
Chapter 4
Choi Matrices and Dual Functionals

In the theory of positive maps from the n × n matrices Mn (=B(K) with K = C
n)

into B(H), the Choi matrix corresponding to a map is very important. The present
chapter is devoted to the close relationship between maps and their Choi matrices.
In Sect. 4.1 we present the basic definitions and results. Then in Sect. 4.2 we intro-
duce the dual functional to a map and show how its properties reflect the positivity
properties of the map.

4.1 The Choi Matrix

In this section K is a finite dimensional Hilbert space. The vector space of linear
maps of B(K) into B(H) can be identified with B(K) ⊗ B(H). In our treatment
this identification will be done via the Choi matrix for a map.

Definition 4.1.1 Let K = C
n and let φ : B(K) → B(H) be a linear map. Let (eij),

i, j = 1, . . . , n be a complete set of matrix units for B(K). Then the Choi matrix for
φ is the operator

Cφ =
n∑

i,j=1

eij ⊗ φ(eij) ∈ B(K) ⊗ B(H).

The map φ → Cφ is clearly linear and injective, and given an operator
∑

eij ⊗
aij ∈ B(K) ⊗ B(H), then we can define a linear map φ by φ(eij) = aij. Thus the
map φ → Cφ is surjective. This map is often called the Jamiolkowski isomorphism.

As defined the Choi matrix depends on the choice of matrix units (eij). The next
lemma describes it with respect to another set of matrix units. Recall the notation
B(B(K),H) is the linear space of all linear maps from B(K) into B(H).

Lemma 4.1.2 Let φ ∈ B(B(K),H) have Choi matrix Cφ with respect to a complete
set of matrix units (eij). Let (fij) be another complete set of matrix units and w
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a unitary operator such that w∗eijw = fij. Then the Choi matrix C
f
φ with respect to

(fij) is given by

C
f
φ = Ad(w ⊗ 1)(Cφ◦Adw).

Proof

Cφ◦Adw =
∑

eij ⊗ φ
(
w∗eijw

)

=
∑

eij ⊗ φ(fij)

= (w ⊗ 1)

(∑

i,j

fij ⊗ φ(fij)
(
w∗ ⊗ 1

))
.

Hence C
f
φ = (w∗ ⊗ 1)Cφ◦Adw(w ⊗ 1). �

Two special cases are important.

Proposition 4.1.3 Let ω be a linear functional on B(K) with density operator h,
viz. ω(a) = Tr(ha), a ∈ B(K). Let a ∈ B(H)+, and identify bω with the map a →
ω(a)b of B(K) into B(H). Then

Cbω = ht ⊗ b.

Proof

Cbω =
∑

eij ⊗ ω(eij)b

=
∑

ω(eij)eij ⊗ b

=
∑

Tr(heij)eij ⊗ b

=
∑

hjieij ⊗ b

= ht ⊗ b. �

Proposition 4.1.4 Suppose dimH = m < ∞. Let ξ1, . . . , ξn (resp. η1, . . . , ηm) be
an orthonormal basis for K (resp. H ), and (eij) (resp. (fkl)) be the corresponding
complete set of matrix units, so eijξk = δjkξi , and similarly for (fkl). Let V : H → K

be defined by V ηk = ∑
i vikξi . Let

g(i,k),(j,l) = eij ⊗ fkl.

Then the set (g(i,k),(j,l)) is a complete set of matrix units for B(K ⊗ H), and

CAdV =
∑

vjlvikg(i,k),(j,l)

is a positive scalar multiple of the projection onto ω = ∑
vikξi ⊗ ηk .
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Proof It is obvious that (g(i,k),(j,l)) is a complete set of matrix units for B(K ⊗ H).
Let ξ = ∑

akηk ∈ H . Then

(
ξ,V ∗ξi

) = (V ξ, ξi) =
∑

k

ak(V ηk, ξi)

=
∑

k

akvik =
∑

k

ak(ηk, vikηk) =
∑

k

(ξ, vikηk).

Thus

V ∗ξi =
∑

k

vikηk, for all i. (4.1)

It follows that

V ∗eijV ηk = V ∗eij

∑

s

vskξs = V ∗vjkξi =
∑

l

vjkvilηl.

Therefore we get

CAdV (ξs ⊗ ηt ) =
(∑

ij

eij ⊗ V ∗eijV

)
(ξs ⊗ ηt )

=
∑

ξi ⊗ vstvikηk

=
(∑

ik

eis ⊗ vstvikfkt

)
(ξs ⊗ ηt )

=
(∑

ik

vstvikg(i,k)(s,t)

)
(ξs ⊗ ηt ).

Thus

CAdV =
∑

i,j,k,l

vjlvikg(i,k)(j,l). �

In the above proposition the rank of V is reflected in how ω is written as a tensor
product of vectors.

Definition 4.1.5 Let ξ ∈ K ⊗H . Then ξ has Schmidt rank r denoted by SRξ , if r is
the smallest number m such that ξ can be written as ξ = ∑m

i=1 ξi ⊗ ηi with ξi ∈ K ,
ηi ∈ H .

Then we can find an orthonormal family ω1, . . . ,ωr ∈ H and vectors ρi ∈ K

such that ξ = ∑r
i=1 ρi ⊗ ωi . To show this, note that the span of the ηi ’s must be

r-dimensional by minimality of r , so we can write the ηi ’s as linear combinations
of r orthonormal vectors ω1, . . . ,ωr in H . Using this we can give more specific
information on V and ω in the last proposition.
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Proposition 4.1.6 Let V : H → K and ω be as in Proposition 4.1.4. Then CAdV =
λ[ω] for some λ ≥ 0. ω has Schmidt rank r if and only if rankV = r .

Proof Suppose rankV = r . Choose an orthonormal basis η1, . . . , ηm for H such
that V ∗V ηk = λkηk with λ1, . . . , λr > 0 and λk = 0 for k > r . Let ξ1, . . . , ξn be an
orthonormal basis for K . By Proposition 4.1.4

CAdV = λ[ω], ω =
∑

k

(∑

i

vikξi

)
⊗ ηk

and

V ηk =
∑

i

vikξi .

Thus by (4.1)

λkηk = V ∗V ηk =
∑

i

V ∗vikξi =
∑

i,l

vikvilηl, (4.2)

hence vil = 0 for l 	= k, and
∑

i |vik|2 = λk . Thus vik 	= 0 for some i when k ≤ r , so
that ω has Schmidt rank r .

Conversely, if SRω = r , choose and orthonormal basis η1, . . . , ηm in H such that

ω =
r∑

k=1

(∑

i

vikξi

)
⊗ ηk =

∑

ik

vikξi ⊗ ηk.

If we define V : H → K by V ηk = ∑
i vikξi 	= 0 if k ≤ r , and V ηk = 0 for k > r ,

Proposition 4.1.4 shows us that CAdV is a scalar multiplum of [ω]. By construction
V has rank r . Since φ → Cφ is an isomorphism, and AdV = AdW if and only if
W = zV, |z| = 1, the rank of V is uniquely defined whenever CAdV = λ[ω] with
λ > 0. Thus rankV = r . �

Remark 4.1.7 If dimK = n, and ι denotes the identity map of B(K) into itself, then
for V = 1 we get

Cι = CAd1 =
∑

eij ⊗ eij

is n times the projection onto 1√
n
ξi ⊗ ξi , called the maximally entangled state. For

more on entanglement see the discussion after Proposition 4.1.11 and Sect. 7.4.

Note that by Proposition 4.1.6 rankV = 1 if and only if CAdV = λ[ξ ]⊗ [η] if and
only if ω = ξ ⊗ η is a product vector.

As an immediate consequence of Proposition 4.1.4 we have

Theorem 4.1.8 Let K and H be finite dimensional and φ ∈ B(B(K),H). Then the
following conditions are equivalent:
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(i) φ is completely positive.
(ii) Cφ ≥ 0.

(iii) φ = ∑m
i=1 AdVi with Vi : H → K linear, and m ≤ dimK · dimH .

(iv) φ = ∑k
i=1 AdWi , with Wi : H → K linear and k ∈N.

Proof (i) ⇒ (ii). Let n = dimK , m = dimH . If φ is completely positive then ιn ⊗
φ : Mn ⊗ B(K) → Mn ⊗ B(H) is positive, where ιnis the identity map on Mn.
Hence

Cφ =
∑

ij

eij ⊗ φ(eij) = ιn ⊗ φ

(∑

ij

eij ⊗ eij

)
≥ 0.

(ii) ⇒ (iii). If Cφ ≥ 0 then Cφ = ∑mn
i=1 λi[ωi] with ωi an orthonormal basis for

K ⊗ H , 1 ≤ i ≤ mn, λi ≥ 0. By Proposition 4.1.4 [ωi] = CAdVi
for an operator

Vi : H → K . Thus φ = ∑mn
1 λiAdVi . If we replace Vi by λ

−1/2
i Vi whenever λi 	= 0,

we have (iii).
(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i). This follows since ιn ⊗ AdV = Ad(ιn ⊗ V ) is positive, so AdV is

completely positive (see also Lemma 1.2.2). �

The decomposition (iii) in the above theorem is usually called the Kraus decom-
position for φ.

Corollary 4.1.9 Let φ : B(K) → B(H), with K = C
n, H = Cm, and let k =

min(m,n). Then φ is completely positive if and only if φ is k-positive.

Proof Suppose φ is k-positive. Assume first k = n. Then ιn ⊗ φ is positive, so
Cφ = ιn ⊗ φ(

∑
ij eij ⊗ eij) ≥ 0. Thus by Theorem 4.1.8 φ is completely positive. If

k = m then φ∗ : B(H) → B(K) is k-positive from Proposition 1.4.3, hence by the
first part φ∗ is completely positive. Then by the same proposition φ is completely
positive. The converse is obvious. �

The above corollary can be extended to maps of C∗-algebras. Then it states that
every k-positive map of a C∗-algebra A into another B is completely positive if
and only if either A or B has all its irreducible representations on Hilbert spaces of
dimension less than or equal to k, see [93].

We shall need to know the Choi matrix for φ∗ when φ ∈ P(H), the cone of
positive maps of B(H) into itself.

Lemma 4.1.10 Let dimH = n and ξ1, . . . , ξn be an orthonormal basis for H . Let
J be the conjugation of H ⊗ H defined by

Jzξi ⊗ ξj = zξj ⊗ ξi

with z ∈ C. Let φ ∈ P(H). Then Cφ∗ = JCφJ .
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Proof Let V = (vij)i,j≤n ∈ B(H), and let eij denote the matrix units such that
eijξk = δjkξi . Then a straightforward computation yields

AdV (ekl) = V ∗eklV = (vkivlj )ij.

Since V ∗ = (vji) it follows that

AdV ∗(ekl) = V eklV
∗ = (vikvjl)ij.

From the definition of J it thus follows that

JCAdV J (zξp ⊗ ξq) = J

(∑

ijkl

ekl ⊗ vkivlj eij

)
zξq ⊗ ξp

=
∑

vkivlj eijξp ⊗ zeklξq

=
(∑

ik

vikvjlekl ⊗ eij

)
(zξp ⊗ ξq)

=
(∑

ekl ⊗ V eklV
∗)(zξp ⊗ ξq)

= CAdV ∗(zξp ⊗ ξq),

where we at the third equality sign exchanged (i, j) with (k, l). Since the vectors
ξp ⊗ ξq form a basis for H ⊗ H , JCAdV J = CAdV ∗ . Now, if φ is a positive map
then Cφ is self-adjoint, hence the difference between two positive operators, which
both are Choi matrices for completely positive maps by Theorem 4.1.8. Hence by
Theorem 4.1.8 again φ is a real linear sum of maps AdV . By Proposition 1.4.2 the
adjoint map of AdV is AdV ∗. Applying this to each summand AdV , we thus get
JCφJ = Cφ∗ . �

Proposition 4.1.11 Let H be a Hilbert space of arbitrary dimension. Let φ ∈
B(B(K),H). Then φ is positive if and only if Tr(Cφ a ⊗ b) ≥ 0 for all a ∈ B(K)+
and b a positive trace class operator on H .

Proof Computing we get

Tr(Cφa ⊗ b) =
∑

ij

Tr
((

eij ⊗ φ(eij)
)
(a ⊗ b)

)

=
∑

ij

Tr(eija)Tr
(
φ(eij)b

)

=
∑

ajiTr
(
φ(eij)b

)

= Tr
(
φ
(
at

)
b
)
.
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Since this holds for all positive trace class operators b, and a ≥ 0 if and only if
at ≥ 0, φ(a) ≥ 0 if and only if Tr(Cφa ⊗ b) ≥ 0 for all positive a and b. �

In quantum information theory Cφ is often called an entanglement witness when
φ is not completely positive, because the proposition shows that if h = ∑

ai ⊗bi ≥ 0
is the density operator for a state ω on B(K ⊗H), then ω is entangled, i.e. h cannot
be written in the above form with all ai, bi ≥ 0, if there exists a positive map φ :
B(K) → B(H) such that Tr(Cφh) < 0.

Let φ ∈ B(B(K),H) be a self-adjoint linear map, so φ(a) is self-adjoint when a

is self-adjoint. Then it is easily seen that Cφ is a self-adjoint operator, hence is the
difference of two positive operators C+

φ and C−
φ such that C+

φ C−
φ = 0.

We shall see later, Theorem 7.4.3, that C−
φ contains much information. Presently

we concentrate on C+
φ . Let c ≥ 0 be the smallest positive number such that c1 ≥ Cφ .

Then c = ‖C+
φ ‖. Hence, if c 	= 0 there exists a map φcp : B(K) → B(H) such that

its Choi matrix Cφcp = 1 − 1
c
Cφ is a positive operator. Thus if Tr is identified with

the positive map a → Tr(a)1, it is straightforward to show that CTr = 1, so 1
c
φ =

Tr − φcp. By Theorem 4.1.8, φcp is completely positive. We have

Theorem 4.1.12 Let φ ∈ B(B(K),H) be a self-adjoint linear map such that −φ is
not completely positive. Then there exists a completely positive map φcp : B(K) →
B(H) such that

∥∥C+
φ

∥∥−1
φ = Tr − φcp.

Furthermore, φ is positive if and only if ρ(Cφcp) ≤ 1 for all product states ρ =
ω1 ⊗ ω2 on B(K) ⊗ B(H).

Proof The existence of φcp was shown above. To show the second part let ρ(x) =
Tr ⊗ Tr((a ⊗ b)x) be a product state on B(K) ⊗ B(H) with density operator a ⊗ b.
Then

ρ(Cφcp) = Tr ⊗ Tr(Cφcpa ⊗ b),

so that Tr(Cφa ⊗b) ≥ 0 if and only if ρ(Cφcp) ≤ 1. Hence the theorem follows from
Proposition 4.1.11. �

Recall from Definition 1.2.1 that a map φ is k-positive if ιk ⊗ φ is positive,
where ιk denotes the identity map on Mk . We now give several characterizations of
k-positive maps, one of them in terms of the Choi matrix.

Definition 4.1.13 An operator C on K⊗H is called k-block positive if (C
∑k

i=1 ξi ⊗
ηi,

∑k
i=1 ξi ⊗ ηi) ≥ 0 for all choices of vectors ξ1, . . . , ξk ∈ K , and η1, . . . , ηk ∈ H .

Remark 4.1.14 Note that a vector ξ ∈ K ⊗H is of the form
∑k

i=1 ξi ⊗ηi if and only
if ξ = (1 ⊗ q)ψ for a vector ψ ∈ K ⊗ H and projection q ∈ B(H) of dimension k.
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Indeed, if ξ = ∑k
i=1 ξi ⊗ ηi let q denote the projection onto the span of η1, . . . , ηk ,

then ξ = (1 ⊗ q)ξ . Conversely, if ξ = (1 ⊗ q)ψ with ψ = ∑n
i=1 ξi ⊗ηi , q as above,

we can choose a basis γ1, . . . , γk for qH such that qηi = ∑
αijγj . Then

1 ⊗ q(ψ) =
∑

ξi ⊗ qηi =
∑

αijξi ⊗ γj =
k∑

j=1

(∑

i

αijξi

)
⊗ γj .

The same argument also yields that ξ = ∑k
1 ξi ⊗ ηi if and only if ξ = p ⊗ q(ψ) for

ψ ∈ K ⊗H , and p and q k-dimensional projections in B(K) and B(H) respectively.

Theorem 4.1.15 Let φ ∈ B(B(K),H) and k ≤ min(dimK,dimH). Then the fol-
lowing conditions are equivalent.

(i) φ is k-positive.
(ii) φ ◦ AdV is completely positive for all V ∈ B(K) with rankV ≤ k.

(iii) AdW ◦ φ is completely positive for all W ∈ B(H) with rankW ≤ k.
(iv) Cφ is k-block positive.

Proof The proof goes as follows. (i) ⇔ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii). Let φ be k-positive and V ∈ B(K) with rankV ≤ k. Let e = supportV .

Then dim e ≤ k. Thus

φ ◦ AdV = φ ◦ AdV ◦ Ade : eB(K)e → B(H).

Since eB(K)e ∼= Ml with l ≤ k, and φ is k-positive, φ ◦ AdV is completely positive
by Corollary 4.1.9.

(ii) ⇒ (i). Let (eij)i,j≤k be a complete set of matrix units for Mk . Let a =∑
i,j≤k eij ⊗aij ∈ (Mk ⊗B(K))+. Again by Corollary 4.1.9 a = Cψ for a completely

positive map ψ : Mk → B(K). By Theorem 4.1.8 ψ = ∑
AdVi with Vi : K → C

k .
Since k ≤ dimK we may assume C

k ⊂ K , hence Vi ∈ B(K) with rankVi ≤ k for
all i. Thus by (ii) φ ◦ ψ is completely positive, hence by Theorem 4.1.8

ιk ⊗ φ(a) = ιk ⊗ φ(Cψ) = Cφ◦ψ ≥ 0,

so that φ is k-positive.
(ii) ⇒ (iv). Let ξ = ∑k

1 ξi ⊗ ηi ∈ K ⊗ H have Schmidt rank k. Let q be a k-
dimensional projection in B(H) such that qηi = ηi for all i. Let (eij) be a complete
set of matrix units in B(K) such that Cφ = ∑

eij ⊗ φ(eij). Then we have

CAdq◦φ =
∑

eij ⊗ Adq
(
φ(eij)

) = Ad(1 ⊗ q)(Cφ).

Thus by (ii) and Theorem 4.1.8 Ad(1 ⊗ q)(Cφ) ≥ 0. It follows that

(Cφξ, ξ) = (
Cφ(1 ⊗ q)ξ, (1 ⊗ q)ξ

) = (
Ad(1 ⊗ q)(Cφ)ξ, ξ

) ≥ 0.

Thus Cφ is k-block positive.
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(iv) ⇒ (iii). Let W ∈ B(H) with rankW ≤ k. Let ξ = ∑
ξi ⊗ ηi ∈ K ⊗ H . Let

e support W , so dim e ≤ k. Then there exist k vectors α1, . . . , αk ∈ H such that
eηi = ∑n

1 cijαj , cij ∈ C. We can therefore write 1 ⊗Wξ = ∑k
1 ξ ′

j ⊗βj with ξ ′
j ∈ K ,

βj ∈ H . Thus 1 ⊗ Wξ has Schmidt rank≤ k, hence by the assumption that Cφ is
k-block positive (Cφ(1 ⊗ W)ξ, (1 ⊗ W)ξ) ≥ 0. Thus

CAdw◦φ = (1 ⊗ AdW)(Cφ) ≥ 0,

so that AdW ◦ φ is completely positive.
(iii) ⇒ (i). Let V ∈ B(H) with rankV ≤ k. Then (AdV )∗ = AdV ∗. Hence

φ∗ ◦ AdV ∗ = (AdV ◦ φ)∗ : B(H) → B(K).

Since by assumption AdV ◦φ is completely positive, so is φ∗ ◦AdV ∗. We have there-
fore shown that φ∗ ◦AdW is completely positive for all W ∈ B(H) with rankW ≤ k.
Therefore by the equivalence (i) ⇔ (ii) applied to φ∗ : B(H) → B(K), φ∗ is k-
positive, hence so is φ. �

4.2 The Dual Functional of a Map

In the previous section we studied the duality between positive maps of B(K)

into B(H) as matrices via the Jamiolkowski isomorphism φ → Cφ ∈ B(K ⊗ H).
In this section we consider the duality between maps and linear functionals on
B(K)⊗T (H), or more generally A⊗T (H), where T (H) denotes the trace class
operators on B(H), and A is an operator system, i.e. a unital linear subspace of
B(K) such that a ∈ A implies a∗ ∈ A.

Definition 4.2.1 Let A be an operator system and φ : A → B(H) a bounded linear
map. Then its dual functional φ̃ on A ⊗ T (H) is the functional defined by

φ̃(a ⊗ b) = Tr
(
φ(a)bt

)
,

where t is the transpose on B(H) defined by a fixed orthonormal basis.

φ̃ is well defined because φ(a) is a bounded operator in B(H), and b is a trace
class operator. Let the projective norm on the algebraic tensor product of A and
T (H) be defined by

‖x‖∧ = inf

{
∑

‖ai‖‖bi‖1 : x =
n∑

i=1

ai ⊗ bi, ai ∈ A,bi ∈ T (H)

}

where ‖b‖1 is the trace norm ‖b‖1 = Tr(|b|). We denote by A⊗̂T (H) the com-
pletion of the algebraic tensor product with respect to the projective norm, and by
A+⊗̂T (H)+ the closed cone generated by operators

∑
i ai ⊗ bi with ai ∈ A+, bi ∈

T (H)+. A⊗̂T (H) is called the projective tensor product of A and T .
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Lemma 4.2.2 Let A be an operator system. Then the map φ → φ̃ is an iso-
metric isomorphism of the space of bounded linear maps of A into B(H) and
(A⊗̂T (H))∗. Furthermore φ is positive if and only if φ̃ is positive on A+⊗̂T (H)+.

Proof Let x = ∑n
1 ai ⊗ bi ∈ A⊗̂T (H) be a finite tensor. Then

∣∣φ̃(x)
∣∣ =

∣∣∣∣
∑

i

Tr
(
φ(ai)b

t
i

)∣∣∣∣

≤
∑∣∣Tr

(
φ(ai)b

t
i

)∣∣

≤
∑∥∥φ(ai)

∥∥‖bi‖1

≤ ‖φ‖
∑

‖ai‖‖bi‖1.

Thus ‖φ̃‖ ≤ ‖φ‖.
Conversely, since ‖ ‖∧ is a cross norm,

‖φ‖ = sup
‖a‖=1

∥∥φ(a)
∥∥ = sup

‖a‖=1,‖b‖1=1

∣∣Tr
(
φ(a)bt

)∣∣

= sup
∣∣φ̃(a ⊗ b)

∣∣

= sup‖φ̃‖‖a ⊗ b‖
≤ sup‖φ̃‖‖a‖‖b‖1

≤ ‖φ̃‖.

Thus the map φ → φ̃ is an isometry. The last part of the lemma follows from the
proof of Proposition 4.1.11. �

The connection between the Choi matrix Cφ and φ̃ is given by the following
result.

Lemma 4.2.3 Let K be finite dimensional and φ ∈ B(B(K),H). Then Ct
φ is the

density operator for φ̃.

Proof Since the transpose is Tr-invariant, if a ⊗ b ∈ B(K) ⊗ T (H),

Tr
(
Ct

φa ⊗ b
) = Tr

(
Cφat ⊗ bt

)

=
∑

ij

Tr
(
eija

t ⊗ φ(eij)b
t
)

=
∑

ij

Tr
(
eija

t
)
Tr

(
φ(eij)b

t
)
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=
∑

aijTr
(
eijφ

∗(bt
))

= Tr
(
aφ∗(bt

))

= φ̃(a ⊗ b),

proving the lemma. �

We shall often encounter the situation when we compose a map by the transpose
map both in the domain and the range of φ. Let as before t denote the transpose
both of B(K) and B(H).

Definition 4.2.4 Let φ ∈ B(B(K),H). Then we denote by

φt = t ◦ φ ◦ t.

The basic properties are given in

Lemma 4.2.5 Let φ ∈ B(B(K),H). Then we have

(i) If φ is k-positive (resp. completely positive), so is φt .
(ii) If φ = AdV then φt = AdV t∗.

(iii) If dimK < ∞ then Cφt = Ct
φ , where Ct

φ is the transpose on B(K ⊗ H).

Proof (i) Let ι = ιk be the identity map on Mk . Then

ι ⊗ φt = (ι ⊗ t) ◦ (ι ⊗ φ) ◦ (ι ⊗ t) = (t ⊗ t) ◦ (ι ⊗ φ) ◦ (t ⊗ t),

is positive, since t ⊗ t is the transpose on B(K ⊗H), so is a positive map, and ι⊗φ

is a positive map when φ is k-positive.
(ii) (AdV )t (a) = (AdV (at ))t = (V ∗atV )t = V taV ∗t .
(iii) Cφt = ∑

eij ⊗ φt (eij) = ∑
eij ⊗ φ(eji)

t = (
∑

eji ⊗ φ(eji))
t = Ct

φ . �

The relationship between φ̃ and φt is given in the next result.

Lemma 4.2.6 Let K and H be finite dimensional. Let π : B(K) ⊗ B(K) →
B(K) be defined by π(a ⊗ b) = bta. Then Tr ◦ π is positive and linear. Let
φ ∈ B(B(K),H). Then

φ̃ = Tr ◦ π ◦ (
ι ⊗ φ∗t

)
.

Proof Linearity of Tr ◦ π is clear. To show positivity let x = ∑
ai ⊗ bi ∈ B(K) ⊗

B(K). Then

Tr ◦ π
(
xx∗) =

∑

ij

Tr ◦ π
(
aia

∗
j ⊗ bib

∗
j

)

=
∑

Tr
(
b∗t
j bt

iaia
∗
j

)
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=
∑

ij

Tr
((

bt
j aj

)∗(
bt
iai

))

= Tr
((∑

bt
j aj

)∗(∑
bt
iai

))
≥ 0,

so Tr ◦ π is positive. The formula in the lemma follows from the computation

φ̃(a ⊗ b)=Tr
(
φ(a)bt

)=Tr
(
aφ∗(bt

))=Tr
(
aφ∗t (b)t

)=Tr ◦ π
(
ι ⊗ φ∗t (a ⊗ b)

)
.

�

In the finite dimensional case we showed in Theorem 4.1.8 that φ ∈ B(B(K),H)

is completely positive if and only if Cφ ≥ 0, hence by Lemma 4.2.3 if and only if φ̃

is positive. We now show a generalization of this. When H is infinite dimensional
we define the positive cone (A⊗̂T (H))+ in A⊗̂T (H) for A an operator system,
to be the closure of the positive cone in the algebraic tensor product A ⊗ T (H).

Theorem 4.2.7 Let A be an operator system and φ : A → B(H). Then φ is com-
pletely positive if and only if φ̃ is a positive linear functional on A⊗̂T (H).

Proof We first assume H is finite dimensional. Then we have

φ̃t (a ⊗ b) = φ̃∗(b ⊗ a), a ∈ A,b ∈ B(H). (4.3)

This follows from the computation

φ̃t (a ⊗ b) = Tr
(
φ
(
at

)t
bt

) = Tr
(
atφ∗(b)

) = φ̃∗(b ⊗ a).

Assume φ̃ is a positive linear functional on A ⊗ B(H). Since 1 ⊗ 1 is an in-
terior point of the positive cone (A ⊗ B(H))+ in the algebraic tensor product
A ⊗ B(H), and φ̃ is positive on (A ⊗ B(H))+, it follows from Appendix A.3.1
that φ̃ has an extension to a positive linear functional ρ on B(K) ⊗ B(H). Since
ρ(1 ⊗ 1) = φ̃(1 ⊗ 1), ρ is bounded, and by the definition of the dual functional and
Lemma 4.2.2, ρ is of the form ρ = ψ̃ for a positive map ψ ∈ B(B(K),H).

Let
∑

i ai ⊗ bi ≥ 0 in B(K)⊗B(H). Then
∑

at
i ⊗ bt

i = (
∑

ai ⊗ bi)
t ≥ 0, hence∑

bt
i ⊗ at

i ≥ 0. Thus by (4.3)

ψ̃∗(∑
bi ⊗ ai

)
= ψ̃ t

(∑
ai ⊗ bi

)
= ψ̃

(∑
at
i ⊗ bt

i

)
≥ 0,

so ψ̃∗ is positive.
To continue the proof assume first K finite dimensional. Then, ψ̃∗ ≥ 0 im-

plies Cψ∗t = Ct
ψ∗ ≥ 0 by Lemma 4.2.3, hence ψ∗ is completely positive by The-

orem 4.1.8. In the general case let e be a finite dimensional projection in B(K) such
that et = e. Then

(
Ade ◦ ψ∗)̃ = ψ̃∗t ◦ Ad(1 ⊗ e), (4.4)
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which is positive, so ψ∗ : B(H) → eB(K)e is completely positive by the finite
dimensional case. Since this holds for all e as above, ψ∗ is completely positive. But
then ψ is completely positive by Proposition 1.4.3. Since ψ̃ is an extension of φ̃, ψ

is an extension of φ. Thus φ is completely positive.
If dimH = ∞, we use the same argument, and let (eγ ) be a net of finite dimen-

sional projections in B(H), such that eγ = et
γ , and eγ → 1. Then as in (4.4)

(Adeγ ◦ φ)̃ = φ̃t ◦ Ad(1 ⊗ eγ ) (4.5)

is positive, so by the first part of the proof Adeγ ◦ φ is completely positive, and
finally by taking limits φ is completely positive.

Conversely suppose φ is completely positive. Assume first that dimH = n < ∞,
so B(H) = Mn. Let φn = φ ⊗ ιn. Then φn is a positive map A ⊗ Mn → Mn ⊗ Mn.
Let π : Mn ⊗ Mn → Mn be defined by φ(a ⊗ b) = bta. By Lemma 4.2.6 Tr ◦ π is
positive. Let

∑
i ai ⊗ bi ∈ (A ⊗ Mn)

+. Then we have

φ̃

(∑

i

ai ⊗ bi

)
=

∑

i

Tr
(
φ(ai)b

t
i

)

=
∑

i

Tr ◦ π
(
φ(ai) ⊗ bi

)

= Tr ◦ π

(
φn

(∑

i

ai ⊗ bi

))
≥ 0,

so φ̃ is positive. In the general case let (eγ ) be an increasing net in B(H) as in the
previous paragraph. Then Adeγ ◦ φ : A → eγ B(H)eγ is completely positive, so by
the above (Adeγ ◦ φ)̃ is positive.

For each a ∈ B(H), eγ aeγ → a strongly. Thus for each trace class operator b,

Tr(aeγ beγ ) = Tr(eγ aeγ b) → Tr(ab).

Hence eγ beγ → b as trace class operators. Thus if
∑

ai ⊗ bi ∈ (A ⊗ T (H))+ we
get

φ̃

(∑

i

ai ⊗ bi

)
=

∑

i

Tr
(
φ(ai)b

t
i

)

= lim
∑

i

Tr
(
φ(ai)eγ bt

i eγ

)

is positive, since
∑

i ai ⊗ eγ bieγ = Ad(1 ⊗ eγ )(
∑

ai ⊗ bi) ≥ 0. Thus φ̃ ≥ 0. �

4.3 Notes

The results in Sect. 4.1 are due to several authors. The Kraus decomposition was
noted by Kraus [41] and the Jamiolkowski isomorphism by Jamiolkowski [30]
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a year later. Then Choi introduced the Choi matrix [7] and showed Theorem 4.1.8.
Propositions 4.1.4, 4.1.6, and Theorem 4.1.15 can be found in [67–69], but some of
these results were previously known in the literature in one form or the other, see
[2, Sect. 10.3].

The results in Sect. 4.2 can be found in [78], except for Lemma 4.2.6, which is
taken from [80].
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