
Chapter 3
Extremal Positive Maps

The unit ball of the set of positive maps from a C∗-algebra into another C∗-algebra
is a convex set, and it is natural to expect that the maps which are extreme points,
have special properties. We shall in the present chapter study different classes of
extremal maps.

Section 3.1 is on general results and the most obvious extremal maps. Section 3.2
is devoted to Jordan homomorphisms, Sect. 3.3 to maps such that the composition
with pure states are pure states, and Sect. 3.4 to maps called nonextendible maps,
which have strong extremality properties.

Finally, in Sect. 3.5 we prove a Radon-Nikodym theorem for completely positive
maps together with its applications to extremal maps.

3.1 General Properties of Extremal Maps

Definition 3.1.1 Let A and B be C∗-algebras and φ : A → B a positive map. We
say that φ is extremal if the only positive maps ψ : A → B , such that φ − ψ is
positive, are of the form λφ with 0 ≤ λ ≤ 1.

Thus if φ is positive with ‖φ‖ ≤ 1, φ cannot be the convex combination
λψ1 + (1 − λ)ψ2 of two positive maps ψ1 and ψ2 of norms less than or equal to 1
unless both ψ1 and ψ2 are positive multiples of φ. We list some simple properties
of extremal maps.

Lemma 3.1.2 Let φ : A → B be a positive map, A and B being C∗-algebras. Then
we have:

(i) If e is a projection in A such that φ(e) = φ(1), then the restriction of φ to eAe

is an extremal map eAe → B if and only if φ is extremal.
(ii) If α : B → C with C another C∗-algebra, is an order-isomorphism of B onto

C, then α ◦ φ is extremal if and only if φ is extremal.
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Proof (i) Assume φ is extremal and ψ : eAe → B a positive map such that 0 ≤ ψ ≤
φ|eAe . Extend ψ to a map ψ0 on A defined by ψ0(a) = ψ(eae).

If 0 ≤ a ∈ A then, since φ(a) = φ(eae) from the assumption on φ,

0 ≤ ψ0(a) = ψ(eae) ≤ φ(eae) = φ(a).

Since φ is extremal, ψ0 = λφ, hence ψ = λφ|eAe for some λ ≥ 0.
Conversely, if 0 ≤ ψ ≤ φ then 0 ≤ ψ |eAe ≤ φ|eAe , so extremality of φ|eAe im-

plies ψ |eAe = λφ|eAe . Since 0 ≤ ψ(1 − e) ≤ φ(1 − e) = 0, it follows that

ψ(a) = ψ(eae) = λφ(eae) = λφ,

so φ is extremal.
(ii) This is obvious, since 0 ≤ ψ ≤ α ◦ φ if and only if 0 ≤ α−1 ◦ ψ ≤ φ. �

As remarked in Sect. 1.1 we use the notation B(A,H) (resp. B(A,H)+) for the
bounded linear (resp. positive) maps of A into B(H).

Proposition 3.1.3 Let H and K be Hilbert spaces and V : H → K a bounded
linear operator. Then the map AdV (a) = V ∗aV is extremal in B(B(K),H)+.

Proof We first consider the case when K = H and V = 1, so AdV = ι—the identity
map. Suppose ψ is a positive map of B(H) into itself such that ψ ≤ ι. Let f be
projection in B(H). Then ψ(f ) ≤ f , hence by Lemma 2.3.5 applied to M = B(H),
B = B(H)sa, ψ(a) = ψ(1)a for all a ∈ B(H). In particular ψ(1) commutes with a

for all a ∈ B(H), so ψ(1) = λ1, and ψ = λι, proving that ι is extremal.
We next consider the case when V is invertible. Then AdV is an order-

isomorphism, so by the above paragraph and Lemma 3.1.2, AdV = ι ◦ AdV is ex-
tremal.

Let e = rangeV ∗ = supportV , and f = rangeV = support V ∗. Thus AdV :
f B(K)f → eB(H)e. If V : eH → f K is invertible, then AdV : f B(K)f →
eB(H)e is extremal in B(f B(K)f, eH)+ by the previous paragraph. Since any
positive map ψ ≤ AdV maps 1 − f to 0 and eψ(a)e = ψ(a) for all a, it follows
that AdV is extremal in B(B(K),H)+.

Finally, if V is not invertible on eH choose an increasing net (eγ ) of projections
converging strongly to e such that V eγ is invertible on eγ H . Let fγ = rangeV eγ .
Then by Appendix A.1 fγ → f strongly. If ψ ≤ AdV is a map in B(B(K),H)+
then ψ ◦ Adfγ ≤ AdV ◦ Adfγ = Adfγ V , so by the previous paragraph, ψ ◦ Adfγ =
λγ Adfγ V for a number λγ ≥ 0. Let λ be a limit point for (λγ ), then

ψ = lim
γ

ψ ◦ Adfγ = lim
γ

λγ Adfγ V = λAdV,

proving that AdV is extremal. �

Proposition 3.1.4 Let A and B be C∗-algebras and φ : A → B be an extreme point
of the convex set of positive unital maps of A into B . Let a ∈ A belong to the center of
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A and assume φ(a) belongs to the center of B . Then a belongs to the multiplicative
domain for φ.

Proof We have

a = 1

2

(
a + a∗) + 1

2i
i
(
a − a∗).

Since a∗ satisfies the same assumptions as a, we may assume a is self-adjoint and
‖a‖ < 1. Then ‖φ(a)‖ < 1, so 1−a and 1−φ(a) are positive and invertible. Define
ψ : A → B by

ψ(b) = φ
(
(1 − a)b

)(
1 − φ(a)

)−1
.

Since 1 − a and (1 − φ(a))−1 belong to the centers of A and B respectively, there
is λ > 0 such that 0 ≤ ψ ≤ λφ. Furthermore

ψ(1) = φ(1 − a)
(
1 − φ(a)

)−1 = 1,

so by assumption on φ as an extreme point, ψ = φ. Thus (1 − φ(a))φ(b) = φ(1 −
a)b), hence φ(a)φ(b) = φ(ab) for all b ∈ A. �

Our next result is contained in Theorems 3.4.3 and 3.4.4 in Sect. 3.4, but will be
needed in Sect. 3.3.

Proposition 3.1.5 Let A and B be unital C∗-algebras and φ a Jordan homomor-
phism of A into B . Then φ is an extreme point of the unit ball of positive maps from
A → B .

Proof We may assume φ(1) = 1. Suppose φ = 1
2 (ψ + η) with ψ , η belonging to

the unit ball of positive maps of A into B , and suppose there exists a self-adjoint
operator a ∈ A such that ψ(a) 	= η(a). Then by the Kadison-Schwarz inequality,
Theorem 1.3.1,

φ
(
a2) = φ(a)2 = 1

4

(
ψ(a) + η(a)

)2 = 1

2

(
ψ(a)2 + η(a)2) − 1

4

(
ψ(a) − η(a)

)2

<
1

2

(
ψ(a)2 + η(a)2) ≤ 1

2

(
ψ

(
a2) + η

(
a2))

= φ
(
a2).

This is a contradiction so ψ(a) = η(a), and hence ψ = η = φ. �

Corollary 3.1.6 Let A and B be unital abelian C∗-algebras. Let φ : A → B be a
unital positive map. Then φ is a homomorphism if and only if φ is an extreme point
of the convex set of unital positive maps of A into B .
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Proof This is immediate from Propositions 3.1.4 and 3.1.5. �

We conclude this section with a characterization of automorphisms of B(H).
Recall the notation [Aξ ] for the projection onto the closed subspace generated by
vectors aξ , a ∈ A, ξ ∈ H . If A = C we use the notation [ξ ] instead of [Cξ ] for the
1-dimensional projection on the subspace generated by the vector ξ .

Proposition 3.1.7 Let φ be an automorphism of B(H). Then there exists a unitary
operator U such that φ = AdU .

Proof Since φ maps minimal projections onto minimal projections, for each ξ ∈ H

there is η ∈ H such that φ([ξ ]) = [η]. Composing φ by an inner automorphism
AdU , we may assume φ([ξ ]) = [ξ ] for a unit vector ξ . Each unit vector in B(H) is
cyclic, so [B(H)ξ ] = 1. Define an operator V ∈ B(H) by

V aξ = φ(a)ξ, a ∈ B(H). (3.1)

Then

V abξ = φ(ab)ξ = φ(a)φ(b)ξ = φ(a)V bξ.

Thus

V a = φ(a)V, for all a ∈ B(H). (3.2)

Since φ([ξ ]) = [ξ ],
‖V aξ‖2 = (V aξ,V aξ) = (

φ(a)ξ,φ(a)ξ
) = (

φ
(
a∗a

)
ξ, ξ

) = (
φ
([ξ ]a∗a[ξ ])ξ, ξ

)

= (
a∗aξ, ξ

)(
φ
([ξ ])ξ, ξ

) = (
a∗aξ, ξ

) = ‖aξ‖2.

Thus V is an isometry, which by (3.1) is surjective. Thus V is unitary, so by (3.2)
φ(a) = V aV ∗. Let U = V ∗. Then φ = AdU . �

3.2 Jordan Homomorphisms

An important class of maps is that of Jordan homomorphisms. It follows from a
result of Jacobson and Rickart [29] together with some structure theory for von
Neumann algebras and second dual techniques for C∗-algebras, that each Jordan
homomorphism of a C∗ algebra into another is the sum of a homomorphism and
an anti-homomorphism much like that of the proof of Theorem 1.2.11, see [72]
hence they are not extremal, even though they are extreme points of the unit ball. To
simplify our approach we shall restrict our attention to the simpler case of Jordan
automorphisms of B(H), where we can use more elementary techniques together
with the extremality properties we have shown for Jordan homomorphisms. We start
with the n × n matrices Mn and in particular M2. Let (eij)

n
i,j=1 denote a complete

set of matrix units for Mn.
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Lemma 3.2.1 Let ρ be a linear functional on Mn. Then

(i) The density matrix for ρ is (ρ(eij))
t .

(ii) If ρ is a state then ρ is pure if and only if

∣∣ρ(eij)
∣∣2 = ρ(eii)ρ(ejj ) for all 1 ≤ i, j ≤ n.

Proof (i) follows since Tr((ρ(eij))
t ekl) = ρ(ekl) for all k, l.

(ii) ρ is a pure state if and only if its density matrix is a 1-dimensional projection,
hence by (i) if and only if (ρ(eij)) is a 1-dimensional projection, so (ii) follows. �

Lemma 3.2.2 Denote by C2 the convex set of unital positive maps of M2 into itself.
Let φ be an extreme point of C2. Then there exists a pure state ρ of M2 such that
ρ ◦ φ is a pure state.

Proof Let ρ be a linear functional on M2. Then its density operator is positive if and
only if ρ is positive, hence by Lemma 3.2.1 if and only if ρ(e11) ≥ 0, ρ(e22) ≥ 0
and |ρ(e12)|2 ≤ ρ(e11)ρ(e22). Suppose there is no pure state ρ such that ρ ◦ φ is a
pure state. Then for all pure states ρ, by Lemma 3.2.1(ii),

ρ
(
φ(e11)

)
ρ
(
φ(e22)

)
>

∣∣ρ
(
φ(e12)

)∣∣2
.

Since the set of pure states on M2 is compact there exists α > 0 such that

α ≤ ρ
(
φ(e11)

)
ρ
(
φ(e22)

) − ∣∣ρ
(
φ(e12)

)∣∣2

for all pure states ρ. Since |ρ(φ(e12))|2 ≤ 1

(1 ± α)
∣∣ρ

(
φ(e12)

)∣∣2 ≤ ρ
(
φ(e11)

)
ρ
(
φ(e22)

)
.

Define two maps ψ+ and ψ− of M2 into itself as follows; ψ± is linear, ψ±(eii) =
φ(eii), i = 1,2, and

ψ±(e12) = (1 ± iδ)φ(e12), ψ±(e21) = (1 ∓ iδ)φ(e21),

where 0 < δ < α1/2, so that |1 ± iδ|2 = 1 + δ2 < 1 + α. By the characteriza-
tion of positive linear functionals in the beginning of the proof ρ ◦ ψ± is a pos-
itive linear functional for all states ρ, hence ψ± is a positive map. Furthermore
ψ±(1) = φ(1) = 1, so ψ± ∈ C2. Since φ = 1

2 (ψ+ + ψ−), and φ is extreme,
ψ+ = ψ−, so that φ(e12) = 0. Then φ(e22) = 1 − φ(e11), so the range of φ is an
abelian subalgebra of M2. Composing φ by AdV for a suitable unitary operator V ,
we can by an application of Lemma 3.1.2 assume the range of φ is contained in the
diagonal algebra D2. If φ(M2) ⊂ C1, then φ is a state, so pure since φ is extreme,
a case which is ruled out. Thus φ(M2) = D2. Therefore φ(e11) = xe11 + ye22,
φ(e22) = (1 − x)e11 + (1 − y)e22.

There are two cases. Assume first one of the four entries is 0; say y = 0. Then 1−
y = 1. Thus Tr(e22φ(e11)) = 0, Tr(e22φ(e22)) = 1, so the state ω(a) = Tr(e22φ(a))
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is pure, a case which is ruled out. Assume next 0 < x < 1, and 0 < y < 1. Then there
exists α > 0 such that φ(eii) ≥ α1, i = 1,2. Thus φ(a) ≥ αTr(a)1 for all a ≥ 0. By
extremality φ(a) = 1

2 Tr(a) for all a, which is impossible since φ is extremal. We
have thus obtained a contradiction to the assumption that ρ ◦ φ is never pure for ρ a
pure state. The proof is complete. �

Lemma 3.2.3 Let φ be extreme in C2. Then there is a unitary operator U such that

AdU ◦ φ

(
a b

c d

)
=

(
a αb + βc

αc + βb γ a + εb + εc + δd

)
,

where 0 ≤ γ ≤ 1, δ = 1 − γ .

Proof Write φ in the form φ(a) = ∑
φij(a)eij, where φij is a linear functional on

M2. By Lemma 3.2.2 we can compose φ by AdU for a suitable unitary U so we can
assume φ11 is the pure state φ11((aij)) = a11. Thus φ11(e22) = 0, so φ12(e22) = 0 =
φ12(e11). Thus φ is of the form described in the lemma. �

Theorem 3.2.4 Let φ be a normal Jordan automorphism of B(H). Then φ is either
an automorphism or an anti-automorphism, hence is of the form AdU or AdU ◦ t

for a unitary operator U .

Proof We first assume dimH = 2, so B(H) = M2. By Proposition 3.1.5 φ is ex-
treme in C2, hence we can assume φ is of the form described in Lemma 3.2.3, i.e.

φ

(
a b

c d

)
=

(
a αb + βc

αc + βb γ a + εb + εc + δd

)
,

with γ + δ = 1. In particular

φ

(
0 1
0 0

)
=

(
0 α

β ε

)
,

hence

0 = φ

((
1

0

)2
)

= φ

(
1

0

)2

=
(

αβ αε

εβ αβ + ε2

)
.

Thus, αβ = αε = εβ = αβ + ε2 = 0. There are three cases.

(i) α = 0. Then εβ = ε2 = 0, so

φ

(
0 1
0 0

)
=

(
0 0
β 0

)
, φ

(
0

1

)
=

(
β

0

)
.

(ii) β = 0. Then similarily

φ

(
0 1
0 0

)
=

(
0 α

0 0

)
, φ

(
0 0
1 0

)
=

(
0

α

)
.
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(iii) ε = 0. Then αβ = 0, so one of the two cases (i) or (ii) occurs. In case (i)
φ
( 1

1

) = ( β

β

)
, so the square is 1, hence |β| = 1. In case (ii) |α| = 1. It follows that

in case (i) φ is an anti-automorphism, and in case (ii) an automorphism.

Now consider the general case. Let p be a 1-dimensional projection. Then p is
a minimal projection, so φ(p) is a minimal projection, hence is a 1-dimensional
projection. Let e be a 2-dimensional projection. Then it is the sum of two 1-
dimensional projections, so φ(e) is a 2-dimensional projection, and φ : eB(H)e →
φ(e)B(H)φ(e) is a Jordan isomorphism, hence by the first part of the proof ap-
plied to the composition of φ by an isomorphism of φ(e)B(H)φ(e) onto eB(H)e,
φ is either an isomorphism or an anti-isomorphism. Let now p and q be distinct 1-
dimensional projections in B(H) and e = span(p, q). Then e is a 2-dimensional
projection, and so is φ(e). By the above applied to e, if φ is an isomorphism,
φ(pq) = φ(p)φ(q), and in the anti-isomorphism case φ(pq) = φ(q)φ(p).

Let Xp (resp. Yp) be the set of 1-dimensional projections q in B(H) such that
0 	= pq 	= p and φ(pq) = φ(p)φ(q) (resp. φ(pq) = φ(q)φ(p)). Then either Xp or
Yp is non-empty, say Xp 	= ∅. Let q ∈ Xp . Then q is an interior point of Xp . Indeed,
let γ = ‖pq‖,

c = ∥∥φ(pq) − φ(q)φ(p)
∥∥.

Then γ > 0, c > 0. Let f be a 1-dimensional projection such that f 	= p and

‖f − q‖ ≤ δ = min(c/4, γ /2).

Then ‖fp‖ ≥ ‖qp‖ − ‖(f − q)p‖ ≥ γ /2. Furthermore,

c = ∥∥φ(pq) − φ(q)φ(p)
∥∥

≤ ∥∥φ(pq) − φ(pf )
∥∥ + ∥∥φ(pf ) − φ(f )φ(p)

∥∥ + ∥∥(
φ(f ) − φ(q)

)
φ(p)

∥∥

≤ δ + ∥∥φ(pf ) − φ(f )φ(p)
∥∥ + δ.

Hence
∥∥φ(pf ) − φ(f )φ(p)

∥∥ ≥ c − c/2 = c/2.

Then f ∈ Xp , proving that q is an interior point of Xp .
Let g 	= p be a 1-dimensional projection such that gp 	= 0. Let ψ,ξ, η be unit

vectors such that p = [ψ], g = [ξ ], q = [η]. Multiplying ξ and η by scalars we may
assume (ξ,ψ) > 0, (η,ψ) > 0. Let

ξ(t) = (1 − t)η + tξ, t ∈ [0,1],
be the line segment in H from η to ξ . Then ‖ξ(t)‖ ≤ 1, and (ξ(t),ψ) = (1 −
t)(η,ψ) + t (ξ,ψ) > 0, so p[ξ(t)] 	= 0. It follows from the previous paragraph ap-
plied to q = [ξ(0)] and thus to each [ξ(t)] that the set of t such that [ξ(t)] ∈ Xp is
open. Since the set is trivially closed, it follows that g = [ξ(1)] ∈ Xp .
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We have thus shown that every 1-dimensional projection with gp 	= 0 belongs to
Xp . Since each projection g ⊥ p obviously satisfies the identity φ(pg) = φ(p)φ(g),
this identity is therefore shown for all 1-dimensional projections g. Since p was
arbitrary, it follows by linearity and normality of φ that φ is an isomorphism. Simi-
larly, if Yp 	= ∅, φ is an anti-isomorphism.

The last statement follows from Proposition 3.1.7, and the fact that the transpose
t is an anti-automorphism of B(H), and the composition of two anti-isomorphisms
is an isomorphism. �

3.3 Maps which Preserve Vector States

In Lemma 3.2.2 we saw that for each extreme point φ of the convex set of unital
maps of M2 into itself, there is a pure state φ of M2 such that ρ ◦ φ is a pure state.
A natural problem is to study maps in the extreme converse direction, i.e. maps
φ : A → B , with A, B C∗-algebras, such that ρ ◦ φ is a pure state for all pure states
ρ of B . It was shown in [71] that for all such maps π ◦ φ is either a pure state, or an
anti-homomorphism or homomorphism of A for all irreducible representations of
B . We shall in the present section restrict ourselves to maps of B(K) into B(H) for
which ωξ ◦ φ is a vector state of B(K) for all vector states ωξ of B(H) defined by
ωx(a) = (aξ, ξ). We then apply this to maps which carry positive rank 1 operators
to positive rank 1 operators.

Lemma 3.3.1 Let K and H be Hilbert spaces and φ ∈ B(B(K),H) a unital pos-
itive map such that for each vector state ωη of B(H) there is a vector state ωξ of
B(K) such that ωξ ◦φ = ωη. For such a pair ξ, η, either φ([η]) = [ξ ] or φ([η]) = 1.
In the latter case φ(a) = ωη(a)1 for all a ∈ B(H). Furthermore φ is weakly con-
tinuous.

Proof We first show φ is weakly continuous. Let (aα)α∈J be a net in B(K) such
that aα → a is weakly. Let ξ be a unit vector in H and η a unit vector in K such
that ωξ ◦ φ = ωη. Then ωξ (φ(aα)) = ωη(aα) → ωη(a) = ωξ (φ(a)).

Since each weakly continuous linear functional on B(H) is a linear combination
of vector states, (φ(aα))α∈J converges weakly to φ(a), so φ is weakly continuous.

Let ξ and η be as above. Then 0 ≤ φ([η]) ≤ 1 and ωξ (φ([η])) = 1. Thus
φ([η])[ξ ] = [ξ ] ≤ φ([η]). To prove the lemma we first assume n = dimH < ∞,
and use induction on n. If n = 1 the lemma is trivial.

Suppose n = 2 and φ([η]) 	= [ξ ]. We may then assume B(H) = M2 and

φ
([η]) =

(
1 0
0 p

)
, (3.3)

with 0 < p ≤ 1. Let μ be a unit vector in K orthogonal to [η]. Let f = [η] + [μ].
Then f B(K)f ∼= M2. Let (eij), i, j = 1,2, denote the matrix units in M2 such that
[η] = e11, [μ] = e22. If ωρ is a vector state of M2 then ωρ ◦ φ = ωτ for a unit vector
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τ ∈ K , so its restriction to f B(K)f is ωf τ , which is a scalar multiple of a vector
state, so by Lemma 3.2.1 satisfies the equality

ωρ ◦ φ(e11)ωρ ◦ φ(e22) = ∣∣ωρ ◦ φ(e12)
∣∣2

. (3.4)

In particular this holds for ρ = η. Since also 0 ≤ φ(e11 + e22) ≤ 1, we have

φ(e22) =
(

0 0
0 q

)
, φ(e12) =

(
0 r

s t

)
.

Since ρ = (ρ1, ρ2) is a vector in C
2 the following equations hold, cf. (3.3):

ωρ ◦ φ(e11) = |ρ1|2 + p|ρ2|2,
ωρ ◦ φ(e22) = q|ρ2|2,
ωρ ◦ φ(e12) = t |ρ2|2 + rρ1ρ2 + sρ1ρ2.

Thus, using (3.4)

|t |ρ2|2 + rρ1ρ2 + sρ1ρ2|2

= |t |2|ρ2|4 + (|r|2 + |s|2)|ρ1|2|ρ2|2 + 2�(
(rt + st)|ρ2|2ρ1ρ2

) + 2�(
rs(ρ1ρ2)

2)

= q|ρ2|2
(|ρ1|2 + p|ρ2|2

)
. (3.5)

Now, if f1, f2, f3 are complex valued functions of the two complex variables ρ1
and ρ2 such that

f1
(|ρ1|, |ρ2|

) = �(
f2

(|ρ1|, |ρ2|
)
ρ1ρ2 + f3

(|ρ1|, |ρ2|
)
(ρ1ρ2)

2),

then it is easily verified that f1 = f2 = f3 = 0. With

f1
(|p1|, |ρ2|

) = (|ρ1|2 + p|ρ2|2
)
q|ρ2|2 − |t |2|ρ2|4 − (|r|2 + |s|2)|ρ1|2|ρ2|2

and f2 and f3 the two real parts in (3.5), we get

rt + st = 0 = rs, |t |2 = pq, |r|2 + |s|2 = q.

Thus q = 0, and φ([μ]) = φ(e22) = 0. Since this holds for every unit vector [μ]
orthogonal to η, and since φ is weakly continuous, φ([η]) = 1, as asserted.

Suppose n ≥ 3, and assume the lemma is proved whenever dimH ≤ n − 1. Let
e be a projection in B(H) containing ξ , and dim e = k < n. Then Ade ◦ φ has the
same properties as φ with respect to composition with vector states,

Ade ◦ φ : B(K) → eB(H)e,

and ωξ ◦ φ = ωη. By induction assumption eφ([η])e equals [ξ ] or e. If eφ([η])e =
[ξ ] then

0 = e
(
φ
([η]) − [ξ ])e = ((

φ
([η]) − [ξ ])1/2

e
)∗((

φ
([η]) − [ξ ])1/2

e
)
,
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so (φ([η]) − [ξ ])e = 0, hence φ([η])e = [ξ ] = eφ([η]), taking adjoints. Similarily,
if eφ([η])e = e, then e(1 − φ([η]))e = 0, and eφ([η]) = φ([η])e = e. Thus φ([η])
commutes with every projection containing ξ . Since n ≥ 3 this is possible only if
φ([η]) equals [ξ ] or 1.

If H is not finite dimensional it follows from the above that φ([η]) commutes
with every finite dimensional projection containing [ξ ]. Hence φ([η]) equals [ξ ]
or 1. �

Theorem 3.3.2 Let K and H be Hilbert spaces and φ ∈ B(B(K),H) be a positive
unital map such that for each unit vector ξ ∈ H there is a unit vector η ∈ K such
that ωξ ◦φ = ωη. Then either φ(a) = ωρ(a)1 for a vector ρ ∈ K , or there is a linear
isometry V : H → K such that φ = AdV or φ = AdV ◦ t , t being the transpose on
B(K).

Proof By Lemma 3.3.1 φ is weakly continuous. Let Tr denote the trace on either
B(K) or B(H). Thus if ωξ ◦ φ = ωη we have for a ∈ B(K)

Tr
(
φ∗([ξ ])a) = Tr

([ξ ]φ(a)
) = ωξ ◦ φ(a)

= ωη(a) = Tr
([η]a)

.

Thus φ∗([ξ ]) = [η], and φ∗ : B(H) → B(K) is faithful and maps 1-dimensional
projections to 1-dimensional projections. Let ξ and μ be mutually orthogonal unit
vectors in H . Let η and ρ be unit vectors in K such that ωξ ◦ φ = ωη, and ωμ ◦
φ = ωρ . By Lemma 3.3.1 either φ([η]) = 1, in which case support φ = [η], so that
φ(a) = φ([η]a[η]) = ωη(a)1, so φ is a vector state, or φ([η]) = [ξ ], φ([ρ]) = [μ].
In the latter case

0 ≤ ωη

([ρ]) = ωξ

(
φ
([ρ])) = ωξ

([μ]) = 0,

so η and ρ are orthogonal. Since φ∗([ξ ]) = [η] and φ∗([μ]) = [ρ], it follows that
φ∗ maps mutually orthogonal 1-dimensional projections onto mutually orthogonal
projections. Thus φ∗ is a Jordan isomorphism on finite rank operators in B(H)

into those of B(K). Thus for each finite dimensional projection e ∈ B(H), φ∗ is a
Jordan isomorphism of eB(H)e into φ∗(e)B(K)φ∗(e), and onto, since they have the
same dimensions. It follows from Theorem 3.2.4 that φ∗ is either an isomorphism or
anti-isomorphism of eB(H)e onto φ∗(e)B(K)φ∗(e), and implemented by a unitary
operator U : eK → φ∗(e)H . By Proposition 1.4.2 the adjoint map of AdU is AdU∗,
and the adjoint of the transpose map t is t . Thus φ : φ∗(e)B(K)φ∗(e) → eB(H)e is
either an isomorphism or an anti-isomorphism. Let f = ∨eφ

∗(e), where the span is
over all finite dimensional projections in B(H). Since φ is weakly continuous it is
either an isomorphism or anti-isomorphism of f B(K)f onto B(H). �

Remark 3.3.3 Theorem 3.3.2 has a generalization to C∗-algebras. Recall that if ρ

is a state of a C∗-algebra B then there are a Hilbert space Hρ , a ∗-representation
πρ of B on Hρ and a vector ξρ ∈ Hρ such that ρ(a) = ωξρ ◦ πρ(a) for a ∈ B .
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Furthermore, ρ is a pure state if and only if πρ is irreducible. Then the generalization
of Theorem 3.3.2 states, see [71]: Let A and B be unital C∗-algebras and φ : A → B

a positive unital map. Then ρ ◦ φ is a pure state of A and for all pure states ρ of
B if and only if for each irreducible representation ψ of B on a Hilbert space H ,
ψ ◦ φ is either a pure state of A or ψ ◦ φ = V ∗πV , where V is a linear isometry
of H into a Hilbert space K , and π is an irreducible ∗-homomorphism or ∗-anti-
homomorphism of A into B(K).

Many problems on maps of operator algebras are what are called preserver prob-
lems. Then one studies maps which preserve selected properties. For a treatment on
this topic we refer the reader to the book [51] of Molnár. Our next result, which is
close to Theorem 3.3.2, is of this type.

Theorem 3.3.4 Let K and H be finite dimensional Hilbert spaces and φ ∈
B(B(K),H) a positive map such that rank φ(p) ≤ 1 for all 1-dimensional pro-
jections p ∈ B(K). Then one of the following three conditions holds:

(i) There exist a state ω on B(K) and a positive rank 1 operator q ∈ B(H) such
that φ(a) = qω(a) for a ∈ B(K).

(ii) φ = AdU with U : H → K a bounded linear operator.
(iii) φ(a) = (AdU(a))t for a ∈ B(K), t is the transpose on B(H).

Proof Let e = support of φ. Then φ : eB(K)e → B(H) is faithful, so we may re-
strict attention to eB(K)e and assume φ is faithful. By Proposition 1.4.3(iv) φ∗(1)

is invertible. Let h = φ∗(1)−1/2. Then hφ∗(1)h = 1, so the map ψ(a) = hφ∗(a)h is
unital and positive. Then for a ∈ B(K), b ∈ B(H) we have

Tr
(
aψ(b)

) = Tr
(
hahφ∗(b)

) = Tr
(
φ(hah)b

)
.

If p is a 1-dimensional projection in B(K) then hph = λq for a 1-dimensional
projection q , so by the assumption on φ, φ(hph) = λφ(q) is positive of rank 1. It
follows that the functional

ω′(a) = Tr
(
pψ(a)

) = Tr
(
phφ∗(a)h

) = Tr
(
φ(hph)a

) = λTr
(
φ(q)a

)
,

for a ∈ B(H), is a scalar multiple of a pure state on B(H). Furthermore, ω′(1) =
Tr(pψ(1)) = Tr(p) = 1, so ω′ is a pure state. Thus ψ : B(H) → B(K) preserves
vector states. By Theorem 3.3.2 and 3.2.4 ψ is either

(i) a vector state, i.e. ψ(a) = ωξ (a)1.
(ii) ψ(a) = V ∗aV , V : K → H is a linear isometry of K into H .

(iii) ψ(a) = V ∗atV , with V as in (ii).

If ρ is a state on B(K) with density operator d then for a ∈ B(H)

Tr
(
aρ∗(b)

) = Tr
(
ρ(a)b

) = Tr
(
Tr(da)b

) = Tr
(
daTr(b)

)
,
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so that ρ∗(b) = dTr(b). By construction, φ∗ = h−1ψh−1. Thus we have in case (i),
ψ(a) = Tr(qa) for a 1-dimensional projection q , so that

Tr
(
φ(a)b

) = Tr
(
ah−1ψ(b)h−1)

= Tr
(
ah−1Tr(qb)h−1)

= Tr
(
ah−2)Tr(qb)

= Tr
(
qTr

(
ah−2)b

)
,

so that φ(a) = qTr(ah−2) is as in (i) in the theorem.
In case (ii)

Tr
(
φ(a)b

) = Tr
(
ah−1ψ(b)h−1) = Tr

(
h−1ah−1V ∗bV

) = Tr
((

V h−1)a
(
V h−1)∗

b
)
,

so that φ(a) = AdU with U∗ = V h−1 : H → K .
In case (iii) we similarily have

Tr
(
φ(a)b

) = Tr
(
h−1ah−1V ∗btV

) = Tr
((

AdU(a)
)t

b
)
,

so that φ(a) = t ◦ AdU . �

It turns out that 2-positive and 2-copositive extremal maps in B(B(K),H)+ are
of the form described in Theorem 3.3.4. We conclude the section with a proof of
this. Assume for simplicity that K and H are finite dimensional. Recall that if ξ is a
vector in an n-dimensional Hilbert space, ξ = (ξ1, . . . , ξn) then ξ can be identified
with the 1 × n column matrix

ξ =
⎛

⎜
⎝

ξ1
...

ξn

⎞

⎟
⎠ .

Then ξ∗ = [ξ1, . . . , ξn]. If η is another vector we get

ξ∗η = 〈η, ξ 〉,
and if they are unit vectors, ξη∗ is the partial isometry from η to ξ . In particular ξξ∗
is the projection [ξ ].

Lemma 3.3.5 Let φ ∈ B(B(K),H) be of the form φ(x) = AxA∗ with A : K → H

non-zero. Choose unit vectors ξ ∈ K,ω ∈ H and λ > 0 such that

φ
(
ξξ∗)ω = λω.

Define B : K → H by

Bη = λ−1/2φ
(
ηξ∗)ω.

Then B = eitA for some t ∈ [0,2π).
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Proof By assumption

λω = Aξξ∗A∗ω = Aξ(Aξ)∗ω = Aξ 〈ω,Aξ 〉.
Thus Aξ = zω for some z ∈ C. Since

|z|2ω = zω〈ω,zω〉 = Aξ{ω,Aξ 〉 = λω,

|z| = λ1/2. Let η ∈ K . Then

Bη = λ−1/2Aηξ∗A∗ω = λ−1/2Aη〈ω,Aξ 〉 = λ−1/2zAη = eitAη,

where t satisfies λ−1/2z = eit. Thus B = eitA. �

Proposition 3.3.6 Let φ ∈ B(B(K),H)+. Let λ, ξ , ω, B be defined by φ as in
Lemma 3.3.5. Let ψ ∈ B(B(K),H)+ be the map ψ(x) = BxB∗. Then ψ ≤ φ if and
only if for all η ∈ K , ρ ∈ H we have the inequality

∣∣〈φ
(
ηξ∗)ω,ρ

〉∣∣2 ≤ 〈
φ
(
ξξ∗)ω,ω

〉〈
φ
(
ηη∗)ρ,ρ

〉
.

Proof Clearly ψ ≤ φ if and only if for all η ∈ K , ρ ∈ H

〈
ψ

(
ηη∗)ρ,ρ

〉 ≤ 〈
φ(ηη∗ρ,ρ

〉
.

The left hand side of the above inequality is equal to
〈
Bηη∗B∗ρ,ρ

〉 = 〈
Bη(Bη)∗ρ,ρ

〉

= 〈
Bη〈ρ,Bη〉, ρ〉

= ∣∣〈Bη,ρ〉∣∣2

= λ−1
∣∣〈φ

(
ηξ∗)ω,ρ

〉∣∣2
,

by definition of B . If the inequality in the proposition is satisfied it follows that
〈
ψ

(
ηη∗)ρ,ρ

〉 ≤ λ−1〈φ
(
ξξ∗)ω,ω

〉〈
φ
(
ηη∗)ρ,ρ

〉

= 〈
φ
(
ηη∗)ρ,ρ

〉
,

by choice of λ. Thus ψ ≤ φ.
Conversely, if ψ ≤ φ, then by the above computations

λ−1
∣∣〈φ

(
ηξ∗)ω,ρ

〉∣∣2 ≤ (
φ
(
ηη∗)ρ,ρ

〉
,

so the inequality in the proposition follows from the definition of λ. �

Theorem 3.3.7 Let φ ∈ B(B(K),H)+ be an extremal map. Assume φ is 2-positive
(resp. 2-copositive). Then φ is a completely positive of the form φ = AdV with
V : H → K (resp. φ is copositive of the form AdV ◦ t).
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Proof Let ξ , ω, λ be as in Lemma 3.3.5. Let η ∈ K . Consider the positive matrix

X =
(

ξξ∗ ξη∗
ηξ∗ ηη∗

)
=

(
0 ξ

η 0

)(
0 ξ

η 0

)∗
∈ M2

(
B(K)

)
.

Since φ is 2-positive the matrix

φ2(X) =
(

φ(ξξ∗) φ(ξη∗)
φ(ηξ∗) φ(ηη∗)

)
∈ M2

(
B(H)

)+
.

Thus for each ρ ∈ H we have

( 〈φ(ξξ∗)ω,ω〉 〈φ(ξη∗)ρ,ω〉
〈φ(ηξ∗)ω,ρ〉 〈φ(ηη∗)ρ,ρ〉

)
=

(
ω 0
0 ρ

)∗
φ2(X)

(
ω 0
0 ρ

)
≥ 0.

Thus the inequality in Proposition 3.3.6 is satisfied, so by the theorem ψ ≤ φ.
Since φ is extremal ψ = AdB∗ = μφ for some μ > 0. Hence φ = AdV with
V = μ−1/2B∗.

If φ is 2-copositive then φ ◦ t is 2-positive and still extremal by Lemma 3.1.2, so
φ ◦ t = AdV , hence φ = AdV ◦ t . �

3.4 Nonextendible Maps

If A is a C∗-algebra and φ ∈ B(A,H) is a unital completely positive map the
Stinespring Theorem, 1.2.7, states that there are a Hilbert space K , an isometry
V : H → K , and a representation π : A → B(K) such that φ = V ∗πV .

Since V ∗V = 1, V V ∗ is a projection, which we can look at as the projection
P : K → H , where we consider H as a subspace of K . Then φ has the form PπP .
We can thus consider π as an extension of φ to a map π : A → B(K). We therefore
make the following definition.

Definition 3.4.1 Let A be a unital C∗-algebra, and H ⊂ K two Hilbert spaces. Let
P be the orthogonal projection of K onto H . Let φ ∈ B(A,H) and Φ ∈ B(A,K)

be positive unital maps. We say

(i) Φ is an extension of φ and write Φ ⊃ φ if φ(a) = PΦ(a)P for all a ∈ A.
(ii) Φ ⊃ φ is trivial if H is invariant under the action of Φ(a) for all a ∈ A, i.e.

Φ(a)ξ = φ(a)ξ for a ∈ A and ξ ∈ H .
(iii) φ is called nonextendible if all extensions Φ ⊃ φ are trivial.

Note that if Φ ⊃ φ is an extension as above, and
∑n

1 ai ⊗ ξi ∈ A ⊗ H , consider
the element

∑

k

φ(ai)ξi = P
(∑

Φ(ai)ξi

)
∈ H.
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Then
∥∥∥
∑

φ(ai)ξi

∥∥∥ ≤
∥∥∥
∑

Φ(ai)ξi

∥∥∥. (3.6)

If the extension Φ ⊃ φ is trivial then
∑

Φ(ai)ξi ∈ H , so we have equality in
(3.6). Conversely, if for all

∑
i ai ⊗ ξi ∈ A ⊗ H we have equality in (3.6), then∑

i φ(ai)ξi = ∑
i Φ(ai)ξi , so the extension Φ ⊃ φ is trivial. We have shown:

Lemma 3.4.2 Let φ ∈ B(A,H) be a positive unital map. Then φ is nonextendible
if and only if

∥∥∥
∑

φ(ai)ξi

∥∥∥ =
∥∥∥
∑

Φ(ai)ξi

∥∥∥

for all extensions Φ ⊃ φ and ai ∈ A, ξi ∈ H .

We say a positive map φ : A → B(H) is irreducible if the commutant of φ(A) is
the scalar operators, i.e. the only operators which commute with φ(a) for all a ∈ A,
are the scalar multiples of the identity operator 1.

Theorem 3.4.3 Let A be a C∗-algebra and φ ∈ B(A,H) be a unital positive map.
Then

(i) If φ is nonextendible then φ is an extreme point of the convex set of positive
unital maps of A into B(H).

(ii) If φ is both nonextendible and irreducible then φ is an extremal map.

Proof Assume φ ∈ B(A,H)+ is nonextendible and φ = λφ1 + μφ2 with φi : A →
B(H) positive linear maps, λ,μ > 0 and λ + μ = 1. The operators φi(1) are invert-
ible on the subspace φi(1)H . Let Hi denote the closure of φi(1)H .

Let

ψi(a) = φi(1)−1/2φi(a)φi(1)−1/2, a ∈ A.

Then ψi(a) defines an operator on Hi , which we still denote by ψi(a). Let

K = H1 ⊕ H2, Φ = ψ1 ⊕ ψ2.

Then

Φ : A → B(K)

is unital and positive. Let V : H → K be the linear operator

V (ξ) = (
λφ1(1)

)1/2
ξ ⊕ (

μφ2(1)
)1/2

ξ.

Then a straightforward computation yields

(
φ(a)ξ, η

) = (
Φ(a)V ξ,V η

)
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for ξ, η ∈ H and a ∈ A. In particular, if we put a = 1, we see that V is an isometric
imbedding of H into K . Thus Φ ⊃ φ is an extension of φ. By assumption φ is
nonextendible. Thus Φ is a trivial extension. In our definition we considered H as a
subspace of K . In the general case one must consider the case when H is imbedded
in K as it is here, with V : H → K . Thus we have

Φ(a)V ξ = V φ(a)ξ for a ∈ A,ξ ∈ H.

By the definitions of V and Φ = ψ1 ⊕ ψ2 we get

Φ(a)V ξ = λ1/2φ1(1)−1/2φ1(a)ξ ⊕ μ1/2φ2(1)−1/2φ2(a)ξ.

This is equal to

V φ(a)ξ = λ1/2φ1(1)1/2φ(a)ξ ⊕ μ1/2φ2(a)1/2φ(a)ξ,

so that

φi(1)φ(a)ξ = φi(a)ξ, for all ξ ∈ H,

hence φi = φi(1)φ.
In case (i) in the theorem φi(1) = 1, so φi = φ, and the conclusion in (i) follows.
In case (ii) φi(a) = φi(1)φ(a) for all a. Taking adjoints for a self-adjoint we

see that φi(1) commutes with the self-adjoint operator φ(a), and therefore φi(1) ∈
φ(A)′, which we assumed is the scalar operators. Thus φi is a scalar multiple of φ,
and thus φ is extremal. �

It is a quite special property to be a nonextendible map. Our next result is an
example of a nonextendible map. It is an extension of Proposition 3.1.5, where it
was shown that Jordan homomorphisms were extremal in the set of positive unital
maps.

Theorem 3.4.4 Let A be a C∗-algebra and φ ∈ B(A,H) a unital Jordan homo-
morphism. Then φ is nonextendible.

Proof Since φ(1) is always a projection the assumption that φ is unital is just made
for convenience. Let Φ ⊃ φ be an extension, so φ(a) = PΦ(a)P , where P is the
projection of K onto H , Φ : A → B(K) positive and unital. If a ∈ A is self-adjoint
then the Kadison-Schwarz inequality, Theorem 1.3.1, applied to Φ , implies with 1
the identity in B(K),

0 ≤ PΦ(a)(1 − P)Φ(a)P

= PΦ(a)2P − φ(a)2

= PΦ(a)2P − φ
(
a2)

= P
(
Φ(a)2 − Φ

(
a2))P ≤ 0.
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It follows that (1 − P)Φ(a)P = 0, hence Φ(a)ξ ∈ H for all ξ ∈ H . Thus Φ is a
trivial extension of φ. �

In the converse direction we see that if φ is a nonextendible unital completely
positive map, then the Stinespring Theorem, 1.2.7, shows that φ has an extension
which is a representation, hence by nonextendibility φ, is itself a homomorphism.
It is interesting that this conclusion holds in much more generality. Recall from
Definition 1.2.1 that a map φ ∈ B(A,H) is 2-positive if φ ⊗ ι is positive, where ι is
the identity map of M2 onto itself. This means that

(
a b

b∗ c

)
∈ M2(A)+ ⇒

(
φ(a) φ(b)

φ(b)∗ φ(c)

)
∈ M2

(
B(H)

)+
.

Theorem 3.4.5 Let A be a C∗-algebra and φ ∈ B(A,H) a unital 2-positive nonex-
tendible map. Then φ is a homomorphism.

Proof Let a, b ∈ A with a ≥ 0. Then

(
a ab∗
ba bab∗

)
=

(
a1/2 0

0 b

)(
1 a1/2

a1/2 a

)(
a1/2 0

0 b∗
)

≥ 0.

Let b be fixed, and, then since φ is 2-positive,

ψ(a) =
(

φ(a) φ(ab∗)
φ(ba) φ(bab∗)

)

defines a positive map of A into B(H ⊕H). Then ψ(1) is invertible on ψ(1)H ⊕H .
Let K denote the closure of ψ(1)H ⊕ H . Define a map Φ : A → B(H ⊕ H) by

Φ(a) = ψ(1)−1/2ψ(a)ψ(1)−1/2.

Then Φ is a positive unital map of A into B(K). Let V : H → K be the linear
operator defined by

V ξ = ψ(1)1/2(ξ ⊕ 0).

Thus for ξ, η ∈ H we immediately get

(
φ(a)ξ, η

) = (
Φ(a)V ξ,V η

)
.

In particular, if a = 1, so φ(a) = 1, we see that V : H → K is an isometric imbed-
ding, and so

φ(a) = V ∗Φ(a)V .

Thus Φ is an extension of φ, and since φ is nonextendible, Φ ⊃ φ is a trivial exten-
sion. Therefore

Φ(a)V ξ = V φ(a)ξ.
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Using the defining formulas for Φ and V we then get

ψ(1)−1/2
(

φ(a) φ(ab∗)
φ(ba) φ(bab∗)

)(
ξ

0

)
= Φ(a)V ξ = V φ(a)ξ = ψ(1)1/2

(
φ(a)ξ

0

)
.

If we multiply on the left by ψ(1)1/2, we get
(

φ(a) φ(ab∗)
φ(ba) φ(bab∗)

)(
ξ

0

)
=

(
1 φ(b)∗

φ(b) φ(bb∗)

)(
φ(a)ξ

0

)
,

hence φ(ba)ξ = φ(b)φ(a)ξ for all ξ ∈ H , proving that φ is a homomorphism. �

3.5 A Radon-Nikodym Theorem

One version of the classical Radon-Nikodym theorem for measures states that if
μ and η are finite measures on a measure space, and η ≤ μ, then there exists a
measurable function 0 ≤ f ≤ 1 such that

∫
g dη =

∫
fg dμ

for all integrable functions g. We shall in the present section prove an analogous
result for completely positive maps and then apply this to characterize maps which
are extremal among the completely positive ones. We first show a sharpening of the
Stinespring Theorem 1.2.7.

Lemma 3.5.1 Let A be a C∗-algebra and φ : A → B(H) a completely positive
map. Then there exist a Hilbert space K , a representation π of A on K , a bounded
operator V : H → K with the property that the closed subspace

[
π(A)V H

] = {
π(a)V ξ : a ∈ A,ξ ∈ H

}−

equals K , and such that φ = V ∗πV .

Proof Let W ∗π0W be a Stinespring decomposition of φ as in Theorem 1.2.7 with
π0 a representation of A on a Hilbert space K0, and W : H → K0 a bounded op-
erator. Let e be the projection onto [π0(A)WH ]. Then e belongs to the commutant
π0(A)′ of π0(A), because if a, b ∈ A then

π0(b)
(
π0(a)Wξ

) = π0(ba)Wξ ∈ [
π0(A)WH

]
.

Let K = eK0, π = eπ0 and V = eW , then

V ∗π(a)V = V ∗eπ0(a)eV = Wπ0(a)W = φ(a),

and
[
π(A)V H

] = [
eπ0(A)WH

] = eK0 = K. �



3.5 A Radon-Nikodym Theorem 45

Lemma 3.5.2 Let φ1 and φ2 be completely positive maps of A into B(H) such
that φ2 − φ1 is completely positive. Let φi(a) = V ∗

i πi(a)Vi be the Stinespring de-
compositions such that [πi(A)ViH ] = Ki, i = 1,2. Then there exists an operator
T : K2 → K1 with ‖T ‖ ≤ 1 such that

(i) T V2 = V1.
(ii) T π2(a) = π1(a)T , a ∈ A.

Proof Let ξ1, . . . , ξn ∈ H , a1, . . . , an ∈ A. Then

∥
∥
∥
∥
∑

j

π1(aj )V1ξj

∥
∥
∥
∥

2

=
∑

ij

(
V ∗

1 π1
(
a∗
i aj

)
V1ξj , ξi

)

=
∑

ij

(
φ1

(
a∗
i aj

)
ξj , ξi

)

≤
∑

ij

(
φ2

(
a∗
i aj

)
ξj , ξi

)

=
∥∥∥
∑

π2(aj )V2ξj

∥∥∥
2
,

since φ2 −φ1 is completely positive and (a∗
i aj ) ∈ (A⊗Mn)

+. Therefore there exists
a unique contraction T defined on [π2(A)V H ] = K2 which satisfies T π2(a)V2ξ =
π1(a)V1ξ for all a ∈ A,ξ ∈ H . Taking a = 1, we have T V2 = V1. If a, b ∈ A then

T π2(a)π2(b)V2ξ = T π2(ab)V2ξ = π1(ab)V1ξ = π1(a)T π2(b)V2ξ,

so that T π2(a) = π1(a)T , using that [π2(A)V2H ] = K2. �

Let φ be a completely positive map of A into B(H) with Stinespring de-
composition φ = V ∗πV . If 0 ≤ T ≤ 1 is an operator in π(A)′ then the map
φT (a) = V ∗T π(a)V is a completely positive map of A into B(H), because if
W = T 1/2V , then φT (a) = W ∗π(a)W , so is completely positive by the Stinespring
theorem, 1.2.7. If we apply this to 1 − T , we see that φ − φT = φ1−T is also com-
pletely positive.

Theorem 3.5.3 Let A be a C∗-algebra and φ and ψ completely positive maps of A

into B(H) such that φ −ψ is completely positive. Let φ = V ∗πV be the Stinespring
decomposition of φ with [π(A)V H ] = K . Then there is a unique operator T ∈
π(A)′ with 0 ≤ T ≤ 1 such that ψ(a) = φT (a) = V ∗T π(a)V .

Proof The map T → φT is clearly linear, and if φT = 0 then for all a, b ∈ A and
ξ, η ∈ H we have

(
T π(a)V ξ,π(b)V η

) = (
V ∗T π

(
b∗a

)
V ξ,η

) = (
φT

(
b∗a

)
ξ, η

) = 0.

Since [π(A)V H ] = K , T = 0, so we have uniqueness in the theorem.
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It remains to show that ψ = φT for 0 ≤ T ≤ 1, T ∈ π(A)′. By Lemma 3.5.1
ψ has a Stinespring decomposition, ψ = W ∗σW , where W : H → K1 and K1 =
[σ(A)WH ]. By Lemma 3.5.2 there is a contraction X : K → K1 such that XV =
W and Xπ(a) = σ(a)X for all a ∈ A, and taking adjoints, π(a)X∗ = X∗σ(a) for
a ∈ A. Let T = X∗X. Then clearly 0 ≤ T ≤ 1, and T π(a) = X∗σ(a)X = π(a)T ,
so that T ∈ π(A)′. Finally, we have for ξ, η ∈ H ,

(
φT (a)ξ, η

) = (
X∗Xπ(a)V ξ,V η

)

= (
Xπ(a)V ξ,XV η

)

= (
σ(a)XV ξ,XV η

)

= (
σ(a)Wξ,Wη

)

= (
ψ(a)ξ, ξ

)
,

completing the proof of the theorem. �

We can now show the promised characterization of maps extremal in the cone of
completely positive maps. For this we make the following,

Definition 3.5.4 Let φ : A → B(H) be completely positive. We say φ is pure if
every completely positive map ψ : A → B(H) with φ − ψ completely positive is a
scalar multiple of φ.

It is well known that a state is pure if and only if its GNS-representation is irre-
ducible. This extends to completely positive maps as follows.

Corollary 3.5.5 Let φ : A → B(H) be completely positive with Stinespring decom-
position φ = V ∗πV , such that V : H → K and [π(A)V H ] = K . Then φ is pure if
and only if π is irreducible.

Proof Let φ be pure. By the comments before Theorem 3.5.3 the set {T ∈ π(A)′ :
0 ≤ T ≤ 1} consists of scalar multiple of the identity, which implies that π(A) is
irreducible.

Conversely, if π is irreducible and ψ : A → B(H) is a map such that ψ and φ−ψ

are completely positive, then by Theorem 3.5.3 ψ = φT for some T ∈ π(A)′,0 ≤
T ≤ 1. Since π(A)′ consists of scalar operators, T = λ1 for some 0 ≤ λ ≤ 1, so ψ

is a scalar multiple of φ, hence φ is pure. �

In the finite dimensional case we get a stronger extremality result for pure maps.
The result can easily be extended to maps φ : A → B(H), where A is a C∗-algebra
all of whose irreducible representations are finite dimensional.

Corollary 3.5.6 Let K0 be a finite dimensional Hilbert space and φ : B(K0) →
B(H) completely positive. Then φ is pure if and only if it is an extremal positive
map in B(B(K0),H)+.
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Proof It is clear that if φ is extremal then it is in particular pure. Conversely,
assume φ is pure with Stinespring decomposition φ = V ∗πV , where by Corol-
lary 3.5.5 π is irreducible. Since K0 is finite dimensional, π(B(K0)) = B(K), K as
in Corollary 3.5.5, and by finiteness π is an isomorphism. By Proposition 3.1.3
AdV : B(K) → B(H) is extremal. Let ψ ∈ B(B(K0),H)+, with ψ ≤ φ. Then
ψ ◦ π−1 ≤ AdV , so by extremality of AdV , ψ ◦ π−1 = λAdV for 0 ≤ λ ≤ 1. Thus
ψ = λAdV ◦ π = λφ, so φ is extremal. �

3.6 Notes

Extreme points of the convex set of unital positive maps were studied in [71]. The
results in Sect. 3.1, except Proposition 3.1.7, are mostly variations of results in [71].
Proposition 3.1.7 is a special case of well known results on automorphisms of von
Neumann algebras.

As mentioned in the introduction to Sect. 3.2 Jacobson and Rickart [29] showed
that Jordan homomorphisms of matrix algebras over certain rings are sums of ho-
momorphisms and anti-homomorphisms. Their result was used by Kadison [35] to
show that surjective Jordan homomorphisms between C∗-algebras were sums of
homomorphisms and anti-homomorphims, and finally the author [72] showed the
same result for Jordan homomorphisms of a C∗-algebra into another C∗-algebra.
Theorem 3.2.4 is a special case of Kadison’s result, but the proof is quite different
from the proofs in the papers referred to above. In [9] surjective Jordan homomor-
phisms were characterized as those positive maps which map invertible operators
onto invertible operators.

Theorem 3.3.2 and its proof is taken from [71], but its followup, Theorem 3.3.4
is, with a different proof, due to Marciniak [50]. For a closely related result for
maps which are not necessarily positive, see [31, 46–48]. Theorem 3.3.7 is also due
to Marciniak [50]. For further work on nonextendible maps see [95, 96].

The contents of Sect. 3.4 on nonextendible maps are all due to Woronowicz [99],
see also [42].

The Radon-Nikodym type theorem, Theorem 3.5.3 is due to Arveson [1].
If K and H are finite dimensional the facial structure of the cone B(B(K),H)+

has been studied by several authors; see [45] for a survey. In this context maps which
generate exposed rays in B(B(K),H)+, called exposed maps have attracted much
attention as they form a dense subset of the extremal maps, see e.g. [13, 19].
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