of two bootstrap histograms Ix and Iy the boostrap his-
togram Iz such that:

Iz [j] = Ix[j] ∩ Iy[j] =

{
Ix[j] if Ix[j] = Iy[j],

0 otherwise
for j = 1 . . . n.

Furthermore, we define size of a bootstrap histogram the number of its nonzero
elements and similarity between two bootstrap histograms the size of their in-
tersection.

Given a set of bootstrap histograms, we define bootstrap tree a data structure
with the following features:

1. the bootstrap tree is a balanced binary tree,
2. each leaf of the tree, i.e. each node at level 0, contains one of the original

bootstrap histograms,
3. each internal node of the tree, at level l > 0, contains the intersection of its

two children, i.e. the pair of nodes connected to it at level l − 1.

An example of bootstrap tree is given in Figure 2.
For each node, we define unique elements the nonzero elements of its bootstrap

histogram which are zero in the histogram of its parent node. Unique elements
are marked in bold in the example tree of Figure 2.

A bootstrap tree can be effectively exploited to obtain a further decrease in
computation time. Each bootstrap replicate can be processed by visiting the
tree in a depth-first, left-first traversal, backtracking once leaves are reached.
The intuition is that computations can be carried out while descending the tree,
exploiting the bootstrap histogram of each internal node for computing partial
results, which can then be reused for all the nodes in the corresponding subtree.
The pseudocode of such an algorithm is given in what follows.
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0 0 1 0 0 0 0 0 0 0 

0 0 1 0 2 0 0 3 0 0 0 0 1 0 0 0 0 2 1 0 

0 1 1 0 2 0 0 3 1 2 
1 0 1 0 2 1 0 3 2 0 

2 0 1 0 1 0 0 2 1 3 
1 0 1 0 0 3 0 2 1 2 

Fig. 2. Example of a bootstrap tree, for B = 4 bootstrap replicates. The leaves contain
the bootstrap histograms of the 4 bootstrap replicates and each internal node contains
the intersection of its children. Unique elements of each node, i.e. nonzero elements of
its bootstrap histogram which are zero in the histogram of its parent node, are marked
in bold.

TreeBootstrap(X,Y, tree)

1 CTs = set of p contingency tables, all elements initialized to zero
2 S = p×B matrix of zeros
3 RecTreeBootstrap(X, Y, tree.root, tree.height,CTs)
4 Use S to estimate properties of the statistic or to obtain a robust SNP ranking

RecTreeBootstrap(X,Y, node, level, CTs)

1 Increment CTs according to the unique elements of node
2 if level > 0

// Proceed to the children
3 newCTs = copy of CTs
4 RecTreeBootstrap(X,Y, node.leftChild , level− 1, newCTs)
5 RecTreeBootstrap(X,Y, node.rightChild, level− 1, CTs)
6 else

// A leaf has been reached, compute the statistic
7 b = node.b // Index of the bootstrap replicate
8 for k in {1, . . . , p}
9 S[k, b] = s(CTs[k])

The TreeBoostrap algorithm creates a set CTs of p zero-valued contingency
tables, allocates space for the results of the statistic and launches the recursive



182 F. Sambo and B. Di Camillo

RecTreeBoostrap algorithm from the root of the tree, passing the set CTs.
Each node visited in the left-first descent receives a set of contingency tables,
increments them according to its unique elements and passes a copy of them
to its left child (RecTreeBootstrap, lines 1-4). When a leaf is reached, its
corresponding contingency tables are complete and the statistic of association
can be computed for all SNPs (lines 7-9). When backtracking from a left child to
a right child, the set of contingency tables at the parent node is directly passed
to the right child rather then copied (line 5), since it does not need to be stored
anymore. The algorithm terminates when the last right child, i.e. the rightmost
leaf, is visited.

The gain in computation time of the TreeBootstrap algorithm, relative
to the HistogramBootstrap algorithm, can be computed as the sum of the
sizes of the internal nodes over the sum of the sizes of the leaves. We prove this
intuitively: each nonzero element in the bootstrap histograms of nodes at level
1 indicates an element for which computations can be spared, because it is in
common between two histograms; nonzero elements at level 2 stands for further
spared elements when computing nodes at level 1, and so on up to the root. The
gain of the tree in Figure 2 is thus 7/24 � 0.291.

The gain in computation time comes at the cost of an increased memory
occupation: the TreeBootstrap algorithm needs to keep in memory a number
of contingency tables, for each SNP, equal to the height of the bootstrap tree
plus one. Memory occupation is often critical when dealing with GWAS data.
We thus impose the constraint on the bootstrap tree of being a balanced binary
tree: among all possible binary trees of B nodes, balanced binary trees have the
lowest height, log(B).

Having defined the bootstrap tree, the TreeBootstrap algorithm and the
concept of gain of a tree, we can now formulate the optimization problem of
searching for the bootstrap tree with the maximum gain, given a GWAS dataset
and a set of B bootstrap histograms. We chose to tackle the problem with a
best improvement local search approach [7]: starting from an initial bootstrap
tree, we generate a neighbourhood of trees by applying a local search operator,
choose the tree with the highest gain among the neighbourhood and iterate the
process until a local maximum is reached.

We explore the use of different constructive procedures for building the initial
tree and of different local search operators for generating the neighbourhood.
Constructive procedures and local search operators are described in the next
sections.

1.3 Constructive Procedures for Bootstrap T rees

We begin this section with a remark: since our final objective is to minimize
computation time, which includes both the time for searching for the optimal

1 To be precise, one should also consider the time spent for copying contingency tables.
Copying p contingency tables, one for each SNP, has complexity O(p) and the whole
set of contingency tables is copied B − 1 times: the computational complexity does
not depend on n and can thus be considered negligible.
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bootstrap tree and the time for the TreeBootstrap algorithm, simple but
fast constructive heuristics can stand a chance against more complex but slower
heuristics and should thus be considered.

The first constructive procedure we propose is a greedy agglomerative con-
structive heuristic, inspired by the literature on hierarchical clustering [5]: the
GreedyAgglomerative heuristic builds the bootstrap tree starting from the
leaves, i.e. the original boostrap histograms, by computing the mutual similarity
between all pairs of histograms. Similarity between two bootstrap histograms,
as defined in Section 1.2, is the size of the intersection between the two his-
tograms. The two histograms with the highest similarity are joined as children
of the first node at level 1, whose histogram is computed as the intersection
of the two histograms. The heuristic keeps joining the pair of remaining leaves
with the highest similarity, until no more leaves remain. The procedure is then
iterated up to the root, by computing the mutual similarity between all pairs of
nodes at level l and by iteratively joining the nodes with the highest similarity
as children of the nodes at level l + 1. The computational complexity of the
GreedyAgglomerative heuristic is O(B2n).

The other constructive procedure we consider is RandomBuild, which builds
the bootstrap tree by joining pairs of nodes at random up to the root. Despite
the lower expected gain with respect to the GreedyAgglomerative heuris-
tic, we choose to try also the RandomBuild procedure because of its lower
computational complexity, O(Bn).

1.4 Local Search Operators for Bootstrap Trees

The first local search operator we define, TreeOpt, can be applied to all nodes
at level l ≥ 2 and operates by testing the two possible swaps between grandchil-
dren of a node G (which stands for Grandparent), i.e. between the four nodes
whose parents are the two children of G (Figure 3). The total number of nodes at
level l ≥ 2 is B/2− 1, thus the size of the neighbourhood of the TreeOpt oper-
ator is B−2. The cost of a swap is the cost of updating the boostrap histograms
for G’s children, G itself and all the nodes in the path from G up to the root.
The total cost of evaluating a TreeOpt neighbourhood is thus O(nB logB).

The second operator we define, 2Opt, is inspired by the homonymous operator
for the TSP problem [7]: the 2Opt operator tests all possible swaps between
two leaves of the tree, excluding the swaps between the two children of the same
node. The size of the neighbourhood of the 2Opt operator is thus B2/2−B. The
cost of a swap is the cost of updating the boostrap histograms of the nodes on
the paths from the two swapped leaves up to the root: the total cost of evaluating
a 2Opt neighbourhood is thus O(nB2 logB).

2 Experimental Results

In this section, we present experimental results on the computational perfor-
mance of the algorithms ClassicBootstrap, HistogramBootstrap and
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A B C D 

G 

A C B D 

G 

A D C B 

G TREEOPT 

Fig. 3. Example of use of the TreeOpt operator: applied to the node G of the leftmost
tree, the operator generates the two possible swaps of the nodes A, B, C and D, whose
parents are the two children of G

TreeBootstrap. Different combinations of the constructive procedures and
of the local search operators are tested for the bootstrap tree of the Tree-

Bootstrap algorithm.
As benchmark to assess the performance of the different algorithms, we choose

the WTCCC case-control study on Type 1 Diabetes [15]: the dataset consists of
458376 SNPs, measured for 1963 T1D cases and 2938 healthy controls (after the
application of all Quality Control filters reported in [15]). The numbers of SNPs
and subjects involved are in line with the ones usually encountered in a GWAS
[11], thus making the dataset a meaningful benchmark for our algorithms.

We measure the computation time spent by the following procedure: generate
B bootstrap replicates, compute a contingency table and a univariate statistic
of association (described in [12]) for each SNP in each replicate and rank SNPs
according to the computed statistic. To remove a possible source of noise, we
exclude from the measurements the time needed for loading the dataset in RAM.

The number of bootstrap replicates, B, is varied among all powers of 2 in the
range {20 . . . 210}: for each B, we generate 20 sets of B bootstrap replicates and
repeat the whole procedure on each set.

All algorithms are written in C++ and all computations are carried out on a
single 3.00 GHz Intel Xeon Processor E5450.

We first assess the effectiveness of the two levels of optimization by compar-
ing the computation time of ClassicBootstrap, HistogramBootstrap and
TreeBootstrap, the latter tested with either the GreedyAgglomerative

or the TreeOpt constructive procedure and without local search.
Results are shown in Figure 4, top panel: the figure reports, for each value

of B, the median over the 20 runs of the average time needed to process one
bootstrap replicate, computed as the total time over B. For each point, whiskers
extend from the first to the third quartile. We preferred to plot the median
rather than the mean because of the presence of a small number of random
outliers, which were however included in all the tests for significance. As it is
clear from the figure, both levels of optimization result in a significant decrease in
computation time (p-values of ClassicBootstrap vs HistogramBootstrap
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Fig. 4. Medians across 20 runs of the time for processing one bootstrap replicate (to-
tal time / B) versus the number of replicates B. Whiskers extend from first to third
quartile. Top panel: NaiveBootsrap, HistogramBootstrap and TreeBootstrap

with the two constructive procedures and without local search. Middle panel: Tree-

Bootstrap with the GreedyAgglomerative constructive procedure, without local
search and with the two local search operators. Bottom panel: TreeBootstrap with
the RandomBuild constructive procedure, without local search and with the two local
search operators.
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andHistogramBootstrap vs both versions of TreeBootstrap < 8.9×10−5

for each B, Wilcoxon signed-rank test)2.
Oberving a significant difference betweenHistogramBootstrap andTree-

Bootstrap forB = 1 is somehow unexpected, since the number of operations ex-
ecuted by the two algorithms is practically the same. The only notable difference
is that HistogramBootstrap allocates just one contingency table and reuses
it, while TreeBootstrap has to allocate the whole set of p contingency tables:
rather than resulting in an increased overhead, the second strategy seems to be
more fit to be optimized by the compiler and thus results in a significant gain.

Further, significant increases in the time gain of the TreeBootstrap algo-
rithm can be observed up to B = 8 (p-values of the differences between consec-
utive samples < 0.02, Wilcoxon rank-sum test). This means that the algorithm
is effectively able to avoid unnecessary computations, by reusing common ele-
ments of the bootstrap histograms. For B ≥ 16, no further gain can be observed:
the identification of groups of 16 or more bootstrap histograms of length 4901
(the total number of subjects in the dataset) sharing many common elements
seems to have a computational cost which is too high to result in an effective
improvement of the overall procedure.

Interesting is also the fact that no significant difference can be observed be-
tween the two constructive procedures for TreeBootstrap (p-value > 0.21 for
each B). The higher tree gain otained by the GreedyAgglomerative heuris-
tic, thus, seems to be compensated by its higher computational complexity, with
respect to the RandomBuild constructive procedure.

We then tested the effect on the TreeBootstrap algorithm of the two local
search operators, when combined with either the GreedyAgglomerative and
theRandomBuild constructive procedures (Figure 4, middle and bottom panel).
As it is clear from the figures, local search with the 2Opt operator has a negative
effect on performance, significant for B ≥ 256 when the initial tree is built with
GreedyAgglomerative and forB ≥ 64 whenRandomBuild is used (p-values
< 6×10−3,Wilcoxon signed-rank test).This probablymeans that the rate atwhich
the 2Opt operator increases the gain of the bootstrap tree is too slow to be able to
improve the overall performance of the TreeBootstrap algorithm.

On the other hand, the TreeOpt local search operator has different effects
when coupled with the GreedyAgglomerative and the RandomBuild con-
structive procedures: in the first case, the performance with local search tends
to be consistently better than without local search for all values of B; in the
second case, the performance is consistently worse for each B ≥ 8. Differences,
however, are not statistically significant, with the exception of one case.

3 Conclusions and Future Directions

In this paper, we studied the problem of minimizing computation when applying
bootstrap to contingency table analysis of Genome-Wide SNP data. We proposed
two levels of optimization of the procedure, which both result in a significant

2 For all tests throughout the paper, we consider significant a p-value < 0.05.
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improvement in computation time: altogether, the optimization strategies pre-
sented in this paper allow us to reduce computation time by a factor of approx-
imately 2.5, a result which can be considered definitely valuable in the context
of GWAS data analysis.

The first level of optimization, implemented in the HistogramBootstrap

algorithm, is based on an alternative representation of bootstrap replicates as
bootstrap histograms. The bootstrap histogram representation is not new in the
literature: for example, in [3] the same representation is proven more effective
than the standard representation for estimating the bias of order invariant statis-
tics. As far as we know, however, the idea of exploiting the bootstrap histogram
representation for reducing computation time has never been proposed in the
literature.

The second level of optimization, implemented in the TreeBootstrap algo-
rithm, is based on an ad-hoc data structure, the bootstrap tree, which is exploited
for reusing partial results on sets of subjects shared by multiple replicates.

Once defined the bootstrap tree and the algorithm for exploiting it, we for-
mulated the optimization problem of finding the tree leading to the highest gain
in computation time and tackled the problem with a best improvement local
search approach. Two constructive procedures and two local search operators
were specifically designed for the problem and several combinations of them
were tested. Experimental results show that simpler but faster approaches to
tree construction and refinement are competitive with (and, in some cases, sig-
nificantly more effective than) more powerful, yet slower approaches. As far as
we know, the idea of exploiting common elements of the boostrap samples for
reducing computation time of boostrap has never been proposed in the literature.

The algorithms designed for the second level of optimization require the num-
ber of bootstrap replicates, B, to be a power of two. We do not see this require-
ment as a big limitation: guidelines for the choice of the number of bootstrap
replicates are present in the literature [2], but they usually give indications on
the order of magnitude of B rather than on its exact value, the choice of which
is left to the experimenter.

Concerning future directions, we intend to further explore the design of other
constructive heuristics and local search operators, together with other stochastic
local search techniques, to search for the optimal bootstrap tree.

The extent to which bootstrap performance can be improved with our two lev-
els of optimization has, however, a theoretical limit. In each bootstrap replicate,
all observations are sampled with equal probability 1/n: the expected number
of elements in common among B bootstrap histrograms is thus limited. Several
authors, however, have proposed to exploit importance sampling for reducing the
variance of certain bootstrap estimates [8, 9, 17]. The idea beyond importance
sampling is to sample observations with nonuniform weights: such an approach
dramatically increases the number of elements in common among subsets of
bootstrap histograms and can thus further benefit from our optimization strate-
gies. One of our future directions is thus to study how to adapt our two levels
of optimization to importance sampling in bootstrap estimates.
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Finally, the enhancement of bootstrap with the two levels of optimization can
be extended to other application domains, as long as the function to be iterated
on each bootstrap replicate has the two following features: i) the sets of observa-
tions to be processed can be split in m distinct subsets and the function can be
independently applied to each subset, ii) the computational cost of processing
each subset is considerably higher than the cost of assembling the m results.
One of our future directions is thus to study the application of our optimization
strategies to different problem domains, characterized by the two aforementioned
features.
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Abstract. Automated configuration procedures play an increasingly prominent
role in realising the performance potential inherent in highly parametric solvers
for a wide range of computationally challenging problems. However, these con-
figuration procedures have difficulties when dealing with inhomogenous instance
sets, where the relative difficulty of problem instances varies between configura-
tions of the given parametric algorithm. In the literature, instance set homogene-
ity has been assessed using a qualitative, visual criterion based on heat maps.
Here, we introduce two quantitative measures of homogeneity and empirically
demonstrate these to be consistent with the earlier qualitative criterion. We also
show that according to our measures, homogeneity increases when partitioning
instance sets by means of clustering based on observed runtimes, and that the
performance of a prominent automatic algorithm configurator increases on the
resulting, more homogenous subsets.

Keywords: Quantifying Homogeneity, Empirical Analysis, Parameter Optimiza-
tion, Algorithm Configuration.

1 Introduction

The automated configuration of highly parametric solvers has recently lead to substan-
tial improvements in the state of the art in solving a broad range of challenging compu-
tational problems, including propositional satisfiability (SAT) [1–3], mixed integer pro-
gramming (MIP) [4] and AI planning [5]. Broader adoption of this approach is likely
to lead to a fundamental change in the way effective algorithms for NP-hard problems
are designed [6], and the design and application of automated algorithm configuration
techniques is a very active area of research (see, e.g., [7–9]).

One fundamental challenge in automated algorithm configuration arises from the
fact that the relative difficulty of problem instances from a given set or distribution may
vary between different configurations of the algorithm to be configured. This poses the
risk that an iterative configuration process is misguided by the problem instances con-
sidered at early stages. For this reason, the performance of ParamILS [10, 9], one of the
strongest and most widely configuration procedures currently available, significantly
depends on the ordering of the problem instances used for training [1, 9], and the same
can be expected to hold for other algorithm configuration techniques. Therefore, the
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question to which degree the relative difficulty of problem instances varies between con-
figurations of a parametric algorithm is of considerably interest. Indeed, precisely this
question has been addressed in recent work by Hutter et al. [11], who refer to instance
sets for which the same instances are easy and hard for different configuration as homo-
geneous and ones for which this is markedly not the case as inhomogeneous. They state
that inhomogeneous instance sets are “problematic to address with both manual and au-
tomated methods for offline algorithm configuration” [11] and list three approaches for
addressing this issue: clustering of homogeneous instance sets [12, 13], portfolio-based
algorithm selection [14, 15] and per-instance algorithm configuration [16, 17]. They
furthermore use a heat map visualization to qualitatively assess homogeneity.

In the work presented in the following, we introduce two quantitative measures of
instance set homogeneity and explore to which extent these may provide a basis for
assessing the efficacy of state-of-the-art algorithm configuration approaches. Like the
heat maps of Hutter et al., our homogeneity measures are solely based on the perfor-
mance of a given set of configurations and do not make use of problem-specific instance
features. We show that on well-known algorithm configuration scenarios from the liter-
ature, our new measures are consistent with previous qualitative assessments. We fur-
ther demonstrate that clustering instance sets can produce more homogenous subsets,
and we provide preliminary evidence that automated algorithm configuration applied
to those subsets tends to produce better results, which indicates that our homogeneity
measures behave as intended.

The remainder of this paper is structured as follows: After a brief survey of related
work (Section 2), we present our homogeneity measures (Section 3). This is followed
by a brief description of clustering methods, which we subsequently use to partition in-
stance set into more homogenous subsets (Section 4). We then present an experimental
evaluation of our new measures, in terms of their consistency with the earlier qualita-
tive assessment by Hutter et al., and in terms of the extent to which they are affected by
clustering based on run-time measurements and on problem-dependent features (Sec-
tion 5). Finally, we provide some general insights as well as a brief outlook on future
work (Section 6).

2 Related Work

We are not aware of any existing work focused on homogeneity of instance sets given
a solver as a central theme. However, there is a close conceptual relationship with prior
work on portfolio-based algorithm selection and feature-based clustering of instances.

2.1 Portfolio-Based Algorithm Selection

The key idea behind portfolio-based algorithm selection is, given a set S of solvers for
a given problem, to map any given problem instance to a solver from S that can be ex-
pected to solve it most effectively (see [18]). Perhaps the best-known realization of this
idea is the SATzillaapproach [15], which has produced SAT solvers that won numerous
medals in the 2007 and 2009 SAT competitions. SATzilla uses so-called empirical hard-
ness models [19, 20] for predicting performance based on cheaply computable instance



192 M. Schneider and H.H. Hoos

features, and selects the solver to be applied to a given instance based on these perfor-
mance predictions. Similar techniques have been successfully applied to several other
problems (see, e.g., [4, 21–23]).

In general, the problem of learning a mapping from solvers to instances can be seen
as a multiclass classification problem and attacked using various machine learning tech-
niques (see, e.g., [24, 25]). Regardless of how the mapping is learned and carried out,
a portfolio-based algorithm selector partitions any given set of instances Ω into subsets
Ωj , such that each Ωj consists of the instances for which one particular solver from
the given portfolio, say, sj ∈ S, is selected. Ideally, each instance gets mapped to the
solver that performs best on it; in this case, sj dominates all other solvers in subset
Ωj . Although, unlike portfolio-based algorithm selection methods such as SATzilla, our
approach does not use any problem-specific instance features, one of the homogeneity
measures we introduce in Section 3.1 is based on the intuition that a given instance set
is perfectly homogeneous if, and only if, a single solver (or in our case: solver configu-
ration) dominates all others on all instances from the set.

2.2 Feature-Based Instance Clustering

A rather different approach to algorithm selection underlies the more recent ISAC proce-
dure [12]. Here, instances are clustered based on problem-dependent instance features.
Next, an automated configuration procedure is used to find a good configuration for
each of the instance subsets thus obtained. Unlike the clustering approaches we con-
sider in our work, ISAC does not use runtimes of certain configurations of the given
target algorithm for the clustering. The algorithm selector produced by ISAC maps each
instance to the configuration associated with the nearest cluster, as determined based on
instance features.

CluPaTra [13] also partitions instance sets based on instance features and subse-
quently optimizes parameters of the given target solver for each cluster. Lindawati
et al. [13] have shown that clustering instance sets in this way leads to better perfor-
mance than using random clustering of the same instances. This supports the idea that
a parametric solver has a higher configuration potential on clustered instance sets if the
clustering improves the homogeneity of these sets with respect to the parametric solver.

Our approach to clustering instance sets, explained in detail in Section 4, differs
from ISACand CluPaTraby not using any problem-specific instance features. While
such features can be quite cheap to compute, expert knowledge is required to define
and implement them. In addition, their use is based on the assumption that “[. . . ] in-
stances with alike features behave similarly under the same algorithm” [12]. We are not
aware of any published work that provides stringent support for this hypothesis, and
existing work (such as [12, 13]) does not directly investigate it.1 The homogeneity mea-
sures we introduce here offer a way of assessing to which extent clustering based on

1 The fact that problem instances that are indistinguishable with respect to simple syntactic fea-
tures, such as critically constrained Random-3-SAT instances with a fixed number of variables,
have been observed to vary substantially in difficulty for state-of-the-art solvers for the respec-
tive problems seems to contradict this hypothesis; however, one could conjecture that such
instances might differ in more sophisticated, yet still cheaply computable features.
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problem-dependent features produces sets of instances for which different configura-
tions of the same target algorithm show consistent performance rankings.

3 Homogeneity Measures

In this section, we deal with theoretical considerations to develop homogeneity mea-
sures for analyzing instance sets as motivated in Section 1. Intuitively, we characterize
homogeneity as follows: An instance set Ω is homogeneous for a given set Φ of configu-
rations of a parametric solver if the relative performance of the configurations in Φ does
not vary across the instances in Ω. In many cases, there will be deviations from perfect
homogeneity, and because the degree to which these variations occur is of interest, we
want to consider real-valued measures of instance set homogeneity.

Unfortunately, for most interesting parametric solvers, the configuration spaces are
far too big to permit the evaluation of all configurations. For example, the discretized
configuration space of the highly parametric SAT and ASP solver Clasp [26] is of size
≈ 1018. Therefore, following Hutter et al. [11], we consider sets of randomly sampled
configurations as a proxy for the entire space. Somewhat surprisingly, even for rela-
tively small samples, this rather simplistic approach turns out to be quite effective for
optimizing the homogeneity of instance sets, as will become evident from the empirical
results presented in Section 5.

To formally define homogeneity measures, we use Φ to denote the space of all config-
urations (φ ∈ Φ for individual configurations), Φr ⊂ Φ for a subset of n configurations
sampled uniformly at random from Φ, and Ω for an instance set (ω ∈ Ω for individual
instances).

3.1 Ratio Measure - Similarity to the Oracle

Our first measure is motivated by our practical approach to determine whether a port-
folio solver approach is useful for an instance set. The runtimes of all configurations
(or solvers) in the portfolio are measured for each instance. Based on the sum of their
runtimes over the given instance set, we compare the performance of the best config-
uration and that of the oracle (sometimes also called virtual best solver)2 constructed
from all the sampled configurations; if their performance is equal, there is one dominant
configuration for the entire instance set, and portfolio-based selection offers no advan-
tage over statically choosing this dominant configuration. We call such an instance set
homogenous w.r.t. the given set of configurations. This approach corresponds to the
interpretation of portfolio solvers given in Section 2.1.

Following this intuition, we define the ratio measure, QRatio, to measure homogene-
ity based on the ratio of the runtimes between the best configuration and the oracle, as
shown in Equations 1 to 3, where t′Oracle(Φr)

(Ω) represents the performance of the
oracle and t′φ∗(Ω) that of the best configuration in Φr.

2 The performance of the oracle solver on a given instance is the minimum runtime over all
given configurations/solvers.
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QRatio(Φr , Ω) = 1−
t′Oracle(Φr)

(Ω)

t′φ∗(Ω)
with QRatio ∈ [0, 1[ (1)

s.t.

t′φ(Ω) =

|Ω|∑
i

t(ωi, φ) and t′Oracle(Φr)
(Ω) =

|Ω|∑
i

min
φ∈Φr

t(ωi, φ) (2)

φ∗ ∈ argmin
φ∈Φr

t′φ(Ω) (3)

QRatio is defined such that a value of 0 corresponds to minimal inhomogeneity, and
higher values characterize increasingly inhomogeneous instance sets.

3.2 Variance Measure - Performance Similarity

The intuition behind our second measure is closely related to the question whether dif-
ferent evaluators rate a set of products similarly. More precisely, we want to determine
whether m products (configurations) are rated similarly by n evaluators (instances)
based on a given evaluation measure (runtime). This setting is similar to that addressed
by the Friedman hypothesis test; however, the Friedman test is not directly applicable in
our context, in part because we are typically dealing with noisy and censored runtimes.

Our variance measure is based on the general idea of assessing instance set homo-
geneity by means of the variances in runtimes over instances for each given configu-
ration. An instance set is perfectly homogenous, if (after compensating for differences
in instance difficulty independent of the configurations considered, i.e., for situations
in which certain instances are solved faster than others by all configurations) for every
given configuration, all instances are equally difficult.

To account for differences in instance difficulty that are independent of the config-
urations considered, we perform a standardized z-score normalization of the perfor-
mance of configurations on instances such that for any given instance, the distribution
of performance (here: log-transformed runtime) over configurations has mean zero and
variance one. As we will see in Section 5.2, these distributions are often close to log-
normal, which justifies standardized z-score transformation on log-transformed runtime
measurements.

Formally, if V ar(t∗φ(Ω)) is the variance of the log-transformed, standardized z-score
normalized runtimes of configuration φ ∈ Φr over the instances in the given set Ω, we
define the variance measure QV ar as follows:

QV ar(Φr , Ω) =
1

|Φr|
∑
φ∈Φr

V ar(t∗φ(Ω)) (4)

As in the case of QRatio, QV ar ≥ 0, where QV ar = 0 characterizes perfectly homoge-
nous instance sets, while higher values correspond to increasingly inhomogeneous sets.
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4 Clustering of Homogeneous Subsets

Based on the homogeneity measures introduced in Section 3, instances within the given
set Ω can be clustered with the goal of optimizing homogeneity of the resulting subsets
of Ω.

We note that in order to calculate the values of QRatio and QV ar, runtimes for each
configuration on each instance have to be measured; each of these runtimes can be
interpreted as an observation on the behavior of the given parametric algorithm on the
instance. Under this interpretation of the data, classical clustering approaches can be ap-
plied, in particular, K-Means [27], Gaussian Mixtures [28] and Hierarchical Agglom-
erative Clustering [29]. While many more clustering approaches can be found in the
literature, these methods are amongst the most prominent and widely used classical
clustering approaches based on observations.

Agglomerative Hierarchical Clustering[29] iteratively merges the clusters with the
lowest distance, where distance between clusters can be defined in various ways. As
an alternative to clustering based on distances between the observation vectors, we also
explored a variant that always merges the two clusters resulting in the best homogeneity
measure (of the merged cluster). Clusters will be merged until a termination criterion is
satisfied (e.g., a given number of desired clusters is reached). Unfortunately, the prop-
erty Ω1 ⊂ Ω2 ⇒ Q(Ω1) < Q(Ω2) cannot be guaranteed for arbitrary instance sets Ω1

and Ω2, where Q is either of our homogeneity measures. This means that merging two
clusters of instances does not necessarily result in a strict improvement in homogeneity.
Therefore, we analyzed how our homogeneity measures vary as the number of clusters
increases (see Section 5.4).

5 Experiments

In this section, we evaluate empirically how our approach can be used to analyze the
homogeneity of instance sets on different kinds of solvers. First, we explain our exper-
imental setting. Next, we characterize the distributions of runtimes on a given instance
over solver configurations, which matter in terms of the standardized z-score normaliza-
tion underlying our variance-based homogeneity measure, QV ar. Then, we investigate
to which degree our homogeneity measures agree with the earlier, qualitative analysis
of homogeneity by Hutter et al. [11]. Finally, we investigate the question whether al-
gorithm configurators, here ParamILS, perform better on more homogeneous instance
sets, as obtained by clustering instances from large and diverse sets.

5.1 Data and Solvers

We used the runtime measurements produced by Hutter et al. [11]3; their data
includes runtimes of the mixed integer programming (MIP) solver CPLEX on the in-
stance sets Regions100 (CPLEX-Regions100: 2000 instances, 5 sec cutoff) and Or-
lib (CPLEX-Orlib: 140 instances, 300 sec cutoff); the local search SAT solver Spear

3 See http://www.cs.ubc.ca/labs/beta/Projects/
AAC/empirical analysis/index.html

http://www.cs.ubc.ca/labs/beta/Projects/AAC/empirical_analysis/index.html
http://www.cs.ubc.ca/labs/beta/Projects/AAC/empirical_analysis/index.html
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on the instance sets IBM (SPEAR-IBM: 100 instances, 300 sec cutoff) and SWV
(SPEAR-SWV: 100 instances, 300 sec cutoff); and the SAT solver Satenstein on the
instance sets QCP (SATenstein-QCP: 2000 instances, 5 sec cutoff) and SWGCP
(SATenstein-SWGCP: 2000 instances, 5 sec cutoff). In each case, runtime measure-
ments were provided for 1000 solver configurations chosen uniformly at random. In-
stances that could not be solved by any configuration were excluded from further analy-
sis of our homogeneity measures, as were configurations that could not solve any of our
instances. (However, for the clustering performed in later experiments, these instances
and configurations were not eliminated.)

We augments this extensive data set with addition runtime data for the successful
ASP [30] and SAT solver Clasp [26] (in version 2.0.2). Clasp won the system competi-
tions in the ASP competitions 2009 and 2011 and several gold medals in the 2009 and
2011 SAT competitions. As an open source project4, Clasp is freely available. It also is
a highly parametric solver with over fifty parameters, 38 of which we considered in this
work (these all influence the solving process for SAT instances).

We applied Clasp to two subsets of the crafted and industrial/application benchmarks
used in the SAT competitions between 2003 and 2009, dubbed CLASP-Crafted and
CLASP-Industrial. Furthermore, we used a set of SAT-encoded bounded model
checking problems [31] dubbed CLASP-IBM. We removed all instances for which the
running time of every configurations of Clasp from a manually chosen set required less
than 3 seconds or more than 600 seconds; this was done in order to avoid problems
with inaccurate runtime measurements and excessive occurrence of timeouts as well as
to ensure that all experiments could be completed within reasonable time. After this fil-
tering step, we were left with 505 instances in the CLASP-Crafted set, 552 instances
in CLASP-Industrial, and 148 instances in CLASP-IBM.

We measured runtimes for 32 configurations of Clasp chosen uniformly at random
(from a total of ≈ 1018) for each instance, using a cutoff of 600 seconds per run.5

These runtime measurements required a total of about 350 CPU hours. In the same way
as done with the data of Hutter et al., instances that could not be solved by any of our 32
Clasp configuration were excluded from further analysis of our homogeneity measures,
as were configurations that could not solve any of our instances.

All runs of Clasp were carried out on a Dell PowerEdge R610 with an Intel Xeon
E5520 (2.26GHz), 48GB RAM running 64-bit Scientific Linux, while the runtime data
of Hutter et al. [11] was measured on a 3.2GHz Intel Xeon dual core CPUs with 2GB
RAM running Open SuseLinux 10.1.

5.2 Normalization and Distributions

Clearly, the distribution of runtimes over target algorithm configurations on a given
problem instance depends on the semantics on the given target algorithm’s parameters.
As motivated in Section 3.2, our variance-based homogeneity measure requires normal-
ization. The approach we have chosen for this normalization is based on our finding that

4 http://potassco.sourceforge.net/
5 This runtime data is available at
http://www.cs.uni-potsdam.de/wv/clusteredHomogeneity

http://potassco.sourceforge.net/
http://www.cs.uni-potsdam.de/wv/clusteredHomogeneity
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Table 1. Quality of fit for distributions of runtime on given problem instances over randomly
sampled sets of algorithm configurations, assessed using the Kolmogorov-Smirnov goodness-of-
fit test: average rejection rate of test over instances (low values are good) and average p-values
(for details see text)

Instance Sets normal log-normal exponential Weibull
CPLEX-Orlib 0.988(0.002) 0.494(0.160) 0.906(0.016) 0.859(0.036)
SPEAR-IBM 0.911(0.048) 0.533(0.155) 0.911(0.025) 0.867(0.055)
SPEAR-SWV 0.473(0.419) 0.243(0.496) 0.689(0.134) 0.351(0.421)
SATenstein-QCP 0.992(0.003) 0.063(0.474) 0.840(0.033) 0.055(0.413)

the distributions of log-transformed running times tends to be normal, described in the
following.

We used the Kolmogorov-Smirnov goodness-of-fit test (KS test) with a significance
level of 0.05 to evaluate for each instance, whether the empirical distribution of run-
times over configurations was consistent with a log-normal, normal, exponential or
Weibull distribution. We excluded the Clasp data from this analysis, since each dis-
tribution was only based on 32 data points, resulting in very low power of the KS
test. Since the occurrence of a significant numbers of timeouts for a given instance
renders the characterization of the underlying distributional family via a KS test im-
possible, we also eliminated all instances from our test on which more than half the
given configuration timed out; since this would have left very few instances in the sets
CPLEX-Regions100 and SATenstein-SWGCP, we did not consider these sets in
our distributional analysis.

Table 1 shows the averaged test results over all remaining instances, where a result
of 1 was recorded, if the respective KS test rejected the null hypothesis of distribution
of the given type, and 0 otherwise; we also reported average p-values for each set. As
can be seen from these results, in most cases, the distributions tend to be log-normal,
whereas the three other types of distributions have much weaker support.

5.3 Evaluation of Homogeneity

Runtimes of instance sets on a set of configurations can be visualized with heat maps, as
illustrated in Figure 1; following Hutter et al. [11], we have sorted configurations and
instances according to their average PAR-10 scores and represented log-transformed
runtimes using different shades of gray (where darker grays correspond to shorter run-
times). As noted in their work, cases where the relative difficulty of the instances varies
between different configurations give rise to checkerboard patterns in these plots, and
using this qualitative criterion, the CPLEX-Orlib and CLASP-IBM configuration
scenarios appear to be rather inhomogeneous, in contrast to the homogeneous instance
sets CPLEX-Regions100 and SATenstein-QCP.

As can be seen from the column labeled unclustered in Table 2, our variance-based
measure is consistent with these earlier qualitative observations. (The remaining
columns are discussed later.) In particular, the values for the homogenous sets
CPLEX-Regions100 and SATenstein-QCP are low compared to the remaining
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(a) CPLEX-Regions100 (b) SPEAR-IBM (c) SATenstein-QCP

(d) CPLEX-Orlib (e) SPEAR-SWV (f) SATenstein-SWGCP

(g) CLASP-Crafted (h) CLASP-Industrial (i) CLASP-IBM

Fig. 1. Heat maps of log transformed runtime data from the configuration scenarios studied by
Hutter et al. [11] and three new scenarios using the Clasp ASP solver. (The diagrams were gen-
erated with the Matlab code provided by Hutter et al.)

instance sets, which show all clear signs of qualitative inhomogeneity. On the other
hand, coarser checkerboard patterns do not always correspond to instance sets with
higher variance measures for three reasons: (1) the data for Clasp is based on far fewer
configuration, leading necessarily to coarser patterns in the plots; (2) deviations from
uniformity appear more prominent towards the middle of our gray scale than towards
the dark and light ends of the spectrum; and (3) large local deviations can have a large
influence on the variance measure, but are not necessarily visually as prominent as
smaller global variations.

Our ratio measure also shows the lowest values for the qualitatively homogenous sets
CPLEX-Regions100 and SATenstein-QCP, but ranks the remaining sets differ-
ently from the variance measure. In fact, considering the definition of ratio measure, it
becomes clear that in extreme cases, it may substantially disagree with the qualitative
visual measure of Hutter et al.: For example, if one configuration dominates all others,
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Table 2. Homogeneity measures QRatio and QV ar on the entire instance set (unclustered), after
configuration-based Gaussian Mixture clustering in four sets (configuration-based), and after
feature-based K-Means clustering also in four sets (feature-based). All measures are averages
based on 4-fold cross validation (for details see text).

Instance Sets unclustered configuration-based feature-based
QRatio QV ar QRatio QV ar QRatio QV ar

CPLEX-Regions100 0.41 0.23 0.11 0.23 − −
CPLEX-Orlib 0.50 0.71 0.35 0.40 − −
SPEAR-IBM 0.68 0.75 0.40 0.64 0.58 0.64
SPEAR-SWV 0.74 0.89 0.20 0.72 0.43 0.77
SATenstein-QCP 0.30 0.20 0.25 0.11 0.37 0.17
SATenstein-SWGCP 0.62 0.35 0.62 0.35 0.68 0.41
CLASP-Crafted 0.86 0.39 0.82 0.41 0.79 0.35
CLASP-Industrial 0.81 0.58 0.71 0.50 0.71 0.54
CLASP-IBM 0.57 0.41 0.37 0.30 0.40 0.36

but the remaining configurations are highly inconsistent with each other in terms of
their relative performance over the given instance set, the ratio measure would be very
low, yet, the corresponding heat map would display a prominent checker-board pattern.
This illustrates that reasonable and interesting measures of homogeneity, such as the
ratio measure provide information that is not easily apparent from the earlier qualita-
tive criterion. It also indicates that a single quantitative measure of homogeneity, such
as our variance measure, may not capture all aspects of instance set homogeneity of
interest in a given context.

5.4 Comparison of Different Clustering Algorithms

We now turn our attention to the question whether partitioning a given instance set into
subsets by means of clustering techniques leads to more homogenous subsets accord-
ing to our ratio and variance measures, as one would intuitively expect. To investigate
this question, we used the clustering approaches from Section 4, based on the observed
runtimes in conjunction with Gaussian Mixtures and Agglomerative Hierarchical Clus-
tering as well as for the direct optimization of the homogeneity measures using Ag-
glomerative Hierarchical Clustering.

Inspired by ISAC [12], we also clustered our instance sets based on cheaply com-
putable instance features [15], using ten runs of the K-Means algorithm for each set.
(Preliminary experiments suggested that Gaussian Mixtures clustering on instances fea-
tures does not yield results better than those produced by K-Means.) In addition, the in-
stances were clustered uniformly at random to obtain a baseline against which the other
clustering results could be compared. The SAT instance features were generated with
the instance feature generator of SATzilla 2011 [15], which provides features based on
graph representations of the instance, LP relaxation, DPLL probing, local search prob-
ing, clause learning, and survey propagation. Since we did not have feature computation
code for MIP instances, we did not perform feature-based clustering on CPLEX-Orlib
and CPLEX-Regions100.
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To assess the impact of configuration-based clustering on instance set homogeneity,
we used a 4-fold cross validation approach, where 3/4 of the configurations were used
as a basis for clustering the instance set, and the remaining 1/4 was used for measuring
instance homogeneity. (More then 4 folds could not be used, since that would have left
too few configurations for measuring homogeneity.) The results in Table 2 and Figure
2 are averaged over the 4 folds, where within each fold, we combined the homogeneity
measures for each cluster in the form of an average weighted by cluster size.

Figure 2 shows how our homogeneity measures vary with the number of clusters
for instance sets CLASP-Crafted, CLASP-Industrial, and CLASP-IBM (the
results for the other instance sets are qualitatively similar and have been omitted due
to limited space). In most cases, Gaussian Mixture(�) and the feature-based clustering
( ) lead to considerable improvements in the ratio measure (Figure 2(a)) compared
to random clustering. The same holds w.r.t. the variance measure (Figure 2(b)), which
also tends to be improved by agglomerative clustering (×). The reasons for the oscilla-
tions seen for Gaussian Mixture clustering on CLASP-Crafted are presently unclear.
Overall, with the exception of CLASP-Crafted, configuration-based Gaussian Mix-
ture clustering tends to produce the biggest improvements in instance set homogeneity.

Interestingly, agglomerative clustering in which we directly optimized the variance
measure or ratio measure tended to give good results on our training sets, but those
results did not generalize well to our testing scenarios (in which a disjoint set of config-
urations was used for measuring homogeneity).

In Table 2, we present numerical results for Gaussian Mixture clustering of our
instance sets into four subsets. (We chose four subsets, because the efficiency, mea-
sured as the number of clusters in proportion to the optimization of our homogeneity
measures, peaked around this number of clusters.) As can be seen from these results,
configuration- and feature-based clustering resulted in improvements in homogeneity
for almost all instance sets, and configuration-based clustering, although computation-
ally considerably more expensive, tends to produce more homogenous subsets than
feature-based clustering. (Preliminary observations from further experiments currently
underway suggest that even better results can be obtained from configuration-based
clustering using K-Means with multiple restarts.) The fact that these results were ob-
tained using 4-fold cross-validation on our configuration sets indicates that improved
homogeneity w.r.t. the configurations considered in the clustering process generalizes
to previously unseen configurations.

5.5 Evaluation of Configuration Improvement

The goal of our final experiment was to investigate the hypothesis that automatic algo-
rithm configuration yields better results on more homogenous instance sets. Therefore,
we compared the results from applying the same standard configuration protocol to
some of our original instance sets and to their more homogenous subsets obtained by
clustering. This should not be misunderstood as an attempt to design a practically useful
configuration strategy based on homogeneity-improving clustering, which, in order to
be practical, would have to use cheaply computable features rather than the ones based
on runtimes of a set of configurations used here (see, e.g., [12, 17]).
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(a) CLASP-IBM CLASP-Crafted CLASP-Industrial

(b) CLASP-IBM CLASP-Crafted CLASP-Industrial

Fig. 2. QRatio (a) and QV ar (b) for a varying number of clusters; − random, × Agglomerative
Clustering, � Gaussian Mixture, � Agglomerative Clustering with QV ar optimization, ♦ Ag-
glomerative Clustering with QRatio optimization, � feature-based K-Means clustering

For this experiment, we configured Clasp on the instance sets of CLASP-Crafted,
CLASP-Industrial, andCLASP-IBMwith the FocusedILS variant of the ParamILS
framework (version 2.3.5) [9]. For each of CLASP-Crafted and CLASP-IBM, we
conducted four independent runs of FocusedILS with a total time budget of 48 CPU
hours per run, and for CLASP-Industrial, we performed 10 runs of FocusedILS of
72CPU hours each, since this scenario was considerably more challenging. For each set,
we then compared the default configuration of Clasp for SAT solving (Default) against a
configuration optimized on the entire instance set (Entire), configurations optimized for
each of the four subsets obtained by clustering (4Clusters), the oracle performance (also
called virtual best solver) over those four configurations (Oracle), and the performance
obtained when running on each instance a version of Clasp optimized specifically for that
instance by means of a single, 3 CPU hour run of FocusedILS (Single Configuration).
With the exception of the last of these scenarios, the performancemeasurements reported
in Table 3 were based on a set of test instances disjoint from the instances used for con-
figuration, and those sets were obtained by random stratified splitting of each original
clustered set into equal training and test sets.

The clustering method used in the context of these experiments was Gaussian Mix-
ture clustering, based on the assumption that clusters should be normally distributed [12,
32] and the of the clustering methods we considered, Gaussian Mixtures performed best
on average in five out of six cases in Figure 2(b). The target number of clusters was
chosen to be four for the reasons explained in Section 5.4. Each instance subset thus
obtained was split into a training and test set as previously explained, and Clasp was
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Table 3. Runtimes in terms of PAR10 in CPU seconds (and number of timeouts) obtained by
various configurations of Clasp along with (idealized) oracle and per-instance configuration per-
formance (for details, see text)

Instance Set # Default Entire Set 4 Clusters Oracle Single Configuration
CLASP-Crafted 254 883(34) 422(15) 361(12) 51(9) 35(0)
CLASP-Industrial 276 1607(70) 1310(56) 1164(50) 721(30) 83(0)
CLASP-IBM 75 2125(26) 1220(15) 1216(15) 1210(13) 135(0)

then configured for each of these training sets. After evaluating these configurations on
the corresponding test sets, we aggregated the performance using weighted averaging,
where the weights were given by the cluster sizes.

The results shown in Table 3 confirm that automated configuration of Clasp on the
more homogenous instance sets obtained by clustering is more effective than configu-
ration on the original, less homogenous instance sets. Not too surprisingly, algorithm
selection between the resulting configurations can in principle yield additional improve-
ments (as seen from the oracle results), and configuration on individual instances has the
potential to achieve further, dramatic performance gains. We note that single-instance
sets are, intuitively and by definition, completely homogenous and therefore represent
an idealistic best-case scenario for automated algorithm configuration. Furthermore, the
oracle performance provides a good estimate of the performance of a parallel portfolio
of the respective set of configurations, whose performance is evaluated solely based on
wallclock time.

6 Conclusions and Future Work

In this work, we introduced two quantitative measures of instance set homogeneity in
the context of automated algorithm configuration. Our measures provide an alterna-
tive to an earlier qualitative visual criterion based on heat maps [11]; one of them, the
variance measure, gives results that are highly consistent with the visual criterion, and
both of them capture aspects of instance set homogeneity not easily seen from heat
maps. Furthermore, we provided evidence that our measures are consistent with the
previously informal intuition that more homogenous instance sets are more amenable
to automated algorithm configuration (see, e.g., [13]).

The proposed homogeneity measures can be used directly to assess whether auto-
mated configuration of a given parametric algorithm using a particular instance set
might be difficult due to instance set inhomogeneity. In addition, the ratio measure
helps to assess the specific potential of portfolio-based approaches in a given config-
uration scenario, including instance-based algorithm configuration [15, 12], portfolio
multithreading [33] and sequential portfolio solving [34, 35].

Unfortunately, like the previous qualitative approach, our quantitative homogeneity
measures are computationally expensive. In future work, we plan to investigate how this
computational burden can be reduced, for example, by using promising configurations
encountered during algorithm configuration instead of randomly sampled ones.
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Abstract. Automated algorithm configurators have been shown to be
very effective for finding good configurations of high performance algo-
rithms for a broad range of computationally hard problems. As we show
in this work, the standard protocol for using these configurators is not
always effective. We propose a simple and computationally inexpensive
modification to this protocol and apply it to state-of-the-art solvers for
two prominent problems, TSP and computer Go playing, where the stan-
dard protocol is unable or unlikely to yield performance improvements,
and one problem, mixed integer programming, where the standard pro-
tocol is known to be effective. We show that our new protocol is able
to find configurations between 4% and 180% better than the standard
protocol within the same time budget.

1 Introduction

Many high performance algorithms for computationally hard problems have nu-
merous parameters, some exposed to end users and others hidden as hard-coded
design choices and magic constants, that control their behaviour and perfor-
mance. Recent work on automated configurators has proven to be very effective
at finding good values for these parameters [4, 6, 7, 8, 12, 13, 14, 16, 17]. The
standard protocol for using automated configurators, such as ParamILS [14], to
optimize the performance of a parametric algorithm for a given problem is as
follows:

1. Identify the intended use case of the algorithm (e.g., structure and size of
expected problem instances, resource limitations) and define a metric to be
optimized (e.g., runtime).

2. Construct a training set/scenario which is representative of the intended
use case. The performance of the configurator depends on being able to
evaluate a large number, ideally thousands, of configurations. Training in-
stances/scenarios must be chosen to permit this.

3. Perform multiple independent runs of the configurator, typically 10-25 [14].
4. Validate the final configurations found by each run on the training set.
5. Select from the final configurations found by the independent runs the one

with the best performance on the training set.
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While this protocol has been successfully applied to many problems and solvers,
we have observed that it is not always feasible. In particular, for Step 2, choosing a
training set becomes problematic if the time taken to evaluate a configuration on
the training settings is too large. This is the case for Fuego [9], a state-of-the-art
computer Go player based onMonte Carlo tree search (MCTS). The time taken to
evaluate a single configuration of Fuego for competition level play can take hours
or even days (see Section 5.3). For ParamILS to have any hope of finding a good
configuration, each runwould have to be allowed to take several years. In situations
of this nature, a training set significantly easier than the intended use case must be
used.Unfortunately, theuse of easier training setsmay lead to configurationswhose
performance may not scale up to the intended use case.

In this paper, we explore a simplemodification to the standard protocol for using
automated configurators that attempts to resolve this problem in a genericmanner.
We apply our new protocol to three well-known problems and configuration sce-
narios. The first of these is the traveling salesperson problem (TSP), a widely stud-
ied combinatorial optimizationproblemwith numerous industrial applications, for
which we configure Keld Helsgaun’s implementation of the Lin-Kerninghan algo-
rithm (LKH) [11], the best incomplete solver for TSP currently known (and far
superior to any complete solver in terms of finding optimal or near-optimal solu-
tions fast). In an early stage of our work, described in Section 2, we found that the
standard protocol is ineffective for this configuration scenario.Our second scenario
concerns computerGo playing, a grand challenge in artificial intelligence, using the
state-of-the-artMonte Carlo tree search (MCTS) based player Fuego [9]. Evaluat-
ing configurations for this scenario requires playing hundreds of games (see Section
4.3) which becomes prohibitively expensive for the intended use case. This makes
using the standardprotocol infeasible.The third scenariowe consider involves solv-
ing mixed integer programming (MIP) problems, which are widely used for rep-
resenting constrained optimization problems in academia and industry, using the
state-of-the-art commercial solver CPLEX [2]. Unlike for the other two scenarios,
the standard protocol has been proven to be very effective for this configuration
scenario [12]; our primary motivation for studying it here is to verify that our new
protocol does not lead to compromised configuration performance in cases where
the standard protocol is already effective.

The remainder of this paper is structured as follows. Section 2 illustrates the
problems we have encountered using the standard protocol for configuring LKH.
Section 3 presents our new protocol. Section 4 describes the three configuration
scenarios we consider in this work in more detail. Section 5 explains the experi-
mental setup we used for evaluating our new configuration protocol, and Section
6 presents the empirical results we obtained. Section 7 provides conclusions and
an overview of ongoing and future work.

2 A First Attempt at Configuring LKH

The starting point for this work was an attempt to configure LKH [11] using
ParamILS. In particular, we were interested in reducing the time taken to find
optimal (or near optimal) solutions for structured instances like those found
in the well-known TSPLIB benchmark collection [15], with a focus on instances



Automatically Configuring Algorithms for Scaling Performance 207

Fig. 1. Comparison between the selection and testing (PAR10) speedup, relative to the
default configurations, for 300 configurations of LKH found by ParamILS using the easy
instances, see Section 4.1, for both training and selection. Configurations shown in the
CPU time column of Table 1 are filled in and coloured red. The size of the points for
these configurations corresponds to the time required for finding them.

containing several thousand cities, on which LKH’s default configuration can take
several CPU hours on our reference machines (see Section 5) to find near-optimal
solutions. As ParamILS requires thousands of evaluations [14] of an algorithm
to reliably achieve good results, using such instances directly for training would
result in individual configuration experiments with a duration of up to one year.
Since this is infeasible, we decided to perform training on similarly structured,
but significantly smaller (200–1500 node) instances which takes less than a CPU
minute for the default configuration of LKH to solve.

Since LKH is an incomplete solver, there is no guarantee on the quality of
solution found by a given run. We are therefore interested in the runtime of a
configuration on an particular instance as well as the quality of solution found.
To avoid constructing a Pareto front, we combine these two raw performance
metrics using penalized average runtime (PAR10). This metric uses the total
running time of a given run and then penalizes runs which are unable to achieve
a target solution quality within some time cutoff. As we do not know the optimal
solution quality for every instance used, we determine the target solution quality
by using the final solution found by a single long run of the default configuration.
On instances with a known optimal solution, the target quality chosen is often
equivalent to the optimal for small instances and within 1% of the optimal for
large instances.

Following the standard protocol, we performed multiple independent 24-hour
runs of ParamILS using this easier training set and optimizing for penalized
average runtime (PAR10). The configurations found by these experiments per-
formed very well on the training set, but often turned out to be worse than the
default configuration when evaluated on the testing set, consisting of the larger
instances we were ultimately interested in solving.

To further explore the reasons for this apparent failure of the standard pro-
tocol, we expanded our experiment to include 300 independent 24-hour runs of
ParamILS using the same metric and the same training set and evaluated the
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final configuration found by each of these runs on the entire testing set. As seen
in Figure 1, we found that while the standard protocol for ParamILS was able
to find good configurations, it was unlikely to select them. This is due to the
fact that the performance of a configuration of LKH on the training set is not
a good predictor of that configuration’s performance on the testing set. Despite
being ineffective as a predictor of testing set performance, the training set was
able to guide runs of ParamILS to configurations with a speedup factor of up to
3.19, which suggests it still has value in the configuration process.

3 Automated Algorithm Configuration for Scalable
Performance

To address the problem encountered in Section 2, we devised a simple modifica-
tion to the standard protocol for using configurators such as ParamILS. Instead
of selecting between the final configurations found by independent configurator
runs based on their performance on the training set, we select based on their
performance on a set of intermediate instances that are harder than the train-
ing set, but easier than the testing set. For this work, we define intermediate
difficulty based on percentiles of the distribution of running time for the default
configuration of a given solver over the testing set. This protocol has three ad-
vantages over alternative approaches: (1) it does not require any modifications
to the underlying configurator; (2) it can reuse the results of existing configura-
tion experiments; and (3) it can be set up to require only a moderate amount
of additional processing time (in our experiments, the overhead is always be-
low 50% of the total time budget). To assess this protocol, which we dubbed
Train-Easy, Select-Intermediate (TE-SI), we compare it to the original proto-
col, Train-Easy, Select-Easy (TE-SE), and to an alternative approach, in which
training is directly performed on the harder instances used for selection, Train-
Intermediate, Select-Intermediate (TI-SI), always correctly accounting for the
overhead required for evaluating configurations at the selection stage.

4 Configuration Scenarios

4.1 Solving TSP Using LKH

LKH [11] is a two-phase, incomplete solver for the TSP. It first performs deter-
ministic preprocessing using subgradient optimization, which modifies the cost
function of the given TSP instance while preserving the total ordering of solu-
tions by tour length. The main goal of this first phase, which can sometimes
already reach the desired solution quality, is to make an instance easier for the
subsequent phase to solve. The second phase consists of a stochastic local search
procedure based on chaining together so-called k-opt moves.

For the following experiments, we used a version of LKH 2.02, which we have
extended to allow several parameters to scale with instance size and to make
use of a simple dynamic restart mechanism to prevent stagnation behaviour we
had observed in preliminary experiments. The original configuration space is
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preserved by these modifications (i.e., it is possible to replicate the behaviour of
any configuration for the original LKH 2.02 using our extended version).

Training and testing were done using instances from the well-known TSPLIB
benchmark collection [15]. TSPLIB is a heterogeneous set consisting mostly of
industrial and geographic instances. The original TSPLIB set contains only 111
instances; since we consider this too small to allow for effective automated con-
figuration and evaluation, we generated new TSP instances based on existing
TSPLIB instances by randomly selecting 10%, 20%, or 30% of the existing in-
stance’s nodes to be removed. These TSPLIB-like instances retain most of the
original structure and are comparable in difficulty to the original instance, rang-
ing from requiring a factor of 30 less time to a factor of 900 more time for the
default configuration of LKH to solve.

The modified version of LKH 2.02 and the TSPLIB-like instances will be made
available on our website upon publication.

4.2 Solving MIP Using CPLEX

CPLEX is one of the best-performing and most widely used solvers for mixed
integer programming problems. It is based on a highly parameterized branch-
and-cut procedure that generates and solves a large number of linear program-
ming (LP) subproblems. While most details of this procedure are proprietary,
at least 76 parameters which control CPLEX’s performance while solving MIP
problems are exposed to end users.

Our work on this scenario aims to mirror recent work by Hutter et al. [12] for
configuring CPLEX 12.1 on the CORLAT instance set, for which the standard
protocol for using ParamILS was able to achieve a 52-fold speedup over the
CPLEX default settings. The CORLAT instance set consists of 2000 instances
based on real data modeling wildlife corridors for grizzly bears in the Northern
Rockies [10]. Our goal in considering this scenario is to show that our new
configuration protocol is effective even in scenarios where the default protocol is
known to work well.

Hutter et al. [12] used CPLEX 12.1, the most recent version available at the
time of their study. CPLEX 12.3, the current version at the time of this writing,
performs significantly better on the CORLAT instances, achieving a speedup
factor of up to 90 on the hardest instances in the set. To compensate for this sig-
nificant improvement of the default configuration, we performed a 1/50th time
scale replica of the configuration experiments conducted by Hutter et al. [12].
Reducing the runtime of ParamILS and the per-instance cutoffs preserves both
the percentage of training instances that the default configuration is capable of
solving within the time cutoff as well as the number of evaluations ParamILS is
able to perform within the total configuration time budget. The results of our
experiments depend only on the ratio of per-instance runtime to total configu-
ration time and are invariant with respect to the overall time scale. While we
used significantly reduced configuration times, we believe that our results should
generalize to longer configuration runs using harder instances.

The metric being optimized for this scenario is penalized average runtime
(PAR10). We measure the total running time of given run and penalize if it is
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unable to find the optimal solution within a cutoff of 1 hour for testing, 6 seconds
for training on easy and 24 seconds for training on intermediate. CPLEX is a
complete solver, so every run of a configuration that does not exhibit errant
behaviour is guaranteed to find the optimal solution to every instance given
enough computational resources. For this scenario, cutoffs and penalties are only
used to limit the total computational effort of performing these experiments.

We also applied the TE-SI protocol to CPLEX 12.1. We found configurations
that offered significant speedups (> 52) compared to the default configuration
of 12.1, improving upon the results found in [12]; however, the overall result
remained qualitatively similar to our work with CPLEX 12.3. We do not present
our results for CPLEX 12.1 due to space limitations.

4.3 Playing Go Using Fuego

Developing programs for the game of Go has been a topic of intense study over
the last five decades. Only recently, with the advent of Monte Carlo Tree Search
(MCTS), has the strength of Go programs caught up with top human players, at
least on small board sizes (up to 9×9).MCTS combines position evaluationby ran-
domized playouts of the remainder of a gamewith a new, selective search approach
that balances exploration and exploitation: the algorithm combines exploration of
parts of a game tree that are still underdeveloped with exploitation by deep search
of themost promising lines of play. The open-source project Fuego [9] contains both
a game-independent framework forMCTS and a state-of-the-artGo program.The
program was the first to beat a top human professional player in an even game on
the 9× 9 board and has won numerous computer competitions [1].

Like the other configuration scenarios we study in this work, Fuego has a large
number of configurable parameters. The performance metric to be optimized is
the win rate of a configuration when played against the default configuration.
Note that the baseline is not necessarily 50%: For certain board sizes and playout
limits, the default configuration is stronger playing black than white, while for
other board sizes and playout limits, the opposite holds.

Noisy Evaluations. Since Fuego uses a randomized playout strategy in its
core MCTS procedure, the win rate of any set of test games played with Fuego
varies. This introduces a significant source of noise when evaluating configura-
tions of Fuego. This noise must be compensated for by playing additional games;
otherwise, the observed win rates are meaningless (e.g., with 10 games played,
there is a more than 40% chance that the observed win rate of a configurations
differes from its true win rate by at least 10%). The exact number of games
needed depends on the true win rates of the configurations being compared, but
often hundreds, if not thousands, of games are required to reduce the chance of
incorrectly ranking two configurations to less than 1%. A key point is that the
closer two configurations are in true win rate, the more games are needed to
correctly rank them. We note that while in principle, similar concerns arise for
many other configuration scenarios involving randomised algorithms, the amount
of evaluation noise in the case of Fuego (and other randomised game players) is
particularly large, due to the fact that individual games have binary outcome.
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This is particularly problematic for automatic configurators like ParamILS,
which often rely on a sequence of small incremental improvements to a config-
uration. If the improvement is too small, then it will be dwarfed by the noise
in the evaluations and it is impractical to play a sufficient number of games,
potentially thousands, to adequately compensate. We compromise by playing as
many games as are necessary to evaluate a configuration, up to a limit of 200,
during training. We note that when comparing two configurations with true win
rates (as determined in playing against some reference configuration) within 1%
of each other, there is a 20.7% chance of incorrectly ranking them based on a
set of 200 games.

5 Experimental Setup

For each configuration scenario, we defined three instance sets of distinct difficul-
ties: an easy instance set, designed to allow ParamILS to perform at least several
hundred evaluations of candidate configurations; a hard instance set, designed to
represent the difficulty of instances/situations that we are interested in optimiz-
ing the target algorithms performance for; and a set of intermediate instances
with a difficulty between the easy and hard instances. The exact definition of
easy, intermediate and hard is specific to each the configuration scenario.

Using these sets, we performed three sets of configuration experiments using
independent runs of ParamILS. (We chose ParamILS, because it is the only
readily available algorithm configuration procedure that has been demonstrated
to work well on configuration scenarios of the difficulty considered here.) In the
first set of experiments, we used the easy instances during training and then
selected a configuration, from the set of the final configurations produced across
a number of independent runs of ParamILS, according to its performance on the
same (easy) set (this is the standard protocol, TE-SE). The second set used the
easy instances set for training, but intermediate instances for selection (this is
our new protocol, TE-SI). The third set used the intermediate instances for both
training and selection (TI-SI). All testing was performed on the hard instances.
(Recall that we are interested in the case where the hard instances are too
difficult to be used in training.)

LKH and CPLEX Experiments were performed on the 384 node DDR
partition of the Westgrid Orcinus cluster; Orcinus runs 64-bit Red Hat Enterprise
Linux Server 5.3, and each node has two quad-core Intel Xeon E5450 64-bit
processors running at 3.0 GHz with 16GB of RAM.

Fuego Experiments were performed on the 512 node Westgrid Lattice cluster.
Lattice runs 64-bit Linux CentOS 5.5, and each node has two quad-core Intel
Xeon L5520 64-bit processors running at 2.27 GHz with 12 GB of RAM.

5.1 Solving TSP Using LKH

The Hard Instance Set consists of 3192 instances containing up to 6000
cities, drawn from both the original TSPLIB and TSPLIB-like instances. The
default configuration of LKH takes approximately 214 CPU hours on our ref-
erence machines to run on the entire set. The 99th percentile difficulty is 2900
CPU seconds.
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The Intermediate Instance Set consists of instances which take the default
configuration between 350 and 580 CPU seconds to solve; this range corresponds
to between 12.5 and 20 percentile difficulty found in the hard instance set. The
default configuration takes approximately 20 CPU hours to run on the entire
intermediate instance set. All instances in the intermediate set are drawn from
a set of TSPLIB-like instances disjoint from the hard instance set. When used
for training, a per-instance cutoff of 780 CPU seconds is used.

The Easy Instance Set consists of instances which take the default configu-
ration between 1 and 52 CPU seconds to solve. The default configuration takes
19 minutes to run on the entire easy instance set. All instances in the easy set
are drawn from a set of TSPLIB-like instances disjoint from those used in the
hard and intermediate sets. When used for training, a per-instance cutoff of 120
seconds is used.

Using these sets, we performed two sets of configuration experiments. The first
set consists of 300 independent 24-hour runs of ParamILS using the easy set for
training. The second set consists of 100 independent 24-hour runs of ParamILS
using the intermediate set for training.

The TE-SE protocol requires 1459 CPU minutes per run of ParamILS. The
TE-SI and TI-SI protocols require 2640 minutes per run of ParamILS.

5.2 Solving MIP Using CPLEX

The Hard Instance Set consists of 1650 instances drawn from the set of
CORLAT instances used in [12]. The default configuration takes approximately
11.5 CPU hours to evaluate the entire instance set. The 99th percentile difficulty
is 448 CPU seconds.

The Intermediate Instance Set consists of instances which take the default
configuration between 54 and 90 seconds to evaluate; this range corresponds to
between 12.5 and 20 percentile difficulty found in the hard instance set. The
default configuration takes approximately 1.1 CPU hours to evaluate the entire
intermediate instance set. The instances in the intermediate instance are disjoint
from the hard instance set. When used for training, a per-instance cutoff of 24
CPU seconds is enforced.

The Easy Instance Set consists of instances which take the default config-
uration between 1 and 10 seconds to evaluate. The default configuration takes
approximately 18 CPU minutes to evaluate the entire easy instance set. The
easy instance set is disjoint from both the hard and intermediate instance sets.
When used for training, a per-instance cutoff of 6 CPU seconds is enforced.

Using these sets, we performed two sets of configuration experiments. The first
set consists of 100 independent 24-hour runs of ParamILS using the easy set for
training. The second set consists of 100 independent 24-hour runs of ParamILS
using the intermediate set for training.

The TE-SE protocol requires 4531 CPU seconds per run of ParamILS. The
TE-SI and TI-SI protocols require 7456 seconds per run of ParamILS.
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5.3 Playing Go Using Fuego

The Hard Setting consists of playing 5000 games on a 7×7 board with 300 000
playouts. For 5000 games there is a [100%, 99.8%, 91%] chance of correctly
determining the true win rate of a configuration to within [3%, 2%, 1%].

The Intermediate Setting consists of playing 1000 games on a 7 × 7 board
with 100 000 playouts for selection and 5000 such games for testing. For 1000
games there is a [97%, 88%, 60%] chance of correctly determining the true win
rate of a configuration to within [3%, 2%, 1%].

The Easy Setting consists of playing 1000 games on a 7×7 board with 10 000
playouts for selection and 5000 such games for testing,

Using these sets, we performed two sets of configuration experiments. The first
set consists of 80 independent 24-hour runs of ParamILS using the easy set for
training. The second set consists of 80 independent 24-hour runs of ParamILS
using the intermediate set for training. Each set of configuration experiments is
split evenly across configuring for playing black or playing white.

The TE-SE protocol requires 5904 CPU hours per run of ParamILS. The
TE-SI and TI-SI protocols require 7200 hours per run of ParamILS.

6 Results

We are interested in how effective the TE-SI protocol is in a typical setting where
10–25 independent runs of the configuration procedure are performed (tyically in
parallel). To assess the variation in the results of such configuration experiments,
we have performed a significantly higher number of configurator runs for each
of our configuration scenarios and then performed a bootstrap analysis based on
the data thus obtained.

For a specific protocol and a target number n of ParamILS runs, we generated
100 000 bootstrap samples by selecting, with replacement, the configurations
obtained from the n runs. For each such sample R, we chose a configuration
according to the selection criteria of the protocol under investigation and used
the performance of that configuration on the testing set as the result of R.

We present the results from these analyses in two ways. In Table 1, we show
the median performance of the bootstrap samples for each protocol when using
different numbers of independent ParamILS runs and overall CPU time budget.
In Figure 2, we show the median performance and the ranged spanned by the
5th and 95th percentile performance of bootstrap samples versus total CPU
time budget. For reference, we also show the quality of the default and of the
best known configuration for each scenario. The data in Table 1 thus represents
several time slices from Figure 2.

6.1 Results for Configuring LKH

The TE-SI protocol was able to reliably improve upon the default configuration
(see Fig. 2). The other two protocols tend to either produce configurations with
quality similar to the default (TI-SI) or notably worse than the default (TE-SE).
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Table 1. Overview of the speedup versus the default, for LKH and CPLEX, and the
win rate versus the default, for Fuego, during testing for the configurations found by the
three protocols. The performance of each configuration on the instances/settings used
for selection is shown in parentheses. Values presented are the medians over 100 000
bootstrapped samples. The best known performance on easy, intermediate and testing
instance sets / settings are provided for reference. Configurations shown in the CPU
Time column are highlighted in the scatter plots in Figures 1, 3 and 4.

Speedup Factor (PAR10) vs Default Configuration
LKH best easy: 5.29, best intermediate: 2.58, best testing: 3.19

Runs of ParamILS CPU Time
10 25 50 20 Days 50 Days 100 Days

train easy
0.82 (2.78) 0.73 (3.47) 0.67 (4.09) 0.76 (3.26) 0.67 (4.09) 0.61 (4.88)

select easy
train easy

1.29 (1.29) 1.52 (1.59) 1.71 (1.84) 1.29 (1.31) 1.52 (1.61) 1.71 (1.98)
select inter.
train inter.

0.92 (1.25) 0.97 (2.06) 0.97 (2.08) 0.92 (1.25) 0.97 (2.06) 0.97 (2.08)
select inter.

CPLEX best easy: 1.53, best intermediate: 2.77, best testing: 3.03
Runs of ParamILS CPU Time
10 25 50 1 Day 2.5 Days 5 Days

train easy
1.63 (1.20) 1.63 (1.26) 1.61 (1.38) 1.63 (1.23) 1.61 (1.26) 2.36 (1.53)

select easy
train easy

1.94 (1.54) 2.24 (1.83) 2.64 (1.92) 2.00 (1.54) 2.36 (1.83) 2.64 (1.92)
select inter.
train inter.

1.65 (1.63) 1.96 (1.88) 1.98 (1.99) 1.87 (1.71) 1.98 (1.88) 1.98 (1.99)
select inter.

Relative Win Rate (Configuration Win Rate / Default Win Rate)
Fuego - Black best easy: 1.04, best intermediate: 1.21, best testing: 1.22

Runs of ParamILS CPU Time
10 15 30 50 Days 75 Days 150 Days

train easy
1.08 (1.02) 1.08 (1.02) 0.94 (1.04) 1.08 (1.02) 1.08 (1.02) 0.94 (1.04)

select easy
train easy

1.12 (1.17) 1.13 (1.20) 1.17 (1.21) 1.12 (1.17) 1.13 (1.20) 1.17 (1.21)
select inter.
train inter.

1.10 (1.10) 1.06 (1.21) 1.06 (1.21) 1.10 (1.10) 1.06 (1.21) 1.06 (1.21)
select inter.

Fuego - White best easy: 1.07, best intermediate: 1.13, best testing: 1.45
Runs of ParamILS CPU Time
10 15 30 50 Day 75 Days 150 Days

train easy
1.13 (1.05) 1.13 (1.05) 1.25 (1.07) 1.13 (1.05) 1.13 (1.05) 1.25 (1.07)

select easy
train easy

1.27 (1.08) 1.41 (1.13) 1.41 (1.13) 1.27 (1.08) 1.41 (1.13) 1.41 (1.13)
select inter.
train inter.

1.32 (1.12) 1.32 (1.12) 1.34 (1.12) 1.32 (1.12) 1.32 (1.12) 1.34 (1.12)
select inter.
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Fig. 2. Relative performance of the configurations found using the three protocols
versus overall CPU time budget spent, including the median and [5th,95th] percentiles
over 100 000 bootstrapped samples for every protocol as well as the quality of the default
and best known configurations for reference. For all three configuration scenarios, the
TE-SI protocol yields the best overall results.
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Fig. 3. Comparison between the selection and testing (PAR10) speedup, relative to the
default configurations, for configurations of LKH found by 300 runs of ParamILS using
TE-SI (left pane) and 100 runs of ParamILS using TI-SI (right pane). Configurations
shown in the CPU time column of Table 1 are filled in and coloured red. The size of
the points for these configurations corresponds to the time required to find them.

Our bootstrap analysis reveals that for small overall time budgets, there is a ≥
5% chance for both the TE-SE and the TI-SI protocols to produce configurations
which perform better than the default (see 95th percentile curve). However, as
the CPU time budget is increased to 100 CPU days and beyond, this probability
decreases significantly. The reason underlying this phenomenon is apparent from
Figures 1 and 3: Both protocols encounter, with some probability, configurations
with excellent selection performance but poor testing performance, and as more
runs of ParamILS are performed, the chances of obtaining at least one such mis-
leading configuration increases. We note that the precise location and magnitude
of the drop in 95th percentile shown here depends on the set of runs from which
we obtained our bootstrapped samples and would likely be somewhat different
if the entire experiment were repeated. However, we expect that drops of some
magnitude are likely to occur.

6.2 Results for Configuring CPLEX

This is a scenario where the standard protocol is known to be effective [12], and
this result is confirmed by our results shown in Figure 2.While both protocols that
select on intermediate are able to reliably find and selected good configurations, the
protocol we propose generally provides the best results. For TE-SE there is still a
significant (≥ 5%) chance that the final configuration selected will be worse than
the default; this is can be attributed to two configurations found, see Figure 4, with
training speedups between 1.3 and 1.4 and testing speedups of 0.5.

Similar to the results for LKH, there is a decrease in the 95th percentile
quality for configurations found using TE-SE. Again, this can be explained by
the existence of misleading configurations seen in Figure 4.

6.3 Results for Configuring Fuego

Like the previous scenarios, using the TE-SI protocol provides the best over-
all performance when configuring Fuego for either playing black or white (see
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Fig. 4. Comparison between the selection and testing performance of CPLEX (left
side), measuring PAR10 speedup, and Fuego (right side) trained for playing black,
measuring relative winrate, found by multiple independent runs (100 for CPLEX and
40 for Fuego) of ParamILS using the TE-SE (top), TE-SI (middle) and TI-SI (bottom)
protocols. Configurations shown in the CPU Time column of Table 1 are filled in and
coloured red. The size of the points for these configurations corresponds to the time
required to find them.

Figure 2). Interestingly, our results indicate that it is much easier to improve
upon the default configuration of Fuego for playing white, and the majority of
configurations found by all three protocols for playing white were indeed better
than the default, see Figure 2.

Similar to the other scenarios, the TE-SE protocol suffered degrading per-
formance when given additional computational resources, but surprisingly, the
TI-SI protocol suffered from this as well when configuring for playing black.
Looking at Figure 4, we can see that this is due to the presence of one outlier of
particularly good quality (w.r.t. testing quality).
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We are only presenting the scatter plots for configurations of Fuego trained
to play black due to limited space. The results were qualitatively similar.

7 Conclusions and Future Work

In this paper we have shown that the TE-SI protocol provides benefit over the
alternatives whenever it is infeasible to train directly for the intended use case of
an algorithm given the available computational resources. Our simple modifica-
tion to the standard protocol for using automated configurators does not require
any modification to the underlying configurator and allows existing experiments
to be reused. We have then demonstrated, through a large empirical study, the
effectiveness of the TE-SI protocol across three different configuration scenarios.
For solving MIP with CPLEX, a scenario where the standard TE-SE protocol is
known to be effective, the TE-SI protocol was able to improve upon the results
of the standard protocol for short configurator runs; we believe it will continue
to provide benefit for longer runs using harder instances and are currently inves-
tigating this hypothesis. In the other two scenarios, where the standard protocol
is either unable (for solving TSP using LKH) or unlikely (for playing Go us-
ing Fuego) to yield good configurations, the TE-SI protocol is reliably able to
produce better configurations than both the TE-SE and TI-SI protocols and
facilitates substantial improvements over the default configurations.

We see three main avenues for future work. First, we are currently extending
the analysis of our new protocol by testing it on additional configuration scenar-
ios, including CPLEX 12.3 applied to a harder set of MIP instances, based on
real-world data modeling the spread of red-cockaded woodpeckers [3], as well as
Concorde [5], the state-of-the-art complete TSP solver, on TSPLIB instances.
We also plan to evaluate how well our new protocol works in conjunction with
other algorithm configuration procedures, in particular, the latest version of
SMAC [13]. Second, we have begun to investigate the use of predictive models in
improving the effectiveness of selecting configurations. Finally, we plan to apply
the methods presented in this paper as well as any that result from future work
to configuring new versions of Fuego for upcoming Go competitions.
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Abstract. Many reactive planning tasks are tackled through myopic
optimization-based approaches. Specifically, the problem is simplified by
only considering the observations available at the current time step and
an estimate of the future system behavior; the optimal decision on the
basis of this information is computed and the simplified problem de-
scription is updated on the basis of the new observations available in
each time step. While this approach does not yield optimal strategies
stricto sensu, it indeed gives good results at a reasonable computational
cost for highly intractable problems, whenever fast off-the-shelf solvers
are available for the simplified problem.

The increase of available computational power − even though the
search for optimal strategies remains intractable with brute-force ap-
proaches − makes it however possible to go beyond the intrinsic limita-
tions of myopic reactive planning approaches.

A consistent reactive planning approach is proposed in this paper,
embedding a solver with an Upper Confidence Tree algorithm. While
the solver is used to yield a consistent estimate of the belief state, the
UCT exploits this estimate (both in the tree nodes and through the
Monte-Carlo simulator) to achieve an asymptotically optimal policy. The
paper shows the consistency of the proposed Upper Confidence Tree-based
Consistent Reactive Planning algorithm and presents a proof of principle
of its performance on a classical success of the myopic approach, the
MineSweeper game.

1 Introduction

This paper focuses on reactive planning, of which power plants maintenance [20]
or the MineSweeper game [13,5,18] are typical problem instances. The difficulty
of reactive planning is due to the great many uncertainties about the problem
environment, hindering the search for optimal strategies. For this reason, most
reactive planners are content with selecting the current move based on their only
current knowledge.

However, cheap and ever cheaper computational power makes it possible
nowadays to aim at the best of both worlds, combining an approximate model of
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the problem under examination with knowledge-based solvers. Taking inspiration
of earlier work devoted to the combination of domain knowledge-based heuristics
with Monte Carlo Tree Search and Upper Confidence Trees [21,22], this paper
shows how fast solvers combined with Upper Confidence Tree approaches can be
boosted to optimal planning. A proof of principle of the approach is given on the
MineSweeper game, an NP-complete partially observable game. The choice of
this game, despite its moderate complexity (indeed there exist many games with
EXP or 2EXP computational complexity) is motivated as there exists efficient
MineSweeper player algorithms, while many partially observable games still lack
efficient algorithms.

The paper is organized as follows. Section 2 introduces the formal background
of partially observable Markov decision processes (POMDP). The MineSweeper
game is described in section 3. POMDP algorithms are discussed in Section 4
and illustrated on the MineSweeper problem. Section 5 describes our contribu-
tion and gives an overview of the proposed UC-CRP (Upper Confidence Belief
Estimation-based Solver) algorithm, combining the Upper Confidence Tree algo-
rithm with existing MineSweeper algorithms. Section 6 discusses the consistency
of existing MineSweeper algorithms and establishes UC-CRP consistency. Sec-
tion 7 reports on the comparative experimental validation of UC-CRP and the
paper concludes with some perspectives for further work.

2 Formal Background

This section introduces the main notations used through the paper. After the
standard terminology [24,6], a Markov Decision Process (MDP) is described from
its space of states S, its state of actions A, the probabilistic transition model
p(s, a, s′) describing the probability of arriving in state s′ upon triggering action
a in state s (with

∑
s′ p(s, a, s

′) = 1), and a reward function r (r : S ×A �→ R).
A policy π maps a (finite sequence of) state(s) onto an action, possibly in a
stochastic manner (π : Si×A �→ R, with

∑
a π(s, a) = 1). Given initial state s0,

a probabilistic policy π thus defines a probability distribution on the cumulative
rewards.

A partially observable MDP (POMDP) only differs from a MDP as each
state s is partially visible through an observation o. Letting O denote the space
of observations, a strategy π maps a (finite sequence of) observation(s) onto an
action, possibly in a stochastic manner (π : Oi ×A �→ R, with

∑
a π(o, a) = 1).

In the following, we shall refer to s as complete state (including the partially
hidden information), whereas observation o is referred to as state for the sake of
consistency with the terminology used in the MineSweeper literature.

The feasible set F(o) denotes the set of complete states compatible with (a
sequence of) observation(s) o. A consistent belief state estimation p(s|o) is an
algorithm sampling the uniform probability distribution on the feasible set F(o),
given observation o. An asymptotically consistent belief state estimation is an
algorithm yielding a probability distribution on S, and converging toward the
uniform probability distribution on F(o) as the computational effort goes to
infinity.
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3 The MineSweeper Game

MineSweeper is a widely spread game, which has motivated a number of studies
as a model for real problems [12], or a challenge for machine learning [7] or genetic
programming [15], or for pedagogical reasons [4] (including a nice version aimed
at teaching quantum mechanics [11]).

3.1 The Rule

MineSweeper is played on a h×w board. The player starts by choosing a location
on the board; thereafter, M mines are randomly placed on the board, anywhere
except on the chosen location in order to avoid the immediate death out of bad
luck. The location of the mines defines the (unknown) complete state of the
game. The level of difficulty of the game is defined by (h,w,M). At each turn,
the player selects an uncovered location � (Fig. 1). Then,

– Either there is a mine in � (immediate death) and the player has lost the
game;

– Or there exists no mine and the player is informed of the number of
mines in the 8-neighborhood of �. Usually, when there is no mine in the
8-neighborhood of � the player is assumed to automatically play all neigh-
bors of �, which are risk-less moves, in order to save up time1.

The player wins iff she plays all non-mine h × w −M locations and avoids the
immediate death termination. In each time step the current observation is made
of the locations selected so far and the number of mines in their 8-neighborhood;
by construction, the observation is consistent with the complete state s (the
actual locations of the M mines).

Fig. 1. The MineSweeper game, an observation state

1 In some variants, e.g. the Linux Gnomine, the initial location is such that there is
no mine in its 8-neighborhood. While this rule efficiently reduces the probability of
loss out of bad luck, it is not widely used in the literature. For this reason, and for
the sake of fair comparisons with the state of the art, this rule will not be considered
in the remainder of the paper unless stated otherwise.
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MineSweeper algorithms fall in two categories. In the former category are
artificial intelligences (AIs) tackling the underlying Markov Decision Process,
which is quite hard to analyze and solve [18]. In the latter category are AIs
based on heuristics, and relying on Constraint Solving algorithms (CSP) [23]. In
particular, a widely used heuristic strategy is based on evaluating the feasible set
made of all complete states consistent with the current observation, counting for
each location the percentage of states including a mine in this location (referred
to as probability of immediate death), and playing the location with lowest
probability of immediate death.

Two facts need be emphasized. On the one hand, CSP is a consistent belief
state estimator [18]. On the other hand, the strategy of selecting the location
with minimal probability of immediate death is suboptimal [9], irrespective of
the computational effort involved in computing the feasible set (more in section
6).

3.2 State of the Art

The MineSweeper game is solved until 4x4 board [18]. Although it is only NP-
complete in the general case [5] as already mentioned, it is more complex than
expected at first sight [13,5,18].

The best CSP-based published methods have a probability of success of 80%
at the beginner level (9x9, 10 mines), 45% at the intermediate level (16x16,
40 mines) and 34% in expert mode (16x30, 99 mines). Another, limited search
method proposed by Pedersen [19] achieves a breakthrough with 92.5% success
(respectively 67.7% success) at the beginner (resp. intermediate) level.

The importance of the initial move must be emphasized, although it is not
specifically considered in CSP approaches. Our claim is that the good perfor-
mances of some MineSweeper players can be attributed to good initialization
heuristics or opening books, combined with standard CSP. However, as shown
in [9] the initial move is not the only reason for CSP approaches being subopti-
mal; many small patterns lead to suboptimal moves with non-zero probability.

4 POMDP Algorithms

Many POMDP algorithms feature two components. The first one is in charge
of estimating the belief state, i.e. the probability distribution on the complete
state space conditioned by the current observation. The second component is in
charge of move selection, based on the estimated belief state. Both components
are tightly or loosely coupled depending on the problem and the approach.

CSP-based MineSweeper approaches feature a consistent belief state estima-
tion and a trivial move selection algorithm (select the move with lowest imme-
diate death probability). Let us briefly illustrate the main approaches proposed
for belief state estimation in the MineSweeper context.
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4.1 Rejection Method

The simplest approach is the rejection method; its pseudo-code is given in Alg. 1.
It proceeds by uniformly drawing a complete state and rejecting it if not con-
sistent with the observation. By construction, the rejection method thus is con-
sistent (i.e. it proposes an exact belief state estimation) and slow (moderate to
large computational efforts are required to ensure a correct estimate).

Algorithm 1. The rejection method for consistent belief state estimation.

Input: observations.
Output: a (uniformly sampled among consistent states) complete state.
s ←random complete state

//uniform selection in [0,1]
while U [0, 1] ≥ C × Likelihood(s|o) do

s ←random complete state
end while
Return s

Parameter C is such that C × Likelihood(s|o) ≤ 1. In the case where the
likelihood of an observation o given complete state s, is binary (0 or c), then
C = 1/c is the optimal choice, where state s is accepted iff it is consistent with
observation o. In the MineSweeper case, c = 1: testing whether a complete state
is consistent with the current observation is trivial.

Despite its simplicity, the rejection method is reported to outperform all other
methods in [9], which is attributed to the fact that it is the only consistent
method. In particular, we shall see that the Markov-Chain Monte-Carlo method
(below) is only asymptotically consistent.

4.2 Constraint Solving (CSP)

Constraint Solving approaches usually rely on enumerating or estimating the
whole feasible set, including all complete states which are consistent with the
observations; their pseudo-code is given in Alg. 2. Indeed many implementa-
tions thereof have been proposed. Note that as far as the feasible set is ex-
haustively determined, CSPs are optimal belief state estimation algorithms in
the MineSweeper context. The feasible set enables to compute for each loca-
tion its probability of being a mine. However CSP-based approaches involve an
intrinsically myopic move selection, optimizing some 1-step ahead reward (the
probability of immediate death). As already mentioned, this greedy selection
policy is not optimal.

Note that CSP-based approaches also enable to compute the exact probability
of transition to a given state (which we shall use in Section 5), which has never
been exploited within a tree search to our best knowledge.
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Algorithm 2. The CSP algorithm for playing MineSweeper.

Input: observation o; total number M of mines
for each location  on the h×w board do

Nb() ← 0
end for
for each feasible state s (positioning of the M mines consistent with o) do

for each location  do
If s includes a mine in , Nb() ← Nb() + 1

end for
end for
Select move  uniformly chosen among the set of (uncovered) locations with minimum
Nb().

4.3 Markov-Chain Monte-Carlo Approaches

Markov-Chain Monte-Carlo (MCMC) algorithms, of Metropolis-Hastings (MH)
is a widely studied example, achieve the asymptotically consistent estimation of
the belief state. In the MineSweeper context, and more generally when obser-
vations are deterministic with binary likelihood depending on the belief state,
Metropolis-Hastings boils down to Alg. 3, under the assumption of a symmetric
transition kernel (that is, the probability of mutating from state s to state s′ is
equal to the probability of mutating from state s′ to state s).

Note that the asymptotic properties of MH are not impacted by the initializa-
tion to a consistent complete state (line 3 of Alg. 3), which only aims at saving
up time. According to [9] and for the mutation used in the MineSweeper con-
text however, the MH distribution is significantly biased by the choice of the
initial state, making the overall MH algorithm weaker than the simple rejection
algorithm (Alg. 1).

Algorithm 3. The Metropolis-Hastings algorithm with symmetric transition
kernel in the case of deterministic binary observations.

Input: observation o, number T of iterations.
Output: a (nearly uniformly sampled) complete state consistent with o.
Init: Find state s consistent with o by constraint solving
Select a number T of iterations by heuristic methods

// in [9], T depends on the number of UCT-simulations.
for t = 1 . . . T do

Let s′ be a mutation of s
if s′ is consistent with o then

s ← s′

end if
end for

Several MH variants have been investigated by [9], with disappointing results
compared to the rejection method. This partial failure is blamed by the authors
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on the asymptotic MH consistency (as opposed to the ”real” consistency of the
rejection method). Indeed one cannot exclude that some MH variant, e.g. with
some optimal tuning of its many parameters, may yield much better results.
Still, it is suggested that a robust problem-independent MH approach is yet to
be found.

In summary, our goal is to propose a fully consistent belief state estimation
algorithm, such that it is faster than the rejection method and easier to adjust
than MCMC.

5 Upper Confidence Tree-Based Consistent Reactive
Planning

The contribution of the present paper is the UC-CRP algorithm, combining the
consistent CSP-based belief state estimation and the consistent MDP solver UCT
to achieve a non-trivial move selection. The Upper Confidence Tree algorithm
is first briefly reminded for the sake of self-containedness, before detailing UC-
CRP.

5.1 Upper Confidence Tree

Referring the reader to [10,14,17] for a comprehensive introduction, let us sum-
marize the main steps of the Upper Confidence Tree algorithm (Fig. 2). UCT
gradually constructs a search tree initialized to a single root node, by iterating
tree-walks also referred to as episodes. Each episode involves two phases. In the
so-called bandit part, the current action is selected after the Multi-Armed Ban-
dit setting, using the Upper Confidence Bound formula [3] on the basis of the
average reward and number of trials associated to each action, and the current
state is updated accordingly until i) reaching a new state s (not already stored
in the tree); or ii) reaching a final state. In the first case, UCT switches to the
so-called Monte-Carlo or random phase, where an action is randomly selected
until reaching a final state. Upon reaching a final state, the reward of the episode
is computed, and the counter and average reward indicators attached to every
stored node of the episode are updated.

UCT is well known for its ability to work on problems with little or no expert
information. In particular, it does not require any heuristic evaluation function,
although it enables to use prior knowledge encoded in heuristic strategies. These
heuristic strategies can be used in the bandit or random parts of the algorithm,
or in the episode evaluation. In particular, long-term effects of the decisions
taken in an episode can be accounted for through simulating complete runs (as
in TD(1) methods, see e.g. [6]).

Indeed, a number of UCT variants have been considered in the literature,
involving how to choose the actually selected action (last line in Fig. 2), or
controlling the number of actions considered in each step of the bandit part, e.g.
using progressive widening.
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– Let the tree root be initialized to the current state s0
– Repeat // simulate an episode

• Bandit part // bandit part of episode
∗ s = s0 // start at the root
∗ Iterate :

Select a(s) using the UCB formula and draw s′ ∼ p(s, a, s′).
If s′ is not yet stored in the tree, goto Monte-Carlo part.
If s′ is a final state, goto Scoring part s ← s′

• Monte-Carlo part // Monte-Carlo part of episode
∗ Add s′ as son node of s, a. s ← s′

∗ Repeat until s is a final state
Select action a randomly; s′ ∼ p(s, a, s′); s ← s′

• Scoring part // scoring part of episode.
Let r be the overall reward associated to the episode. For each node (s, a) of
the episode which is stored in the tree,
∗ Update average reward r(s, a) by r (r(s, a) ← n(s,a)∗r(s,a)+r

n(s,a)+1
) and likewise

update the reward variance v(s, a).
∗ Increment counter n(s, a) by 1;

until reaching the allowed number of episodes/the computational budget.

– Play the action played most often from the root node s0.

Fig. 2. Sketch of the UCT algorithm

5.2 UC-CRP = Belief State Estimation + Upper Confidence Trees

UC-CRP is an UCT variant embedding several CSP-based MineSweeper mod-
ules.

The first module is the single point strategy (SPS) found in PGMS2. SPS
achieves a limited constrained propagation. Assuming that k out of the n neigh-
bors of some location � are mines, with m non-mine neighbor locations and
n−m− p yet uncovered locations, then two particular cases are considered. In
the first case, k = p: it is easily seen that none of the uncovered neighbors is a
mine, therefore all these neighbors can be played automatically to save up time
(as already mentioned, most standard MineSweeper AIs include this constraint
propagation heuristics). In the second case, k = n − m − p and one likewise
sees that all uncovered neighbors are mines. This case can also be automati-
cally handled through the constraint propagation (which only involves risk-less
moves).

The second module is a constraint solver, determining the feasible set of all
complete states consistent with the current observation. Note that least con-
strained variables are used first; whereas most constrained variables should be
used first when looking for one single solution, it is better to use least constrained
variables first when looking for all solutions. CSP provides useful information at
a moderate computational cost, including: i) the probability for each location
to cover a mine, and thus the set of risk-less moves if any; ii) the exact prob-
ability distribution of the next state (i.e. how will be the board after the next

2 http://www.ccs.neu.edu/home/ramsdell/pgms/

http://www.ccs.neu.edu/home/ramsdell/pgms/
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Table 1. The Upper Confidence Tree-based Consistent Reactive Planning combines
UCT with problem domain-based solvers CSP and SPS (section 5.2). The CSP com-
ponents are used to both select risk-less or optimal moves, and provide a belief state
estimate (*). The notion of risk-less moves and moves with minimal risk depend on
the considered problem. In the MineSweeper context, a risk-less move is one with 0
probability of immediate death.

Feature In UC-CRP-Mine Sweeper

Node creation One per simulation

Progressive widening Double

Leaf evaluation Monte-Carlo simulation

Bandit phase Upper Confidence Bound formula
with variance estimates [1]

Random phase
Single point strategy (SPS) if possible, returns a risk-less move/action

Constraint Satisfaction Solver (CSP) If possible select a risk-less move
(CSP can find all such moves if any)

Otherwise with probability 0.7
Select move with minimum risk

Otherwise (*) Randomly draw a complete state s from observation o
and select a risk-less move after s

Forced moves [25] Select a risk-less move
(estimated by CSP)

move), i.e. the probabilistic transition model p(o, a, o′). Notably, with p(o, a, o′)
the POMDP setting boils down to an MDP.

Finally, UC-CRP involves several UCT variants together with the above mod-
ules, depicted in Table 1. The variance-based UCB formula [1] is given as, where
n(s) is the number of visits to state s, r(s, a) and v(s, a) respectively are the
empirical mean and variance of the reward gathered over episodes visiting (s, a),
and α ≥ 2 is an integer value:

Select argmax

{
r(s, a) +

√
2v(s, a) log (4n(s)α)

n(s)
+

16 log (4n(s)α)

3n(s)

}

The double progressive widening detailed in [8] is used to control the branching
factor of the tree, i.e. the number of considered moves in each node.

Note that UC-CRP requires more than assessing the probability of mine in
every location conditioned by the current observation; it requires the full proba-
bility distribution over the complete states conditioned by the current observa-
tion.
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6 Consistency Analysis

This section, devoted to the analytical study of the considered algorithms, es-
tablishes the consistency of UC-CRP in the general case and the inconsistency
of CSP-based MineSweeper approaches.

6.1 Consistency of UC-CRP

Let us first examine the consistency of UCT approaches in the MDP setting.
UCT (Upper Confidence Trees) is known to be a consistent MDP solver [14] in

the finite case. While the presented approach uses heuristics in the evaluation of
leaves by Monte-Carlo simulations, this does not affect the consistency proof in
[14]. While heuristics are also used in the tree part of UCT, the upper-confidence-
bound proof from [16,2], used in [14], is independent of heuristics too. A last
additional component of UC-CRP compared to UCT [14] is progressive widening
[8]. Progressive widening however has no asymptotic impact since the number of
actions and the number of random outcomes is finite. The UCT-variant involved
in UC-CRP thus is a consistent solver in the MDP case.

Indeed MineSweeper is not an MDP: as far as the complete state is unknown
it is a POMDP. However, as shown by [18], the hidden information can be
exactly estimated by CSP. Indeed the CSP-based move selection (select the
move with lowest probability of immediate death) is not optimal as shown by
[9]; nevertheless the estimation of the hidden information soundly enables to cast
the POMDP MineSweeper problem into an MDP one.

As a consequence, UC-CRP is a consistent MDP solver, and it inherits from
its CSP component the property of being an asymptotically optimal reactive
planner.

6.2 Inconsistency of CSP-Based Approaches

Let us consider the 3× 3 MineSweeper problem with 7 mines. As stated above,
UC-CRP is asymptotically consistent (since UCT is an asymptotically consis-
tent MDP solver and the CSP or rejection method provides an exact tran-
sition model). Therefore, UC-CRP finds the optimal strategy in the (3, 3, 7)
MineSweeper setting. Quite the contrary, the CSP cannot be optimal due to the
uniform selection of the initial move.

The success rate can be analytically computed on this toy MineSweeper prob-
lem. If the initial move is the center location, this location necessarily has 7
neighbor mines. The probability of winning thus is 1

8 as there are 7 mines in the
8 neighbors (Fig. 3).

If the initial move is located on a side of the board, then the number of mines
in its neighborhood is: 5 with probability 3

8 (with probability of winning 1
3 ) and

4 with probability 5
8 (with probability of winning 1

5 ). Overall, the probability of
winning when playing a side location as initial move thus is 1

4 = 3
8 ×

1
3 + 5

8 ×
1
5 .

Finally, if the initial move is located in a corner of the board, then the number
of mines in its neighborhood is 2 with probability 3

8 (with probability of win-
ning 1

3 ) and 3 with probability 5
8 (with probability of winning 1

5 ). The overall
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Fig. 3. A bad initial move in 3x3 with 7 mines

probability of winning when playing a corner location as initial move thus is
1
4 = 3

8 ×
1
3 + 5

8 ×
1
5 .

An optimal strategy thus selects a side or corner location as first move, yield-
ing a probability 1

4 of winning. Quite the contrary, CSP-based MineSweeper
algorithms (rightly) considers that all moves have the same probability of im-
mediate death and thus the first move is uniformly selected. The probability of
winning thus is 1

9 ×
1
8 + 8

9 ×
1
4 = 17

72 , which is less than the probability 1
4 of

winning of an optimal strategy (and asymptotically reached by UC-CRP).

7 Experimental Validation

The goal of the experiments is to study both the asymptotic optimality and
the comparative performances of UC-CRP. The optimality of UC-CRP is stud-
ied using the GnoMine Custom mode (the first move has no mine in its 8-
neighborhood), as this setting facilitates the analytical study. The standard
MineSweeper setting (where the first move is only assumed to be not a mine)
is also considered for the fair comparison of UC-CRP with the state of the art
CSP-PGMS algorithm.

All experiments are done on a 16-cores Xeon 2.93GHz Ubuntu 2.6-32-34. The
computational effort is measured using a single core per experiment.

7.1 A Gnomine Custom Mode: 15 Mines on a 5x5 Board

Let us consider the 5x5 board with 15 mines (Fig. 4). Under the Gnomine cus-
tom mode, playing the center location implies that all mines are located on the
sides, thus yielding a sure win. Interestingly, UC-CRP finds this optimal strategy
(that humans easily find as well), while CSP-based approaches still uniformly
select their first move. In such case, the probability of playing location (2, 2)
(up to rotational symmetry) is 4

25 , yielding a loss probability of 1
2 . Likewise,

the probability of playing (2,3) (up to rotational symmetry) is 4
25 , yielding a

loss probability of 1
4 . The overall probability of loosing the game is at least

1
2 ×

4
25 +

1
4 ×

4
25 = 3

25 (indeed, the actual loss probability is bigger since the side
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Table 2. Comparative performances of UC-CRP and CSP-PGMS

Format CSP-PGMS UC-CRP

4 mines on 4x4 64.7 % 70.0% ± 0.6%
1 mine on 1x3 100 % 100% (2000 games)
3 mines on 2x5 22.6% 25.4 % ± 1.0%
10 mines on 5x5 8.20% 9% (p-value: 0.14)
5 mines on 1x10 12.93% 18.9% ± 0.2%
10 mines on 3x7 4.50% 5.96% ± 0.16%
15 mines on 5x5 0.63% 0.9% ± 0.1%

locations are even worse initial moves), showing that CSP approaches do not
find the optimal strategy as opposed to UC-CRP.

Experimentally, UC-CRP (with no expert knowledge besides the gnomine
rule) finds the best move in all out of 500 independent runs. The computational
cost is 5 seconds on a 16-cores Xeon 2.93GHz Ubuntu 2.6-32-34 (using 1 core
only).

Fig. 4. The Gnomine version of the 5x5 board with 15 mines is a sure win: in each case
the position of all mines can be deduced as there exists only one non-mine location.
The three reported cases cover all possible cases by rotational symmetry.

7.2 Standard MineSweeper Setting

UC-CRP is compared to a CSP-based MineSweeper player3, selecting corner
locations as initial moves.

UC-CRP is allotted a computational budget of 10s per move, except for 10
mines in 5x5 (300 seconds per move) and 10 mines in 3x7 (30s per move). The
average winning rate is reported together with the standard deviation on Table
2 for several board sizes. The winning rate of CSP-PGMS is estimated on 100000
games. Note that, while CSP-PGMCS is significantly faster than UC-CRP, its
performances do not increase with additional computational time. Overall, UC-
CRP outperforms CSP-PGMCS in all cases with a p-value .05, except for the
5×5 with 10 mines MineSweeper, where the p-value is .14.

3 The CSP-PGMS implementation from
http://www.ccs.neu.edu/home/ramsdell/pgms/ is used.

http://www.ccs.neu.edu/home/ramsdell/pgms/
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8 Conclusion and Perspectives

This paper has investigated the tight coupling of Upper Confidence Trees and
Constraint Solving to tackle partially observable Markov decision making prob-
lems, defining the UC-CRP algorithm. The role of the CSP component in UC-
CRP is twofold. On the one hand, it consistently estimates the belief state,
turning a POMDP setting into an MDP one; on the other hand, the belief state
estimate is exploited to sort out risk-less or heuristically good moves.

The first contribution of the paper is a generic methodology for improving a
myopic solver, through its combination with UCT. Our claim is that such ap-
proaches, combining consistent asymptotic behaviors and myopic efficient heuris-
tics, will provide artificial intelligences with the best of both worlds: relevant
heuristics are used to enforce computational efficiency and yield tractability
guarantees; UCT provides asymptotic optimality guarantees, enabling to boost
the available heuristics to optimality through computational efforts. Improving
a decent heuristic policy to reach optimality with UCT seems to be a simple
though general and potentially very efficient strategy.

The second contribution of the paper is to formally establish the consistency
of the proposed UC-CRP approach. The third contribution is the empirical val-
idation of the approach, using the difficult MineSweeper problem as proof of
concept. It has been emphasized that MineSweeper is a particularly challenging
problem. Indeed the CSP approach, which ignores long term effects, is very effec-
tive as uncertainties are so big that long-term effects are very unreliable. On this
difficult problem, significant improvements on small boards have been obtained
compared to [9]. Further, UC-CRP results improve as the computational budget
increases while CSP does not benefit from additional computational resources
due to its intrinsic myopic limitations.

A key and very promising feature of UC-CRP is that no (manually acquired
or programmed) opening book needed be considered; quite the contrary, the
good performances of advanced CSP approaches requires specific heuristics to
handle the first move selection. Along the same line, UC-CRP flexibly accommo-
dates MineSweeper variants through modifying the only rule module (transition
model).

A research perspective aimed at the game community is concerned with a
faster implementation of UC-CRP; at the moment UC-CRP relies on a much
slower CSP module than e.g. CSP-PGMS. Further assessment of UC-CRP, e.g.
comparatively to [19] will be facilitated by using a CSP implementation as fast
as CSP-PGMS, enabling to consider expert MineSweeper modes.
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Abstract. In this paper, we study bounds for the α-approximate effec-
tiveness of non-decreasing (μ+λ)-archiving algorithms that optimize the
hypervolume. A (μ + λ)-archiving algorithm defines how μ individuals
are to be selected from a population of μ parents and λ offspring. It is
non-decreasing if the μ new individuals never have a lower hypervolume
than the μ original parents. An algorithm is α-approximate if for any op-
timization problem and for any initial population, there exists a sequence
of offspring populations for which the algorithm achieves a hypervolume
of at least 1/α times the maximum hypervolume.

Bringmann and Friedrich (GECCO 2011, pp. 745–752) have proven
that all non-decreasing, locally optimal (μ + 1)-archiving algorithms are
(2+ε)-approximate for any ε > 0. We extend this work and substantially
improve the approximation factor by generalizing and tightening it for
any choice of λ to α = 2− (λ−p)/μ with μ = q ·λ−p and 0 ≤ p ≤ λ−1.
In addition, we show that 1 + 1

2λ
− δ, for λ < μ and for any δ > 0, is

a lower bound on α, i.e. there are optimization problems where one can
not get closer than a factor of 1/α to the optimal hypervolume.

Keywords: Multiobjective Evolutionary Algorithms, Hypervolume,
Submodular Functions.

1 Introduction

When optimizing multiple conflicting objectives, there usually is no single best
solution. Instead, there are incomparable tradeoff solutions, where no solution
is strictly better than any other solution. Better in this case refers to Pareto-
dominance, i.e. one solution is said to be better than another, or dominate it, if
it is equal or better in all objectives, and strictly better in at least one objective.
The set of non-dominated solutions is called the Pareto-optimal set. Usually, this
Pareto-optimal set can contain a large number of solutions, and it is infeasible
to calculate all of them. Instead, one is interested in finding a relatively small,
but still good subset of this Pareto-optimal set.

It is not a priori clear how a good subset should look like, i.e. how the goodness
of a subset can be measured. One of the most popular measures for subset quality

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 235–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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is the hypervolume indicator, which measures the volume of the dominated space.
Therefore, one possibility to pose a multiobjective optimization problem is to
look for a solution set P∗ of fixed size, which maximizes the hypervolume.

Algorithms that optimize the hypervolume face several problems. First, the
number of possible solutions can become very large, so it is not possible to select
from all solutions. Second, even if all solutions are known and the non-dominated
solutions can be identified, the number of subsets explodes and not all of them
can be enumerated for comparison.

In this paper, we consider (μ + λ)-evolutionary algorithms, or (μ + λ)-EAs.
They iteratively improve a set of solutions, where the set is named ’popula-
tion’ and the iteration is denoted as ’generation’. In particular, they maintain
a population of size μ, generate λ offspring from the μ parents and then se-
lect μ solutions from the μ parents and the λ offspring that are to survive into
the next generation. Note that we here only consider non-decreasing algorithms,
i.e. algorithms whose hypervolume cannot decrease from one generation to the
next.

Several questions arise in this setting. First, what are upper and lower bounds
on the hypervolume that a population of a fixed size will achieve? Is it possible
to prove that a set of size μ with the maximal hypervolume can be found,
without explicitly testing all possible sets? To answer these questions, the term
effectiveness has been defined. An algorithm is effective if for any optimization
problem1 and for any initial population2, there is a sequence of offspring3 which
leads to the population with maximum hypervolume. Obviously, (μ + μ)-EAs
are always effective: We just choose the first set of offspring to be exactly the
population with the maximal hypervolume and then we select this set as the
new population. It has also been shown by Zitzler et al.[4] that (μ + 1)-EAs, on
the other hand, are ineffective. Recently, it has been shown by Bringmann and
Friedrich [1] that all (μ + λ)-EAs with λ < μ are ineffective.

Bringmann and Friedrich then raised the follow-up question: If it is not possi-
ble to reach the optimal hypervolume for all optimization problems and all initial
populations, is it at least possible to give a lower bound on the achieved hyper-
volume? To this end, they introduced the term α-approximate effectiveness. An
algorithm is α-approximate if for any optimization problem and for any initial
population there is a sequence of offspring with which the algorithm achieves at
least 1/α ·Hmax, where Hmax is the maximum achievable hypervolume of a pop-
ulation of size μ. They proved in their paper that a (μ+1)-EA is 2-approximate
and conjectured that for larger λ, a (μ + λ)-EA is O(1/λ)-approximate.

1 We only consider finite search spaces here, such that mutation operators exist which
produce offspring with a probability larger than zero. Note that any search space
coded on a computer is finite.

2 Note that the term for any initial population implies that at any point during the
algorithm, there exists a sequence of offspring with which an effective algorithm can
achieve the optimal hypervolume.

3 Note that the term there is a sequence of offspring assumes that we are given varia-
tion operators that produce any sequence of offspring with probability greater than
zero.



Hypervolume Effectiveness 237

On the other hand, we might also be interested in upper bounds on the achiev-
able hypervolume. Bringmann and Friedrich [1] have found an optimization prob-
lem where no algorithm can achieve more than 1/(1 + 0.1338(1/λ− 1/μ)− ε) of
the optimal hypervolume, i.e. there is no (1+0.1338(1/λ−1/μ)−ε)-approximate
archiving algorithm for any ε > 0.

Why is knowledge of the bounds of the α-approximate effectiveness useful?
Assume that we are using an exhaustive mutation operator, which produces
any offspring with a probability larger than zero. Therefore, the probability of
generating an arbitrary sequence of offspring is also larger than zero. The 1

2 -
approximate effectiveness of (μ + 1)-EAs now tells us that if we execute the
evolutionary algorithm for a sufficiently large number of generations, we will
end up with a population that has at least half of the maximal hypervolume. In
case of a (μ + μ)-EA, on the other hand, we know that we will finally achieve a
population with maximum hypervolume, i.e. α = 1. We are therefore interested
in deriving bounds on the effectiveness of evolutionary algorithms.

This paper extends the work of Bringmann and Friedrich by (a) computing
the α-approximate effectiveness of (μ+λ)-EAs for general choices of λ, (b) tight-
ening the previously known upper bound on α, and (c) tightening the previously
known lower bound on α. The results for (a) and (b) are based on the theory
of submodular functions, see [2]. For (c) we show that for λ < μ, there exist
optimization problems where any (μ + λ)-EA does not get closer than a factor
of 1/α to the optimal hypervolume with α = 1 + 1

2λ − δ, for any δ > 0.
The paper is organized as follows: The next section presents the formal setting,

including the definition of the hypervolume, the algorithmic setting, definitions
for the effectiveness and approximate effectiveness and an introduction into sub-
modular functions. In Section 3 we determine an upper bound on α for general
choices of μ and λ, thereby giving a quality guarantee in terms of a lower bound
of the achievable hypervolume. Finally in Section 4, we will determine a lower
bound on α for general choices of μ and λ.

2 Preliminaries

Consider a multiobjective minimization problem with a decision space X and an
objective space Y ⊆ Rm = {f(x)|x ∈ X}, where f : X → Y denotes a mapping
from the decision space to the objective space with m objective functions f =
{f1, ..., fm} which are to be minimized.

The underlying preference relation is weak Pareto-dominance, where a solu-
tion a ∈ X weakly dominates another solution b ∈ X , denoted as a 
 b, if and
only if solution a is better or equal than b in all objectives, i.e. iff f(a) � f(b),
or equivalently, iff fi(a) ≤ fi(b), ∀i ∈ {1, ..., m}. In other words, a point p ∈ X
weakly dominates the region {y ∈ Rm : f(p) � y} ⊂ Rm.

2.1 Hypervolume Indicator

The hypervolume indicator of a given set P ⊆ X is the volume of all points in Rm

which are dominated by at least one point in P and which dominate at least one
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point of a reference set R ⊂ Rm.4 Roughly speaking, the hypervolume measures
the size of the dominated space of a given set. Sets with a larger hypervolume
are considered better. More formally, the hypervolume indicator can be written
as

H(P) :=
∫

y∈Rm

AP(y) dy

where AP(y) is called the attainment function of set P with respect to a given
reference set R, and is defined as follows:

AP(y) =
{

1 if ∃p ∈ P , r ∈ R : f(p) � y � r
0 else

The goal of a (μ + λ)-EA is to find a population P∗ ⊆ X of size μ with the
maximum hypervolume:

H(P∗) = max
P⊆X ,|P|=μ

H(P) = Hmax
μ (X )

2.2 Algorithmic Setting

The general framework we are considering here is based on a (μ+λ) evolutionary
algorithm (EA) as shown in Algorithm 1. The selection step of Line 5 is done by
a (μ + λ)-archiving algorithm5. We here assume that the archiving algorithm is
non-decreasing, i.e. H(Pt) ≥ H(Pt−1), 1 ≤ t ≤ g. We use the following formal
definition (as given in [1]) to describe an archiving algorithm:

Algorithm 1. General (μ + λ)-EA framework: μ denotes the population size;
λ the offspring size; the algorithm runs for g generations.
1: function EA(μ, λ, g)
2: P0 ← initialize with μ random solutions
3: for t = 1 to g do
4: Ot ← generate λ offspring
5: Pt ← select μ solutions from Pt−1 ∪ Ot

6: end for
7: return Pg

8: end function

Definition 1. A (μ + λ)-archiving algorithm A is a partial mapping A : 2X ×
2X → 2X such that for a μ-population P and a λ-population O, A(P ,O) is a
μ-population and A(P ,O) ⊆ P ∪O.

4 No assumptions on the reference set have to be made, as our results have to hold
for any objective space, including the one only containing solutions that dominate
at least one reference point. If that set is empty, all algorithms are effective, as the
hypervolume is always zero.

5 We use the term archiving algorihm here to be compliant with [1]. It does not mean
that we keep a separate archive in addition to the population Pt.
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Using this definition, the for-loop in Algorithm 1 can be described as follows,
see also [1]:

Definition 2. Let P0 be a μ-population and O1, ...,ON a sequence of λ-
populations. Then

Pt := A(Pt−1,Ot) for all t = 1, ..., N

We also define

A(P0,O1, ...,Ot) := A(A(P0,O1, ...,Ot−1),Ot)
= A(...A(A(P0,O1),O2), ...,Ot)
= Pt for all t = 1, ..., N

As mentioned above, we only consider non-decreasing archiving algorithms which
are defined as follows, see also [1]:

Definition 3. An archiving algorithm A is non-decreasing, if for all inputs P
and O, we have

H(A(P ,O)) ≥ H(P)

2.3 Effectiveness and Approximate Effectiveness

Following Bringmann and Friedrich [1], we here assume a worst-case view on the
initial population and a best-case view on the choice of offspring. This means that
we would like to know for any optimization problem, starting from any initial
population, whether there exists a sequence of offspring populations such that
the EA is able to find a population with the maximum possible hypervolume. If
so, the archiving algorithm is called effective:

Definition 4. A (μ + λ)-archiving algorithm A is effective, if for all finite sets
X , all objective functions f and all μ-populations P0 ⊆ X , there exists an N ∈ N

and a sequence of λ-populations O1, ...,ON ⊆ X such that

H(A(P0,O1, ...,ON )) = Hmax
μ (X )

Similarly, we use the following definition for the approximate effectiveness, which
quantifies the distance to the optimal hypervolume that can be achieved:

Definition 5. Let α ≥ 1. A (μ + λ)-archiving algorithm A is α-approximate
if for all finite sets X , all objective functions f and all μ-populations P0 ⊆ X ,
there exists an N ∈ N and a sequence of λ-populations O1, ...,ON such that

H(A(P0,O1, ...,ON )) ≥ 1
α

Hmax
μ (X )

Of course, an effective archiving algorithm is 1-approximate. Here, we are inter-
ested in deriving bounds on α for any choice of μ and λ.



240 T. Ulrich and L. Thiele

2.4 Submodular Functions

The theory of submodular functions has been widely used to investigate problems
where one is interested in selecting optimal subsets of a given size. But what
exactly is a submodular function? At first, they map subsets of a given base set
to real numbers, just like the hypervolume indicator defined above. In addition,
submodular functions show a diminishing increase when adding points to sets
that become larger. In other words, let us define the set function z : 2X → R,
where 2X is the power set of the decision space. Then the contribution of a point
s ∈ X with respect to set A ⊂ X is c(s,A) = z(A ∪ {s}) − z(A). When z is
a submodular function, the contribution c(s,A) gets smaller when A becomes
larger. More formally, a submodular function z is defined as follows:

∀A ⊆ B ⊆ X , ∀s ∈ X\B : z(A∪ {s})− z(A) ≥ z(B ∪ {s})− z(B) (1)

i.e. if set A is contained in set B, the contribution of adding a point s to A is
larger or equal than the contribution of adding s to B. A submodular function
is non-decreasing if it is monotone in adding points:

∀B ⊆ X , ∀s ∈ X\B : z(B ∪ {s}) ≥ z(B)

Now, we show that the hypervolume indicator as defined above is non-decreasing
and submodular.

Theorem 1. The hypervolume indicator H(P) is non-decreasing submodular.

Proof. At first, we define the contribution of a solution s to a set B as

H(B ∪ {s})−H(B) =
∫

y∈Rm

C(B, s, y) dy

with
C(B, s, y) = AB∪{s}(y)−AB(y)

Using the definition of the attainment function A we find

C(B, s, y) =
{

1 if (∃r ∈ R : f(s) � y � r) ∧ (�p ∈ B : f(p) � y)
0 else

As C(B, s, y) is non-negative, the hypervolume indicator is non-decreasing.
Consider two arbitrary sets A,B ⊆ X with A ⊆ B, and an arbitrary solution

s ∈ X , s �∈ B. To prove that the hypervolume indicator is submodular, we have
to show that

H(A ∪ s)−H(A) ≥ H(B ∪ s)−H(B) (2)

or equivalently ∫
y∈Rm

C(A, s, y) dy ≥
∫

y∈Rm

C(B, s, y) dy (3)

for A ⊆ B, s �∈ B.
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To this end, we will show that for all y ∈ Rm the inequality C(A, s, y) ≥
C(B, s, y) holds. As C(·, ·, ·) can only assume the values 0 and 1, we have to
show that for all y ∈ Rm, s �∈ B we have

C(A, s, y) = 0 ⇒ C(B, s, y) = 0

Following the definition of C, there are the following three cases where
C(A, s, y) = 0:

1. (�r ∈ R : y � r): In this case, we also have C(B, s, y) = 0 as the condition
is the same for C(A, s, y) and C(B, s, y).

2. (f(s) �� r): Again, we find C(B, s, y) = 0 as the condition is the same for
C(A, s, y) and C(B, s, y).

3. (∃p ∈ A : f(p) � y): In other words, there exists a solution p ∈ A in A
which weakly dominates y. But as A ⊆ B, we also have p ∈ B and therefore,
(∃p ∈ B : f(p) � y). Therefore, we find C(B, s, y) = 0.

As a result, (3) holds and the hypervolume indicator is submodular. ��

3 Upper Bound on the Approximate Effectiveness

In this section, we will provide quality guarantees on the hypervolume achieved
by an EA in terms of the α-approximate effectiveness, i.e. we will provide an
upper bound on α for all population sizes μ and offspring set sizes λ.

In the previous section, we showed that the hypervolume is non-decreasing
submodular. Nemhauser, Wolsey and Fisher [3] have investigated interchange
heuristics for non-decreasing set functions and showed approximation proper-
ties in case of submodular set functions. We will first show that the interchange
heuristic in [3] is execution-equivalent to the previously defined (μ+λ)-EA frame-
work. Then, the approximation properties for the R-interchange heuristics are
used to determine upper bounds on α.

The heuristic described in [3] is shown in Algorithm 2 where we deliberately
changed the variable names to make them fit to the notations introduced so far.
It makes use of the difference between sets, which is defined as follows: Given two
sets A and B, the difference between A and B is A− B = {x : x ∈ A ∧ x �∈ B},
i.e. the set of all solutions which are contained in A but not in B.

The heuristic in Algorithm 2 is of a very general nature. No assumptions are
made about the starting population P0, and the method of searching for Pt. For
example, we can set the function z(P) = H(P) and then choose the following
strategy for Line 5:

1. Determine a set Ot of offspring of size λ.
2. Select μ solutions from Pt−1 ∪ Ot using an archiving algorithm A, i.e. S =

A(Pt−1,Ot).
3. Execute the above two steps until H(S) > H(Pt−1) and then set Pt = S,

or until no such S can be found.
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Algorithm 2. Interchange heuristic: μ is the size of the final set; λ the maximum
number of elements which can be exchanged.
1: function heuristic(μ, λ)
2: P0 ← initialize with an arbitrary set of size μ
3: t ← 1
4: while true do
5: determine a set Pt of size μ with |Pt − Pt−1| ≤ λ such that z(Pt) > z(Pt−1)
6: if no such a Pt exists then
7: break
8: end if
9: t ← t + 1
10: end while
11: return PG ← Pt−1

12: end function

Following Algorithm 2, the above steps need to guarantee that a set Pt with
H(Pt) > H(Pt−1) is found if it exists. For example, we can use an exhaustive
offspring generation, i.e. every subset of size λ of the decision space X can be
determined with a probability larger than zero. Moreover, the archiving algo-
rithm A must be able to determine an improved subset of Pt−1 ∪Ot if it exists.
In other words, we require from A that H(A(P ,O)) > H(P) if there exists a
subset of P ∪O of size μ with a larger hypervolume than H(P). For example, A
may in turn remove all possible subsets of size λ from Pt−1 ∪ Ot and return a
set that has a better hypervolume than Pt−1. Note that this instance of the in-
terchange heuristic can be easily rephrased in the general (μ+λ)-EA framework
of Algorithm 1 with an unbounded number of generations.

Nemhauser et al. [3] have proven the following result for the interchange
heuristic:

Theorem 2. Suppose z is non-decreasing and submodular. Moreover, define the
optimization problem z∗ = maxP⊆X ,|P|≤μ z(P). If μ = q · λ− p with q a positive
integer, and p integer with 0 ≤ p ≤ λ− 1, then

z∗ − z(PG)
z∗ − z(∅) ≤

μ− λ + p

2μ− λ + p

where z(PG) is the value of the set obtained by Algorithm 2 and z(∅) is the value
of the empty set.

We have shown that the hypervolume indicator is non-decreasing submodular.
Therefore, if we set the function z(P) = H(P) and note that H(∅) = 0, we can
easily obtain the following bound on the approximation quality of Algorithm 2:

Proposition 1. If μ = q · λ− p with an integer 0 ≤ p ≤ λ− 1, then

H(PG) ≥ 1
2− λ−p

μ

·Hmax
μ (X ) (4)

This bound can be compared to the definition of the approximate effectiveness,
see Definition 5, i.e. it bounds the achievable optimization quality in terms of the
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hypervolume if a certain algorithm structure is used. But whereas Definition 5
and the corresponding value of α = 2 + ε from [1] is related to Algorithm 1, the
above bound with α = 2− λ−p

μ is related to Algorithm 2.
We will now show that the improved approximation bound of α = 2− λ−p

μ is
valid also in the case of Algorithm 1, thereby improving the results in [1].

Theorem 3. Suppose a non-decreasing (μ + λ)-archiving algorithm which sat-
isfies in addition

∃S : (S ⊂ P ∪ O) ∧ (|S| = μ) ∧ (H(S) > H(P)) ⇒ H(A(P ,O)) > H(P)

Then for all finite sets X , all objective functions f and all μ-populations P0 ⊆ X
the following holds: For any run of an instance of Algorithm 2, one can determine
a sequence of λ-populations O1, ...,ON such that

H(A(P0,O1, ...,ON )) = H(PG)

Proof. The proof uses the special instance of Algorithm 2 that has been in-
troduced above. Line 5 is implemented as follows: (1) Determine a set Ot of
offspring of size λ using an exhaustive generation, i.e. each subset of X is deter-
mined with non-zero probability. (2) Use the archiving algorithm A to determine
a set S = A(Pt−1,Ot). (3) Repeat these two steps until H(S) > H(Pt−1) or no
such S can be found. Due to the required property of A, no such S can be found
if it does not exist.

Algorithm 2 yields as final population PG = Pt−1 which can be rewritten
as Pt−1 = A(P0,O1, ...,Ot−1) The sets of offspring Oi are generated as de-
scribed above. Using N = t−1 yields the required result H(A(P0,O1, ...,ON )) =
H(PG). ��
As a direct consequence of the execution equivalence between Algorithm 1 and
Algorithm 2 according to the above theorem, the Definition 5 and (4), we can
state the following result:

Proposition 2. A non-decreasing (μ + λ)-archiving algorithm A(P ,O), which
yields a subset of P ∪ O of size μ with a better hypervolume than that of P if
there exists one, is (2 − λ−p

μ )-approximate where μ = q · λ − p with an integer
0 ≤ p ≤ λ− 1.

It is interesting to note two special cases of the above proposition:

1. μ = λ: In this case, we have a (μ+μ)-EA. It holds that p = 0 and therefore,
the formula evaluates to α = 1, which means that this algorithm actually is
effective. This corresponds to the obvious result mentioned in the introduc-
tion.

2. λ = 1: In this case, we have a (μ + 1)-EA. It holds that p = 0 and q = μ
and therefore, the formula evaluates to α = 2− 1

μ , which is tighter than the
bound of Bringmann and Friedrich [1].
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Figure 1 shows the relation between λ and α for several settings of μ. As can
be seen, it is a zigzag line which corresponds to the modulo-like definition of p
and q. The local maxima of each line are located where μ is an integer multiple
of λ.
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Fig. 1. Quality guarantees for the hypervolume achieved by a (μ + λ)-EA. For a given
μ and a given λ, there is a sequence of offspring such that at least 1

α
·Hmax

μ (X ) can be
achieved, irrespective of the optimization problem and the chosen initial population.

4 Lower Bound on the Approximate Effectiveness

In the previous section we gave an upper bound on α. In this section, on the other
hand, we will give a lower bound on α. This lower bound is tight for μ = 2, i.e. is
equal to the upper bound. To find this bound, we will show that there exist
optimization problems and initial populations, such that any non-decreasing
archiving algorithm will end up with a hypervolume that is at most 1/(1 + 1

2λ)
of the optimal hypervolume. Whereas a first particular example has been shown
in [4], a more general lower bound was shown in [1], where Bringmann and
Friedrich found a problem where any non-decreasing archiving algorithm ends
up with a hypervolume that is at most 1/(1 + 0.1338(1/λ − 1/μ) − ε) of the
optimal hypervolume, for any ε > 0. The new bound substantially tightens the
result of [1], but relies on the general definition of the hypervolume indicator
which uses a reference set R instead of a single reference point.

Theorem 4. Let λ < μ. There is no α-approximate non-decreasing (μ + λ)-
archiving algorithm for any α < 1 + 1

2λ .

Proof. We proof this theorem by finding a population P0 = {s0, ..., sμ−1} whose
hypervolume indicator H(P0) can not be improved by any non-decreasing (μ +
λ)-archiving algorithm, i.e. it is locally optimal. At the same time, the optimal
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population P∗ = {o0, ..., oμ−1} has a hypervolume indicator value of H(P∗)
which satisfies H(P∗) = (1 + 1

2λ − δ)H(P0) for any δ > 0.
The setting we are considering for the proof is shown in Figure 2. There are

2 · μ points, where the initial population is set to P0 = {s0, ..., sμ−1} and the
optimal population would be P∗ = {o0, ..., oμ−1}. We consider a setting with
multiple reference points {r0, ..., r2μ−2}, such that the areas contributing to the
hypervolume calculation are Ai (areas only dominated by the initial population),
Bi (areas only dominated by the optimal population), and Ci and Di (areas
dominated by one solution of the initial population and one solution of the
optimal population), see Figure 2. The objective space is the union of all points,
i.e. Y = P0 ∪ P∗.
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Bμ-2

Aμ−1

Bμ−1

Fig. 2. Schematic drawing of the example setting in the proof of Theorem 4

In our example, we set these areas as follows, assuming λ < μ:

Ai = ε for 0 ≤ i < μ , Bi =
{

ε for 0 ≤ i < λ
1 for λ ≤ i < μ

Ci =
∑

i−λ≤j<i

Bj mod μ , Di =
∑

i+1≤j<i+1+λ

Bj mod μ

Note that for any choice of areas Ai, Bi, Ci, and Di, corresponding coordinates
can be found for all si and oi and ri by using the following recursions:

sx
i = ox

i−1 +
Ai

sy
i − oy

i

, ox
i = sx

i +
Bi

oy
i − sy

i+1

sy
i = oy

i−1 −
Ci−1

sx
i−1 − ox

i−2

, oy
i = sy

i −
Di−1

ox
i−1 − sx

i−1
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rx
i =

{
ox

i/2−1 i even
sx
(i−1)/2−1 i odd , ry

i =

{
oy

i/2+1 i even
sy
(i−1)/2 i odd

where sx
i , ox

i , sy
i , oy

i and ry
i , ry

i are the x-axis and y-axis coordinates of si, oi and
ri, respectively. While sx

0 , sy
0 , and rx

0 with rx
0 < sx

0 can be chosen arbitrarily, the
coordinates for oy

0 and sy
1 are set as follows:

oy
0 = sy

0 −
A0

sx
0 − rx

0

, sy
1 = oy

0 −
C0

sx
0 − rx

0

Furthermore, ry
2μ−2 and ox

μ−1 are set as follows:

ry
2μ−2 = oy

μ−1 −
Cμ−1

sx
μ−1 − ox

μ−2

, ox
μ−1 = sx

μ−1 +
Bμ−1

oy
μ−1 − ry

2μ−2

First, we want to show that for the example, P0 is a local optimum, i.e. H(P0)
can not be improved by any non-decreasing (μ + λ)-archiving algorithm. To do
so consider a λ-population O ⊂ Y and a μ-population P1 ⊂ P0 ∪ O. In order
for P0 to be a local optimum, we have to show that H(P0) ≥ H(P1).

Note that for the rest of the proof, we will always use the indices modulo μ
without writing it explicitly. Put differently, we will write Ai,Bi,Ci, and Di as
a short form of Ai mod μ,Bi mod μ,Ci mod μ, and Di mod μ.

The hypervolume of the initial population can be written as H(P0) = H −∑
0≤i<μ Bi = H − (μ − λ) − λε, where H is the hypervolume of all solutions,

i.e. H = H(P0 ∪ P∗). Similarly, we can write H(P1) = H −∑
i:si,oi 	∈P 1 Ci −∑

i:si+1,oi 	∈P 1 Di −
∑

i:oi 	∈P1 Bi −
∑

i:si 	∈P1 Ai. Using these expressions, we get
the following set of equivalent inequalities:

H(P0) ≥ H(P1)
H − (μ− λ)− λε ≥ H −∑

i:si,oi 	∈P 1 Ci −
∑

i:si+1,oi 	∈P 1 Di

−∑
i:oi 	∈P1 Bi −

∑
i:si 	∈P1 Ai

(μ− λ) + λε ≤∑
i:si,oi 	∈P 1 Ci +

∑
i:si+1,oi 	∈P 1 Di

+((μ− λ) + λε−∑
i:oi∈P1 Bi) +

∑
i:si 	∈P1 Ai∑

i:oi∈P1

Bi ≤
∑

i:si,oi 	∈P 1

Ci +
∑

i:si+1,oi 	∈P 1

Di +
∑

i:si 	∈P1

Ai (5)

To prove this inequality (5), we need to consider all possible μ-populations P1 ⊂
P0 ∪ O, i.e. the results of all possible (μ + λ)-archiving algorithms. To go from
P0 to P1, λ solutions si of the initial set are discarded and the same number
of solutions oi from the optimal set are added. We call these discarded si and
added oi affected solutions.

In the following, we consider blocks of affected solutions. To this end, we first
mark all solutions in P0 ∪ P∗ that are either removed from P0 or added to P0

when going from P0 to P1. This set of marked solutions is then partitioned
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into the minimal number of subsets, such that each subset contains all solutions
in index range [i, i + k]. Depending on whether the first and last solutions in
such a subset are from set P0 or P∗ we call it an (s, s)-, (s, o)-, (o, s)- or (o, o)-
block, respectively. For example, an (o, s)-block with index range [2, 5] contains
solutions {o2, s3, o3, s4, o4, s5}. The rationale is that non-neighboring solutions
do not influence each other, as they do not dominate any common area. As for
the blocks, there are two cases which will be considered separately.

Blocks of even length: There are two types of blocks of even length: Those
starting with an added solution from the optimal set, i.e. (o, s)-blocks, and those
starting with a discarded solution from the initial set, i.e. (s, o)-blocks. The first
case can be formalized as follows: The (o, s)-block with index range [i, i+k] exists
iff (ol ∈ P1, i ≤ l < i+k)∧(oi+k �∈ P1)∧(si ∈ P1)∧(sl �∈ P1, i+1 ≤ l < i+k+1).
For this block, (5) evaluates to:∑

i:oi∈P1 Bi ≤
∑

i:si,oi 	∈P 1 Ci +
∑

i:si+1,oi 	∈P 1 Di +
∑

i:si 	∈P1 Ai∑
i≤l<i+k Bl ≤ Ci+k + 0 +

∑
i+1≤l<i+k+1 Al∑

i≤l<i+k Bl ≤
∑

i+k−λ≤l<i+k Bl + kε

0 ≤∑
i+k−λ≤l<i Bl + kε

The last step is true because we know that k ≤ λ. As all Bl as well as ε are
larger than zero, (5) holds.

The second case can be formalized as follows: The (s, o)-block with index
range [i, i + k] exists iff (oi−1 �∈ P1) ∧ (ol ∈ P1, i ≤ l < i + k) ∧ (sl �∈ P1, i ≤ l <
i + k) ∧ (si+k ∈ P1). For this block, (5) evaluates to:∑

i:oi∈P1 Bi ≤
∑

i:si,oi 	∈P 1 Ci +
∑

i:si+1,oi 	∈P 1 Di +
∑

i:si 	∈P1 Ai∑
i≤l<i+k Bl ≤ 0 + Di−1 +

∑
i≤l<i+k Al∑

i≤l<i+k Bl ≤
∑

i≤l<i+λ Bl + kε

0 ≤∑
i+k≤l<i+λ Bl + kε

Again, we can see that the last inequality holds, and therefore, (5) holds.

Blocks of odd length: Such blocks consist of either a set of discarded solutions that
enclose a set of added solutions or vice versa, i.e. (s, s)- or (o, o)-blocks. Due to
|P0| = |P1|, the number of added solutions from the optimal set must be equal to
the number of discarded solutions from the initial set. Directly following this, we
know that for each block of discarded solutions enclosing added solutions, there
must be another block of added solutions enclosing discarded solutions and vice
versa. These two types of blocks can be formalized as follows: The (s, s)-block
with index range [i, i + k] exists iff (ol ∈ P1, i ≤ l < i + k − 1) ∧ (oi−1, oi+k−1 �∈
P1) ∧ (sl �∈ P1, i ≤ l < i + k). The (o, o)-block with index range [j, j + p] exists
iff (ol ∈ P1, j ≤ l < j + p) ∧ (sl �∈ P1, j + 1 ≤ l < j + p) ∧ (sj , sj+p ∈ P1). Also,
we know that 1 ≤ k, p ≤ λ and k + p ≤ λ + 1. Considering both of these blocks,
(5) evaluates to:
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∑
i:oi∈P1 Bi ≤

∑
i:si,oi 	∈P 1 Ci +

∑
i:si+1,oi 	∈P 1 Di

+
∑

i:si 	∈P1 Ai∑
i≤l<i+k−1 Bl +

∑
j≤l<j+p Bl ≤ Ci+k−1 + Di−1 +

∑
i≤l<i+k Al

+
∑

j+1≤l<j+p Al∑
i≤l<i+k−1 Bl +

∑
j≤l<j+p Bl ≤

∑
i+k−1−λ≤l<i+k−1 Bl +

∑
i≤l<i+λ Bl

+(k + p− 1)ε∑
j≤l<j+p Bl ≤ p ≤∑

i+k−1−λ≤l<i+λ Bl + (k + p− 1)ε
p ≤ λε + λ− k + 1 + (k + p− 1)ε

The second last step can be done because we know that at most λ of the Bl’s
are set to ε and therefore, at least λ − k + 1 ≥ p of the Bl’s remain which are
set to 1. Also, because of p ≤ λ− k + 1, the last inequality holds and with it (5)
holds.

Combinations of blocks: As stated before, only neighboring solutions in Y =
P0 ∪ P∗ share a common dominated area. From the definition of the different
types of blocks it can be seen that there are no adjacent blocks, because in this
case, the two blocks would be combined into one. Therefore, each pair of blocks is
separated by at least one solution from Y which is not affected by the transition
from P0 to P1. As a result, the changes in hypervolume when going from P0

to P1 can be considered separately for each block. We have shown that for any
block, (5) holds. From this we can conclude that H(P0) ≥ H(P1) and therefore,
P0 is a local optimum.

Now that we’ve done the first part of the proof, i.e. showing that any non-
decreasing (μ + λ)-archiving algorithm will not be able to escape from P0, we
would like to calculate how far the hypervolume of P0 is from the maximum
achievable hypervolume. In other words, we would like to calculate H(P∗)

H(P0) . The
hypervolume of the initial population evaluates to:

H(P0) =
∑

0≤l<μ Cl +
∑

0≤l<μ Dl +
∑

0≤l<μ Al

=
∑

0≤l<μ

(∑
l−λ≤j<l Bj +

∑
l+1≤j<l+1+λ Bj

)
+ με

=
∑

0≤l<μ

(∑
l−λ≤j<l+1+λ Bj −Bl

)
+ με

= (2λ + 1)
∑

0≤l<μ Bl −
∑

0≤l<μ Bl + με

= 2λ
∑

0≤l<μ Bl + με

The hypervolume of the optimal population, on the other hand, can be calculated
as follows:

H(P∗) =
∑

0≤l<μ Cl +
∑

0≤l<μ Dl +
∑

0≤l<μ Bl

=
∑

0≤l<μ

∑
l−λ≤j<l+1+λ Bj

= (2λ + 1)
∑

0≤l<μ Bl

Both sets of equations make use of
∑

0≤l<μ

∑
l−λ≤j<l+1+λ Bj = (2λ +

1)
∑

0≤l<μ Bl. This is due to the fact that the inner sum of the left-hand term
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consists of 2λ + 1 summands. Because all indices are taken modulo μ, we see
that each Bj is summed up 2λ + 1 times in the whole term.

Finally, this leads us to the following result, which holds for any δ > 0 if ε→ 0
and λ < μ:

H(P∗)
H(P0) =

(2λ+1)
∑

0≤l<µ Bl

2λ
∑

0≤l<µ Bl+με

= 1 + 1
2λ − δ

Note that in the case of λ = μ, the equation evaluates to H(P∗)
H(P0) = 1, which is

very natural, since for μ = λ, any non-decreasing (μ + λ)-archiving algorithm is
effective. ��
We may also interpret the above result in terms of the more practical interchange
heuristic shown in Algorithm 2. One can conclude that for z(P) = H(P), i.e. we
use the hypervolume indicator for archiving, we may end up with a solution that
is not better than 1/α times the optimal hypervolume with α > 1 + 1

2λ , even
after an unlimited number of iterations.

5 Conclusion

In this paper, we investigated the α-approximate effectiveness of (μ + λ)-EAs
that optimize the hypervolume. The value of α gives a lower bound on the
hypervolume which can always be achieved, independent of the objective space
and the chosen initial population. While it is obvious that for μ = λ, α is equal
to 1, Bringmann and Friedrich have shown that for λ = 1, α is equal to 2. This
paper strictly improves the currently known bound and finds that for arbitrary
λ, the approximation factor α is equal to 2 − λ−p

μ , where μ = q · λ − p and
0 ≤ p ≤ λ− 1.

Furthermore, we improve the available lower bound on α for the general defini-
tion of the hypervolume indicator, i.e. α > 1+ 1

2λ . Upper and lower bounds only
match for a population size of μ = 2. It might be possible to further tighten the
lower bound by extending the worst case construction in the proof of Theorem 4
to higher dimensions of the objective space.
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Abstract. When the function to be optimized is characterized by a
limited and unknown number of interactions among variables, a con-
text that applies to many real world scenario, it is possible to design
optimization algorithms based on such information. Estimation of Dis-
tribution Algorithms learn a set of interactions from a sample of points
and encode them in a probabilistic model. The latter is then used to
sample new instances. In this paper, we propose a novel approach to
estimate the Markov Fitness Model used in DEUM. We combine model
selection and model fitting by solving an 1-constrained linear regression
problem. Since candidate interactions grow exponentially in the size of
the problem, we first reduce this set with a preliminary coarse selection
criteria based on Mutual Information. Then, we employ 1-regularization
to further enforce sparsity in the model, estimating its parameters at the
same time. Our proposal is analyzed against the 3D Ising Spin Glass
function, a problem known to be NP-hard, and it outperforms other
popular black-box meta-heuristics.

Keywords: Estimation of Distribution Algorithms, Markov Fitness
Model, DEUM, 1-constrained Linear Regression, Least Angle
Regression.

1 Introduction

Black-box optimization consists of a set of meta-heuristics used to search for the
optimum of a function when no information about its structure is available. Such
approach to optimization can be used to define general purpose algorithms that
do not depend on the function to be optimized, and it becomes the only pos-
sible approach when the mathematical formulation of the function is unknown.
In particular model based meta-heuristics [25] introduce a statistical model to
represent correlations among variables and to guide the search for the optimum.

Most of the model based meta-heuristics [25] use a probabilistic description
of the problem to drive their search towards solutions with the best value. The
most general model is the joint probability distribution p which characterizes
the correlations among all the variables involved in the objective function f . In
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the discrete setting, the probability simplex is able to capture any possible order
of interactions among the variables; however, its dimension equals the cardinality
of the search space, and the estimation of its parameters is unfeasible.

Many problems are characterized by a limited set of correlations among the
variables, even NP-hard problems. It follows that model based search in a black-
box context, to be really effective, must face the problem of selecting a lower
dimensional model, which is computationally tractable, and would be able to
capture all, or at least most, of relevant correlations. The family of the model
and the way in which it is chosen define the particular class of meta-heuristics.

Once the model has been selected, model based algorithms implement different
techniques to search for the optimal distribution in the model, for instance by
applying estimation and sampling techniques, as in Estimation of Distribution
Algorithm (EDA) [10], or by following the gradient of the expected value of f
as in CMA-ES [8] and SNGD [11]. Within EDAs, a distinctive feature of the
algorithms that belong to the Distribution Estimation Using Markov Networks
(DEUM) [18] framework is the direct use of a probabilistic model of the objective
function, which is sampled to search for a global minimum.

Selecting a model and estimating the parameters correspond, respectively,
to a model selection and a model fitting problem, and in the general case are
computationally expensive to address. On the other hand being able to recover
the correct set of interactions, or at least a model that capture most of them,
allows to work with tractable models with good properties, i.e., from any point
the gradient of the expected value of the original function points in the direction
of the global optimum, so that different optimization algorithms are less prone
to end up with local minima, [12].

In DEUM, the joint probability distribution is represented using the formalism
of Markov Networks (MNs) [22], also known as Markov Random Fields (MRFs),
an example of undirected Probabilistic Graphical Models (PGMs). The structure
of the MN, i.e., the set of conditional independences, can be either fixed a pri-
ori [18,19], in which case we refer to fixed structure DEUM algorithms, or learned
from scratch using model selection criteria such as Mutual Information [17] or
χ2-independence test [4]. Once the structure is identified, the parameters of the
model are estimated from a subset of points with least square method, and then
the model is sampled to look for a global optimum.

A common hypothesis when learning a model in EDAs is to limit the search
to pairwise interactions. This reduces the number of possible interactions to

(
n
2

)
.

Other additional hypothesis [4,17] limit the maximum size of the neighborhood
of each variable to force a sparse pattern of interactions. A different approach to
model selection in DEUM has been proposed in [13] where �1-regularized logis-
tic regression is employed to recover the neighborhood of each variable, cf. [16].
This choice allows to shrink the conditional probability distribution of a vari-
able given its neighborhood through a regularization parameter. The approach
showed promising results both in terms of model selection and optimization
performance. However, the computational effort was still very expensive.
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The aim of this paper is to provide a novel method to estimate the statis-
tical model used in DEUM by introducing a sparse model selection approach
when estimating the Markov Fitness Model, thus dealing with model selection
and model fitting at the same time. To obtain this result, we formalize the es-
timation problem as an �1-constrained linear regression problem, also known as
the Lasso [20]. In this formulation, the penalizing �1-constraint addresses model
selection, while the least square error minimization allows to estimate the co-
efficients of the model. Since candidate interactions grows exponentially in the
problem size in the general case and quadratically if we restrict to pairwise in-
teractions, we firstly use a preliminary coarse selection criteria based on Mutual
Information to reduce the size of this set, similarly to the approach in [17], but
with no constraint on the size of the neighborhood.

The remaining of the paper is organized as follows. In Section 2 we describe
the Markov Fitness Model underlying the DEUM framework. In Section 3 we
introduce our approach based on �1-constrained linear regression to estimate
the set of interactions and associated parameters of the model. In Section 4 we
present the Sparsified DEUM algorithm (sDEUM), while in Section 5 we provide
an empirical analysis of its performance using the well-known 3D Ising Spin Glass
function [2] as a benchmark. The paper ends in Section 6 with conclusions and
future directions of research.

2 Objective Function Modeling by Markov Networks

EDAs and more in general most model-based meta-heuristics make use of a sta-
tistical model, i.e., a set of probability distributions, to represent the interactions
among the variables of an optimization problem. Usually the model is estimated
from a subset of points, selected from a larger sample according to the value
of f . The same applies for the algorithms in the DEUM framework, with the
difference that the statistical model is employed to learn a model of f , rather
than to estimate the correlations among its variables.

We consider the unconstrained optimization problem of minimizing a real-
valued function f defined over a vector of n binary variables X = (X1, . . . , Xn)
with values in Ω = {−1,+1}n. Since the domain is finite, and x2 = 1, any f can
be written as a square-free polynomial

f(x) =
∑
α∈I

cαx
α. (1)

Here, we employ a notation based on the multi-index α = (α1, . . . , αn) ∈ I ⊂
{0, 1}n, with xα =

∏n
i=1 x

αi

i . The associated real coefficients cα ∈ R \ {0} are
indexed by α. Each monomial represents an interaction among a set of variables
in f . We say that the set of interactions in function f is sparse if # (I) � 2n,
where # (I) represents the cardinality of I. Many well known functions belong
to this class, and even if the number of interactions is limited the optimization of
such functions can be an NP-hard problem. For instance, the energy function of
an Ising Spin glass problem [2] defined over a 3D toroidal lattice has # (I) = 3n
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interactions, where l = 3
√
n is the size of the grid. In the maximum cut [23]

problem the cardinality of I corresponds to the number of edges in the graph,
and in general # (I) ≤

(
n
2

)
.

In the DEUM framework, probabilities of points in the search space Ω are
assigned under the hypothesis that the probability of x should be proportional
to the value of f , i.e.,

p(x) ≡ f(x)

Z
, with Z =

∑
x∈Ω

f(x). (2)

In particular, DEUM uses the Gibbs distribution as a statistical model, which
is an example in the exponential family of distributions that can be equivalently
represented with the formalism of MNs. The Gibbs distribution is used to learn
a model of the objective function, by means of the Markov Fitness Model [3].

2.1 Markov Networks and Gibbs Distribution

Most EDAs make use of PGMs to represent the statistical model they use. In
particular, the algorithms in the DEUM framework employ undirected graphical
models called MNs. One of the advantages of a PGM is that the graph represents
the conditional independence structure of the random variables, and provides a
way to factorize the joint probability distribution associated to the graph.

Given a vector X = (X1, . . . , Xn) of random variables, a MN is defined by a
pair (G, Φ), where G = (V , E) is an undirected graph and Φ is a set of local energy
functions ϕ associated to the cliques. Each random variable Xi in X corresponds
to a vertex vi ∈ V , while the edges eij ∈ E define the topology of the graph. We
denote with Ni the neighborhood of a variable Xi, i.e., the set of vertices vj such
that eij ∈ E . A set XC of fully connected vertexes of G is called clique. A clique
is maximal if it is not contained in the set of vertices of any other clique.

The topology of the MN determines a set of conditional independence state-
ments according to the absence of edges in the graph.As stated in theHammersley-
Clifford theorem [7], a positive probability distribution satisfies all the Markov
properties with respect to the graph G if and only if it factorizes according to the
graph itself. This implies that the joint probability distribution of X can be ex-
pressed as the product of a set of non-negative functions ϕC , called potential func-
tions, defined over the clique C ∈ C, i.e.,

p(x) =
1

Z

∏
C∈C

ϕC(xC) (3)

where Z is a normalization constant that ensures the probabilities sum to 1.
Without loss of generality, by absorbing cliques in maximal cliques, in the rest
of the paper we restrict the factorization to the product of potential functions
defined over the maximal cliques of G.

Moreover, the Hammersley-Clifford theorem implies the equivalence of the
probability distribution p in (3) associated to G and the Gibbs (or Boltzmann)
distribution of the form
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p(x) =
1

Z
e−U(x)/T , with Z =

∑
x∈Ω

e−U(x)/T . (4)

In statistical physics, the normalizing constant Z is called partition function,
T > 0 is the temperature of the distribution, and U(x) the energy function.
The temperature parameter controls the sharpness of the distribution. Indeed,
for T → ∞, Equation (4) tends to the uniform distribution over Ω, while for
T → 0 the probability mass concentrates over the global minima of the energy
function. The energy function of the Gibbs distribution is defined as the sum of
local functions uC associated to ϕC defined over the maximal cliques of G, i.e.,

U(x) =
∑
C∈C

uC(xC). (5)

In EDAs, the search space Ω is explored by sampling from a density in a statis-
tical model. However, sampling from (4) is non trivial due to the presence of the
partition function Z, whose computation requires a summation over the entire
space Ω, and thus is unfeasible since it is exponential in n. Nevertheless, the
Gibbs distribution can be sampled using a Gibbs sampler, and exploiting the
local Markov property, so that the conditional probability of Xi only depends
on its neighborhood Ni. Moreover, due to the {±1} encoding, we have

pi(xi|Ni) =
p(x)∑

xi∈{±1} p(x)
=

e−U(x)/T∑
xi∈{±1} e−U(x)/T

=
1

1 + exiΔiU(x)/T
, (6)

where ΔiU(x) is the difference between U(x) and U(x̃i), where x̃i equals x
except for the sign of xi that has been changed. Since all terms in U(x) and
U(x̃i) agree except those containing xi, and thus ΔiU(x) only depends on Ni,
its computation can be further simplified.

2.2 The Markov Fitness Model

In the DEUM framework, probabilities are assigned to points in Ω proportionally
to the value of f , and a model is chosen in the family of Gibbs distributions. By
setting T = 1, in order to simplify the formulas, and combining Equations (2),
(4) and (5), we have

p(x) ≡ f(x)∑
Ω f(x)

=
e−

∑
C∈C uC(xC)∑

Ω e−
∑

C∈C uC(xC)
,

that in particular is implied by setting

− ln(f(x)) =
∑
C∈C

uC(xC), (7)

i.e., when U(x) is supposed to be a good model for f . This relationship between
the energy function of the Gibbs distribution and f is called Markov Fitness
Model (MFM) [3]. Notice that Equation (7) defines a probabilistic model of f .
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Every uC is defined over a subset of the variables in x according to the nodes
in the maximal clique. Thus uC admits a polynomial expansion as for f in
Equation (1), and

− ln(f(x)) =
∑
C∈C

∑
α∈IC

θα,Cx
α, (8)

where the set of interactions identified by IC depends on the variables in the
maximal clique. Every θα,C ∈ R is a parameter associated to the expansion of
uC . By grouping similar terms and introducing a set M for all the monomials
that appear in Equation (8), the expression can be simplified to

− ln(f(x)) =
∑
α∈M

θαx
α. (9)

The statistical model used in the MFM in (9) can be written as anm-dimensional
exponential family, with m = #(M),

p(x; θ) = exp

{∑
α∈M

θαx
α − ψ(θ)

}
, (10)

where ψ(θ) = lnZ(θ) is the normalizing factor and xα are the sufficient statistics.
In order to reduce the number of parameters of the statistical model, further

assumptions can be made in the choice of the monomials that appear in uC in
Equation (8). For instance, in the Ising DEUM algorithm [19], where the G is a
toroidal 2D lattice and all maximal cliques have size 2, every uij(xi, xj) takes
the form of θijxixj , so that all linear terms are not included among the sufficient
statistics of the exponential model since they are not required to capture such
class of Ising Spin Glass functions.

3 Sparse Learning of the Markov Fitness Model

To make the estimation of the MFM computationally feasible, we need to con-
sider a reduced set of monomials as support statistics in (10) by imposing sparsity
on the interactions pattern of the variables. This can be done a priori by making
proper assumptions on the model, for instance limiting the neighborhood size
of each variable or the total number of interactions in the graph. On the other
hand sparsity can be obtained by employing machine learning techniques such as
�1-regularization in the estimation of the model. For instance, Ravikumar et al.
[16] address sparse model selection by solving a set of n �1-constrained logistic
regression problems. Other approaches, such as [9], solve the problem of sparse
structure learning by evaluating pseudo-likelihoods. In the literature of discrete
EDAs, some related methods have been applied in L1BOA [24] and DEUM1 [13].

3.1 Problem Statement and Theoretical Approach

Let consider the MFM in Equation (8), where the set of monomials identified
by indices in M defines a set of interactions among the variables in f . In the
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DEUM framework the coefficients θ are estimated by solving a linear system
of equations. More in general the estimation of θ can be seen as a linear re-
gression problem where, given a sample of observations, −ln(f(x)) corresponds
to the response variable, and xα to the covariates. By introducing a shrinkage
regression technique in estimating the value of the parameters we can perform
model selection by zeroing a subset of coefficients, and thus obtaining a sparse
model. As a consequence, by applying a shrinkage technique in estimation, we
can perform model selection at the same time of model fitting.

In particular we learn the MFM by solving an �1-constrained linear regres-
sion problem, also known as the Lasso [20]. The solution of the Lasso gives a
sparse estimation of θ, hence, it selects a set of sufficient statistics for the sta-
tistical model of f in (10). The �1-constrained linear regression problem can be
formalized as the minimization problem

min
θ∈Rm

{
1

2
|| − ln(f(x)) −

∑
α∈M

θαx
α||22 + λ||θ||1

}
, (11)

where the first term represents the residual sum of squares, and the second
term is an �1-constraint weighted by a control parameter λ, called regularization
parameter. The value of the regularization parameter strongly affects the sparsity
pattern of the vector of coefficients. Indeed, for λ→∞ all coefficients will vanish,
while, for λ→ 0 the solution of the Lasso corresponds to the usual least square
estimation of the MFM, which in general is not sparse.

To correctly dimension the value of the regularization parameter λ we refer
to the asymptotic results presented in [5]. In particular dimensioning λ as

λ = K

√
log(m)

N
, (12)

where K is a constant, m is the number of monomials in the exponential family,
and N is the size of the sample used for the regression, guarantees that the
correct correlations can be identified as N → ∞. The same result has been
applied in [16], where the authors show how N may depend on the topology of
the graph. Such result is obtained under the hypothesis that the sample is i.i.d.
from to an unknown probability distribution. Usually such hypothesis cannot be
satisfied in black-box optimization, since f is unknown. In order to deal with
this issue, we propose to perform �1-constrained linear regression over a subset
of samples selected from a randomly generated initial sample according to the
value of f . This procedure can only approximate an i.i.d. sample, but from our
experiments it was sufficient to correctly reconstruct the topology of the MN.

A solution of the minimization problem defined in Equation (11) gives an
estimation of the MFM that approximates a statistical model of f . However, the
number of potential covariates in the regression problem grows exponentially
with n, making the minimization problem computationally unfeasible. Indeed
its complexity is bounded by O(m3). Even under the hypothesis of limiting the
maximum order of interactions to the second, we have m =

(
n
2

)
and the problem
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does not scale very well. For this reason, we propose to apply a rough selection
procedure to reduce the set of covariates in the MFM before solving the Lasso.

3.2 Taking Care of Dimensionality: Candidate Edges Reduction

In order to reduce the complexity of the �1-constrained linear regression problem
we only consider pairwise interactions among variables, so that the MFM in
Equation (8) can be represented as a complete pairwise graph G(V , E), such that
(i, j) ∈ E for every j > i. However, the number of terms to consider still grows
quadratically with n. In order to further reduce the number of edges before
solving the Lasso, we select first a subset with a computationally lighter but yet
less accurate method based on a measure of correlation among the variables.

Similarly to [17], we evaluate Mutual Information (MI) for each pair of ran-
dom variables in the original function. MI is a metric that measures the mutual
dependence between random variables. Given a pair of discrete random variables
Xi and Xj , their Mutual Information I is defined as

I(Xi, Xj) =
∑

xi,xj∈{±1}
pij(xi, xj) log

(
pij(xi, xj)

pi(xi)pj(xj)

)
, (13)

where pi and pj are the marginal probabilities, and pij is their joint probability.
If the MI between Xi and Xj is higher than a given threshold, then we include
the associated monomial during the solution of the Lasso; otherwise, we remove
the edge (i, j) from the graph.

The overall procedure can be summarized as follow. Given a sample we com-
pute the Mutual Information matrix A, which is symmetric and has dimension
n×n. Then, we proceed by removing from the initial complete graph every edge
(i, j) whose Mutual Information aij is lower than the threshold b · a, where b is
a weight coefficient and a is the average Mutual Information of variables in X .

Such procedure allows us to reduce the candidate set of interactions in the
regression problem. The optimal value of b such that only real interactions are
recovered, strongly depends from both the original function f and the sample.
In principle, correctly dimensioning b represents a hard task to address. Higher
values of b cut most of the edges, while less restrictive choices give a dense net-
work, that in turn, is more like to contain all the relevant interactions of the
problem together with many undesired ones. We choose non-restrictive values
for b since the purpose of this preliminary selection is to reduce the number
of edges rather then selecting a good model for X . Shakya et al. [17] reduce
furthermore the density of the network by making hypothesis on the maxi-
mum neighborhood size of the nodes. We do not apply such step here, since
we would like model selection to be as much independent as possible on prior
knowledge about f , and leave to the Lasso the task of identifying the correct
interactions.
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Algorithm 1. sDEUM(P, b, smi, s1)

Let E be the set of edges of a fully connected pairwise MN1

Randomly generate initial sample P of size P2

Evaluate f for each point in P3

Select a subset Pmi from P of size smiP4

Compute the MI matrix A and the average MI a given Pmi5

Select a subset of edges Emi from E according to A and the threshold ba6

Let m = #(Emi)7

Select a subset P�1 from P of size N = s�1P8

Estimate a distribution p in the MFM, by solving the Lasso with covariates9

associated to Emi and observations in P�1 , with λ = K
√

logm
N

, as in Eq. (11)

Sample pwith theGibbs sampler by evaluating conditional probabilities inEq. (6)10

4 Shrinkage DEUM Optimization Algorithm

In this section, in the light of the machine learning techniques described in
the first part of the paper, we present the Shrinkage Distribution Estimation
Using Markov Networks algorithm (sDEUM). The sDEUM algorithm consists
of a black-box meta-heuristics able to learn from scratch a sparse probabilistic
model of the function to be minimized. The use of �1-penalized linear regression
allows sDEUM to shrinkage the size of the θ parameters of the MFM. Due to
the �1 constraint and according to the size of the λ parameter, some coefficients
are fixed to zero with high probability, so that an implicit model selection is
performed while solving the regression problem. The model is then sampled to
generate new points, possibly with optimal values for f .

Algorithm 1 summarizes the procedure implemented in sDEUM. The meta-
heuristic is characterized by some parameters: the population size P , the MI
coefficient b, the percentages of selection smi and s1 , and the constant K. Two
different subsets are selected from the same initial random sample: Pmi for the
computation of the MI matrix and P1 for solving the Lasso, respectively. This
choice allows a better sizing of observations for the two different estimation
tasks. In both cases a truncation selection operator is employed, other policies
are possible, but they are not investigated here.

Once the MFM is estimated, next step in the DEUM framework consists of
sampling the distribution to search for the optimum of f . In sDEUM, as in [19,13],
we use a Gibbs sampler, i.e., a Monte Carlo Markov Chain sampling method. The
Gibbs sampler allows to generate instances with minimum values for the energy
U of the Gibbs distribution by cooling the temperature during sampling. Refer
to [19] for a presentation of the sampling schema employed in DEUM.

When the estimated model is good enough, repeatedly sampling the model
with an adequate cooling schema yields with high probability the global optima
of f . As a consequence, as in most of the DEUM framework algorithms, model
learning in sDEUM is performed only once, and the learned model is repeatedly
sampled using the Gibbs sampler (single generation approach).
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5 Empirical Performance Analysis

In this section we present the results of an empirical analysis of the performance
of sDEUM. We set up a series of experiments in order to evaluate the ability of
the algorithm to reconstruct the correct set of interactions among the variables in
the model and to find the global minimum of the function. In all the experiments,
we evaluated the performance using the 3D Ising spin glass problem [2] as a
benchmark, whose interaction structure is known and can be used to determine
a set of model selection statistics, such as precision, recall and F1 score. First we
analyse the behavior of sDEUMwhen its parameters are changed, in order to find
the best configuration, then we compare its performance in solving the energy
minimization problem with those of DEUMce [17], Simulated Annealing [1] and
hBOA [15]. DEUMce and Simulated Annealing have been tuned to achieve best
performance, while results of hBOA are taken from [14]. Since the difficulty of
the 3D Ising spin glass problem may depend from the particular instance, we
averaged the results over 10 different instances, and for each of them we run 30
independent executions of every algorithm. In order to simplify the experimental
comparison and evaluation, sDEUM, DEUMce and Simulated Annealing were
implemented within the Evoptool toolkit [21]. The source code of the algorithms
and the Ising spin glass instances can be found on the Evoptool homepage1.

5.1 Experimental Setting and 3D Ising Spin Glass Problem

In statistical physics, the Ising spin glass problem is an energy minimization
problem in the space of binary configurations of a set of spins σ = (σ1, . . . , σn),
where each spin can be either up, σi = +1, or down, σi = −1. The optimal
solutions, i.e., the ground states of the spin glass, are those configurations that
minimize the energy function

E(σ) = −
∑
i∈L

hiσi −
∑

i<j∈L

Jijσiσj , (14)

where L is a toroidal lattice of n sites, while hi and Jij are coupling constants
respectively of a single spin σi and a pair of spins (σi, σj). The difficulty of the
problem is strongly related to the dimensionality of the lattice. Indeed, even if
with particular choices of h and J the problem in 1D and 2D can be solved in
polynomial time, it becomes NP-hard for all kind of coupling constants, as soon
as it reaches the third dimension, and in particular when the edge degree of each
vertex equals 6, see [2].

In our experiments we use spin glasses defined over a 3D grid with periodic
boundaries [2]. The contribution to the energy given by singleton spins is not
taken into account, therefore hi = 0 for every spin. The instances of the problem
are randomly generated with couplings Jij that takes values in {±1} with equal
probability. Instances of the problem and their optimal solutions are generated
using the spin glass ground states server by the group of Prof. Michael Jünger2.

1 Available at http://airwiki.ws.dei.polimi.it/index.php/Evoptool
2 Available at http://www.informatik.uni-koeln.de/ls juenger/research/sgs/
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Fig. 1. F1 measure of model selection based on MI vs preliminary selection based on
MI followed by 1-constrained linear regression for the Ising spin glass problem for
n = 64, (left) 2D lattice; (right) 3D lattice

The sDEUM algorithm has been run for different values of its parameters: the
sample size P , the threshold coefficient of MI b, and the percentages of selection
smi and sl1. After preliminary tests, the constant K in (12) has been fixed to
the value of K = 16. In particular, to solve the �1-constrained linear regression
problem, we employed the R package lars available on CRAN, implementing
the Least Angle Regression (LARS) [6] algorithm.

The performance of sDEUM is compared with those of DEUMce, Simulated
Annealing (SA) and the Hierarchical Bayesian Optimization Algorithm (hBOA).
DEUMce is a DEUM algorithm with model learning capability based on the
evaluation of the Mutual Information plus a structure refinement mechanism
that bounds the maximum edge degree of each node. SA is a meta-heuristic
characterized by the number P of starting points, by the initial temperature T
and the cooling rate c of the Metropolis sampler. The hBOA algorithm is an
optimization meta-heuristic belonging to the family of EDAs based on Bayesian
Networks (BNs). At each generation, hBOA employs a niching mechanism to
select individuals in the population. Once the BN has been estimated, the next
population is sampled. Further details on the implementations of DEUMce, SA,
and hBOA can be found in [17], [1], and [15], respectively.

The performance of the algorithm is evaluated according to a set of statistics
that concern the F1 measure, the probability of success and the average number of
evaluations of f required to find the first ground state at each execution. The F1
measure is defined as the harmonic mean of precision and recall, and the probabil-
ity of success is computed as the rate of successful executions, i.e., the percentage
of runs in which at least an optimal solution is found.

5.2 Impact of Learning Parameters

In order to consistently find the minimum of f , it is essential to recover a good
statistical model for the variables in the problem, i.e., to learn most of the
interactions present in f and to correctly estimate the value of their parameters.
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Fig. 2. Probability of success over normalized size of initial population (P/n). Bench-
mark: 3D Ising Spin Glass function, n ∈ {27, 64, 125}. sDEUM parameters: smi = 0.3;
(left) b = 1.5, s�1 = 0.1; (center) b = 1.5, s�1 = 0.3; (right) b = 1.1, s�1 = 0.3.

The threshold coefficient b of the preliminary selection based on MI, as well
as the λ parameter of the Lasso, determine the sparsity level of the recovered
structure. To correctly dimension b a preliminary tuning phase which depends
on the problem is usually required, while, in contrast, the λ parameter can be
chosen according to Equation (12) to ensure good theoretical performance.

In Fig. 1 we compared the model selection performances of our approach with
those of the model selection based on MI, when solving the Spin Glass function
with 2D and 3D structure and 64 variables. As we can see, in case of model
selection based only on MI the results vary greatly according to the value of b.
In contrast, when MI is followed by the �1-constrained regression, the choice of
value for b is less problem dependent.

In Fig. 2 we can see the probability of success plotted against the size of the
initial population P for problem size n ∈ {27, 64, 125}, and for different values
of the threshold coefficient b ∈ {1.1, 1.5}, that determines how dense the MFM
is after preliminary model selection based on MI. When n = 27 or n = 64, a
less restrictive value of b provides better performance, see Fig. 2 (right); while
when the size of the problem increases, n = 125, a higher value of the coefficient
b results in earlier convergence, see Fig. 2 (center).

These results suggest that the value of b should increase with n. A possible
explanation is given by the fact that the number of interactions grows linearly as
3n for a 3D lattice, while the number of total interactions is quadratic, for this
reason a more restrictive choice of b helps to reduce the number of candidate
interaction before the Lasso is solved.

In a black-box scenario an i.i.d. sample is not available to solve the lasso.
Instead we choose a subset of the sample based on the value of the function f ,
and we compared the performance of the algorithm for different values of s1 . In
Fig. 2(left) and Fig. 2(center) we show the results for s1 equal to 0.1 and 0.3,
respectively. It is possible to notice that even if selection helps identify a good
sample with respect to the random observations generated when the algorithms
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Fig. 3. Average number of evaluations of f (log scale) over problem size required to
find first optimal solution with probability 1. Benchmark: 3D Ising Spin Glass function,
n ∈ {27, 64, 125}. Algorithms: sDEUM, DEUMce, SA, hBOA.

starts, decreasing that percentage too much results in lower performances. This
result suggests that if the sample after selection is not informative enough, then
we have preliminary convergence and a larger population is necessary.

5.3 Analysis of Optimization Performance

In this section we compare the performance of sDEUM to find the ground states
of the 3D Ising Spin Glass function with those of DEUMce, SA and hBOA. We
analyze the results in terms of average number of function evaluations required to
find the optimum with a probability of success equals to 1 for each algorithm on
10 instances of the problem. The parameters of sDEUM, DEUMce, and SA have
been chosen after a preliminary tuning phase, while for the hBOA algorithm,
the results are taken from [14]3.

The trend highlighted in Fig. 3 suggests that sDEUM algorithm requires a
lower number of evaluations of f with respect to other meta-heuristics on this
benchmark. Indeed, the overall number of evaluations for sDEUM appears to
grow polynomially asO(n2.04), while the same metric grows asO(n2.16),O(n3.06)
and O(n2.91), for DEUMce, SA and hBOA [14], respectively.

The lower requirements in terms of fitness evaluations of both sDEUM and
DEUMce with respect to SA and hBOA are due to the single iteration ap-
proach characteristic of the DEUM algorithms. Indeed, most of the evaluations
in DEUM concern the initial sample, before selection. Moreover, the shrinkage
method used in sDEUM compared with the approach of DEUMce based on MI
and structure refinement is able to recover a good model with a smaller sample
and thus further reduce the number of function evaluations.

3 The performance of hBOA in [14] are evaluated over a set of instances of the 3D Ising
Spin Glass function different from our set but with the same setting: 3D toroidal
lattice, hi = 0, Jij ∈ {±1}.
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6 Conclusions

In this paper we presented a novel approach to the estimation of the MFM
based on �1-regularized linear regression. Our proposal allows to perform both
model selection and model fitting at the cost of solving a single regularized linear
regression problem. The advantage of this approach is due to theoretical results
on the dimensioning of λ, that in contrast to the threshold parameter of Mutual
Information, permits to be more robust and less problem dependent.

In the context of the DEUM framework, we developed a novel algorithm
called sDEUM that estimates the MFM using an approach based on shrinkage
regression. In order to make Lasso more efficient, sDEUM uses a preliminary
σ coarse selection based on Mutual Information in order to find a candidate
set of interactions for the MFM. This candidate set is then used to solve the
regularized regression problem by means of Least Angle Regression (LARS). We
showed that sDEUM is able to learn a probabilistic description of the objective
function and to successfully use it to address optimization. We remark lower
requirements in terms of number of evaluations of f to reach optimality with
respect to other popular algorithms in the EDA framework. In particular, solving
the Lasso defined on the MFM allows to reduce the sample size with respect
to performing �1-regularized logistic regression on the conditional probability
distribution of each variable, as previously done in DEUM1 [13].
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11. Malagò, L., Matteucci, M., Pistone, G.: Optimization of pseudo-boolean functions
by stochastic natural gradient descent. In: 9th Metaheuristics International Con-
ference, MIC 2011 (2011)
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Abstract. HyFlex (Hyper-heuristic Flexible framework) [15] is a soft-
ware framework enabling the development of domain independent search
heuristics (hyper-heuristics), and testing across multiple problem do-
mains. This framework was used as a base for the first Cross-domain
Heuristic Search Challenge, a research competition that attracted signif-
icant international attention. In this paper, we present one of the prob-
lems that was used as a hidden domain in the competition, namely,
the capacitated vehicle routing problem with time windows. The do-
main implements a data structure and objective function for the vehicle
routing problem, as well as many state-of- the-art low-level heuristics
(search operators) of several types. The domain is tested using two adap-
tive variants of a multiple-neighborhood iterated local search algorithm
that operate in a domain independent fashion, and therefore can be con-
sidered as hyper-heuristics. Our results confirm that adding adaptation
mechanisms improve the performance of hyper-heuristics. It is our hope
that this new and challenging problem domain can be used to promote
research within hyper-heuristics, adaptive operator selection, adaptive
multi-meme algorithms and autonomous control for search algorithms.

1 Introduction

There is an increasing and renewed research interest in developing heuristic
search methods that are more generally applicable [7,8]. The goal is to reduce
the role of the human expert in the design of effective heuristic methods to
solve hard computational search problems. Researchers in this field, however,
are often constrained on the number of problem domains in which to test their
adaptive, self-configuring algorithms. This can be explained by the inherent time
and effort required to implement a new problem domain, including efficient data
structures and search operators; initialisation routines; the objective function;
and an varied a set of benchmark instances.

The HyFlex framework has been recently proposed to assist researchers in
hyper-heuristics and autonomous search control. HyFlex features a common
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c© Springer-Verlag Berlin Heidelberg 2012
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software interface for dealing with different combinatorial optimisation prob-
lems, and provides the algorithm components that are problem specific.In this
way, it simultaneously liberates algorithm designers from needing to know the
details of the problem domains; and it prevents them from incorporating addi-
tional problem specific information in their algorithms. Efforts can instead be
focused on designing high-level strategies to intelligently combine the provided
problem-specific algorithmic components. The framework also served as the ba-
sis of an an international research competition: the first Cross-domain Heuristic
Search Challenge (CHeSC 2011)1 [5], which successfully attracted the interest
and participation of over 40 researchers at universities and academic institu-
tions across six continents. This competition differed from other challenges in
heuristic search and optimisation in that the goal was to design a search algo-
rithm that works well, not only across different instances of the same problem,
but also across different problem domains. It can be considered as the first De-
cathlon challenge of search heuristics. For testing purposes, four domain modules
were provided to the participants, each containing around 10 low-level heuris-
tics of the types discussed below, and 10 instances of medium to hard difficulty.
The domains provided were: permutation flowshop, one dimensional bin packing,
Boolean satisfiability (MAX-SAT) and personnel scheduling.

For calculating the final competition scores, two additional (hidden) domains
were implemented and used: the traveling salesman problem, and the capacitated
vehicle routing problem with time windows. This paper describes the design of
the vehicle routing domain. It also tests this domain using two adaptive variants
of a multiple neighborhood iterated local search algorithm. The first variant was
the best performing algorithm in [6], while the second is a modification that
improves the local search stage of the algorithm by incorporating an adaptive
mechanism.

The next section briefly overviews the HyFlex framework, whilst section 3
describes the design of the vehicle routing domain. Section 4 describes the adap-
tive iterated local search hyper-heuristics that have been developed. Section 5
summarises the experiments and results and section 6 concludes and discusses
our contributions.

2 The HyFlex Framework

HyFlex (Hyper-heuristics Flexible framework) [15] is a Java object oriented
framework for the implementation and comparison of different iterative general-
purpose (domain independent) heuristic search algorithms (also called hyper-
heuristics). The framework appeals to modularity and is inspired by the notion
of a domain barrier between the low-level heuristics and the hyper-heuristic
[9,7]. HyFlex provides a software interface between the hyper-heuristic and the
problem domain layers, thus enabling a clearly defined separation and com-
munication protocol between the domain specific and the domain independent
algorithm components.
1 http://www.asap.cs.nott.ac.uk/external/chesc2011/

http://www.asap.cs.nott.ac.uk/external/chesc2011/
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HyFlex extends the conceptual framework discussed in [9,7] in that a pop-
ulation of solutions (instead of a single incumbent solution) is maintained in
the problem layer. Also, a richer variety of low-level heuristics is provided. An-
other relevant antecedent to HyFlex is PISA [2], a text-based software interface
for multi-objective evolutionary algorithms, which divides the implementation
of an evolutionary algorithm into an application-specific part and an algorithm-
specific part. HyFlex differs from PISA in that its interface is not text-based but
is instead given by an abstract Java class. Moreover, HyFlex provides a rich va-
riety of combinatorial optimisation problems including real-world instance data.
Each HyFlex problem domain module consists of:

1. A user-configurable memory (a population) of solutions, which can be man-
aged by the hyper-heuristic.

2. A routine to initialise randomised solutions in the population.
3. A set of heuristics to modify solutions classified into four groups:

mutational : makes a (randomised) modification to the current solution.
ruin-recreate : destroys part of the solution and rebuilds it using a con-

structive procedure.
local search : searches in the neighbourhood of the current solution for an

improved solution.
crossover : takes two solutions, combines them and returns a new solution.

4. A varied set of instances that can be easily loaded.
5. A fitness function, which can be called to obtain the objective value of any

member of the population. HyFlex problem domains are always implemented
as minimisation problems, so a lower fitness is always superior. The fitness of
the best solution found so far in the run is stored and can be easily obtained.

6. Two parameters: α and β, (0 <= [α, β] <= 1), which are the ‘intensity’ of
mutation and ‘depth of search’, respectively, that control the behaviour of
some search operators.

Currently, six problem domain modules are implemented (which can be down-
loaded from the CHeSC 2011 website [14]). These are the original four test
domains: permutation flow shop, one-dimensional bin packing, maximum satis-
fiability (MAX-SAT) and personnel scheduling; and the two additional (hidden)
domains used for the competition: the traveling salesman problem and the vehi-
cle routing problem with time windows.

3 The Vehicle Routing HyFlex Domain

The vehicle routing problem was implemented using the HyFlex software frame-
work interface2. Specifically, a java class derived from the HyFLex ProblemDo-
main class was implemented, following the descriptions below.

2 The API documentation can be found at:
http://www.asap.cs.nott.ac.uk/external/chesc2011/javadoc/help-doc.html

http://www.asap.cs.nott.ac.uk/external/chesc2011/javadoc/help-doc.html
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3.1 Problem Formulation

The vehicle routing problem can be described as the task of meeting the demand
of all customers, using as few vehicles as possible, and satisfying all constraints,
such as vehicle capacity. Furthermore, the variant of the vehicle routing problem
which is modelled here is the vehicle routing problem with time windows. This
variant includes extra time window constraints, whereby a customer must be
served between two time points for a solution to be valid.

There is a base location, or depot, from where each vehicle must start and end
its route. A route is a series of location visits for a single vehicle. The objective
function for this domain balances the dual objectives of minimising the number
of vehicles needed and minimising the total distance travelled. It was defined as
follows:

objectivefunction = c× numV ehicles + distance,

where c is a constant that we empirically set to 1000 to give higher importance
to the number of vehicles in a solution.

The problem domain offers a set of operators to initialise and modify solutions
which are commonly found in effective meta-heuristics and a set of benchmarks
instances (due to [21]) that are readily available.

3.2 Solution Initialisation

The initialisation method is stochastic, generating solutions based upon the given
seed. Customers are inserted into the solution one at a time, with the customer
to be inserted being chosen by a metric measuring the proximity of a customer
in terms of distance and time to the most recently inserted customer. The metric
also includes a stochastic element to ensure different solutions are generated. If
it is not possible to insert any customer into the current route, a new route is
generated. This process is repeated until all customers have been scheduled.

3.3 Low Level Heuristics

The module includes 12 low level heuristics h1, . . . , h12 across the four categories
of heuristics, as specified within HyFlex. They are described below, sorted by
category.

Mutational Heuristics

h1: Two-opt[3]. Swaps two adjacent customers within a single route.
h2: Or-opt[16]. Moves two adjacent customers to a different place, within a

single route.
h3: Shift[18]. Moves a single customer from one route to another.
h4: Interchange[18]. Swaps two customers from different routes.
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Ruin and Recreate Heuristics

h5: Time-based radial ruin[19]. Chooses a number of customers to be removed
from the solution, based upon the proximity of their time window to a given
time. Each remaining customer is inserted into the best route possible, based
on a metric of distance and time proximity. If it is not feasible to insert into
any route, a new route is created.

h6: Location-based radial ruin[19]. Chooses a number of customers to be
removed from the solution, based upon the proximity of their location to
a given location. Each remaining customer is inserted into the best route
possible, based on a metric of distance and time proximity. If it is not feasible
to insert into any route, a new route is created.

Local Search Heuristics. These heuristics implement ‘first-improvement’ lo-
cal search operators. In each iteration, a neighbour is generated, and it is ac-
cepted immediately if it has superior or equal fitness. If the neighbor is worse,
then the change is not accepted. The depth-of-search parameter (see section 2)
controls the number of iterations to attempt to obtain an improved solution.

h7: Shift[18]. Moves a customer from one Route, to another providing that the
new position yields an improvement in objective function score.

h8: Interchange[18]. Swaps two customers from different routes, providing
that the new routes yield an improvement in objective function score.

h9: Two-opt∗[17]. Takes the end sections of two routes, and swaps them to
create two new routes.

h10: GENI[11]. A customer is taken from one route, and placed into another
route, between the two customers of that route which are closest to it.
Re-optimisation is then performed on the route.

Crossover Heuristics

h11: Combine. A random percentage of routes (between 25% and 75%) are
kept from one of the solutions (chosen randomly.) Then all routes which
don’t contain any conflicts with the routes already chosen are taken from
the other solution. Finally, all unrouted customers are inserted into the
solution.

h12: Longest Combine. All routes from both solutions are taken and ordered
by length (here length is defined as the number of customers served in a
route.) The routes are taken from longest to shortest, providing there are
no customer conflicts. Then, all unrouted customers are inserted into the
solution.

3.4 Problem Instances

The problem instances provided in this module are taken from two sources. The
first is the Solomon data set of 100 customer problems. The second is the Gehring
and Homberger data set of 1000 customer problems. For both data sets, there
are three types of instances. These are:
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R: Random. The customers’ locations are determined in a uniformly random
way.

C: Clustered. The customers’ locations are grouped in a number of clusters.
CR: Clustered Random. The customers’ locations are in a mix of random

and clustered locations.

4 Adaptive Iterated Local Search Hyper-heuristics

Iterated local search is a relatively simple but successful algorithm. It operates
by iteratively alternating between applying a move operator to the incumbent
solution and restarting local search from the perturbed solution. This search
principle has been rediscovered multiple times, within different research commu-
nities and with different names [1,13]. The term iterated local search (ILS) was
proposed in [12]. The algorithms compared in this article can be considered as
ILS with multiple perturbation heuristics and multiple local search heuristics.
They can be considered to be hyper-heuristics as they both coordinate several
low-level heuristics and operate in a domain-independent fashion. Three variants
were considered as described below.

4.1 The Baseline ILS Hyper-heuristic

The ILS implementation proposed in [4] contains a perturbation stage during
which a neighborhood move is selected uniformly at random (from the available
pool of mutation and ruin-recreate heuristics) and applied to the incumbent so-
lution. This perturbation phase is then followed by an improvement phase, which
works as follows. Each of the local search heuristics is independently applied to
the incumbent solution. Providing at least one of the applications has yielded
an improvement, then the application resulting in the greatest improvement in
objective function is kept. The process is then repeated until no improvement in
objective function value is found. If the resulting new solution is better than the
original solution then it replaces the original solution, otherwise the new solution
is simply discarded. This last stage corresponds to a greedy (only improvements)
acceptance criterion. The pseudo-code of this iterated local search algorithm is
shown below (Algorithm 1), notice that this differs from traditional implemen-
tations of ILS in that multiple heuristics are used in both the improvement and
perturbation stages. We refer to this algorithm as Rnd-ILS.

4.2 The Adaptive ILS Hyper-heuristics

The adaptive versions of the base-line ILS hyper-heuristic described above, incor-
porate adaptive mechanisms in the perturbation and/or the improvement stages.
The most successful adaptive ILS hyper-heuristic suggested in [6] implements an
online learning mechanisms for selecting the move operators in the perturbation
stage, instead of selecting then uniformly at random at each iteration. Specifi-
cally, it implements an adaptive operator selection mechanisms. As discussed in
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Algorithm 1. Iterated Local Search Hyper-heuristic.
s0 = GenerateInitialSolution
s∗ = ImprovementStage(s0)
repeat

s′ = PerturbationStage (s∗)
s∗

′
= ImprovementStage(s′)

if f(s∗
′
) < f(s∗) then

s∗ = s∗
′

end if
until time limit is reached

[10], an adaptive operator selection scheme consists of two components: a credit
assignmentmechanisms and a selection mechanism. The algorithm proposed in
[6]used extreme value credit assignment, which is based on the principle that
infrequent, yet large, improvements in the objective score are likely to be more
effective than frequent, small improvements [10]. It rewards operators which have
had a recent large positive impact on the objective score, while consistent op-
erators that only yield small improvements receive less credit, and ultimately
have less chance of being chosen. Following the application of an operator to the
problem, the change in objective score is added to a window of size W, which
works on a FIFO mechanism. The credit for any operator is the maximum score
within the window. Window size plays an important part in the mechanism. If
it is too small then the range of information on offer is narrowed, meaning that
useful operators are missed. If it is too large then information is considered from
many iterations ago, when the position in the search space might have meant
that the operator performed differently to how it would at the latest iteration.
However, the window size is the only parameter that needs to be tuned, which is
a desirable property when the goal is to achieve robust and general algorithms.
After testing several values of (W ), we decided upon a value of 25. The credit
assignment mechanism is combined with a selection strategy that uses the accu-
mulated credits to select the operator to apply in the current iteration. Operator
selection strategies in the literature, generally assign a probability to each op-
erator and use a roulette wheel-like process to select the operator according to
them. We use here one of these rules, namely, adaptive pursuit, originally pro-
posed for learning automata and adapted to the context of operator selection in
[22]. With this method, at each time step, the operator with maximal reward
is selected and its selection probability is increased ( follows a winner-take-all
strategy.), while the other operators have their selection probability decreased.
We refer to this adaptive ILS hyper-heuristic as Ad-ILS.

The variant proposed in this article keeps the adaptive selection of operators in
the perturbation stage described above, but modifies the improvement stage by
incorporating a simple adaptive mechanisms that considers the past performance
of the local search heuristics. The mechanism works as follows: each heuristic
has a score attributed to it, which is updated after each application of that
heuristic. The score corresponds to the mean improvement in objective function
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obtained from that heuristic’s applications (from all applications across whole
search). These scores are then used to order the local search heuristics, with
the best performing heuristics being placed to the front of the list. The local
search heuristics are then applied in sequence following this order. This new
improvement stage is illustrated below (see Algorithm 2). We refer to the ILS
hyper-heuristic with this modified component as AdOr-ILS.

Algorithm 2. Ordered ImprovementStage.
repeat

ls← OrderLocalSearches(scores)
for i = 0→ numLocalSearchers, in the order ls do

s′ = LocalSearch(s′,i)
scores← UpdateScores

end for
until no improvement found

5 Experiments and Results

For testing the three algorithm variants described above, Rnd-ILS, Ad-ILS and
AdOr-ILS, 10 instances were chosen, representing a range of instance types from
both the Solomon and Gehring-Homberger data sets (see Table 1). These 10
instances are those currently available in the version of the HyFlex software used
for the competition (which can be downloaded from the CHeSC 2011 website
[14]).

Twenty runs were performed for each instance and algorithm. Following the
experimental set up used in the CHeSC competition, the running time was set
to 10 CPU minutes. The machine running the tests has a 2.27GHz Intel(R)
Core(TM) i3 CPU and 4GB RAM.

Table 1. Capacitated vehicle routing problem instances, taken from [20]

Instance name no. vehicles vehicle capacity

0 Solomon/RC/RC207 25 1000
1 Solomon/R/R101 25 200
2 Solomon/RC/RC103 25 200
3 Solomon/R/R201 25 1000
4 Solomon/R/R106 25 200
5 Homberger/C/C1-10-1 250 200
6 Homberger/RC/RC2-10-1 250 1000
7 Homberger/R/R1-10-1 250 200
8 Homberger/C/C1-10-8 250 200
9 Homberger/RC/RC1-10-5 250 200

Table 2 shows the average and standard deviation of the best objective func-
tion value at the end of the run, from the ten runs per instance. The adaptive ILS
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hyper-heuristic that incorporates both adaptive operator selection and adaptive
ordering of the local searchers (AdOr-ILS)outperforms the other two variants in
9 out otf the 10 instances. Only for one of of the smallest and less constrained
instances (instance 1), it is the base-line ILS hyper-heuristic the one produc-
ing the best performance. It seems that the added complexity of the adaptive
mechanisms does not help in this case. The experiments also suggest that for
the smaller Solomon instances (instances 0 to 4), the difference in performance
among the competing algorithms is less noticeable.

Table 2. Vehicle routing results for the 10 instances in Table 1. The entries account
for the average and standard deviation of objective function values (out of 20 runs).

instance AdOr-ILS Ad-ILS Rnd-ILS

0 5281.71334.614 5406.48404.159 5292.43337.186

1 21291.89482.56 21212.60509.28 21054.87500.73

2 13605.03451.64 13932.67616.29 13827.54516.39

3 6564.42554.77 7055.26748.15 6760.62597.41

4 14280.79319.54 14549.22449.1 14600.09471.7

5 155305.466154.24 163041.7611226.39 180301.072921.14

6 77302.723384.83 79175.633431.57 82316.662326.49

7 163177.742100.09 164341.161550.06 169729.311721.3

8 158941.932460.71 163332.724314.93 172007.422055.46

9 149447.681500.9 150276.891644.28 153648.661079.4

The boxplots shown in Figure 1 illustrate the magnitude and distribution of
the best objective values for 4 of the harder Homberger instances (instances 5,
7, 8 and 9). Each plot summarises the result of 20 runs from each algorithm. It
can be clearly observed that the best performing hyper-heuristic is AdOr-ILS,
followed by Ad-ILS. The base-line non-adaptive ILS hyper-heuristic is the less
competitive in these challenging instances.

To test statistical significance between the performances of Ad-ILS and the
new variant, AdOr-ILS, the two sided Wilcoxon Signed Rank test has been used.
The test is performed at the 95% confidence level, where a p value of less than
0.05 indicates a rejection of the null hypothesis - this being that there is no
difference between the results. The following table shows the p values for each
instance. From the table, we can see that in seven out of the ten instances, there
is a statistical difference between the results.

Table 3. p-values resulting from comparisons of Ad-ILS and AdOr-ILS. Values of less
than 0.05 (shown in bold) indicate statistical significance.

Instance 0 1 2 3 4 5 6 7 8 9

p-value 0.017 0.455 0.023 0.021 0.005 0.04 0.086 0.048 0.005 0.126
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Fig. 1. Distribution of objective function values for the harder Homberger instances
(instances 5, 7, 8 and 9 from Table 1)

6 Conclusions

This paper summarises the design of the capacitated vehicle routing domain
for the HyFlex hyper-heuristic framework. The domain makes use of a large
number of low-level heuristics, many of which are considered to be among the
state-of the-art in current vehicle routing research. Considering this, the domain
provides the opportunity to develop domain independent high-level algorithms
or hyper-heuristics for the vehicle routing problem without the need to develop
the low-level heuristics and underlying data structures. The domain was used as
a hidden domain for the CHeSC competition and has been made freely available.
It is our aim that it will be utilised within the hyper-heuristic, adaptive operator
selection, adaptive multi-meme algorithms, and autonomous control for search
algorithms research themes in intelligent optimisation.

The vehicle routing domain was used to test adaptive hyper-heuristics that
can be considered as multiple-neighborhood iterated local search algorithms.
This algorithmic scheme has proved to have good generalisation abilities. The
inclusion of adaptive mechanisms both at the perturbation stage and at the
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improvement stage of the ILS framework led to an improved performance on the
challenging vehicle routing instances.

Future work will extend the the vehicle routing domain by including new low-
level heuristics, and additional problem instances. New hyper-heuristics can be
implemented using HyFlex. For example, we are currently exploring the use of
a population and the crossover heuristics, which were not employed by our ILS
hyper-heuristics. We are also exploring mechanisms for adapting the heuristic
parameters provided in the framework, namely, intensity-of-mutation and depth-
of-search, which have an important impact in the hyper-heuristic performance.

Finally, HyFlex can be extended to include new domains, additional instances
and operators in existing domains; and multi-objective and dynamic problems.
The current software interface can also be extended to incorporate additional
feedback information from the domains to guide the adaptive search controllers.
It is our vision that the HyFlex framework will continue to facilitate and increase
international interest in developing domain independent and adaptive heuristic
search methodologies, that can find wider application in practice.
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Abstract. There exist local search landscapes where the evaluation
function is an eigenfunction of the graph Laplacian that corresponds
to the neighborhood structure of the search space. Problems that dis-
play this structure are called “Elementary Landscapes” and they have a
number of special mathematical properties. The term “Quasi-elementary
landscapes” is introduced to describe landscapes that are “almost” el-
ementary; in quasi-elementary landscapes there exists some efficiently
computed “correction” that captures those parts of the neighborhood
structure that deviate from the normal structure found in elementary
landscapes. The “shift” operator, as well as the “3-opt” operator for the
Traveling Salesman Problem landscapes induce quasi-elementary land-
scapes. A local search neighborhood for the Maximal Clique problem
is also quasi-elementary. Finally, we show that landscapes which are
a superposition of elementary landscapes can be quasi-elementary in
structure.

1 Introduction

Grover [4] originally observed that there exist neighborhoods for Traveling Sales-
man Problem (TSP), Graph Coloring, Min-Cut Graph Partitioning, Weight
Partitioning, as well as Not-All-Equal-SAT that can be modeled using a wave
equation borrowed from mathematical physics. Stadler [7] named this class of
problems “elementary landscapes” and showed that if a landscape is elementary,
the objective function is an eigenfunction of the Laplacian matrix that describes
the connectivity of the neighborhood graph representing the search space. Whit-
ley and Sutton developed a “component” based model of elementary landscapes
that makes it easy to identify elementary landscapes [13]. In many cases, the
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components are weights in a cost matrix. In the case of pseudo-Boolean func-
tions, the components can also be the weight coefficients of a polynomial form
of the cost function. Let the set of components be denoted by C; a solution x
will also denote the subset of components that contribute to the evaluation of x
so that the sum of the components that contribute to x is the same as the eval-
uation of x, denoted by the evaluation function f(x). Finally, let C − x denote
the subset of components that do not contribute to the evaluation of solution x.
Note that the sum of the components in C−x is computed by (

∑
w∈C w)−f(x).

Another precondition for a landscape to be elementary is:

f̄ = p3
∑
w∈C

w,

where p3 is the frequency of appearance of any component w ∈ C in a random
solution x.

We will denote a landscape as a triple (X,N, f) where f is the evaluation
function f : X → R, the set of solutions X represents the discrete domain of f
and N(x) is the neighborhood operator that defines adjacency between elements
x ∈ X under some local search neighborhood. N can also be expressed in the
form of an adjacency matrix A. The elements of A are such that Ax,y = 1
if y ∈ N(x) and Ax,y = 0 otherwise. When a neighborhood is regular, the
Laplacian operator is Δ = A− dI and it acts as a type of difference operator on
the fitness function f such that:

Δf(x) =
∑

y∈N(x)

(f(y)− f(x)) .

A landscape is said to be elementary if f is an eigenvector of −Δ up to a
constant, formally: −Δf = k(f − b) for a constant b and an eigenvalue k of
−Δ. As a direct consequence, we can compute the neighborhood average in an
elementary landscape as follows:

Avg(f(y))
y∈N(x)

= f(x) +
k

d
(f̄ − f(x)), (1)

where d = |N(x)| is the neighborhood size, which we assume is the same for all
the solutions. Often, this same result can be expressed another way.

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
w∈C

w − f(x)

)
, (2)

where p1 = α/d is the (sampling) rate at which “components” that contribute
to f(x) are removed from solution x to create a neighboring solution y ∈ N(x),
and p2 = β/d is the rate at which components in the set C − x are sampled to
create a neighboring solution y ∈ N(x). Said in another way, in order to build
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all the solutions in the neighborhood each component in x has been removed α
times and each component in C−x have been added β times. By simple algebra,

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2

(∑
w∈C

w − f(x)

)
= f(x) +

k

d
(f̄ − f(x)), (3)

where k = α+ β, f̄ /p3 =
∑

w∈C w and p3 = β/(α+ β) [12,13,14].
It should also be noted that some landscapes that are not elementary can

nevertheless be expressed as a superposition of a small number of elementary
landscapes. For example, a MAX-3SAT landscape under the Hamming-1 neigh-
borhood is not elementary, but it can be re-expressed as the sum of three func-
tions. Let M(x) denote the MAX-3SAT evaluation function for a Boolean string
x; there exists functions f1, f2 and f3 such that the landscapes of f1, f2 and f3
are elementary, and

M(x) = f1(x) + f2(x) + f3(x).

This makes it possible to compute averages over the Hamming-1 neighborhood.
Using Walsh analysis it is even possible to compute higher order statistical mo-
ments (variance, skew, kurtosis) in polynomial time over arbitrary Hamming
balls in the landscape, even over regions that are exponentially large [9]. The
same method can be applied to all k-bounded pseudo-Boolean functions, includ-
ing NK-Landscapes [6].

Thus, there is a great deal that we can potentially compute about local search
landscapes that is not being utilized by search algorithms. We continue to find
new ways to model new problems using elementary landscape theory, and we con-
tinue to find new ways to compute statistical information even more efficiently.
Quasi-elementary landscapes are another step in this direction. In the current
paper we present new results for the 3-opt move operator for the Traveling Sales-
man Problem, as well as new more general results for a Max-Clique neighbor-
hood. We also establish a connection between problems that are a superposition
of elementary landscapes and the concept of quasi-elementary landscapes.

1.1 Quasi-Elementary Landscapes

Whitley [11] introduced the term quasi-elementary landscape to describe a land-
scape and neighborhood structure where a variant of Grover’s wave equation
can be used to compute the neighborhood average by adding a correction to the
usual wave equation. Thus, a landscape is quasi-elementary if:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p2
(
f̄ /p3 − f(x)

)
+ g(x). (4)

We will refer to g as an auxiliary function. To be quasi-elementary it is critical
that the computational complexity of g(x) be less than the computation com-
plexity of enumerating and evaluating the neighbors of solution x. Like the cost
function f(x), the auxiliary function g(x) can sample from the set of components
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(e.g., the cost matrix) and can compute a “correction” relative to solution x to
account for the fact that the landscape is not elementary.

In principle, one might allow g(x) to be computed as the sum of multiple
subfunctions. We know, for example, that MAX-3SAT is a superposition of 3
elementary landscapes. In the current paper we will show the average of the
neighborhood for MAX-3SAT can be computed using g(x) = a1f1(x) + a2f2(x)
where functions f1 and f2 are elementary landscapes, but g(x) is not elementary.
It is again critical that the complexity of g(x) must be less than the complexity
of enumerating and evaluating the neighbors in N(x).

In some cases, we can provide additional information about the function g(x).
Assume that the set of components can be broken into 3 sets: f(x), f ′(x) and∑

w∈C w − f(x) − f ′(x) where f ′(x) identifies (and sums) a set of components
relative to x where those components that contribute to f ′(x) are sampled at a
different rate relative to the other two subsets of components. Assume that

g(x) = p4f
′(x) − p2f

′(x),

where p4 is the new sampling rate for the components that contribute to f ′(x).
Assume the complexity of computing f ′(x) is no greater than the complexity
of computing f(x). We then obtain the following result establishing a quasi-
elementary landscape.

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(
f̄

p3
− f(x)− f ′(x)

)
. (5)

We use this model to show that the “shift” operator and the “3-opt” operator
for the Traveling Salesman Problem induce a quasi-elementary landscape. We
can also use the model to show that a local search algorithm for the Maximal
Clique problem also induces a quasi-elementary landscape; this same local search
algorithm can also be used to find densely connected subgraphs in larger graphs.

Finally, we can also construct a quasi-elementary landscape that samples the
functions f(x) and f ′(x) and the constant f̄ . Let s1/d = (p1 + p2), s2/d =
(p2 − p4) and s3/d = (p2/p3). We will say that a landscape is quasi-elementary
if:

Avg(f(y))
y∈N(x)

=
(
1− s1

d

)
f(x)− s2

d
f ′(x) +

s3
d
f̄ . (6)

In this form, we can show that landscapes which are a superposition of elemen-
tary landscapes are in fact quasi-elementary landscapes if f ′(x) can be efficiently
computed. In the case of a superposition of two elementary landscapes we might
reasonably expect the complexity of f ′ to be no greater than the complexity
of f since f ′ is a subfunction that can be use to compute f . Quasi-elementary
landscapes can also result from a superposition of more than two elementary
landscapes. Assume we have a superposition of elementary landscapes where
f = f1(x) + f2(x) + f3(x). Let g(x) = f1(x) + f2(x). For some classes of prob-
lems one can still prove that g has the same complexity as evaluating f(x).
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2 Examples of Quasi-Elementary Landscape

We will first look at examples of quasi-elementary landscapes which can be
described using the following equation.

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(
f̄/p3 − f(x) − f ′(x)

)
. (7)

2.1 The Shift Operator for the TSP

We will assume a permutation representation is used. A shift operator works by
deleting one vertex from the permutation, then that vertex is re-inserted at every
other possible position in the permutation. When done at every possible position,
this yields some duplicate neighbors. These duplicates can be eliminated by 1)
shifting the vertex to be deleted to the beginning of the permutation, and 2)
doing insertion to the next n−3 possible positions. Therefore, the neighborhood
size is n(n− 3).

One might assume that the “shift” operator is not a commonly used TSP
operator. However, the “shift” operator can also be modeled as a special 3-opt
move where one of the segments is a single city. If the tour is then broken into a
segment of 1 city, and then broken into two segments of 2 or more cities, reversing
the two longer segments exactly yields a move under the “shift” operator.

Let f ′(x) denote an auxiliary function to f(x). When a vertex is deleted in
solution x the deletion removed 2 edges, and introduces 1 new edge: f ′(x) ignores
the deleted edges, but counts the cost associated with the new edges. Since n
vertices are deleted, f ′(x) is the sum of the n new edges. For example, consider
the tour: 1 2 3 4 5. Then the cost function f(x) = w1,2+w2,3+w3,4+w4,5+w5,1

while the auxiliary function f ′(x) = w1,3 +w2,4 +w3,5 +w4,1 +w5,2. In the case
of the “shift” operator, the edges in f ′(x) appear with greater frequency in the
neighborhood N(x).

When a vertex is deleted and reinserted, this cuts 3 edges: it cuts the edge
to the left and to the right of the deleted vertex, and it cuts the edge where
the deleted vertex is reinserted. Because every vertex will be deleted and it will
be inserted into all possible (non-duplicate) positions all the edges in x will be
removed at the same frequency. We can group the neighbors into subsets of size
n−3 where the same vertex is deleted from x, but the deleted vertex is reinserted
into all feasible positions. In this subset of n− 3 neighbors, the edge to the right
of the deleted vertex is reinserted once (e.g., if AB represent the two consecutive
vertices in the tour and A is deleted and re-inserted after B, the edge (A,B) is
recovered). This happens 1 time for every edge in solution x across all neighbors.

We can calculate the rate at which edges are removed from x by assuming
the symmetry case as a baseline, then correct for the 1 neighbor where a specific
edge from x is reinserted. This means that the rate with which edges are removed
from x is given by

− 3

n
f(x) +

1

n(n− 3)
f(x) =

−3n+ 10

n(n− 3)
f(x).
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The calculation of f̄ is neighborhood independent; therefore we can use the
calculation associated with the 2-opt neighborhood:∑

w∈C

w − f(x) =

(
β + α

β
f̄

)
− f(x) =

(
n− 1

2
f̄

)
− f(x).

We next consider the edges in the set C − x. All of the edges are sampled in a
symmetric fashion, but a subset of edges receive additional samples.

The symmetric case can be described as follows. New edges are created by
inserting the deleted vertex in a new position. Since the insertion occurs in every
position that does not produce a redundant neighbor, this case is symmetric. This
can happen in only 4 ways: vertex P has been deleted and it is inserted before
and after Q; or vertex Q is deleted and it is inserted before and after vertex P .
Thus, the symmetric sampling rate over the entire neighborhood is 4/(n(n−3)).

The non-symmetric case derives from the fact that when a vertex is deleted,
the deletion also creates a new edge. Furthermore, the same edge is created n−3
times for each of the n−3 cases where the same vertex is deleted. However, one of
these n−3 cases is also one of the symmetric cases previously counted. Removing
this one case, there remains n − 4 cases where the same edge is created when
the same vertex is deleted.

The set of edges that are sampled an additional n − 4 times can be found
starting the with current solution x and then deleting each vertex in x to create
a permutation (circuit) of n−1 vertices. As each vertex is deleted, one new edge
is created: thus, there are n new edges that are created. Let f ′(x) be the sum of
the n new edges that are created by deleting each vertex one at a time.

Note that |C − x| = n(n− 3)/2. Each of the n edges that contributes to f ′(x)
appears n − 4 times across the entire neighborhood. Therefore, the symmetric
and non-symmetric sampling from C − x is given by

4

n(n− 3)

(
n− 1

2
f̄ − f(x)

)
+

n− 4

n(n− 3)
f ′(x).

Using the sample rate from x and C − x yields the combined effect. Note that
the operator is only well-defined when n > 3. Therefore:

Avg(f(y))
y∈N(x)

= f(x)− 3n− 10

n(n− 3)
f(x)+

4

n(n− 3)

(
n− 1

2
f̄ − f(x)

)
+

n− 4

n(n− 3)
f ′(x).

This can be rearranged to yield:

Avg(f(y))
y∈N(x)

= f(x)− 3n− 10

n(n−3) f(x) +
n

n(n−3) f
′(x) +

4

n(n−3)
(
n−1
2

f̄ − f(x)− f ′(x)
)
.

While computing f ′(x) with no prior knowledge requires O(n) time, if we cur-
rently know the evaluation of f(x) and f ′(x) and we move to a point y such that
y ∈ N(x), then both f(y) and f ′(y) can be computed as a partial update to f(x)
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and f ′(x) respectively, and both partial updates can be computed in constant
time. Thus, the resulting landscape is quasi-elementary.

In special cases (usually when n is small) the quasi-elementary landscape is
actually elementary. For example, when n = 4 we find that

Avg(f(y))
y∈N(x)

= f(x) +
3

2
(f̄ − f(x)).

2.2 The 3-opt Quasi-Elementary Landscape

The next example is a landscape for the classic 3-opt operator. This version of
3-opt does not include the “shift” operator and all segments must be of length
2 or greater. However, we will find that the results presented in this paper can
be combined to characterize a more general 3-opt neighborhood that allows one
of the segments to include the single city (shift operator) case.

Stattenberger et al. [8] give a general formula for counting the number of ways
that a Hamiltonian Circuit can be cut into k segments corresponding to those
used by a Lin-Kernighan k-opt operator. For k = 3 this quantity is n(n− 4)(n−
5)/3!. In principle, one could then reconfigure the tour by reversing one segment,
two segments, or all three segments. However, note that reversing one segment
results in a 2-opt move because the two segments that are not reversed can be
concatenated into one segment. Thus, there are four patterns of reversal where
either two segments are reversed or all three segments are reversed. Therefore:

d = 4n(n− 4)(n− 5)/3! = 2n(n− 4)(n− 5)/3.

In the following we will use f(x) and f ′(x) with the same meaning as in the case
of the “shift” neighborhood. However, the values of d, p1, p2, p3 and p4 could
change. We have already presented the new value of d. Next we will present
the new values of the pi constants. We are searching for an expression of the
following form:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(∑
w∈C

w − f(x)− f ′(x)

)
.

In a 3-opt move, exactly 3 edges are removed from the current solution. Thus,
p1 = 3/n as in the case of the “shift” neighborhood. Let us now consider the
edges in C − x that are included in a new neighbor.

Let P and Q be two cities that are distance 2 apart in the current solution x.
In order to bring together these 2 cities (and include the edge eP,Q ∈ C − x in
the neighbor) a segment of length 2 must be reversed. There are two ways this
segment of length two can be chosen. It can be chosen to include the first city P ,
which is then moved adjacent to the second city when the segment is reversed,
or it can be chosen to include the second city Q which is moved adjacent to the
first city when the segment is reversed. The location of the third cut does not
matter, and there are n − 5 possible locations for the third cut to occur. Two



284 D. Whitley and F. Chicano

segments must be reversed to be a legal 3-opt move: one must be the segment
of length 2, the other must be the segment that does not contain either P or Q.
Three segments cannot be reversed. Thus, there are 2(n − 5) ways to segment
the tour to yield the desired result, and there is only one reversal pattern in each
case that reverses two segments to yield the desired result (see Figure 1). The
sum of the weights of the edges of cities that are distant 2 apart in x is exactly
f ′(x). Thus, f ′(x) must be summed 2(n− 5) times in the whole neighborhood,
yielding p4 = 2(n− 5)/d. Note that the auxiliary function is exactly the same as
the one used for the “shift” operator. If the tour is: 1 2 3 4 5 then the auxiliary
function is f ′(x) = w1,3 + w2,4 + w3,5 + w4,1 + w5,2. This means the results for
the two neighborhoods can be easily combined.

(a) Cuts before P and Q (b) Cuts after P and Q

Fig. 1. The two ways cuts can be placed to bring cities P and Q together if they are
distance 2 apart

We next compute the value of p2. Let P and Q be two cities in x which are
distance l > 2 apart. We pick l ≤ n/2 so we consider the shortest path between
P and Q in the tour. There are four ways cuts can be placed to bring P and Q
together:

– Before P and before Q (n− 6 other cuts are possible with only one reversal
pattern). See Figure 2(a).

– After P and after Q (n − 6 other cuts are possible with only one reversal
pattern). See Figure 2(b).

– After P and before Q (n− l − 2 cuts are possible with 2 reversal patterns).
See Figure 2(c).

– Before P and after Q (l − 2 cuts are possible with 2 reversal patterns). See
Figure 2(d).

Therefore p2 = (n− 6)/d+ (n− 6)/d+ 2(n− l − 2 + l − 2)/d = 4(n− 5)/d.
Finally, by substitution:
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(a) Cuts before P and Q (b) Cuts after P and Q

(c) Cuts after P and before Q (d) Cuts before P and after Q

Fig. 2. The four ways cuts can be placed to bring cities P and Q together in a neigh-
boring solution

Avg(f(y))
y∈N(x)

= f(x)− 3

n
f(x) +

2(n− 5)

d
f ′(x) +

4(n− 5)

d

(∑
w∈C

w − f(x)− f ′(x)

)

= f(x)− 3

n
f(x) +

2

2n(n− 4)/3
f ′(x) +

4

2n(n− 4)/3

(∑
w∈C

w − f(x)− f ′(x)

)

= f(x)− 3

n
f(x) +

3

n(n− 4)
f ′(x) +

6

n(n− 4)

(∑
w∈C

w − f(x)− f ′(x)

)
. (8)

Recall that computing both f(y) and f ′(y) can be done as a partial update of
f(x) and f ′(x), respectively.

While we could combine the results for the “shift” neighborhood and this
3-opt neighborhood result, it is more useful to leave then separated, since it
provides information about which subset of the larger more general 3-opt neigh-
borhood yields better moves on average. It is also notable that “shift” increases
the relative sampling of f ′(x) while this form of 3-opt decreases the relative
sampling of f ′(x).
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2.3 The Maximal Clique Problem

Katayama et al. [5] propose a variable neighborhood “k-opt” move operator1

for the maximal clique problem. Katayama et al. report that this operator is
competitive with other heuristic search methods for generating solutions to the
maximal clique problem. While the operator has been applied to the maximal
clique problem, it can also be used to search for subgraphs with maximal density
independent of whether the subgraph is a clique or not.

The operator breaks a graph G with vertices V and edges E into two sub-
graphs, one with a set of vertices denoted by Z, and the other with the remaining
vertices, V − Z. Under the “k-opt” move operator, k vertices in Z are removed
and k vertices from V −Z are added to Z. We will say that an edge ei,j belongs
to Z if vertices vi and vj are in the subgraph Z. All subsets of k vertices that are
not currently in Z are moved into subset Z; thus all edges that do not belong
to Z come into Z.

We must also compute f̄ as a uniform sample over the cost components.
Assume we are attempting to maximize the number of edges in subgraph Z ⊂ V .
Let f(Z) count the number of edges of E in Z. Let r = |Z|, q = |V − Z| and
n = |V |. Using counting arguments, one can prove that the average of f over all
possible assignments of vertices to Z is given by:

f̄ =
r(r − 1)

n(n− 1)

∑
w∈C

w. (9)

To have an elementary landscape, we need to divide “components” into those
that are in the solution, and those that are not in the solution. And each set
needs to be sampled at a uniform frequency corresponding to p1 or p2. But when
counting (and maximizing) the number of edges in Z and the number of edges
not in Z, we can classify edges into 3 different types that are uniformly sampled.

– Type 1: Edges that belong to Z and contribute to f(Z).
– Type 2: Edges not in Z that connect two vertices not in Z.
– Type 3: Edges not in Z that connect a vertex in Z to a vertex in (V − Z).

Therefore we can compute p1 and p3, but there are two sampling rates instead
of one for the edges normally accounted for p2. As in the previous examples we
will denote the two different sampling rates by p2 and p4.

We should also note here that Katayama et al. limit their neighborhood moves
to those involving only the Type 1 and Type 2 edges. If a vertex in (V −Z) did
not connect to a vertex in Z, then moving that vertex was not considered in the
Katayama implementation. However, we will analysis the full neighborhood. To
do this we generalize an early result by Whitley [11].

Theorem 1. The “k-opt” operator for maximizing the density of edges in a
subgraph Z of graph G induces a quasi-elementary landscape. Let r = |Z|, q =

1 This is not the k-opt operator used for the Traveling Salesman Problem.
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|V − Z| and n = |V | = r + q. For r > k and q > k the neighborhood average for
the “k-opt” operator is given by:

Avg
Y ∈N(Z)

(f(Y )) = f(Z)− k(r + q + 2q2r + k(q − q2 − r + r2)− (r + q)2)

q(q − 1)r(r − 1)
f(Z)

+
k(qr + k(1− r − q))

rq(q − 1)
f ′(Z) +

k(k − 1)n(n− 1)

r(r − 1)q(q − 1)
f̄ , (10)

where the function f ′(Z) is the weighted sum of the edges having one vertex in
Z and the other in V − Z.

Proof. We already know that p3 = r(r−1)
n(n−1) by Eq. (9).

We need to count 3 kinds of edges:

1. f(Z) is the weighted sum of edges of E that are included in Z.

2. f ′(Z) is the weighted sum of edges with one vertex in Z and one in V − Z.

3.
∑

w∈C w is the total weighted sum of edges.

Putting these together we obtain

Avg
Y ∈N(Z)

(f(Y )) = f(Z)−p1f(Z)+p4f
′(Z)+p2

(∑
w∈C

w − f(Z)− f ′(Z)

)
. (11)

We first compute p1, the probability that edge ei,j moves out in Z. If two vertices
are randomly drawn from Z for exchange, there are (r−k)/r ways the first vertex
can stay in Z and (r− k− 1)/(r− 1) that the second vertex can stay in Z. The
probability of an edge that is currently in Z moving out of Z is

p1 = 1− (r − k)(r − k − 1)

r(r − 1)
.

We define p2 to be the probability that an edge “contained” within V −Z moves
to Z. There are k/q ways to select the first vertex, and (k− 1)/(q− 1) ways that
the second vertex can be selected. Thus,

p2 =
k(k − 1)

q(q − 1)
.

Finally, we will compute p4. Consider an edge ei,j such that vi ∈ Z and vj ∈
V − Z. Then p4 corresponds to the probability that vi stays in Z and vj moves
to Z when any random neighbor is considered.

p4 =
(r − k)

r
· k
q
=

k(r − k)

rq
.

Substituting into (11) we obtain:
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Avg
Y ∈N(Z)

(f(Y )) = f(Z)−
(
1− (r − k)(r − k − 1)

r(r − 1)

)
f(Z) +

k(r − k)

rq
f ′(Z)

+
k(k − 1)

q(q − 1)

(
n(n− 1)

r(r − 1)
f̄ − f(Z)− f ′(Z)

)
, (12)

which reduces to (10).
Computing both f(Z) and f ′(Z) can be done by enumerating the vertices in

Z and checking the edges that are incident on vertices in Z. Therefore f ′(Z) can
be computed as a side-effect of computing f(Z). And for Y ∈ N(Z), both f(Y )
and f ′(Y ) can be computed as a partial update to f(Z) and f ′(Z) respectively.
Therefore computing f ′(Z) has complexity less than or equal to computing f(Z)
and the maximal clique problem is a quasi-elementary landscape.

These results could be expressed with respect to the neighborhood size. The
total size of the neighborhood is given by

d =

(
r

k

)(
q

k

)
.

When p4 = p2 and k ≥ 2 the landscape becomes elementary. This happens when
r = 3, q = 4 and k = 2 for example. But this is a special case, and this does not
happen in general.

3 Superpositions of Two Elementary Landscapes

Assume we have a landscape that is a superposition of two elementary land-
scapes, such that

f(x) = f1(x) + f2(x).

In this case, the evaluation function is not an elementary landscape, but f1 and
f2 are elementary landscapes. A number of problems have been shown to be
a superposition of two elementary landscapes. These include the asymmetric
frequency assignment problem [2,12] and all pseudo-Boolean functions with 2-
bounded complexity, like MAX-2SAT, Unconstrained Quadratic Optimization
(UQO) [3], the Subset Sum [1] as well as all the NK-Landscapes when K=1 [9].

This means that

Avg(f(y))
y∈N(x)

= Avg{f1(y)}
y∈N(x)

+Avg{f2(y)}
y∈N(x)

= f1(x) +
k1
d

(
f̄1 − f1(x)

)
+ f2(x) +

k2
d

(
f̄2 − f2(x)

)
. (13)

Given that we know f(x) = f1(x) + f2(x) and f2(x) = f(x) − f1(x) we obtain:

Avg(f(y))
y∈N(x)

= f(x) +
k1
d

(
f̄1 − f1(x)

)
+

k2
d

(
f̄2 − f2(x)

)
,
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Avg(f(y))
y∈N(x)

= f(x)− k1
d
f1(x) −

k2
d
(f(x)− f1(x)) +

{
k1
d
f̄1 +

k2
d
f̄2

}
,

where k1

d f̄1 +
k2

d f̄2 is a constant. Note that we can chose to eliminate either f1
or f2 and normally would select the simpler of the two functions to include in
the computation. This means that every problem which is a superposition of
two elementary landscapes is also a quasi-elementary landscape as long as the
computational complexity of either f1 or f2 is less than the cost of enumerating
the neighborhood. Generally, we would expect the computational cost of f1 or
f2 to be less than the cost of computing the full evaluation function, f = f1+f2.

We have previously shown in this paper that the “shift” operator and the
“3-opt” operators for the TSP, as well as the Katayama’s “k-opt” operator for
Max-Clique can be captured by an equation of the following form:

Avg(f(y))
y∈N(x)

= f(x)− p1f(x) + p4f
′(x) + p2

(
f̄

p3
− f(x)− f ′(x)

)
. (14)

In all of these problems the auxiliary function f ′(x) is the linear sum of a subset
of components drawn from the set C − x. This means that in these problems
there are exactly 3 distinct sampling rates over component’s in the set C. Having
this knowledge also makes it easier to search for a superposition of elementary
landscapes, because it limits the number of equivalence classes that must be
constructed when attempting to construct a superposition of elementary land-
scapes.

4 MAX-3SAT: A Superposition of Three Elementary
Landscapes

Now assume that we have a superposition of three elementary landscapes: f(x) =
f1(x) + f2(x) + f3(x). Then the average can be computed as:

Avg(f(y))
y∈N(x)

= Avg{f1(y)}
y∈N(x)

+Avg{f2(y)}
y∈N(x)

+Avg{f3(y)}
y∈N(x)

= f1(x) +
k1
d

(
f̄1 − f1(x)

)
+ f2(x) +

k2
d

(
f̄2 − f2(x)

)
+ f3(x) +

k3
d

(
f̄3 − f3(x)

)
. (15)

But for MAX-3SAT, we can include f̄ in f1 so that f̄2 = f̄3 = 0 and

Avg(f(y))
y∈N(x)

= f(x) +
k1
d

(
f̄1 − f1(x)

)
− k2

d
(f(x)− f1(x) − f3(x))−

k3
d
f3(x).

One can express f, f1, f2 and f3 as Walsh functions. Assume f1 captures the
linear interactions, f2 pairwise, and f3 the order-3 interactions [10]. There is
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only one 3-way interaction per clause. And there are only n linear terms, the
number of variables of the instance. We remove f2 because it is larger and less
regular in structure than f1 and f3. If there are n bits and m clauses, then
the number of components needed to compute the average (with f2 out of the
picture) is at most n + m + 1 since there are at most m f3 coefficients and n
linear f1 coefficients and f̄ = f̄1.

However, evaluations can also be done by partial evaluation. Let yb be a
neighbor of solution x generated by flipping bit b. It is then easy to prove that
the cost of the partial evaluation is constant on average for f(y), f1(y) and f3(y)
given f(x), f1(x) and f3(x). If yb is a neighbor of x, only one Walsh coefficient
(wp) changes in f1. Thus, f1(yp) = f1(x)− 2(ψp(x)wp). And on average, only a
constant number of order-3 Walsh coefficients changes sign in f3; the coefficients
exactly map to those clauses that contain bit b. In expectation, a bit appears in
a clause with probability 3/n and across all clauses a bit appears 3m/n = O(1)
times. Thus, evaluating f3 also has a partial update that is almost identical to
the partial update for evaluating f .

Hence, Avg(f(y))y∈N(x) can also be computed in O(1) time on average, and
the MAX-3SAT landscape is quasi-elementary. This generalizes to all MAX-
kSAT problems, as well as NK-Landscapes.

5 Conclusions

In this paper we present three examples of quasi-elementary landscapes: TSP
with the “shift” and 3-opt neighborhoods and Maximal Clique with Katayama’s
k-opt neighborhood. We also show that functions which are a superposition of
elementary landscapes can also be quasi-elementary landscapes. A direct ap-
plication of the concept of quasi-elementary landscapes is the generalization of
the Grover’s wave equation to landscapes which are not elementary. In future
work we plan to continue to explore the relationship between the elementary
landscape decomposition of the problems and the quasi-elementary property.
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Abstract. Permutations occur in a great variety of optimization prob-
lems, such as routing, scheduling and assignment problems. The present
paper introduces the use of learning automata for the online learning of
good quality permutations. Several centralized and decentralized meth-
ods using individual and common rewards are presented. The perfor-
mance, memory requirement and scalability of the presented methods is
analyzed. Results on well known benchmark problems show interesting
properties. It is also demonstrated how these techniques are successfully
applied to multi-project scheduling problems.

Keywords: Permutations, online learning, learning automata, disper-
sion games.

1 Introduction

The process of creating a permutation, i.e. arrangement of objects or values
into a particular order, is a recurring phenomenon in combinatorial optimiza-
tion problems. The permutations can represent a full or a partial solution to such
problems. Typical examples can be found in routing and scheduling. The trav-
eling salesman problem (TSP) for instance, aims at finding a tour of minimum
distance through a number of cities. A solution can be represented by a permu-
tation, which defines the order in which cities are visited. Many solutions for
scheduling problems also contain some permutation representation. A solution
for the permutation flow shop scheduling problem (PFSP) is such an example.
In the PFSP a number of jobs have to be sequenced in order to be processed
on a predefined number of resources. All these problems have a search space
exponential in the number of inputs n (cities, jobs, . . .). Due to the very nature
of permutations there are at least n! different solutions. An objective function,
which represents the quality of the solutions, has to be optimized. If a solution
to a problem can be represented by a permutation, then the objective function
states how good the permutation is.

In fact, we can imagine the following general problem (see Figure 1): given a
permutation π, a function f can give a value for that permutation f(π). Function
f can be the optimization problem under study, and it is assumed that the
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function is not known. It is a black box. Since all values can be normalized,
we can assume that f(π) ∈ [0, 1], with a value f(π) = 0 meaning the worst
permutation and f(π) = 1 the best or optimal permutation.

� �fPermutation π Value f(π)

Fig. 1. General permutation problem seen as a black box function

In the present contribution, this general permutation problem is tackled us-
ing simple reinforcement learning devices, called Learning Automata (LA). It is
shown how these methods are capable of learning permutations of good qual-
ity (f(π) close to 1) without the use of problem specific information or domain
knowledge. However, it is not the goal to outperform existing optimization meth-
ods for these problems, but only to show the strength of LA for online permu-
tation learning.

The present paper is structured as follows. Section 2 shows related work on
the learning of permutations and the use of learning automata for solving op-
timization problems. Section 3 gives a small overview on learning automata. In
Section 4 different categories of permutation functions and their properties are
discussed. Section 5 presents some centralized and decentralized methods based
on learning automata for the online learning of permutations. In Section 6 the
presented methods are analyzed on some well known benchmarks, and a suc-
cessful application to project scheduling is demonstrated. A conclusion and final
remarks are given in Section 7.

2 Related Work

Population based incremental learning (PBIL) [1] is a method for solving opti-
mization problems, which is related to genetic algorithms. It however maintains
a real-valued probability vector for generating solutions. PBIL is very similar to
a cooperative system of finite learning automata where the learning automata
choose their actions independently and update with a common reward. COMET
[2] incorporates probabilistic modeling in conjunction with fast search algorithms
for application to combinatorial optimization problems. The method tries to
capture inter-parameter dependencies by creating a tree-shaped probabilistic
network. PermELearn [7] is an online algorithm for learning permutations. The
approach makes use of a doubly stochastic1 weight matrix to represent estima-
tions of the permutations, together with exponential weights and an iterative

1 A matrix is doubly stochastic if all its elements are nonnegative, all the rows sum
to 1, and all the columns sum to 1.



294 T. Wauters et al.

procedure to restore double stochasticity. [15] introduces a method using multi-
ple learning automata to cooperatively find good quality schedules for the multi-
mode resource-constrained project scheduling problem (MRCPSP). A common
reward, based on the makespan of the scheduling solution is used. [14] present
a method using learning automata combined with a dispersion game for solving
the decentralized resource-constrained multi project scheduling problem (DR-
CMPSP). To date the method belongs to the state-of-the-art for this problem2.

3 Learning Automata

Learning Automata (LA) [11,13] are simple reinforcement learning components
for adaptive decision making in unknown environments. An LA operates in a
feedback loop with its environment and receives feedback (reward or punish-
ment) for the actions taken. A single learning automaton maintains a probability
vector p over its actions, which it updates according to a reinforcement scheme.
Several reinforcement schemes with varying convergence properties are available
in the literature. Examples of linear reinforcement schemes are linear reward-
penalty, linear reward-inaction and linear reward-ε-penalty. The philosophy of
these schemes is to increase the probability of selecting an action in the event
of success and to decrease it when the response is a failure. The general update
scheme is given by:

pm(t+ 1) = pm(t) + αreward(1− β(t))(1 − pm(t))

− αpenaltyβ(t)pm(t) (1)

if am is the action taken at time t

pj(t+ 1) = pj(t)− αreward(1− β(t))pj(t)

+ αpenaltyβ(t)[(r − 1)−1 − pj(t)] (2)

if aj 
= am

With pi(t) the probability of selecting action i at time step t. The constants
αreward and αpenalty are the reward and penalty parameters. When αreward =
αpenalty , the algorithm is referred to as linear reward-penalty (LR−P ), when
αpenalty = 0, it is referred to as linear reward-inaction (LR−I) and when αpenalty

is small compared to αreward, it is called linear reward-ε-penalty (LR−εP ). β(t)
is the reward received by the reinforcement signal for an action taken at time
step t. r is the number of actions. In the present paper, learning automata with
finite actions and linear reinforcement schemes will be used. More specifically
we will only use the linear reward-inaction update scheme, because it has nice
theoretical convergence results.

4 Permutation Functions

A permutation function, i.e. a function mapping permutations to values, can
take several forms. Most of them are highly non-linear. The most straightforward

2 Multi project scheduling problem library: http://www.mpsplib.com ; accessed on
September: 23, 2011

http://www.mpsplib.com
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function is one that gives a value to each individual position. Take for example
an assignment problem where a matrix defines the cost for assigning an agent
to a task. A permutation, where task i at position j is performed by agent j, is
a possible solution representation for this problem.

Table 1. Cost matrix for an example assignment problem of size n = 4

T0 T1 T2 T3

A0 3 4 1 3
A1 3 2 3 1
A2 3 4 2 2
A3 2 3 4 4

The assignment problem with the cost matrix from Table 1 results in a per-
mutation function as shown in Figure 2. The total cost for each permutation is
plotted. The search space has an optimal solution [2, 1, 3, 0] with a total cost of
7. This solution denotes that task 2 is performed by agent 0, task 1 is performed
by agent 1, task 3 is performed by agent 2 and task 0 is performed by agent 3.

Fig. 2. Permutation function for an example assignment problem

For many problems using a permutation representation the total cost or value
is determined by the adjacent elements. For example, if element A is directly
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followed by element B in the permutation, there is a cost of cAB. These costs can
be symmetric or asymmetric. In this category of permutation functions we can
make a distinction between cyclic and non-cyclic functions. A typical example
where the permutation function is based on adjacency costs and is also cyclic is
a TSP.

To summarize, we distinguish the following default permutation function cat-
egories:

– individual position
– adjacent positions (cyclic and non-cyclic)

Many permutation functions use or combine elements from these default cate-
gories.

Some optimization problems have additional constraints on the permutations.
For example, one can have precedence constraints, imposing that one element
must occur before or after another element. Examples include the sequential or-
dering problem (SOP) which is a TSP with precedence constraints) and project
scheduling problems. Yet another additional constraint can be that several el-
ements must be adjacent to each other and form groups. One can incorporate
these additional constraints by adding a high penalty to the cost value of the
permutation.

5 Learning Permutations

In order to learn permutations of good quality one or more learning components
are put in a feedback loop with the permutation evaluation function f (i.e. the
environment), as is shown in Figure 3. The rest of this section describes a number
of centralized and decentralized approaches for performing this learning task.

� fPermutation π Value f(π)

�Learning

Component

Fig. 3. Learning component in a feedback loop with the permutation learning problem
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5.1 Naive Approach

A naive and centralized approach (Figure 4) to learning permutations using
learning automata would be to assign one action per permutation. This results
in a total of n! actions, which is impractical for larger n both with respect to
calculation time and memory usage.

LA

1 2 n!...

a1 a2 an!

Fig. 4. A naive approach, one LA with one action per permutation

5.2 Hierarchical Approach

A better approach would be to divide the learning task among different learning
automata, more specifically a tree of learning automata, called a hierarchical
learning automaton [12]. An example of such a hierarchical learning automaton
for n = 3 is shown in Figure 5. An LA at depth d ∈ {1, 2, . . . , n} in the tree is
responsible for choosing the element at position d in the permutation. Each LA
at depth d has n + 1 − d actions, excluding all the actions chosen in the LA in
the path from this LA to the root of the tree. The advantage of this hierarchical
approach is that each individual LA has a smaller action space (maximum n).
There is also a drawback. In case of a large exploration, the whole search tree is
visited in the worst case, which results in

∑n
d=1

n!
d! LAs. Since all action selection

probabilities for each LA have to be stored, this can be very memory intensive.

5.3 Probability Matrix Approach

To deal with the large memory requirements of the hierarchical approach we
developed an approach with a compact representation. Similar to the method
in [7], we use a doubly stochastic matrix P with n rows and n columns. The
column and row sums are always 1. Pij is the probability for element i to be on
position j in the permutation. The approach works as follows:

1. generate a uniform doubly stochastic matrix P with:
∀i=1..n∀j=1..nPij =

1
n
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LA
0

123

1 3

LA
1

2 3

LA
12

LA
13

LA
2

1 3

LA
21

LA
23

LA
3

1 2

LA
31

LA
32

2

132 213 231 312 321

3 2 3 1 2 1

Fig. 5. An example of a hierarchical learning automaton for n = 3

2. select a permutation π using P
3. retrieve a reward r = f(π) for the selected permutation
4. update P using reward r
5. repeat from step 2 until some stopping condition is met.

These steps are now described in more detail.

Selecting a Permutation from P : Several methods can be used to select a
permutation from a doubly stochastic matrix. A first method is to uniformly
select a row i and then use a probabilistic selection (e.g. roulette wheel selec-
tion) on this row for determining on which position j we have to put element
i in the permutation. After that we reduce the matrix by removing row i and
column j. Then we normalize the remaining rows, and repeat the process until
all rows (and also all columns) have been selected once. We then have a complete
permutation. Another permutation selection method is based on entropy. The
method is similar to the explanation above, but the next row is now selected
based on minimum entropy.

argmin
i

H = −
∑

j=1..n

Pij log (Pij)

Updating P with Reward r: The probability matrix P is updated with an
LA update scheme for each row i, and the selected action is determined by j.
After updating all rows, the matrix P remains doubly stochastic, which is not
the case in the PermELearn algorithm [7].

5.4 Decentralized Approach

The following method is similar to the ‘probability matrix method’, but uses
a more decentralized approach. Each position in the permutation is determined
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by an individual agent. An agent employs a learning automaton for choosing its
individual position from the full set of positions. Thus, there are n agents (LA)
with n actions each, resulting in the same memory footprint as the ‘probability
matrix approach’. The agents play a dispersion game [6] for constructing a per-
mutation. In a dispersion game, the number of agents is equal to the number of
actions. In order to form a permutation, all agents need to select a distinct action
so that the assignment of actions to agents is maximally dispersed. For example,
if three agents select the following distinct actions: agent 1 selects position 2,
agent 2 selects position 3 and agent 3 selects position 1, then the permutation
becomes [3, 1, 2].

A Basic Simple Strategy (BSS) was introduced in [6], allowing agents to se-
lect maximally dispersed actions in a logarithmic (in function of the number of
agents) number of rounds, where a naive approach would be exponential. BSS
does not incorporate the agents’ preferences, it uses uniform selection. To take
the agents’ preferences into account, we introduce a probabilistic version of BSS,
which we call Probabilistic Basic Simple Strategy (PBBS). The PBBS works as
follows. Given an outcome o ∈ O (selected actions for all agents), and the set of
all actions A, an agent using the PBBS will:

– select action a with probability 1 in the next round, if the number of agents
selecting action a in outcome o is 1 (no

a = 1).
– select an action from the probabilistic distribution over actions a′ ∈ A for

which no
a′ 
= 1, otherwise.

The probabilistic distribution over actions is obtained from the agents’ LA. Once
a permutation is constructed by playing the game, a common reward (permu-
tation function) or individual reward can be obtained. These common or indi-
vidual rewards are then given to the agents’ LA, which consequently update
their probabilistic distribution. Experiments have shown that this decentralized
approach has very similar performance characteristics as the ‘probability matrix
approach’.

6 Experiments

As an illustration of the methods’ behaviour, some experiments were performed
on a fictitious permutation function and simple benchmark problems, the TSP
and an assignment problem. Subsequently, application to a more extensive multi-
project scheduling problem is given, which shows the real advantage of the
described methods. The following experiments report on the decentralized ap-
proach unless mentioned otherwise. Similar properties were observed for the
hierarchical and probability matrix approach. All results are averaged over 100
runs and the experiments were performed on an Intel Core i7 2600 3.4Ghz pro-
cessor, using the Java version 6 programming language.
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6.1 Peaked Permutation Function

Consider the following permutation function definition. If the decimal number of
the permutation π is dec (π) according to the factorial number system (Lehmer
code) [9]. Then the value of the permutation is defined as:

f (π) =

(
2dec (π)

n!

)10

if dec (π) ≤ n!

2
(3)

=

(
2 (n!− dec (π))

n!

)10

if dec (π) >
n!

2
(4)

This function has a peak value in the middle of the permutation range. Figure
6 shows this permutation function for n = 9.

Fig. 6. Peaked permutation function landscape n = 9

Figure 7 compares the average calculation time (in milliseconds) of the pre-
sented approaches. For each size n = 2..20, 5000 iterations are performed on the
peaked permutation function. A learning rate of 0.005 is used for each approach.
All but the naive approach show good calculation time properties.

Figure 8 shows the maximum function value over a number of iterations
(50,100,500) for different learning rates when applying the decentralized ap-
proach with common reward (i.e. the permutation function value). The results
show that for a particular range of learning rates better permutations are learned,
compared to random sampling (i.e. learning rate equal to 0). When more itera-
tions are given for learning, the difference between random sampling and learning
becomes smaller. Bad performance can be observed when the learning rates are
too high, and thus premature convergence occurs.
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Fig. 7. Average calculation time in milliseconds for performing 5000 iterations of
the presented approaches for different permutation sizes on the peaked permutation
function

Fig. 8. Max. objective function value for different number of iterations on a peaked
permutation function of size n = 15
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Figure 9 shows the visited solutions with their corresponding position in the
search space (permutation number) during a single run of 500 iterations on the
peaked permutation function. A learning rate of 0.03 was used. In the beginning
of the search a extensive exploration of the search space is observed, but after a
while the search is focused towards high quality solutions (peak of the function).
The duration of the exploration phase depends on the learning rate. In the exper-
iments presented in Figure 9, most exploration disappears after approximately
150 iterations.

Fig. 9. Visited solutions with their corresponding position in the search space. Run of
500 iterations on the peaked permutation function of size n = 15.

6.2 TSP

We tested the decentralized approach with common reward on a number of TSP
instances from TSPLIB3. The distance was scaled to a value between 0 and 1,
such that a value of 1 corresponds to an optimal distance and 0 corresponds to
an upper bound on the distance. Figure 10 shows the maximum function value
over a number of iterations (1000, 5000, 10000, 50000) for different learning rates
on a size n = 17 instance with name ‘gr17’. For a particular range of learning
rates better solution values can be observed, compared to random sampling. If
more iterations are given, then the best solutions occur for lower learning rates.
Again, too high learning rates lead to worse solutions.

3 TSPLIB website: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/ ;
last check of address September: 23, 2011.

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
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Fig. 10. Max. objective function value for different number of iterations on a TSP
instance (gr17) of size n = 17

6.3 Assignment Problem

Assignment problems belong to the category of permutation functions where the
total cost of the permutation is equal to the sum of the individual costs. Therefore
both individual and global rewards can be given to the agents. Figure 11 shows a
comparison of the maximum objective function value for individual and common
rewards on a random assignment problem of size n = 9 with the cost matrix of
Table 2. For each learning rate a run of 1000 iterations is performed where the
maximal objective function value is measured. The objective function is scaled
between 0 and 1 such that 1 corresponds to the optimal solution. The results
show that individual rewards produce better solutions than common rewards.
For a particular range of learning rates the method performs better than random
sampling, and the optimal solution can be found by using individual rewards .

6.4 Multi-project Scheduling

The decentralized method introduced in the present paper, was used for solving
the decentralized resource-constrained multi project scheduling problem (DR-
CMPSP) [14]. The DRCMPSP was introduced in [4,5] and extended in [8]. It
is a generalization of the Resource Constrained Project Scheduling Problem
(RCPSP) [3,10] and can be stated as follows. A set of n projects have to be
scheduled simultaneously using autonomous and self-interested decision makers.
Each individual project contains a set of jobs or activities, precedence relations
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Table 2. Cost matrix for a random assignment problem of size n = 9

T0 T1 T2 T3 T4 T5 T6 T7 T8

A0 7 8 5 3 9 3 9 4 7
A1 3 6 9 3 2 9 6 5 7
A2 6 3 5 1 3 6 9 2 7
A3 8 1 9 3 3 6 3 6 3
A4 7 3 5 7 3 8 9 3 2
A5 4 2 8 2 7 5 4 6 4
A6 7 8 8 9 4 8 9 8 8
A7 7 4 7 8 9 8 1 3 5
A9 9 3 9 7 6 1 5 2 8

Fig. 11. Comparison of max. objective function value for individual and common re-
ward on a assignment problem of size n = 9

between the jobs, and resource requirements for executing each job. These re-
source requirements constitute local renewable resources, and global renewable
resources shared among all projects. A global objective value must be minimized,
examples include but are not limited to: the average project delay(APD), the to-
tal makespan (TMS), and the deviation of the project delay (DPD). The project
delay of a project is its makespan minus the critical path duration. The remain-
der of the current section will concentrate on the APD objective. A constructive
schedule generation scheme was applied to solve the DRCMPSP, requiring the
project order and the job order for each project as input. The project order is
a permutation of projects, while the job order is a permutation with precedence
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constraints. The decentralized method with the dispersion game was used to
find good quality project orders, leading to schedules with a low APD objec-
tive value. Each project was represented by one project order decision maker.
Instances from the Multi project scheduling problem library4 have been experi-
mented on. To date, the method belongs to the state-of-the-art for this problem,
showing 104 best solutions out of 140, with respect to the average project delay
objective.

7 Conclusion

We have presented several centralized and decentralized methods using learning
automata for the online learning of good quality permutations. Different permu-
tation functions have been discussed. The capabilities of the methods have been
analyzed and demonstrated on well known benchmark problems, and we demon-
strated how to successfully apply these methods to a multi-project scheduling
problem. The methods are very general because they do not use any problem
specific information or domain knowledge, which makes them well suited for
application within general optimization methods, like hyper-heuristics. In the
future, the very same methods can be applied to other optimization problems
and make them core elements of new intelligent optimization approaches.

Acknowledgment. Thanks to Erik Van Achter for his help on improving the
quality of this text. Funded by IWT (IWT SBO DiCoMAS project).
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Abstract. Application mapping is an important issue in designing systems based
on many-core networks-on-chip (NoCs). Simulated Annealing (SA) has been of-
ten used for searching for the optimized solution of application mapping problem.
The parameters applied in the SA algorithm jointly control the annealing sched-
ule and have great impact on the runtime and the quality of the final solution
of the SA algorithm. The optimized parameters should be selected in a system-
atic way for each particular mapping problem, instead of using an identical set
of empirical parameters for all problems. In this work, we apply an optimization
method, Nelder-Mead simplex method, to obtain optimized parameters of SA.
The experiment shows that with optimized parameters, we can get an average 237
times speedup of the SA algorithm, compared to the work where the empirical
values are used for setting parameters. For the set of benchmarks, the proposed
parameter-optimized SA algorithm achieves comparable communication energy
consumption using less than 1% of iterations of that used in the reference work.

1 Introduction

In the past decade, the multi- and many-core processors have been rapidly develop-
ing and widely used for processing a massive amount of data in increasingly complex
systems [2]. As the number of cores and their processing capabilities are continuously
increasing, the communicational aspect, instead of the traditional computational aspect,
is becoming the major concern in designing systems-on-chip (SoCs). The underlying
communication architecture in many-core systems plays a great role in improving the
performance and decreasing the energy consumption of the system. To deal with the
emerging communication challenge in many-core system, the NoC has been proposed
as a promising alternative to the conventional bus-based and point-to-point communi-
cation architectures [1].

Figure 1 shows an example of an 8-core SoC on a 2 × 4 2D mesh NoC. The NoC is
a communication infrastructure composed of a set of routers connected by inter-router
communication channels. The processing elements (PEs) such as CPU or DSP modules,
FPGAs, embedded memory blocks, are connected to a router via the network interface
(NI). Typically, the term node or tile on a NoC refers to a PE and the corresponding
router. The data generated by the source PE is first transformed into packets coupled
with appropriate control information, and then transmitted to the destination PE by

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 307–322, 2012.
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traveling multiple routers and channels over the NoC. The routing decision is made on
each router based on a specific routing protocol. By decentralizing the role of the arbi-
tration into each router, the NoC architecture is suitable to deal with the great number of
concurrent communications in modern many-core systems. The bandwidth on the NoC
is also enhanced by sharing network channels among concurrent communications [4].

PE

R.

PE

PE PE

R.

R.

PE

PE

NI NI

PE

R. R.

PE

R. R. R.

PE   processing element
R.     Router
NI     network interface

NI NI

NI NINI NI

Fig. 1. An Example of 2D Mesh NoC

Based on the NoC communication architecture, there are set of problems related
to many-core systems design. One of them is the application mapping. Given an ap-
plication implemented by a set of tasks, and a many-core NoC, the problem of the
application mapping is to decide how to map each task onto a node so that the prede-
fined objectives and constraints can be met. The application mapping has a great impact
on the system performance and energy consumption. The experiment in [6] shows that
one optimized mapping algorithm achieves 51.7% communication energy savings com-
pared to an ad hoc implementation. While exhaustive search is not possible for the NP-
hard mapping problem, stochastic and heuristic searches are generally used for finding
the near-optimal mapping solutions. As surveyed in [8], these stochastic and heuristic
methods include, for example, simulated annealing (SA), tabu search (TS) and greedy
incremental (GI) heuristic.

In these search heuristics, the SA has been often used since it is able to escape from
the local minimum and find the global minimum of the dedicated cost function. The
detail of the SA algorithm will be described in Section 4. To apply the SA algorithm,
a set of parameters and functions needs to be specified, such as initial temperature,
final temperature, cooling ratio, temperature function, accept function, etc. These pa-
rameters and functions determine how closely and how quickly SA can converge to the
global minimum of the objective function. However, the fact is, there is no a straight-
forward way for specifying these parameters. In previous works, these parameters are
set either by using empirical values [6] [13], or decided by the specific characteristics
of a particular problem [11]. Apparently, we cannot make sure that these empirical or
problem-specific values could be generally applicable to all other problems. Without a
systematic way, the parameters of SA are usually randomly selected, and as a result, the
quality of the set of parameters is not guaranteed.

A systematic method is necessary to generate the parameters of the SA algorithm for
solving the application mapping problem, even though it has not so far been mentioned
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in literature. In this work, we propose to use the Nelder-Mead simplex method, which
is originally introduced in [7], to automatically generate the optimized parameters of
SA. The generated parameters are applied to the SA algorithm to find the optimized
mapping solution which achieves minimized communication energy consumption on
the NoC. In this work, by using the set of optimized parameters, we target to utilize less
evaluations in SA while achieving comparably good quality of the final solution with
the reference work.

The rest of the paper is organized as follows. Section 2 reviews previous works which
use the SA algorithm for application mapping and outlines our considerations and con-
tributions in this work. In Section 3, the problem of application mapping is modeled and
the objective function is defined. Section 4 describes the general SA algorithm and Sec-
tion 5 presents the Nelder-Mead simplex method. The proposed parameter-optimized
SA algorithm is presented in Section 6. The experimental results are demonstrated in
Section 7. Section 8 summarizes this paper.

2 Related Work

In [6], the authors developed an energy-aware mapping algorithm, namely Branch and
Bound, for 2D mesh NoCs. The SA algorithm is implemented as a reference to evaluate
the Branch and Bound algorithm. The comparison shows that SA can find the better
mappings which achieve lower communication energy consumption than the ones found
by the proposed Branch and Bound algorithm. However, the major drawback of SA is
speed. The result in [6] shows that for a video/audio application, SA is 82 times slower
than the Branch and Bound algorithm. The initial temperature was set 100 and the
cooling ratio , 0.9. The final temperature was not set because a different termination
criteria was used.

In [13], the authors tried to speed up SA by optimizing the number of iterations per
temperature level and the core swapping process as well. A both NoC- and application-
aware iteration number is used. In addition, to generate a neighboring solution, two
cores are selected and swapped based on the possibility distribution function, instead of
on an uniformly random possibility. The optimized SA is claimed to be 98% faster at
the price of 13% memory consumption on average. In this work, the initial temperature,
final temperature and cooling ratio are 1, 0.001 and 0.9 respectively.

In [11], the authors used SA to map an application on multiprocessor system-on-
chip (MPSoC). The cooling ratio was set 0.95. Two functions, which are based on the
execution time of each task defined in the task graph, were introduced to derive the
initial and final temperature. It shows that by using parameter obtained by these two
functions, the proposed method saves over half the optimization time and loses only
0.3% in performance.

We can see that for the application mapping problem, the parameters of SA were
selected randomly by authors in these works. In this way, whenever we encounter a
particular application mapping problem, we have to decide which set of parameters we
should use. Since we are not able to determine which one is best suitable for our specific
problem, the decision is difficult to make.
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For the parameters used in the SA algorithm, we believe that:

1. The parameters of SA are problem-specific. One set of parameters would not be
appropriate to other problems. The selection of the set of parameters has to be done
with respect to the particular problem.

2. The parameters of SA have a joint impact on the performance of SA. This means
that these parameters should be selected systematically, instead of being set inde-
pendently.

Based on these two considerations, in this work, we apply the Nelder-Mead simplex
method to systematically select the parameters of SA for the application mapping prob-
lem. The original Nelder-Mead simplex method is presented in [7] with purpose of find-
ing the minimal value of a function of n variables. By using the Nelder-Mead simplex
method, both the parameters to be selected and the cost function used in the selecting
process can be defined with respect to the particular application mapping problem. This
provides flexibility for us to use the SA algorithm for solving application mapping prob-
lems with single or multiple objectives. Moreover, since the set of parameters is selected
by the systematic procedure for the particular problem, instead of being set by empirical
values, the selected set of parameters is problem-specific and their qualities are guaran-
teed. To our best knowledge, this is the first work on investigating the systematic way of
selecting optimized parameters of SA in the application mapping problem domain.

3 Application Mapping Problem

3.1 Application and NoC Model

The inputs of the mapping problem consist of two parts: one is the application and
another is the many-core NoC. In this work, the application is modeled by a commu-
nication weighted graph (CWG), and the many-core NoC by a computation and com-
munication resource graph (CCRG). For the sake of simplicity, in this paper, we use a
2D mesh NoC with homogeneous cores as the target computation and communication
platform. We note that the method presented in this work is also applicable to other 2D
NoCs with regular or irregular topologies. The X-Y deterministic routing is adopted by
which a flit is first routed to the X direction and then the Y direction over the NoC.

Definition 1. A CWG is a directed graph < V,E >, where V = {v1, v2, . . . , vM}
represents the set of tasks of an application, corresponding to the set of CWG vertices,
and E = {(vi, vj)|vi, vj ∈ V } denotes the set of communications between tasks,
corresponding to the set of CWG edges. Each edge (vi, vj), denoted by eij has weight
volij representing the total communication amount, in bits, transmitted from task vi to
vj . M denotes the total number of tasks.

Definition 2. A CCRG is a directed graph < TL,CH >, where TL = {tl1, tl2, . . . ,
tlN} denotes the set of tiles on the NoC, corresponding to the set of CCRG vertices. N
denotes the total number of tiles. CH = {(tli, tlj)|tli, tlj ∈ TL} designates the set of
communication channels between tiles. The length of communication channel (tli, tlj),
denoted by |chij | is represented by the number of hops from tile tli to tlj . On a 2D mesh
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NoC with X-Y routing, the length of the communication channel between tiles tli and
tlj is calculated as follows:

|chij | = |xi − xj |+ |yi − yj| (1)

where (xi, yi) and (xj , yj) are the coordinates of the tile tli and tlj on a 2D mesh NoC
respectively.

3.2 Objective Function

Using the preceding application and NoC model, the mapping of CWG to CCRG is
defined by the one-to-one task-tile mapping function map : V → TL:

map(vi) = tli, ∀vi ∈ V, ∃tli ∈ TL (2)

When two tasks vi and vj of an edge eij in CWG are mapped on two tiles on the
CCRG, an amount of volij data will be transferred from the tile tli (map(vi)) to the tile
tlj (map(vj)). Based on the energy model proposed in [6], the communication energy
consumption of eij is

Eij = volij × (|chij | × ESbit
+ (|chij | − 1)× ELbit

) (3)

where ESbit
and ELbit

refer to the energy consumed by the switch and the link for
transmitting one bit of data. And the total energy consumed by the application defined
in CWG is

Eapp =
∑

∀eij∈E

Eij (4)

From Equation 3 and 4, we can see that, given the constants ESbit
and ELbit

, the com-
munication energy consumption of an application is linearly proportional to the product
of the data volume volij and the length of communication channel |chij |. In this work,
since the objective of application mapping is to minimize the Eapp, we need to mini-
mize the sum of the product of volij and |chij | for all communications in an application.
Herein, we define the weighted communication of an application (WCA) as the objec-
tive function to evaluate the quality of each candidate mapping.

Definition 3. The Weighted Communication of an Application (WCA) is the sum of
products of the data volume volij and the length of communication channel |chij | for
all communications in E.

WCA =
∑

∀eij∈E

volij × |chij | (5)

A mapping solution which can produce smaller WCA is considered to be a better solu-
tion because it will in turn yield a lower Eapp.

4 Simulated Annealing

Simulated annealing is a stochastic search method for optimization problem. The pseudo-
code of the general SA algorithm, derived from [10], is shown in Algorithm 1. The
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symbols and corresponding definitions used in Algorithm 1 are listed in Table 1. SA
simulates the metallurgical process of heating up a solid and then cooling down slowly
until it crystallizes. It starts from an initial, higher temperature and stops at a final, lower
temperature. An initial solution and its cost are given at the initial temperature. There-
after, at each temperature, SA tries L times of attempt mappings. In each attempt, a new
mapping solution is generated from current one using the move function Move(S, T ).
The cost of the new solution is compared with current cost. The algorithm always ac-
cepts a move with lower cost. Contrary to the greedy algorithm, SA accepts a worse
move with higher cost by a changing possibility. This helps to avoid local minimum
and find the global minimum. The accept possibility is decided by acceptance function
Accept(ΔC, T ) and decreases along with the temperature. As temperature cools down,
SA gradually becomes greedy and converges to the global minimum.

Algorithm 1. General Simulated Annealing Algorithm

1 S ← S0

2 C ← Cost(S0)
3 Sbest ← S
4 Cbest ← C
5 R ← 0
6 for i ← 0 to ∞ do
7 T ← Temp(i)
8 Snew ← Move(S, T )
9 Cnew ← Cost(Snew)

10 ΔC ← Cnew − C
11 if ΔC < 0 or Accept(ΔC,T ) then
12 if Cnew < Cbest then
13 Sbest ← Snew

14 Cbest ← Cnew

15 end if
16 S ← Snew

17 C ← Cnew

18 R ← 0
19 else
20 R ← R+ 1
21 if Terminate(i, R) = True then
22 break
23 end if
24 end if
25 end for
26 return Sbest and Cbest

5 Nelder-Mead Simplex Method

The Nelder-Mead simplex method is proposed in [7] for the minimization of a function
f(p) with n variables x1, x2, . . . , xn. In this method, a number of n + 1 points (solu-
tions) p0, p1, . . . , pn are originally selected and form the so-called simplex. The set of
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points are then used to generate a new and better point which will replace the worst
point in current simplex and forms a new simplex. Each point of the simplex is a n-
tuple with n variables, i.e., pk =

(
xk
1 , x

k
1 , . . . , x

k
n

)
. The Nelder-Mead simplex method

compares the n + 1 function values f(pi) (0 ≤ i ≤ n) and replaces the point with
largest cost by the newly generated point. In each iteration, the replacement is realized
by three operations: reflection, expansion and contraction. If it fails to do the replace-
ment through these three operations, all points forming the simplex are updated with
new values to generate a new simplex. The general Nelder-Mead simplex method is
described in Algorithm 2.

Algorithm 2. Nelder-Mead Simplex Method for Minimizing f(p)

1 Select the initial n+ 1 points pi (0 ≤ i ≤ n).
2 while (!stop()) do
3 Sort f(pi) (0 ≤ i ≤ n) such that f(p0) ≤ f(p1) ≤ · · · ≤ f(pn−1) ≤ f(pn).

4 Let p =
n−1∑
i=0

pi/n.

5 Generate reflection point pr = p+ α ∗ (p− pn).
6 if f(pr) ≤ f(pn−1)) then
7 Replace pn by pr.
8 Generate expansion point pe = p+ β ∗ (pr − p).
9 if (f(pr) < f(p0)) ∧ (f(pe) < f(pr)) then

10 Replace pn by pe.
11 end if
12 else
13 Let f(p∗) = min(f(pr), f(pn)).
14 Generate contraction point pc = p+ γ ∗ (p∗ − p).
15 if f(pc) ≤ f(p∗) then
16 Replace pn by pc.
17 else
18 Update pj with (pj + p0)/2 for j = 0, 1, . . . , n.
19 end if
20 end if
21 end while
22 Return the point p0.

As shown in Algorithm 2, the principle of the Nelder-Mead simplex method is, if
f(pr) ≤ f(pn−1), then the point pn is replaced by its reflection point pr. Thereafter,
if f(pr) < f(p0), the reflection point is expanded to the expansion point pe and the
point pn is replaced by pe. The procedure restarts when the expansion is done. In
the case that f(pr) > f(pn−1), the contraction point pc is generated. If f(pc) <
min (f(pr), f(pn)), the point pn is replaced by contraction point pc. Otherwise, all
points in current simplex are updated by pj = (pj + p0)/2(j = 0, 1, . . . , n) and a new
simplex is generated. Thereafter the process restarts.

By continuously replacing the point pn with a point which achieves smaller f(p),
the value of the function f(p) converges to the minimum. The process terminates when
the function stop() becomes true. The state of function stop() can be determined by
whether the value of function f(p) has converged to a final value [7], or whether the
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points forming the simplex have already converged to a final point [12]. In this work,
because we try to find the optimized parameters for the SA algorithm, we adopt the latter
way to define the function stop(). More precisely, in Algorithm 2, stop() becomes true
when |xk

i − xk
j | ≤ εk(i 
= j), for all i, j and k, where xk

i and xk
j are the kth element

of point pi and pj respectively. Each element of vector ε, called convergence degree of
variable x, is a predefined small positive value which determines the magnitude of the
convergence.

In Algorithm 2, reflection coefficientα, expansion coefficientβ and contraction coef-
ficient γ give the factors by which the new simplex is generated by reflection, expansion
and contraction respectively. These coefficients decide the speed of the convergence and
the quality of the final point. In [7] and [12], different values of α, β and γ were used.
In this work, we evaluated both sets of values by applying them in the Nelder-Mead
simplex method for the same set of benchmarks. The result shows that both sets of pa-
rameters achieve comparable performance of the SA algorithm, but the Nelder-Mead
simplex method using the coefficients in [12] can converge to the final point with 100
times less CPU time than that in [7]. Therefore, we use 1/3, 2.0 and 1.5 in [12] for α, β
and γ respectively.

6 Parameter-Optimized Simulated Annealing

6.1 Parameters and Functions in SA

As shown in Algorithm 1, to apply SA to the application mapping problem, a number of
parameters and functions have to be specified. In this section, we specify the parameters
and functions used for implementing the SA algorithm in this work.

Cost Function. The objective function of application mapping, i.e., the WCA defined
in Equation (5), is used as the cost function Cost(S) in SA.

Annealing Schedule: Temp(i) Function. The annealing schedule determines how
the temperature is cooling down. At each step of annealing, a new temperature is gen-
erated by temperature function Temp(i). We choose the geometric annealing schedule
presented in [10] where the Temp(i) is defined as:

Temp(i) = T0 × q� i
L (6)

The new temperature is decided by the initial temperature T0, the cooling ratio q, the
accumulated number of iterations i and the number of iterations at each temperature L.

Number of Iterations L. The number of iterations at each temperature L is identically
set as M(N − 1), where M and N are the number of tasks in CWG and that of tiles in
CCRG respectively.

Acceptance Function: Accept(ΔC, T ). While an improving move (ΔC < 0)
is always accepted, the function Accept(ΔC, T ) determines whether a worse move
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(ΔC > 0) should be accepted or not at the temperature T . The normalized inverse
exponential form is chosen to implement the acceptance function in this work.

Accept(ΔC, T ) = True⇔ random() < p

p =
1

1 + exp
(

ΔC
KC0T

) (7)

With this acceptance function, the possibility of accepting a worse move, p, is less than
50%. On the basis of the original normalized inverse exponential form presented in
[10], we add the normalizing ratio K in the acceptance function which works together
with the initial cost C0 to normalize the cost difference ΔC. This comes from the
observation that using the original normalized inverse exponential form , in cases that
the C0 is huge, an accepting possibility close to 50% will be created even for a very
small ΔC at a very low temperature. This makes SA inefficient at the last set of lower
temperatures.

Initial and Final Temperature. The acceptance function in (7) defines the relation
between the accepting possibility p, cost difference ΔC and temperature T . Equation
(7) can be solved with respect to T as follows:

T =
ΔC

ln( 1p − 1)
(8)

If we define Ps the possibility of accepting the maximal ΔC at initial temperature T0,
and Pf the possibility of accepting the minimal ΔC at final temperature Tf , then the
initial and final temperature can be calculated as follows:

T0 =
ΔCmax

ln( 1
P0
− 1)

, Tf =
ΔCmin

ln( 1
Pf
− 1)

(9)

In the way that the T0 and Tf are set manually using empirical values (the cases in
[6] [13]), only a numerical range is given by T0 and Tf , there are no realistic mean-
ings behind T0 and Tf . On the contrary, in this work, the usage of Ps and Pf is more
meaningful and understandable for designers to choose the T0 and Tf by Equation (9).

Move Function:Move(S, T ). We use the random swapping as the move function.
A task in current mapping is randomly selected and then it is swapped with another
randomly selected task.

Termination Function:Terminate(i,R). We add one criteria NΔC=0 into the ter-
mination function of coupled temperature and rejection threshold which is presented in
[10], to determine the stopping condition in this work.

Terminate(i, R) = True⇔ (Temp(i) < Tf ∧R ≥ Rmax)

∨(NΔC=0 = Z)
(10)
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NΔC=0 stands for the number of consecutive temperatures at which the lowest cost
Cbest has not been changed. Z is the maximal number of NΔC=0 allowed in the SA
algorithm. R is the number of consecutive rejections since last acceptance and Rmax is
the maximal number of rejections allowed in the SA algorithm. With this termination
function, the annealing is stopped either when the temperature reaches to or below the
final temperature and the moves in last Rmax iterations are rejected, or in the last Z
temperatures, no better solutions have been found. In this work, we set Rmax = L and
Z = 0.1NT , when NT stands for the total number of temperatures from T0 to Tf .

Initial Mapping. A random mapping in which each task is randomly mapped on a tile,
is generated as the initial mapping.

Summary of Parameters. Table 1 summarizes the parameters and functions used in
the SA algorithm in this work. We can see from Table 1, to apply the SA algorithm in

Table 1. Functions and Parameters for SA

Symbol Definition Value
S Mapping solution (S0: initial solution)
Cost(S) Cost function WCA (Equation (5))

Temp(i) Temperature functioni T0 × q� i
L 

i Accumulated number of iterations
q Geometric annealing schedule cooling ratio Nelder-Mead Simplex Method
L Number of iterations at each temperature M(N − 1)

N Number of tiles in CCRG
M Number of tasks in CWG
Accept(ΔC,T ) Return accept (True) or reject (False) for a

worse move
random() < 1/(1 +
exp ΔC

KC0T
)

K Normalizing ratio Nelder-Mead Simplex Method
C0 Initial cost Cost(S0)

T0 Initial temperature ΔCmax/ ln(
1
Ps

− 1)

Tf Final temperature ΔCmin/ ln(
1
Pf

− 1)

ΔCmax The maximal ΔC at initial temperature T0 Experiment
ΔCmin The maximal ΔC at final temperature Tf Experiment
P0 The possibility of accepting the maximal

ΔC at initial temperature T0

Nelder-Mead Simple Method

Pf The possibility of accepting the minimal
ΔC at final temperature Tf

Nelder-Mead Simplex Method

Move(S,T ) Return a neighboring mapping of S
Terminate(i,R) Return terminate (True) or continue (False) Temp(i) < Tf ∧R ≥ Rmax∨

NΔC=0 = Z

R Number of rejections
Rmax Allowed maximal number of rejections L

NT The total number of temperatures from T0

to Tf

ln( T0
Tf

)/ ln(q)

Z The allowed maximal number of tempera-
tures with ΔC = 0

0.1NT
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this work, the values of 6 parameters need to be specified: q,K, Ps, Pf , ΔCmax and
ΔCmin. As long as these parameters are specified, other parameters such as T0 and Tf

can be decided and all functions can work properly. In these 6 parameters, the values
of ΔCmax and ΔCmin can be obtained from a set of mapping trials generated from
the original mapping using the move function (see details in Section 7). The other 4
parameters, labeled “Nelder-Mead Simplex Method” in column “Value” in Table 1, are
the most important parameters of SA in this work and they are going to be optimized
by the Nelder-Mead simplex method presented in Section 5.

6.2 Parameter Optimization

To apply the Nelder-Mead simplex method to get the optimized parameters q,K, Ps and
Pf , we need to define the function f(p) and specify the boundaries and convergence
degree of each parameter from which the parameter is chosen.

Function f(p). Since using various sets of q,K, Ps and Pf , the SA algorithm will
produce different minimized values of WCA, we can define the output of the SA, i.e.,
the minimized WCA, as the function f(p) of variables q,K, Ps and Pf . With this
definition, it is possible to use the Nelder-Mead simplex method for finding the final
point of variables q,K, Ps and Pf which produces the minimum WCA by SA.

Parameter Boundaries and Convergence Degrees. Contrary to the work in [7] where
the variables x is unbounded, the parameters q,K, Ps and Pf in our specific application
mapping problem are bounded. Among them, the parameters Ps and Pf are theoreti-
cally in the range (0.0, 0.50] according to Equation (7). For the SA algorithm, it is
reasonable to set a higher acceptance possibility at the initial temperature and a rel-
atively lower acceptance possibility at the final temperature. In this work, we set the
range of Ps and Pf by [0.20, 0.49] and (0.0, 0.10] respectively. And the convergence
degrees εPs and εPf

are set 0.01 and 0.005 respectively. The cooling ratio q is sup-
posed to be in range (0.0, 1.0). In this work, we set the range [0.80, 0.99] for q. The
convergence degree εq is set 0.005. The value of K is allowed in the range of (0.0, 1.0]
and the convergence degree εK is set 0.05.

At the beginning of the Nelder-Mead simplex method, 5 initial points are generated
by choosing 4 elements, i.e, q,K, Ps and Pf , from their allowable range. During the
process of the Nelder-Mead simplex method, whenever an element of a point exceeds
its boundary, the bound value is used for the element. The function stop() becomes true
and the process is terminated when these 5 points converge to one point.

6.3 Parameter-Optimized Simulated Annealing Algorithm

Applying the Nelder-Mead simplex method, we develop the parameter-optimized sim-
ulated annealing algorithm for application mapping problems on many-core NoCs. The
proposed algorithm is described in Algorithm 3 where the function sa() and simplex()
apply the Algorithm 1 and 2 respectively. After defining the boundaries and conver-
gence degree for four target parameters, i.e., q,K, Ps and Pf , the optimized set of
parameters are obtained by the Nelder-Mead simplex method. The optimal mapping
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Algorithm 3. Parameter-Optimized Simulate Annealing

1 Define the boundaries and convergence degree ε for parameters q,K, Ps and Pf .
2 Obtain the final point of the Nelder-Mead simplex method, popt = simplex().
3 Set qopt = popt.q, Kopt = popt.K.
4 Set Psopt = popt.Ps, Pfopt = popt.Pf .
5 Find the best solution by applying the final point to SA,

Sbest = sa(qopt,Kopt, Psopt , Pfopt).
6 Return Sbest.

solution with minimized WCA is then found by running the SA algorithm with the
optimized set of parameters.

Note that, with various implementations of the SA algorithm, the parameters needed
to be selected are different. Since the variables and objective functions applied in the
Nelder-Mead method can be arbitrary, the Algorithm 3 is applicable for obtaining dif-
ferent sets of optimized parameters corresponding to different implementations. This
makes the method proposed in this work viable for selecting optimized parameters of
the SA algorithm which deals with diverse problems.

7 Experiment

To evaluate the efficiency of the proposed parameter-optimized simulated annealing
(POSA) algorithm, we experiment POSA with a set of benchmarks and compare with
the implementation of the SA algorithm in [6].

7.1 Setup

The implementation of the SA algorithm in [6] is available in the NoCmap project [3].
In the NoCmap, the geometric annealing schedule is used and the q is set 0.9. T0 is
fixed to 100 and the final temperature Tf is unbounded. The objective of the NoCmap
is to minimized the total communication energy consumption and the energy model
presented in [6] is adopted in the simulator. In this work, we also use the NoCmap
simulator to obtain the communication energy consumption of the mappings generated
by the POSA algorithm.

Four benchmark applications are selected for the comparison, including a video ob-
ject plane decoder (VOPD) and a MPEG4 from SUNMAP [9], a multimedia systems
application (MMS) [5] and a H.264 decoder (H264) [14]. The CWGs of these applica-
tions are derived from original descriptions in these works. The benchmarks and corre-
sponding NoCs used in this work are summarized in Table 2.

The optimized mapping of each benchmark is found both by the NoCmap and the
POSA algorithm. The communication energy of both mappings are produced by the
NoCmap simulator. For POSA, the averageΔCmax and ΔCmin are obtained from 5∗L
move trials starting from the original random mapping, which are used to calculate the
T0 and Tf with given parameters P0, Pf , C0 and K . Both algorithms were executed on
a Desktop PC having a 3.0 GHz Intel Core2 Duo CPU and 8.0 GB of memory.
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7.2 Results

Optimized Parameters. Applying the POSA algorithm, the optimized mapping so-
lution with minimized WCA of each application is achieved. At the same time, the
optimized parameters of the SA algorithm are obtained. Table 2 shows the optimized
parameters of SA for mapping the four benchmarks. As mentioned in Section 2, the pa-
rameters of SA are problem-specific. Table 2 illustrates that, instead of using an iden-
tical set of parameters, to find an optimized mapping, different parameters should be
used in SA for mapping different applications.

Table 2. Optimized Parameters of SA for Benchmarks

Benchmark Cores NoC q P0 Pf K

VOPD 16 4x4 0.91 0.44 0.05 0.72

MPEG4 12 3x4 0.95 0.34 0.05 0.36

MMS 25 5x5 0.94 0.36 0.05 0.62

H264 16 4x4 0.89 0.42 0.05 0.49

Iterations and Runtime. Table 3 shows the iterations (Is) of NoCmap and POSA
algorithm for finding the final mapping solution of each application. The column T0

and Tf are the initial and final temperature respectively. Tt refers to the temperature at
which SA terminates. Is is the number of iterations that the SA algorithm has run until
it terminates. pct is the percentage of the iterations of POSA to that of NoCmap. We
can see that, since optimized parameters are applied, a much lower initial temperature
is set in POSA. As a result, POSA uses significantly smaller number of iterations which
is on average less than 1% of that used in NoCmap, to get the final mapping.

Table 3. Iterations of SA for Benchmarks

Benchmark
T0 Tf Tt Is

NoCmap POSA NoCmap POSA NoCmap POSA NoCmap POSA pct
VOPD 100 2.69 - 1.35e-4 2.28e-6 9.88e-5 4.30e6 2.74e4 0.64%

MPEG4 100 1.90 - 1.26e-4 5.80e-7 8.38e-5 2.61e6 2.77e4 1.06%
MMS 100 1.36 - 1.26e-5 5.80e-7 1.25e-5 1.14e7 1.18e5 1.04%
H.264 100 3.11 - 1.94e-4 0.15 1.43e-4 1.61e6 1.94e4 1.02%

Table 4 shows the runtimes of SA in NoCmap and POSA (in seconds) and the speedup
achieved by POSA. POSA is, on average, 1.41 times faster than that in NoCmap. Note
that, the runtime of POSA includes the time consumed by the Nelder-Mead simplex
method in which the SA is run more than hundred times. In terms of the runtime of
a single run of SA, a significant speedup is achieved by POSA due to less evaluating
iterations. In Table 4, POSA

′
and Speedup2 represent the runtime of a single run of

SA applying the set of optimized parameters, and the speedup over that in the NoCmap
respectively. We can see that in POSA, the SA with optimized parameters is on average
237 times faster than that in NoCmap. This indicates how important the selection of
parameters is regarding to the runtime of the SA algorithm.
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Table 4. Runtimes and Speedup for Benchmarks

Benchmark NoCmap POSA Speedup1 POSA´ Speedup2
VOPD 31.69 15.50 2.04 0.087 364

MPEG4 15.74 9.67 1.63 0.059 267
MMS 171.74 181.75 0.94 1.17 147
H.264 12.34 11.90 1.04 0.072 171

Average - - 1.41 - 237

WCA and Energy Consumption. In this work, minimizing communication energy
consumption on NoC is the objective of applying SA to solve the application mapping
problem. Figure 2 shows the WCA achieved by NoCmap and POSA for each applica-
tion respectively. The results of both algorithms vary slightly. The maximum of WCA
variance is less than 4% in the case of application H.264.
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As anticipated from the results of the minimized WCA, the communication energy
consumptions achieved by NoCmap and POSA are almost same. Figure 3 shows that the
maximal difference exists again in the case of application H.264, which is less than 2%.
The comparable energy consumption verify the efficiency of the proposed POSA algo-
rithm. Although a significantly smaller number of iterations is processed, POSA still
can find the optimized mapping solution which is similar to the one found in NoCmap
where a huge searching space is explored.

8 Conclusions

The set of parameters applied in the SA algorithm has great impact on the runtime
and the quality of the final solution. A method to systematically select the parameters
of the SA algorithm for the application mapping problem is proposed in this work.
The Nelder-Mead simplex method, which is used to get the minimization of a function
of n variables, is applied to find the optimized parameters of the SA algorithm. With
the set of optimized parameters, less evaluations are performed and the SA algorithm is
accelerated. In addition, this work also points out that the parameters of SA are problem-
specific. Instead of using an identical set of empirical parameters, the proposed POSA
algorithm provides a way to flexibly select various number of parameters with respect
to different cost functions for different kinds of mapping problems.

The experiment shows that the proposed POSA algorithm is time- and
energy-efficient. The POSA algorithm only uses on average less than 1% iterations of
that used in NoCmap algorithm to converge to the final optimized solution. An average
speedup of 1.4 times is achieved by POSA over NoCmap. With the optimized param-
eters, the SA instance in the POSA is 237 times faster than that in the NoCmap, while
the optimal mapping is still found.
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13. Radu, C., Vinţan, L.: Optimized simulated annealing for network-on-chip application map-
ping. In: Proceedings of the 18th International Conference on Control Systems and Computer
Science (CSCS-18), Bucharest, Romania, May 24-27, vol. 1, pp. 452–459. Politehnica Press
(2011)

14. van der Tol, E.B., Jaspers, E.G.T., Gelderblom, R.H.: Mapping of h.264 decoding on a mul-
tiprocessor architecture. In: Image and Video Communications and Processing, pp. 707–718
(2003)



 

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 323–338, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Learning Algorithm Portfolios for Parallel Execution 

Xi Yun1 and Susan L. Epstein1,2 

1 Department of Computer Science, The Graduate School of The City University of New York, 
New York, NY 10016, USA 

2 Department of Computer Science, Hunter College of The City University of New York,  
New York, NY 10065, USA 

xyun@gc.cuny.edu, susan.epstein@hunter.cuny.edu 

Abstract. Portfolio-based solvers are both effective and robust, but their prom-
ise for parallel execution with constraint satisfaction solvers has received rela-
tively little attention. This paper proposes an approach that constructs algorithm 
portfolios intended for parallel execution based on a combination of case-based 
reasoning, a greedy algorithm, and three heuristics. Empirical results show that 
this method is efficient, and can significantly improve performance with only a 
few additional processors. On problems from solver competitions, the resultant 
algorithm portfolios perform nearly as well as an oracle. 

Keywords: constraint satisfaction, algorithm portfolio, parallel processing, ma-
chine learning. 

1 Introduction 

Given a set of solvers and a set of constraint satisfaction problems (CSPs), no one 
solver may consistently outperform all the others on every problem (e.g., [1-5]). In-
formally, an algorithm portfolio is a set of algorithms that run according to some 
schedule on a set of problems. The thesis of this work is that learning and parallelism 
can improve the efficiency and effectiveness of algorithm portfolios, so that they out-
perform each of their constituents. This paper explores offline learning to construct 
such portfolios for CSPs. Given the performance of several algorithms on a training 
set, we seek an algorithm portfolio that executes on multiple processors to solve the 
most problems within some time limit. The principal result reported here is that, given 
several additional processors, our method can construct algorithm portfolios whose 
performance is competitive with that of an oracle, a solver that always chooses the 
best available algorithm for each problem.  

For parallel execution, a portfolio could simply schedule the same CSP on many 
processors, each of which would execute a different solver on it, and then race until 
some algorithm found a solution. Given the number of plausible solver configura-
tions, this approach is not realistic. It is, however, possible to learn to schedule a set 
of solvers on a set of processors. Our approach combines case-based reasoning 
(CBR), a greedy algorithm, and a set of heuristics. Although CBR [6] and greedy 
algorithms [7] have been applied to construct portfolios for CSPs before, this work is, 
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to the best of our knowledge, the first to combine them in a single framework. Given 
a CSP, our method uses CBR to identify a small set of similar training problems, and 
then greedily generates an effective portfolio without the complete search necessary 
to find an optimal one. In addition, we introduce three heuristics that transform algo-
rithm portfolios intended for a single processor into ones intended for parallel execu-
tion. Extensive experiments show that portfolios produced by our method would solve 
more problems, not only when they are designed for one processor, but also consis-
tently improve performance when they are designed for as many as 16 processors.   

The next two sections provide background on CSPs and algorithm portfolios. Sec-
tion 4 formulates algorithm portfolio construction as a machine learning task and 
reviews related work. Section 5 discusses a general framework that combines CBR 
with a greedy algorithm to construct algorithm portfolios, and Section 6 generalizes 
that framework to parallel algorithms. Subsequent sections detail and discuss the ex-
perimental design and results, and offer some conclusions. 

2 Constraint Satisfaction Problems 

A CSP here is a triple <X, D, C>, where X is a set of variables, D is a set of finite 
domains associated with those variables, and C is a set of constraints that those va-
riables must satisfy. A constraint defined on two variables is binary, and one defined 
on n > 2 variables is n-ary. An extensional constraint explicitly represents a set of 
tuples; an intensional constraint implicitly describes tuples with a predicate.  

An instantiation of a CSP assigns values to its variables from their respective do-
mains. A consistent instantiation violates no constraint. An instantiation of all the 
variables is a complete instantiation, and a complete and consistent instantiation is a 
solution. A CSP is solvable if it has at least one solution; otherwise it is unsolvable. 

Many constraint solvers search for a solution to a CSP with systematic backtrack-
ing, which assigns values to variables one at a time and checks consistency after each 
assignment. After an assignment, any inconsistent value for an as-yet-unassigned 
variable is temporarily removed from that variable’s domain. A wipeout occurs when 
a domain becomes empty. At that point, search backtracks to an earlier variable with 
an alternative value, restores removed values along the way, and assigns another val-
ue to the earlier variable. Search returns a solution when one is found, or halts when 
the domain of the variable at the root of the search tree becomes empty.  

A CSP solver is typically a complex combination of fundamental search  
algorithms, along with a set of techniques, heuristics, and policies to realize and sup-
port them. To improve overall search performance, preprocessing techniques manipu-
late the problem before a full search, variable-ordering heuristics choose the next 
variable to be assigned a value, and value-ordering heuristics choose a value for it. 
Once a heuristic orders the possible variables or values, randomization chooses one at 
random, usually from a small set of the top-ranked candidates [8]. A restart policy is 
a sequence of termination conditions that trigger the re-initiation of the search. Com-
bined with randomization, a restart policy may improve search performance.  
Although the many ways to assemble a solver’s components and then set their para-
meters yield a broad spectrum of search performance, they also provide fertile raw 
material for effective algorithm portfolio construction.   
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3 Algorithm Portfolios 

An algorithm portfolio for CSP solution was originally defined as a method that com-
bined different algorithms to improve search performance while it lowered search 
risk, the standard deviation of a performance metric (e.g., expected CPU time or 
number of backtracks to solve a problem) [9, 10]. In other words, an algorithm portfo-
lio searched for a Pareto frontier in the two-dimensional space defined by a given 
performance metric and its standard deviation. Later, an algorithm portfolio was gene-
ralized to denote a combination of different algorithms intended to outperform the 
search performance of any of its constituent algorithms [3, 6, 11-14]. Here we extend 
that formulation, so that an algorithm portfolio schedules its constituent algorithms to 
run concurrently on a set of processors. 

Let an algorithm be any CSP solver, as described in the previous section. Given a 
set A = {a1, a2, …, am} of m algorithms, a set P = {x1, x2, …, xn} of n problems, and a 
set of B consecutive time intervals T = {t1, t2, …, tB}, a simple schedule Sk for a prob-
lem on a single processor specifies which algorithm addresses the problem in each 
time interval, that is, Sk: T → A. (At most one algorithm executes in any time interval 
in a simple schedule.) A schedule for K processors is a set of K simple schedules, one 
for each processor. (Here, a schedule addresses only one problem at a time.) An algo-
rithm portfolio is then a quintuple <P, A, K, S, B> where S is a set of schedules that 
deploy algorithms A on K processors to solve problems from P within B. Note that 
our definition includes both simple (K = 1) and parallel (K > 1) algorithm portfolios. 
Without loss of generality, we also simplify T to {1, 2, …, B}. Of course, neither a 
simple nor a parallel schedule can outperform an oracle’s perfect algorithm selection. 

Clearly, on one processor at most B time can be allotted to any algorithm on any 
problem. Thus the performance of A on P can be represented as an n × m performance 
matrix τ. If the entry τij ∈ {1, 2, …, B} then aj solves xi in time τij; otherwise xi goes 
unsolved by aj in time B. A deterministic algorithm consistently produces the same 
output given the same problem and time cutoff; that is, for a deterministic algorithm 
each τij is fixed. In contrast, the output of a randomized algorithm may change from 
one run to the next (i.e., τij is a random number).  

Given a problem, a sequential algorithm portfolio executes algorithms on it in a 
specific order, but does not preserve any intermediate search data for an algorithm 
when the portfolio leaves it. Thus, a sequential portfolio must restart on the problem if 
it later reapplies a previous algorithm to it. In contrast, a switching algorithm portfolio 
interleaves algorithms, and preserves intermediate search data, so that search can 
continue from a previous state when it returns to an earlier algorithm. Algorithm se-
lection is an algorithm portfolio that schedules only one algorithm [13, 15].  

The schedule for a static algorithm portfolio is constructed in advance, and goes un-
changed during search. In contrast, a dynamic algorithm portfolio can profit from 
feedback as it executes, and adjust its schedule accordingly. For example, the dynam-
ic algorithm portfolios in [2, 16] iteratively share a (possibly varying-length) time 
slice among all available algorithms, but modify the algorithms’ relative priorities 
based on their progress. Adjustments for a dynamic portfolio can be triggered by  
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unsatisfactory performance during execution [17, 18]. Most of the work referenced 
thus far is for simple schedules, which interleave algorithms on a single processor.  

There are other ways to exploit parallel processing beyond the scope of this paper. 
These include search space splitting to partition the search space of a CSP into sub-
spaces and uses different processors to explore difference subspaces [19], and struc-
tural decomposition to separate a CSP into simpler, smaller-size subproblems based 
on the structure of its constraint hypergraph [20, 21]. Moreover, a parallel SAT solver 
can share clauses learnt on different processors, where each processor executes a ma-
nually pre-determined algorithm [22].  

The current algorithm portfolio performance metric is runtime, which may be used 
to optimize different objective functions. For example, a portfolio may be required to 
minimize its expected runtime on a problem generated at random from some problem 
distribution. (Alternatives are introduced in [14].) Recent CSP solver competitions 
evaluated solvers on how many problems they solved under a fixed, per-problem time 
limit, and broke ties on average solution time across solved problems [23, 24]. We 
compare algorithm portfolio construction methods (henceforward, constructors) with 
the same standard. (In contrast, SAT solver competitions have compared solvers with 
a complex scoring function that includes the performance of all competitors [25].) 

As formulated here, the differences between two solvers may be simply in their 
choice of even a single technique, heuristic, or policy that sustains performance diver-
sity. Thus an algorithm portfolio can be thought of as a mixture of experts [26], in-
cluding variable-ordering and value-ordering heuristics, restart policies, and nogood 
learning methods. In particular, even if only one heuristic is available, the portfolio 
could consist of the heuristic and its opposite, or the heuristic and random selection.  

4 Learning an Effective Algorithm Portfolio 

Algorithm portfolio constructors that learn are classified as online or offline based on 
the way they use their training problems. An offline constructor observes the perfor-
mance of algorithms on a set of training problems and then builds a portfolio of those 
algorithms to optimize its performance on an entire testing set [3, 6, 13]. An online 
constructor solves one problem at a time, and the knowledge it relies on for that prob-
lem comes only from the problems that preceded it [2, 7, 16]. This paper focuses on 
offline algorithm constructors.  

 
Fig. 1. Algorithm portfolio construction as offline learning 
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Our case-based approach to algorithm portfolio construction relies on feature  
extraction. Figure 1 represents offline algorithm portfolio construction with feature 
extraction as a machine-learning task. Given a set Ptrain of training problems, a set Ptest 
of testing problems, and a performance matrix τ(a,x) that stores the time required by 
each algorithm a ∈ A to solve each problem x ∈ Ptrain, the constructor’s task is to find 
a schedule S with optimal performance that uses A to solve Ptest. Here, all entries in τ 
are discrete, fixed positive integers, that is, all algorithms are assumed to be determi-
nistic. P*(y) is a set of CSPs similar to testing problem y. (Portfolios of randomized 
algorithms are discussed in [3, 27].) 

The two portfolio constructors most relevant here are CPHYDRA [6] and GASS [7]. 
Let P(aj, S) be the problems in P solved by aj under schedule S. CPHYDRA defines the 
optimal schedule as one that maximizes the number of problems solved within B: 

 

Because it uses relatively few algorithms in competition, CPHYDRA can address opti-
mality with exhaustive search, in time O(2m) where m is the number of algorithms. 
CPHYDRA had two entries in the 2008 competition, both with m = 3: CPHYDRA_k_10 
used 10 similar training examples (i.e., |P*(y)| = 10), and CPHYDRA_k_40 used 40. 
Among 24 competitiors, both versions finished in the top two solvers, except in the 
category for global constraints. CPHYDRA also weights training problems by their 
Euclidean distance from the testing problem. Its approach was later exploited and 
tailored for SAT problems [28] as well.  

GASS’ greedy algorithm bases its optimal schedule on ci(S), the expected time to 
solve xi 

under schedule S. Its optimal schedule minimizes the overall runtime (equiva-
lent to the average runtime under fixed n) to solve all problems in Ptrain: 

argmax
S

ci (S)
i=1

n


 At each step, GASS greedily maximizes the number of problems solved per unit of 

time, and counts only problems solved for the first time during the current time step. 
In time O(nm log n ⋅ min{n, Bm}), GASS returns an approximate schedule that is at 
most four times worse (a 4-approximation) than the optimal switching schedule. The 
computation of any better approximation is NP-hard [7].  

5 WG, a New Constructor for Switching Algorithm Portfolios 

Our Weighted Greedy (WG) algorithm is a new constructor for switching algorithm 
portfolios that exploits the perspectives of both GASS and CPHYDRA. For a single 
processor, CPHYDRA uses CBR to select a small set of similar training problems for 
each testing problem. It then does a complete search, exponential in the number of  
 

algorithms m, to find an optimal schedule for the new problem. In contrast, the impact 
of m on GASS is at worst quadratic; GASS’ greedy approach is heavily dependent on 
the number of training problems n instead. WG exploits the fact that some problems 
are far more similar to a given testing problem than others, so that a properly selected 
subset of problems can estimate the runtime of the testing problem more precisely. 
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On one processor, to schedule within time limit B algorithms from A for a problem 
y given prior experience on a set of problems P, WG combines GASS and CPHYDRA 
into a single framework for switching scheduling. (See Figure 2.) WG is similar to 
GASS, except that it represents problems by numeric feature vectors, and restricts its 
attention to similar problems (i.e., reasons based only on similar cases). WG initially 
selects a neighbor set P* that is the 100r% of the most similar training problems (i.e., 
have feature vectors closest in Euclidean distance to that of y), 0 < r ≤ 1. The influ-
ence of these problems in the selection of an algorithm may be uniform, or be 
weighted in proportion to their distance di from y. The weight functions investigated 
here are shown in Table 1, where dmin denotes the smallest distance from a neighbor 
set problem to y, and dmax denotes the largest distance. 

During each new interval Δz, WG counts (from the performance matrix τ)  and 
weights how many training problems in the current neighbor set P* it could solve 
within time t + Δz if it assigned problem xi to algorithm aj during that interval:  

*

1 if 
( ) ( ) where ( )

0 otherwise
i

ijz
j i ij ij

x P

t
N t w t t

τ
ζ ζ

∈

≤
= = 


  (1)

WG then greedily maximizes (1) per unit of time expended, that is, it calculates 

argmax
aj ,Δz

N j
z (t + Δ z )

Δ z

 

and removes those now-solved similar problems from P*. The time complexity of 
WG is O(rnm log rn ⋅ min{rn, Bm}) because it considers every algorithm aj with 
every interval length Δz.  

Input: training set P = {x1, x2, …, xn}, algorithms A = {a1, a2, …, am}, time limit B, 
  testing problem y, weight function w: ℜd→ℜd, neighbor set ratio r 
Output: schedule S for a non-parallel switching algorithm portfolio  
For i = 1 to n, compute Euclidean distance between xi and y 
P* ← {100r% of problems in P closest to y} 
For each xi in P*, compute weight wi = w(xi) 
Initialize time step z ← 1, overall time T ← 0, and time spent tj ← 0 for algorithm aj 
While P* ≠ Ø and T < B 
     Select aj with execution time Δz to maximize Nj

z(tj + Δz)/ Δz  
Remove from P* problems solved by aj during step z  
Schedule aj with execution time Δz in S 

     Update times: tj ← tj + Δz, T ← T + Δz, and z ← z + 1 
Return S 

Fig. 2. High-level pseudocode for WG, a weighted greedy constructor for one processor 

Table 1. Three weight functions that measure problem similarity, where di denotes the 
Euclidean distance of problem y from the ith neighbor set problem xi. Here, ε = 0.001.  

 Reciprocal weighting   Normalized weighting     Normalized-fixed weighting 

                 

 

      

wi = 1

1+ di

wi = 1− (n −1)(di − dmin )

n(dmax − dmin )
wi = 1− (1− ε )(di − dmin )

dmax − dmin
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6 Creation of Portfolios for Parallel Processing  

An intuitive way to parallelize WG for K identical processors π1, π2, …, πK is to parti-
tion the similar training problems P* into K subsets P1, P2, …, PK at random, and then 
use WG to construct a schedule for processor πk based its corresponding subset Pk. 
We call this RPWG (randomized parallel WG). With uniform weights wi = 1, RPWG 
is a naïve parallel version of GASS. (To reduce the impact of randomness, RPWG 
could construct such a partition v times, although to conserve time v = 1 here.) Thus 
the overall complexity of RPWG is O(vrnm log(rn/K)⋅min{rn/K,Bm}). Similarly, RP-
CPHYDRA, the naïve parallel version of CPHYDRA, randomly partitions the similar 
training problems into K subsets and then uses CPHYDRA on each subset to construct 
a schedule for each processor. Section 7 investigates both these naïve parallel con-
structors as baselines. (Other recent work relevant to parallel algorithm portfolios 
includes online learning [2, 16] and methods that split problems [29, 30].) 

Effectively, the construction of a parallel algorithm portfolio to solve as many 
training problems as possible on K processors is an integer-programming (IP) prob-
lem. The goal is to find the schedule S that specifies the time allotments to all algo-
rithms on all processors, such that no problem can receive more than B time from all 
the processors together, and the total number of problems solved is a maximum. The 
expression (1 - ζij(tkj)) is 1 if problem xi is unsolved by algorithm aj after time tkj allo-
cated to it on πk, and 0 otherwise. The product of (1 - ζij(tkj)) over all j and k is 1 if 
problem xi is not solved by any algorithm on any processor in schedule Sk, and 0 oth-
erwise. Thus the best schedule is 

 (2)

Intuitively, when two schedules solve the same number of training problems, we 
would prefer the one that consumes less total time. Thus (2) becomes: 

 

(3)

Expression (3) seeks to minimize the cost of schedule S, as measured by a penalty for 
unsolved problems (counted in the first sum) and the resources tkj allocated to all pro-
cessors. Each unsolved problem incurs cost KB + 1, which is greater than all available 
time on all processors. This guarantees that any benefit introduced by reduction in 
overall runtime will be overshadowed by the penalty for solving one less problem. 
The optimization in (3) is NP-hard; others have proposed the use of column genera-
tion to solve a simpler IP problem for algorithm scheduling for non-parallel algorithm 
portfolios [28]. Instead here we adopt heuristics to generalize WG for this IP problem. 

We argue that the optimal solution to (3) can occur only when there exists at most 
one processor k for each algorithm aj such that tkj > 0. For example, consider a sche-
dule that allocates time t1j and t2j (0 < t1j < t2j) to the same algorithm on processors 1 
and 2, respectively. These times are resources only, and are not directed to any  
particular problem or algorithm. Any problem solved by some algorithm on processor 

argmax
S ={S1 ,...,SK }

[1− (1−ζij (tkj ))
j =1

m

∏
k=1

K

∏ ]
i=1

n

  such that tkj
j =1

m

 ≤ B and tkj ≥ 0

argmin
S={S1 ,...,SK }

(KB +1) (1−ζij (tkj ))
j=1

m

∏
k=1

K

∏
i=1

n

∑ + tkj
j=1

m

∑
k=1

K

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 such that  tkj

j=1

m

∑ ≤ B and tkj ≥ 0



330 X. Yun and S.L. Epstein 

 

1 in t1j can be solved by the same algorithm on processor 2 in t2j. Removing the algo-
rithm from processor 1 does not increase the number of unsolved training problems 
because the same problems will be solved on processor 2, but it does reduce the total 
runtime, and produces a better schedule.  

Inspired by this argument, Figure 3 introduces RSR-WG for parallel algorithm port-
folios, where RSR stands for three heuristics: Retain, Spread, and Return. Like WG, 
RSR-WG selects an initial set of similar training problems and tries to schedule gree-
dily, but with modifications from our three heuristics. Retain (line 6) places algorithm 
aj on processor π u if that placement will maximize equation (1) per unit of expended 
time and π u still has time available (Tu < B). Among such processors, Retain prefers 
one that has already hosted y before (tuj ≠ 0), and otherwise selects one that has thus 
far been used the least (i.e., has minimum Tu). If a parallel schedule S solves all train-
ing problems without making full use of all the processors, Spread (line 11) places the 
algorithm aj that solves the most problems in P but does not appear in S on a proces-
sor that was idle throughout S (if one exists), breaking ties at random. (The rationale 
here is that aj may be generally effective but not outstanding on y.) Finally, if a pro-
cessor is not fully used in S (i.e., Tu

 < B), Return (line 14) places the first algorithm it 
executed on that processor until the time limit. Obviously, RSR-WG achieves the 
performance of an oracle when K = m, but it is also effective when K is relatively 
small compared to m, as demonstrated in the next section. 

Input: training set P = {x1, x2, …, xn}, algorithms A = {a1, a2, …, am}, time limit B, 
  testing problem y, weight function w: ℜd→ℜd, neighbor set ratio r,  
  processors {π1, π 2, …, π K} 
Output: schedule S = {S1, S2, …, SK} for a parallel switching algorithm portfolio  
1  For i = 1 to n, compute Euclidean distance between xi and y 
2  P* ← {100r% of problems in P closest to y} 
3  Compute weight wi for each xi in P* with w 
4  Initialize time step z ← 1, overall time Tu ← 0 on processor π u,  

time tuj ← 0 for aj on π u 
5  While P* ≠ Ø and Tu < B for at least one u 
6   Select aj on π u with time Δz to maximize Nj

z(tj + Δz)/ Δz       ** Retain ** 
7   Remove from P* problems solved by aj during step z  
8   Schedule aj with execution time Δz on π u  
9   Update times: tuj ← tuj + Δz, T

u ← Tu + Δz, and z ← z + 1 
10 For each π u where Tu < B  
11   If Tu = 0                                 ** Spread ** 
12   then assign a j to π u for B, where a j solves the most problems in P and a j ∉ S 
13      update times: tuj ← B, Tu ← B, and z ← z + 1           
14   else π u executes the first algorithm placed on π u until B      ** Return ** 
15       update times: tuj ← tuj + (B – Tu), Tu ← B, and z ← z + 1   
16  Return S 

Fig. 3. High-level pseudocode for RSR-WG, a weighted greedy algorithm that constructs a 
parallel switching schedule with heuristics Retain, Spread, and Return 
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7 Experimental Design and Results 

We compared the performance of parallel algorithm portfolios from three constructors 
to that of four non-parallel solvers on problems from the Third International CSP 
solver competition (CPAI’08). To extract the 36 features values (e.g., number of va-
riables, maximum domain size) used by CPHYDRA and RSR-WG, we ran the CSP 
solver Mistral 1.550 ([31]). For feature extraction we allotted 1 second on an 8 GB 
Mac Pro with a 2.93 GHz Quad-Core Intel Xeon processor.  

CPAI’08 included 3307 problems in 5 categories. Some solvers could not address 
problems in every category; we merged the 2-ARY-INT and N-ARY-INT (N > 2) 
categories because the same solvers addressed both. Because our experiments count 
solved problems (those where a solver finds a solution or proves that none exists), we 
excluded any problem that was not solved by any solver within the CPAI’08 time 
limit of 1800 seconds. If CPHYDRA does not extract features quickly enough, it simply 
splits its schedule evenly among its three algorithms. Rather than test portfolios’ luck 
with an algorithm this way (and penalize a portfolio with more algorithms at its dis-
posal), we chose to exclude such problems. Table 2 summarizes the remaining 2865 
problems in 4 categories. 

Stratified partitioning was used in all runs, to maintain the proportions of problems 
from different categories in each subset. Table 3 reports the performance, in number 
of problems solved within 1800 seconds each, of an oracle and three non-parallel 
algorithm portfolio constructors as baselines: CPHYDRA_k_10, CPHYDRA_k_40, and 
GASS. The data for GASS was obtained by 10-fold cross-validation with stratified 
partitioning on the 2865 problems.  

All portfolio construction experiments ran under 10-fold cross-validation on a Dell 
PowerEdge 1850 cluster with one head node and 86 compute nodes, each with four 
Intel 2.80 GHz Woodcrest dual-core processors. RSR-WG results reported here are 
for portfolio construction (i.e., scheduling) time plus runtime. The runtimes of RPWG 
and RP-CPHYDRA did not include portfolio construction time, which gave them a 
slight advantage. In extensive testing, uniform weighting and the three weight func-
tions in Table 1 produced slightly different performance improvements in RSR-WG, 
but no one statistically significantly outperformed the others consistently. Thus this 
paper reports only on the normalized-fixed weight function.  

Table 2. Competition problems by category. Experiment problems were those for which at 
least one solver found a solution or showed that none existed, and also had features extractable 
within one second. Solvable problems had at least one solution. 

Applicable 
solvers 

Category Competition 
problems 

Experiment  
problems 

Experiment  
solvable problems 

 

17 GLOBAL 556 493 256  
22 k-ARY-INT (k≥2) 1412 1303 739  
23 2-ARY-EXT 635 620 301  
24 N-ARY-EXT (N>2) 704 449 156  
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Table 3. Benchmark results for the 3rd International CSP solver competition 

Solver Oracle GASS CPHYDRA_k_10 CPHYDRA_k_40 
Number solved 2865 2773 2577 2573

% solved 100% 96.79% 89.95% 89.81%

 
In CPAI’08, CPHYDRA chose 10 or 40 similar problems from which to learn, so 

here RP-CPHYDRA selects 10*K neighbors, randomly distributes them to K proces-
sors, and executes a complete search for the optimal schedule on each processor.  
RP-CPHYDRA’s portfolio construction time was limited to 180 seconds. If it did not 
produce the optimal schedule in that time, the best schedule found so far was used. To 
reduce search time, any algorithm dominated by another algorithm (i.e., always  
outperformed by it on all 2865 problems) was also eliminated from RP-CPHYDRA’s 
consideration. RP-CPHYDRA also scaled all schedules (as discussed in Section 8) to 
exploit the full time limit B.  

Table 4. Performance of 3 parallel portfolio constructors on 2865 problems, with best value for 
K processors in boldface. * means RSR-WG outperformed RPWG; † means RSR-WG 
outperformed RP-CPHYDRA. 

 
 K RP-

CPHYDRA 

Neighbor set ratio 
0.005 0.01 0.02 

RPWG RSR-WG RPWG RSR-WG RPWG RSR-WG 
1 2779 2771 2773 2778 2779 2787 2786† 
2 2807 2801 2826* 2799 2821* 2802 2823*† 
3 2817 2808 2841*† 2810 2836*† 2808 2839*† 
4 2827 2810 2850*† 2812 2847*† 2811 2847*† 
5 2830 2817 2855*† 2819 2851*† 2816 2852*† 
6 2831 2821 2857*† 2818 2855*† 2819 2856*† 
7 2834 2823 2858*† 2823 2858*† 2824 2857*† 
8 2834 2825 2859*† 2825 2860*† 2825 2858*† 

 
Table 5. Mean and standard deviation for the number of problems solved by RSR-WG out of 
2865, with normalized-fixed weight function over 10 runs with K processors. Best value for K 
processors is in boldface. 

 
K 

Neighbor set ratio 

0.005 0.01 0.02 0.04 0.08 0.16 

1 2773 3.65 2779 3.20 2786 2.30 2789 3.17 2788 3.09 2789 2.51 
2 2826 3.51 2821 2.49 2823 3.16 2816 2.97 2810 2.99 2809 2.87 
3 2841 2.12 2836 1.93 2839 2.56 2832 2.07 2827 2.27 2819 2.07 
4 2850 2.15 2847 1.57 2847 2.63 2843 2.06 2838 2.22 2832 2.50 
5 2855 1.37 2851 2.35 2852 0.88 2850 1.78 2845 2.72 2843 3.26 
6 2857 0.95 2855 1.07 2856 1.26 2853 1.64 2851 1.03 2850 1.07 
7 2858 0.79 2858 0.57 2857 0.82 2855 1.83 2854 2.35 2854 1.14 
8 2859 1.18 2860 1.34 2858 1.06 2858 1.18 2856 0.74 2855 1.43 
16 2864 0.42 2864 0.00 2864 0.00 2863 0.00 2861 0.42 2861 0.47 
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Fig. 4. Comparison of (ideal) oracle runtime (y-axis) to RSR-WG’s time (x-axis) for 1 run with 
weight function normalized-fixed and neighbor set ratio 0.005. Each + denotes a result on one 
of the 2865 problems. Number of processors K ranges from 1 to 6. 

 
Table 4 compares the performance of parallel portfolios from three constructors: 

RP-CPHYDRA (the parallel version of CPHYDRA), RPWG (the naïve parallel version 
of GASS), and RSR-WG. It lists the total number of problems (out of 2865) solved by 
each constructor’s portfolios, and flags experiments where RSR-WG portfolios were 
statistically significantly better (p < 0.005) than those of a naïve parallel constructor.  
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For RSR-WG we simulated all 24 solvers from the original competition [23]. For 
RSR-WG only, we tested as many as K = 16 processors. Both K = 8 and K = 16 pro-
duced near-oracle performance; indeed, 2 out of 10 runs for K = 16 were perfect. Ex-
ecution of RSR-WG on K = 16 processors is a reasonable approach for modern com-
puters, where it would produce portfolios able to solve only one fewer problem than 
an oracle. (Execution of RSR-WG on one computer with multiple cores could degrade 
performance, for example, due to overhead introduced by memory sharing.)  

One important question is the number of training problems to use for CBR, as 
measured by the neighbor set ratio (# problems / # training problems). For K from 1 
to 16 we tested neighbor set ratios of 0.005 to 0.16, which yield neighbor sets that 
range in size from 14 to 458, respectively. Table 5 reports on how many problems 
(out of 2865) RSR-WG solved, and shows how the neighbor set ratio impacts perfor-
mance under different numbers of processors K. Boldface entries in Tables 4 and 5 
indicate the best performance for each K. Clearly RSR-WG efficiently generates ef-
fective algorithm portfolios, and does best with small neighbor set ratios for K > 1. On 
K = 1, RSR-WG outperforms GASS, CPHYDRA_k_10, and CPHYDRA_k_40. 

Finally, Figure 4 compares the runtimes of an oracle solver and RSR-WG in one 
run with neighbor set ratio 0.005 and weight function normalized-fixed. (Again, RSR-
WG’s time includes both portfolio construction and search.) As in [23], each plus sign 
represents one of the 2865 problems. Those at the far right correspond to problems 
that went unsolved by RSR-WG in 1800 seconds. Those on the diagonal correspond 
to problems that were solved by RSR-WG as quickly as an oracle would have solved 
them. Clearly, more processors reduced the number of unsolved problems (from 90 to 
6 in this particular run) and solved more problems as quickly as an oracle.  

8 Discussion 

As indicated above, the 1800-second runtime per problem for RSR-WG in these expe-
riments includes the time to extract features, construct the schedule, and to execute it. 
RSR-WG adopts a greedy approach that dramatically reduces its scheduling time but 
still generates effective portfolios. For example, over 10 runs the average scheduling 
time of RSR-WG for K = 8 processors ranged from 14.56 to 14.96 seconds (σ in 
[6.05, 6.35]) with normalized-fixed weights and a neighbor set ratio of 0.16. For K = 
1 processor under the same conditions, average scheduling time ranged from 14.30 to 
14.80 seconds (σ in [5.75, 6.15]). These are small but statistically significant differ-
ences. In contrast, RP-CPHYDRA sometimes failed to compute an optimal schedule 
within 180 seconds. When K = 1, CPHYDRA failed to compute an optimal schedule 
4.81% of the time. When K > 1, CPHYDRA must construct a schedule for each proces-
sor, on training sets that may be considerably more diverse. This can increase the 
search effort; indeed, for K = 8, CPHYDRA failed to compute an optimal schedule 
14.39% of the time. As for GASS, because it learns on all the training problems, it 
required more than 5 days of execution time for its single entry in Table 2.  

Instead of Spread, one might scale S to extend it to the entire time limit B, that is, 
allocate B to algorithms proportionally to their runtimes in S. CPHYDRA adopted  
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scaling, and so did RP-CPHYDRA in our experiments. Scaling, however, would be 
unwise in RSR-WG because the earliest designated algorithms might be both most 
promising and quick, in which case they would only be allotted relatively short time 
intervals Δz. Whether or not scaling is appropriate, we believe, is probably determined 
by the problem set. The Return heuristic succeeds, we suspect, because as K  
approaches m it is better to allot larger time intervals to an algorithm on a single  
processor.  

We temper the results on K = 16 with the observation that it is very nearly a race, 
when the problems in the neighbor set are sufficiently descriptive to eliminate the 
poorest performers on y. We prefer to consider the near-optimal performance for K = 
8, and even K = 4, and to remember that RSR-WG was charged for scheduling time, 
while its competitor constructors were not. 

Coarser granularity (indicated by a smaller B, which allocates longer intervals) im-
pacts the scheduling efficiency of RSR-WG, but the effectiveness of the resultant 
portfolio depends on the performance matrix entries for the neighbors of the testing 
problem. A smaller B does not necessarily reduce the effectiveness of the resultant 
algorithm portfolio; if that were the case, a switching (or scheduling) portfolio would 
always be superior to algorithm selection. In addition to Table 5, where B = 1800, we 
tested RSR-WG with B = 20, 10, 5, 4, 3, 2, and 1. (This is equivalent to time alloca-
tions that, instead of 1 second on a processor, are 90, 180, 360, 450, 600, 900, or 1800 
seconds. Note that B = 1 is equivalent to racing one algorithm on each processor to 
address a problem.) In these granularity experiments, for K = 1 the number of solved 
problems peaked at B = 10. For 1 < K ≤ 8, no coarser granularity ever showed a sig-
nificant improvement; indeed, performance degraded slightly as B decreased. Both 
improvement on K = 1 and failure to improve when K > 1 were consistent across all 
neighbor set ratios reported here, with peaks at either B = 5 or B =10 when K = 1. 

The success of RSR-WG algorithm portfolios relies heavily on the diversity of the 
performance of its constituent algorithms and the relevance of the extracted features. 
Typically, algorithm portfolio constructors select their algorithms and features based 
upon domain-specific knowledge. The reader may, for example, wonder how RSR-
WG would perform if it relied on the three solvers CPHYDRA used in CPAI’08. The 
difficulty here is that CPHYDRA included solvers from the 2006 competition, solvers 
that did not enter CPAI’08, and whose performance was therefore unavailable on the 
2008 problems. Although algorithm choice based on domain knowledge and feature 
selection can further enhance a portfolio’s performance, it could also make it vulnera-
ble to overfitting. When the number of features is larger, feature selection can be of 
considerable benefit to an algorithm portfolio constructor [13, 14], and we intend to 
explore it in future work. 

Current work is proceeding in several directions. In practice, many algorithms may 
perform differently on the same problem in different runs, but still exhibit a certain 
level of consistency [3]. Indeed, in (sequential) CSP solver competitions, solvers typi-
cally fix their parameter values and introduce relatively little randomness to achieve 
stable performance. In that case, with coarse granularity (e.g., B = 10), a solver’s  
performance is nearly deterministic. Greater randomness, however, could change 
solvers’ performance dramatically, and thereby potentially benefit parallel constraint 
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solving. A generalization of RSR-WG is in process to handle such behavior. On the 
other hand, automatic parameter tuning could introduce much diversity, and should 
fare well in algorithm portfolios [32]. Specifically, one may view different configura-
tions of an algorithm as different algorithms, and thereby combine parameter tuning 
and an algorithm portfolio in the same framework. We are pursuing this avenue as 
well. 

The performance of any algorithm portfolio is, of course, bounded by that of an 
oracle. The combination of algorithms as black boxes eliminates any opportunity to 
improve an individual algorithm. In contrast, parallelism can be achieved by a variety 
of problem decomposition methods (e.g., search space splitting), as discussed in Sec-
tion 3. Although the results of recent SAT solver competitions suggest that a well-
designed algorithm portfolio outperforms decomposition methods on a small number 
of processors [22], decomposition methods have shown their potential on many more 
processors (e.g., 64 cores or more in [19]). We will explore this in future work.  

9 Conclusions 

This paper presents WG, a constructor for non-parallel algorithm portfolios based on 
case-based reasoning and a greedy algorithm. It formulates parallel algorithm portfo-
lio construction as an integer-programming problem, and generalizes WG to RSR-
WG, a constructor for parallel algorithm portfolios based on a property of the optimal 
solution to the inherent integer-programming problem. To address a set of problems 
one at a time, RSR-WG creates portfolios of deterministic algorithms offline. Expe-
riments show that the parallel algorithm portfolios produced by RSR-WG are statisti-
cally significantly better than those produced by naïve parallel versions of popular 
portfolio constructors. Moreover, with only a few additional processors, RSR-WG 
portfolios are competitive with an oracle solver on a single processor.  
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Abstract. We consider the problem of optimizing a real-valued contin-
uous function f using a Bayesian approach, where the evaluations of f
are chosen sequentially by combining prior information about f , which is
described by a random process model, and past evaluation results. The
main difficulty with this approach is to be able to compute the posterior
distributions of quantities of interest which are used to choose evaluation
points. In this article, we decide to use a Sequential Monte Carlo (SMC)
approach.

1 Overview of the Contribution Proposed

We consider the problem of finding the global maxima of a function f : X →
R, where X ⊂ Rd is assumed bounded, using the expected improvement (EI)
criterion [1, 3]. Many examples in the literature show that the EI algorithm is
particularly interesting for dealing with the optimization of functions which are
expensive to evaluate, as is often the case in design and analysis of computer
experiments [2]. However, going from the general framework expressed in [1] to
an actual computer implementation is a difficult issue.

The main idea of an EI-based algorithm is a Bayesian one: f is viewed as a
sample path of a random process ξ defined on Rd. For the sake of tractability,
it is generally assumed that ξ has a Gaussian process distribution conditionally
to a parameter θ ∈ Θ ⊆ Rs, which tunes the mean and covariance functions of
the process. Then, given a prior distribution π0 on θ and some initial evaluation
results ξ(X1), . . . , ξ(Xn0) at X1, . . . , Xn0 , an (idealized) EI algorithm constructs
a sequence of evaluations points Xn0+1, Xn0+2, . . . such that, for each n ≥ n0,

Xn+1 = argmax
x∈X

ρ̄n :=

∫
θ∈Θ

ρn(x; θ)dπn(θ) , (1)

where πn stands for the posterior distribution of θ, conditional on the σ-algebra
Fn generated by X1, ξ(X1), . . . , Xn, ξ(Xn), and

ρn(x; θ) := En,θ((ξ(Xn+1)−Mn)+ | Xn+1 = x)

is the EI at x given θ, with Mn = ξ(X0) ∨ · · · ∨ ξ(Xn) and En,θ the conditional
expectation given Fn and θ. In practice, the computation of ρn is easily car-
ried out (see [3]) but the answers to the following two questions will probably
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have a direct impact on the performance and applicability of a particular im-
plementation: a) How to deal with the integral in ρ̄n? b) How to deal with the
maximization of ρ̄n at each step?

We can safely say that most implementations—including the popular EGO
algorithm [3]—deal with the first issue by using an empirical Bayes (or plug-in)
approach, which consists in approximating πn by a Dirac mass at the maximum
likelihood estimate of θ. A plug-in approach using maximum a posteriori estima-
tion has been used in [6]; fully Bayesian methods are more difficult to implement
(see [4] and references therein). Regarding the optimization of ρ̄n at each step,
several strategies have been proposed (see, e.g., [3, 5, 7, 10]).

This article addresses both questions simultaneously, using a sequential Monte
Carlo (SMC) approach [8, 9] and taking particular care to control the numer-
ical complexity of the algorithm. The main ideas are the following. First, as
in [5], a weighted sample Tn = {(θn,i, wn,i) ∈ Θ × R, 1 ≤ i ≤ I} from πn is

used to approximate ρ̄n; that is,
∑I

i=1 wn,i ρn(x; θn,i) →I ρ̄n(x). Besides, at
each step n, we attach to each θn,i a (small) population of candidate evaluation
points {xn,i,j , 1 ≤ j ≤ J} which is expected to cover promising regions for that
particular value of θ and such that maxi,j ρ̄n (xn,i,j) ≈ maxx ρ̄n(x).

2 Algorithm and Results

At each step n ≥ n0 of the algorithm, our objective is to construct a set of
weighted particles

Gn =
{ (

γn,i,j , w
′
n,i,j

)
,

γn,i,j = (θn,i, xn,i,j) ∈ Θ ×X, w′
n,i,j ∈ R , 1 ≤ i ≤ I, 1 ≤ j ≤ J

}
(2)

so that
∑

i,j w
′
n,i,jδγn,i,j →I,J π′

n, with

dπ′
n(γ) = g̃n(x | θ) dλ(x) dπn(θ) , x ∈ X , θ ∈ Θ , γ = (θ, x),

where λ denotes the Lebesgue measure, g̃n(x | θ) = gn(x | θ)/cn(θ), gn(x | θ) is a
criterion that reflects the interest of evaluating at x (given θ and past evaluation
results), and cn(θ) =

∫
X
gn(x | θ)dx is a normalizing term. For instance, a

relevant choice for gn is to consider the probability that ξ exceeds Mn at x, at
step n. (Note that we consider less θs than xs in Gn to keep the numerical
complexity of the algorithm low.)

To initialize the algorithm, generate a weighted sample Tn0 = {(θn0,i, wn0,i),
1 ≤ i ≤ I} from the distribution πn0 , using for instance importance sampling
with π0 as the instrumental distribution, and pick a density qn0 over X (the
uniform density, for example). Then, for each n ≥ n0:

Step 1: demarginalize —Using Tn and qn, construct a weighted sampleGn of the

form (2), with xn,i,j
iid∼ qn, w′

n,i,j = wn,i
gn(xn,i,j |θn,i)
qn(xn,i,j)cn,i

, and cn,i =

1
J

∑J
j′=1

gn(xn,i,j′ |θn,i)

qn(xn,i,j′)
.
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Step 2: evaluate — Evaluate ξ at Xn+1 = argmaxi,j
∑I

i′=1 wn,i′ ρn(xn,i,j ; θn,i′).

Step 3: reweight/resample/move — Construct Tn+1 from Tn as in [8]: reweight

the θn,is using wn+1,i ∝ πn+1(θn,i)
πn(θn,i)

wn,i, resample (e.g., by multinomial resam-

pling), and move the θn,is to get θn+1,is using an independant Metropolis-
Hastings kernel.

Step 4: forge qn+1 — Form an estimate qn+1 of the second marginal of π′
n from

the weighted sample Xn = {(xn,i,j , w
′
n,i,j), 1 ≤ i ≤ I, 1 ≤ j ≤ J}. Hopefully,

such a choice of qn+1 will provide a good instrumental density for the next
demarginalization step. Any (parametric or non-parametric) density estimator
can be used, as long as it is easy to sample from; in this paper, a tree-based
histogram estimator is used.

Nota bene: when possible, some components of θ are integrated out analyti-
cally in (1) instead of being sampled from; see [4].

Experiments. Preliminary numerical results, showing the relevance of a fully
Bayesian approach with respect to empirical Bayes approach, have been provided
in [4]. The scope of these results, however, was limited by a rather simplistic im-
plementation (involving a quadrature approximation for ρ̄n and a non-adaptive
grid-based optimization for the choice of Xn+1). We present here some results
that demonstrate the capability of our new SMC-based algorithm to overcome
these limitations.

The experimental setup is as follows. We compare our SMC-based algorithm,
with I = J = 100, to an EI algorithm in which: 1) we fix θ (at a “good” value
obtained using maximum likelihood estimation on a large dataset); 2) Xn+1 is
obtained by exhaustive search on a fixed LHS of size I × J . In both cases, we
consider a Gaussian process ξ with a constant but unknown mean function (with
a uniform distribution on R) and an anisotropic Matérn covariance function with
regularity parameter ν = 5/2. Moreover, for the SMC approach, the variance
parameter of the Matérn covariance function is integrated out using a Jeffreys
prior and the range parameters are endowed with independent lognormal priors.

Results. Figures 1(a) and 1(b) show the average error over 100 runs of both
algorithms, for the Branin function (d = 2) and the log-transformed Hartmann 6
function (d = 6). For the Branin function, the reference algorithm performs bet-
ter on the first iterations, probably thanks to the “hand-tuned” parameters, but
soon stalls due to its non-adaptive search strategy. Our SMC-based algorithm,
however, quickly catches up and eventually overtakes the reference algorithm.
On the Hartmann 6 function, we observe that the reference algorithm always
lags behind our new algorithm.

We have been able to find results of this kind for other test functions. These
findings are promising and need to be further investigated in a more systematic
large-scale benchmark study.
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Fig. 1. A comparison of the average error to the maximum (100 runs)
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Abstract. Dynamic optimization problems (DOP) challenge the per-
formance of the standard Genetic Algorithm (GA) due to its panmictic
population strategy. Several approaches have been proposed to tackle
this limitation. However, one of the barely studied domains has been the
parallel distributed GA (dGA), characterized by decentralizing the pop-
ulation in islands communicating through migrations of individuals. In
this article, we analyze the influence of the migration period in dGAs for
DOPs. Results show how to adjust this parameter for addressing different
change severities in a comprehensive set of dynamic test-bed functions.

1 Introduction

Solving dynamic optimization problems (DOPs) means pursuing an optimal
value that changes over time. Job shop scheduling (dealing with new arrivals),
semaphores (adapting to traffic), and elevator systems (minimizing customer
waiting time while receiving new calls), are some of these scenarios. These sys-
tems raise big challenges for researchers in Genetic Algorithms (GAs) [1, 2]. The
reason is that GAs hardly can, once converged, to escape from old optima and
adapt to the new environment.

An important weak part of the standard GA model lies in its panmictic popu-
lation strategy, consisting on a single pool of individuals where any two of them
can potentially mate. Consequently, a few authors have used multiple popula-
tions for specializing and tracking promising regions of the search space [1–3].
Most of these approaches perform periodical migrations of individuals among
the populations. However, there is no unified and comprehensive study of the
influence of the migration period in the literature.

In this article, we adopt the parallel distributed GA (dGA), which has been
barely studied in this domain [3]. Many dGAs have proven effective in scenarios
of high diversity requirements and computing resources, so their use should be
valuable to DOPs. Our contributions are twofold: (1) we analyze the influence
of the migration period in the performance of the dGA for a comprehensive set
of DOP benchmarks (Section 4) and (2) we illustrate and discuss the diversity
enhancement and speciation-like features of dGA models for DOPs (Section 5).
Let us start by providing a brief background on DOP and dGA model.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 343–348, 2012.
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2 Background

A dynamic optimization problem (DOP) is a real-world problems that change
on time, where the fitness function is deterministic over time intervals. The goal
here is to find the optimal solution for each time interval quickly and accurately,
and do it by reusing information from previous time intervals rather than restart-
ing the search from scratch. Two of the most important features of DOPs are
the change frequency (how often the changes occur) and change severity (how
different the environment is after a change) [1].

The dGA model [5] structures the population in demes named islands. Each
island independently evolves, usually in parallel, and communicates with the
other ones through migration of individuals. The migration period (ζ), amount of
migrants to exchange (m), criteria for selecting (ωs) or accepting (ωr) migrants,
neighborhood among islands and synchronization, form the migration policy.

Two main reasons drove us to use dGAs in DOPs. First, different islands
can naturally evolve to different solutions (speciation), which is useful to track
multiple peaks at the same time, i.e., potential optima after an environmental
change. Second, the coarse grained distribution and migrations among islands,
improves the population diversity due to the recombination of different genetic
material. This last can be seen as a mechanism to adapt to the changes in a
DOP, since both behaviors depend on the coupling degree among the islands,
which is highly influenced by the migration period.

3 Experimental Setup

The behavior of algorithms is tested using two well-known benchmarks for binary
and real encoding GAs, thus addressing both discrete and continuous DOPs. The
first one is the technique introduced in [6] to build DOPs from a given binary-
encoded stationary function f(x)(x ∈ {0, 1}l). We use that technique on three
different functions: Onemax, Royal Road, and Deceptive [6]. We vary the change
severity (ρ ∈ {0.05, 0.1, 0.2, 0.5, 0.7}) to provide a wide set of difficulty degrees.
The second type of generator is the moving peaks benchmark (MPB) with the
parameter setting of the first standard scenario1 and vary the number of peaks
(n = {5, 50, 200}) and the step severity (ρ = {0.0, 0.5, 1.0, 2.0, 3.0}). Since we
are interested in studying the adaptation ability of the dGA, we set the same
change frequency of τ = 50 generations for all problem instances tested.

Our dGA consists of eight islands evolving homogenously. In every island,
we use a sequential GA with generational replacement. Migrations occur syn-
chronously on a unidirectional ring topology and the migration policies used are
defined in Table 1. The migration periods used are set in number of generations
and proportional to the change frequency (τ = 50). Thus, we test the influence
of migrations at each generation (ζ = 1), four times at each stationary interval
(ζ = τ

4 ), one time in the half and other after a change ( τ2 ), only after a change
(ζ = τ), plus other at alternating intervals (ζ = 2τ

3 ), respectively.

1 Online available at http://people.aifb.kit.edu/jbr/MovPeaks

http://people.aifb.kit.edu/jbr/MovPeaks
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Table 1. Parameter settings for GAs and migration policy

Population Size 512 (64 × 8 islands) ζ ∈ {1, 12, 25, 50, 75}
Parent‘s Selection (Binary tournament, m One copy

Binary tournament) ωs Random selection
Crossover SPX, pc=0.6, ωr Replace if-better than least-fit

(BLXα=0.5 for MPB)
Bit Mutation pm=1/L, L=string length Synchronous migrations

(Polynomial for MPB) Unidirectional ring topology

Algorithms and benchmarks were implemented in C++, using the MALLBA
library2. All experiments were performed in a PC with an Intel Core i7-720QM
processor at 1.60GHz, 4GB of RAM, and running GNU/Linux Ubuntu 10.10.
To describe the behavior of algorithms we compute the accuracy (acc) metric,
also known as relative error. Then, we use the area below the curve (ABC) tool
[7] to compare the results. Finally, we average the results over 100 independent
runs and evaluate the statistical significance with a level of confidence of 95 %.

4 Influence of the Migration Period on the Performance

Lets us first analyze the influence of the migration period in dGAs for DOPs.
Fig. 1. summarizes the ABCAcc achieved with several migration periods and
change severities. High values of this metric indicate a better adaptation of the
algorithm to the changing optimum throughout all the run.
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Fig. 1. Influence of the migration period in the performance of the dGA model for
DOPs with different severity degrees

As a first conclusion, you can notice that the effect of the migration period
is dependent on the severity of change. The lowest migration period (ζ = 1) is
notably better for Onemax with low severity. This instance consists of a fitness
landscape with a single optimal solution drifting slowly. Therefore, a high cou-
pling among the islands produces an accumulation of visited solutions around
the optimum which is useful to pursue small variations of it, but at the expense
of the global diversity. In fact, if the severity degree is higher (ρ > 0.1) then
the algorithm hardly react and adapt to the changes in the environment (see

2 Online available at http://neo.lcc.uma.es/mallba/easy-mallba

http://neo.lcc.uma.es/mallba/easy-mallba
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Fig. 1a). Conversely, a high migration period (ζ = τ = 50) results beneficial for
unimodal DOPs with high severity, since a loose coupling improves the global
diversity of the population.

Multimodal DOPs (Deceptive or MPB) add an additional behavior due to
the large number of suboptimal solutions that arise. In these scenarios, a small
change in the problem can produce abrupt and discontinuous shifts of the op-
timum in the search space. Then, a high migration period (ζ = 50 or ζ = 75)
produces better performance, even when the step severity is low, since in addi-
tion to the diversity enhancement it allows speciation for tracking several optima
candidate at the same time (see next section). We can see in Table 2 the nu-
merical results with all instances tested. For each severity value (columns in the
table), the best result is marked with a star (*) character and the bold type is
applied to those which are not significantly different from this one.

Table 2. Mean ABCAcc computed for dGA with different migration periods for DOPs
with several change severities

ζ ρ = 0.05 ρ = 0.1 ρ = 0.2 ρ = 0.5 ρ = 0.7 ρ = 0.0 ρ = 0.5 ρ = 1.0 ρ = 2.0 ρ = 3.0
Onemax MPB5

1 0.919∗ 0.845∗ 0.639 0.539 0.528 0.912 0.911 0.908 0.912 0.896
12 0.912 0.843 0.649 0.561 0.554 0.939 0.946 0.945 0.932 0.923
25 0.905 0.842 0.671 0.585 0.579 0.948 0.952 0.945 0.937 0.937
50 0.879 0.824 0.681∗ 0.599∗ 0.592∗ 0.946 0.956∗ 0.959∗ 0.947∗ 0.942∗

75 0.852 0.800 0.664 0.588 0.579 0.958∗ 0.953 0.947 0.938 0.935
RoyalRoad MPB50

1 0.734∗ 0.601∗ 0.306 0.0758 0.0777 0.874 0.860 0.870 0.860 0.850
12 0.720 0.599 0.313 0.0944 0.098 0.906 0.898 0.907 0.903 0.887
25 0.711 0.579 0.311 0.110 0.114 0.915 0.903 0.911 0.899 0.897
50 0.661 0.562 0.319∗ 0.118∗ 0.122∗ 0.913 0.916 0.912 0.908∗ 0.903∗

75 0.589 0.491 0.286 0.111 0.114 0.923∗ 0.916∗ 0.912∗ 0.908 0.896
Deceptive MPB200

1 0.936 0.851 0.722 0.559 0.570 0.856 0.852 0.856 0.848 0.851
12 0.957 0.877 0.765 0.631 0.648 0.898 0.900 0.894 0.887 0.879
25 0.977∗ 0.917 0.846 0.723 0.732 0.901 0.901 0.900 0.894 0.882
50 0.976 0.937∗ 0.867∗ 0.764∗ 0.772∗ 0.897 0.910 0.908∗ 0.900∗ 0.894∗

75 0.969 0.921 0.846 0.723 0.728 0.913∗ 0.914∗ 0.897 0.886 0.888

Results in Table 2 corroborate the previous observations statistically. Another
finding is that migrating after a change produces the best overall performance.
Since it insuflates diversity into the population, through the crossbreading be-
tween individuals with different genotypes. In addition, we note that it can only
be effective if islands have had enough isolation time as to promote the speciation
of individuals, as we will illustrate in the next section.

5 Benefits of Speciation for DOPs

With the aim at illustrating the speciation feature of a dGA, we use only two
migration periods: a low one (ζ = 1) and a high value (ζ = 50), and the MPB5

instance with change severity of ρ = 3.0, ensuring the same dynamic behavior
throughout all the runs. Fig. 2 shows the best fitness evolution and the peak
being exploited by each deme. The grey line depicts the optimum trajectory.
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Fig. 2. Fitness evolution (left) and peak tracking (right) by each island of a dGA with
low (upper half) and high (bottom half) migration periods for the MPB5

On the one hand (low period), the dGA losses the evolutionary potential in the
Fig. 2a (curves join in a straight line), which is due to islands exploit in parallel a
reduced number of promising areas converging to a single solution. Such behavior
is also depicted in Fig. 2b, during the first 150 generations (peak number 4). As
noted in previous section, this behavior could be useful for unimodal DOPs with
continuous and drifting landscapes. However, it raises the convergence problem in
the long term, since it resembles the panmictic population strategy. On the other
hand, a high migration period improves the population diversity and promotes
speciation by the isolated evolution of islands. Speciation process consists of
the natural grouping of individuals with similar traits (species), because of the
constrained mating induced by structuring the population in several demes. Note
in Fig. 2c that the curves are more widely spaced than the ones obtained above
with a low migration period. This behavior corresponds to the ability of the
algorithm to track several peaks at the same time. This is more clear in Fig 2c
from generation 150 up to 400, where the problem changes but the optimal peak
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remains the same, and the two islands exploiting this peak dynamically adapt
to its movement. If the optimal peak alternates, as can be seen in the remainder
time intervals, a new specie is able to adapt to the new environment (track island
number 4 after the third change and island number 2 after the eighth change in
Fig. 2d).

6 Conclusions

In this paper we analyzed the influence of the migration period, an important
parameter for dGA models, for DOPs. We used a comprehensive test environ-
ment based on unimodal and multimodal DOP benchmarks. On the one hand,
results showed the benefits of a low migration period to address unimodal DOPs
with small changes. On the other hand, a high migration period showed more
robust to tackle a wide range of change severities in all DOP instances tested,
enhancing the diversity and speciation features of the population. In particu-
lar, migrating as response to a change in the environment shown effective as a
mechanism to adapt to dynamic environments.

In future works, we aim at developing adaptive or self-adaptive dGA models
that exploit the main findings of this work with respect to the migration period in
function of the severity of change, a unified study of all parameters governing the
migration policy, and enhancing the basic behavior with other DOP techniques
like memory, hypermutation, etc.
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1 Pearl Hunter: An Inspired Hyper-Heuristic

Pearl hunting is a traditional way of diving to retrieve pearl from pearl oysters
or to hunt some other sea creatures. In some areas, hunters need to dive and
search seafloor repeatedly at several meters depth for pearl oysters. In a search
perspective, pearl hunting consists of repeated diversification (to surface and
change target area) and intensification (to dive and find pearl oysters). A Pearl
Hunter (PHunter) hyper-heuristic is inspired by the pearl hunting, as shown in
Fig. 1. Given a problem domain and some low-level heuristics (LLHs), PHunter
can group, test, select and organize LLHs for the domain by imitating a rational
diver.

PHunter, which executes a repeated “move-dive-move-dive” sequence in the
main phase in Fig. 1, is in the Iterated Local Search (ILS) scheme [1] in general. In
PHunter, a “surface move” (or move) action involves usually one diversification
LLH which is not hill climbing. However, PHunter can try more moves if the new
position (solution) is trapped around a “buoy”. In other words, a diversification
will not be accepted if the new objective value does not meet a low threshold
“buoy”. In practice, the buoy can be set to the best result of the first iteration.

A “dive” action refers to a sequential execution of hill climbing LLHs. There
are two kinds of dives: “snorkeling” and “deep dive” (scuba). Snorkeling involves
a short sequence of hill climbing algorithms with a low “depth of search” and
stops once an improvement is found. Deep dive iteratively carries out a long
sequence with a high “depth of search” until no further improvement can be
found. Experience showed that there were different positive coefficients between
snorkeling and deep dive in different domains. In a typical “move-dive” iteration,
PHunter generates a number (Num of snorkeling) of new solutions and ranks
them by snorkeling. Only a few promising (best ranked) solutions can be further
processed by deep dives.

PHunter decides a “mode” consisting of a portfolio of grouped moves and
a way of diving for a given problem. In fact, the idea of portfolio was proven
successful in SAT (Boolean satisfiability) competitions [2]. In the rehearsal run,
PHunter employs counters to record how many suboptimal solutions are found
by different groups of moves and different dives. The final mode is determined
according to the rules obtained by off-line learning. The diving environment is
also discovered in the rehearsal run. For example, if the snorkeling and the deep

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 349–353, 2012.
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1 procedure PHunter()

2 test_and_order_dives_and_moves();

3 mode ←rehearsal_run();

4 loop while (terminate_condition_not_met())

5 for each move m in mode.portfolio
6 P ←Ø;

7 loop for Num of snorkeling times

8 p ←apply_move_to_pool(m);

9 loop while (trapped_around_buoy(p))
10 p ←apply_more_moves(p);
11 end loop

12 p′ ←snorkeling(p, mode.env);
13 P ← P ∪ p′;
14 end loop

15 p∗ ←select_promising_positions(P);

16 deep_dive(p∗, mode.env);
17 end for

18 if (mission_restart_condition_is_met())

19 clear_pool();

20 end if

21 end loop;

22 return BestEverFound;
23 end procedure

Fig. 1. Pseudo code of Pearl Hunter

dives always find the same result for every move, the environment is flagged as
“Shallow Water”. In Shallow Water, PHunter simplifies the sequence in snorke-
ling and disables deep dives. Another environment is “Sea Trench”, where at
least one hill climbing heuristic consumes too much time (e.g., 3% of overall
time) in a single execution. In this case, the depths of search are tuned to lower
values and the sequences in snorkeling and deep dives are also simplified.

In practice, a hashed cache can be employed to record courses of deep dives
and it is also used as an unwanted (inferior to tabu) list for surface moves at
the same time. A restart mechanism can reset the search procedure when the
suboptimal solution pool is over-converged or no better solutions are found for
a certain amount of time.

2 Implementation and Experiments

PHunter was implemented on a Java cross-domain platform named HyFlex1

(Hyper-heuristics Flexible framework) [3]. HyFlex provides a random initializa-
tion, a set of LLHs in 4 groups (Crossover, Mutation, Ruin-recreate and Lo-
cal search), two parameters (the “intensity” of mutation and “depth of local

1 See http://www.asap.cs.nott.ac.uk/chesc2011/hyflex_description.html

http://www.asap.cs.nott.ac.uk/chesc2011/hyflex_description.html
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In a Sea Trench environmentNot a Sea Trench environment

D
Pmu >= 18.9% Pmu < 18.9%

Pdir >= 6.7% 

and Prr < 1.5%

B

Pdir < 6.7% 

or Prr >= 1.5%

A

Pdir >= 34.5%

B

Pdir < 34.5%

C

N < 59 

or Mco >= 28

N >= 59 

and Mco < 28

Mco < 14.5 Mco >= 14.5

B

C

Dmurr < 9Dmurr >= 9

N < 78

B

N >= 78

A

Dmurr: Depth of the mission in the Mutation and Ruin-recreate test,

Mco: Number of missions completed in the Crossover test,

N : Number of suboptimal solutions found in total,

Pdir: Percentage of suboptimal solutions found right after some moves (before any dive),

Pmu: Percentage of suboptimal solutions found in iterations started with Mutation moves,

Prr: Percentage of suboptimal solutions found in iterations started with Ruin-recreate moves,

Fig. 2. Decision tree on modes obtained by off-line learning

search”), and a list of easily accessible (but functionally limited) solutions for
each problem in each problem domain.

Five portfolios of moves were defined on the 3 groups (Crossover, Muta-
tion and Ruin-recreate) of moves: average calls (A), Crossover emphasized (B),
Crossover only (C), average calls with an online pruning (D), Mutation and
Ruin-recreate only (E). The portfolio A chooses a move from the 3 groups with
the same probability. The portfolio D selects in the same way and eventually
prunes some moves according to the history. An off-line classification procedure
was carried out to identify the best mode. The decision attributes (counters)
were gathered from a 1-minute test on mode C followed by a 1-minute test on
mode E. The latter test inherits the solution pool. A decision tree was discovered
by the Best-first tree classifier provided by WEKA2 with default parameters, as
shown in Fig. 2, where the mode E was dominated.

Given a set of hill climbing heuristics {A,B,C} (ordered by performances) and
an initial solution, the result of applying heuristics in order “ABC” is usually differ-
ent from that in “CBA” in practice. Possible reasons include complex shape of so-
lution space and occasionally inconsistency of local search algorithms. In PHunter,
deep dives exploit parallel sequences (such as “A-BA-CBA” and “CBA-BA-A”),

2 Version 3.5.6, see http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/
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Table 1. Scores of hyper-heuristics on the HyFlex framework

Domain HH1 HH2 HH3 HH4 HH5 HH6 HH7 HH8 PHunter PHw/o Snor PHHsiao

MAX-SAT 41.3 54.8 19.5 5.0 0.0 25.0 38.3 2.0 91.3 46.0 67.0
1D Bin-packing 29.0 30.0 53.0 35.0 0.0 23.0 12.0 0.0 73.0 63.0 72.0
Personnel Scheduling 53.0 50.5 8.0 39.0 42.0 0.0 36.0 18.0 52.0 42.0 49.5
Flow Shop 12.0 3.0 11.0 54.5 5.0 42.5 3.0 37.0 82.5 65.0 74.0

Overall 135.3 138.3 91.5 133.5 47.5 90.5 89.3 57.0 298.8 216.0 262.5

Table 2. New best-known solutions found in the Personnel Scheduling domain

Instance Size (Men * days) Time (h) Solution Previous best-known† % improved

BCV-A.12.2 12 * 31 24 1,875 1,953 4.0
CHILD-A2 41 * 42 24 1,095 1,111 1.4
ERMGH-B 41 * 42 24 1,355 1,459 7.1
ERRVH-A 51 * 42 24 2,135 2,197 2.8
ERRVH-B 51 * 42 24 3,105 6,859 54.7
MER-A 54 * 42 24 8,814 9,917 11.1

†: Collected from http://www.cs.nott.ac.uk/~tec/NRP/misc/NRP_Results.xls

swap and repeat until no improvements can be further found. The complex se-
quences introduce potential redundancy but return better results generally.

Tests have been conducted on 4 problem domains: MAX-SAT, 1D Bin-packing,
Personnel Scheduling and Flow Shop, each with 10 difficult instances. The re-
sults are shown in Table 1, where PHw/o S was the PHunter without snorkeling
and PHHsiao was the PHunter that used Hsiao et al.’s local search scheme [4] in
deep dive. The results were on average of 10 independent trials. HH1 to HH8
were 8 default hyper-heuristics and their results were provided in HyFlex. The
scoring system was the Formula 1 point system provided by HyFlex, greater
number meant better. The computation time was benchmarked to be equal to
10 CPU minutes on an Intel P4 3.0GHz CPU.

As shown in Table 1 scores of PHunter were competitive. PHunter won the 4th
place overall and the 1st place in the hidden domains out of 20 competitors in the
CHeSC 2011 competition3. The score of PHw/o Snor was significantly lower than
PHunter’s in Table 1. It can be concluded that the snorkeling trial is one of the
keys to the success of PHunter. Another key should be the effectiveness of the ILS
scheme. The parallel sequences of local search tests in deep dive might also be a
reason by comparing the scores of PHunter and PHHsiao. However, the complex
sequence in deep dive is a specified compromise to the LLHs implemented in
HyFlex and may not work in other practice.

In fact some results of the tests approximated or had broken the best-known
solutions. One exception is the Personnel Scheduling domain. PHunter classified
most of the environments as Sea Trench in the domain. So further tests were
made, where the computation time was 24 CPU hours and more benchmark

3 See http://www.asap.cs.nott.ac.uk/chesc2011/results.html.

http://www.cs.nott.ac.uk/~tec/NRP/misc/NRP_Results.xls
http://www.asap.cs.nott.ac.uk/chesc2011/results.html
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problems were included. The results were much satisfied. Especially, PHunter
discovered 6 new best-known records, as shown in Table 2. One possible reason
was the new “vertical” swap local search was first implemented in an LLH on
the HyFlex.

Acknowledgements. The work described in this paper was partially supported
by a grant from the Hong Kong Polytechnic University (POLYU5110/10E) and
partially supported by a grant from the Department of Industrial and Systems
Engineering of The Hong Kong Polytechnic University (No. RP1Z).
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Abstract. In this paper we present two hyper-heuristics: Five Phase
Approach (5Ph) and Genetic Hive (GH), developed for the Cross-Domain
Heuristic Search Challenge held in 2011. Performance of both methods
is studied. Experience gained in construction of the hyper-heuristics is
presented. Conclusions and recommendations for the future advancement
of hyper-heuristic methodologies are discussed.

Keywords: hyper-heuristics, cross-domain heuristic search, HyFlex.

1 Introduction

Hyper-heuristics (HH) are supposed to bring a new quality to solving hard com-
binatorial problems. Instead of directly searching the space of various combi-
natorial optimization problems, hyper-heuristics explore the space of low level
heuristics (LLHs). The LLHs perform moves in the space of solutions of a ground
combinatorial optimization problem similarly to the classic local search meth-
ods. Thus, LLHs serve as an interface between the problem domain and the
guiding algorithm of a hyper-heuristic. This approach has a potential advantage
of automating construction and tuning of algorithms. That allows solution of
a broad range of combinatorial problems (domains). Still, this general concept
to be fruitful needs considering of at least two issues: Which LLHs concepts
are general enough to be implemented in every domain, and how can they be
controlled?

The first issue has been tackled in the HyFlex framework [1]. HyFlex is a
Java library implementing four LLH types on six domains. The LLH types are:
local search heuristics, mutational heuristics, ruin-recreate heuristics, crossover
heuristics. The domains were: maximum satisfiability (Max-SAT), bin packing,
flowshop (FS), personnel scheduling (PS), and later also traveling salesman prob-
lem (TSP), vehicle routing problem (VRP) [4]. HyFlex maintains a population of
solutions initialized by randomized constructive heuristics. The objective func-
tions are uniformly minimized in all domains. Some of the LLHs have additional
parameters controlling, i.e. depth of search, intensity of mutation.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 354–359, 2012.
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In this paper we report on two hyper-heuristics developed by a CS-PUT team
of students and researchers of the Institute of Computing Science, Poznan Uni-
versity of Technology. Two methods were independently developed: Five Phase
(5Ph) and Genetic Hive (GH).

2 Five Phase Approach

The idea was to build an algorithm which iteratively goes through three main
phases: intensification, stagnation, and diversification. Moreover, to avoid getting
stuck in some bad solution, the algorithm should work on a number of solutions
in parallel applying also the mutation and crossingover phases (see Figure 1).

Solution Streams Initialization. This step was applied once for each thread to
scatter the search paths into different areas of the solutions space. Random LLHs
were applied for five seconds on every thread.

LLH classification. The classification algorithm ran an LLH in its thread (solu-
tion stream) a predetermined number of times to collect the statistics. A linear
regression was used to calculate the slope ai of the linear approximation of the
objective function in the repetition count, for each LLH i. The duration Δi of
the classification period for LLH i was also recorded. The score of LLH i was
stati = −ai/Δi. The LLH with stati > 0 was labeled as an improver, with
stati < −0.2 LLH was classified as masher.

Intensification. A random LLH from the triplet(triple cluster of LLHs instead of
just singleton LLHs) was applied in the solution. Probability of selecting the LLH
was proportional to its score. The scores were calculated on the basis of statistics
collected while running the thread. For each LLH i recent improvement of the
objective function value φi (φi > 0 means improvement), and execution time
δi were recorded. The score of LLH i was scorei = scorei ∗ eφi/δi , where initial
scorei = 1 - not selected firstly, might have been dominated and eliminated due
to quickly growing score of just one LLH. To counter such effect, the LLHs that
were not applied so far, had their score increased by 5% with each execution
of any LLH in the thread. The selection of LLH and its run to stagnation was
repeated NoIt = &gs/3+3' times, where gs is the number of global stagnations.

Stagnation. In the stagnation state, the improvement in the objective function
stalled. It had been defined as a situation in which the solution did not improve
in a number of consecutive iterations of LLH. Global stagnation phase occurred
when, after 3 global iterations, the best objective function value was not changed.

Diversification. In this phase masher LLHs were chosen randomly and applied
for a predetermined time period. It was proposed to use short clusters - triplet-
of LLHs on the solutions instead of just singleton LLHs. The architecture of 5Ph
is depicted in Figure 1.

Triplet Mutation. After the intensification phase LLH triples were mutated. For
each thread the algorithm of LLH mutation proceeded in two steps: 1. Randomly
selecting a triplet from some other thread. Probability of drawing a triplet was
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Fig. 1. Architecture of 5Ph algorithm

proportional to the mean value of the triplets LLH scores; 2. Replacing the worst
LLH in the current thread with the best LLH from the drawn one.

Solution Crossingover. If the state of global stagnation was reached, 5Ph applied
a random LLH of the crossover class on the solutions from the threads. The two
solutions to the crossover were selected randomly - the first solution with the
probability proportional to the quality of the solution and the second with the
probability inversely proportional to the solution quality. At the end of this
phase, the global stagnation counter gs was reset to 0, and 5Ph restarted in the
intensification phase.

3 Genetic Hive Algorithm

This algorithm consisted in parallel search of the solution space using evolving
sequences of low level heuristics. It was inspired by the Bees Algorithm presented
in [2] and genetic algorithms mentioned in [3] imitating the behavior of bees
searching for food.

In the algorithm, bees correspond with the LLH sequences. They will be la-
beled as agents. Searching for locations correspond with searching for current
problem solutions. The agents (bees) in the hive remain passive, while the agents
outside attempt to improve the current solutions. Thus, this algorithm is a com-
bination of evolutionary approach and simulation of agent colony searching for
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resources. Let us denote by H the set of all agents, by L the set of active agents
(outside the hive), and by B ⊆ L the set of agents continuing their search in
their locations.

GHHH-Search()

1 InitSearch()

2 while timeSpent < timeLimit
3 do
4 for every agent a ∈ L
5 do Evaluate-Agent(a)
6 � Select agents with the best scores that stay in search locations
7 B ← bSize best agents from set L
8 � Select additional agents that stay in hive to simulate partial extinction
9 S ← sSize random agents from set H \B

10 � Evolve new agents and update hive with them
11 O ← Evolve(B ,oSize)
12 H ← B ∪S ∪O
13 � Assign random agents from hive to free search locations
14 L ← B ∪((lSize − bSize) random agents from set H −B);
15 timeSpent ← currentTime − startTime
16 End.

where: hSize - population size - the total number of agents, lSize - number
of search locations, bSize - number of agents staying in their search locations,
sSize - number of additional agents that don’t evolve, oSize - number of agents
replaced by the offspring, size of the agent - number of LLHs in agent definition,
probability of mutation.

4 Computational Experiments

The aforementioned GH and 5Ph hyper-heuristics, as well as some other hyper-
heuristics created by the team were subject to a number of tests comparing
their performance. The results of that comparisons are summarized in Table 1.
The first two are ad hoc methods. RND LLH - for each of 10 parallel solutions

Table 1. Pairwise comparison of CS-Put HHs

Hyper Heuristics 1 2 3 4 5 6 7 8 9 10 11 12 13

1 RND LLH x
2 Each LLH 22/17 x
3 4Ph-LS 36/2 35/5 x
4 4Ph-RND LLH 25/14 21/17 6/32 x
5 5Ph-LS 3pl 37/3 35/5 19/17 36/3 x
6 5Ph-RND LLH 3pl 25/15 28/12 6/33 18/15 4/34 x
7 5Ph-154 37/2 35/5 17/20 33/4 20/17 37/2 x
8 5Ph-155 32/7 31/8 17/20 31/8 16/18 31/8 16/22 x
9 5Ph-160-40 35/5 27/10 19/18 28/12 18/21 25/15 17/22 19/20 x
10 5Ph-160-46 30/10 27/12 19/20 24/15 18/21 24/14 16/20 15/24 14/24 x
11 5Ph-160-63 32/6 35/5 17/21 29/11 20/19 30/10 15/23 18/20 20/19 22/17 x
12 GenHiv-35 32/8 28/10 14/24 30/9 17/21 28/12 16/22 17/20 17/22 19/21 14/23 x
13 GenHiv-65 36/4 27/13 19/19 29/9 19/18 26/13 18/21 21/18 21/17 21/16 19/21 20/19 x
14 GenHiv-68 35/5 29/11 21/17 30/10 24/15 30/10 19/19 26/14 22/18 24/15 23/15 26/11 23/15
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Table 2. Comparison results for 5Ph and GH - No. of wins out of 10 instances

SAT FS PS BP SAT FS PS BP

5Ph GH

Minimum

1 1 1 2 2 8 9 6

Median

8 0 4 7 2 10 4 3

Average

10 10 9 10 0 0 0 0

randomly choose LLH and apply it to a solution. Each LLH - means executing
each LLH and choosing the best solution. Further suffixes denote: LS means
using local search, LLHs in the intensification phase 3pl means that the triplets of
LLHs were introduced. The particular method can be executed with the different
parameters settings. The values presented in the table are the numbers of wins
against each other. The total number of evaluated instances was 40. For some
entries, the total number of wins is smaller than 40. It means that there were
ties and that both methods gave the same solution. In Table 2, the two final HH
of CS-PUT team are compared on all the HyFlex instances. Minima, medians
and averages of the objective function are presented. A value presents number of
wins for particular method and instance out of 10 evaluated instances. From the
results gathered in the Table 2 one can conclude that GH method is generally
better, according to the competition rules, than 5Ph. On contrary, 5Ph is better
in averages and there is a tie in medians. Hence, distributions of the results are
different. This demonstrates that a single performance index may be insufficient
to show the complexity of the results.

5 Conclusions

Controlling the search process is a complex problem. One of the difficulties was
to decide when to stop applying the current LLH. If the current LLH exhausts
its potential for improving the current solution the search arrives in the state
of ”stagnation”. However, simple statistical methods of detecting stagnation, we
applied, were insufficient to quickly discover that the search had already stalled.
Similar difficulty is guiding the diversification process to move the solution away
from the local minimum. On one hand, it is necessary to leave quickly the current
part of the solution space, on the other hand, the good parts of the current
solution should be preserved to avoid rebuilding the solution from the scratch.
We attempted to improve the performance of 5Ph by diversifying the population
of the solutions supplied to the crossover: some of the solutions were the local
minima, some were random, and some were the worst solutions visited so far.
Still, the results were not satisfactory and in the tuning the number of crossovers
gradually decreased to 1. It seems that convergence of crossover was too slow
for the rules of the competition.
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A HH, applying certain types of LLH, iteratively performed well in one do-
main, but was unsuccessful in other domains. This suggests that the sequence of
the LLH types should be broken, and the type of LLH currently applied should
be varied. To avoid being trapped in a bad solution path, we introduced “par-
allel” search threads in 5Ph. In the course of tunning, the number of threads
decreased from over 100 to 3-7. It can be noted that the chance of avoiding being
stucked up by parallelism is not bigger than by the use of other diversification
tools. Thus, massive parallelism does not provide real advantage in HH search.

Performance of LLHs is domain-, instance-, and solution-dependent. This has
consequences in reasoning about LLHs and HHs: Classifying LLHs by their aver-
age behavior makes no sense, and such classifications cannot be applied to guide
HHs. Since, a HH does not ”know” what instance in what domain is solved and
the LLHs can perform so unpredictably, each instance becomes a unitary com-
binatorial optimization problem. Consequently, unless the domain is fixed and
the instances are similar, HHs cannot be preconditioned for efficient solving of
any instance in any domain. All the information fed to the AI of HH must be
collected while solving the actual instance.

The performance of hyper-heuristic search has at least two criteria: time and
quality of solutions. However, the issue of time was more involved. The HH should
be perceived as combination of three elements: architecture, control parameters,
and guiding algorithm. The architecture dictates the mode of LLH usage. The
architecture can be, i.e., Tabu Search, Memetic Algorithm, 5Ph, GH, etc. In
the classic meta-heuristics, the control parameters are set in the tuning process.
Consequently, HH with sophisticated architecture and a lot of control parameters
(as in 5Ph) need more time and more data to tune to the solved instances. This
leads to a conclusion that for better understanding of HH search, it would be
more advantageous to start with a rudimentary HH.

Acknowledgments. Research partially supported by Polish National Science
Center (No. 519 643340)
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Abstract. In this paper we address the problem of model selection in
Estimation of Distribution Algorithms from a novel perspective. We per-
form an implicit model selection by transforming the variables and choos-
ing a low dimensional model in the new variable space. We apply such
paradigm in EDAs and we introduce a novel algorithm called I-FCA,
which makes use of the independence model in the transformed space,
yet being able to recover higher order interactions among the original
variables. We evaluated the performance of the algorithm on well known
benchmarks functions in a black-box context and compared with other
popular EDAs.

Keywords: Estimation of Distribution Algorithms, Transformation of
Variables, Implicit Model Selection, Minimization of Mutual
Information.

1 Introduction

Estimation of Distribution Algorithms (EDAs) belong to the class of meta-
heuristics for optimization where the search is guided by a statistical model
able to capture the interactions among the variables in the problem. The choice
of the model is crucial, indeed much of the literature in the EDAs community
is focused on applying machine learning techniques for model selection, able to
identify the correct interactions among the variables from a sample of observa-
tions. Some examples are the algorithms which learn the structure of a Bayesian
Network, as in the Bayesian Optimization Algorithms (BOA) [4], clustering al-
gorithms for the variables that appear to be correlated, extended Compact Ge-
netic Algorithm (eCGA) [2] or model selection for Markov Random Field, as in
DEUM [5]. Although very powerful, these techniques have their main drawback
in the computational complexity of the model selection and sampling phases [1].

In this paper we propose a novel approach to the problem of model selection
based on the idea of applying a transformation of variables and then employing
fixed, low dimensional model in the new transformed space. This corresponds
to implicitly identify a different statistical model in the original space which
depends on the particular transformation applied. Obviously we moved much
of the computational complexity from model selection to the choice of a good
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transformation of variables; on the other side it becomes easier to select models
able to capture higher order interactions among the variables. Instead of limiting
the search up to a given order of interactions, due to the family of transforma-
tions we introduced we are able to identify non hierarchical models that can be
efficiently employed in an EDAs.

This paper is organized as follows: we first introduce how transformation of
variables can be employed in EDAs, then we present I-FCA, a novel algorithm
which employs this technique. Finally we compare the performances with other
popular EDAs.

2 Variable Transformations in EDAs: Function
Composition Algorithms

In this section we apply the idea of choosing a transformation of variables and then
considering low-dimensional statistical models in the transformed space to intro-
duce a novel family of EDAs called Function Composition Algorithms (FCAs). In
the following we address the maximization of f(x) : Ωn → R, Ω = {±1}.

We introduce a new vector of variables y = (y1, . . . , yn) in Ω and a one-to-one
map h : Ω → Ω such that y = h(x). We can thus express f as the composition
of a function g(y) : Ω → R with h, i.e., f = g ◦h and g = f ◦h−1. Since h defines
a permutation of the points in Ω, follows that max g = max f .

Recall the basic iteration of an EDA:

Pt selection−−−−−→ Pt
s

estimation−−−−−−→ p(x; θt) ∈M sampling−−−−−→ Pt+1

At each iteration, EDAs start with a population Pt, chose a subset of individuals
according to a selection policy and use this sample to estimate the parameters
of a distribution p(x; θ) belonging to a modelM. For instance this can be done
by means of statistical techniques such as max-likelihood estimation. A new
population Pt+1 is finally generated sampling individuals from p(x; θ). In the
estimation phase, some algorithms, such as UMDA [3], employ a fixed model
while more powerful EDAs, such as BOA [4], DEUM [5] perform a model selec-
tion step using machine learning techniques in order to chose a good model able
to express the interactions among variables in the selected population Ps.

We introduce the following variation of an EDA, where estimation and sam-
pling are preceded and followed by two transformation steps: first a one-to-one
map y = h(x) is applied to each individual in the selected sample, obtaining P̃s,
then the new sample P̃t+1 is mapped back in the original space with h−1:

Pt
s

y=h(x)−−−−−→ P̃s
estimation−−−−−−→ q(y; ξt) ∈ N sampling−−−−−→ P̃t+1 x=h−1(y)−−−−−−→ Pt+1

Here N identifies a model for the transformed variables y which corresponds to
a modelM for x which depends on the particular map h applied. Both models
are characterized by the same dimension of the parameter space.

In the following we give the details of Independence-FCA (I-FCA), a novel
EDA which fixesN to be the independence model for Y and performs an implicit
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model selection step among a wide family of n-variate models by means of the
choice of the one-to-one map h. At each iteration a map h is chosen among
a subset of all the possible one-to-one maps by means of a greedy strategy
which maximizes the likelihood of q(y; ξt) with respect to P̃s. The resulting low-
dimensional model M for X achieves a better approximation of the sample Ps

with respect to the independence model for X .
The subset of the class of the one-to-one maps employed by I-FCA, indexed

by j, k ∈ {1, . . . , n}, with j 
= k, is defined such that

h
(j,k)
i :

{
yi = xixk if i = j
yi = xi otherwise.

Obviously we have n(n−1) different h(j,k) transformations. It is easy to see that
they are one-to-one and that h−1 = h, since x2

i = 1 and Ω = {±1}. Next we
extend the class of transformations we consider by allowing elements h to be the
composition of a finite number m of maps of the form h(j,k):

h = h(j1,k1) ◦ . . . ◦ h(jm,km) ◦ . . . ◦ h(jm,km).

Since the inverse of each transformation in the sequence of compositions is the
element itself, it is easy to see that h−1 is the compositions of all the h(jm,km)

in the inverse order.
In I-FCA we propose a strategy for the choice of map h based on the maxi-

mization of the likelihood of the transformed selected sample P̃s with respect to
the estimated distribution q(y, ξ̂) ∈ N , where N is the independence model for
Y . This is equivalent to minimize the Kullback-Leibler divergence between the
empirical distribution representing the selected population and its projection on
the independence model, which gives a measure of the loss of information which
occurs when P̃s is approximated with q(y, ξ). In order to make the search for h
feasible, we chose a greedy approach: we initialize h to be the identity map y = x,
then we iteratively examine all the n(n− 1) maps h(j,k) and compose the h map
obtained at the previous step with the map h(j,k) which better improves the like-
lihood of (h ◦ h(j,k))(Ps) with respect to the independence model. The iteration
stops when no improvement in the likelihood is achievable composing further
maps of the form h(j,k) or when the maximum number m of transformations in
h has been reached. See Algorithm 1.

Since the chosen encoding for h is redundant, the procedure IsAllowed() is
needed to avoid the evaluation of maps which lead to configurations already ap-
peared in previous stages. The worst case time complexity of the search strategy
for h is O(n2mN), where N is the population size, even though it is possible to
take advantage of the likelihood decomposition to cut most of the complexity
which comes from iterations over the selected population.

3 Experimental Results

In this section we present the results of a preliminary performance evaluation
for the novel I-FCA algorithm on a set of well known benchmarks functions:
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Algorithm 1. I-FCA - Choice of the map h
1: m ← 0;
2: maxL ← Lind; � The likelihood of Ps w.r.t the independence model
3: repeat
4: h[m] ← NULL; � The m-th element of the composition sequence
5: for all j, k ∈ {1, . . . , n}, j �= k do
6: if IsAllowed(h(j,k)) then
7: P̃s ← h(j,k)(Ps);
8: θ̂ ← MaxLikelihoodEstimation(P̃s);
9: L ← Likelihood(P̃s, q(y; θ̂));
10: if L > maxL then
11: h[m] ← h(j,k);
12: end if
13: end if
14: end for
15: Ps ← h[m](Ps);
16: m ← m+ 1;
17: until m ≥ m ∨ h[m − 1] = NULL;
18: return h;
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Fig. 1. Probability of success for three problems as a function of the population size
for different problem sizes n. (a) Alternated Bits, n ∈ {25, 64, 100}, 50 runs (b) 2D
Ising spin glass, n ∈ {25, 64, 100}, 5 instances, 16× 5 runs (c) Trap3, n ∈ {24, 63, 102},
50 runs.

Alternated Bits, 2D Ising spin glass and Trap3. The first two functions are
quadratic while Trap3 includes hierarchical interactions up to order three.

After a preliminary tuning the I-FCA parameters were chosen as follows. As
the selection policy we perform truncation selection and keep the S highest fit-
ness individuals, where S is a function of the problem size n but it is independent
with respect to N . We found that S = 5n is a good choice for all the benchmark
functions considered. Moreover we set m = n. This result is also supported by
an analysis on the set of modelsM obtainable mapping the independence model
for Y into a model for X by means of h. The success ratio as a function of the
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Table 1. Statistics of the best solutions averaged over 48 runs for Alternated Bits
and Trap3 and 8 runs × 5 instances for Sping glass. UMDA: truncation selection 50%,
DEUMce: truncation selection 30%, Cross Entropy min significance 2.0. CPU: AMD
OpteronTM 6176, 2.3 GHz
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Alternated Bits

n 25 64 100

N n2.0 n2.2 n2.0 n2.2 n2.2 n1.4 n2.2 n2.2 n2.2 n1.4 n2.2 n2.0

fbest[%] 100.0 94.4 100.0 97.7 100.0 88.8 100.0 100.0 100.0 85.4 100.0 100.0
success [%] 100.0 14.6 100.0 83.3 100.0 0.0 100.0 100.0 97.9 0.0 100.0 100.0
fevals × 103 2.43 13.14 3.82 1.12 51.08 7.42 119.0 9.42 179.3 15.69 444.9 10.01
iteration 3.60 10.62 4.71 − 5.19 21.56 11.25 − 6.98 24.50 16.35 −
t [s] 0.26 0.22 0.48 0.98 8.77 0.18 79.19 1.72 23.07 0.50 1649.7 8.04

Ising spin glass 2D

n 25 64 100

N n2.4 n2.4 n2.2 n2.4 n2.4 n1.8 n2.2 n2.4 n2.4 n1.6 n2.2 n2.4

fbest[%] 99.5 97.3 100.0 94.9 99.7 92.8 99.7 100.0 99.6 85.2 99.9 100.0
success [%] 92.5 55.0 100.0 50.0 87.5 2.5 87.5 100.0 70.0 0.0 95.0 100.0
fevals × 103 5.55 26.78 6.89 2.03 130.4 43.16 155.5 21.62 488.0 39.27 498.4 63.10
iteration 2.23 11.40 4.42 − 5.80 23.82 15.15 − 7.53 24.32 18.48 −
t [s] 0.17 0.24 0.73 2.88 10.67 0.91 95.26 2.54 76.83 1.18 1707.6 37.53

Trap3

n 24 63 102

N n2.4 n2.6 n2.4 n1.8 n2.6 n1.8 n2.2 n1.8 n2.4 n1.8 n2.0 n1.8

fbest[%] 100.0 95.5 100.0 90.9 100.0 90.3 100.0 82.3 100.0 90.2 100.0 77.9
success [%] 100.0 4.2 100.0 0.0 100.0 0.0 100.0 0.0 95.8 0.0 100.0 0.0
fevals × 103 4.81 6.78 13.68 0.32 159.8 23.65 150.8 0.91 348.3 82.15 287.5 2.46
iteration 2.12 1.29 5.35 − 3.15 13.21 15.29 − 5.19 19.48 26.29 −
t [s] 0.19 0.10 1.18 4.26 8.69 0.62 97.63 2.05 20.43 2.31 992.7 15.74

population size N is shown in Figure 1, for different problem sizes n. We next
compare the performances of I-FCA with three well known EDAs: UMDA [3],
hBOA and DEUMce [5]. UMDA employs the independence model and it is iden-
tical to I-FCA once h is fixed to be the identity map y = x. hBOA make use
of densities which factorize according to the structure of a Bayesian Network
which is learned at every iteration from the selected sample. DEUMce employs
a Cross Entropy criterion to learn the structure of a Markov random field where
interactions up to order two are considered.

Straightforward implementations of these algorithms have been implemented
in Evoptool [6] and all code is available at1. We run experiments with different
parameter settings and population sizes and we computed the normalized value
of f , the success ratio, the number of fitness evaluations, time and algorithm

1 http://airlab.elet.polimi.it/index.php/Evoptool

http://airlab.elet.polimi.it/index.php/Evoptool
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iterations when the best found individual appeared in the population, averaged
over multiple runs. The results for the parameter settings which gave highest
success ratio and least number of fitness function evaluations are presented in
Table 1. It is possible to see that I-FCA outperforms UMDA: this proves the
viability of the variables transformation approach. Moreover, the performances
of I-FCA are comparable with hBOA, although the latter is able to achieve
reliable convergence to the global optimum with smaller populations. Part of
this comes from the more advanced selection scheme employed. DEUMce fails
to find any good solution on Trap3, because of the third interaction present in
the function, which instead are correctly handled by I-FCA and hBOA.

4 Conclusions

In this work we have introduced a novel EDA called I-FCA and we have tested
out algorithm on three well known benchmark function. I-FCA has a low num-
ber of parameters for which we were able to give problem independent settings.
Although a wider set of benchmark functions has to be analyzed, our prelimi-
nary experiments have shown that I-FCA can challange algorithms which learn
expressive models, such as hBOA, employing only a low dimensional model, once
a proper variable transformation has been learnt.
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Abstract. In the standard version of the UCT algorithm, in the case
of a continuous set of decisions, the exploration of new decisions is done
through blind search. This can lead to very inefficient exploration, par-
ticularly in the case of large dimension problems, which often happens
in energy management problems, for instance. In an attempt to use the
information gathered through past simulations to better explore new de-
cisions, we propose a method named Blind Value (BV). It only requires
the access to a function that randomly draws feasible decisions. We also
implement it and compare it to the original version of continuous UCT.
Our results show that it gives a significant increase in convergence speed,
in dimensions 12 and 80.

1 Introduction and Motivation

We consider a high dimensional continuous and stochastic sequential decision
making problem. Both the decision space and state space are continuous. For
the sake of simplicity, both have the same dimension N . There is a finite time
horizon H , after which no further decisions are made. At each time step t < H ,
given a current state st, the optimizer has to make a decision d. In this paper,
we will denote the set of feasible decisions from state s as X(s). We will also
denote the set of explored decisions from state s after the nth iteration, n ≥ 1,
as Dn(s).

We consider that the optimizer has at its disposal a model with a transition
function f and a sampling function ϕ. The transition function takes as inputs
a state st and a decision x ∈ X(st). Its outputs are a state st+1 and a re-
ward rt+1 ∈ R. The sampling function takes as input a state st, and its output
is a decision x ∈ X(st). The optimizer has no other knowledge of the model
than these two functions. Both functions can be (and are, in our experiments)
stochastic: f(st, d) and ϕ(st) are two multidimensional real random variables,
their probability distributions being unknown to the optimizer.

The optimizer is given an initial state s0, and its objective is to maximize the
accumulated reward

∑
1≤i≤H r(i).

In this context, UCT like algorithms have been some of the most efficient
methods, like MCTS in the game of Go [6,4,7,8], or continuous MCTS on energy
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management problems [5]. This is due, mostly, to the fact that without any
dimension reduction technique (that is application specific), all other well known
methods, like dynamic programming, fail [1,2].

However, in its current form, continuous MCTS does not use any information
when it explores new decisions. This is not such a dramatic issue in discrete cases,
or in low dimensional continuous cases, as one can just blindly cover most of the
search space. But, in the case of a high dimensional continuous decision space, we
think that the convergence speed could be greatly increased by biasing the way
new decisions are explored. As mentioned before, we consider the case where the
sampling of feasible decisions is ”black box”. This means that the set of feasible
decision, as well as the inside of the sampling function ϕ, are unknown to the
optimizer. This keeps biased sampling methods out of our options. We chose to
consider this case because, to have access to the inside of the sampling function,
one needs to know precisely the constraints of the model, and to implement them.
Not only can this work take enourmous amounts of time (i.e.,hundreds of man
hours), but the resulting feasible space may also be highly non convex, resulting
in even more work to develop sampling functions on these spaces. In short, biased
sampling, in our opinion, should be relevant for very problem-specific methods.

One could also count on an approximate knowledge of the feasible space,
sample on this approximation, and apply a large penality to infeasible decisions.
This is a valid option for many problems, but, in energy management problems
(our main current application of interest), the feasible decisions are extremely
sparse in the convex envelop, making this approach less interesting.

Our approach is focused on using the very limited information of the transition
and sampling functions, in combination with the information progressively made
available during the course of the simulations.

This is inspired by a work on continuous and stochastic bandits problems
[3], which provides a method that ensures that no area of the feasible decisions
set is left unexplored, while focusing on promising areas of this set. However, it
focuses on the theoretical aspect of the problem, and requires some assumptions
that often do not hold in our case. In particular, it requires the knowledge of the
set of feasible decisions. Still, our approach follows the same ideas: explore the
empty areas first, and then to focus on areas where promising decisions are.

We first quickly review the state of the art form of MCTS in a continuous
setting. Then, we introduce its new variant termed MCTS with Blind Value
(MCTS-BV). Then, we show some experimental results on an energy manage-
ment problem, where we compare the two versions, first in a small dimension
setting, then in a larger dimension setting (N = 80). Finally, we present some
experimental results on the tuning of one parameter of MCTS-BV.

2 State of the Art of Continuous Upper Confidence Trees

The UCT algorithm builds a tree where the nodes represent the reachable states,
and the arcs the feasible decisions. By progressively adding arcs and nodes from
its root (that represents the initial state given to the optimizer), more infor-
mation is gathered. When the algorithm runs out of time, it selects the most
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promising decision reachable from the root (usually, the one that has been sim-
ulated the most). Among the crucial mechanisms in this algorithm, there are:
when to add a new decision to the tree or when to exploit a known decision,
and how to select a known decision once we have chosen not to add a new one.
The first part is usually dealt with by using Progressive Widening [5], while
the second is usually dealt with by using an Upper Confidence Bound formula
(UCB).

For more detailed information about the current state of the art form of MCTS
with Double Progressive Widening (MCTS-DPW), please read [5].

3 Blind Value

The principle of Blind Value is to help the exploration of new decisions. One can
want to explore a new decision from any state already in the tree. Although in
our case, the optimizer cannot bias the sampling of new decisions, we propose a
method that does use the information available in the tree. More precisely, we
use the information about the children of the current node. In terms of states
and decisions, it means: when we want to explore a new decision from state s,
we use information about all the decisions explored from this state s in the past
simulations to select a new decision x ∈ X(s) to be explored from state s.

Note that one could use any other information in the tree: brother nodes,
grand children nodes, father node, etc. However, even the exploitation of the
direct children of a node only is computationally costly. And, the more distant
in the tree some information is, the more likely it is to be irrelevant to the node
we are currently in (states might be very different, and this type of problem is
also highly time step dependant). [8] has proposed the use of Rapid Action Value
Estimates (RAVE), which are an interesting other possibility; we will consider
the mixing of blind value with RAVE values in a further work. [8] also proposed
the use of information from related nodes; after preliminary positive results, this
was later removed from the corresponding implementations (for the game of Go)
for correctly tuned implementations.

The idea of BV is to try to explore decisions that are far away from known
decisions during the first simulations, and then to focus on areas that have a
lot of decisions with high UCB values. This is done by sampling a number of
new decisions, and by selecting one of them according to a combination of these
two criterions (explore unknown regions and explore regions with many decisions
with high UCB values in it).

More precisely, we sample a number M ≥ 1 of random decisions, and we
pick the one that is the most interesting to explore. The way we measure the
interest of a decision is through a function from the decision space to R, denoted
BV (.) (Blind Value). This function can be defined in many different ways. In
this paper, at an iteration n, given a state s and a decision x ∈ X(s), we chose to
define BV (x) as the minimum over Dn(s) of the sum of two parts. The first part
is the UCB value of d ∈ Dn(s), the second is the distance between x ∈ X(s)
and d ∈ Dn(s), multiplied by an adaptation coefficient. We use the standard
euclidian distance, but any other distance could be used instead.
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More precisely, the Blind Value of x in state s with decisions d ∈ Dn(s)
already explored is

BV (x) = min
d∈Dn(s)

UCB(d) + ρdist(d, y).

What follows is the detailed blind value algorithm:

Exploration of new decisions
Input: a state s, a set D of already explored decisions, an integer M , and a distance
function over the decision space, dist
Output: an unexplored decision x.
Generate M random decisions. Let X be the set composed of these decisions.
Compute a = UnbiasedStandardDeviationd∈D(UCB(d))
Compute b = UnbiasedStandardDeviationx∈X(dist(x, 0)), 0 being the center of
the domain
Compute ρ = a

b

return x = argmaxy∈XBV (y, ρ,D)

Computing BV (Blind Value)
Input: an unexplored decision y, a real number ρ, andD the set of explored decisions

Output: a real number BV (y, ρ,D).
return mind∈D(ρ× dist(d, y) + UCB(d))

4 Experimental Comparison

Our test case is an energy management problem. There are N energy stocks,
H time steps, and a thermal power plant with a given maximum capacity and
production cost function. In our experiments, we used a quadratic cost function.
At each time step, each stock also receives an inflow. Each inflow follows its own
independent random distribution.

At each time step, the decision maker has to decide how much to produce
from each stock, and how much to produce from the thermal plant. His goal is
to satisfy a time varying demand at the lowest possible cost.

We ran two algorithms on this problem: the continuous version of MCTS,
as introduced in [5], and the same algorithm with the addition of Blind Value
(MCTS-BV), with the sample size parameter set to 20. This experiment was run
with 12 stocks and 16 time steps. The results are shown in fig 1 (left). In this
experiment, as in the following ones, each point is computed from 10000 runs of
the algorithm on one problem instance. The 95% confidence intervals are plotted
as blue segments around the points, even though their small size can make them
very hard to see in some cases.

This figure shows that even in dimension 12, BV already gives an edge of
magnitude 10 to MCTS, in terms of computation time (to reach a certain level
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Fig. 1. Left: reward, as a function of the computation time. Problem settings: 12 stocks,
16 time steps. MTCS with BV is 10 times faster than MCTS, for budgets up to 10
seconds per decision. Right: reward, as a function of the number of simulations per
decision. Problem settings: 80 stocks, 6 time steps. MTCS with BV is 10 times faster
than MCTS, for all budgets.

of performance, MCTS requires 10 times as many simulations as MCTS-BV).
The problem being reasonably easy, we also see that this edge decreases when
the computation time increases (but only for a computation time of about 3
minutes). This is due to the fact that, as the budget gets bigger, both algorithms
get very close to the optimum, in terms of reward.

This is why we made a second experiment, on the same problem, with a much
higher dimension. In this experiment, there are 80 stocks, 6 time steps, and
M = 640. With the information given to the algorithms (just the transition and
the sampling functions), this problem is incredibly difficult, and naturally has
very low reward (the highest average possible reward being around −2.5× 107).
Given its dimension, there is no way of exploring the entire decision space, even
with a very low density. The results are shown in Fig. 1 (right).

This figure shows that BV still gives an edge of magnitude 10 to MCTS
in terms of computation time, even though we were not able to approach the
optimum with our computing capacities. One can also note that in this setting,
the difference seems to be increasing as the budget increases. This leads to
think that on very difficult problems, BV can divide by ten, or even more, the
computing time necessary to reach a certain level of performance.

5 Conclusion and Future Work

We introduced a new variant of continuous MCTS to better solve high dimen-
sional problems. Our experimental results show that this variant, MCTS-BV,
improves the original algorithm by a factor 10 (it reaches the same level of per-
formance with 10 times less simulations than the original). This result holds for
even relatively small dimension problems (dimension 12). The edge given by BV
seems to be even bigger in very high dimensions, but this could be confirmed by
longer experiments.
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We believe that, especially in its simplest form, Blind Value is very easy to
implement, and can significantly increase the convergence speed of MCTS on
continuous and stochastic planning problems.

It could also be coupled with other ways of exploiting information throughout
the tree. One of the promising leads is the use of RAVE values, first introduced
in the game of Go [8], and currently extended to continuous domains. While
Blind Value only uses the decisions at the current level in the tree (horizontal
propagation), RAVE propagates information through the path of each simula-
tion, from child to father node (vertical propagation) enabling the algorithm to
attribute a value to decisions not yet explored from one specific state.

Our future work will focus on setting an adaptive form for the sampling size
parameter, to adapt it to the time budget. We also plan on trying different
variants of the formula used to rank the decisions in the pool, by changing the
distance, for example.
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Abstract. The purpose of this paper is to propose effective paralleliza-
tion strategies for the Iterated Local Search (ILS) metaheuristic on
Graphics Processing Units (GPU). We consider the decomposition of
the 3-opt Local Search procedure on the GPU processing hardware and
memory structure. Two resulting algorithms are evaluated and compared
on both speedup and solution quality on a state-of-the-art Fermi GPU ar-
chitecture. We report speedups of up to 6.02 with solution quality similar
to the original sequential implementation on instances of the Travelling
Salesman Problem ranging from 100 to 3038 cities.

Keywords: TSP, ILS, Parallel Metaheuristics, 3-opt, GPU, CUDA.

1 Introduction

Iterated Local Search (ILS) is a metaheuristic that successively applies a Local
Search (LS) procedure to an initial solution and incorporates mechanisms to
climb out of local optima. It finds good solutions to many optimization prob-
lems in a reasonable time which may remain too high in practice. Even though
this time can be reduced by parallel computing, most approaches are dedicated
to CPU-based architectures. As research on computer architectures is rapidly
evolving, new types of hardware have recently become available. Among them
are Graphics Processing Units (GPU) which provide great and affordable com-
puting power but also require new algorithmic paradigms to be used efficiently.

The purpose of this paper is to propose parallelization strategies for ILS to
efficiently solve the Travelling Salesman Problem (TSP) in a GPU computing
environment. We first present k-opt LS algorithms and the ILS metaheuristic.
Then, after a literature review on parallel LS and ILS, the proposed GPU par-
allelization strategies are explained and experimented.

2 Iterated Local Search for the TSP

The Travelling Salesman Problem (TSP) may be defined as a complete directed
graph G = (V,A, d) where V = {1, 2 , ..., n} is a set of vertices, A = {(i, j) |
(i, j) ∈ V ×V } is a set of arcs and d : A→ N is a function assigning a weight dij
to every arc. The objective is to find a minimum weight Hamilton cycle in G.
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Local Search (LS) aims to iteratively improve a solution by local transfor-
mations, replacing it by a better neighbor until no more improving moves are
possible. Most known LS algorithms for the TSP are based on k-opt exchanges
which delete k arcs of a solution and reconnect partial tours with k other arcs.
Figure 1 describes the 3-opt method [4]. As a LS procedure may become trapped
in a local optimum, it is often embedded in a guiding construction such as Iter-
ated Local Search (ILS) [5]. Figure 2 shows the main steps of this metaheuristic.

Compute length L of solution S
while S is improved do

for all a, b, c ∈ [0;n] do
Delete arcs (a,a+1), (b,b+1) and (c,c+1)
Produce S′ by reconnecting partial tours
with other arcs
Compute length L′ of solution S′

if L′ < L then
S = S′ and L = L′

Return best solution S

Fig. 1. 3-opt LS pseudo-code

Generate solution S
Apply LS procedure on S
Compute length L of solution S
while end criterion is not reached do

Transform S into S′ by a perturbation move
Apply LS procedure on S′

Compute length L′ of solution S′

if L′ < L then //acceptance criterion
S = S′ and L = L′

Return best solution S

Fig. 2. ILS pseudo-code

The works of Stützle and Hoos [10] and Lourenço et al. [5] show the efficiency
of ILS in solving TSP problems ranging from 100 to 5915 cities. However, faced
to large and hard optimization problems, it may need a considerable amount
of computing time and memory space to be effective in the exploration of the
search space. A way to accelerate this exploration is to use parallel computing.

3 Literature Review on Parallel LS and ILS

Verhoeven and Aarts [11] proposed a classification that distinguishes single-
walk and multiple-walk parallelization approaches for LS algorithms. In the first
category, one search process goes through the search space and its steps are
decomposed for parallel execution. In that case, neighbors of a solution may
be evaluated in parallel (single-step) or several exchanges may be performed
on different parts of that solution (multiple-step). In the second category, many
search processes are distributed over processing elements and designed either as
multiple independent walks or multiple interacting walks.

Johnson and McGeoch [3] defined three parallelization strategies for k-opt
algorithms. The first one uses geometric partitioning to divide the set of cities
into subgroups that are sent to different processors to be improved by a con-
structive algorithm and a LS procedure. As this partitioning has the drawback
of isolating subgroups without reconnecting subtours intelligently, the second
strategy favors tour-based partitioning to divide tours into partial solutions that
includes a part of the edges of the current solution. The third approach is a
simple parallelization of neighborhood construction and exploration.
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Works on parallelization of ILS for the TSP mainly follow the population-
based, multiple-walk approach where many solutions are built concurrently.
Hong et al. [2] designed a parallel ILS which executes a total of m iterations
using a pool of p solutions. Martin and Otto [8] proposed an implementation in
which several solutions are computed simultaneously on different processors and
the best solution replaces all solutions at irregular intervals.

Luong et al. [7] proposed a methodology for implementing large neighborhood
LS on GPU. The CPU runs the LS processes while the GPU generates neighbor
solutions which are associated to CUDA threads. It is experimented with Tabu
Search on the Permuted Perceptron Problem and maximal speedup of 25.8 is
reported. In Luong et al. [6], Tabu Search is embedded with ILS to solve the
Quadratic 3-dimensional Assignement Problem with maximal speedup of 6.1.

Most works related to parallel LS and ILS are based on traditional CPU
architectures. As LS algorithms are key underlying components of most high-
performing metaheuristics, a natural fit would be to run a guiding metaheuristic
on CPU while the GPU, acting as a co-processor, takes charge of running the
LS procedure. However, there is still much conceptual and technical work to
achieve in order to design such hybrid parallel combinatorial optimization meth-
ods. This paper aims to partially fill this gap by proposing and evaluating GPU
implementations of an ILS algorithm for the TSP based on 3-opt parallel LS.

4 Parallel GPU Strategies for ILS

We present two GPU strategies for ILS which mainly differ by the way they dis-
tribute solutions to processing elements and by their use of GPU shared memory.
Beforehand, we provide a brief description of the GPU computing environment.

The NVIDIA GPU [9] architecture includes many Streaming Multiprocessors
(SM), each one of them being composed of Streaming Processors (SP). Each SM
allows the execution of many threads in a data-parallel fashion. On this special
hardware, the global memory is a specific region of the device memory that can
be accessed in read and write modes by all SPs of the GPU. It is relatively large
in size but slow in access time. Constant and texture memory caches provide
faster access to device memory but are read-only. All SPs can read and write in
their shared memory, which is fast in access time but small in size and local to
a SM. In the CUDA programming model [9], the GPU works as a co-processor
of a conventional CPU. It allows the parallel execution of many CUDA threads
that are grouped into blocks to be executed by the SMs. However, the number of
blocks that a SM can process at the same time (active blocks) is restricted by the
available shared memory and registers. Special care must also be taken to avoid
flow control instructions (if, switch, do, for, while) that may force threads of a
same block to take different paths in the program and serialize the execution.

The proposed ILS implementations are inspired by the multiple independent
walks strategy described in Section 3. However, only the LS is parallelized on
GPU instead of entire walks. In this scheme, illustrated in Figure 3(a), LS is
applied on each solution on different processing elements.
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Fig. 3. Parallelization models for ILS : general (a), ILSthread (b) and ILSblock (c)

On a conventional CPU architecture, the concept of processing element is
usually associated to a single-core processor or to one of the cores of a multi-
core processor. On a GPU, the obvious choice is to associate this concept to
a single SP. In that case, a first strategy that may be defined is to associate
each LS to a CUDA thread. Each thread then improves its solution in a SIMD
fashion. This strategy, called ILSthread, is illustrated in Figure 3(b) and has been
proposed for the parallelization of Ant Colony Optimization in previous work by
the authors [1]. It has the advantage of allowing the execution of a great number
of LSs on each SM and the drawback of limiting the use of fast GPU memory.

The second strategy, called ILSblock and illustrated in Figure 3(c), is based
on associating the concept of processing element to a whole SM. In that case,
each solution is associated to a CUDA block and parallelism is preserved for the
LS phase. A single thread of a given block is still in charge of applying LS to
a solution, but another level of parallelism is exploited by sharing the multiple
neighbors between many threads of a block. Following the idea of ILSthread, a
simple implementation would then imply keeping the private data structures of
a solution in the global memory. However, as only one solution is assigned to a
block and so to a SM, it becomes possible to store the data structures needed
to improve the solution in the shared-memory. Two variants of the ILSblock

strategy are then distinguished and experimented : ILSglobal
block and ILSshared

block .

5 Experimental Results

GPU strategies are experimented on TSP problems ranging in size from 100 to
3038 cities. Speedups are computed by dividing the sequential CPU time with the
parallel time obtained with the GPU acting as a co-processor. Experiments were
made on a NVIDIA Fermi C2050 GPU (14 SMs, 32 SPs per SM and 48 KB of
shared memory). Code was written in the ”C for CUDA V4.0” [9] programming
environment. As a premiminary step, we validated our sequential ILS with a
comparative study with Stützle and Hoos [10] and Lourenço et al. [5] works.
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Fig. 4. Speedups for ILSthread, ILS
global
block and ILSshared

block strategies for each nbsol

The parallel ILS is configured with a population of nbsol solutions, a total
number of 1048576 iterations and an ILS procedure limited to itlim = 1048576

nbsol
iterations for each solution. Speedups are computed from 20 trials for problems
with less than 1000 cities and from 10 trials for larger instances.

Figure 4 illustrates the speedups obtained for each problem and each strat-
egy. It shows that increasing nbsol and so, the total number of threads, generally
leads to increasing speedups for all strategies. Moreover, speedups obtained with
ILSthread are limited to 2.02 and are always lower than with ILSblock. This
strategy does not execute enough threads to efficiently hide memory latency.
Furthermore, code divergence induced by computing the neighbors of many so-
lutions/threads on the same block involves significant algorithm serialization.

The greater speedups and the maximal value of 4.32 obtained with ILSglobal
block

show that sharing the work associated to each solution between several threads
is more efficient. However, speedups increase from 100 to 318 cities and then
slightly decrease. In that case, the larger data structures and frequent memory
accesses imply memory latencies that grow faster than the benefits of paral-
lelizing available computations. Further improvements are brought by the use of
shared memory of ILSshared

block , which provides a maximal speedup of 6.02. How-
ever, results for the three biggest problems show that the limits of this kind of
memory are quickly reached. In fact, since this memory is very limited in size,
either speedup is not achieved or the problem can not be solved at all.

An analysis of the average percentage deviation Δ from the optimum showed
that the optimal solution is always found (Δ = 0.000) by the parallel implemen-
tations for small problems. For medium-sized problems, the more nbsol increases,
the less frequently the optimal solution is found (Δ = 0.002 toΔ = 0.137). As the
number of iterations becomes too low to provide a thorough search, the optimal
solution is never found for the bigger problem (Δ = 0.520 to Δ = 1.112). This
indicates that when choosing appropriate parameters for the parallel algorithms,
a compromise must be achieved between speedup and solution quality.
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6 Conclusion

The aim of this paper was to design efficient parallelization strategies for the im-
plementation of Iterated Local Search on Graphics Processing Units to solve the
Travelling Salesman Problem. The ILSthread and ILSblock strategies associated
the Local Search phase to the execution of streaming processors and multiproces-
sors respectively. Experimental results showed significant speedups of up to 6.02
with solution quality often equal or close to optima, but also considerable limi-
tations on large problems. Moreover, they highlighted that maximal exploitation
of GPU ressources often requires algorithmic configurations that do not let ILS
perform an effective exploration and exploitation of the search space.

In future work, we plan to study the GPU performance of other decomposition
approaches like tour-based partitioning. We would also like to design k-opt based
parallel algorithms that provide a better compromise between GPU efficiency
and search robustness for the TSP and related problems.
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Abstract. The Costas Array Problem is a highly combinatorial problem
linked to radar applications. We present in this paper its detailed mod-
eling and solving by Adaptive Search, a constraint-based local search
method. Experiments have been done on both sequential and parallel
hardware up to several hundreds of cores. Performance evaluation of
the sequential version shows results outperforming previous implemen-
tations, while the parallel version shows nearly linear speedups w.r.t. the
sequential one, for instance 120 for 128 cores and 230 for 256 cores.

1 Introduction

During the last decade, the family of Local Search methods and Metaheuristics
has been quite successful in solving large real-life problems.

A generic Constraint-based Local Search method named Adaptive Search was
proposed in [4,5]. It is a metaheuristic that takes advantage of the structure
of the problem to guide the search and that can be applied to a large class
of constraints (e.g., linear and non-linear arithmetic constraints and symbolic
constraints). Moreover, it intrinsically copes with over-constrained problems.

A parallel version with a multi-start approach requiring no communication
between processes has been defined in [7,3]. On classical CSP benchmarks from
CSPLib, this simple parallelization scheme gives good results, with a factor 50-70
speedup for 256 cores, but this is far from ideal speedup (e.g., factor 256 speedup
for 256 processors), even for large problem instances. It is thus an open question
to know whether this is due to the classical (structured) CSP benchmarks used
or if this is a limitation of the method. In this paper we address the problem
of modeling a very combinatorial problem, with a low density of solutions the
Costas Array Problem (CAP) in the sequential version and we further investigate
if it scales up to a large number of processors and exhibits better speedups.
The CAP is an abstract problem that was motivated by a sonar application in
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the 1960’s but still has practical interest in radar and software-defined radio
applications [2]. Experiments in solving the CAP by Adaptive Search on two
parallel platforms, the Hitachi HA8000 supercomputer at University of Tokyo
and Grid’5000, the French national Grid for the research, show nearly linear
speedups w.r.t. the sequential version, for instance 120 for 128 cores and 230 for
256 cores.

The rest of this paper is organized as follows. Section 2 presents the Costas
Array Problem. Section 3 presents the modeling of the Costas Array Problem
within the Adaptive Search formalism. Section 4 details the experiments up to
256 cores on the HA8000 supercomputer and the Grid’5000 platform. Section 5
concludes the paper and briefly discusses about future work.

2 The Costas Array Problem

A Costas array is an n×n grid containing nmarks such that there
is exactly one mark per row and per column and the n(n− 1)/2
vectors joining the marks are all different. We give here an ex-
ample of Costas array of size 5. It is convenient to see the Costas
Array Problem (CAP) as a permutation problem by considering

an array of n variables (V1, . . . , Vn) which forms a permutation of {1, 2, . . . , n}.
The Costas array above can thus be represented by the array [3, 4, 2, 1, 5].

Historically, these arrays have been developed in the 1960’s to compute a set
of sonar and radar frequencies avoiding noise [6]. The problem to find a Costas
array of size n is very complex since the required time grows exponentially with
n. In the 1980’s, several algorithms have been proposed to build a Costas array
given n, such as the Welch construction and the Golomb construction [9], but
these methods cannot built Costas arrays of size 32 and some higher non-prime
sizes. Nowadays, after many decades of research, it remains unknown if there
exist any Costas arrays of size 32 or 33. Another difficult problem is to enumerate
all Costas arrays for a given size. Using the Golomb and Welch constructions,
Drakakis et. al present in [8] all Costas arrays for n = 29. They show that among
the 29! permutations, there are only 164 Costas arrays, and 23 unique Costas
arrays up to rotation and reflection. There are constructive methods known to
produce Costas arrays of order 24 to 29.

The Costas array problem has been proposed as a challenging combinatorial
problembyKadioglu andSellmann in [10].Theypropose a local searchmetaheuris-
tic, Dialectic Search, for constraint satisfaction and optimization, and show its
performance for several problems. Clearly this problem is too difficult for
propagation-basedsolvers, even formedium size instances (i.e.,withn around18−
20). Let us finally note that we do not pretend that using local search is better than
constructive methods in order to solve the CAP. We rather consider the CAP as a
very good benchmark for testing local search and constraint-based systems and to
investigate how they scale up for large instances and parallel execution.

In [12], Rickard and Healy studied a stochastic search method for CAP and
concluded that such methods are unlikely to succeed for n > 26. Although
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their conclusion is true for their stochastic method, it cannot be extended to all
stochastic searches: their method uses a restart policy which is too simple and
they also used an approximation of the Hamming distance between configura-
tions in order to guide the search which they recognized themselves not be be
a very good indicator. However, they studied in this paper the distribution of
solutions in the search space and shown that clusters of solutions tend to spread
out from n > 17, which justify our multi-walk approach presented in Section 4
to reach linear speedup for high values of n.

3 Solving the CAP with Adaptive Search

The CAP can be modeled as a permutation problem by considering an array of
n variables (V1, . . . , Vn) which forms a permutation of {1, 2, . . . , n} (i.e., implicit
alldifferent constraint on variables Vi). A variable Vi = j iff there is a mark at
column i and row j. To take into account constraints on vectors between marks
(which must be different) it is convenient to use the so-called difference triangle.

3 4 2 1 5
d = 1 1 -2 -1 4
d = 2 -1 -3 3
d = 3 -2 1
d = 4 2

This triangle contains n−1 rows, each row cor-
responding to a distance d. The dth row of the
triangle contains the differences Vi+d−Vi for all
i = 1, . . . , n− d (i.e., the difference of values at
a distance d). Ensuring all vectors are different
comes down to ensure the triangle contains no
repeated values on any given row (i.e., alldifferent constraint on each row).
Here is the difference triangle for the Costas array given as example in Section 2.

In the Adaptive Search (AS) method, the way to define a constraint is done via
error functions [4]. At each new configuration, the difference triangle is checked
to compute the global cost and the cost of each variable Vi. Each row d of the
triangle is checked one by one. Inside a row d, if a pair (Vi, Vi+d) presents a
difference which has been already encountered in the row, the error is reported
as follows: increment the global cost and the cost of both variables Vi and Vi+d by
ERR(d) (a strictly positive function). For a basic model we can use ERR(d) = 1
(to simply count the number of errors). Obviously a solution is found when the
global cost equals 0. Otherwise AS selects the most erroneous1 variable and will
try to improve it.

Our AS sequential version has been tested over the CAP and compared to
Dialectic Search (DS). AS outperforms DS on the CAP: for small instances AS
is five times faster but the speedup seems to grow with the size of the problem,
reaching a factor 8.3 for n = 18. [10] does not provide results for instances with
n > 18.

CAP has also been used as a benchmark in the Constraint Programming
community and we can compare with a CP Comet program made by Laurent
Michel and based on the modeling in MiniZinc by Barry O’Sullivan2. As could

1 i.e. the variable with the highest total error.
2 http://www.g12.cs.mu.oz.au/mzn/costas_array/CostasArray.mzn

http://www.g12.cs.mu.oz.au/mzn/costas_array/CostasArray.mzn
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be expected, CP is much less efficient than local search, and this Comet program
is about 400 times slower than AS for CAP19.

4 Parallel Implementation and Performance Analysis

We implemented a parallel version of AS using OpenMPI, an implementation
of the MPI standard. Experiments and performance results on classical CSP
benchmarks are described in [3]. The parallelization is straightforward and based
on the idea of multi-starts and independent multiple-walks: fork a sequential AS
method on every available cores. But on the opposite of the classical fork-join
paradigm, parallel AS shall terminate as soon as a solution is found, not wait
until all the processes have finished (since some searches initialized with ”bad”
initial configurations can take some time). Thus, some non-blocking tests are
involved every c iterations to check if there is a message indicating that some
other processes has found a solution; in which case it terminates the execution
properly. This results in a high number of independent work units, a high CPU
to I/O ratio, and no inter-process communication Three different testbeds were
used on two platforms: The supercomputer HA8000 at the University of Tokyo
(with a maximum of nearly 16000 cores) and the French national grid for research
Grid’5000 (on two nodes at Sophia-Antipolis: Suno with 360 cores and Helios
with 224 cores). Tables 1 & 2 show the execution times of the parallel executions
on the HA8000 supercomputer andGrid’5000. Timings are given in seconds and
are the average of 50 executions for each benchmark; they do not include the
deployment time, negligible on big benchmarks.

Table 1. Speedups on HA8000, Suno and Helios for small instances of CAP

Platform Problem Time on Speedup on k cores
1 core 32 64 128 256

HA8000 CAP 18 6.76 27.0 29.4 28.2 26.0
CAP 19 54.54 29.6 54.5 75.7 99.2
CAP 20 367.2 26.6 42.4 98.2 168

Suno CAP 18 5.28 33.0 63.6 94.3 139
CAP 19 49.5 36.1 83.9 121 226
CAP 20 372 30.5 63.5 139 208
CAP 21 3743 21.9 72.8 107 218

Helios CAP 18 8.16 34.0 74.2 136 -
CAP 19 52.0 22.6 59.8 130 -
CAP 20 444 31.0 58.2 98.2 -

Behaviors on all three platforms are similar and exhibit very good speedups
for larger instances. For n = 21 on Suno we have a 218 times speedup on 256
cores w.r.t. sequential execution. For the bigger instances CAP21 and CAP22,
we present in Table 2 results for executions from 32 to 256 cores only, because
the sequential time becomes prohibitive (e.g., more than one hour on average
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Table 2. Speedups on HA8000, Suno and Helios for large instances of CAP

Platform Problem Time on Speedup on k cores
32 cores 64 128 256

HA8000 CAP21 160.4 1.96 4.16 10.0
CAP22 501.2 2.01 3.90 8.24

Suno CAP21 171 3.32 4.90 9.94
CAP22 731 1.92 3.66 7.09

Helios CAP21 153 1.51 4.17 -
CAP22 1218 2.34 5.53 -

for CAP21 and more than 10 hours for CAP22 on HA8000). We can see that
on all platforms, execution times are halved when the number of cores
is doubled, thus achieving ideal speedup. As a final result, we can now solve
n = 22 in about one minute on average with 256 cores on HA8000.

Up to now, we focused on the average execution time in order to measure the
performance of the method, but a more detailed analysis could be done. In [1,11],
a method is introduced to represent and compare execution times of stochastic
optimization methods by using so-called time-to-target plots. Observe that, for
the CAP, the target value to achieve is obviously zero, meaning that a solution is
found. It is then easy to check if runtime distributions could be approximated by
a (shifted) exponential distribution of the form: 1− e−(x−μ)/λ. Then, according
to [13], it is possible to achieve linear speedups by multiple independent walks
if we have an exponential runtime distribution.

The following figure presents time-to-target plots for CAP 21 in order to
compare runtime distributions over 32, 64, 128 and 256 cores.

Points represent execution times
obtained over 200 runs and lines
correspond to the best approxima-
tion by an exponential distribution.
It can be seen that the actual run-
time distributions are very close to
exponential distributions. Time-to-
target plots also give a clear vi-
sual comparison between instances
of the same method running on a
different number of cores. For in-
stance it can be seen that we have
around 50% chance to find a solu-
tion within 100 seconds using 32 cores, and around 75%, 95% and 100% chance
respectively with 64, 128 and 256 cores.

5 Conclusion and Future Work

The CAP is a hard combinatorial problem for medium and large instances,
too difficult to solve with classical propagation-based solver and we thus used
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a constraint-based local search solver. We proposed a parallel version based on
the idea of multi-starts and independent multiple-walks which naturally provides
Pleasantly Parallel computations and appears viable as it exhibits a nearly lin-
ear speedup behavior. We are currently continuing our experiments by tackling
larger instances and using more cores.

Future work will focus on more complex parallel execution methods with inter-
processes communication, i.e., in the dependent multiple-walk scheme, in order
to further improve performance. The communication mechanism will be designed
with the goals of (1) minimizing data transfers as much as possible, as we aim at
massively parallel machines with no hierarchical memory, and (2) re-using some
common computations and/or recording previous interesting crossroads in the
resolution, from which a restart can be operated.
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Abstract. In our participation to the Cross-Domain Heuristic Search
Challenge (CHeSC 2011 ) [1] we developed an approach based on Re-
inforcement Learning for the automatic, on-line selection of low-level
heuristics across different problem domains. We tested different memory
models and learning techniques to improve the results of the algorithm.
In this paper we report our design choices and a comparison of the dif-
ferent algorithms we developed.

1 Introduction

CHeSC 2011 aims at fostering the development of methods for the automatic de-
sign of heuristic search methodologies, which are applicable to multiple problem
domains (see [1] for more details). The competition sits on the underlying frame-
work of hyper-heuristics, i.e., automatic methods to generate or select heuristics
for tackling hard combinatorial problems. In order to ease the implementation
of hyper-heuristics and to let the participant compete on a common ground, the
competition organizers released a software framework, called HyFlex [3], to be
used as a basis for their algorithms. HyFlex is a Java API that provides the basic
functionalities for loading problem instances, generating solutions and applying
low-level heuristics. Low-level heuristics are black-boxes, and only information
about their family is known (i.e., ruin-recreate, mutation, cross-over and lo-
cal search steps). The six problem domains considered in the competition are:
MAX-SAT, (1D) Bin Packing, Permutation Flow Shop Scheduling, Personnel
Scheduling, TSP and VRP. We refer the reader to the CHeSC 2011 website [1]
for further details.

2 Reinforcement Learning Basics

The algorithmic alternatives that we have considered for CHeSC 2011 are all
based on Reinforcement Learning (RL) [6]. In order to use RL, one needs to
specify at least three components: an environment (whose observable features are
encoded in states), a set of actions which can be pursued by the learning agent
and a reward function which is a numeric feedback about the agent’s actions.
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(a) Agent-environment architecture (b) Perceptron

The various choices for these elements, together with the action selection policy
and the learning function, determine a range of different behaviors.

At each iteration, the agent selects which action to take in the current state
according to its policy. The policy is a function for selecting an action based
on its value. Together with the set of learned action values, a policy determines
completely (barring stochastic effects) the agent’s behavior at each decision step.
The execution of an action updates the state of the agent and yields a reward
value. The learning function uses this reward to update one (or mode) action
values. Since the policy is usually fixed, this concretely changes the behavior of
the agent for the future iterations. The state represents the agent’s beliefs about
the environment at a specific time; representing the state in a rich, yet complete,
manner is key to the success of RL.

2.1 Function Approximation with MLPs

When the states and actions are discrete and finite, a simple way to store action
values is to keep them in a table (tabular RL). However, when the states or the
actions are continuous or the number of states is just too large, this solution is
no more viable. In these cases, the only option is to consider action values as a
continuous function and to use function approximation techniques to model it.
Multi-Layer Perceptrons (MLP) are a function approximation mechanism which
belongs to the class of supervised Machine Learning algorithms. We are going
to briefly revise MLPs in this section, by starting from the simpler concept of
Perceptron. A (Single-Layer) Perceptron is a processing unit with a number of
weighted inputs (one of which has always a value of 1) and an output. Upon
activation, the Perceptron computes the weighted sum of its inputs and outputs
a function of this sum. The algorithm implemented by the perceptron in Figure
1b can be summarized with the following formula:

h(x) = activation(wTx) (1)

By varying activation one can use perceptrons to approximate different func-
tions, however the complexity of these is very limited. MLPs are layered networks
of Perceptrons in which outputs of nodes in a layer are connected to inputs of
nodes in the following. Since Perceptrons are actually inspired to neurons, these
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networks are commonly known as Artificial Neural Networks (ANN). Layers
other than input or output are called hidden. There are no constraints on the
number of hidden layers or nodes, however it has been demonstrated [4] that
a MLP with a single, large-enough, hidden layer can approximate any nonlin-
ear function of the input. Unfortunately, there is no rule of thumb on the right
number of hidden neurons, which must be worked out with parameter tuning.

2.2 Eligibility Traces

Eligibility Traces (ET) are a RL mechanism for temporal credit assignment. The
idea in temporal credit assignment is that each action on the trajectory to a
reward, and not just the last one, must take some credit for that reward. To
accomplish this, one a chance is to keep an es,a value for each visited (s, a) pair.
This value tells how long before the pair was visited and is updated as follows

es,a =

{
1 if state is s and action is a

λes,a otherwise
(2)

where λ is a decay factor in [0, 1). In RL, es,a is called eligibility trace of (s, a)
and is used by the learning function to weight the update to (s, a). Intuitively,
recently visited (s, a) pairs are more likely to be responsible for a reward with
respect to older ones, and should benefit (or suffer more) from the last obtained
reward. In practice, one can implement ETs efficiently by keeping a queue of
the last &log(threshold)/ log(λ)' visited pairs where threshold is the value of
e under which an update is considered neglectable. Then es,a is computed as
λposition where position is the pair’s position in the queue.

3 Reinforcement Learning for Heuristic Selection

In order to describe our RL hyper-heuristics we must identify the following
elements: (i) the environment states, (ii) the set of actions, (iii) the reward, (iv)
the policy and (v) the learning function.

Environment: HyFlex is designed to support the construction of cross-domain
hyper-heuristics. For this reason, all the information about a solution (except
its cost) domain is hidden to the user. This makes things difficult because,
in principle, RL states must be Markov (i.e. enough informative to allow
choosing the right action). After attempting some variants, we resorted to
a state representation which tries to capture the concept of reward trend.
In particular, when a reward is obtained, the new state is computed as
si+1 = �(si + reactivity ∗ (ri − si)), where ri is a normalized cross-domain
reward measure and reactivity defines the attitude of the agent to switch
state.

Actions: We defined a possible action a in a given state as the choice of the
heuristic family to be used, plus an intensity (or depth of search) value in
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Table 1. Common hyper-heuristic parameters

parameter name values explanation

agents 3, 4, 5, 6, 8, 10 number of concurrent agents
crossoverWith bestAgent, incumbentOptimum secondary solution for cross-over
reactivity 0.05, 0.1, 0.25, 0.5, 0.9 readiness to change state
learningRate 0.1, 0.2, 0.3 readiness to update action values
epsilon 0.01, 0.05, 0.1 probability to pick random actions

the quantized set of values 0.2, 0.4, 0.6, 0.8, 1.0. Once the family has been de-
termined, a random heuristic belonging to that family is chosen and applied
to the current solution with the specified intensity (or depth of search).

Reward: The reward r is computed as the solution’s Δcost before and after
action application. Variants which also take into account the time spent
applying an action have been tried, but with poor results.

Policy: The ε-greedy policy (which chooses argmaxa πs,a with probability 1− ε
and a random action otherwise) proved to perform better than a number
of alternatives and is currently our policy of choice. A note on the move
acceptance criterion: in our approach we decided to always trust the policy
hence we always apply the action chosen even if it deteriorates the solution.

Learning function: The learning function is based on a very simple update
π(s, a)k+1 = π(s, a)k + learningRate ∗ (rk − π(s, a)k) which always moves
the estimated reward for a (s, a) pair towards the last reward. The discount
factor learningRate is needed to tackle non-stationarity (i.e. updates are
constant, the policy never converges).

4 Experimental Analysis

In order to tune the variants’ parameters and to understand their relationships
we carried out an experimental analysis based on the tools commonly employed
in the statistical analysis of algorithms. To collect the required data we ran all
configurations on three different Intel machines equipped with Quad Core pro-
cessors (resp. at 2.40, 2.40 and 3.00 GHz) and running Ubuntu 11.04. Differences
were leveled through a benchmarking tool provided by CHeSC organizers.

We compare three hyper-heuristics inspired to the RL variants in section 2:
tabular reinforcement learning (RLHyperHeuristic), tabular reinforcement learn-
ing with ETs (RLHyperHeuristic-ET) and reinforcement learning with MLP
function approximation (RLHyperHeuristic-MLP). Although each approach has
its own parameters, some of them (Table 1) are common to all hyper-heuristics.

RLHyperHeuristic-MLP requires a number of extra parameters (see Table 2a)
related to MLPs. The parameters hiddenLayers and hiddenNeurons determine
the complexity of the function that the MLP is able to approximate. inputScale
is a parameter to control input normalization. Similarly RLHyperHeuristic-ET
introduces two parameters (see Table 2b): threshold and traceDecay (λ), which
are used to compute the length of the eligibility queue.
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Table 2. Specific parameters for RLHyperHeuristic variants

(a) RLHyperHeuristic-MLP

parameter name values

hiddenLayers 1, 2
hiddenNeurons 20, 30, 40
inputScale 1, 3

(b) RLHyperHeuristic-ET

parameter name values

threshold 0.01
traceDecay 0.5, 0.9

Since the evaluation has to be performed across different domains and on
instances with different scales of cost functions we decided to consider as the
response variable of our statistical tests the normalized cost function value. That
is, the cost value y is transformed by means of the following transformation,
which aggregates the results on the same problem instance π:

e(y, π) =
y(π)− y∗(π)
y∗(π)− y∗(π)

(3)

where y∗(π) and y∗(π) denote the best known value and the worst known value
of cost on instance π. This information has been computed by integrating the
data gathered by our experiments with the information made public by CHeSC
organizers. In all the following analyses we employ the R system [5].

Parameter influence. The first analysis aims at clarifying the influence of param-
eters on the outcome of the algorithms, in order to fix some of the parameters
to reasonable values and to perform further tuning of the relevant ones. For this
purpose we perform an analysis of variance on a comprehensive dataset includ-
ing all configurations run throughout all the problem domains. Each variant has
been run on each instance for 5 repetitions. We perform separate analysis for
each variant and we set the significance level of the tests to 0.95.

RLHyperHeuristic: The most relevant parameters are the selection of the
cross-over solution and the number of agents, but there seems to be no
detectable interaction among them. As for this variant, ε is also significant.

RLHyperHeuristic-ET: The relevant parameter is the traceDecay, apart of
the selection of the agent for the crossover that was relevant also in the
previous variant. The number of agents doesn’t seem to be relevant.

RLHyperHeuristic-MLP: Apart crossOver, the inputScale and hiddenNeu-
rons are relevant in explaining the different performances of the algorithm.
We do not found any significant second-order interaction among parameters.

Parameter tuning. For tuning the parameters identified in the previous analysis
we employed the F -Race technique [2]. As for the selection of the best candidates,
we took the ones that had the lowest median value of the normalized cost function
across all instances and all domains. The setting of the parameters for the three
different variants of the algorithm are reported in Table 3.
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Table 3. CW = crossoverWith, LR = learningRate, R = reactivity, TH = treshold,
TD = traceDecay, IS = inputScale, HL = hiddenLayers and HN = hiddenNeurons

variant agents CW ε LR R TH TD IS HL HN

RL 5 incumbentOptimum 0.05 0.2 0.5
RL-ET 4 incumbentOptimum 0.1 0.1 0.1 0.01 0.5
RL-MLP 4 incumbentOptimum 0.05 0.1 0.5 1 1 20

Comparison with the other participants. We have compared our variants with
the other participants in the CHeSC competition by using the median value
of the normalized cost function for ranking. Overall the variant using function
approximation improves over our original algorithm (13th place, against 16th),
while the one which uses eligibility traces doesn’t. A proper tuning of the al-
gorithm we sent to CHeSC has determined a relevant improvement but overall
we are still far from the first positions. This is likely to be caused by the state
representation, which seems to be insufficiently informative.

5 Conclusions and Future Work

This work is part of our investigation about the use of Machine Learning tech-
niques for driving combinatorial optimization algorithms. In our opinion the
results are interesting given the fact that there is no move acceptance criteria
and the whole control is in the hands of a learning algorithm. However the in-
trinsic limitations imposed by the competition are too tight to allow a proper
RL integration. For this reason, we are currently investigating these approaches
outside the HyFlex framework.
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Abstract. The aim of this work is to use this dynamic island model to
autonomously select local search operators within a classical evolutionary
algorithm. In order to assess the relevance of this approach, we will use
the model considering a population-based local search algorithm, with no
crossover and where each island is associated to a particular local search
operator. Here, contrary to recent works [6], the goal is not to forecast
the most promising crossovers between individuals like in classical island
models, but to detect at each time of the search the most relevant LS
operators. This application constitutes an original approach in defining
autonomous algorithms.

1 Introduction

Island Models [9] are simultaneously considering a set of populations clustered
in islands which are evolving independently during some search stages while
interacting periodically. This model, which constitutes an additional abstraction
level in comparison to classical genetic and memetic algorithms, allows to propose
several diversification levels and to simplify its parallelization.

Most of the time, island models are used in a static way, where individuals
are migrating from population to population following a determinate scheme [7],
or are specifically chosen in order to reinforce the populations diversities [8,4,1].
Nevertheless, it is possible to dynamically regulate migrations between islands
in considering a transition matrix [5]. Such a model can reinforce or reduce the
migration probabilities during the evolutionary process in function of the impact
of previous analog migrations. The aim is to auto-adapt migration without any
given scheme, to dynamically regulate the gathering or isolation of individuals in
function of the search progress, and consequently to adapt the population sizes.

In classical uniform island models, islands are following the same evolution-
ary rules, so they differ only by their individuals. The dynamic model allows to
regulate interactions between individuals or group of individuals. We propose
to extend this model in assigning to each island different local search operators.
An appropriate and autonomous regulation of migration flows will affect dy-
namically the resources to the most pertinent operators in function of the search
progress. In experimenting this model without crossovers but with a proper local
search operator for each island, the objective is not only to regulate the inter-
actions between individuals, but to simulate a reactive controller which assigns
individuals to the most promising islands.
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2 Island Models Framework

2.1 Island Models as a Complete Digraph

In [5] we proposed an island model framework which dynamically supervises
the commonly-used specification parameters [1] like the number of individuals
undergoing migration, the policy for selecting immigrants or the topology of the
communication among subpopulations. An island model topology is represented
by a complete labeled digraph G = (X,X2).

Migration policies are given by a transition (stochastic) matrix T , where
T (i, j) represents the probability for an individual to migrate from island i to
island j (or to stay at the same island if i = j).

One can denote Tt the matrix at time (or generation) t.
An application of this dynamic evolution of the model topology is to deter-

mine pertinent migration probabilities at each time of the search, considering a
classical multi-population based genetic algorithm. The dynamic regulation of
migration policies can produce different size islands, which prevents poor-quality
subpopulations or islands to require as many computational effort as promising
ones. However, if different islands represent different mutation or local search
operators, then the aim is to dynamically provide a well-adapted repartition of
individuals in function of these operators and considering the search progression,
which can be assimilated to an operator selection process.

2.2 Migration Policy

Algorithm 1 is the generic algorithm we used for the autonomous operator selec-
tion within an island model context. In order to allow a maximum of adaptability,
we chose to update the migration process after each local search iteration (for
the whole population). Ideational, less frequent mutations process do not mini-
mize the effective number of mutations (individuals moving to other islands) but
only provide a less reactive search. As a dynamic algorithm, transition values
are expected to be regulate accordingly.

Initialize population;
repeat

foreach population do
foreach individual do

One local search iteration;

Update the Transition Matrix T;
Migration Process;

until stop condition;

Algorithm 1. Generic Dynamic Island Model (DIM) Algorithm
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The crucial point concerns the update of the transition matrix T , which follows
a learning process:

Tt = (1− β)(α.Tt−1 + (1− α).Rt) + β.Nt

Rt is a reward matrix, computed after migration process t−1 and LS step t, and
which takes into account the comparative pertinence of the last migrations. Using
an intensive strategy, for each island, the migration which have brought the best
average accuracy score acc of individuals (typically their fitness improvement)
receives the maximum reward. More formally, if Mijt is the set of individuals
which have migrated from island i to island j in migration process t− 1 (∪iMijt

is the set of individuals in island j during iteration t):

Rt(i, j) =

{
1/|B| if j ∈ B,

0 otherwise,

with B = argmax
j′

∑
x∈Mij′t

acc(x)

|Mij′t|
Nt is a noise stochastic matrix with random values.

The two parameters α and β allow to manage the update of the transition ma-
trix. α represents the importance of the knowledge accumulated during the last
migrations and β the amount of noise which is necessary to explore alternative
ways and to keep the model reactive.

3 Experimentations

In this section we show that the behavior of our population-based local search
algorithm is very close of the theoretical results. Moreover, we remark that it is
not very dependent of the parameter tuning.

3.1 One-Max Problem

The One-Max problem is a simple and well-known problem, commonly used to
assess the performance of Adaptive Operator Selection algorithms [3,2]. The n-
bits One-Max problem considers n-length bit strings; starting from 0n individuals
(i.e. strings made up of n zeros), the aim is to maximize the number of ones, that
is to reach the 1n bit string. The score of a bit string x, noted |x|1, corresponds
to its number of ones.

Recent works cited above use four mutation (or local search) operators: bit-
flip, which flips every bit with probability 1/n, and k-flip (with k = {1, 3, 5}),
which flips exactly k bits. In the following and depending on the context, bit-
flip and k-flip can denote the mutation operator as well as the corresponding
neighborhood relation. k-flip can easily be modelized as a neighborhood relation
Nk : {0, 1}n → 2{0,1}

n

such as x′ ∈ Nk(x) if and only if |h(x, x′)| = k (hamming
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distance). It is more difficult to exprim the bit-flip operator with a neighborhood
relation, since it corresponds to a complete neighborhood with a non-uniform
move probability. However, one bit-flip move can be reduced in one k-flip move
with a determined probability of chosing k.

Intuitively, the 5-flip operator mutation will be more efficient when applied
on weak individuals (with a majority of zeros), while 1-flip will improve with
a higher probability individuals with a high proportion of ones.The domination
rates evolution of the four considered operators in function of the score of an
individual is shown in Figure 1 (with M = { 1-flip, 3-flip, 5-flip, bit-flip }).

Fig. 1. Domination rates evolution for the
1000-bits One-Max problem

Fig. 2. Evolution of the population size in
each island with respect to the average fit-
ness of the population

3.2 Theoretical vs Empirical Results

The expected behavior during the search is to use the 5-flip operator when
the population quality is weak (at the beginning), then the 3-flip operator and
finally the 1-flip operator when the population quality is sufficiently high. In our
experiments, this can be observed by the evolution of the population size in each
island with respect to the migrations. The more an island attracts individuals,
the more its assigned operator is applied.

Parameters for this experiment are:

– number of islands: 4 (one for each LS operator)
– population size: 400
– initial probabilities of migrations: 1 to stay in the same island
– (α, β): (0.8, 0.01)

To compare the experimental results with the theoretical values, we represent
in Figure 2 the population size in each island with respect to the average fit-
ness of the population. The fact that this evolution of population sizes, i.e. the
computational effort of each operators, match with the theoretical domination
rates, show the accuracy of the proposed model and its pertinence to simulate
an operator selection mechanism.
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3.3 Dynamic Model Parameters

Default used values for α and β are respectively 0.8 and 0.01. An increasing
value of α makes the search slower since informations obtained by recent migra-
tions are less considered for the update. On the contrary, decreasing value of α
minimizes the impact of the knowledge (learning process) and overestimates the
last migration effects, so the search can be wrong oriented by a migration which
provides exceptionally a good result.

The influence of β is important, but its exact setting is not crucial to the
smooth-running of the algorithm, even if a too high value of β make the search
slower. On the other hand, it must make sure that β 
= 0, otherwise some islands
can become and stay unreachable (transition probability equal to 0).

Effect of parameters α and β on the model are experimentally shown Figures
3 and 4.

(a) (α,β)=(0.4,0.01) (b) (α,β)=(0.8,0.01) (c) (α,β)=(0.95,0.01)

Fig. 3. Changing the value of α: less or more inertness makes the model more stable
but dos not modify the global repartition of individuals

(a) (α,β)=(0.8,0.01) (b) (α,β)=(0.8,0.2) (c) (α,β)=(0.8,0.5)

Fig. 4. Changing the value of β: more noise makes the repartition of individuals more
uniform

4 Conclusion

This paper presents an original and efficient approach to design an autonomous
local search algorithm with an accurate selection of operators. The proposed
mechanism use a dynamic island model, where each island represents an opera-
tor. A learning process regulates and adapts migration policies during the search
depending to the impact of previous migrations. At each stage of the search, the
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more efficient operators receive dynamically the great majority of computational
resources. In other words, the model is able to auto-adapt the attractive power
of each islands.

This application is an extension of the dynamic island model approach. In
previous work, we focus on the capacity for the model to dynamically regulate
the interaction between individuals in an evolutionary context, with crossovers
and the same configuration on each island, with promising results. Here, we
dissociate the exploitation / exploration dilemma to focus on the capacity to
allocate with relevance the resources to the most suitable operators. For that, we
used an experimental protocol which makes possible to assess the real efficiency
of the model (One-Max problem and comparison with theoretical values). The
next step is to apply this operator selection strategy to difficult problems, and
then to assemble this heterogeneous model within a more general evolutionary
context.
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Abstract. Standard dominance-based multi-objective evolutionary al-
gorithms hardly allow to integrate problem knowledge without redesign-
ing the approach as a whole. We present a flexible alternative approach
based on an abstraction from predator-prey interplay. For parallel ma-
chine scheduling problems, we find that the combination of problem
knowledge principally leads to better trade-off approximations compared
to standard class of algorithms, especially NSGA-2. Further, we show
that the incremental integration of existing problem knowledge gradu-
ally improves the algorithm’s performance.

Keywords: Predator-Prey Model, Evolutionary Multi-Objective Opti-
mization, Multi-objective Scheduling, Knowledge Integration.

1 Introduction

In multi-objective evolutionary optimization, dominance-based methods are
currently used as quasi-standard. They extend the concept of original single-ob-
jective evolutionary algorithms to the multi-objective domain introducing mech-
anisms for selecting solutions regarding multiple objectives. For the NSGA-2 [2]
algorithm, the particular fitness assignment is based on sorting the population
into different fronts using the non-domination order relation. To form the next
generation of candidate solutions, NSGA-2 combines the current population and
its offspring generated by standard variation operators. Such a strong focus
on selection may devalue variation operators to a subordinate influence. That
means, for expertise integration advanced variation operators can unfold their
full benefit only along with an alternative and more dynamic selection scheme
which replaces the monolithic algorithmic architecture of dominance-based ap-
proaches. Such an alternative appears in this paper.

Our approach uses the predator-prey model (PPM) proposed by Laumanns et
al. [4] which adapts the well-known predation paradigm from biology: a popula-
tion of prey is arbitrarily distributed on a spatial structure which is represented
by a toroidal grid. Predators pursue only one objective and favor only one special
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variation operator each. They randomly roam the population to chase prey which
are weak regarding their specific objective. Multiple predators are expected to
force the prey likewise to adapt to the threats and thus result in suitable trade-off
solutions for the complete optimization problem. In our approach the coupling
of special heuristics (which realize the actual variation) to predators allows to
integrate expert knowledge from single-objective problems.

2 Multi-objective Optimization and Scheduling Problems

In multi-objective optimization, a problem instance comprises multiple and (at
least partly) contradicting goals that should be fulfilled simultaneously. Usually
it is impossible to find a single optimal solution but only a set of good trade-offs
among those goals. This solution set is called Pareto-optimal set and forms the
Pareto-front in solution space.

A scheduling problem—denoted by α|β|γ—is commonly concerned with allo-
cating n jobs to a machine environment α with m machines such that all con-
straints β are met [3]. The resulting schedule should be optimal for one or more
given objective(s) γ. For example, a check-in counter queue problem is denoted
as Pm|rj , dj |

∑
Uj . Here, Pm denotes an environment of m identical counters

(machines). Passenger j arrives at time rj and needs to catch a flight at time dj .
The objective is to minimize the total number of passengers

∑
Uj, Uj ∈ {0, 1}

missing their flight (Uj = 1). Under multiple objectives, the γ-field contains all
objectives that have to be optimized simultaneously. Regarding our example the
problem Pm|rj , dj |

∑
Cj ,

∑
Uj states that not only the flight misses should be

minimized but also all customers should be served as fast as possible. This is
expressed as minimizing the sum of all completion times, while the condition
Cj ≥ rj + pj holds. There, pj is the processing time of job j.While for the

∑
Uj

objective ascending ordering of due dates dj is reasonable the
∑

Cj can be solved
optimally sequencing jobs in ascending order of pj . However, as due dates and
processing times might be unrelated (except that all due dates can be always
met, thus dj > pj holds.) both objectives are fundamentally conflicting.

As almost all multi-objective scheduling problems are NP-hard, practitioners
have to use general techniques or randomized heuristic approaches like multi-
objective evolutionary algorithms (MOEAs), see Coello et al. [1] for a detailed
overview. Today, the practitioner finds a huge amount of standard algorithms
that either apply non-dominated ranking, sorting and archiving techniques (e.g.,
NSGA-2, SPEA2, PAES) or indicator-based selection mechanisms (e.g., SMS-
EMOA, HypE) to generate a precise and diverse Pareto-front approximation.
As these methods are rather general, the practitioner still faces the problem of
integrating his already available expert knowledge into the algorithm. That is
more complicated than expected: Due to the monolithic and integrated structure
of most approaches it is usually not sufficient—in contrast to single-objective
problems—to only change variation operators. He rather has to redesign many
parts of the original algorithmic scheme in order to bring in expertise. We address
this problem by revisiting the predator-prey idea and show that it offers the
property to integrate expertise seamlessly.
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3 Predator-Prey Model for Multi-objective Optimization

The nature-inspired principle of predator and prey interaction proposed by Lau-
manns et al. [4] considers prey as solutions for multi-objective problems which
are placed at vertices of a two-dimensional toroidal grid representing the spatially
distributed population. Predators move across the spatial structure according to
a random walk scheme (usually a uniformly distributed movement) and chase
the prey only within their current neighborhood on the torus. This ”hunting”
process consists of evaluating all prey in the direct neighborhood of a predator’s
position according to a single objective assigned to it. The worst prey within this
neighborhood is ”eaten” and replaced by an offspring prey, which is created out
of neighboring prey using variation operators. In our realization, the replacement
approach follows an elitist philosophy: the worst prey is only replaced, if the off-
spring is better regarding the predators objective. The process is repeated until
a termination criterion is reached. As the described action is restricted to each
predator and completely self-contained, multiple predators can act in parallel
and bring their influence to the distributed population.

For transferring the PPM to scheduling problems we encode schedules in prey
using a permutation encoding of length n which represents the sequence of jobs.
To map the permutation into schedules, we use a non-delay First-Come-First-
Served (FCFS) approach. The main goal of expertise integration is to foster
convergence to the Pareto-front. This expertise is here provided by simple se-
quencing heuristics: The shortest processing time first (SPT) rule is known to be
optimal for the total completion time objective (1||

∑
Cj , Pm||

∑
Cj). Further,

for the number of late jobs problem on parallel machines (Pm||
∑

Uj) the earliest
due date first (EDD) rule is reasonable1. We designed a variation operator which
allows to bring the effects of SPT, EDD, or any other sorting scheme randomly
and well-dosed into the population. Figure 1 exemplary depicts the application
of this operator to a given sequence with processing times pj. A position is
selected randomly in the permutation representation of the genotype. Then, a
subsequence of 2δ + 1 genes is sorted according to the heuristic. Here, we show
the application of SPT sorting. The size of this δ-neighborhood is determined by
a always positive normal distributed value with adjustable step-size σ. A larger
δ leads to a higher probability of a completely ordered genome, δ = 0 leads to
no reordering at all.

4 Experiments and Results

To evaluate our approach, we generated 50 synthetic job sets, (J 50
1 . . .J 50

50 ) con-
taining 50 jobs each. We sampled all sets with characteristics of processing time
pj = �U(1, 50), ∀j = 1 . . . n and due dates dj = pj + �U(1, 100), ∀j = 1 . . . n.
Release dates are generated depending on pj and dj according to rj = U(0, dj −
pj) in 90 % of the cases and rj = 0 otherwise. As we consider a parallel machine

1 Certainly, a better way is to apply SBC3 by Süer et al. which however incorporates
aspects of EDD and SPT [5].
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Fig. 1. Schematic depiction of the mutation operator concept with δ = 2 and SPT-
mutation and FCFS schedule generation

setup, we fix the machine size for this benchmark to m = 8 identical machines.
For statistical soundness, we simulated every instance 30 times.

The PPM is applied a standard configuration consisting of a 10×10 toroidal
grid with 100 immobile prey individuals and a uniformly distributed predator
step size of 1. Overall, we allow a maximum of 12, 000 function evaluations (and
fix this maximum number as termination criterion).

For comparison reasons, we also apply NSGA-2 to the considered problems
to acquire some landmark results. There, we also chose a population size of 100
individuals and allow also a maximum of 12, 000 function evaluations. Based on
extensive pre-experimental testing, we used NSGA-2 with a random swap muta-
tion operator and step size setting δ = 8. This mutation randomly swaps δ jobs
in the sequence and is applied to each individual (variation probability of 1.0).
With this setting we achieved the best NSGA-2 results. Mutation with expertise
integration as well as (interestingly) recombination have shown negative effects
on the solution quality and are thus excluded.

For the qualitative evaluation, we apply two well-known metrics: the hypervol-
ume metric as well as the ε-Indicator, see Zitzler at al. [6]. For all evaluations, we
use the reference point r = (

∑
Cj ,

∑
Uj) = (5500, 50) that is beyond all maxi-

mum solution values in function space.We further apply the ε-dominance metric
Iε(A,B) [6] which determines, whether a solution set A dominates another solu-
tion set B entirely. Only if Iε(A,B) > 0 and the inverse comparison Iε(B,A) ≤ 0
holds, the set A dominates set B completely. Otherwise, the intersections of the
determined solution fronts do not allow a domination statement.

First, we compare the PPM with NSGA-2 on a parallel machine problem with
two criteria:P8||

∑
Cj ,

∑
Uj .We apply an SPT-basedmutationwhich sorts a ran-

domly selected part of the genome according to SPT (δ = 2), an EDD-based mu-
tation (δ = 2) which orders according to EDD, and a Gaussian swap mutation
(δ = 4). These operators are each attached to two predators of which one predator
selects regarding

∑
Cj and the other on

∑
Uj (resulting in overall six predators).

Evaluation results are shown in Figure 2(a). Compared to the application
of NSGA-2, the expertise-guided PPM generates a better Pareto-front approx-
imation. In this figure, gray shaded areas depict the hypervolumes enclosed by
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(a) P8||∑Cj ,
∑

Uj (b) P8|rj |∑Cj ,
∑

Uj

Fig. 2. Result of two examined scheduling problems

the generated solution fronts. Over all 50 examined instances, the comparison to
NSGA-2 revealed a significant dominance of the PPM approximations (Wilcoxon
rank-sum test with p ≤ 0.05 regarding the enclosed hypervolume). Further, Ta-
ble 1 summarizes the ε-Indicator point of view on the acquired solutions. There,
columns show how often (in %) the results of PPM dominate the results of
NSGA-2 and vice versa compared pair-wise over all instances. The operator
A  ε B denotes the percentage domination count of A over B with respect to ε-
dominance. The first line shows that about 65 % of all PPM solutions dominate
NSGA-2 solutions completely. However, NSGA-2 often finds some solutions that
are missed by PPM and also not dominated by any PPM solution. Still, none of
the NSGA-2 solutions dominates the PPM results.

Table 1. Results of the ε-Indicator evaluation, • for pure random, ∗ for only SPT and
EDD and + for SPT, EDD, and RD configurations

PPM �ε NSGA-2 NSGA-2 �εPPM
Problem

% (mean) std. %

P8||∑Cj ,
∑

Uj 64.54 25.25 0.00

96.42• 3, 70• 0.01•

92.55∗ 9.47∗ 0.03∗P8|rj |
∑

Cj ,
∑

Uj

98.94+ 2.16+ 0.00+

Adding release dates to the previous problem results in P8|rj |
∑

Cj ,
∑

Uj

which is far more difficult to optimize, even for each objective separately. SPT
is not optimal anymore for P8|rj |

∑
Cj and EDD is far from being optimal

for P8|rj |
∑

Uj . For our experiments, we use the same settings as before but
extend the set of variation operators by a release date related operator. The
RD-mutation operator orders a subsequence according to release dates (δ = 3).
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Some exemplary results are shown in Figure 2(b). The statistically more detailed
evaluation (Wilcoxon rank sum test, p ≤ 0.05) proves that the PPM with solely
mutation significantly dominates NSGA-2 on the hypervolume. The remaining
two extensions also proof their benefit significantly. Integrating the expertise
from our previous case study strongly improves convergence while adding RD-
mutation increases the solution quality once more. Further, the ε-Indicator re-
sults from Table 1 show for all three setups a strict domination of PPM over
NSGA-2 in more that 90 % of the cases. Only in the completely random setup,
NSGA-2 can by chance dominate a solution in very few cases. We were able to
show that expertise integration with the PPM is highly beneficial for improving
solution quality.

5 Conclusion

We presented the predator-prey model that allows to effectively support the
optimizer by integrating available problem specific knowledge. The expertise is
expressed by variation operators which can be seamlessly used in the algorithm.
Our results show that this is a great advantage over traditional dominance-
based methods. In our case studies, we investigated multi-objective combinato-
rial scheduling problems and found that we can reliably achieve better trade-off
approximations. Furthermore, the incremental integration of existing problem
knowledge gradually improves the algorithms performance.
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Abstract. This paper presents several ways to compute lower and upper bounds
for MaxSAT based on calling a complete SAT solver. Preliminary results indicate
that (i) the bounds are of high quality, (ii) the bounds can boost the search of
MaxSAT solvers on some benchmarks, and (iii) the upper bounds computed by a
Stochastic Local Search procedure (SLS) can be substantially improved when its
search is initialized with an assignment provided by a complete SAT solver.

1 Introduction

Weighted Partial MaxSAT (WPMS) [3] is a well-known optimization variant of Boolean
Satisfiability (SAT) that finds a wide range of practical applications [3]. WPMS divides
the formula in two sets of clauses: The hard clauses that must be satisfied and the soft
clauses that can be unsatisfied with a penalty of their associated weight.

Early complete algorithms for MaxSAT solving were based on branch-and-bound
search [3]. These algorithms perform very well on crafted and random instances, but
are in general inefficient for industrial instances. An alternative approach is based on
iteratively calling a SAT solver. The most widely used approach consists on relaxing
the soft clauses and then iteratively refining upper bounds on the optimum solution
(e.g. [2]). Recent work proposed to guide the search with unsatisfiable subformulas
[3] (or cores) and is most often based on refining lower bounds (e.g. [4,11,1]). Other
approaches refine both an upper bound and a lower bound [12]. Finally, a more recent
approach based on combining binary search and core-guided search [7] computes the
middle value between both bounds. Observe that all the above approaches could benefit
from higher quality initial lower bounds and upper bounds to boost the search.

An alternative way to solve MaxSAT is stochastic local search (SLS). Such methods
are incomplete but they can find approximate solutions for problem instances. However,
SLS algorithms have a number of drawbacks. First, they are known to provide low
quality solutions (ie. upper bounds) for industrial instances. Second, they are unable to
take advantage of partial MaxSAT instances with hard and soft clauses.

This paper studies existing lower bounds and upper bounds based on calling a SAT
solver, presents some improvements and relate them with recent work in the field. The
empirical study shows that (i) SLS can improve its performance when initializing its
search with an assignment computed by a complete SAT solver, (ii) the new bounds
are tighter than the previous ones and finally that (iii) core-guided MaxSAT algorithms
boost their performance when enhanced with the new bounds in some benchmarks.

� This work was partially supported by SFI PI grant BEACON (09/IN.1/I2618).
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2 Computing Lower and Upper Bounds

In this section lower bounds (LB) and upper bounds (UB) for MaxSAT are introduced.
In what follows, standard SAT and MaxSAT definitions are introduced (e.g. [3]).

Let X = {x1, x2, . . . , xn} be a set of Boolean variables. A literal is either a vari-
able xi or its negation x̄i. A clause C is a disjunction of literals. An assignment is a
set of literals A = {l1, l2, . . . , lk}. If variable xi is assigned to true (false) , literal
xi (x̄i) is satisfied and literal x̄i ( xi ) is falsified. An assignment satisfies a literal iff it
belongs to the assignment, it satisfies a clause iff it satisfies one or more of its literals
and it falsifies a clause iff it contains the negation of all its literals. A model is a com-
plete assignment that satisfies all the clauses in a CNF formula ϕ. SAT is the problem
of deciding whether there exists a model for a given propositional formula. Given an
unsatisfiable SAT formula ϕ, a subset of clauses ϕC whose conjunction is still unsat-
isfiable is called an unsatisfiable core (or core) of the original formula. Modern SAT
solvers can be instructed to generate an unsatisfiable core [17].

A weighted clause is a pair (C,w), where C is a clause and the weight w is the
cost of its falsification. Weighted clauses that must be satisfied are called mandatory
(or hard) and are associated with a special weight�. Non-mandatory clauses are called
soft clauses and have a weight w < �. A weighted formula in conjunctive normal
form (WCNF) ϕ is a set of weighted clauses. A model is a complete assignmentA that
satisfies all hard clauses. Given a WCNF formula, the Weighted Partial MaxSAT is the
problem of finding a model of minimum cost.

The remainder of this section introduces the notation used to describe bound com-
putation algorithms. ϕW is the current working formula. Soft clauses may be extended
with additional variables called relaxation variables. The bounds may use these func-
tions: Soft(ϕ) returns the set of all soft clauses in ϕ and SAT (ϕ) makes a call to the
SAT solver which returns whether ϕ (ignoring weights) is satisfiable (SAT or UNSAT).
Without loss of generality, this paper assumes that the input formula has a model.

2.1 Lower Bounds

Consider Algorithm 1. Let λ be the lower bound, initially λ = 0. A SAT solver is
iteratively called while the formula is unsatisfiable. For each core ϕC , the minimum
weight min(ϕC) among the soft clauses is computed, the lower bound is updated as
λ = λ +min(ϕC) and the weight of the soft clauses in ϕC is decreased by min(ϕC).
Besides, each soft clause that reaches a weight of 0 is removed from the working for-
mula. This lower bound will be referred to as sat-lb-s. The lower bound in [7] is similar
to the described one but all the soft clauses in ϕC are removed from the formula which
provides a weaker lower bound (for weighted MaxSAT but equivalent for unweighted
MaxSAT) and will be referred to as sat-lb. In [10], cores are detected by unit propaga-
tion (UP), whereas the LB in [11,7] additionally detects cores that cannot be identified
by UP. Given that a SAT solver always detects first all the cores by solely applying
UP and then the remaining ones, it is straightforward that the LB sat-lb is stronger that
the one in [10], but sat-lb makes calls to a SAT solver which can require exponential
time. sat-lb-s is an extension of [10] for weighted MaxSAT that provides a stronger LB
because it is not restricted to UP.
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Algorithm 1. Lower Bound
Input: ϕ

1 (ϕW , λ, ϕR) ← (ϕ, 0, ∅)
2 while true do
3 (st, ϕC ,A) ← SAT(ϕW )
4 if st = SAT then return (λ, ϕR)
5 (λ, ϕR) ← (λ + min(ϕC), ϕR∪ Soft(ϕC))
6 foreach (C, w) ∈ Soft(ϕC) do
7 w ← w − min(ϕC)
8 if w = 0 then ϕW ← ϕW \ {(C, w)}
9 end

10 end

Algorithm 2. Upper Bound
Input: ϕ

1 (μ, lastA) ← (
∑m

i=1 wi + 1, ∅)
2 (R, ϕW ) ← Relax(∅, ϕ, Soft(ϕ))
3 (st, ϕC ,A) ← SAT(ϕW )
4 if st = true then (lastA, μ) ← (A,

∑m
i=1 wi × (1 − A〈Ci \ {ri}〉))

5 return SLS(lastA, ϕ)

2.2 Upper Bounds

Consider Algorithm 2. Let μ be an UB. Initially, each soft clause is extended with a
relaxation variable in function Relax. Then, the SAT solver is called and it returns a
satisfying assignment A. Then, the sum of weights of the soft clauses for which the
relaxation variable has been assigned to true provides an UB in A [7]. Note that, for
non-optimal assignmentsA, a relaxation variable assigned to true does not mean neces-
sarily that the soft clause associated to such variable must be unsatisfied. As a result, a
slight improvement is to sum the weights of unsatisfied soft clauses by A disregarding
the relaxation variables in the soft clauses. Such UB will be referred to as sat-ub and is
inspired in [5]. Additionally, a stochastic local search (SLS) solver is called providing
the previous computed assignment restricted to original variables. Recall that such as-
signment satisfies all hard clauses. The SLS solver may return an improved solution (or
the given one, in the worse case). This UB will be referred to as sat-ub+s.

Using non-random initial assignments to improve the performance of a local search
procedure was first studied in [13] for partial MaxSAT. The work in [9] executes in
parallel a SAT solver and an SLS procedure. The variables to be flipped by the SLS
depend on the current partial assignment of the SAT solver. However, such approach
is (i) unable to take advantage of hard and soft clauses and (ii) cannot improve the
SLS solver in the instances from MaxSAT Evaluations, essentially because the SAT
solver proves the unsatisfiability very quickly and cannot guide the SLS procedure.
Differently, sat-ub+s provides an assignment that satisfies (i) all hard clauses and (ii) its
performance only depends on the ability of the SAT solver to find such an assignment.
As a result, it can be applied on the benchmarks of MaxSAT Evaluations and still obtain
significant improvements as shown in the empirical section.
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Table 1. Quality of the upper bounds and lower bounds

Benchmark #Inst. sls sat-ub sat-ub+s sat-lb sat-lb-s
circ 9 94892 99 35 4 4
sean 112 69595 265 171 16 16
fir 59 4570 36 27 22 22

simp 138 31 41 28 25 25
msp 148 20787 375 350 227 227
mtg 215 515 18 16 6 6

haplo 6 3690 1151 1068 352 352
frb 25 447 449 446 233 233

mo3sat 80 46 55 37 26 26
mostr 60 39244 246 239 139 139
plan 56 294881 2171 2169 760 1371
spot 21 146940 159734 146739 63408 68743
rnet 78 156099 296800 156230 113019 143922

upgrade 100 - 10849700000 - 251240000 416861000
time 32 19354800 742 704 13 18
pedi 100 216139000 110344 91520 13792 15391

Aborted - 0 27 27 30 33
AverageTime - 34.61 3.65 5.73 17.16 21.11

3 Experimental Evaluation

Experiments were conducted on a HPC cluster (3GHz) with linux. For each run, the
time limit was set to 1200 seconds and a memory limit of 4GB. The bounds were im-
plemented in the MSUNCORE [14] system. All benchmarks from 2009-2011 MaxSAT
Evaluations (2067 instances) were considered.

3.1 Analysis of the Bounds

Table 1 summarizes the quality of the computed bounds only for some benchmark sets,
but similar improvements are observed in the remaining ones. The first column shows
the name of the set of benchmarks, the second column shows the number of instances
in the set. The three following columns show three different upper bounds. The two
final columns show two different lower bounds. All five columns present the average
value of the bound for all instances in the benchmark set. Column sls refers to an upper
bound computed by the SLS procedure ADAPTNOVELTY+ [8] included in the UBC-
SAT (with default parameters) [16] solver but any other SLS algorithm could be used.
sat-ub+s uses ADAPTNOVELTY+ as the SLS algorithm. Regarding the upper bounds,
the solutions provided by the SLS algorithm are of very low quality. Differently, sat-ub
provides a solution orders of magnitude better than the previous one. Finally, sat-ub+s
is more accurate than the previous one. One of the reasons why sat-ub and sat-ub+s are
better than sls is because calling a SAT solver with the additional relaxation variables
provides a good initial assignment that satisfies all hard clauses. Note that the bench-
mark set upgrade contains very large weights and the sls algorithm cannot handle such
weights. For this reason they are omitted from the average for 2 upper bounds.

Recall that the approach [9] is unable to improve the upper bound provided by a SLS
procedure in the MaxSAT Evaluation instances. Regarding the lower bounds, both sat-
lb and sat-lb-s provide the same value for unweighted MaxSAT as expected given that
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in such case they are equivalent. Differently, for weighted MaxSAT sat-lb-s provides
substantially higher lower bounds.

Note the last two rows in the Table 1 that show summarized results over the 2067
instances. One shows the number of aborted instances within the time limit while com-
puting the bounds. The other one shows the average time in seconds to compute the
bounds. The upper bounds based on calling a SAT solver can be aborted for some very
hard instances, but they usually require much less time than SLS.

3.2 Improving Core-Guided MaxSAT Algorithms with the Bounds

In what follows, the performance of several core-guided MaxSAT algorithms [7] is stud-
ied. Each sub-table in Table 2 shows the results for msu3 [11] (left), msu4 [12] (mid),
and core-guided binary search [7] (right), respectively. All three algorithms use exactly
one relaxation variable per soft clause. Once the LBs are computed, the algorithms will
add one relaxation variable to each soft clause returned in ϕR (See Algorithm 1). For
each sub-table in Table 2, the first and second columns show the benchmark set and its
number of instances, respectively. The remaining three columns show the performance
of an algorithm with different bounds in terms of solved instances within the time limit.
Note that the necessary time to compute the bounds is included in the time limit for
each execution. For each algorithm some sets of instances are shown where significant
differences in the performance are reported.

msu3 [11] iteratively refines a LB. Table 2 (left) shows the performance of msu3
without LB (3rd column), with sat-lb (4th col.) and with sat-lb-s (5th col.). Clearly,
the use of lower bounds improve the performance of msu3. For unweighted problem
sets (msp and frb), both lower bounds provide the same improvement as expected. For
weighted problem sets (planning, upgrade and pedigree), sat-lb-s is noticeable better
than sat-lb.

msu4 [12] refines both a LB and a UB but empirical observation shows that in most
of its iterations, msu4 refines an UB. Hence, msu4 may benefit from both bounds but
specially from a good initial UB. Table 2 (mid) shows the performance of msu4 where
the LB is fixed to sat-lb-s, while the UBs considered are none (3rd col.), sat-ub (4th
col.) and sat-ub+s (5th col.). Clearly, the use of UBs improve the performance of msu4,
being sat-ub+s the one that provide the best results.

Core-guided binary search [7] refines both a lower bound and upper bound, and at
each iteration it asks for the middle value between them. Table 2 (right) shows the
performance of core-guided binary search without bounds (3rd col.), with both sat-
lb and sat-ub as in [7] (4th col.) and with the two new bounds sat-lb-s and sat-ub+s
(5th col.). The additional sixth column shows the results for sat-lb and sat-ub+s. The
performance of core-guided binary search is quite good without the bounds and their
use improves the performance in 4 of 5 sets. Note that the efficiency for the upgrade
set of problems is slightly worsened. While the use of bounds can save calls to the SAT
solver in binary search, they may move the search to harder calls of the SAT solver
[15].
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Table 2. Bounds on msu3 (left), msu4 (mid) and core-guided binary search (right)

Set #I. None sat-lb sat-lb-s
msp 148 89 92 92
frb 25 0 14 14

plan. 56 38 40 44
upgr. 100 0 0 10
pedi. 100 24 40 44
total 370 151 186 204

Set #I. None sat-ub sat-ub+s
sean 112 51 77 78
fir 59 46 53 53

mostr 60 44 44 59
msp 148 75 86 108
plan. 56 21 35 50
total 435 237 295 348

Set #I. None sat-lb sat-lb-s sat-lb
sat-ub sat-ub+s sat-ub+s

sean 112 72 77 78 78
frb 25 0 15 15 15

msp 148 98 107 107 107
upgr. 100 63 59 52 59
pedi. 100 32 34 34 33
total 485 265 292 286 292

4 Conclusions and Future Work

This paper introduces new LB and UB based on calling a SAT solver and studies their
effect on the performance core-guided MaxSAT solvers. The bounds presented in this
paper can be integrated in branch and bound MaxSAT solvers and MaxSAT solvers
based on computing unsatisfiable cores that exploit disjoint cores [1,7], and which add
more than one relaxation variable per soft clause [4]. Additionally, the bounds can be
extended to other boolean optimization frameworks [6].
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1. Ansótegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial MaxSAT. In:
AAAI (2010)

2. Le Berre, D., Parrain, A.: The Sat4j library, release 2.2. JSAT 7, 59–64 (2010)
3. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability (2009)
4. Fu, Z., Malik, S.: On Solving the Partial MAX-SAT Problem. In: Biere, A., Gomes, C.P.

(eds.) SAT 2006. LNCS, vol. 4121, pp. 252–265. Springer, Heidelberg (2006)
5. Giunchiglia, E., Maratea, M.: Solving optimization problems with DLL. In: ECAI, pp. 377–

381 (August 2006)
6. Heras, F., Manquinho, V.M., Marques-Silva, J.: On applying unit propagation-based lower

bounds in pseudo-boolean optimization. In: FLAIRS Conference, pp. 71–76 (2008)
7. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms for maxi-

mum satisfiability. In: AAAI (2011)
8. Hoos, H.H.: An adaptive noise mechanism for WalkSAT. In: AAAI, pp. 655–660 (2002)
9. Kroc, L., Sabharwal, A., Gomes, C.P., Selman, B.: Integrating systematic and local search

paradigms: A new strategy for MaxSAT. In: IJCAI, pp. 544–551 (2009)
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Abstract. Many heuristic methods have been proposed for the job-
shop scheduling problem. Different solution methodologies outperform
other depending on the particular problem instance under consideration.
Therefore, one is interested in knowing how the instances differ in struc-
ture and determine when a particular heuristic solution is likely to fail
and explore in further detail the causes. In order to achieve this, we seek
to characterise features for different difficulties. Preliminary experiments
show there are different significant features that distinguish between easy
and hard JSSP problem, and that they vary throughout the scheduling
process. The insight attained by investigating the relationship between
problem structure and heuristic performance can undoubtedly lead to
better heuristic design that is tailored to the data distribution under
consideration.

1 Introduction

Hand crafting heuristics for NP-hard problems is a time-consuming trial and
error process, requiring inductive reasoning or problem specific insights from
their human designers. Furthermore, within a problems class, such as job-shop
scheduling, it is possible to construct problem instances where one heuristic
would outperform another. Depending on the underlying data distribution, dif-
ferent heuristics perform differently, commonly known as the no free lunch theo-
rem [1]. The success of a heuristic is how it manages to deal with and manipulate
the characteristics of its given problem instance. So in order to understand more
fully how a heuristic will eventually perform, one needs to look into what kind of
problem instances are being introduced to the system. What defines a problem
instance, e.g. what are its key features? And how can they help with designing
better heuristics?

In investigating the relationship between problem structure and heuristic ef-
fectiveness one can research what [2] calls footprints in instance space, which
is an indicator how an algorithm generalises over the instance space. This sort
of investigation has also been referred to as landmarking [3]. It is evident from
experiments performed in [2] that one-algorithm-for-all problem instances is not
ideal. An algorithm may be favoured for its best overall performance, however
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it was rarely the best algorithm available over various subspaces of the instance
space. Thus when comparing different algorithms one needs to explore how they
perform w.r.t. the instance space, i.e. their footprint.

In this study, the same problem generator is used to create 1,500 problem
instances, however the experimental study in section 3 shows that MWRM works
well/poorly on a subset of the instances. Since the problem instances are only
defined by processing times and its permutation, the interaction between the
two is important, because it introduces hidden properties in the data structure
making it easy or hard to schedule with for the given algorithm. These underlying
characteristics or features define its data structure. So a sophisticated way of
discretising the instance space is grouping together problem instances that show
the same kind of feature behaviour, in order to infer what is the feature behaviour
between good and bad schedules.

It is interesting to know if the difference in the structure of the schedule is
time dependent, is there a clear time of divergence within the scheduling pro-
cess? Moreover, investigation of how sensitive is the difference between two sets
of features, e.g. can two schedules with similar feature values yield completely
contradictory outcomes, i.e. one poor and one good schedule? Or will they more
or less follow the same path? This essentially answers the question of whether
is is in fact feasible to discriminate between good and bad schedules using the
currently selected features as a measure. If results are contradictory, it is an
indicator the features selected are not robust enough to capture the essence of
the data structure. Additionally, there is also the question of how can one define
‘similar’ schedules, what measures should be used? This paper describes some
preliminary experiments with the aim of investigating the feasibility of finding
distinguishing features corresponding to good and bad schedules in JSSP.

Instead of searching through a large set of algorithms (creating an algorithm
portfolio) and determining which algorithm is the most suitable for a given subset
of the instance space, as is generally the focus in the current literature [4,5,2],
our focus is rather on a single algorithm and understanding how it works on
the instance space – in the hopes of being able to extrapolate where it excels in
order to aid its failing aspects.

The outline of the paper is as follows, in section 2 priority dispatch rules for
the JSSP problem are discussed, what features are of interest and how data is
generated. A preliminary experimental study is presented in section 3. The paper
concludes with a summary of main findings and points to future work.

2 Job-Shop scheduling

The job-shop scheduling task considered here is where n jobs are scheduled
on a set of m machines, subject to the constraint that each job must follow a
predefined machine order and that a machine can handle at most one job at
a time. The objective is to schedule the jobs so as to minimize the maximum
completion times, also known as the makespan. For a mathematical formulation
of JSSP the reader is recommended [6].
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Table 1. Feature space F for JSSP. Features 1–13 can vary throughout the scheduling
process w.r.t. tasks that can be dispatched next, however features 14–16 are static

φ Feature description

φ1 processing time for job on machine
φ2 start-time
φ3 end-time
φ4 when machine is next free
φ5 current makespan
φ6 work remaining
φ7 most work remaining
φ8 slack time for this particular machine
φ9 slack time for all machines
φ10 slack time weighted w.r.t. number of operations already assigned
φ11 time job had to wait
φ12 size of slot created by assignment
φ13 total processing time for job
φ14 total processing time for all jobs
φ15 mean processing time for all jobs
φ16 range of processing times over all jobs

2.1 Single-Priority Dispatching Heuristic

Dispatching rules are of a construction heuristics, where one starts with an empty
schedule and adds on one job at a time. When a machine is free the dispatching
rule inspects the waiting jobs and selects the job with the highest priority. A
survey of more than 100 of such priority rules was given in 1977 by [7]. In this
paper however, only most work remaining (MWRM) dispatching rule will be
investigated.

In order to apply a dispatching rule a number of features of the schedule
being built must be computed. The features of particular interest were obtained
from inspecting the aforementioned single priority-based dispatching rules. The
temporal scheduling features applied in this paper are given in Table 1. These
are not the only possible set of features, they are however built on the work
published in [6,4] and deemed successful in capturing the essence of a JSSP data
structure.

2.2 Data Generation

Problem instances were generated stochastically by fixing the number of jobs and
machines and sampling a discrete processing time from the uniform distribution
U(1, 200). The machine order is a random permutation of {1, ...,m}. A total of
1,500 instances were generated for a six job and six machine job-shop problem.

In the experimental study the performance of the MWRM, μMWRM, and
compared with its optimal makespan, μopt. Since the optimal makespan varies
between problem instances the following performance measure is used:

ρ =
μMWRM

μopt
. (1)

3 Experimental Study

In order to differentiate between problems, a threshold of a ρ < 1.1 and ρ > 1.3
was used to classify easy and hard problems. Of the 1500 instances created, 271
and 161 problems were classified easy and hard , respectively.
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Table 2. Features for easy and hard problems are drawn from the same data distri-
bution (denoted by ·)

dispatch
φ 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35
φ1 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
φ2 • • •
φ3 • • • • •
φ4 • •
φ5 •
φ6 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
φ7 • • • • • • • • • • • • • • • •
φ8 • • • • • •
φ9 • • • • • • • • • • • •
φ10 • • • • • • • • • • •
φ11 • • • • • • • • • • • • • • • • •
φ12 • • • • • • • • • • • • • • • • • • • • • • •
φ13 • • • • • • • • • • • • • • • • • • •
φ14
φ15
φ16 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •

Table 3. Significant correlation (denoted by ·) for easy (left) and hard (right) problems
and resulting ratio from optimality, ρ defined by (1). Commonly significant features
across the tables are denoted by •.

Easy dispatch
φi 1 5 10 15 20 30 35
1
2 •• · · · · · •• · · · • · •
3 · • · · · · • · · · • · •
4 · • • · · · · · • · · ••• · ·
5 · · · · · · •• · · · · · · •· ·• ·••• • •••• •
6
7
8 · · · · · · ·•• • • · · · · · · •• • · • · · •
9 · · · · · · · • · • · · · · ·
10 · · · · · · · · • · · · ·
11 · · · ·
12 · · ·
13 ·
14
15
16

Hard dispatch
φi 1 5 10 15 20 30 35
1 · ·
2 · •• · · •• • •
3 · • • · • •
4 • · • · • · •••
5 •• · • • ••• • •••• •
6 ·
7
8 •• • • •• • • •
9 · • · •
10 · · · • ·
11 ·
12 · ·
13 ·
14
15
16

Table 2 reports where data distributions are the same (denoted by ·). From
the table one can see that distribution for φ1, φ6, φ12 and φ16) are (more or
less) the same throughout the scheduling process. However there is a clear time
of divergence for distribution of slacks; step 6 for φ8 and step 12 for φ9 and φ10.

In order to find defining characteristics for easy and hard problems, a (lin-
ear) correlation was computed between features (on a step-by-step basis) to the
resulting ratio from optimality. Significant features are reported in Table 3 for
easy and hard problems, (denoted by ·). As one can see from the tables, the
significant features for the different difficulties are varying. Some are commonly
significant features across the tables (denoted by •).

4 Discussion and Conclusion

From the experimental study it is apparent that features have different correla-
tion with the resulting schedule depending in what stage it is in the scheduling
process, implying that their influence varies throughout the scheduling process.
And features constant throughout the scheduling process are not correlated with
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the end-result. There are some common features for both difficulties considered
which define JSSP on a whole. However the significant features are quite differ-
ent across the two difficulties, implying there is a clear difference in their data
structure. The amount of significant features were considerably more for easy
problems, indicating their key elements had been found. However, the features
distinguishing hard problems were scarce. Most likely due to their more complex
data structure their key features are of a more composite nature.

The feature attributes need to be based on statistical or theoretical grounds.
Thus scrutiny in understanding the nature of problem instances is of paramount
importance in feature engineering for learning. Which yields feedback into what
features are important to devout more attention to, i.e. features that result in a
failing algorithm. In general, this sort of investigation can undoubtedly be used in
better algorithm design which is more equipped to deal with varying problem in-
stances and tailor to individual problem instance’s needs, i.e. a footprint-oriented
algorithm.

Although this methodology was only implemented on a simple single-priority
dispatching rule heuristic, the methodology is easily adaptable for more complex
algorithms. The main objective of this work is to illustrate the interaction of a
specific algorithm on a given problem structure and its properties.
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Abstract. Sequential sampling strategies based on Gaussian processes
are now widely used for the optimization of problems involving costly
simulations. But Gaussian processes can also generate parallel optimiza-
tion strategies. We focus here on a new, parameter free, parallel expected
improvement criterion for asynchronous optimization. An estimation of
the criterion, which mixes Monte Carlo sampling and analytical bounds,
is proposed. Logarithmic speed-ups are measured on 1 and 9 dimensional
functions.

1 Introduction to Parallel Expected Improvements

The current technological solution for optimizing functions of numerically costly
simulators is to rely on an increasing number of processing units (processors,
cores, GPUs). Demanded features of new parallel optimization algorithms are
not only high speed-ups but also the ability to work with heterogeneous process-
ing units (e.g., computing grids) and fault tolerance. Evolutionary algorithms
offer many opportunities for parallelization, including in heterogeneous comput-
ing networks, and in master-worker or island computing structures [2]. Master-
worker parallel optimization algorithms are more common as they fit the costly
simulator case: the optimizer is the master node, the workers evaluate the objec-
tive functions and constraints. In [6] for example, a parallel and asynchronous
version of the local pattern search algorithm is described. [9] presents a deter-
ministic global parallel algorithms which, contrarily to the forthcoming method
is based on radial basis functions and has a synchronization step. [10] and [1]
describe methods where Gaussian processes are used through expected improve-
ment maximization with restarts and infill sampling, respectively, to provide the
set of points to evaluate in parallel. Boths methods have a synchronisation step
when the master optimizer iterates.

This article also proposes a sampling criterion based on Gaussian processes.
Its originality relies on an asynchronous extension of the multi-points expected
improvement of [3] which, itself, was a parallel extension of the expected im-
provement of [8]. In the sequel, the parallel asynchronous expected improvement
will be denoted EI(μ,λ).
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A distinctive feature of EI(μ,λ) is to provide a unified mathematical treat-
ment of the already evaluated and the currently running points for optimization,
therefore no additional parameter is introduced to parallelize the search. Initial
empirical results on 1D and 9D functions show that logarithmic speed-ups are
obtained. This work also illustrates that EI(μ,λ) is difficult to compute.

2 A Unified Presentation of Parallel Expected
Improvements

Let us consider the optimization problem minx∈Rd f(x) where each evaluation of
f implies a call to a numerically intensive simulation program, and assume that
a set of past observations (X, f(X)) has been gathered. In the Bayesian Global
Optimization settings considered here, the unknown f is represented a priori
by a Gaussian Process (Y (x))x∈Rd , and is being approximated relying on the
conditional distribution of Y knowing that Y (X) = f(X) (Kriging metamodel).
We focus here on cases where λ computing nodes are available for starting new
simulations while μ computing nodes are currently evaluating f at a set of μ ≥
0 “busy” points Xbusy := {x1

b, . . . , x
μ
b}. We define the asynchronous multi-

points Expected Improvement of Xasy := {x1
a, . . . , x

λ
a} as

EI(μ,λ)(Xasy) := E
[
(min(Y (X ∪ Xbusy))−min(Y (Xasy)))

+ |Y (X) = f(X)
]
,

where [•]+ ≡ max(0, •). This criterion, which was initially introduced in [4],
measures how much progress with respect to already calculated or currently
calculating points (X ∪Xbusy) will be made on average at Xasy. The case μ = 0,
λ = 1 is the usual EI defined in the EGO algorithm [8]. A parallel algorithm
that works by maximizing EI(μ,λ) can now be introduced:

Asynchronous Parallel EI algorithm
1. Generate X through a space-filling design. Calculate f(X).
2. While calculation budget not exhausted do

(a) [non blocking] Retrieve new x’s and f(x)’s if any. Update the kriging
model (optionally with parameter re-estimation). Update λ and μ.

(b) Generate λ points by maxEI(μ,λ)(x1
a, . . . , x

λ
a) using a global optimizer

(e.g. CMA-ES [5]). Send them to worker nodes for evaluation.

The classic EI criterion has the desirable property that its maximum lies away
from already sampled points of X and strikes a comprise between the exploration
of unknown regions of the design space and the intensification of the search in
known highly performing regions [8]. In addition, the multi-points asynchronous
EI(μ,λ) has its maximum away from any subset of already sampled and currently
running points, X ∪ Xbusy (it is null there while I is a positive variable, [7]).
Another advantage of EI(μ,λ) is that it does not introduce extra parameters.

EI(μ,λ) accounts for all ratios of optimizer over simulation computation times.
If the simulations are much longer than any optimizer iteration (kriging update



EI for Parallel Optimization 415

and EI maximization), points will be allocated to newly available nodes one
at a time, in which case EI(μ,λ=1) will be used. Vice versa, if the optimizer
iteration takes longer than the simulations, no busy point occurs and EI(μ=0,λ)

is relevant. Intermediate cases call for general EI(μ,λ)’s.

3 Bounds and Estimation of EI(μ,λ)

While the calculation of EI(0,1) and EI(0,2) is analytical [3], no general expres-
sion for EI(μ,λ) is known. We propose to estimate EI(μ,λ) through a Monte Carlo
strategy augmented by bounds knowledge. In particular, the following bounds
are established in [7] where EI∗(xi

b, x
j
a) := E

[
(Y (xi

b)− Y (xj
a))

+|Y (X) = f(X)
]
:

max
i=1,λ

EI(xi
a) ≤ EI(0,λ)(Xasy) ≤

λ∑
i=1

EI(xi
a)

0 ≤ EI(μ,λ)(Xasy) ≤ min

⎛⎝ λ∑
i=j

EI(xj
a),

λ∑
j=1

EI∗(x1
b , x

j
a), . . . ,

λ∑
j=1

EI∗(xμ
b , x

j
a)

⎞⎠
All the expressions in the bounds are analytical, including the EI∗ terms, be-
cause they are instances of the usual EI formula [8].

The Monte Carlo estimator of the mean of I(μ,λ) and its variance are calcu-
lated from N samples of the conditional Gaussian process Y (i.e., samples ij of
the improvements) as follows:

EI
(μ,λ)
MC (x) =

1

N

N∑
j=1

i
(μ,λ)
j (x) , σ2

MC(x) =
1

N(N − 1)

N∑
j=1

(i
(μ,λ)
j (x)− EI(μ,λ))2

We now introduce the above bounds through Bayes law. The a priori den-
sity of EI(μ,λ) is uniform between the lower and upper bounds, U(L,U). Since

the likelihood of the expectation estimator, p
(
EI

(μ,λ)
MC |EI(μ,λ)

)
, is Gaussian,

the a posteriori density is a known truncated Gaussian as can be seen from

p
(
EI(μ,λ)|EI

(μ,λ)
MC

)
= p

(
EI

(μ,λ)
MC |EI(μ,λ)

)
U(L,U)/const. Calculation details

are given in [7] and yield estimations of the mean and the variance of

EI(μ,λ)(x)|EI
(μ,λ)
MC (x), denoted M(x) and V 2(x), respectively, which account

for both Monte Carlo simulations and the bounds.
The asynchronous parallel EI algorithm introduced earlier has a step that

maximizes EI(μ,λ)(•) with the CMA-ES algorithm ([5]). In CMA-ES, the objec-
tive function values are used to rank the explored points. We propose to modify
this comparison of points (say xi and xj) in order to control the Monte Carlo
simulations:
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Pairwise ranking procedure
1. Set confidence k (e.g., over 60% confidence for k = 1), N , ΔN ,
2. While not stop do

(a) IfM(xi)−kV (xi) ≥M(xj)+kV (xj) then EI(μ,λ)(xi) ≥ EI(μ,λ)(xj),
stop. (And vice versa.)

(b) Decrease the Monte Carlo variances by allocating extra samples:
ΔNi = V (xi)ΔN/(V (xi) + V (xj)), ΔNj = ΔN −ΔNi.

4 Test Results

The tests reported in [7] are now summarized.
Firstly, 100 functions in 1D have been generated by sampling Gaussian process

trajectories (see the 2 examples of Fig.1). For each function, a pair of points was
randomly chosen and their EI(μ,λ) compared, μ = 0, 1, 3 and λ = 1 to 5. It is ob-
served that, on average, accounting for the bounds divides by 7 the total number
of Monte Carlo simulations necessary to discriminate the points. However, a first
difficulty appeared. When μ > 0, 25% of the pairs needed over N = 100, 000
MC samples for the comparison, i.e., their points had very close EI(μ,λ) val-
ues: the EI(μ,λ) function has plateaus. This proportion increased when the pairs
were generated by optimization because these plateaus correspond to high per-
formance regions of the design space.

The second issue stems directly from EI(μ,λ)’s definition: its input is high
dimensional (dimXasy = λd), making its maximization potentially costly.

Thirdly, on the positive side, the experiments summarized in Fig.1 and 2 show
that logarithmic speed-ups are obtained: we have observed

time to solve, λ = 1

time to solve, λ
≈ 1 + b log(λ)

Fig. 1. Left: two of the ten sampled trajectories with Matern 5/2 kernel and scale
θ = 0.15. Right: mean normalized improvement as a function of iteration for λ = 1 to
4 (μ = 0), averaged over 10 test functions (defined as 1D trajectories such as those on
the left).



EI for Parallel Optimization 417

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

no
rm

al
iz

ed
 im

pr
ov

em
en

t

iteration

1
2
4
8

16

Fig. 2. Mean normalized improvement as a function of iteration for λ = 1 to 16 (μ = 0),
9 dimensional test case

where b = 0.85 and 0.49 in 1 and 9 dimensions, respectively. The 9D test function
is the approximation of a matrix by its rank 1 counter part:

(B∗
mr,C

∗
rn) = arg min

Bmr,Crn

‖Amn −BmrCrn‖, r < rank(Amn), (1)

where ‖ · ‖ is the Frobenius norm, A is a 4 × 5 matrix of uniformly distributed
elements in [0, 1], B and C are a column and a row vector whose elements
are constrained to be in [−1, 1], respectively. This is a continuous nonconvex
9-dimensional box-constrained optimization problem whose solution is given by
the first singular vectors. An instance of a typical run is shown for λ = 1 to 16,
μ = 0, in Fig. 2.

The observed speed-up is due to the kriging model which summarizes all of
the information gathered by the worker nodes, including the currently running
simulations. Further work addressing the aforementioned estimation and opti-
mization difficulties of EI(μ,λ) is needed.
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Abstract. It is possible for the (μ+1)-SMS-EMOA to decrease in dom-
inated hypervolume w.r.t. a global reference point. We study the influ-
ence of SMS-EMOA parameter settings on number and amount of the
observed decreases. We show that the number of decreases drop and the
number of increases rise with a higher population size. In addition, a
positive correlation between mean increase and mean decrease can be
observed. Our findings further indicate a substantial impact of the mu-
tation operators on the number and amount of decreases.

Keywords: EMO, hypervolume decreases, parameter influence.

1 Introduction

The dominated hypervolume was defined by Zitzler and Thiele as the the size of
the space covered by a Pareto front1 with respect to a given reference point and
special properties of this indicator have been proven [6]. As recent results show,
unsuspected decreases in the hypervolume progression during an optimization
run are possible [4]. These results are summarised in the following section. Sec-
tion 3 provides our latest results on the dependency of such decreases on EMOA
parameter settings as well as some initial insight into how these decreases in-
fluence the final dominated hypervolume of an optimization run. Finally, we
summarise our latest findings and give an outlook to future work in section 4.

2 Decreases in Hypervolume Progressions

The progression of the hypervolume in a 1-greedy hypervolume selection based
EMOA w.r.t. a fixed global reference point was thought to never decrease in the
course of an optimization run. This belief arose from the design of the algorithms,
in which the individual with the least hypervolume contribution is discarded in
every generation. However, Judt et al. [4] showed that this intuition is wrong for
an adaptive reference point.

1 For details on EMO related definitions and vocabulary the reader is refered to Deb [3]
or Coello Coello [2].
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For the paper a total of 71 250 reproducible runs of the SMS-EMOA [1] on
both 2-dim. and 3-dim. test cases were conducted. Different parameterizations
have been considered, e.g. three different population sizes μ ∈ {10, 20, 100} were
examined. Parameters of the Simulated Binary Crossover (SBX, [3]) and the
Polynomial Mutation (PM, [3]) operator were chosen according to a Latin Hy-
percube Sample. For each combination of test function, population size and
variation operator set, 50 independent runs were conducted. The hypervolume
w.r.t. a fixed reference point was calculated for each generation and the number
of times this hypervolume drops was stored. More details on exact parameteri-
zations and reference points are provided in the supplementary material2.

In both experiments, a considerable number of decreases in hypervolume were
observed. In the 2-dim. case, an exceptional rule for the two boundary solutions
is responsible for the drops. In the 3-dim. case, drops were explained by the
hypervolume contributions being calculated w.r.t. an adaptive reference, which
depends on the current population. While internally never attaining a decrease
in hypervolume w.r.t. this adaptive reference point, drops may occur w.r.t. a
global reference point. This 3-dim. effect can be generalized to a higher number
of objectives. Nevertheless, the authors still believe that hypervolume is the most
effective selection scheme for MOP known today.

3 Results

In the following analysis we focus primarly on the 3-dim. cases. More results and
similar results for the 2-dim. cases are provided in the supplementary material.

3.1 Population Size Influence

It is well known that choosing a suitable population size μ is crucial for the
performance of an evolutionary algorithm (EA). We therefore hypothesized that
it could also have an influence on the number of decreases in hypervolume as well
as the magnitude of these decreases. We find evidence for the latter hypothesis
in figure 1 which looks at the absolute change of hypervolume in each iteration
and depicts the trade-off between the average increase and decrease of a run.

There appears to be a barrier at 10−6 below which the mean decrease in
hypervolume does not drop. This is a numerical artifact. The observed absolute
hypervolume values are of the order of 109 and the double precision floating point
values used for all calculations only have≈ 16 significant digits. It is therefore not
possible to observe smaller differences than ≈ 10−6 in the hypervolume directly.
This problem of the hypervolume indicator seems to be largely ignored and will
only worsen as the hypervolume indicator or approximations of it are used for
problems with more than 3 objectives.

Another interesting thing in figure 1 is that the mean increase and decrease
are positivly correlated. This implies that if we observe large increases in hyper-
volume during our optimization run, we can assume that we will also have large

2 Supplementary Material is available at http://ptr.p-value.net/lion12a

http://ptr.p-value.net/lion12a
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Fig. 1. Increases vs decreases in HV averaged over all iterations in each of the 22 500
3-dim. runs. The data is futher subdivided by population size μ along the top and test
function along the right side.

decreases in hypervolume w.r.t. a fixed reference point. Less obvious is the effect
of μ on the mean increase and decrease. Both tend to drop for larger values
of μ, which is plausible given that with a larger population size the expected
contribution of each individual is lower.

In addition, plots depicting the influence of the population size μ on the num-
ber of occurrences of a decrease in hypervolume can be seen in the supplementary
material. It is shown there that for increasing μ the number of hypervolume de-
creases drops, whereas the number of increases rises.

3.2 Eliminating Parameters

The influence of variation operator parameterization on the final SMS-EMOA
performance has been studied in [5]. Here, we wish to see if they also influence
the number or the amount of decrease in hypervolume. The four parameters are
sbx n, sbx p, pm n, pm p from SBX and PM. The first two control the distribution
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and probability of crossover and the second two the distribution and probability
of mutation.

Both, the mean number of decreases as well as the variance of the decreases
over the different parameterizations vary widely for a fixed setting of sbx n or
sbx p. There is no similarity between the functions and only slight similarities
for a fixed function and different values of the populations size μ. The only
consistent phenomenon is the decrease in variance for larger values of μ.

We therefore believe that there is little incentive to further investigate the
influence of these two parameters on the number of and the amount of decrease
in hypervolume. For sbx n this observation is constitent with [5].

For pm n and pm p the situation is a bit different. While there is still strong
non-linearity in the relationship between the parmeter and the number of hyper-
volume decreases, there are regularities in the plot. For pm n there is a consistent
spike between 20 and 25 for each function and setting of μ. The magnitude de-
creases for μ = 100 and the variance seems to be approximately proportional to
the mean number of hypervolume decreases. This hints at a linear relationsship
between μ and both pm n and pm p. From [5] we know that these values lead to
good overall performance of the algorithm on a wide varity of test functions.

The pm p parameter also exibits some structure. There is a peak in the number
of decreases in hypervolume for small values of pm p and the curve drops and
levels off as pm p increases. The high variance is concentrated in the region of
low pm p values which seems peculiar.

Figure 2 visualizes all different parameter settings in a single plot. It shows
the maximum attained hypervolume (rescaled to aid in visualizing the result)
against the number of decreases in hypervolume. Each different shade of grey
is a different parameter setting. There is obvious underlying structure. Similar
parameter settings tend to ’cluster’ together. That is, a parameter setting tends
to produce similar number of hypervolume decreases and a similar attained hy-
pervolume over many runs of the SMS-EMOA.

Even more interesting is the result that decreases seem to help the algorithm.
Note that due to rescaling, larger values of the dominated hypervolume gap are
worse than smaller values. So from figure 2 we see that by increasing the number
of decreases the worst case performance (measured in dominated hypervolume)
increases by 1 to 2 orders of magnitude. This would suggest that while largely
ignored so far, this form of non-elitism might be beneficial to the optimization
process.

However, decreases do ultimately hurt the best case performance, sometimes
by several orders of magnitude. But due to the non-linear scale the dominated
hypervolume is measured on, it is unclear how signigicant this result is.

4 Summary and Outlook

The paper at hand intended to find dependencies between EMO algorithm pa-
rameter settings and the decreases in hypervolume progression [4]. The common
SBX and polynomial mutation variation parameters as well as the population
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Fig. 2. Number of decreases in hypervolume in relation to the difference between the
maximum hypervolume over all runs and the hypervolume of the run. The latter trans-
formation was chosen for visualization purposes only. Note that smaller gap values cor-
respond to a larger dominated hypervolume. The shading of the points marks different
combinations of parameter settings of the algorithm.

size of the (μ + 1) SMS-EMOA were analyzed for possible influences on the
number or amount of decrease in hypervolume.

The population size has a major effect on the number and amount of hyper-
volume decreases. The results show that for increasing μ the number of hyper-
volume decreases drops. This was traced back to the larger number of boundary
solutions for larger population sizes.

We found no evidence that the recombination parameters sbx n and sbx p

influence the number of decreases in hypervolume or the amount of decreases.
This observation underpins the results of [5] that the sbx n parameter has no
influence on SMS-EMOA results in general. We therefore suggest to ignore this
parameter in future experiments and thus, reduce the number of parameters of
EMO algorithms and ultimately the complexity of the parameter tuning.

For pm n and pm p we found evidence that suggests a highly non-linear rela-
tionship between these parameters and the number and amount of hypervolume
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decreases. Interestingly, the standard settings from the literature for pm n and
pm p are those that yield the largest number of decreases, suggesting that de-
creases might have a positive influence on the final result of the optimization
process. Further proof for this was given by relating the number of decreases to
the maximally attained hypervolume, w.r.t a fixed reference point, for each run.
From this data, we could also deduce, that decreases help the algorithm to avoid
stagnation. Runs with a large number of decreases tend to be orders of magni-
tude better than those with a lower number of decreases in the worst case. The
price for this is a small decrease in maximally dominated hypervolume. It would
be interesting to study this effect further, possibly by deliberately introducing
hypervolume decreases into the optimization run and studying their influence
on the final result.

Our results indicate that choosing “good” parameter settings has a measur-
able impact on the number and the amount of decreases in hypervolume. An
effect on the overall quality of the results cannot be deduced due to missing
data for comparison. There are currently no guards in the algorithm to discard
points that lead to a decrease in hypervolume w.r.t. the fixed reference point.
The simplest solution to this dilemma is to check each new point w.r.t a prede-
fined fixed reference point and to forget those individuals that cause a decrease
and continue with the previous population. This will form the foundation for
upcoming experiments.
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Abstract. Using genetic algorithms for solving dynamic optimization
problems is an important area of current research. In this work, we
investigate effects of speciation in NeuroEvolution of Augmenting Topolo-
gies (NEAT), a well-known method for evolving neural network topolo-
gies, on problems with dynamic fitness function. NEAT uses speciation
as a method of maintaining diversity in the population and protecting
new solutions against competition. We show that NEAT outperforms
non-speciated genetic algorithm (GA) not only on problems with static
fitness function, but also on problems with gradually moving optimum.
We also demonstrate that NEAT fails to achieve better performance on
problems where the optimum moves rapidly. We propose a novel method
called DynNEAT, which extends NEAT by changing the size of each
species based on its historical performance. We demonstrate that Dyn-
NEAT outperforms both NEAT and non-speciated GA on problems with
rapidly moving optimum, while it achieves performance similar to NEAT
on problems with static or slowly moving optimum.

Keywords: NEAT, speciation, neural networks, dynamic optimization.

1 Introduction

Real-world optimization problems often contain various sources of uncertainty.
When evolutionary algorithms are used to solve such problems, this uncertainty
translates into dynamic fitness function, often posing a challenge for standard
EAs. One common approach to improve efficiency of the search is to use multiple
concurrently evolving populations to track different optima (a survey of methods
is given in [2]). In this work, we investigate behavior of NEAT [4], a method for
optimizing structure and weights of a neural network, on dynamic problems.
We show that NEAT performs poorly on problems where the optimum of the
fitness function changes rapidly between generations. We propose a new method,
called DynNEAT, which extends NEAT by taking into account multiple previous
generations when choosing the size of the species in the next generation, thus
stabilizing the speciation process and improving performance of the search.

� The research is supported by the Charles University Grant Agency under contract
no. 9710/2011.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 425–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



426 P. Krčah

2 Methods

NeuroEvolution of Augmenting Topologies (NEAT). NEAT is a method
for evolving both structure and connection weights of artificial neural networks [4].
NEAT uses speciation to maintain diversity in the population by protecting new
solutions from direct competition with currently best individuals. Speciation in
NEAT works in the following way. In the first generation, each individual is as-
signed to a different species and its fitness function is evaluated. Each subsequent
generation is constructed by first dividing all slots in the population among all
species present in the previous generation. Species sizes in generation i + 1 are
allocated proportionally to sNEAT (i + 1), an average fitness of all individuals
belonging to the given species in the previous generation:

sNEAT (i+ 1) =

∑Ni

j=1 fij

Ni
,

where fij is the fitness value of j
th individual of the given species in generation i

andNi is the number of individuals in generation i in the given species. When the
new size of each species is known, each slot is populated by performing crossover
and mutation of individuals selected from the given species in the previous gen-
eration. Newly created individuals are assigned to species not based on their
ancestral species, but by comparing them one at a time to representatives of
each species from the previous generation and assigning them to the first species
whose representative is sufficiently similar (based on a defined threshold). If an
individual is not sufficiently similar to a representative of any existing species, a
new species is created for it. When all individuals are assigned to species, NEAT
continues by evaluating their fitness and repeating the same process for the new
generation. Two other major components of NEAT are historical markings of
neurons and growing neural networks incrementally. Comprehensive description
of NEAT is available in [4].

NeuroEvolution of Augmenting Topologies for Dynamic Fitness Func-
tions (DynNEAT). On highly dynamic problems, speciation scheme used by
NEAT can be disadvantageous. In NEAT, the size of the species is chosen based
solely on the average fitness value of individuals from the previous generation. In
highly dynamic problems, this value will change dramatically from generation to
generation, leading to dramatic changes in the size of the species. Such radical
changes in species size can be detrimental to the progress of the search by re-
moving novel solutions from a species before they can be optimized. To improve
the behavior of speciation on such problems, we propose DynNEAT method.
In DynNEAT, decisions about the size of the species are based not just on the
previous generation, but on t previous generations. Species sizes in generation
i + 1 are allocated proportionally to sDynNEAT (i + 1), the maximum average
fitness of last t generations:

sDynNEAT (i+ 1) =
i

max
j=i−t+1

∑Nj

k=1 fjk
Nj

.
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Such method of sizing the species ensures stability of the species across gener-
ations even when the optimum of a fitness function moves rapidly. Parameter
t controls for how long can DynNEAT maintain the size of a species when the
average fitness of individuals in the species decreases over generations. In this
work, the parameter value was set to 5 in all experiments.

3 Experiments

To evaluate the performance of NEAT and DynNEAT on dynamic optimization
problems, we perform three different experiments, using increasingly dynamic
versions of the function approximation problem. Each fitness evaluation consists
of 600 steps, during which a single input value increases linearly from −1 to
+1. The resulting fitness value is computed as 1 − min(μ, 1), where μ is the
mean squared error of the differences between expected and real output value
measured in each step. In all three experiments, non-speciated GA is compared
to NEAT and DynNEAT. As a non-speciated GA, we use a standard GA with
the addition of historical markings used for crossover of neural networks. Each
configuration was tested in 50 runs. Each run was stopped after 200 generations
(after which most runs achieved a plateau). Significance levels were computed
using Student’s t-test. Population size was set to 300, to allow more species to
form concurrently and cover different optima of the changing fitness function.
In the first experiment, with a static fitness function, the target function fA(x)
consists of a linear part, a constant part and a sine-wave part and is defined in
the following way (see solid line in fig. 1):

fA(x) =

⎧⎨⎩
8x− 1 if 0 ≤ x < 1

4
1 if 1

4 ≤ x < 1
2

cos(4πn(x− 1
2 )) if 1

2 ≤ x ≤ 1
,

where x = (k − 1)/599 is the current evaluation step scaled to interval [0, 1].
In the second experiment, with a slowly moving optimum (SMO), the target

function is defined in the following way (see fig. 1):

fB(x, y) =
1

2
(1 + sin

2πy

50
)fA(x),

where x is defined as in fA(x) and y is the generation counter. The target function
oscillates between fA(x) and 0 with a period of 50 generations.

In the third experiment, with rapidly moving optimum (RMO), the target
function is defined in the following way:

fC(x, y) =

{
1 if (x < 0.5) xor (y is even)
−1 otherwise

,

where x and y are defined as in fB(x, y). For odd generations, fC(x, y) is a step
function with value 1 in first half of the domain and −1 in the second half of the
domain. For even generations the function values are reversed.
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Fig. 1. Expected Output in Experiments with Static (solid line) and Slowly Moving
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4 Results

In the experiment with the static fitness function, both DynNEAT and NEAT
were able to consistently find good solutions (see fig. 2). The average maxi-
mum fitness achieved by NEAT in the 200th generation was 0.980 (σ=0.009),
while DynNEAT achieved 0.988 (σ=0.0067). Non-speciated GA achieved aver-
age maximum fitness of only 0.741 (σ=0.169), with 30 of 50 runs failing to find
a solution with fitness value above 0.603. Differences between any two methods
are statistically significant (p < 0.01) in each generation since generation 60.

Results of experiments with slowly moving optimum (see fig. 2) reflect the
periodicity of the problem. Since zero target output is trivial to solve compared
to more complex outputs, the difficulty of the problem changes from genera-
tion to generation. Fig. 2 shows that all methods were able to find successful
solutions when fitness function was close to zero, but their performance differed
in generations where fitness function is furthest away from zero. In these gen-
erations, both DynNEAT and NEAT significantly outperformed non-speciated
GA (p < 0.01 since generation 20, except 36-40 and 85-90). Differences between
NEAT and DynNEAT were not statistically significant (p > 0.2).

In the experiment with rapidly moving optimum, DynNEAT was the only
method capable of consistently finding good solutions to both target functions
(see fig. 2). The average maximum fitness achieved by DynNEAT was 0.9547
(σ=0.0295), while neither NEAT nor non-speciated GA achieved fitness over 0.8.
NEAT performed only marginally better than GA, with the average maximum
fitness of 0.7794 (σ=0.1044) compared to 0.7376 (σ=0.1280) in GA (p < 0.01).

5 Discussion and Future Work

The experiment with the static fitness confirmed that the lack of speciation
results in a significant drop in the performance of non-speciated GA. Moreover,
the same effect occurs with a slowly moving optimum (SMO), which shows that
advantages of speciation can also be utilized in dynamic problems. However,
the experiment with rapidly moving optimum (RMO) demonstrates that when
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Fig. 2. Comparison of Average Maximum Fitness on a Fitness Function with Static,
Slowly Moving and Rapidly Moving Optimum (from top to bottom)

the fitness is highly dynamic, NEAT fails to provide significant benefit over
non-speciated GA (see fig. 2). The drop in performance can be explained by
examining the dynamics of the speciation process. In order for the speciation
to be effective, species must be long-lived to give their members enough time
for adaptation. In RMO experiment, NEAT required 7.16 times more species
than in SMO experiment (580 vs. 80.9), with an average lifespan shorter by
a factor of 6.85 (3.64 vs. 24.94). DynNEAT, on the other hand, achieves high
average lifespan of species even in RMO experiment (10.13 generations vs. 3.64
in NEAT) and smaller average number of species (202 vs. 580 in NEAT). This
is further demonstrated by the distribution of species lifespans shown in fig. 3.

We applied DynNEAT to a problem where fitness alternates between two
simple states. Such problem was chosen to clearly demonstrate the differences in
speciation dynamic between NEAT and DynNEAT. In future works we would
like to extend these results to study the influence of parameter t (which was
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Fig. 3. Distribution of Species Based on Their Lifespan. All species from all 50 runs
are included in the distribution for each method. Lifespan of a species is the number
of generations in which at least one individual belonged to that species.

fixed in this work) and compare DynNEAT to other dynamic optimizers using
benchmark functions (e.g. MPB [1]). Another direction for future research is to
extend these results to methods derived from NEAT, such as HyperNEAT [3].

6 Conclusions

In this work, we investigate the effects of speciation on three increasingly more
dynamic problems using NEAT method. We have shown that the dynamics of
speciation in NEAT is disrupted when the problem becomes highly dynamic,
significantly impacting NEAT performance. To address this problem, we pro-
posed DynNEAT, an extension of NEAT capable of maintaining species even in
a highly dynamic environment. We have shown that DynNEAT significantly out-
performs NEAT on a highly dynamic problem and achieves similar performance
on problems with static or slow-changing optimum. Analysis of the speciation
has confirmed that DynNEAT achieves its performance by stabilizing speciation,
which allows long-lived species to form even in cases when fitness of individuals
dramatically changes between generations.

References

1. Branke, J.: Memory enhanced evolutionary algorithms for changing optimization
problems. In: Congress on Evolutionary Computation, CEC 1999, pp. 1875–1882.
IEEE (1999)

2. Jin, Y., Branke, J.: Evolutionary optimization in uncertain environments-a survey.
IEEE Trans. Evolutionary Computation, 303–317 (2005)

3. Stanley, K.O., D’Ambrosio, D.B., Gauci, J.: A hypercube-based encoding for evolv-
ing large-scale neural networks. Artificial Life 15(2), 185–212 (2009)

4. Stanley, K.O., Miikkulainen, R.: Efficient reinforcement learning through evolving
neural network topologies. In: Proceedings of the Genetic and Evolutionary Com-
putation Conference. Morgan Kaufmann, San Francisco (2002)



Natural Max-SAT Encoding of Min-SAT

Adrian Kügel
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Abstract. We show that there exists a natural encoding which
transforms Min-SAT instances into Max-SAT instances. Unlike previ-
ous encodings, this natural encoding keeps the same variables, and the
optimal assignment for the Min-SAT instance is identical to the optimal
assignment of the corresponding Max-SAT instance. In addition to that
the encoding can be generalized to the Min-SAT variants with clause
weights and hard clauses. We conducted experiments which give evi-
dence that our encoding is practically relevant, as Min-2-SAT instances
can be solved much faster by transforming them to Max-SAT and using
a Max-SAT solver than by using the best Min-SAT solver directly.

Keywords: Min-SAT, Max-SAT.

1 Introduction

The Minimum Satisfiability Problem (Min-SAT) asks for an assignment of
Boolean variables which satisfies the minimum number of clauses of a given
formula, whereas the Maximum Satisfiability Problem (Max-SAT) seeks to max-
imize the number of satisfied clauses. Both problems can be seen as a general-
ization of the Satisfiability Problem (SAT).

Recently, Li et al. [8] presented a Min-SAT solver called MinSatz and showed
that a Min-SAT encoding of the MaxClique problem (and related problems)
makes MinSatz competitive with the best MaxClique solvers. MinSatz was also
tested against Max-SAT solvers using the three different encodings presented
in [7]. In these tests, MinSatz was faster than the Max-SAT solvers on the
encodings. These experiments indicated that solving a Min-SAT instance can
be done faster using MinSatz than encoding it to a Max-SAT instance and using
one of the available Max-SAT solvers. We show that when using our better Max-
SAT encoding of Min-SAT instances it is still possible to outperform MinSatz
on several kind of Min-SAT instances by encoding them to Max-SAT and using
the Max-SAT solver akmaxsat.

Our paper is structured as follows: in Section 2 we provide basic definitions,
then in Section 3 we describe our encoding. In Section 4 we present experimental
data and finally in Section 5 we draw our conclusions.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 431–436, 2012.
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2 Definitions

A CNF formula F is a conjunction of clauses consisting of Boolean variables. A
clause C is a disjunction of literals and is written as (l1 ∨ l2 ∨ · · · ∨ lk), where
l1, . . . , lk are from the set of variables and their negations. A literal xi is true if
the variable xi is false, and it is false otherwise. We call a clause satisfied if at
least one of its literals is true, and we call it unsatisfied if all its literals are false.

A hard clause is a clause which needs to be satisfied, whereas a soft clause
specifies a clause which may be unsatisfied by the optimal assignment. The
partial Min-SAT problem and the partial Max-SAT problem deal with both soft
and hard clauses. Another variant of the Min-SAT problem is the weighted Min-
SAT problem; in this variant, each clause has a positive weight which indicates
the relative importance of the clause, and the sum of the weights of satisfied
clauses has to be minimized. Likewise, in the weighted Max-SAT problem the
sum of the weights of satisfied clauses has to be maximized.

We define the size of a clause to be the number of literals it consists of. A CNF
formula which consists only of clauses of size k is also called a k-SAT formula, the
corresponding Max-SAT instance Max-k-SAT, and the corresponding Min-SAT
instance Min-k-SAT.

3 A Natural Max-SAT Encoding of Min-SAT Instances

The idea of the natural Max-SAT encoding of a Min-SAT instance is quite
simple: we replace each original clause C by its negation C. However we need to
transform C into conjunctive normal form in order to get a Max-SAT instance.
We apply an idea based on Max-SAT resolution rules. Max-SAT resolution rules
were developed by Bonet et al. ([2], [3]) and Larrosa et al. ([5]). It is shown that
C = (l1 ∨ l2 ∨ . . . ∨ lk) (where l1, . . . , lk are literals) can be transformed into a
set of k clauses. We have adjusted the more general recursive resolution rule in
[5] to our special case:

CNFlinear(l1 ∨ . . . ∨ lk) = l1 ∧ (l1 ∨ l2)∧ (l1 ∨ l2 ∨ l3)∧ . . .∧ (l1 ∨ l2 ∨ . . .∨ lk) (1)

We will illustrate the transformation rule with a small example. Let C = (x1 ∨
x2 ∨ x3). CNFlinear(x1 ∨ x2 ∨ x3) = x1 ∧ (x1 ∨ x2) ∧ (x1 ∨ x2 ∨ x3). It can be
easily verified that only for the assignment for which C is unsatisfied, all new
clauses are satisfied, and at most one of the new clauses will be unsatisfied by
any assignment.

Using this rule, each clause C of the original Min-SAT instance is replaced
by CNFlinear(C). The set of new clauses has the property, that any assignment
that does not satisfy the original clause C satisfies all clauses of the new clause
set, and any assignment that satisfies the original clause satisfies all but one
of the new clauses. In this case, trying to maximize the number of satisfied
clauses in the encoded instance is equivalent to trying to minimize the number
of satisfied clauses in the original Min-SAT instance. Also, for any assignment,
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the number of unsatisfied clauses in the encoded instance corresponds to the
number of satisfied clauses in the original Min-SAT instance.

As a clause consisting of k literals is replaced by k clauses, for a Min-k-SAT
instance with m clauses we get a Max-SAT instance with the same number of
variables and with k ·m soft clauses. Previous encodings presented in [7] used m
variables and up to Θ(m2) clauses (including some hard clauses).

Our encoding can be used in the reverse direction too, transforming a Max-
SAT instance into a Min-SAT instance. In this case, the number of unsatisfied
clauses in the Min-SAT instance corresponds to the number of satisfied clauses
of the Max-SAT instance. The encoding can also be used for weighted Min-SAT
instances; in that case, each replacement clause gets the weight of the original
clause. If a Min-SAT instance contains hard clauses, the hard clauses are not
replaced, but kept as they are. It is interesting to note that the transformation of
a partial Min-SAT encoded Maximum Clique instance yields the commonly used
partial Max-SAT encoding of the Maximum Clique instance (and vice versa).
In the next section we will present experimental evidence that our encoding is
especially useful for Min-2-SAT instances.

4 Experimental Results

In order to evaluate our natural Max-SAT encoding of Min-SAT, we selected
our Max-SAT solver akmaxsat [4] which performed best in several categories of
random and crafted Max-SAT instances in the Max-SAT evaluation 2011. Our
solver akmaxsat can be found at http://www.uni-ulm.de/in/theo/m/kuegel.
For comparison reasons we also used the Max-SAT solver MaxSatz in its publicly
available version from 2009 ([6]). Also, we obtained the solver MinSatz from the
authors of [8] (the same version that was used in their tests).

As benchmark instances we generated randomly unweighted Min-2-SAT and
Min-3-SAT instances. For each selection of number of variables and clauses-
to-variables ratio we generated 30 instances. Each Min-SAT instance was also
encoded to the corresponding Max-SAT instance using our natural Max-SAT
encoding. Also, we generated the corresponding partial Max-SAT instance using
the best encoding E3 of [7]. We ran akmaxsat and MaxSatz on both Max-SAT
encodings of each Min-SAT instance and compared its performance with the
performance of MinSatz on the corresponding Min-SAT instance.

We ran the experiments on a node of the bwGRiD [1] which provides two
Intel Harpertown quad-core CPUs with 2.83 Ghz and 8GB RAM each. The
installed operating system was Scientific Linux. We used a timeout of 1 hour for
each instance. Instances which were not solved within 1 hour are regarded as
unsolved.

Table 1 shows for all three solvers the average runtime in seconds on the
solved Min-2-SAT instances of each kind (showing in parentheses the number of
instances solved). Our natural Max-SAT encoding is labeled with NE. The test
results show that akmaxsat (using our encoding) clearly outperforms MinSatz
on random Min-2-SAT instances. For clauses-to-variables ratios of at most 3, the

http://www.uni-ulm.de/in/theo/m/kuegel


434 A. Kügel

Table 1. Average runtime in seconds on Min-2-SAT instances

MinSatz akmaxsat maxsatz

C/V #var NE E3 NE E3

2 160 0.05 (30) 0.01 (30) 0.04 (30) 0.01 (30) 0.02 (30)
2 180 0.08 (30) 0.01 (30) 0.04 (30) 0.01 (30) 0.03 (30)
2 200 0.13 (30) 0.01 (30) 0.05 (30) 0.01 (30) 0.04 (30)

3 160 0.19 (30) 0.02 (30) 0.21 (30) 0.07 (30) 0.14 (30)
3 180 0.31 (30) 0.02 (30) 0.26 (30) 0.08 (30) 0.17 (30)
3 200 0.52 (30) 0.04 (30) 0.48 (30) 0.18 (30) 0.34 (30)

4 160 0.96 (30) 0.11 (30) 40.06 (30) 2.59 (30) 52.58 (30)
4 180 1.47 (30) 0.15 (30) 44.80 (30) 5.18 (30) 44.94 (30)
4 200 4.09 (30) 0.28 (30) 87.73 (30) 25.80 (30) 142.62 (30)

5 160 16.85 (30) 0.78 (30) 605.81 (25) 41.41 (30) 1027.26 (21)
5 180 51.80 (30) 1.29 (30) 940.13 (19) 175.03 (30) 930.35 (13)
5 200 117.4 (30) 2.45 (30) 1474.66 (12) 722.35 (30) 1987.71 (4)

6 160 349.9 (30) 3.67 (30) 1533.23 (6) 321.30 (30) 2088.89 (2)
6 180 861.6 (26) 11.26 (30) 1617.81 (1) 1136.41 (26) - (0)
6 200 1330 (16) 31.96 (30) 2485.65 (1) 1540.48 (8) - (0)

Table 2. Average runtime in seconds on Min-3-SAT instances

MinSatz akmaxsat maxsatz

C/V #var NE E3 NE E3

2 80 0.01 (30) 0.09 (30) 0.04 (30) 1.01 (30) 0.05 (30)
2 90 0.02 (30) 0.22 (30) 0.10 (30) 2.77 (30) 0.10 (30)
2 100 0.05 (30) 0.68 (30) 0.31 (30) 16.65 (30) 0.28 (30)

3 80 0.15 (30) 0.71 (30) 1.55 (30) 3.93 (30) 1.93 (30)
3 90 0.45 (30) 2.89 (30) 8.87 (30) 20.43 (30) 10.70 (30)
3 100 1.41 (30) 9.34 (30) 22.85 (30) 77.29 (30) 29.16 (30)

4 80 1.71 (30) 4.67 (30) 5.51 (30) 18.07 (30) 84.11 (30)
4 90 8.54 (30) 24.17 (30) 395.7 (30) 115.44 (30) 582.39 (30)
4 100 37.06 (30) 80.61 (30) 961.9 (27) 460.72 (30) 1372.18 (25)

5 80 14.43 (30) 21.20 (30) 952.7 (29) 76.97 (30) 1226.06 (26)
5 90 112.2 (30) 134.2 (30) 1762 (13) 412.77 (29) 1684.11 (6)
5 100 439.0 (30) 587.4 (30) 1554 (1) 1824.86 (22) 3460.76 (1)

6 80 68.77 (30) 73.06 (30) 2139 (8) 264.24 (30) 3549.32 (1)
6 90 552.9 (30) 537.0 (30) - (0) 1519.72 (27) - (0)
6 100 1551 (24) 1514 (25) - (0) 2983.00 (2) - (0)

solver MaxSatz is faster than MinSatz, too. When comparing the two encodings,
the new encoding always leads to a faster runtime for both Max-SAT solvers.

Table 2 shows the average runtime on the Min-3-SAT instances in the same
format as in Table 1. On Min-3-SAT instances, the new encoding seems to work
better than the encoding E3 for clauses-to-variables ratios above 3. A clauses-
to-variables ratio of 3 leads to different results for the two Max-SAT solvers:



Natural Max-SAT Encoding of Min-SAT 435

akmaxsat can handle the new encoding better, whereas MaxSatz is faster on
encoding E3. Note that in this case, akmaxsat on the new encoding is faster
than MaxSatz on the encoding E3. For small clauses-to-variables ratios of less
than 3, the encoding E3 seems to be always superior. Comparing the results of
akmaxsat on the new encoding to the results of MinSatz, we can see that in most
cases, MinSatz is still faster, but for some instances with a clauses-to-variables
ratio of 6, akmaxsat outperforms Minsatz.

5 Conclusions

We have presented a natural Max-SAT encoding of Min-SAT instances that has
the following advantages:

1. The encoding keeps the same variables and just increases the number of
clauses by a factor of number of variables per clause.

2. The optimal assignment of the encoded instance is identical to the optimal
assignment of the Min-SAT instance.

3. The encoding works notably well on Min-2-SAT instances, and the Max-SAT
solver akmaxsat on the encoded instance is much faster than the Min-SAT
solver MinSatz on the original instance.

4. Our encoding can also be used to transform Max-SAT instances into Min-
SAT instances.

As the tests in [8] have shown, the MinSatz solver performs much better than
Max-SAT solvers on encoded Maximum Clique instances. There might be other
optimization problems where this could be true, and our encoding could be used
to automatically transform Max-SAT encoded optimization problems into Min-
SAT encoded optimization problems.

Acknowledgments. We gratefully thank the bwGRiD project [1] for the com-
putational resources. Also we thank Zhu Zhu for sending us an executable of the
solver MinSatz, and we thank the reviewers for helpful comments.
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8. Li, C.M., Zhu, Z., Manyà, F., Simon, L.: Minimum Satisfiability and Its Applica-
tions. In: Walsh, T. (ed.) IJCAI, pp. 605–610. IJCAI/AAAI (2011)



A New Hyperheuristic Algorithm

for Cross-Domain Search Problems

Andreas Lehrbaum and Nysret Musliu

Vienna University of Technology, Database and Artificial Intelligence Group
{lehrbaum,musliu}@dbai.tuwien.ac.at

Abstract. This paper describes a new hyperheuristic algorithm that
performs well over a variety of different problem classes. A novel method
for switching between working on a single solution and a pool of solutions
is proposed. This method is combined with an adaptive strategy that
guides the selection of the underlying low-level heuristics throughout the
search. The algorithm was implemented based on the HyFlex framework
and was submitted as a candidate for the Cross-Domain Heuristic Search
Challenge 2011.

1 Introduction

Hyperheuristics (as introduced in [1]), are a way to incorporate existing problem-
class specific simple low-level heuristics into a higher-level search strategy, which
schedules and guides their execution. The main idea is that an ensemble of
heuristics orchestrated by a top-level strategy is able to perform better on aver-
age at solving a wide range of problems, than any of the underlying heuristics
alone. A good survey of existing hyperheuristic techniques is given in [2]. The
HyFlex [3] framework offers an intuitive interface to utilise a set of given low-level
search and mutation heuristics, easing the task of working purely on a high-level
search strategy without any a priori knowledge about the problem instance or
the heuristics available.

In this paper, we propose a hyperheuristic algorithm that consists of two
distinct phases and uses a quality-based selection strategy for the local-search
heuristics using feedback from the search progress. The implementation is
tailored towards the interface of the HyFlex framework and the specific re-
quirements of the CHeSC competition rules1. Development and testing was
performed on 4 different problem domains: Boolean Maximum Satisfiability,
One-dimensional Bin Packing, Personnel Scheduling and Permutation Flow Shop.
The provided low-level heuristics were used, implementing standard heuristic
search and mutation operations for each of the domains.

1 http://www.asap.cs.nott.ac.uk/chesc2011/rules.html
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2 Algorithm Description

2.1 Overview

Following the classification of Burke et al. [2], our algorithm is an online learn-
ing hyperheuristic, working mainly on heuristic selection. The novelty of the
proposed approach lies in the repeated switching between two search variants,
namely a serial search phase working only on a single solution and a system-
atic parallel search phase working with a set of different solutions at the same
time. We further propose a grading mechanism for the ordering of the low-level
heuristics and a selection strategy for the available mutation heuristics.

After an initialisation phase, in which the preliminary scores of the available
heuristics are determined, the search continues by systematically executing the
local-search heuristics in order of their respective quality scores. The splitting
in a serial and a parallel search phase balances the focus of the search between
exploration of new parts of the search space and the exploitation of the quality of
the currently best working solution. Throughout the search process, the perfor-
mance and runtime characteristics of the low-level heuristics are measured and
the scores responsible for their selection are updated accordingly. In addition to
that, the overall search progress is monitored continuously and mechanisms such
as the temporary blocking of ineffective heuristics or the restart of the algorithm
from the last best solution are applied. A global tabu-list in form of a ringbuffer
which always contains the last 40 visited distinct solutions is used to avoid cycles
and to prune already explored branches of the search tree. If the tabu list already
contains 40 elements, the next solution replaces the oldest entry. The fixed size
of the tabu-list was chosen based on experimental data to balance memory and
runtime requirements with the effectiveness of the tabu mechanism.

2.2 Detailed Description of the Algorithm

Initialisation Phase. The algorithm begins with calculating preliminary
quality-scores of all the local-search heuristics available for the given problem
instance. It does this by initialising the first solution and applying the heuris-
tics in turn, recording their gain and their required runtime. The heuristics are
called with the highest possible parameter settings for the depth of search and
the intensity of the mutations (where applicable). The initial quality-score for
each heuristic is calculated as gain per runtime. The best solution found so far
is returned as the working solution for the subsequent phase.

Serial Search Phase. The available local-search heuristics LS = {ls1, . . . , lsn}
are applied sequentially, in order of decreasing quality, to the current working
solution swork. After each application of a heuristic, the fitness function f(s)
of the resulting solution is evaluated. If the fitness value is better, the solution
is accepted as the next working solution. If the local search heuristic resulted
in a different solution with the same fitness value then it is accepted as well.
Additionally, a global tabu-list T keeps track of the last 40 distinct solutions
encountered and prohibits the acceptance of a solution that is already on the
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tabu-list. In case a new working solution was accepted, the search continues
with the application of the best local search heuristic, otherwise the next best
heuristic is chosen from the set LS. The parameters for the depth of the search
and the intensity of the mutation are set to random values before the application
of each heuristic. This serial search phase ends whenever no further improvement
could be found with all the available heuristics, therefore resulting in a locally
optimal solution. See algorithm 1 for a pseudocode implementation.

Algorithm 1. Serial search working on a single solution swork

1: for i = 1→ |LS| do
2: setDepthOfSearch(random(0 . . .1))
3: setIntensityOfMutation(random(0 . . .1))
4: stemp ← applyHeuristic(lsi, swork)
5: if f(stemp) < f(swork) or (f(stemp) = f(swork) and swork 
= stemp)

then
6: if stemp /∈ T then
7: swork ← stemp

8: T ← T ∪ swork

9: i← 1
10: end if
11: end if
12: end for
13: return swork

Quality Updates. In fixed time intervals of 5 seconds (or after every call to a
heuristic, in case it takes longer to complete), the qualities of the local-search
heuristics are updated to reflect their performance during the whole search pro-
cess. This can result in the re-ordering of the search sequence of the heuristics.
The quality metric is calculated as the number of times the heuristic resulted in
an accepted solution, divided by the total runtime of this heuristic so far. The
time interval between updates was determined experimentally for the CHeSC
setting to balance the cost of the updates and the possible gain of reordering.

Generation of Mutated Solutions. The available mutation and ruin-recreate
heuristics are placed in a roulette-wheel reflecting their relative performance.
Initially all mutation heuristics have the same chance of being selected. The
performance of a mutation heuristic is judged based on the solution quality of
the mutated solution after the subsequent serial search phase has finished. This
method is used in order to assess the likelihood of a given mutation heuristic
to result in an improvement during the further course of the search. Given the
current working solution as input, 7 mutated offsprings are generated by applying
a set of mutation heuristics chosen by the roulette-wheel process. The mutation
intensity and search depth parameters are again set to a new random value
each time before the mutation heuristics are applied. However, the probability
of strong mutations is lowered towards the end of the search.
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Algorithm 2. Parallel search working on a set of solutions s1...7
1: for i = 1 → 7 do
2: hi ← 1 // set working heuristic index hi to the best LS heuristic
3: end for
4: repeat
5: candidatesLeft ← false
6: for i = 1 → 7 do
7: if hi ≤ |LS| then
8: setDepthOfSearch(random(0 . . . 1))
9: setIntensityOfMutation(random(0 . . . 1))
10: stemp ← applyHeuristic(lshi , si)
11: if f(stemp) < f(sbest) then
12: sbest ← stemp

13: T ← T ∪ stemp

14: return sbest
15: else
16: candidatesLeft ← true
17: if f(stemp) < f(si) then
18: si ← stemp

19: T ← T ∪ stemp

20: hi ← 1 // continue with best LS heuristic
21: else
22: hi ← hi + 1 // continue with the next best LS heuristic
23: end if
24: end if
25: end if
26: end for
27: until candidatesLeft = false
28: return selectSolution(s1...7)

Parallel Search Phase. Starting from the set of 7 mutated solutions, the
parallel search phase begins to work on the candidate solutions one after another.
It begins with applying the best local-search heuristic to the first candidate. If
an improvement is found, the new solution is accepted, otherwise it is discarded.
Afterwards the search continues with the next candidate solution and the local-
search heuristic scheduled for this solution. Whenever a global improvement is
found (i.e. the result is better than the currently best found solution so far),
it is immediately accepted as the working solution for the next serial search
phase and the parallel search is aborted. Otherwise the search goes on until all
solutions have reached a local optimum with respect to all available local-search
heuristics. See algorithm 2 for a pseudocode implementation.

Working Solution Selection. Assuming no global improvement was found
during the parallel search phase, a solution is selected from the pool of solutions
containing the locally optimal output from the serial search phase as well as the
parallel search phase. Solutions with a better quality have higher probability of
being selected. If all solutions in the set are contained in the global tabu-list,
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a random mutation will be applied to the best solution until the result is not
contained in the buffer anymore.

Excluding Inefficient Heuristics. If a local-search heuristic is found to be
ineffective (determined by a low count of successful applications) it is excluded
for a single iteration from the search process in both the serial and the parallel
phase with a 50% chance.

Restarting the Search. Whenever the search continues for a certain amount
of time (10% of the available runtime), producing only solutions which are worse
than a preset threshold (130% of the so far best solution), the search continues
with the generation of mutated solutions from the currently best solution. This
prevents the search process from slowly generating ever worse solutions and
diverging too far from the best candidate found so far.

3 Results

Tables 1 and 2 show the final results of the 20 participating teams (with our
algorithm named HAHA), as published by the organizers of the CHeSC compe-
tition2. The values represent the median resulting function value per instance of
31 subsequent runs with different random seeds and 600 seconds CPU runtime.
All problem instances were minimisation tasks and selected by the organisers of
the competition. The rank column denotes the final overall rank according to
the official scoring system and the best value in each column is marked bold.

Table 1. Median results for the Max-SAT (MS1...5), Bin Packing (BP1...5) and Per-
sonnel Scheduling (PS1...5) problem instances

Rank Algorithm MS1 MS2 MS3 MS4 MS5 BP1 BP2 BP3 BP4 BP5 PS1 PS2 PS3 PS4 PS5

1 AdapHH 3 5 2 3 8 0.01607 0.00360 0.00356 0.10828 0.00354 24 9667 3289 1765 325
2 VNS-TW 3 3 2 3 10 0.03696 0.00715 0.01671 0.10878 0.02776 19 9628 3223 1590 320
3 ML 5 10 3 9 8 0.04214 0.00753 0.01456 0.10852 0.02182 18 9812 3228 1605 315
4 PHUNTER 5 11 4 9 8 0.04787 0.00360 0.02012 0.10908 0.03948 25 10136 3255 1595 320
5 EPH 7 11 6 14 13 0.05042 0.00360 0.01127 0.10866 0.02238 22 10074 3232 1615 345
6 HAHA 3 4 2 5 8 0.08829 0.00726 0.01450 0.11023 0.02790 21 9666 3236 1558 335
7 NAHH 8 10 4 9 7 0.05504 0.00347 0.00473 0.10878 0.00554 27 9827 3246 1644 345
8 ISEA 5 11 4 9 11 0.03422 0.00328 0.00365 0.10862 0.00640 20 9966 3308 1660 315
9 KSATS 4 7 2 4 9 0.01923 0.00780 0.01149 0.10892 0.02199 22 9681 3241 1640 355
10 HAEA 6 12 5 12 11 0.04522 0.00363 0.01379 0.10873 0.02400 25 9795 3266 1699 345
11 ACO-HH 11 35 9 17 13 0.04771 0.00320 0.00388 0.10986 0.01486 26 11212 3346 1760 355
12 GenHive 16 44 31 19 14 0.02994 0.00708 0.01037 0.10859 0.02286 21 12708 3274 1727 330
13 DynILS 23 56 37 31 19 0.04027 0.00767 0.01016 0.10872 0.01285 33 9893 3324 1870 465
14 SA-ILS 13 23 12 15 9 0.07873 0.01153 0.01458 0.11039 0.02958 20 9750 3228 1625 340
15 XCJ 6 8 5 9 10 0.02201 0.01145 0.01569 0.10856 0.02850 30 33390 3277 1658 380
16 AVEGNep 8 10 5 9 7 0.08737 0.00773 0.01807 0.11139 0.03750 26 10230 3283 1765 360
17 GISS 16 21 13 17 9 0.06917 0.00837 0.03218 0.11259 0.05922 25 9625 3294 1785 370
18 SelfS 13 36 14 14 10 0.06642 0.00736 0.01441 0.10968 0.02391 26 9803 3249 1635 350
19 MCHH-S 8 14 8 8 9 0.06225 0.00729 0.01459 0.10976 0.02861 32 13297 3344 1785 370
20 Ant-Q 23 52 38 27 14 0.04909 0.01650 0.02102 0.10990 0.03765 33 73535 3348 1970 425

4 Conclusion

Our algorithm was ranked 6th (out of 20 teams) in the final CHeSC competition.
The good results at the completely different domains of Max-SAT and Person-
nel Scheduling indicate a rather good general problem solving capability. The

2 http://www.asap.cs.nott.ac.uk/chesc2011/results.html

http://www.asap.cs.nott.ac.uk/chesc2011/results.html
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Table 2. Median results for the Flow Shop (FS1...5), Travelling Salesman (TSP1...5)
and Vehicle Routing (VRP1...5) problem instances

Rank Algorithm FS1 FS2 FS3 FS4 FS5 TSP1 TSP2 TSP3 TSP4 TSP5 VRP1 VRP2 VRP3 VRP4 VRP5

1 AdapHH 6240 26814 6326 11359 26643 48194 20822145 6810 66879 53099 60900 13347 148516 20656 148689
2 VNS-TW 6251 26803 6328 11376 26602 48194 21042675 6819 67378 54028 76147 13367 148206 21642 149132
3 ML 6245 26800 6323 11384 26610 48194 21093828 6820 66893 54368 80671 13329 145333 20654 148975
4 PHUNTER 6253 26858 6350 11388 26677 48194 21246427 6813 67136 52934 64717 12290 146944 20650 148658
5 EPH 6250 26816 6347 11397 26640 48194 21064606 6811 66756 52925 74715 13335 162188 20650 155224
6 HAHA 6269 26850 6353 11419 26663 48414 21291914 6917 69324 56039 65498 13317 155941 20654 148655
7 NAHH 6245 26885 6323 11383 26671 48194 20971771 6841 67418 53097 65398 13358 157242 20654 152081
8 ISEA 6262 26844 6366 11419 26663 48194 20868203 6832 67282 54129 70471 13339 149149 20657 150474
9 KSATS 6292 26860 6366 11466 26683 48578 21557455 6947 72027 58738 64495 13296 156577 20655 147124
10 HAEA 6261 26826 6353 11408 26651 48194 20925949 6824 67488 54144 60608 13342 146951 20655 147283
11 ACO-HH 6249 26904 6353 11393 26724 48200 21137472 6851 67202 53428 73348 14371 149672 21663 151610
12 GenHive 6279 26835 6366 11434 26648 48271 21083157 6868 67236 56022 67475 13353 167297 20718 147960
13 DynILS 6269 26875 6365 11419 26670 48194 20987358 6823 67308 54100 69798 14359 149869 21654 150060
14 SA-ILS 6336 26886 6390 11514 26703 49046 21281226 6994 70614 57607 64185 13390 162642 20667 152271
15 XCJ 6271 26910 6366 11481 26710 48412 21162559 6884 68005 54967 63654 13354 152321 20658 153110
16 AVEGNep 6322 26952 6379 11507 26743 48639 21520601 6969 70194 57998 77884 12397 184710 20655 166742
17 GISS 6329 26979 6385 11516 26758 49010 21651052 7001 72630 59804 61580 13352 162266 20657 149590
18 SelfS 6287 26859 6369 11443 26678 49043 21040810 6984 69646 56647 73894 14386 203667 20687 153590
19 MCHH-S 6336 26937 6397 11527 26716 49412 21504030 6997 70685 57836 72005 13534 207891 20850 160303
20 Ant-Q 6358 26971 6407 11545 26792 49613 21277953 7016 69987 55314 76678 14382 193827 21656 160684

algorithm has however some shortcomings in domains where different fast local
search heuristics all result in small improvements most of the time (like the tested
Bin Packing instances). It seems that the rather strong bias for the local-search
heuristic with the best quality score can be both a strength and a weakness,
indicating that a more adaptive process could be advantageous. More extensive
study is needed to assess the further potential of this algorithmic approach.
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Abstract. In this paper, a dynamic optimization algorithm is used to
assess the deformations of the wall of the third cerebral ventricle in the
case of a brain cine-MR imaging. In this method, a nonrigid registration
process is applied to a 2D+t cine-MRI sequence of a region of interest. In
this paper, we propose to use a B-spline Free-Form deformation model.
The registration process consists of optimizing an objective function that
can be considered as a dynamic function. Thus, a dynamic optimization
algorithm, called MLSDO, is used to accomplish this task. The obtained
results are compared to those of several well-known static optimization
algorithms. This comparison shows the relevance of using a dynamic
optimization algorithm to solve this kind of problems, and the efficiency
of MLSDO.

Keywords: registration, image sequences, dynamic optimization, meta-
heuristics, B-splines, MRI.

1 Introduction

Recently, optimization in dynamic environments has attracted a growing inter-
est, due to its practical relevance. Almost all real-world problems are dynamic,
i.e. their objective function changes over the time. Then, the goal is not only
to find the global optimum, but also to track it as closely as possible over the
time. In this paper, we propose to apply the Multiple Local Search algorithm for
Dynamic Optimization (MLSDO) [4] to the registration of sequences of images.

We focus on a method based on cine-MRI sequences to facilitate the diagnosis,
and to assist neurosurgeons in the characterization of the pathology called hy-
drocephalus. In order to characterize hydrocephalus, doctors need to estimate the
amplitude and nature of the movements of the brain ventricles. Then, we need
an image registration procedure to approximate it. In this work we consider the
nonrigid (or elastic) registration to register regions containing non-rigid objects.
We propose a method inspired from [5,4] to assess the movements of a region
of interest (ROI), using a more accurate deformation model. Besides, another
contribution of the present work is to show the importance of the use of dynamic
optimization algorithms for brain cine-MRI registration.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 443–448, 2012.
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The rest of this paper is organized as follows. In section 2, the method pro-
posed to register sequences of images is described. In section 3, the MLSDO
algorithm and its use for the problem at hand are presented. In section 4, a
comparison of the results obtained by MLSDO on this problem to the ones of
several well-known static optimization algorithms is performed. This comparison
shows the relevance of using MLSDO on this problem. Finally, a conclusion and
the works under progress are given in section 5.

2 The Registration Process

We propose a method inspired from [5,4] to evaluate the movement in sequences
of cine-MR images. This operation is required in order to assess the movements
in the ROI over time. In [5,4], a segmentation process is performed on each image
of the sequence, to determine the contours (as a set of points) of the walls of
the third cerebral ventricle. Then, a geometric registration of each successive
contours is performed, based on an affine deformation model. In the present
work, we propose to use an intensity based registration instead of a geometric
registration process. This way, we do not have to use a segmentation process
anymore. Moreover, to evaluate the pulsatile movements of the third cerebral
ventricle more precisely, a nonrigid deformation model is used in this paper.

In order to accurately model the deformations in the ROI over time, we pro-
pose to use B-spline Free-Form Deformations (FFDs) [3]. An advantage of B-
splines over other spline functions, such as thin-plate splines and elastic-body
splines, is that B-splines are locally controlled, so they are easier to understand
and to manipulate, and they can be computed in parallel [3].

A B-spline FFD is a nonrigid transformation based on the manipulation of
a grid of control points overlaid on the image. Let Φ be a 2D grid of control
points φi,j , with uniform spacing dx on the x-axis and dy on the y-axis. Let
Im1 and Im2 be two successive images of the sequence. Let the transpose of a
matrix A be denoted by AT, and TΦ : o �→ o′ be the transformation of any point
o = (x y)T in image Im2 to its corresponding point o′ = (x′ y′)T in image
Im1. Then, the nonrigid transformation TΦ by B-spline functions is defined by

TΦ(o) =
∑3

l=0

∑3
m=0 Bl(u) Bm(v) φi+l,j+m, where i =

⌊
x
dx

⌋
− 1, j =

⌊
y
dy

⌋
− 1,

u = x
dx
−
⌊

x
dx

⌋
, v = y

dy
−
⌊

y
dy

⌋
, and Bl is the l

th basis function of cubic B-splines.

The control points are the parameters of the B-spline FFD, so the number of
degrees of freedom of the transformation depends on the resolution of the grid
of control points. Denoting the cardinal function by card, the 2D grid Φ has
(2 card(Φ)) degrees of freedom. Then, this set of parameters is estimated through
the maximization of the following criterion:

C(Φ) =
NMI(Φ)

P (Φ) + 1
(1)

where NMI(Φ) computes the normalized mutual information [8] of Im1 and
Im′

1, and Im′
1 is the image that results from the transformation of Im2 ; P (Φ)
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is part of a regularization term that penalizes large deformations of Im2, as we
are dealing with slight movements in the ROI. P (Φ) and NMI(Φ) are defined
in (2) and (3), respectively.

P (Φ) =
1

2 card(Φ)

∑
φi,j ∈ Φ

(
φi,j − φ̃i,j

)T (
φi,j − φ̃i,j

)
(2)

where φ̃i,j is the position of a control point φi,j , in the grid that corresponds to

the identity transformation (φ̃i,j = (dxi dyj)
T).

NMI(Φ) =
H(Im1) +H(Im′

1)

H(Im1, Im′
1)

(3)

where Im1∩Im′
1 is the overlapping area of Im1 and Im′

1 ; H(Im1) and H(Im′
1)

compute the Shannon entropy of Im1 and Im′
1, respectively, in their overlapping

area ; H(Im1, Im′
1) computes the joint Shannon entropy [7] of Im1 and Im′

1,
in their overlapping area.

The registration problem is formulated as an optimization problem by:

Φ∗ = max C(Φ) (4)

For the problem at hand, a grid of 3× 3 control points is used. It is sufficient to
accurately model the deformations in the ROI. Then, the B-spline FFD has 18
degrees of freedom.

3 The MLSDO Algorithm

3.1 Description of the Algorithm

MLSDO uses several coordinated local searches, performed by two types of
agents: the exploring agents (to explore the search space in order to discover
the local optima), and the tracking agents (to track the found local optima
over the changes in the objective function). An exclusion radius is attributed to
each agent. This way, if several agents converge to a same local optimum, then
only one of them can continue to converge to this optimum. Another important
strategy is the use of two levels of precision in the stopping criterion of the lo-
cal searches of the agents. This way, we prevent the fine-tuning of low quality
solutions, which could lead to a waste of fitness function evaluations. Further-
more, the local optima found during the optimization process are archived, to
accelerate the detection of the global optimum after a change in the objective
function. These archived optima are used as initial solutions of the local searches
performed by the tracking agents.

3.2 Cine-MRI Registration as a Dynamic Optimization Problem

The registration of a cine-MRI sequence can be seen as a dynamic optimization
problem. Then, the dynamic objective function optimized by MLSDO changes
according to the following rules:



446 J. Lepagnot et al.

– The criterion in (1) has to be maximized for each couple of successive im-
ages, as we are in the case of a sequence, then the optimization criterion

becomes C(Φ(t)) = NMI(Φ(t))
P (Φ(t))+1 , where t is the index of the current couple in

the sequence. Φ(t), NMI(Φ(t)) and P (Φ(t)) are the same as Φ, NMI(Φ) and
P (Φ) defined before, respectively, but here depend on the couple of images.

– Then, the dynamic optimization problem is defined by: max C(Φ(t)).
– If the current best solution (transformation) found for the couple t cannot

be improved anymore (according to a stagnation criterion), the next couple
(t+ 1) is treated.

– The stagnation criterion of the registration of a couple of images is satisfied
if no significant improvement (higher than 1E-5) in the current best solution
is observed during 5000 successive evaluations of the objective function.

– Thus, the end of the registration of a couple of images and the beginning of
the registration of the next one constitute a change in the objective function.

3.3 Parameter Fitting of MLSDO

To perform the experiments reported in the following section, we use the follow-
ing values for the six parameters of MLSDO. The initial step sizes of tracking
and exploring agents are set to rl = 0.005 and re = 0.1, respectively. The high-
est and the lowest precision parameters of the stopping criterion of the agents
local searches are set to δph = 1E-5 and δpl = 1E-4, respectively. The maximum
numbers of tracking and exploring agents are set to nc = 2 and na = 1, respec-
tively. These values are suitable for the problem at hand, and they were fixed
experimentally. Among several sets of values for the parameters, we selected the
one that minimizes the number of evaluations performed. One can see that only
one exploring agent is used to solve this problem. It is indeed sufficient for this
problem, and using more than one exploring agent increases the number of eval-
uations required to register a sequence. However, using more than one exploring
agent can improve the performance of MLSDO on other problems.

4 Experimental Results and Discussion

The registration of a couple of images is illustrated in Figures 1. As we can
see, the movements in the ROI leave an important white trail in the difference
images, as illustrated in Figures 1(e). Then, applying the found transformation
(Figures 1(d)) eliminates the white trail and only noise remains in the difference
images (Figures 1(f)).

A comparison between the results obtained by MLSDO and those obtained
by several well-known static optimization algorithms is presented in this section.
These algorithms, and their parameter setting, empirically fitted to the problem
at hand, are defined below (see references for more details on these algorithms
and their parameter fitting):

– CMA-ES (Covariance Matrix Adaptation Evolution Strategy) [2] using the
recommended parameter setting, except for the initial step size σ, set to σ =
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(a) (b) (c) (d) (e) (f)

Fig. 1. Illustration of the registration of a couple of images of a sequence: (a) the first
image of the couple, (b) the second image, (c) the second image after applying the found
transformation to it, (d) illustration better showing this transformation, by applying
it to the image of a grid, (e) illustration showing the difference, in the intensity of the
pixels, between the two images of the couple: a black pixel indicates that the intensities
of the corresponding pixels in the images are the same, and a white pixel indicates the
highest difference between the images, (f) illustration showing the difference, in the
intensity of the pixels, between the first image and the transformed second image

0.5. The population size λ of children and the number of selected individuals
μ are set to λ = 11 and μ = 5 ;

– SPSO-07 (Standard Particle Swarm Optimization in its 2007 version) [1] us-
ing the recommended parameter setting, except for the number S of particles
(S = 12) and for the parameter K used to generate the particles neighbor-
hood (K = 8) ;

– DE (Differential Evolution) [6] using the “DE/target-to-best/1/bin” strat-
egy, a number of parents equal to NP = 30, a weighting factor F = 0.8, and
a crossover constant CR = 0.9.

The image sequence used to fit their parameters is the same as the one used for
MLSDO. However, it is not needed to fit the parameters of the algorithms for
each sequence, and the same values are used for the other ones.

As these algorithms are static, we have to consider the registration of each
couple of successive images as a new problem to optimize. Thus, these algo-
rithms are restarted after the registration of each couple of images, using the
stagnation criterion defined in section 3.2. Initializing these algorithms using the
best solution found for the last registered couple of images cannot be used to
improve their performance in our case. If we do so, algorithms perform a sig-
nificant number of iterations without improving their current solution. Indeed,
they progressively decrease the diversity of the population, before starting the
intensification phase. In this comparison, the results obtained using MLSDO, as
a static optimization algorithm, are also given.

In Table 1, the average number of evaluations among 20 runs of the algorithms
are given. We can see that the number of evaluations of the objective function
performed by MLSDO, used as a dynamic optimization algorithm, is signifi-
cantly lower than the ones of the static optimization algorithms. A Jarque-Bera
statistical test has been applied on the numbers of evaluations performed by the
compared algorithms. This test indicates at a 95% confidence level that the num-
bers of evaluations follow a normal distribution. Then, we can perform a Welch’s
one-way ANOVA on these numbers of evaluations. This test confirms at a 95%



448 J. Lepagnot et al.

Table 1. Average number of evaluations to register a couple of images

Dynamic optimization Static optimization
MLSDO CMA-ES SPSO-07 DE MLSDO
7655.16 9805.61 10155.35 10785.27 10880.14
± 584.30 ± 669.32 ± 733.00 ± 850.99 ± 820.49

confidence level that there is a significant difference between the performances
of at least two of the compared algorithms. Then, the Tukey-Kramer multiple
comparisons procedure has been used to determine which algorithms differ in
terms of number of evaluations. It indicates that MLSDO performs significantly
differently from all the other tested algorithms. Thus, this comparison shows
the efficiency of MLSDO and the significance of using a dynamic optimization
algorithm on this problem.

5 Conclusion

In this paper, a registration process, based on a B-spline FFD model and on a
dynamic optimization algorithm, is proposed to register quickly all the images
of a cine-MRI sequence. It takes profit from the effectiveness of the dynamic
optimization paradigm. The process is sequentially applied on all the 2D images.
The entire procedure is fully automated and provides an accurate assessment of
the ROI deformation. Our work under progress consists of the parallelization of
the MLSDO algorithm using Graphics Processing Units.
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Abstract. This research work presents a new evolutionary optimization
algorithm, EVO-RUNGE-KUTTA in theoretical mathematics with applications in
scientific computing. We illustrate the application of EVO-RUNGE-KUTTA, a
two-phase optimization algorithm, to a problem of pure algebra, the study of
the parameterization of an algebraic variety, an open problem in algebra. Results
show the design and optimization of particular algebraic varieties, the Runge-
Kutta methods of order q. The mapping between algebraic geometry and evolu-
tionary optimization is direct, and we expect that many open problems in pure
algebra will be modelled as constrained global optimization problems.

1 Introduction

In science and engineering, problems involving ordinary differential equations (ODEs)
can be always reformulated a set of N coupled first-order differential equations for the
functions yi, i = 1, 2, . . . , N , having the general form dyi(t)

dt = fi(t, y1, . . . , yN), i =
1, 2, . . . , N. A problem involving ODEs is completely specified by its equations and
by boundary conditions of the given problem. Boundary conditions are algebraic con-
ditions, they divide into two classes, initial value problems and two-point boundary
value problems. In this work we will consider the initial value problem, where all the
yi are given at some starting value x0, and it is desired to find the yi’s at some fi-
nal point xf . In general, it is the nature of the boundary conditions that determines
which numerical methods to use. For instance, the basic idea of the Euler’s method is to
rewrite the dy’s and dx’s of the previous equation as finite steps δy and δx, and multiply
the equations by δx. This produces algebraic formulas for the change in the functions
when the independent variable x is increased by on stepsize δx; for very small step-
size a good approximation of the differential equation is achieved. The Runge-Kutta
method is a practical numerical method for solving initial value problems for ODEs
[1]. Runge-Kutta methods propagate a numerical solution over an N + 1-dimensional
interval by combining the information from several Euler-style steps (each involving
one evaluation of the right-hand f ’s), and then using the information obtained to match
a Taylor series expansion up to some higher order. Runge-Kutta is usually the fastest
method when evaluating fi is cheap and the accuracy requirement is not ultra-stringent.
In this research work, we want to design a methodology that allow us to find new
Runge-Kutta methods of order q with minimal approximation error; such a question
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can be tackled as a constrained optimization problem. At first, we define the problem
from a geometrical point of view, using the theory of labelled trees by Hairer, Norsett
and Wanner [2], and then the study of the parameterization of the algebraic variety
RKq

s = {s-level Runge-Kutta methods of order q} suggests the use, with good results,
of a new class of evolutionary optimization [3]. Algebraic geometry provides justi-
fication for why it is important to use evolutionary optimization algorithm to design
effective new Runge-Kutta methods under several constrains.

2 The Algebraic Variety RKq
s

Let Ω ⊆ Rn+1 be an open set and f : Ω → Rn a function such that the following
Cauchy problem makes sense: y′ = f(t, y) under y(t0) = y0. We can always reduce
that to the autonomous system {

y′ = f(y)
y(t0) = y0

(1)

where we abuse of the notation f , but the meaning is clear. The Runge-Kutta methods
are a class of schemes to approximate the exact solution of (1). The structure of s-
level Implicit Runge-Kutta method (RK method) is ki = f(y0 + h

∑s
j=1 ai,jkj)with

i = 1, . . . , s and h is the step size. The final numerical solution y1 ∈ Rn of the problem
(1) is given by y1 = y0 + h

∑s
i=1 wiki. A RK method is called explicit if ai,j = 0 if

i ≥ j. The approach will use all the parameters of the Butcher Tableau [4]. All ci, wi

and ai,j are in R and characterize a given method with respect another one.
To understand the relation between the parameters of the Butcher Tableau and the

order of the approximated solution we need to express the local truncation error, σ1 =
y(t0 + h) − y1, with respect to h and then we have to force that the coefficients of hk

must be zero for k = 0, 1, . . . , p. Then the Runge Kutta method has order p+1. Forcing
the coefficients of hk to be zero produces the so called order condition equations. It is
well known a combinatorial interpretation of the order conditions for a Runge Kutta
method, involving rooted labelled trees and elementary differentials. This connection is
carefully constructed in [2], and we refer you there for all the details. We denote Tp the
set of the rooted labelled trees of order p. The reader should simply know that it possible
state a bijection between the structure of the p-elementary differentials and each p-order
conditions. The following Theorem explains also how to use this information to state
the order condition equations.

Theorem 1. If the Runge-Kutta method is of order p and if f is (p+ 1)- times continu-
ously differentiable, we have

yJ(y0 + h)− yJ1 =
hp+1

(p+ 1)!

∑
t∈Tp+1

α(t)e(t)F J (t)(y0) + ϑ(hp+2)

where e(t) = 1− γ(t)
∑s

j=1 wjΦj(t) is called the error coefficient of the tree t.
Using this result it is possible to compute symbolically the system of equations [5];
and it is easy to see that the number of equations blow up like the factorial: this fact
plays a key role in the choice of the evolutionary algorithm for the solution of the
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problem. Moreover the integer number Φj(t) and γ(t) are also used to construct the
local truncation error (Theorem 1). We skip their combinatorial definition but we remark
that Φj(t) depends by {ai,j} and using e(t) depends by the {ai,j} and {wi}. We note
that F J(t)(y0) is the J-component of the elementary differential of f corresponding to
the tree t evaluated at the point y0.

Now we call RKs the set of all s-level Runge-Kutta methods and RKq
s ⊆ RKs

the set of all s-level Runge-Kutta methods with accuracy order q; moreover the subset
of explicit s-level Runge Kutta will be denoted as ERKs and similarly we define also
ERKq

s . The coefficients that control the methods are all in the Butcher Tableau. For this
reason, a priori, the RK methods have s+ s2 free coefficients. Moreover, it is simple to
prove that the order conditions in Theorem 1 are polynomials, so we can consider the
affine algebraic variety V q

s in the affine real space As(s+1)(R), minimally defined by
the following polynomials in s(s+ 1) variables:

s∑
j=1

wjΦj(t) =
1

γ(t)
, ∀t ∈ T1 ∪ T2 ∪ · · · ∪ Tq; (2)

this set of polynomials has a particular algebraic structured, in fact it is an ideal of the
ring of polynomials in s(s + 1) variables. We will denote it with Iqs . Thus, we can
rewrite the Theorem of the Local Error as:

Theorem 2. Let x = ((ai,j)1≤j≤i≤s, (w1, w2, . . . , ws)), then x ∈ RKq
s ⇔ x ∈ V q

s .

Similarly the algebraic variety EV q
s in A

s(s−1)
2 (R) minimally defined by the same poly-

nomial equation and by {ai,j = 0∀i ≥ j} is the variety of the explicit Runge Kutta
method of s levels; EV q

s is also a subvariety of V q
s .

We remark that claiming V q
s and EV q

s being an algebraic variety has some under-
lying effect. One of the main difference concerns the topology: it is used the Zariski
topology and in contrast to the standard topology, the Zariski topology is not Hausdorff
(one can not separate two points with different open sets). We are going to show the
hardness of studying the dimension and the parameterization of the varieties Vq

s and
EVq

s . From now on, avoiding repetitions of EV q
s , every result that we state for V q

s is
true also for EV q

s , with the obvious opportune changes. Again, to simplify the reading,
we put V = V q

s and I = Iqs (the ideal of the variety V ). The goal of the present research
work is to design particular features of the RK methods; hence, if we want to use sym-
bolical or numerical methods, we need to parameterize V : in fact, we need to control
the set RKq

s using free parameters {p1, . . . , pm} where m is at least the dimension d of
V . More explicitly given a connected component decomposition V = ∪i∈IUi we need
to know the function θqs,i : R

di → Ui This problem translated in the algebraic geom-
etry θqs,i : A

di(R) → Ui is the problem of local parameterization of an real algebraic
variety; we remark, that, even if the meaning and the appearance of the two θqs,i are ex-
actly the same, the algebraic one carries all the differences in the topologies and in the
map. If we narrow down our investigation, for a moment, and consider only curves (one
dimension algebraic varieties) in the affine plane [6,7], the question is the following: is
the curve rational? We know that non-rational curve exists. We can suppose that not all
varieties X are birational equivalent (generalization of rational concept) to Ad(R). The
theory of Gröebner basis [8] or the Newton Polygon [9] could be applied to tackle this
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problem, but, with a lot of generators, computational time blows up. The problem is
hardly structured. It is extremely difficult to compute the connected component decom-
position and their local dimension di’s [10]: there are some methods in computational
algebra where the complexity of computation depends on number of generators m, the
number of variables s(s + 1) and the degree of the polynomial q as mo(1)qo(s(s+1))

[11,12]; so if s and q increase (so d increase) the computational time blow up. For the
same reason a symbolic approach of the problem is not feasible [5]. Hence excluding
some particular cases, finding a global solution for the parameterization of an algebraic
variety is an open problem [13]. Now we want to state clearly the results in the most
general condition. Let X ⊂ Rm be the set of real solutions of a system of n polynomial
equations fi = 0. Let f be a positive real values function defined over X, and consider
the optimization problem consisting of finding x ∈ X such that the value f(x) is mini-
mal in f(X) ⊂ R+. Then for bigger value of m and n it is an open problem to find the
connected components {Ui} of X, their local dimensions di and their local parameteri-
zation {θi : Rdi → Ui}. For this reason, we suggest the use of evolutionary algorithms
to search a good solution of the corresponding optimization problem. Of course, any
kind of optimization over the varieties Vq

s and EVq
s are of this type; thus we are going

to show how this optimization should be.

3 The Approach and the Results

In this section, we define the optimization problem that we want to solve. Even if a
Runge-Kutta method of order q has many features that we want to control (for instance,
the convergence region for implicit RK, Sa), the aim of this research work is to obtain
new explicit or implicit Runge-Kutta methods of maximal order q that minimizes lo-
cal errors of order q + 1. We denote, x = ((ai,j)1≤j,i≤s, (w1, w2, . . . , ws)) ∈ Rs(s+1)

where {ai,j} and {wi} are the coefficients of Butcher Tableau of an implicit, and respec-
tively explicit, Runge-Kutta method. Using these results, x is a feasible solution, i.e.,
it is in V q

s (or EV q
s ) if it respects the constrains in 2. The fitness function is so defined

fitness(x) =
∑q+1

i=0

∑
t∈Ti

α(t)|e(t)|. Moreover, we want that x minimizes the local
errors. The impossibility of analytically computing the functions θqs,i and the difficulty
of trying to numerically optimize local error gives us the motivation to use evolution-
ary algorithms to face this difficult global optimization problem [3]. The problem has
been divided and tackled in two parts: I) to find solution for order condition, and II) to
optimize the RK method provided by the solution of the system. Let us fix the number
s of level and let us discuss the implicit RK methods case; what shall follow holds for
the explicit case too. Since a priori we do not know the local dimension of the varieties
Vq

s , we need to fix q = 2 and exploring if the variety V 2
s has points; if it is, we can

also produce a suitable set of feasible solutions. Thus, we will consider the next order
until we will not find any solutions, i.e. for the maximal order q the variety V q+1

s = ∅.
Without to modify the designed evolutionary algorithm, it is possible to explore the
solution space computing the non-dominated solutions (the Pareto optimal solutions)
of the given problem. The evolutionary algorithm for a fixed level s and order q has
the structure shown in Appendix A. We want to produce new Runge-Kutta methods of
high order approximation, but to verify our theory and methodology we have tested the
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evolutionary algorithm with a 3-level explicit Runge-Kutta methods of order 3 and with
4-level and 5-level explicit Runge-Kutta methods of order 4: we have find respectively
146, 364 and 932 new explicit Runge-Kutta methods. Moreover we have produced a
remarkable set of feasible solution that can be used for different optimization problem
over the algebraic varieties V q

s and EV q
s . We show the results in the following table.

Table 1. Feasible solutions in the explicit Runge-Kutta methods

Order/Level 3 4 5 6 7 8 9 10

2 46 108 34 19 3 8 13 16
3 146 197 140 3 24 57 45 28
4 0 364 932 53 20 110 0 34

4 Conclusion

The designed and implemented evolutionary algorithm, EVO-RUNGE-KUTTA, opti-
mizes the Butcher Tableaux an implicit or explicit Runge Kutta methods in order to
find the maximal order of accuracy and to minimize theirs local errors in the next
order. The results presented in this article suggest that further work in this research
field will advance the designing of Runge-Kutta methods, in particular, and the use of
the evolutionary algorithm for any kind of optimization over an algebraic variety. To
our knowledge this is the first time that algebraic geometry is used to state correctly
that evolutionary algorithms have to be used to face a particular optimization problem.
Again we think this is the first time that algebraic geometry and evolutionary algorithms
are used to tackle a numerical analysis problem. Further refinement of our evolutionary
optimization algorithm will surely improve the solutions of these important numerical
analysis problems.

Acknowledgements. Ivan Martino want to thank his advisor Professor Torsten Ekedahl
that has recently passed away. It has been a privilege to learn mathematics from him.
His genius and his generosity will always inspire me.

A The Algorithm: Evo-Runge-Kutta

EVO-RUNGE-KUTTA()
1. t=0;

2. inizializePopulation(pop(t)d ); /* random generation of RKs*/
3 initialize(newSolution); /* new array of feasible solutions*/

4. evaluationPopulation(pop(t)d ); /* evaluation of RK systems */
5. while ((t< Imax)&&(meanError<accuracy)&&(bestError< accuracy)) do {
6. Copy (pop(t)d , popMut

(t)
d , pc);

7. mutationOperator(popMut
(t)
d , pm, σ);

8 isFeasible(popMut
(t)
d , oldSolutions);
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9. evaluationPopulation(popMut
(t)
d );

10. pop
(t+1)
d =Selection(pop(t)d , popMut

(t)
d , rs);

11. computeStatistics(pop(t+1)
d );

12 saveSolutions(newSolution);
13. t=t+1;
14. }

In the following table we show the parameters used.

Parameter Value
order of the RK-methods 2
level of the RK-methods 3
order of the optimization of the error 3
d = population size 103

Imax = Max iterations of the first & second cycle 4× 104

pm = mutation probability of weight vector 0.5
part of element of Butcher Tableau that
does not change during mutation 0.3
rs = part of population selected for elitism in the first & second cycle 0.3
pc = selection probability in the first & second cycle 0.5
σ = variance of Gaussian perturbation 0.1
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11. Giusti, M., Hägele, K., Lecerf, G., Marchand, J., Salvy, B.: The projective Noether Maple
package: computing the dimension of a projective variety. J. Symbolic Comput. 30(3), 291–
307 (2000)
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Abstract. In parallel MaxSAT solving, sharing learned clauses is expected to
help to further prune the search space and boost the performance of a parallel
solver. However, not all learned clauses should be shared since it could lead to an
exponential blow up in memory and to sharing many irrelevant clauses. The main
question is which learned clauses should be shared among the different threads.
This paper reviews the existing heuristics for sharing learned clauses, namely,
static and dynamic heuristics. Moreover, a new heuristic for clause sharing is
presented based on freezing shared clauses. Shared clauses are only incorporated
into the solver when they are expected to be useful in the near future. Experimen-
tal results show the importance of clause sharing and that the freezing heuristic
outperforms other clause sharing heuristics.

1 Introduction

Nowadays multicore processors are becoming the dominant platform. As a result, par-
allel Maximum Satisfiability (MaxSAT) solvers have been recently presented to exploit
this new architecture [10,9]. These parallel solvers simultaneously search on the lower
and upper bound values of the optimal solution. Searching in both directions and shar-
ing learned clauses between these two orthogonal approaches makes the search more
efficient. However, it is not clear which clauses should be shared among the different
threads. The problem of determining if a shared clause will be useful in the future re-
mains challenging, and in practice heuristics are used to select which learned clauses
should be shared. This paper sheds some light on the impact of different clause sharing
heuristics in parallel MaxSAT solving. The main contribution of this paper is twofold:
(1) a new heuristic for clause sharing that freezes shared clauses until they are expected
to be useful and (2) an empirical evaluation of static, dynamic and freezing heuristics
for clause sharing.

The paper is organized as follows. In the next section the MaxSAT problem is defined
and MaxSAT solvers are briefly referred. Section 3 describes different clause sharing
heuristics that will be analyzed in the paper. Afterwards, section 4 presents an experi-
mental evaluation of the different clause sharing heuristics. Finally, the paper concludes
and suggests future work.

2 Preliminaries

A Boolean formula in conjunctive normal form (CNF) is a conjunction of clauses,
where a clause is a disjunction of literals and a literal is a Boolean variable x or its
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negation ¬x. A Boolean variable may be assigned truth values true or false. A positive
(negative) literal x (¬x) is said to be satisfied if the respective variable is assigned value
true (false). A positive (negative) literal x (¬x) is said to be unsatisfied if the respective
variable is assigned value false (true). A variable (and respective literals) not assigned is
said to be unassigned. A clause is said to be satisfied if at least one of its literals is satis-
fied. A clause is said to be unsatisfied if all of its literals are unsatisfied. A clause is said
to be unit if all literals but one are unsatisfied and the remaining literal is unassigned.
Otherwise, a clause is said to be unresolved. A formula is satisfied is all of its clauses
are satisfied. The Boolean satisfiability (SAT) problem is to decide whether there exists
an assignment that makes the formula satisfied. Such assignment is called a solution.

Maximum Satisfiability (MaxSAT) is an optimization version of Boolean Satisfia-
bility (SAT) which consists in finding an assignment that minimizes (maximizes) the
number of unsatisfied (satisfied) clauses. MaxSAT has several variants such as partial
MaxSAT, weighted MaxSAT and weighted partial MaxSAT. In the partial MaxSAT
problem, some clauses are declared as hard, while the rest are declared as soft. The
objective in partial MaxSAT is to find an assignment to problem variables such that all
hard clauses are satisfied, while minimizing the number of unsatisfied soft clauses. Fi-
nally, in the weighted versions of MaxSAT, soft clauses can have weights greater than
1 and the objective is to satisfy all hard clauses while minimizing the total weight of
unsatisfied soft clauses.

The parallel MaxSAT solver PWBO [9] used in this paper is based on having several
threads running a portfolio of two orthogonal algorithms: (i) an unsatisfiability-based
algorithm that searches on the lower bound of the optimal solution [8] and (ii) a classical
linear search algorithm that searches on the upper bound [7]. Notice that PWBO is not
limited to the best performing algorithm in the portfolio, since threads can cooperate
by exchanging information on the lower and upper bounds found during the search, as
well as exchanging learned clauses that can prune the search on the other threads. In this
paper we focus on strategies for the sharing of learned clauses between threads that can
be used for improving parallel MaxSAT solvers. It is assumed that the reader is familiar
with algorithms for MaxSAT, and we refer to the literature [4,7,8,1,9] for details.

3 Clause Sharing Heuristics

Clause sharing heuristics can be divided into three categories: (1) static, (2) dynamic
and (3) freezing. The static heuristics share clauses within a given cutoff, whereas
the dynamic heuristics adjust this cutoff during the search. Alternatively, the freezing
heuristics temporarily freeze shared clauses until they are expected to be useful.

3.1 Static

The static heuristics are the most used for clause sharing since they are simple but still
efficient in practice. The following measures are used in these heuristics:

– Size: the clause size is given by the number of literals. Small clauses are expected
to be more useful than larger clauses.
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– Literal Block Distance (LBD) [3]: the literal block distance corresponds to the num-
ber of different decision levels involved in a clause. The decision level of a literal
denotes the depth of the decision tree at which the corresponding variable was as-
signed a value. Clauses with small LBD are considered as more relevant.

– Random: randomly decide whether to share each learned clause with a given prob-
ability. This heuristic was designed to evaluate the other heuristics which are ex-
pected to be more effective than a random one.

3.2 Dynamic

The size of learned clauses tends to increase over time. Consequently, in parallel solv-
ing, any static limit may lead to halting the clause sharing process. Therefore, to con-
tinue sharing learned clauses it is necessary to dynamically increase the limit during
search. Hamadi et al. [6] proposed the following dynamic heuristic. At every k conflicts
(corresponding to a period α) the throughput of shared clauses is evaluated between
each pair of threads (ti → tj) according to the following heuristic:

limitα+1
ti→tj =

{
limitαti→tj + qualityαti→tj

× b
limitαti→tj

if sharing is small

limitαti→tj − (1− qualityαti→tj
)× a× limitαti→tj if sharing is large

,

where a and b are positive constants and the value of qualityαti→tj
corresponds to the

quality of shared clauses that were send from ti to tj .
A shared clause is said to have quality [6] if at least half of its literals are active. A

literal is active if its VSIDS heuristic [11] score is high, i.e. it is likely to be chosen as a
decision variable in the near future. Hence, qualityαti→tj

gives the ratio between quality
shared clauses and the total number of shared clauses in the period α. If the quality
is high then the increase (decrease) in the size limit of shared clauses will be larger
(smaller). The reasoning behind this heuristic is that the information recently received
from a thread ti is qualitatively linked to the information which could be received from
the same thread ti in the near future. In our experimental setting, we have selected
a = 0.125, b = 8 and α = 3000 conflicts. The throughput at each period is set to
750, i.e. if a thread tj receives less than 750 shared learned clauses in the period α,
it increases the limit of the size of shared clauses. Otherwise, this limit is decreased.
These parameters are similar to the ones used by Hamadi et al. [6].

3.3 Freezing

Shared learned clauses may not be useful when they are imported and can actually devi-
ate the search from the correct path. Our motivation for the freezing heuristic is to only
import shared clauses when they are expected to be useful in the near future. Figure 1
illustrates the freezing procedure. Each shared clause ω is evaluated to determine if it
will be frozen or imported. If ω is frozen then it will be reevaluated later. However, if ω
is assigned the frozen state more than k times it is permanently deleted. When evaluat-
ing ω, our goal is to import clauses that are unsatisfied or that will become unit clauses
in the near future. Next, the freezing heuristic is presented. According to the status of
ω (satisfied, unsatisfied, unit or unresolved), whether ω should be frozen is decided:
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Freeze(ω)?

Shared
Clauses

Frozen
Clauses

Import ω

Reevaluate Clauses

For each clause ω

No

Yes

Cleaning

Fig. 1. Freezing procedure for sharing learned clauses

– ω is satisfied: Let level denote the current decision level, levelh(ω) the highest
decision level of the satisfied literals in ω, unassignedLits(ω) the number of unas-
signed literals in ω and activeLits(ω) the number of active literals in ω. If (level−
levelh(ω) ≤ a) and (unassignedLits(ω) − activeLits(ω) ≤ b) then ω is imported,
otherwise it is frozen. A satisfied clause is expected to be useful in the near future
if it is not necessary to backtrack significantly to make the clause unit. It is also
important that the number of unassigned literals is small or else the clause may
not become unit in the near future. Active literals are also taken into consideration
since they will be assigned in the near future.

– ω is unsatisfied or unit: ω is always imported;
– ω is unresolved: if (unassignedLits(ω) − activeLits(ω) ≤ b) then the clause is

imported. Otherwise, it is frozen. Similarly to the satisfied case, if the number of
unassigned literals is small then ω is likely to be unit in the near future.

In our experimental setting, we have selected a = 31, b = 5 and k = 7. In addition,
the frozen clauses are reevaluated every 300 conflicts. These parameters were experi-
mentally tuned. Freezing learned clauses has been recently proposed in the context of
deletion strategies for learned clauses in SAT solving [2]. However, to the best of our
knowledge, freezing shared clauses in a parallel solving context is a novel approach.

4 Experimental Results and Discussion

All experiments were run on the partial MaxSAT instances from the industrial category
of the MaxSAT Evaluation 20111. Instances that are easily solved will have similar
solving times with and without sharing learned clauses. Hence, if an instance takes less
than 60 seconds to be solved it is not considered. The evaluation was performed on
two AMD Opteron 6172 processors (2.1 GHz with 64 GB of RAM) running Fedora

1 http://www.maxsat.udl.cat/11/
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Table 1. Comparison of the different heuristics for sharing learned clauses

Heuristic #Solved Avg. #Clauses Avg. Size Time Speedup

No sharing 137 − − 32,188.57 1.00
S

ta
ti

c

Random 30 134 10,140.22 128.21 27,394.46 1.18
LBD 5 137 8,947.36 9.94 25,346.69 1.27
Size 8 137 7,529.18 5.30 25,098.85 1.28
Size 32 138 18,027.48 11.76 25,174.29 1.28
Dynamic 138 13,296.28 7.33 24,218.84 1.33
Freezing 140 16,228.53 11.01 21,611.21 1.49

Core 13 with a timeout of 1,800 seconds (wall clock time). The different clause sharing
heuristics were implemented on top of the portfolio version of PWBO [9] and were run
with 4 threads. To have a better understanding of the impact of each heuristic, we have
built a deterministic version of PWBO that is based on exchanging only information
between the different threads at synchronization points (at every 100 conflicts). This is
similar to what has been done in the deterministic version of MANYSAT [5].

Table 1 compares the different heuristics regarding the number of solved instances,
average number of imported clauses by each thread, average size of imported clauses,
solving time and speedup. Despite the number of solved instances not changing signif-
icantly, randomly sharing clauses can deteriorate the performance of the solver. Note
that the solving time presented in table 1 only considers instances that were solved
by all heuristics. LBD and size heuristics have similar speedups. Other sizes were also
evaluated. It was observed that if the limit is too small then the speedup is reduced since
not many clauses are shared. On the other hand, if the limit is too large then the speedup
is also reduced since many irrelevant clauses are shared. Nevertheless, a size limit of
32 is comparable to a limit of 8 since there are some instances where learning larger
clauses can be more useful than just learning smaller clauses. The dynamic heuristic
outperforms the static heuristics but is outperformed by the freezing heuristic.

To summarize, although sharing learned clauses does not improve the number of
solved instances significantly, it does reduce the solving time considerably. The freezing
heuristic clearly outperforms all other heuristics in terms of solving time and number
of instances solved and provides a strong stimulus for further research.

5 Conclusions

Recently, new parallel algorithms have been proposed for SAT as well as for MaxSAT.
One of the main goals of parallel algorithms is to be able to take advantage of new
multicore computer architectures by running several threads at the same time. One way
to speedup these algorithms is to be able to share learned clauses between the different
threads, thus allowing the pruning of the search space already explored in other threads.

In this paper different sharing heuristic procedures already proposed for SAT are
described and used in a MaxSAT parallel solver. Moreover, a new heuristic based on
the notion of freezing is proposed. This heuristic delays the import of shared clauses by
a given thread until it is considered relevant in the context of its own search.
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Experimental results show that sharing learned clauses in a portfolio-based parallel
MaxSAT solver does not increase significantly the number of solved instances. How-
ever, it does allow a considerable reduction of the solving time. Finally, our proposed
freezing heuristic outperforms all other heuristics both in solving time and number of
solved instances.

As future work one might consider the aggregation of several heuristic criteria. Vari-
ations of the freezing heuristic can also be devised that take into consideration other
information from the context of the search space being explored in the importing thread.
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iExplain (PTDC/EIA-CCO/102077/2008), and INESC-ID multiannual funding through
the PIDDAC program funds.
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Abstract. The present study proposes a new selection hyper-heuristic
providing several adaptive features to cope with the requirements of man-
aging different heuristic sets. The approach suggested provides an intel-
ligent way of selecting heuristics, determines effective heuristic pairs and
adapts the parameters of certain heuristics online. In addition, an adap-
tive list-based threshold accepting mechanism has been developed. It
enables deciding whether to accept or not the solutions generated by the
selected heuristics. The resulting approach won the first Cross Domain
Heuristic Search Challenge against 19 high-level algorithms.

1 Introduction

Selection hyper-heuristics are high-level search and optimisation strategies op-
erating on a set of low-level heuristics in a problem-independent manner [1,2].
In this study, we developed an intelligent selection hyper-heuristic to deal with
different heuristic sets for six problem domains provided by HyFlex [3]. The
development phase consists of determining the generality requirements, design-
ing effective components with online adaptation skills for these requirements,
and combining them using certain decision mechanisms. The empirical results
showed that the proposed approach is capable of delivering high performance
over the tested problems.

2 Methodology

2.1 Adaptive Dynamic Heuristic Set Strategy

The adaptive dynamic heuristic set (ADHS) strategy [4,5] is responsible for mon-
itoring the performance of each heuristic to determine elite heuristic subsets for
consecutive iteration blocks, each referring to one particular phase. The under-
lying motivation is to specify the best performing heuristics that will be used
during a number of phases to make the heuristic selection process easier. A per-
formance metric (pmi) based on simple quality indicators such as improvement
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capability and speed, is used to decide upon exclusion of a heuristic. Equa-
tion 1 illustrates how the performance of heuristic i is measured. In this equa-
tion, Cp,best(i) is the number of new best solutions explored. fimp(i) and fwrs(i)

show the total improvement and worsening during the whole run. fp,imp(i) and
fp,wrs(i) indicate the improvement and worsening provided during the current
phase. tremain is the remaining execution time. tspent(i) refers to the total time
spent until that moment and tp,spent(i) demonstrates the execution time spent
during the current phase. For each contributing performance element, a weight
wi is utilised. The values of these weights are set in a decreasing manner. The
weights are sufficiently different to manage them in order of importance.

pmi = w1

[(
Cp,best(i) + 1

)2(
tremain/tp,spent(i)

)]
× b+

w2

(
fp,imp(i)/tp,spent(i)

)
− w3

(
fp,wrs(i)/tp,spent(i)

)
+

w4

(
fimp(i)/tspent(i)

)
− w5

(
fwrs(i)/tspent(i)

)
(1)

b =

⎧⎨
⎩
1,

∑n
i=0 Cp,best(i) > 0

0, otw.

The corresponding pi values are ranked and a quality index (QI ∈ [1, n]) value is
determined for each heuristic based on this ranking as a normalisation of the pi

values. The best performing heuristic gets the highest QI that is the number of
heuristics (n) currently available. The QI values of the remainder of the heuristics
decrease by 1 for each ranking level and the heuristic with the lowest pi value
has QI = 1. The heuristics with a QI less than the average of QIs are excluded,
which means that it will not be called upon for a number of phases. These
excluded heuristics have also QI = 1. If a heuristic is consecutively excluded, its
tabu duration is incremented by 1. Alternatively, if a heuristic is not excluded
after performing a phase, its tabu duration is set back to the initial value. This
incrementation continues until the corresponding tabu duration reaches its upper
bound, which is set to 2

√
2n. Whenever the tabu duration is equal to its upper

bound, ADHS permanently excludes this heuristic.
The phase length (pl) is set to (d × phfactor) iterations. phfactor is a prede-

termined constant and it is set to 500. For instance, if the number of heuris-
tics in the heuristic set is 10, then the tabu duration is set as d = 4 and pl is
2000 iterations. Whenever the heuristic subset is updated, pl is adjusted with
respect to the average time required for performing a move by a non-tabu heuris-
tic. This adjustment was performed based on the number of phases requested
(phrequested = 100) which is a predefined value, as illustrated in Equation 2.
Cmoves(i) shows the number of times heuristic i is called and ttotal indicates the
total execution time. The calculated value is constantly checked to keep it within
its bounds, pl ∈ [d× 50, d× phfactor].

pl =
(
ttotal/phrequested

)
/

n∑
i=0

(
tspent(i)/Cmoves(i)

)
.isTabu(i) (2)
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Extreme Heuristic Exclusion. Some of the heuristics which did not find new
best solutions during a phase are additionally excluded based on Equation 3 at
the end of each phase. The idea behind this extra exclusion procedure is to fasten
the search process by eliminating slow heuristics compared to the speed of the
other heuristics in the heuristic set. The standard deviation (σ) and the average
(�) of the exc(i) values together with the number of new best solutions (nb)
found by the heuristics in the heuristic set are used for this additional exclusion
as shown in Equation 4.

exc(i) =
(
tspent(i)/Cmoves(i)

)
/
(
tspent(fastest)/Cmoves(fastest)

)
(3)

σ > 2.0 ; exc(i) > 2� ; nb > 1 (4)

Heuristic Selection. In order to choose a heuristic from the heuristic subset,
a probability vector is maintained. The selection probabilities of the heuristics
are the normalisation of the calculated values based on Equation 5.

pri =
(
(Cbest(i) + 1)/tspent

)(1+3tf3) (5)

tf = (ttotal − telapsed)/ttotal

2.2 Relay Hybridisation

The hyper-heuristic also investigates a simple relay hybridisation approach to
determine effective pairs of heuristics that are applied consecutively. The details
of this approach are presented in Algorithm 1. Cphase denotes the number of
iterations that have been executed during the current phase. Cbest,s is a counter
regarding the number of new best solutions found by the single heuristic selection
method. Cbest,r is another counter for the number of new best solutions found
by the relay hybridisation. p is a random variable to decide upon using relay
hybridisation. p′ is another random variable for choosing the second heuristic.
listi indicates the list of heuristics to be applied after heuristic i. The size of
the list is set to 10 for each heuristic. The choice of the first heuristic is made
by a learning automaton (LA) that keeps a probability list with the selection
probabilities of the first heuristics [6]. A linear reward-inaction update scheme
is used for updating the probabilities as indicated in Equation 6 and 7. In these
equations, the learning rates are set as λ1 = 0.5 and λ2 = 0. This update scheme
increases the probability of a heuristic that has found new best solutions.

In addition, the tabu approach used for ADHS is applied to disable relay
hybridisation if it could not deliver a new best solution after a phase.

pi(t + 1) = pi(t) +λ1 β(t)(1 − pi(t))

−λ2(1− β(t))pi(t) (6)

if ai is the action taken at time step t
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Algorithm 1. Relay hybridisation

Input: listsize = 10; γ ∈ (0.02, 50); p, p′ ∈ [0 : 1]
1 γ = (Cbest,s + 1)/(Cbest,r + 1)
2 if p ≤ (Cphase/pl)

γ then
3 select LLH using a LA and apply to S → S′

4 if size(listi) > 0 and p′ <= 0.25 then
5 select a LLH from listi and apply to S′ → S′′

6 else
7 select a LLH and apply to S′ → S′′

end

end

pj(t+ 1) = pj(t) −λ1 β(t)pj (t)

+λ2(1− β(t))[(r − 1)−1 − pj(t)] (7)

if aj �= ai

2.3 Heuristic Parameter Adaptation

Certain heuristics have a parameter called “intensity of mutation” represent-
ing the perturbation level. The other heuristics concentrating on improvement
only have a parameter called “depth of search” related to the number of steps
to be applied. A reward-penalty strategy is used to dynamically adapt these
parameters.

2.4 Adaptive Iteration Limited List-Based Threshold Accepting

Adaptive iteration limited list-based threshold accepting (AILLA) is a move ac-
ceptance mechanism providing an adaptive diversification strategy in connection
with the quality of the explored new best solutions earlier [4,7,5]. Its details are
presented in Algorithm 2.

The iteration limit (k) is updated as shown in Equation 8. For the list length
(l), the update rule presented in Equation 9 is utilised (lbase = 5, linitial = 10).

k =

⎧⎨
⎩
((l − 1)× k + iterelapsed)/l, if cw = 0

((l − 1)× k +
∑cw

i=0 k × 0.5i × tf)/l, otherwise
(8)

cw = iterelapsed/k

l = lbase + (linitial − lbase + 1)tf3 (9)

Re-initialisation. The threshold level (bestlist(i)) starts from the lowest value
and increases to the value placed in the l th location of the list. Each time the
threshold level reaches value l, a new initial solution is randomly generated to
find new best solutions in a faster way. Re-initialisation is disabled depending
on the remaining execution time, its cost and the possibility of finding a new
best solution afterwards.
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Algorithm 2. AILLA move acceptance
Input: i = 1,K ≥ k ≥ 0, l > 0
for i=0 to l-1 do bestlist(i) = f(Sinitial)

1 if adapt iterations ≥ K then
2 if i < l − 1 then
3 i + +

end

end

4 if f(S′) < f(S) then
5 S ← S′

6 w iterations = 0

7 if f(S′) < f(Sb) then
8 i = 1

9 Sb ← S′

10 w iterations = adapt iterations = 0
11 bestlist.remove(last)
12 bestlist.add(0, f(Sb))

end

13 else if f(S′) = f(S) then
14 S ← S′

15 else
16 w iterations + +
17 adapt iterations + +

18 if w iterations ≥ k and f(S′) ≤ bestlist(i) then
19 S ← S′ and w iterations = 0

end

end

Table 1. CHeSC 2011 competition ranking and scores

Algorithm Overall Score
ADAPHH (Our method) 181
VNS-TW 134
ML 131.5
PHUNTER 93.25
EPH 89.75
HAHA 75.75
NAHH 75
ISEA 71
KSATS-HH 66.5
HAEA 53.5
ACO-HH 39
GenHive 36.5
DynILS 27
SA-ILS 24.25
XCJ 22.5
AVEG-Nep 21
GISS 16.75
SelfSearch 7
MCHH-S 4.75
Ant-Q 0

3 Results and Conclusion

This study is about designing an intelligent hyper-heuristic to provide high
quality performance across different optimisation problems. The hyper-heuristic
presented here was submitted to the first international Cross-domain Heuristic
Search Challenge (CHeSC 2011) to show its generality and robustness across
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multiple problem domains. It ended up as the competition winner out of 20
submissions. The performance of the competing algorithms were compared for
five instances from six problem domains, i.e. max SAT, 1D bin packing, per-
mutation flowshop scheduling, personnel scheduling, travelling salesman, vehicle
routing. The last two domains were added to the problem set as hidden domains.
The ranking and scores1 of the corresponding algorithms are shown in Table 1.
A detailed experimental analysis is available in [8].
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Abstract. We study a two-machine re-entrant flowshop scheduling prob-
lem in which the jobs have strict due dates. In order to be able to satisfy
all customers and avoid any tardiness, scheduler decides which job shall
be outsourced and find the best sequence for in-house jobs. Two objective
functions are considered: minimizing total completion time for in-house
jobs and minimizing outsource cost for others. Since the problem is NP-
hard, an efficient genetic algorithm based on modified self-control domi-
nance concept with adaptive generation size is proposed. Non-dominated
solutions are compared with classical NSGA-II regarding different met-
rics. The results indicate the ability of our proposed algorithm to find a
good approximation of the middle part of the Pareto front.

Keywords: Scheduling, re-entrant, bi-objective, outsourcing, genetic al-
gorithm, dominance area.

1 Introduction

In today’s competitive market, one of the most important survival factor for
a company is the achievement of customer satisfaction which guarantees its
long-run financial performance. Due to the resource constraints and clients’ re-
quirements, manufacturers are not always able to meet customers’ due dates so
tardiness is occurred. Outsourcing is an alternative to avoid loosing clients. In
this paper, we study a bi-objective two-machine re-entrant permutation flowshop
scheduling problem in which completing an order after its due date is not al-
lowable so that order will be outsourced. Recent literature surveys on re-entrant
scheduling problems and outsourcing can be found in [1] and [2] respectively.

The system that we study in this paper is illustrated in Fig. 1. For each
job, its processing time on both machines on both cycles, due date and out-
sourcing cost are known in advance and the processing route for in-house jobs

� Corresponding author.
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Fig. 1. Re-entrant flowshop scheme Fig. 2. Dominance area regarding m-SCD

is (M1,M2,M1,M2). Other assumptions are the same as classical scheduling
problem (i.e. no preemption, no break-down, ...). We are looking for a set of
non-dominated solutions regarding two objective functions: minimizing total
completion time for in-house jobs and minimizing outsourcing cost. Since the
simpler variant of our problem is NP-hard [3], we propose a genetic-based algo-
rithm inspired from NSGA-II [4] with different dominance concept than Pareto
and adaptive generation size. The proposed dominance concept is the modifica-
tion of Self-Control Dominance Area of Solutions (S-CDAS) introduced by Sato
et al. [5].

We show that our algorithm is able to find limited number of non-dominated
solutions compared to NSGA-II but with higher quality.

2 Modified Self Control Dominance Concept

Since many years ago, Pareto-dominance concept has been integrated to different
meta-heuristics to find a good estimation of set of non-dominated solutions.
Recently, it has been shown that other dominance properties rather than Pareto,
may help algorithms to find better estimation of non-dominated solutions, e.g.,
Self-Control Dominance Area of Solutions [5] and Lorenz-dominance [6].

Self-Control Dominance Area of Solutions (S-CDAS) introduced for the first
time by Sato et al. [5]. They showed that by integrating S-CDAS into NSGA-II,
better estimation of non-dominated solutions for multi-objective 0-1 knapsack
problem could be found compared to NSGA-II with Pareto dominance. In this
paper we introduce a new dominance concept inspired from S-CDAS which is
called modified SCD (m-SCD). In S-CDAS the objective is to find better estima-
tion of whole Pareto front so the parameters are set in a way to keep the extrema
in each Pareto non-dominated front. On the contrary, in m-SCD we focus our
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search on the middle part of the Pareto front. The trade-off characteristic ren-
ders such area of particular interest in practical applications. So we try to find
better estimation of non-dominated solutions located in this area.

In m-SCD, the concept is to make Pareto-non-dominated solutions different
one from another by inducing more fine-grained ranking in order to be converged
into the middle part of Pareto-front.

Definition. modified Self-Control Dominance (m-SCD)
In a bi-objective minimization problem, solution x dominates solution y based
on m-SCD properties (x ≺m−SCD y) if one of the following statements holds
true:

– x dominates y in Pareto sense (x ≺P y); or
– x and y are Pareto-equivalent and SCD(x) ≺P SCD(y) where SCD(x) =

(f ′
1(x), f

′
2(x)) in which f ′

1(x) and f ′
2(x) are derived from non-orthogonal pro-

jection of point x onto xy-plane as described in more details in step 2-2.

In Fig. 2, although x1, x2, x3, x4 are all Pareto non-dominated solutions, x1 and
x4 which are the extrema are dominated by x2 and x3 based on m-SCD concept.
In the following, we describe step by step how we calculate the values of different
parameters shown in Fig. 2 to reach the values of f ′

1 and f ′
2.

Step 1: Consider a set of Pareto non-dominated solutions X = {x1, x2, ...xk}.
We define the parameters as below:

O = (fmin
1 − ε, fmin

2 − ε) (1)

P1 = (fmax
1 − ε, f2(O)) (2)

P2 = (f1(O), fmax
2 − ε) (3)

where fmin
i ( fmax

i ) is the minimum (maximum) value of the i-th objective func-
tion in the set X and ε is a tiny constant.

Step 2: For each solution xj ∈ X (j = 1, 2, ..., k) we repeat the following steps:

Step 2-1: Find the slope of both lines (accordingly use SLOPE1 and SLOPE2
as the values) through two pairs of points xj , P1 and xj , P2. We have:

SLOPE1 =
f2(xj)− f2(P1)

f1(xj)− f1(P1)
(4)

SLOPE2 =
f2(xj)− f2(P2)

f1(xj)− f1(P2)
(5)

SCD(xj) = (f ′
1(xj), f

′
2(xj)) = (f1(P1), f2(P2)) (6)
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In other words, x-value of P1 and y-value of P2 are the same as f ′
1(xj) and

f ′
2(xj).

Step 2-2: For each solution y ∈ X − {xj}, we calculate f ′
1(y) and f ′

2(y) by pro-
jecting point y onto the x-axis regarding SLOPE1 and onto the y-axis regarding
SLOPE2.

f ′
1(y) = f1(y) +

f2(O) − f2(y)

SLOPE1
(7)

f ′
2(y) = f2(y) + SLOPE2(f1(O) − f1(y)) (8)

SCD(y) = (f ′
1(y), f

′
2(y)) (9)

Step 2-3: Regarding the new values calculated for each member of set X , we use
Pareto-dominance properties to find the solutions that dominate xj .

3 Experimental Results

We conduct experiments on 7 randomly generated problems with 10, 15, 20,
40, 50, 70 and 100 jobs to test the performance of our proposed algorithm.
Processing times are generated from the discrete uniform distribution within a
range of [1,100] on both machines. Due dates of the jobs are generated using two
parameters, T (tardiness factor) and R (due date range) as described in [7] with
more details. In this paper we set T=0.3 and R=1.4. The outsourcing costs are
calculated based on the function exp(5 +

√
a × b), where a is a random integer

number within [1,80] and b is a random number within [0,1].
Our proposed algorithm is based on NSGA-II coupled with m-SCD dominance

with adaptive generation size proposed by Tan et al. [8] in which chromosome
repairing is done by eliminating the job with minimum outsourcing cost sched-
uled before first tardy job. This algorithm is compared to classical NSGA-II with
Pareto dominance and fixed number of generation in which the first tardy job
detected in schedule is eliminated for making the solution feasible. The results
on 7 different instances show that on the average, 31% of solutions found by
NSGA-II are dominated by m-SCD-NSGA-II while 4% of solutions found by m-
SCD-NSGA-II are dominated by NSGA-II. The hypervolume ratio of NSGA-II
to m-SCD-NSGA-II is 0.87 in average which implies that the area dominated by
m-SCD-NSGA-II is larger than NSGA-II dominance area. In addition, the solu-
tions found by m-SCD-NSGA-II are distributed more evenly than those found
by NSGA-II. However, the spread of solutions in NSGA-II is significantly more
than those solutions achieved by our proposed algorithm. This fact is completely
in-line with our parameters definitions in m-SCD. Regarding the computational
time, our proposed algorithm is in average 4 times slower than classical NSGA-
II. The reason is first due to the additional computational effort for calculating
dominance area based on m-SCD and also increasing in number of generation.
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4 Conclusion

In this paper we studied a bi-objective two-machine re-etrant scheduling prob-
lem in which due to the strict due dates, outsourcing of the tardy jobs has been
considered. We proposed a genetic-based algorithm with m-SCD dominance con-
cept and adaptive generation size. We have shown that better estimation of non-
dominated solutions could be achieved by comparing the results with NSGA-II
regarding coverage, hypervolume and spacing metrics however, since in the pro-
posed algorithm middle part of Pareto front was focused, less spread solutions
were found. The results clearly indicate the ability of our proposed algorithm to
find a good estimation of the solutions located in the middle part of the Pareto
front.

Studying more general case of the problem and integrating the proposed idea
into other meta-heuristics rather than genetic algorithm would be interesting for
further investigations.
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Abstract. Sparse coding is an important optimization problem with
numerous applications. In this paper, we describe the problem and the
commonly used pursuit methods, and propose a best-first tree search
algorithm employing multiple queues for unexplored tree nodes. We as-
sess the effectiveness of our method in an extensive computational ex-
periment, showing its superiority over other methods even for modest
computational time.

Keywords: Sparse Coding, Tree Search.

1 Introduction

Sparse Coding is an important optimization problem in signal processing, with
applications in classification, image processing, etc. Computationally, it is an
NP-hard problem [2], meaning that exact methods are inapplicable in medium-
and large-scale instances of the problem. Thus, we take a look at some basic,
yet extremely fast heuristic methods developed specifically for this problem.
Afterwards, we propose a more sophisticated tree search method which will allow
considerable improvements, depending on the allowed CPU time: good results
are obtained quickly (even when comparing to greedy heuristics), and improved
as more time is given to the search.

The paper is structured as follows. Section 2 describes the sparse coding prob-
lem and methods commonly used in practice. Section 3 discusses tree search
methods and explains our approach to sparse coding. A computational exper-
iment and its results are discussed in Section 4, and concluding remarks and
ideas for future research are presented in Section 5.

2 Sparse Coding

In the sparse coding problem, given a dictionary defined as a matrix D ∈ Rn×k,
comprised of k prototype signals or atoms (the columns of D) of dimension
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n, and a target signal Y ∈ Rn, we seek the best approximation of Y using a
combination of at most m < k atoms. The approximation can be written as
D · X , where X ∈ Rk is a vector containing the coefficients of the atoms of D
in the linear combination, i.e., Xi is the coefficient of atom i (the i-th column-
vector in D, denoted as Di). Since we can use at most m atoms, the number of
non-zero entries in X , ‖X‖0 (using the L0 pseudo-norm) must be less or equal
to m. So, Y can be written as

Y = D ·X +R , (1)

where R ∈ Rn is a residual vector, that is, the portion of Y that cannot be
represented by the linear combination of atoms D · X . The objective of the
problem is then to minimize the L2 (Euclidean) norm of R, since ‖R‖2 = 0
means that we have a perfect representation of Y . The problem can be formally
defined as follows:

minimize ‖Y −D ·X‖2 (2)

subject to ‖X‖0 ≤ m

X ∈ Rk .

The given problem is NP-hard, which means that there are no known efficient
(polynomial) algorithms to solve it exactly. Thus, several approximate methods
have been proposed to find good values for the coefficients X within reasonable
computational time. Some of these methods are briefly described below.

First, the Matching Pursuit (MP, [3]) algorithm is a greedy heuristic method
which starts with an empty solution (X0 = 0 and R0 = Y ), and at each iteration
j = 0, 1, . . ., the atom Di with highest correlation with Rj (the current residual),
|Di · Rj|, is added to the sparse support (the set of atoms with non-zero coef-
ficients). Its coefficient Xj+1

i is then computed such that the updated residual

Rj+1 = Rj −Xj
i .Di is orthogonal to Di, i.e., R

j+1 ⊥ Di.
Another greedy heuristic, Orthogonal Matching Pursuit (OMP, [4]), improves

on MP by keeping the residual orthogonal to all atoms in the sparse support at
each iteration. This way, unlike MP, OMP avoids undoing work done in previous
iterations. An interesting characteristic of OMP is that, for any given support,
the computed coefficients are optimal. That is, given a set of atoms, OMP com-
putes the best possible approximation using those atoms. This characteristic
turns sparse coding into a purely combinatorial problem, where one must find
a subset of S ⊆ D to represent Y , using the coefficient calculation method
employed in OMP to provide optimal coefficients for any given set of atoms.

Both MP and OMP are deterministic algorithms, since the choice of the next
atom to include in the support is fixed: the atom with highest correlation with
the current residual is always chosen. These can be easily turned into proba-
bilistic algorithms, for instance, by randomly selecting an atom in the case of
a tie. However, due to the unlikelihood of ties in the atom selection step, these
variants would most often produce the same solutions as their original determin-
istic counterparts. A third method, Randomized OMP (RandOMP), is a variant
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of OMP where variability is introduced into the atom selection step (in every
iteration, not just for tie-breaking), allowing it to generate a variety of solutions
if run multiple times. The variability can be easily exploited by generating a set
of solutions and selecting the best of them.

In the next section, we propose a tree search algorithm to find good sparse
supports, and later compare it to OMP and RandOMP.

3 Tree Search

For combinatorial problems, one may create a tree where different branches
contain alternative decisions. The leaves of such tree correspond to the problem’s
search space, that is, the set of complete solutions. Thus, completely exploring
the tree and finding the leaves with best objective function value corresponds to
solving the problem to optimality.

However, this is not always possible due to the size of the search space. For
example, in the case of sparse coding, the search space corresponds to all subsets
of the k atoms with size less or equal tom. In other words, the number of possible
solutions is equal to the number of combinations of k atoms taken m at a time.

Since it is infeasible to completely explore the tree even for medium-sized
instances, tree search is commonly stopped after some given limit (e.g. CPU
time) has been reached. In this case, since the tree could not be entirely explored,
the best solution found may not be optimal, and the order of exploration of the
nodes in the tree becomes very important. If promising nodes are explored first,
then the chance of obtaining good-quality solutions when the search is stopped
increases.

There exist several schemes for the traversal order of tree nodes. Uninformed
traversal methods, such as depth-first or breadth-first, are often used, but other
methods like best-first, or variants of beam search, may lead to better perfor-
mance under time limitation. In the next section, we describe the base elements
of a tree search specific to sparse coding, and follow with the description of our
multi-queue tree search traversal scheme.

3.1 Application to Sparse Coding

A complete decision tree for sparse coding may be derived as follows. Let δ be
a node in the tree, Sδ a set corresponding to the sparse support in δ, and Rδ a
set containing the remaining atoms in δ, which may be chosen for inclusion in
the support in subsequent decisions. Note that δ is a leaf node if |Sδ| = m or
Rδ = ∅.

At the root of the tree γ, we have Sγ = ∅ and Rγ = {1, . . . , k}. Then, given a
node δ, an atom a is chosen from Rδ and two child nodes (δ′ and δ′′) are created.
On the first child node, atom a is included in the support and removed from the
remaining set, i.e.,

Sδ′ = Sδ ∪ {a}
Rδ′ = Rδ \ {a} .

(3)
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On the second child node, δ′′, atom a is simply removed from the remaining set

Sδ′′ = Sδ

Rδ′′ = Rδ \ {a} .
(4)

Using this branching method, we create two subtrees: on the first subtree all
solutions will contain atom a, and on the second subtree no solution will contain
a. This will be the basic branching scheme used in our tree search algorithm.

3.2 Multi-Queue Tree Search

The proposed tree search scheme is a variant of best-first search which uses
multiple queues to hold the tree nodes which are waiting to be explored. The
idea of using several queues comes from the fact that sparse supports of different
size are not comparable, since the larger support will in general have a smaller
residual. To avoid putting together nodes containing supports of different size, a
sub-queue is created for each support size from 0 to m− 1. No queue is created
for size m because all such supports are already complete solutions.

Each time the tree search iterates, a node is picked from one of the sub-
queues (in round-robin fashion), its two child nodes are generated and checked,
to determine if new leaves were reached. Then, non-leaf child nodes are placed
in the sub-queue corresponding to the size of their support. The specific position
of a node in a sub-queue is determined by its current residual norm: nodes with
smaller residuals are placed in positions closer to the front of the sub-queue,
meaning that these will be explored before nodes with larger residuals. Note
that this results in a per-sub-queue best-first order, using the residual norm of
the partial solutions as a scoring criterion.

Using this scheme allows us to quickly find complete solutions, since nodes are
taken from all sub-queues in turn, and at least one leaf node is generated from
each node in the (m− 1)-th sub-queue. The selection of the atom to include in
the branching step is taken from the OMP heuristic, i.e., the atom with highest
correlation with the current residual is chosen. This way, the first solution found
by our Multi-Queue Tree Search (MQTS) is identical to the one produced by
OMP, which guarantees a good minimum quality level even with very little time.
Since nodes are taken from all sub-queues in equal number, the search will not be
trapped in a part of the tree as would occur with depth-first and sometimes best-
first search. One additional benefit of tree search is that no duplicate solutions
are ever analyzed, as opposed to, for example, repeated RandOMP, where the
same supports may be selected in different runs.

In the next section, we describe a computational experiment designed to assess
the effectiveness of MQTS, comparing it to OMP and repeated RandOMP.

4 Computational Experiment

Image encoding and compression is a common application of sparse coding, tra-
ditionally using a fixed predefined dictionary. However, the use of specially de-
signed dictionaries is known to yield better results. In our experiment, we used
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the K-SVD [1] dictionary learning algorithm to build specific dictionaries for
color and greyscale images. K-SVD was run for 30 iterations on two images of
each set, using OMP as a pursuit algorithm in its sparse coding step, producing
two dictionaries with k = 500 atoms, for color and greyscale images, respectively.

After generating the dictionaries, the three pursuit algorithms were run on
the images, broken down into manageable patches of 16× 16 pixels, with a CPU
limit of 1 second per patch. Note that each patch corresponds to an instance of
sparse coding. For color images with three channels, n = 16×16×3 = 768, while
for greyscale images each patch has n = 256 since there is only one channel. For
both image sets the maximum support size m was set to 10 atoms.

The experiment was run on an Intel Atom 330 1.6GHz dual-core processor
with 2GB of main memory. All programs were implemented in Python, version
2.6.5.

Tables 1a and 1b show the total representation error (Frobenius norm) for all
color and greyscale images, respectively. The Frobenius norm of a matrix with
r rows and c columns A is given by

‖A‖F =

√√√√ r∑
i=1

c∑
j=1

A2
ij . (5)

Considering the set of patches in the original image as a matrix A (each patch
being a column in A), and the set of patches in the encoded image as a matrix B,
the representation error of the encoded image is then obtained by ε = ‖A−B‖F .

Table 1. Representation error on color (left) and greyscale (right) images, given by
the Frobenius norm of the difference between original and encoded images

(a) Results for color images.

OMP RandOMP MQTS
Image ε ε Impr. % ε Impr. %

4.1.01 5103.17 5013.60 1.76 4970.13 2.61
4.1.02 4685.48 4620.57 1.39 4560.13 2.68
4.1.03 4692.30 4609.49 1.76 4531.38 3.43
4.1.04 5650.37 5550.54 1.77 5481.10 3.00
4.1.05 6013.83 5912.02 1.69 5814.47 3.31
4.1.06 8877.23 8713.37 1.85 8623.09 2.86
4.1.07 5202.37 5119.77 1.59 5037.36 3.17
4.1.08 6400.62 6293.05 1.68 6230.79 2.65
4.2.01 9491.35 9249.17 2.55 9143.37 3.67
4.2.02 9227.53 9083.93 1.56 9001.29 2.45
4.2.03 10594.51 10531.24 0.60 10501.82 0.87
4.2.04 7642.89 7556.65 1.13 7523.30 1.56
4.2.05 11554.95 11299.07 2.21 11146.34 3.54
4.2.06 14900.17 14640.49 1.74 14475.44 2.85
4.2.07 12692.56 12458.14 1.85 12272.67 3.31

Average 8181.96 8043.41 1.67 7954.18 2.80

(b) Results for greyscale images.

OMP RandOMP MQTS
Image ε ε Impr. % ε Impr. %

5.1.09 2178.22 2146.45 1.46 2104.44 3.39
5.1.10 4685.04 4577.79 2.29 4478.13 4.42
5.1.11 1966.47 1910.98 2.82 1870.58 4.88
5.1.12 3030.55 2955.66 2.47 2886.36 4.76
5.1.13 7035.98 6860.73 2.49 6635.06 5.70
5.1.14 3509.27 3428.30 2.31 3343.48 4.72
5.2.08 6319.43 6174.19 2.30 6050.19 4.26
5.2.09 8174.90 7988.63 2.28 7818.44 4.36
5.2.10 6030.22 5976.06 0.90 5912.82 1.95
5.3.01 7743.45 7627.46 1.50 7535.48 2.69
5.3.02 12019.84 11780.98 1.99 11565.14 3.78
7.1.01 3826.14 3746.98 2.07 3671.68 4.04
7.1.02 2879.91 2820.30 2.07 2756.68 4.28
7.1.03 3801.43 3743.87 1.51 3682.09 3.14
7.1.04 3360.94 3290.87 2.08 3223.30 4.10
7.1.05 5357.74 5258.38 1.85 5167.89 3.54
7.1.06 5265.03 5167.05 1.86 5075.77 3.59
7.1.07 4717.24 4636.78 1.71 4564.54 3.24
7.1.08 3202.14 3153.27 1.53 3109.18 2.90
7.1.09 4726.41 4645.52 1.71 4569.80 3.31
7.1.10 3370.25 3286.69 2.48 3229.31 4.18
7.2.01 5602.48 5552.87 0.89 5491.84 1.97

Average 4945.59 4851.35 1.93 4761.01 3.78
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The individual image results indicate a consistent improvement of MQTS
over both OMP and repeated RandOMP. The repeated RandOMP algorithm
also proved to be better than OMP, due to its exploitation of the variability
introduced in the atom selection step. As for MQTS, its superior performance
even with very little CPU time indicates that the best-first search order is suit-
able for this problem, and the overhead of maintaining a search tree and the
algorithm’s additional complexity do not represent a significant burden. Addi-
tionally, this overhead should be diluted as CPU time is increased. The complete
absence of symmetries in the tree (no repeated solutions) is also an advantage
over RandOMP, which should manifest even more with longer run times.

A deeper analysis of the algorithm, for example by comparison with depth-
first search, should allow us to conclude whether the multi-queue mechanism to
avoid entrapment is effective or not.

5 Conclusion

We propose a tree search algorithm for obtaining good quality solutions to the
sparse coding problem. The computational results reveal superior performance of
Multi-Queue Tree Search in all test images, despite the very low CPU time bud-
get. The algorithm quickly provides solutions of reasonable quality, improving
as more time is allowed. Its performance gap over repeated Randomized Orthog-
onal Matching Pursuit should increase as more time is given, since solutions are
analyzed exactly once.

Comparing the tree search to other metaheuristics and commercial solvers is
an interesting direction for future research. Also, the performance of the algo-
rithm could be radically improved with the use of a lower bound function, since
it would allow us to discard branches of the search tree where we would be sure
not to find improving solutions.
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Abstract. To realize effective genetic operation in evolutionary many-
objective optimization, crossover controlling the number of crossed genes
(CCG) has been proposed. CCG controls the number of crossed genes
by using an user-defined parameter α. CCG with small α significantly
improves the search performance of multi-objective evolutionary algo-
rithm in many-objective optimization by keeping small the number of
crossed genes. However, to achieve high search performance by using
CCG, we have to find out an appropriate parameter α by conducting
many experiments. To avoid parameter tuning and automatically find
out an appropriate α in a single run of the algorithm, in this work we
propose an adaptive CCG which adopts the parameter α during the so-
lutions search. Simulation results show that the values of α controlled by
the proposed method converges to an appropriate value even when the
adaptation is started from any initial values. Also we show the adaptive
CCG achieves more than 80% with a single run of the algorithm for the
maximum search performance of the static CCG using an optimal α∗.

1 Introduction

The research interest of the multi-objective evolutionary algorithm (MOEA) [1]
community has rapidly shifted to develop effective algorithms for many-objective
optimization problems (MaOPs) because more objective functions should be
considered and optimized in recent complex applications. However, in general,
MOEAs noticeably deteriorate their search performance as we increase the num-
ber of objectives [2], especially Pareto dominance-based MOEAs such as NSGA-
II and SPEA2. One reason for this is that these MOEAs face difficulty to rank
solutions in the population, i.e., most of the solutions become non-dominated
and the same rank is assigned to them, which seriously spoils proper selec-
tion pressure required in the evolution process. To overcome this problem in
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selection, several methods to improve selection pressure have been proposed [2].
Contrary to these studies focusing on selection, to realize effective genetic op-
eration in MaOPs, the variable space of many-objective 0/1 knapsack problem
has been analyzed [3]. [3] shows that variables of true Pareto optimal solutions
(POS) become noticeably diverse, and true POS becomes distributed almost
uniformly in variable space by increasing the number of objectives. Also, [3]
shows that offspring created by conventional two-point and uniform crossovers
has less chance to be selected as parents because the operators becomes too
disruptive and its effectiveness decreases in MaOPs. To overcome this prob-
lem and enhance the evolution by crossover operator in MaOPs, controlling the
number of crossed genes (CCG) has been proposed [3]. CCGTX, an extension
of two-point crossover, controls the maximum length of crossed genes by using
an user-defined parameter αt. Also, CCGUX, an extension of uniform crossover,
controls the number of crossed genes by using a parameter αu. In MaOPs, CCG
using a small α remarkably improves the search performance of several MOEAs
[3]. However, to achieve high search performance by using CCG, we have to find
out an appropriate parameter α by conducting many experiments.

To avoid time consuming parameter tuning and automatically find out an
appropriate number of crossed genes in a single run of the algorithm, in this work
we propose an adaptive CCG which adopts the parameter α during the solutions
search. In this work, we analyze the adaptation process of α and verify the
effectiveness of adaptive CCGTX and CCGUX on many-objective 0/1 knapsack
problems with m = {4, 6, 8, 10} objectives.

2 Controlling the Number of Crossed Genes

2.1 CCG for Two-Point Crossover (CCGTX)

CCGTX controls the length of crossed genes by using a parameter αt. Fig.1
shows the conceptual diagram of CCGTX. First we select parents A and B from
the parent population P , and randomly choose the 1st crossover point p1. Then,
we randomly determine the length of the crossed genes � in the range [0, αt · n].
The 2nd crossover point is set to p2 = (p1 + �) mod n. The possible range
of the parameter αt is [0.0, 1.0]. αt = 1.0 indicates the conventional two-point
crossover, and the length of crossed genes becomes short by decreasing αt.
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Fig. 3. Conceptual figure of the proposed adaptive CCG

2.2 CCG for Uniform Crossover (CCGUX)

CCGUX controls the probability of 1 in the mask bits by using a parameter αu.
According to the generated mask bits, we perform uniform crossover as shown in
Fig.2. The possible range of αu is [0, 0.5]. αu = 0.5 indicates the typical uniform
crossover, and the number of crossed genes becomes small by decreasing αu.

3 Adaptive Control of the Number of Crossed Genes

CCG using a small α remarkably improves the search performance of several
MOEAs in MaOPs [3]. However, to achieve high search performance by the
conventional CCG using a static parameter α for the entire solutions search [3],
we have to find out an appropriate α by conducting many experiments. To avoid
time consuming parameter tuning and automatically find out an appropriate α
while achieving high search performance in a single run of the algorithm, in this
work we propose an adaptive CCG which adopts α so that the parameter is
automatically guided to an appropriate value during the solutions search in a
single run of the algorithm.

Fig.3 shows the conceptual figure of the proposed adaptive CCG. Since this
method is designed based on a framework used in NSGA-II and S-CDAS [3],
entire population R consists of parent (elite) population P and offspring popu-
lation Q. In the process of adaptive CCG, we use two vectors. The first one is
αs = {αs

1, α
s
2, · · · , αs

|Q|}, in which effective values of α are kept to create superior

offspring. The other one is α = {α1, α2, · · · , α|Q|}, which is used to generate
offspring for the next generation. Also, for all solutions in the offsprings popula-
tion Q, we individually put a tag showing α used to create each solution. Before
we start the solutions search, we initialize αs

j (j = 1, 2, · · · , |Q|) by initial αi.
Also, we initialize the counter that measures the number of survived offspring
c by 0. For each generation, we update the elements in αs. After selection of
new parents population P , we pick up one survived offspring from P . Then, we
increment c and replace the element αs

1+c mod |Q| with the value of α tagged on
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Fig. 4. Transition of α over generation (n = 500 and m = 8 objectives)

the current offspring. We repeat this process for all survived offspring in P . Next,
we determine the value of αj (j = 1, 2, · · · , |Q|) in α by applying polynomial
mutation [4] to all the elements in αs. Finally, we create offspring by performing
CCG using the updated elements in α to fill up new offsprings population Q.

4 Experimental Results and Discussion

4.1 Problems, Parameters and Metrics

In this work we use many-objective 0/1 knapsack problems [5] withm = {4, 6, 8, 10}
objectives, n = 500 items, and feasibility ratio φ = 0.5. We verify the effects of
CCG when it is combined with S-CDAS for parents selection similar to [3]. We
adopt crossovers with a crossover rate pc = 1.0, and apply bit-flipping muta-
tion with a mutation rate pm = 1/n. In the following experiments, we show the
average performance with 30 runs, each of which spent T = 2, 000 generations.
Population size is set to N = 200 (|P| = 100 and |Q| = 100). Also, we employ
polynomial mutation [4] with ηm = 40 to obtain α from αs.

To evaluate the search performance of MOEAs, we use Hypervolume (HV )
[6], which measures the m-dimensional volume of the region enclosed by the
obtained non-dominated solutions and a dominated reference point in objective
space. Here, we use r = (0, 0, · · · , 0) as the reference point. Obtained POS
showing a higher value of hypervolume can be considered as a better set of
non-dominated solutions from both convergence and diversity viewpoints.

4.2 Transition of α in the Proposed Adaptive CCG

First, we observe the adaptation process of α by the adaptive CCG. Fig.4 shows

the transition of average α =
∑|Q|

j=1 αj/|Q| over generations. For the adaptive
CCGTX, we plot three different results by using initial αi = {0.0, 0.5, 1.0}. For
the adaptive CCGUX, we use αi = {0.0, 0.25, 0.5}. Also, we plot α∗

t = 0.03 and
α∗
u = 0.01 maximizing HV by the static CCGTX and CCGUX as horizontal lines.
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Fig. 5. HV obtained by the adaptive and static CCG (n = 500 bits)

From the result for adaptive CCGTX shown in Fig.4 (a), we can see that
α converges to a specific value even when we start adaptation from any initial
αi. Also, the converged value of α is close to α∗

t = 0.03. Convergence of α by
the adaptive CCGTX using αi = 0.0 is fastest among three different adaptive
CCGTX. Also, from the result for adaptive CCGUX shown in Fig.4 (b), we
can see the similar tendency of the adaptive CCGTX. From these results, the
adaptation of α by the proposed adaptive CCG is thought to be working well.

4.3 Performance of the Proposed Adaptive CCGTX and CCGUX

Next, we verify the search performance of the adaptive CCG. Fig.5 (a) shows
results of HV obtained by the conventional two-point crossover, the adaptive
CCGTX with αi = {0.0, 0.5, 1.0} and the static CCGTX with the optimal α∗

t =
0.03 maximizing HV in [3]. All results are normalized by the results of the
conventional two-point crossover. Here, in the case of the static CCGTX with
α∗
t , we only show the best result among many experiments varying αt step by

step in the possible range of αt ∈ [0, 1]. On the other hand, in the cases of
the conventional two-point crossover and the proposed adaptive CCGTX, we
show results obtained by a single run of the algorithm. As De Jong mentioned
in [7], note that performance comparison between EA with static parameter
setting and EA with adaptive setting is unfair since it is likely that the static
setting is established via preliminary parameter tuning by many experiments
conducted in advance, which is not included in the comparison. Therefore, note
that comparing the adaptive CCGTX with the static CCGTX using α∗

t is not fair
comparison. In these graphs, we show the achievement of the search performance
by the adaptive CCGTX between the basic performance by conventional two-
point crossover and the maximum performance by the static CCGTX using α∗

t .
From the results of Fig.5 (a), we can see that the adaptive CCGTX using

any αi achieves higher HV than the conventional two-point crossover. Also, the
adaptive CCGTX using smaller initial adaptation range αi shows higher HV ,
and the adaptive CCGTX with αi = 0.0 achieves the highest HV among the
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adaptive CCGTX using three different initial αi. This is because the adaptive
CCGTX with αi = 0.0 realizes the fastest convergence of α to the optimal value
as shown in Fig.4 (a). Next, by comparing results of the adaptive CCGTX with
the static CCGTX using α∗, we can see that the adaptive CCGTX using αi = 0.0
achieves {82.1, 83.7, 82.1, 82.1}% of HV for the maximum HV obtained by the
static CCGTX with α∗

t for m = {4, 6, 8, 10} objectives, respectively.
Next, Fig.5 (b) shows results ofHV obtained by the typical uniform crossover,

the adaptive CCGUX with αi = {0.0, 0.25, 0.5} and the static CCGUX with the
optimal α∗

u = 0.01 maximizing HV . All results are normalized by the results
of the typical uniform crossover. From the results of Fig.5 (b), we can see the
similar tendency obtained by the adaptive CCGTX. The adaptive CCGUX with
αi = 0.0 achieves {86.6, 80.3, 83.0, 84.3}%of HV for the maximum HV obtained
by the static CCGUX with α∗

t for each m = {4, 6, 8, 10} objectives problem.

5 Conclusions

To avoid parameter tuning and automatically find out an appropriate number
of crossed genes in a single run of the algorithm, we have proposed the adap-
tive CCG which adopts the parameter α during the solutions search. Also, we
have analyzed the adaptation process of α, and have verified the effectiveness
of the adaptive CCG in the search performance on many-objective 0/1 knap-
sack problems with m = {4, 6, 8, 10} objectives. Simulation results showed that
average α controlled by the adaptive CCG converges to an appropriate value
even when the adaptation is started from any initial values. Also, we showed
that the converged value of α is close to α∗ maximizing HV by the static CCG.
Through performance verification, we showed the adaptive CCGTX and CCGUX

achieve higher HV than the conventional two-point crossover and the typical
uniform crossover. Also, we showed that the adaptive CCG using small initial
αi achieves more than 80% with a single run of the algorithm for the maximum
HV obtained by the static CCG with α∗ found through many experiments.

As future works, we want to further improve the search performance of the
proposed algorithm by refining the adaptation mechanism. Also, we are plan-
ning to study on the effective crossover operators for many-objective continuous
optimization problems.
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Abstract. A portfolio approach has become the mainstream for parallel
SAT solvers, making diversification of the search for each process more
important. In the SAT Competition 2011, we proposed a novel restart
method called counter implication restart (CIR), for sequential solvers
and won gold and silver medals with CIR. CIR enables SAT solvers
to change the search spaces drastically after a restart. In this paper,
we propose an adaptation of CIR to parallel SAT solvers to provide
better diversification. Experimental results indicate that CIR provides
good diversification and its overall performance is very competitive with
state-of-the-art parallel solvers.

1 Introduction

The Boolean satisfiability (SAT) problem asks whether an assignment of vari-
ables exists that can evaluate the given formula as true. A SAT problem is one of
NP-complete problems. A formula is given in Conjunctive Normal Form (CNF),
which is a conjunction of clauses. A clause is a disjunction of literals, where a
literal is a positive or negative form of a variable. The solvers for this problem
are called SAT solvers. The recent innovations in SAT solvers are significant
and these solvers are used in many real applications, such as circuit design and
software verification.

Many SAT solvers are based on the Davis-Putnam-Logemann-Loveland
(DPLL) algorithm. In the last decades, conflict-driven learning and backjump-
ing, Variable State Independent Decaying Sum (VSIDS) decision heuristic, and
restart were added to DPLL, which improved the performance of DPLL solvers
tremendously. These solvers are called Conflict Driven Clause Learning (CDCL)
solvers. This kind of solver is now standard and it appears to be difficult to make
a drastic improvement without a replacement of the fundamental algorithm.

Due to recent developments in multi-core hardware, we can easily run SAT
solvers in parallel on standard PCs. However, there still appears to be a need
for parallel SAT solvers. In the SAT Competition 2011, in the application cat-
egory, the number of participants for the parallel category was about only ten,
compared with more than 50 in the category of sequential solvers. Moreover,
even though the parallel solvers were run on eight cores, the performance of the
sequential solvers was very competitive with that of parallel solvers.

Many state-of-the-art parallel solvers are based on the portfolio approach [1].
In this approach, each solver runs competitively and they share learnt clauses
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between them. Each solver uses a particular parameter set and conducts a differ-
entiated but complementary search. This diversification is important for efficient
searching [2]. Diversification is attained by employing, for example, differenti-
ated restart policies [3], various strengths of saving literal polarity [4], decision
heuristics, and so on.

In the SAT Competition 2011, we submitted a solver based on MiniSAT 2.2
[5] with our novel restart method, Counter Implication Restart (CIR). Our CIR
enables SAT solvers to convert the search spaces by changing the decision-order
after the restart, and thus enables an escape from desert search spaces [6]. This
method is also valid for the diversification of the parallel SAT solver. In this
paper, we propose the adaptation of CIR for use with parallel SAT solvers.
Experimental results indicate that CIR also works efficiently in parallel solvers.

In Section 2, we explain the details of CIR. We show the experimental results
in Section 3 and conclude the paper in Section 4.

2 Counter Implication Restart (CIR)

Existing restart policies only implement the restarting of the search from the
beginning without changing anything. In many cases, this is sufficient to enable
an escape from wrong branches. However, in some instances there are desert
search spaces [6] where neither the solution nor the useful learnt clause exists.
For such cases, it is difficult for SAT solvers to escape from these desert search
spaces with a standard restart. Therefore, it is necessary to change the search
activity after the restart drastically. CIR is a novel restart policy that consists of
a standard restart and bumping the VSIDS scores to change the decision order
after the restart. CIR traverses the implication graph [7] just before the restart,
focusing on the indegrees of the variables.

A variable with a large indegree implies that this variable used to be the unit
variable in a large clause. Let us consider the transformation from CSP to SAT.
Suppose a variable a in the original CSP instance has a domain between 1 to n
(1 ≤ a ≤ n), and its corresponding Boolean variables in the SAT instance are
a1, a2, ..., an. There are clauses,

∏
1≤i<j≤n(¬ai ∨ ¬aj), that ensure at-most-one

(AMO) constraint. In addition, there is one clause, (a1∨a2∨ ...an), that ensures
at-least-one (ALO) constraint. In this setting, if any variables other than a are
assigned to certain values and it causes the ALO clause for a to be unit clause
by other constraints, such that only a variable ak(1 ≤ k ≤ n) is not assigned and
the others are assigned to false, then ak has n − 1 indegrees in the implication
graph. Such variables like a are focused on by CIR and they are selected as
decision-variables at early depth of the search tree. Before the execution of CIR,
the assignments of such variables are forced by the values of other variables.
However after CIR, they contribute early branching, and intuitively it enables
the change of the search space.

The C-language-like pseudo code of the function of CIR is shown below. This
function is called before the restart routine.

1. int run_count = 0;



Counter Implication Restart for Parallel SAT Solvers 487

2. CounterImplicationRestart() begin

3. if (run_count++ % INTERVAL > 0)

4. int indegree[nVar] = {0};

5. int max_indegree = 0;

6. [calculate indegree for each variable and max_indegree]

7. for each variable var

8. bumpScore(var, BUMP_RATIO * indegree[var] / max_indegree);

9. restart();

10. end

The variable “run count” stands for the number of times this function is exe-
cuted. The main part of the function is run for every “INTERVAL” restart. In
the seventh and eighth lines, all the VSIDS scores of the variables are bumped
in proportion to their indegrees. To bump the VSIDS score drastically, the con-
stant number of the “BUMP RATIO” needs to be relatively large. So far, we
have confirmed that the performance of CIR depends on the value of “INTER-
VAL” [8]. Fig. 1 shows the experimental result of various “INTERVAL” and
fixed “BUMP RATIO” using 200 instances from SAT Race 2008. From this re-
sult, We have found that small “INTERVAL” such as 3 is relatively better and
it affects the total performance.

In the SAT Competition 2011, in the application category, we submitted
MiniSAT 2.2 [5] with CIR, and won a gold medal in the minisat-hack track
and a silver medal in the satisfiable problem track. Our solver could solve
202 instances in total - eight more than the original MiniSAT 2.2. The source
code of this solver is available at http://www.cril.univ-artois.fr/SAT11/

solvers/SAT2011-sources.tar.gz.

3 Experimental Results

We conducted experiments to confirm the performance of CIR for parallel solvers.
In these experiments, the number of threads was set to four. As the first step,
we implemented parallel settings of MiniSAT 2.2, called “para minisat2.2”, by
using OpenMP. We modified the base number of Luby restart and the initial
VSIDS scores of the variables for “para minisat2.2”, and added the function of
learnt clause sharing. Then, we added the CIR top to “para minisat2.2”, called
“para cir minisat”. Three of the four threads used the CIR (the other ran as the
default MiniSAT 2.2). In consideration of the previous results [8], the value of
“INTERVAL” was set to 1, 2 and 3 respectively, and the “BUMP RATIO” was
fixed to 10000 for all of them.

The experiments were conducted on a Linux machine with an Intel Xeon
quad-core CPU, running at 2.67 GHz and 24 GB of RAM. The benchmarks
were 200 instances from SAT Race 2010. Timeout was set to 5000 seconds.
We used six solvers: “para minisat2.2”, “para cir minisat”, the latest version of
Cryptominisat (denoted as “cryptominisat2.9.1”), the latest version of Plingeling
(denoted as “plingeling276”), MiniSAT 2.2 in single thread (denoted as “min-
isat2.2 single”), and MiniSAT 2.2 with CIR whose “INTERVAL” is 3 in single
thread (denoted as “cir minisat single”).

http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz
http://www.cril.univ-artois.fr/SAT11/solvers/SAT2011-sources.tar.gz
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Fig. 1. The experimental result of various “INTERVAL” using 200 instances from SAT
Race 2008

Fig. 2. The cactus plot of the experimental result using 200 instances from SAT Race
2010
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Table 1. The number of solved instances for each solver

SAT UNSAT total

cryptominisat2.9.1 65 116 181

plingeling276 70 111 181

para cir minisat 69 115 184

para minisat2.2 69 111 180

minisat2.2 single 66 106 172

cir minisat single 70 111 181

The results are shown in Fig. 2 as a cactus plot and Table 1. Despite the naive
and minimum configuration for parallel searching, “para minisat2.2” provided
good performance. In addition, “cir minisat single” is competitive with parallel
solvers. The proposed solver, “para cir minisat” displayed relatively better per-
formance than both “cryptominisat2.9.1” and “plingeling276”, which won the
first and second places in the SAT Competition 2011. This result indicates that
CIR can also work in a parallel context and that CIR encourages the diversifi-
cation of search activity in a portfolio approach.

4 Conclusion

CIR can convert the search space drastically after a restart. We propose the
adaptation of CIR for parallel solvers in order to achieve good diversification.
Experimental results show that CIR performed well for parallel settings, even
though only simple functions were implemented. The vigorous conversion of the
decision-order by CIR accelerates the diversification of search spaces. As future
work, we will consider learnt clause sharing, such as clause length control [9] and
arrange the scoring system of VSIDS so that it combines better with CIR.

Acknowledgment. We appreciate the insightful comments from the reviewers
in LION 6.
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Abstract. We discuss the use of online learning of the local search
neighborhood. Specifically, we consider the Linkage Tree Genetic Al-
gorithm (LTGA), a population-based, stochastic local search algorithm
that learns the neighborhood by identifying the problem variables that
have a high mutual information in a population of good solutions. The
LTGA builds each generation a linkage tree using a hierarchical cluster-
ing algorithm. This bottom-up hierarchical clustering is computationally
very efficient and runs in O(n2). Each node in the tree represents a spe-
cific cluster of problem variables. When generating new solutions, these
linked variables specify the neighborhood where the LTGA searches for
better solutions by sampling values for these problem variables from the
current population. To demonstrate the use of learning the neighborhood
we experimentally compare iterated local search (ILS) with the LTGA
on a hard discrete problem, the nearest-neighbor NK-landscape prob-
lem with maximal overlap. Results show that the LTGA is significantly
superior to the ILS, proving that learning the neighborhood during the
search can lead to a considerable gain in search performance.

1 Introduction

Stochastic local search (SLS) is a powerful class of algorithms to solve discrete
optimization problems. Although many variations of SLS can be found in the
literature, all of them assume that the neighborhood to be explored is given be-
fore the search starts. However, the choice of the neighborhood is a critical factor
which can make all the difference between success and failure of the search. The
limitations of a fixed neighborhood are sometimes recognized, and this has led
to the development of algorithms like variable neighborhood search (VNS) [3],
where a nested set of neighborhoods is explored when the search stagnates in its
current neighborhood. However, VNS has still a static, predefined neighborhood
structure. In this paper, we show that it can be beneficial to search in a dynam-
ically changing neighborhood structure. Our aim is to learn what neighborhood
to use during the search. This neighborhood learning is guided by structural
similarities present in a set of good solutions found so far during the search
process. In the next section we briefly review the linkage tree genetic algorithm
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that precisely does this. Section 3 specifies our benchmark function, the so called
nearest-neighbor NK-landscape problem with maximal overlap. In Section 4 we
compare the LTGA with iterated local search to see how much can be gained
from dynamically learning the neighborhood to explore.

2 Linkage Tree Genetic Algorithm

The linkage tree genetic algorithm [7,8,1] is a population-based, stochastic local
search algorithm that aims to identify which variables should be treated as a de-
pendent set during the exploration phase. The LTGA represents this dependence
information in a hierarchical cluster tree of the problem variables. The linkage tree
of a population of solutions is the hierarchical cluster tree of the problem variables
using an agglomerative hierarchical clustering algorithm. The problem variables
- or cluster of variables - that are most similar are merged first. Similarity is mea-
sured by the mutual information between individual variables, or by the average
linkage clustering between clusters of variables XF iandXF j . This average link-
age clustering is equal to the unweighted pair group method with a arithmetic
mean (UPGMA) and is defined by:

IUPGMA(XF i , XF j ) =
1

|XF i ||XF j |
∑

X∈XFi

∑
Y ∈XFj

I(X,Y ).

This agglomerative hierarchical clustering algorithm is computationally very ef-
ficient. Only the mutual information between pairs of variables needs to be com-
puted which is a O(�2) operation. The bottom-up hierarchical clustering can also
be done inO(�2) computation by using the reciprocal nearest neighbor chain algo-
rithm [2]. For a problem of length � the linkage tree has � leaf nodes (the clusters
having a single problem variable) and �−1 internal nodes. Each node divides the
set of problem variables into two mutually exclusive subsets. One subset is the
cluster of variables at that node, while the other subset is the complementary
set of problem variables. The LTGA uses this division of the problem variables
as a set of variables whose values are sampled simultaneously. Sample values are
obtained by taking a random solution of the current population and copying the
corresponding variable values. Each generation the LTGA builds a linkage tree
of the current population. New solutions are generated by greedily exploring the
neighborhood of each solution in the current population. This neighborhood is
defined by the linkage tree. The LTGA traverses the tree in the opposite order of
the merging of the clusters by the hierarchical clustering algorithm. Therefore,
LTGA first samples the variables which are the least dependent on each other.
New solutions are only accepted when they have a better fitness value than the
original solution. When the tree is completely traversed, the solution obtained
is copied to the population of the next generation. This tree traversal process is
done for each solution in the current generation.
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3 Nearest-Neighbor NK-Landscape with Maximal
Overlap

To show that learning the neighborhood during the search can be very useful,
we compare ILS and LTGA on the nearest-neighbor NK-landscape problem with
maximum overlap [5,6]. The nearest-neighbor NK-problem is a subclass of the
general NK-landscape problem where the interacting bit variables are restricted
to groups of variables of length k. The fitness contributions of each group of
k-bits are specified in a table of 2k random numbers between 0 and 1. Formally,
the nearest-neighbor NK-problem is specified by its length �, the size of the sub-
problems k, the amount of overlap between the subproblems o, and the number
of subproblems m. The first subproblem is defined at the first k string positions.
The second subproblem is defined at the last o positions of the first subproblem
and the next (k−o) positions. All remaining subproblems are defined in a similar
way. The relationship between the problem parameters is � = k+(m−1)(k−o).
In this paper, we look at NK-problems with maximal overlap between the groups
of interacting variables, thus o = k − 1. For instance, for � = 100, k = 5, 0 = 4,
and m = 96 we get the subproblems: (0 1 2 3 4) (1 2 3 4 5) (2 3 4 5 6) . . .
(95 96 97 98 99) (96 97 98 99 100). An interesting property of the nearest-
neighbor NK-problem is that we can compute the global optimal solution using
dynamic programming when we use the structural knowledge of the position of
the subfunctions. However, when used as benchmark function for ILS and LTGA
the position of the bit variables are randomly shuffled and unknown to these al-
gorithms. ILS has no mechanism to figure out what bits are possibly related.
The LTGA however is be able to learn some important interactions and take
advantage of this during the search process.

4 Experiments

The neighborhood explored by ILS is defined by single bit flips of the current
solution. ILS alternates local search with stochastic perturbation of the current
local optimum. When after perturbation and subsequent local search a better
local optimum is found the search will proceed from that new solution. If not,
the newly found solution is rejected and ILS continues from the old local opti-
mum. The perturbation should be large enough such that the local search does
not return to the same local optimum in the next iteration. However the pertur-
bation should not be too large, otherwise the search characteristics will resemble
those of a multi-start local search algorithm. To investigate the impact of the
perturbation size pm of ILS on a large set of NK-problem instances we first run
a series of experiments on 100 randomly generated problems. The top subfigures
from Figure 1 show results for perturbation sizes varying from 2 to 10 (left), and
from 5 to 20 (right). The Y-axis shows the number of runs (out of 100) that suc-
cessfully found the global optimal solution to a randomly generated NK-problem
instance. The X-axis shows the number of function evaluations needed. The plots
are cumulative thus a value (10000, 20) means that 20 of the 100 runs have found
the global optimum in less (or equal) than 10000 function evaluation [4].
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Fig. 1. RLDs of single run on 100 NK-problem instances for ILS with perturbation
sizes varying from 2 to 20 and LTGA with population sizes varying from 200 to 500

Whereas in Figure 1 single independent runs are performed on 100 different
random NK-problem instance, Figure 2 shows results for 100 independent runs
on 10 specific NK-problem instances. The top left subfigure shows ILS with per-
turbation size randomly chosen between 2 and 10. The top right subfigure shows
results for LTGA with population size 500. The two bottom subfigures show
results for ILS (perturbation size between 2 and 10) and LTGA (population size
300 and 500) for the NK3 and NK2 problem instances, which are respectively
the easiest and second easiest problem to solve.

4.1 Discussion

A number of observations can be made from the experiments:

– The top subfigures of Figure 1 show that the perturbation size for ILS does
not seem to be a very sensitive parameter for the NK-problems considered.
For pm = 2 the success rate is a bit lower than for values between 3 and 10.
Closer inspection of the actual runs shows that this is due to the much higher
percentage of local searches that return to the starting solution after the per-
turbation. Performance of ILS only drops when pm becomes larger than 10.
For pm = 20 none of the 100 runs did find the global solution, showing that
multi-start local search is hopelessly inefficient for these nearest-neighbor
NK landscape problems with maximal overlap.
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Fig. 2. RLDs of 100 runs on 10 NK-problem instances for ILS with random perturba-
tion sizes between 2 and 10, and LTGA with population size 500

– In the bottom right subfigure of Figure 1 we have also plotted the results for
ILS with a perturbation size randomly chosen from the interval [2..10]. Each
time ILS perturbs a local optimum, pm is randomly selected. This way a
robust parameter setting is obtained that returns good overall performance.

– LTGA finds the global optima very reliably when the population size N =
500. Population sizes 300 and 400 result in a success rate well above 90%,
while for N = 200 the success rate becomes 83%. Of course a smaller popula-
tion size means that we need less function evaluations to reach a certain level
of performance. For N = 200 we could ideally cut the search after 200000
evaluations and then restart the search. This would result in a combined
success rate of 1 − (1 − 0.83)2 = 97% after 400000 function evaluations. In-
terestingly, this is about the same performance and efficiency result as with
a population size N = 500, so here there is no gain in restarting the LTGA
using a smaller population.

– The top subfigures of 2 show the success rate (out of 100 runs) of ILS
(pm = random[2..10]) and LTGA (N = 500) for 10 different NK-landscape
problems. Clearly, the LTGA is not only more performant and more effi-
cient, it is also more consistent. There is much less variance in the required
function evaluations to reach a certain performance level.

– ILS’s result varies significantly with the specific instances of the NK-
landscape problem. The bottom subfigures of 2 compare the results on the
two easiest instances for ILS with the LTGA. We have also drawn a tangent
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cumulative exponential distribution function to ILS’s success rate. In both
cases the success rate of ILS is not dropping lower than the cumulative ex-
ponential - rather on the contrary - showing that here also nothing can be
gained from restarting ILS after a certain number of function evaluations.

5 Conclusions

We have shown that learning a neighborhood structure during the search process
can be very beneficial in terms of performance, efficiency, and consistency. To do
so, we have compared iterated local search (ILS) using optimally tuned pertur-
bation sizes with the linkage tree genetic algorithm (LTGA) on a set of nearest-
neighbor NK-landscape problems with maximal overlap. The LTGA builds each
generation a linkage tree using a hierarchical clustering algorithm. Each node in
the tree represents a specific groups of problem variables that are linked together.
When generating new solutions, these linked variables specify the neighborhood
where the LTGA searches for better solutions by sampling values for these prob-
lem variables from the current population. In future work, we plan to investigate
the use of neighborhood learning for other problem types.
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Abstract. This paper investigates the adaptive selection of operators
in the context of Local Search. The utility of each operator is computed
from the solution quality and distance of the candidate solution from
the search trajectory. A number of utility measures based on the Pareto
dominance relationship and the relative distances between the operators
are proposed and evaluated on QAP instances using an implied or static
target balance between exploitation and exploration. A refined algorithm
with an adaptive target balance is then examined.

1 Introduction

An increasing number of solving techniques have been proposed to address larger
and more complex optimization problems but they are often difficult to adapt
and to tune for a given problem. In fact, efficient solving tools have become out
of reach for practitioners. Among the possible solving techniques, metaheuristics
are now widely to efficiently solve optimization problems. Nevertheless, attempt-
ing to design increasingly efficient metaheuristics often results in highly complex
systems which require a non-negligible amount of expert knowledge to use, for
instance to wisely choose the method’s required parameters.

A relatively recent avenue of research is the design of generic high level control
strategies in an attempt to make optimization techniques more user-friendly [3].
A classification of these different approaches can be found in [5]. In general only
one criterion, solution quality, is considered. Concerning the control of param-
eters, the most advanced techniques were first developed in the context of evo-
lutionary computation [6]. A number of operator selection strategies for genetic
algorithms (adaptive operator selection) are presented in [4]. In [7], operator
selection techniques were proposed to handle simultaneously two criteria in the
evaluation of the operators: quality and diversity of the population.

We focus on local search algorithms to solve combinatorial optimization prob-
lems. In a previous work [10], we have proposed a general framework to control
dynamically the search process of a local search algorithm targeted at problems
that can be modeled as permutations. In this paper, we improve this mechanism
by introducing new performance evaluation techniques and more sophisticated
and dynamic control features.
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The paper has five more sections. Section 2 looks at operator control in local
search. Section 3 describes the different utility values used in operator selection.
Section 4 deals with the experiments. Section 5 looks at an attempt at adaptively
changing the utility value parameter. Finally the last section is the conclusion.

2 Operator Control for Local Search

The defining feature of a good local search algorithm is the efficient exploration
of the search space in order to find the optimal solution. This requires striking
a balance between two generally conflicting objectives: exploitation (converging
towards a local optimum) with exploration (suitably sampling different areas of
the search space). One way of achieving this balance is by controlling the basic
operations (moves or operators) which drive the solution around the search space.

Our aim is to select an appropriate operator out of a set of operators to be
applied at each iteration of the local search algorithm. In order to determine
the likeliness of an operator to be useful, in terms of both exploitation and
exploration, its previous behavior needs to be recorded and analyzed. Figure 1
shows how the operator control interacts with the local search algorithm.

Utility
Computation

Operator
Selection

Operator
Application

Current
Search State

Impact
Computation

Application
Parameters

Controller

Local Search

Fig. 1. Overview : Operator control (left) and local search algorithm (right)

Impact Computation. Quality is measured directly as the change in the objective
function.

Measuring diversity is relatively straightforward in evolutionary algorithms
but less clear in single point algorithms. Here we consider a sliding window
containing the last solutions in the search path and measure the difference be-
tween them and the current candidate solution c = op(s). This difference is
computed at the variable-value couple level: the less frequent the occurrences
of the candidate solution’s variable-value couples in the path, the greater the
distance between them. The following equation formalizes this notion. Let Pi,j

be the path from iteration i through j, i ≤ j. Then dP (c, Pi,j) = 1/n ×∑n
kc=1 (1− occ(Pi,j , (kc, πkc))/|Pi,j |) where occ(Pi,j , (a, b)) returns the number

of times the variable-value couple (a, b) is found in Pi,j .

3 Operator Selection and Utility

An operator is selected with a probability proportional to some utility value
which is meant to be a reflection of its previous performance. Each operator has
its own fixed-length sliding window which keeps track of the quality difference
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and distance value for its m last applications. The sliding windows are initialized
by one application of each operator at the beginning of the search. The utility
of an operator is based on the average of the quality and distance values.

Given two vectors u and v of equal cardinality p and considering a maximiza-
tion problem, u dominates v if uk ≥ vk, ∀k ∈ {1, . . . , p} with at least one strict
inequality. This is often referred to as Pareto dominance and denoted by u + v.

The Pareto-dominance-based utility UP of operator o among the set O of n
operators would then be defined as UP (o) = |{o′|o′ ∈ O, o + o′}| + ε where ε
ensures a non-zero utility value. This utility assignment scheme (used in [10])
does not allow for a commanded balance between exploitation and exploration.

We now propose a number of ways of introducing a weight, α, in order to influ-
ence the balance. Given two operators o1 and o2 defined by the quality-distance
couples (q1, d1) and (q2, d2), we define the weighted rectilinear displacement from
o1 to o2 as dα(o1, o2) = α(d1 − d2) + (1− α)(q1 − q2).

Based on this metric, we define three utilities: the sum of displacements to
all other operators UΣ

α (o) = max(0,
∑n

i=1 dα(o, oi)), the sum of positive dis-
placements to all other operators UΣ+

α (o) =
∑n

i=1 max(0, dα(o, oi)), the sum of
displacements to all other dominated operators UΣ�

α (o) =
∑n

i=1,o�oi
dα(o, oi).

We also use the very simple weighted sum of operator quality and distance
Uα(o) = αd+ (1 − α)q.

Displacements, and their sum, are useful in the sense that they are a means of
describing quantitatively (the magnitude) and, to a lesser extent, qualitatively
(the sign or direction) the relationship between each operator and the rest. In
addition, the weight naturally introduces a quantifiable bias towards either ex-
ploration or exploitation.

4 Experiments for Weighted Operator Utility

The different utility values described in the previous section are tested on a very
classic permutation problem: the Quadratic Assignment Problem (QAP) which
models the problem of finding a minimum cost allocation of N facilities into N
locations, taking the costs as the sum of all possible distance-flow products.

Experimental Settings. Each operator is a combination of a neighborhood and a
selection function. We use a single basic neighborhood which swaps the values of
two variables. The selection functions used are random selection, first improving
neighbor, best neighbor, random selection among the 5 best neighbors, and best
among k neighbors.

A population of twelve operators is defined. Ten of these do not change the
solution configuration much (at most 6 variables are affected): half are inten-
sification oriented, half are exploration oriented. The last two are extremely
perturbative operators which randomly swap 25% and 50% of the variables.

For each instance, each algorithm is run thirty times starting with the same
thirty different random solutions and a maximum of 40 000 iterations are allowed
per run. All sliding windows have an arbitrary fixed length of 100.
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Analysis of Results. Table 1 reports the results for all the experiments on the
QAP (instances from QAPLIB [2]) in this paper. In this section all columns
except the next-to-last one is of interest to us. They report the instances, their
best known value and the results for the different utility values with fixed weights:
Uα with ε = 0.1 (the values 0.001, 0.05, 0.2 and 1 were also tested but 0.1 proved
the best across almost all instances) and UΣ

α , UΣ+
α , UΣ�

α and Uα with α taking
values 0.2, 0.5 or 0.8. The last column gives, as a comparison, the results obtained
with Robust Tabu (RoTS) [9], a dedicated local search algorithm for the QAP.
The values for each algorithm express the average percentage difference above
the best known values. Bold font indicates the best values and italics indicate
results which are within 0.05% of the best (RoTS results are not considered
because they are always better or equal).

From Table 1 it is clear that UΣ+
α is the best among the displacement-based

utility values tested and it provides consistently good results over various α.
Pareto-dominance-based selection, UP , also provides good results with respect
to all other selection methods. Our previous work had shown that it worked
slightly better than uniform selection if the operators were relatively “good”
and outperformed it when a single “very good” operator was added. Here we
can see that it remains useful despite the presence of highly disruptive operators.

When considering UP and UΣ+
α selections side-by-side, the latter is generally

equivalent to the former for lower α values and only really better on taixxa
instances. Following this observation, and also because different classes of in-
stances seem to require different values of α to obtain the best results, a method
for adapting α and obtaining better results is described in the next section.

If we consider UΣ
α , the problem is that accepting negative displacements often

negates the other positive displacements thus producing results that are, usually,
worse than uniform selection. The poor performance of UΣ�

α may be explained
by the fact that since it is based on Pareto dominance and there is no ε to ensure
a minimum selection probability, the operators at both ends of the exploration-
exploitation spectrum have no real chance of being selected because they usually
do not dominate any other operator. Finally, it appears that Uα might be too
simple and shows that the relationship between operators can be useful when
used appropriately (in UP and UΣ+

α ).
The next section looks at how the weight α can be varied during the search.

5 Adaptive Parameter Values for Operator Control

We consider the “correct” diversity (CD) strategy [8]. The CD strategy uses
the value of the quality of the solutions in the population as a means to assess
the diversity of population. If the number of solutions having the same quality
is above a certain threshold Tmax then it is assumed that the population is
too homogeneous and the commanded diversity is incremented by some step
sinc. Symmetrically, if the number of solutions having the same quality is below
another threshold Tmin the commanded diversity is decremented by some step
sdec (solutions are haphazardly distributed; exploitation is not strong enough).
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Experiments. To tune the CD parameters we use F-Race [1] an off-line tuning
algorithm. We first tested 320 parameter combinations. The winning parameters
(Tmax = 0.3, Tmin = 0.25, sinc = 0.0001, sdec = 0.1) were at either end of
the available domain for each parameter. One could thus assume that a better
combination of parameters might be obtained by extending their domain. We
therefore ran a second race with new parameter domains (144 combinations) and
obtained a new winner (Tmax = 0.35, Tmin = 0.15, sinc = 0.0001, sdec = 0.01)
which was relatively different from the previous one and did not benefit from the
new values at the extremities of each domain. For both winners the distributions
of results were statistically equivalent. This leads us to believe that the strategy
parameters need only be within some tight domain (and not one specific value)
to obtain the best results.

Results and Discussion. The results are presented in Table 1 under the UΣ+
α CD

column. It seems clear that CD is better than the other selection methods, or
within 0.05% of the best, on most instances in terms of raw results. This supe-
riority is further confirmed by a Wilcoxon signed-rank test with 95% confidence
level. If we compare UΣ+

α CD with the best values across the different α for UΣ+
α

both distributions are statistically equivalent. This leads us to conclude that the
CD strategy is good enough to produce results equivalent to the best results of
UΣ+
α with fixed α values.

Table 1. Results for QAP instances

Instance BKV Uniform UP UΣ+
α UΣ

α UΣ�
α Uα UΣ+

αCD RoTS

chr25a 3796 20.18 10.67
13.78
14.94
12.11

33.53
30.75
28.70

34.05
28.68
29.75

31.34
30.18
16.44

12.45 7.09

kra30a 88900 2.49 0.79
1.57
1.63
0.89

5.14
4.39
3.75

4.67
4.55
4.42

5.24
4.97
2.20

0.61 0.06

kra30b 91420 1.11 0.21
0 .16
0.45
0.32

3.06
2.78
2.50

3.32
3.03
2.37

3.25
2.63
0.68

0.13 0.02

nug20 2570 0.12 0.01
0.00
0 .03
0.00

1.02
0.56
1.15

1.09
0.89
1.45

1.74
0.65
0.07

0.01 0.00

nug30 6124 1.24 0.20
0.31
0.19
0.39

1.67
1.43
1.60

1.27
1.54
1.71

1.86
1.75
0.68

0.11 0.01

sko42 15812 2.28 0.29
0 .19
0.28
0.67

1.91
1.38
2.01

1.65
1.63
2.14

1.93
1.59
1.48

0.16 0.03

sko49 23386 2.48 0.36
0.21
0.27
0.81

1.37
1.34
2.31

1.46
1.60
1.74

1.57
1.42
1.91

0.24 0.13

tai30a 1818146 2.59 1.26
1.17
1.27
1.68

2.05
1.86
3.18

2.16
1.78
3.41

3.31
1.87
2.33

0.91 0.51

tai50a 4941410 4.20 2.16
1.58
1 .59
2.83

2.13
2.61
4.11

2.27
2.80
4.11

3.40
2.34
3.82

1.66 1.39

tai30b 637117113 0.43 0.13
0.44
0.35
0 .16

6.65
3.90
3.49

5.21
3.53
1.74

5.27
4.83
0.34

0.15 0.03

tai50b 458821517 2.36 0.25
0.30
0.39
0.37

4.14
3.13
2.56

4.33
3.92
2.66

5.42
4.33
1.60

0.18 0.15
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6 Conclusion

In this paper we have presented different alternatives for the selection of opera-
tors in Local Search. The main contribution of the paper was the investigation of
weighted utilities which allow a target balance to be set between exploration and
exploitation.Using staticweights the best of themwas competitivewhen compared
to the previously proposed Pareto-dominance-based utility. An adaptive strategy
for setting the weight was investigated and proved to provide improved results.

In future works we wish to look at more advanced on-line parameter setting
strategies. Another avenue of research is testing the existing proposed methods
with academic problems such as the One-MAX and long-path problems, whose
properties are well understood, in order to have a better theoretical understand-
ing of the methods.

Acknowledgments. This work was supported by Microsoft Research through
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Abstract. Utility elicitation is an important component of many ap-
plications, such as decision support systems and recommender systems.
Such systems query the users about their preferences and give recom-
mendations based on the system’s belief about the utility function.

Critical to these applications is the acquisition of prior distribution
about the utility parameters and the possibility of real time Bayesian
inference. In this paper we consider Monte Carlo methods for these prob-
lems.

1 Bayesian Utility Elicitation

Utility elicitation is a key component in many decision support applications and
recommender systems, since appropriate decisions or recommendations depend
critically on the preferences of the user on whose behalf decisions are being made.
Since full elicitation of user utility is prohibitively expensive in most cases (w.r.t.
time, cognitive effort, etc.), we must often rely on partial utility information. This
is the case of interactive preference elicitation.

As a user’s utility function will not be known with certainty, following recent
models of Bayesian elicitation [3,2,6,8], the system’s knowledge about the user
preferences is represented as probabilistic beliefs. Interactive elicitation must
selectively decide which queries are most informative relative to the goal of
making good or optimal recommendations and then, following user responses,
update the distribution. An important requirement for utility elicitation is that
inference can be made real-time, the system needs to output a recommendation
or ask a query in no more than a few seconds.

While there are a variety of query types that can be used, comparison queries
are especially natural, asking a user if she prefers one option to another. As the
number of items in a dataset can be extremely large, iterating over all possi-
ble comparison is unfeasible. Recently [8] we showed that, under very general
assumptions, the optimal choice query w.r.t. the expected value of information
(EVOI) coincides with optimal recommendation set, that is, a set maximizing
expected utility of the user selection (a simpler and submodular problem). Based
on this, we can provide algorithms that select near-optimal comparison queries
with worst-case guarantees; we also considered a local search technique that can
select the query to ask in a fraction of a second, even for datasets with several
hundreds of items.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 503–508, 2012.
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These strategies for query optimization (and similar approximated strate-
gies [6]) rely on the assumptions that prior utility information is available and
that inference is fast enough so that user answers can be used as additional
knowledge for further elicitation. As users are not usually willing to wait more
than a couple of seconds, effective inference methods are therefore crucial.

Probabilistic inference is challenging because common prior distributions are
not closed under Bayesian update for most types of preference queries (in particu-
lar for comparison queries). In this paper we consider how Monte Carlo methods
can be used in utility-based recommendation systems with the following two
purposes:

1. to make inference about the user’s possible utility function given the user’s
query responses, and

2. to acquire a prior distribution about utility parameters given preference
statements from previous users

In addition to decision support systems, recent applications of preference
learning and elicitation include preference-based reinforcement learning and
preference-based robotic systems [4,1].

The Underlying Decision Problem. The system is charged with the task of rec-
ommending an option to a user in some multi-attribute space, for instance,
the space of possible product configurations from some domain (e.g., comput-
ers, cars, apartment rental, etc.). Products are characterized by a finite set of
attributes X = {X1, ...Xn}, each with finite domain Dom(Xi). For instance,
attributes may correspond to the features of various cars, such as color, engine
size, fuel economy, etc., with X defined either by constraints on attribute com-
binations. The user has a utility function u : Dom(X ) → R. The precise form
of u is not critical, but we assume that u(x;w) is parametric in w (a vector of
utility “weights”). We often refer to w as the user’s “utility function” for sim-
plicity, assuming a fixed form for u. For sake of presentation, we assume a linear
model u(x;w) = w ·x, so that the parameter vector w effectively represents the
importance of the different features (but our framework easily extend to richer
utility models such as generalized additive utilities [5]). Given a choice set S
with x ∈ S, let S�x denote that x has the greatest utility among the items in
S (for a given utility function w).

The system’s uncertainty about the user preferences is reflected in a distri-
bution, or beliefs, P (w; θ) over the space W of possible utility functions. Here θ
denotes the parameterization of our model, and we often refer to θ as our belief
state. Given P (·; θ), we define the expected utility of an option x to be

EU (x; θ) =

∫
W

u(x;w)P (w; θ)dw =

∫
W

(w · x) P (w; θ) dw (1)

If required to make a recommendation given belief θ, the optimal option x∗(θ)
is that with greatest expected utility

EU ∗(θ) = max
x∈X

EU (x; θ) (2)
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with x∗(θ) = argmaxx∈X EU (x; θ). When the user selects an option x in a choice
set S, the belief is updated to P (w; θ|S � x). For query selection strategies, we
refer to [8].

Probabilistic Response Model. In utility elicitation, the user’s response to a choice
set tells us something about her preferences; but this depends on the user re-
sponse model. For any choice set S with xi ∈ S, let S � xi denote the event
of the user selecting xi. A response model R dictates, for any choice set S, the
probability PR(S � xi;w) of any selection given utility function w. We consider
three possible response models for choice queries.

In the noiseless response model, the user is always able to identify the preferred
item in a choice query set; thus PR(S � x;w) = 1 if w is such that x has higher
utility than any other in the choice set, 0 otherwise. The set of feasible utility
functions is refined by imposing k − 1 linear constraints of the form w · xi ≥
w · xj , j 
= i, and the new belief state is obtained by restricting θ to have non-
zero mass only on W ∩ S � xi and renormalizing. The constant noise model
instead assumes each option x, apart from the most preferred option x∗

w relative
to w, is selected with (small) constant probability

PC(S � x;w) = β ; x 
= x∗
w (3)

with β independent of w. Finally the logistic response model RL is commonly
used in choice modeling, and is variously known as the Luce-Sheppard, Bradley-
Terry, or mixed multinomial logit model. Selection probabilities are given by

PL(S � x;w) =
eγ (w·x)∑

y∈S eγ (w·y) (4)

where γ is a temperature parameter. For comparison queries (i.e., |S| = 2), PL

is the logistic function of the difference in utility between the two options. It
models the fact that is easier to make a correct choice between two items that
greatly differ in utility, rather than between two items whose utility is very close.

2 Monte Carlo Methods

Expected Utility. The belief θ is represented by a set L of l particles. Each
particle is a complete instantiation of the utility weights. Expected utility is
approximated by considering the particles and summing up the utility associated
with each particle: EU (x;L) = 1

l

∑
q∈L u(x;q). Obviously the accuracy of the

estimation depends on the number of particles.

Inference. In an online interaction with the user, the system needs to update the
belief taking into account user responses (for instance, the user select x as the
preferred outcome in the set S), resulting in a new distribution P (w; θ|S � x).
Similarly, when learning a preference model from data (preference learning), the
distribution can be updated incrementally in a batch process. We now consider
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two different techniques to update our discrete approximation of the belief dis-
tribution: importance sampling and Gibbs sampling; both methods generate a
new set of particles implementing a Bayesian update. These methods can also
be used (as shown below) to learn a prior from data.

Importance Sampling. Our methods use particles to represent assignments to the
utility parameters w, initially generated according to the given prior. In online
settings, every time the user answers a query we can propagate the particles with
importance sampling. Particle weights are determined by applying the response
model to observed responses: PR(S � x;w)(the selection probability) where S
is the choice set and x the outcome selected. In other words, the response model
is used directly as a likelihood function for importance sampling.

To overcome the problem of particle degeneration (most particles eventually
have low or no weight), we use slice-sampling [7] to regenerate particles w.r.t.
to the response-updated belief state θ whenever the effective number of samples
drops significantly. The choice of the best mixing between importance sampling
and slice sampling is an open question, as the number of necessary particles. With
50000 particles in standard elicitation problems, importance sampling requires
less than 1 second, but particle regeneration requires around 30 seconds.

Gibbs Sampling. In the case of noiseless responses it is possible to use Gibbs-
sampling in a quite efficient way. Since responses are noiseless, a statement such
that “x is preferred to y” imposes a linear constraint w ·x ≥ w ·y and the region
of feasible utilities can be represented by a convex region. We call Feasible(W)
the region of feasible w.

Gibbs sampling generates a set of utility vectors, consistent with the user’s
feedback, in the following way. Given an initial feasible weight vector w =
(w1, .., wm), we pick a dimension i (between 1 and m). We identify the lower
bound w⊥

j (fixing all other values according to w) solving a linear program

min
w̄j

w̄j (5)

s.t (w1, .., wj−1, w̄j , wj+1, .., wm) ∈ Feasible(W) (6)

and we similarly find the upper bound w�
j (by considering a maximization as

objective). We now sample a value w̄j ∼ U(w⊥
j ,w

�
j ) uniformly in the interval

between w⊥
j and w�

j and update w := (w1, .., wj−1, w̄j , wj+1, .., wm). We repeat
the process alternating the dimension j and storing the retrieved samples w.

Learning Utility Priors from Data. We want to acquire a prior distribution for
factored utilities in multi attribute domain, to be used for utility elicitation. We
are given as input a number of preference statements for several users, of the
type Sj

i � xj
i (answers to preference queries from previous users) where Sj

i is

the j-th query choice set shown to user i, and xj
i his selection.

As before, we assume a given response model R for the users, that dictates
for any choice set S, the probability of selection PR(S � xi;w). Our algorithm
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Algorithm:

1. Sample n particles uniformly from U [0, 1]m and call D0 this initial
particle set

2. For each user i:
– Importance Sampling step: re-sample n particles from D0, with

weights according to:
∏

j PR(S
j
i � xj

i ;w)

– Call Di the resulting user-specific distribution of particles
3. Merge the particles obtained with all the users: D� =

⋃
Di

Fig. 1. The algorithm for learning utility priors with Importance Sampling
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Fig. 2. The estimated γ̂ as a function of f (constant noise model)

(Figure 1) iterates over all the users and perform importance sampling using
the joint likelihood of all preference statements. In the following, a particle is a
vector of parameters uniquely identifying a utility function (n is the number of
particles, m the dimensionality of the utility parameters).

3 Learning the Response Model

We are currently experimenting these approaches in a real dataset1 of prefer-
ence rankings. 5000 users have been asked to rank two (different) sets of items
(sushis). Since often the second set include items that the same user has ranked
before, we can learn something about the “noise” of the user’s choice model. We
have the problem of simultaneously learning the user’s utility and the response
model. The input are rankings of the form (x1,x2, ..,xk), ordered outcomes from
most to least preferred. The first problem is to generalize the response model
from choice sets to rankings. We consider the joint likelihood of all pairwise com-
parisons induced by the ranking (assumed to be independent); the likelihood of
a particular instantiation of the utility parameters w (used by our sampling
techniques) is

∏
i,j:j>i PR({xi,xj}� xi;w).

1 http://www.kamishima.net/sushi/

http://www.kamishima.net/sushi/
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Constant noise model The problem is to estimate γ, the constant error ratio,
from the available rankings in the dataset. We assume a shared γ (common
to all users). For each user, we consider the fraction of times two items have
been place in a consistent order in both the first and the second ranking (we
do not observe the “ground truth”, the correct order). We call f the fraction of
“agreements” (averaged among users). Given f , we note that setting γ = 1 − f
would underestimate the error rater: assuming the user make selections based
on the constant error model given γ, the expected number of agreements is
f = (1 − γ)2 + γ2 = 2γ2 − 2γ + 1 (either the items are correctly ordered in
both rankings, or they are incorrectly ordered in both). By solving this equation
with respect to f (considering the solution between 0 and 0.5) we estimate
γ̂ = 0.5 · (1−

√
2 f − 1); see Figure 2. In the sushi dataset, the average number

of agreements is 0.85, thus we find γ̂ = 0.09.

Logistic response model. We can learn the parameter γ of the logistic response
model from data. Again, a natural assumption is to consider the value of γ shared
from all users. In this case, we can learn priors for different values of γ and select
the value that maximizes the overall likelihood of the preference statements. An
alternative is to augment utility particles with an hypothesis about the γ and
re-sample based on the likelihood of responses given both w and γ.
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Abstract. Reactive tabu search (RTS) aims at the automatic adapta-
tion of the tabu list length. The idea is to increase the tabu list length
when the tabu memory indicates that the search is revisiting formerly
traversed solutions. Once too many repetitions are encountered, an es-
cape mechanism constituting a random walk is an essential part of the
method. We propose to replace this random walk by a controlled simu-
lated annealing (SA). Excellent results are presented for various combi-
natorial optimization problems.

1 Introduction

The basic paradigm of tabu search is to use information about the search history
to guide local search approaches to overcome local optimality. In general, this is
done by a dynamic transformation of the local neighborhood. RTS aims at the
automatic adaptation of the tabu list length [1,2]. A possible specification can
be described as follows: Starting with a tabu list length s of 1, it is increased
to min{max{s + 2, s × 1.2}, bu} every time a solution is repeated, taking into
account an appropriate upper bound bu (to guarantee at least one admissible
move). If there has been no repetition for some iterations, we decrease it to
max{min{s− 2, s/1.2}, 1}. To accomplish detecting repetitions of solutions, we
apply a trajectory based memory using hash codes.

For RTS it is appropriate to include means for diversifying moves whenever
the tabu memory indicates that we are trapped in a certain region of the search
space. As a trigger mechanism one may use, e.g., the combination of at least
three solutions each having been traversed three times. The standard escape
strategy is to perform randomly a number of moves (depending on the average
of the number of iterations between solution repetitions) [1,2]. As termination
criterion one may consider a given time limit. In this paper we propose to replace
this random walk by a controlled SA.

The next section provides details of the specific hybridization that we propose.
In Section 3 we sketch the set of problems that we have currently looked at. The
paper closes with some conclusions.

Y. Hamadi and M. Schoenauer (Eds.): LION 6, LNCS 7219, pp. 509–512, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 The Hybrid Method

SA extends basic local search by allowing moves to worse solutions. Starting from
an initial solution, successively a candidate move is randomly selected; this move
is accepted if it leads to a solution with a better objective function value than the
current solution, otherwise the move is accepted with a probability that depends
on the deteriorationΔ of the objective function value. The acceptance probability
is computed according to the Boltzmann function as e−Δ/T , using a temperature
T as control parameter. Various authors describe robust realizations of this gen-
eral SA concept. Following [4], the value of T is initially high, which allows many
worse moves to be accepted, and is gradually reduced through multiplication by a
parameter α according to a geometric cooling schedule.

Instead of using randomwalk as the escape mechanism within RTS, we propose
to apply SA, which performs, depending upon the parameter setting, diversifica-
tion as well as intensification to some degree. In the computational experiments
described in this paper, we examine the effect of adapting the SA parameter val-
ues in accordance with its primary role as diversification mechanism [4]. We stick
to using α = 0.95, whereas frozenLimit is set to 1 in order to terminate earlier.
Instead of initialAcceptanceFraction = 0.4 we also use the value 0.1 which means
less diversification; instead of sizeFactor = 16 we also use the value 1 which speeds
up the cooling process; instead of frozenAcceptanceFraction = 0.02 we also use the
value 0.1 which eventually means less intensification. (Whenever a SA run is per-
formed while an overall time limit is reached we finish that run before terminating
the approach.)

3 Computational Results

We have considered various optimization problems to emphasize the impact of
the RTS/SA-hybridization proposed above. In the sequel we provide results for
the Ring Load Balancing Problem (RLB) and mention other problems where
implementations and results are available. All implementations have been per-
formed by using our HOTFRAME software [3] on an average PC.

3.1 Ring Load Balancing Problem

The RLB is an NP-hard telecommunications problem where we are given a ring
of nodes with a set of communication demands between node pairs [5]. Assuming
that the communication demands occur simultaneously, the task is to decide for
each demand whether to route it clockwise or counterclockwise, minimizing the
maximum bandwidth requirement on any of the links between adjacent nodes.
That is, given a set of n nodes and a set of demands between pairs of nodes,
find a direction for each of the demands so that the maximum of the loads on
the links in the network is as small as possible.

The solution space consists of all possible routing directions for the demands.
We employ a straightforward neighborhood that is defined by switching the
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Table 1. Computational results for the RLB

opt Esc.=RW (1s) Esc.=SA (1s) Esc.=SA (max(1,D/90)s)

ss (5;6) 131.5 131.5 131.5 131.5
(10;12) 231.6 231.6 231.6 231.6
(15;25) 507.5 507.5 507.5 507.5
(20;40) 734.5 734.5 734.5 734.5
(25;60) 1013.4 1013.3 1013.3 1013.3
(30;90) 1435.8 1434.9 1434.2 1434.2

mm (5;8) 173.6 173.6 173.6 173.6
(10;23) 422.5 422.5 422.5 422.5
(15;50) 883.8 882.2 882.2 882.2
(20;95) 1457.5 1457.4 1455.8 1455.8
(25;150) 2253.3 2241.0 2234.3 2234.2
(30;200) 3013.2 3019.1 3006.8 3006.8

ll (5;10) 186.0 186.0 186.0 186.0
(10;45) 728.6 728.3 728.3 728.3
(15;105) 1605.1 1602.2 1599.9 1599.9
(20;190) 2742.3 2736.2 2721.0 2720.6
(25;300) 4243.5 4238.7 4225.2 4221.3
(30;435) 5982.0 5987.7 5968.2 5956.9

ce (5) 155.0 155.0 155.0 155.0
(10) 349.4 349.4 349.4 349.4
(15) 530.7 530.7 530.7 530.7
(20) 721.8 721.8 721.8 721.8
(25) 991.8 991.8 991.8 991.8
(30) 1101.7 1101.7 1101.7 1101.7

Average: 0.12% 0.03% 0.01%

routing direction for one demand (node pair). The quality of such a local search
move is assessed by the implied change of the objective function value. The RLB
has been used as a testbed as optimal solutions are available and we are yet able
to show the impact of our approach. We report results for problem instances of
the RLB proposed in [5].

Table 1 provides a detailed view on the characteristics of the data. In the first
column we describe the different scenarios together with (n;D), the number of
nodes n and number of demands D. The first three blocks are non-centralized
demands while the last block gives centralized demands, i.e., D = n − 1. Each
row refers to an average of ten runs. Correspondingly, column ‘opt’ provides
(in each row) the average of the optimal solution values for these ten runs.
We provide results for the case where diversification is performed by using the
original random walk as an escape mechanism (Esc.=RW) with time limit 1
second. On the right side of the table we consider the case where the escape
mechanism is performed by applying a SA run with the standard parameter
setting as described above. The time limit is the same as before as well as one
with a possible instance-dependent extension based on the given data. While all
approaches provide small deviations from optimality the hybrid approach is able
to considerably improve on its pure counterpart.
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3.2 Other Problems

Additional problems where we have applied our ideas include, among others,
the Minimum Weight Vertex Cover Problem and the Minimum Labelling Span-
ning Tree Problem. For all considered problems we show that the hybridization
improves the numerical results of the pure RTS and the SA.

4 Conclusions

In this paper, we have presented a very simple and yet very effective modifica-
tion of the well-known reactive tabu search. As a conclusion we may deduce that
randomness helps in metaheuristics, though a controlled way of incorporating
randomness might be more successful than pure randomness. The number of suc-
cessful implementations of RTS in literature provides an option to revisit those
implementations to crosscheck whether our idea also holds in those applications
that have not been looked at in this paper.
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Rytwiński, Filip 354

Sambo, Francesco 175
Säntti, Tero 307
Sato, Hiroyuki 478
Saubion, Frédéric 497
Schneider, Marius 190
Schoenauer, Marc 160
Sebag, Michèle 160, 220
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