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Introduction

The study of positive maps of C∗-algebras started around 1950 with Kadison’s
generalized Schwarz inequality and characterizations of isometries of C∗-algebras,
[35, 36]. A few years later Stinespring introduced completely positive maps and
showed his famous dilation theorem [70]. A little later Tomiyama proved some of
the basic results on positive projections of von Neumann algebras onto von Neu-
mann subalgebras, called conditional expectations [92]. After that the theory grad-
ually developed, but with rather few people involved. A change came in the 1990’s
when it became clear that positive maps are important in the study of entanglement
in quantum information theory. Since then the interest in the subject has increased
considerably, as has the development of the theory.

The aim of the present book is to present the main part of the theory of positive
maps as it stands today. We start with the basic results in Chap. 1 and prove in
particular the Stinespring Theorem and the inequalities for positive maps that follow
from it. It turns out that the order theory of C∗-algebras is closely related to Jordan
algebras. In Chap. 2 we study positive maps from this point of view, and in particular
study projection maps and their images. The unit ball of maps from one C∗-algebra
into another is a convex set. As might be expected, many of the extreme points of
this convex set have special properties. This topic will be treated in Chap. 3.

From Chap. 4 on much of the theory will be developed in finite dimensions. There
are three main reasons for this; firstly, the main ideas come from finite dimensions,
the extension to infinite dimensions are often unnecessarily technical, and the appli-
cations to quantum information theory are mostly in finite dimensions. The reader
who is mainly interested in this part may skip Chaps. 2 and 3 on first reading.

Since we shall mainly be interested in properties of positive maps, and each C∗-
algebra can be considered as a subalgebra of B(H)—the bounded linear operators
on a Hilbert space H , we shall mostly restrict attention to maps into B(H). If a
map is from B(K) into B(H) with K finite dimensional, a very useful technique
was introduced by Choi [7] and Jamiolkowski [30], namely the Choi matrix for
a map. This matrix yields an isomorphism of the linear maps of B(K) into B(H)

onto B(K ⊗H), identified with B(K)⊗B(H). Thus problems on positive maps are
reformulated in terms of matrices. Their basic properties will be studied in Chap. 4.

v



vi Introduction

In Chap. 5 we introduce cones of maps in P(H)—the positive maps of B(H)

into itself—called mapping cones, and positivity of maps into B(H) with respect
to mapping cones. An important result in this connection is a Hahn-Banach type
theorem for maps positive with respect to a mapping cone, which implies that we
may restrict attention to maps of B(K) into B(H). This will be done in the three last
chapters, which are all to a great extent inspired by quantum information theory. In
Chap. 6 we study the dual cones of mapping cones, in Chap. 7 applications to states,
and in Chap. 8 we consider different norms on positive maps.

In order to reach a more general audience the mathematical level of the book
is kept as elementary as possible. We have therefore avoided proofs which require
much of the theory of von Neumann algebras and the second dual of C∗-algebras.
Therefore some results appear in less generality than is possible. In the Appendix
we include some results and references which will be used in the text.

Since our main goal is the study of positive maps as such, we have omitted the-
ory of more general type and closely related results concerning maps which are not
positive.We have therefore not included results on completely bounded maps. For
this see the book [59]. Furthermore, we have not included results on the facial struc-
ture of P(H), nor the dual action on the state spaces of C∗-algebras given by unital
positive maps. For a survey on the facial structure see [45]. For exposed maps see
e.g. [13, 19]. Another area where positive maps appear, is in operator spaces. In that
context the maps are usually completely positive, see [14]. However, there is a close
connection with positive maps of C∗-algebras, which is shown in [34].

Most of the results in this book have not appeared in book form before. The
exceptions are the basic theory of completely positive maps, which is well treated
in Paulsen’s book [59] and partly in Effros and Ruan’s book [14]. Furthermore parts
of the content of Chaps. 4, 6 and 7 are considered in the book [2] by Bengtsson and
Zyczkowski, but then in a more descriptive form. For a survey of the theory as it
was prior to 1974 see the survey article [75] by the author.
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Chapter 1
Generalities for Positive Maps

In this chapter we introduce the basic notions of positive maps. We show the main
results on completely positive maps, inequalities and norm properties, plus the ad-
joint map.

1.1 Basic Definitions

It is expected that the reader knows the basic elements of operator algebra theory.
But for the reader’s convenience we shall state the main definitions and results we
need, in the Appendix. Since there are different notations and conventions in use for
the main concepts, we first introduce the basic ones used in this book.

The inner product on a complex Hilbert space H is denoted by

(ξ, η), ξ, η ∈ H.

The inner product is linear in the left variable and conjugate linear in the right.
We denote by B(H) the bounded linear operators on H . Mn = Mn(C) denotes

the complex n × n-matrices. It is identified with B(Cn). If A is a C∗-algebra we
also use the notation Mn(A) for the n × n-matrices with entries in A. The transpose
map is denoted by t , so that t ((aij)) = (aij)

t = (aji). Tr will always denote the trace
on Mn which takes the value 1 at minimal projections. The notation is independent
of n, but will be clear from the context.

Definition 1.1.1 Let A and B be C∗-algebras. A linear map φ : A → B is said to
be positive, written φ ≥ 0, if φ(a) ≥ 0 whenever a ≥ 0.

When we say a map is positive we always implicitly assume it is linear. Note that
the definition makes sense in much more general circumstances, e.g. when A is an
operator system, i.e. a linear subspace A ⊂ B(H) such that a ∈ A implies a∗ ∈ A

and 1 ∈ A. We shall often use the notation B(A,H) for the linear space of bounded
linear maps of A into B(H) and B(A,H)+ for the positive maps in B(A,H).

E. Størmer, Positive Linear Maps of Operator Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_1,
© Springer-Verlag Berlin Heidelberg 2013
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2 1 Generalities for Positive Maps

Since each self-adjoint operator is the difference of two positive operators with
orthogonal supports, a positive map φ carries self-adjoint operators to self-adjoint
operators. If a = b + ic with b and c self-adjoint in A, we get

φ
(
a∗)= φ(b) − iφ(c) = φ(a)∗,

so φ preserves adjoints, and is often referred to as a self-adjoint linear map. If A has
an identity 1 and a ∈ A is self-adjoint, then −‖a‖1 ≤ a ≤ ‖a‖1, so −‖a‖φ(1) ≤
φ(a) ≤ ‖a‖φ(1). Thus the norm of the restriction φ|Asa of φ to the self-adjoint part
of A, is ‖φ(1)‖. If A does not contain 1 then we can extend φ to Ã—the C∗-algebra
A with 1 adjoined, i.e. Ã = A +C1, and define φ(1) to be ‖φ|Asa‖1. If a = b + ic

as above we have

∥∥φ(a)
∥∥≤ ∥∥φ(b)

∥∥+ ∥∥φ(c)
∥∥≤ 2

∥∥φ(1)
∥∥‖a‖,

because ‖b‖, ‖c‖ ≤ ‖a‖. Thus every positive map is bounded and therefore contin-
uous. We shall see later that ‖φ‖ = ‖φ(1)‖.

A linear functional ρ on a C∗-algebra A is called a state if it is positive on positive
operators and has norm 1. In particular if 1 ∈ A, ρ(1) = 1. If A = Mn the density
matrix for ρ is the positive matrix h such that ρ(a) = Tr(ha) for a ∈ A. If ρ is a
state on Mn ⊗ Mm, ρ is said to be a product state if there are states ρ1 on Mn and
ρ2 on Mm such that ρ = ρ1 ⊗ ρ2. ρ is said to be separable if it is a convex sum of
product states.

1.2 Completely Positive Maps

Positive maps are divided into several classes of which the completely positive maps
have been the most important. This has also been the case in applications to physics,
see [49]. See the Appendix for a discussion of tensor products.

Definition 1.2.1 Let φ : A → B be a linear map, and let k ∈ N—the natural num-
bers. Then φ is k-positive if φ ⊗ ik : A ⊗ Mk → B ⊗ Mk is positive, ik denotes the
identity map on Mk . φ is said to be completely positive if φ is k-positive for all
k ∈N.

A restatement of the definition of k-positivity is that if (aij) ∈ Mk(A)+—the pos-
itive elements in Mk(A)—then (φ(aij)) ∈ Mk(B)+. Note also that since the flip
map A ⊗ Mk → Mk ⊗ A, defined by a ⊗ b 
→ b ⊗ a, is an isomorphism, φ is also
k-positive if and only if ik ⊗ φ : Mk ⊗ A → Mk ⊗ B is positive.

We next list some properties of k-positive, and hence completely positive maps.
But first recall that a ∗-anti-homomorphism is a self-adjoint linear map φ such that
φ(ab) = φ(b)φ(a). We shall often drop the prefix ∗ when we say a map is a ∗-
homomorphism or an ∗-anti-homomorphism. If K and H are Hilbert spaces, and
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V : H → K is a bounded linear operator, then AdV denotes the map of B(K) into
B(H) defined by

AdV (a) = V ∗aV.

Since every C∗-algebra can be imbedded in B(H) for some Hilbert space H , we
can often replace the C∗-algebra B in Definition 1.2.1 by B(H).

Lemma 1.2.2 Let A ⊂ B(K) and B ⊂ B(H) be C∗-algebras and φ : A → B a
self-adjoint linear map.

(i) If φ = AdV for a bounded operator V : H → K , then φ is completely positive.
(ii) If φ is a ∗-homomorphism then φ is completely positive.

(iii) If A0 and B0 are C∗-algebras, φ k-positive and α : A0 → A, β : B → B0 are
k-positive then β ◦ φ ◦ α is k-positive.

(iv) If in (iii) α and β are ∗-anti-homomorphisms and φ k-positive, then β ◦ φ ◦ α

is k-positive.

Proof (i) This follows since AdV ⊗ ik = Ad(V ⊗ 1k) is positive, where ik is the
identity map on Mk .

(ii) Similarily if φ is a homomorphism, then so is φ ⊗ ik , hence is positive.
(iii) Since

(β ◦ φ ◦ α) ⊗ ik = (β ⊗ ik) ⊗ (φ ⊗ ik) ⊗ (α ⊗ ik)

is a composition of positive maps, β ◦ φ ◦ α is k-positive.
(iv) Similarily if α and β are anti-homomorphisms then

(β ◦ φ ◦ α) ⊗ ik = (β ⊗ t) ◦ (φ ⊗ ik) ⊗ (α ⊗ t),

as t2 = ik . Since α ⊗ t and β ⊗ t are ∗-anti-homomorphisms they are positive maps,
so again β ◦ φ ◦ α is k-positive. �

If (aij), (bij) ∈ Mn then their Schur product is the matrix (aijbij) ∈ Mn.

Lemma 1.2.3 If (aij) ∈ M+
n then the Schur product (bij) 
→ (aijbij) is a completely

positive map Mn → Mn.

Proof By spectral theory we may assume (aij) is of rank 1, hence of the form (aiaj ).
Let V denote the diagonal matrix with diagonal entries a1, . . . , an. Then (aijbij) =
(aibijaj ) = V ∗(bij)V , so the lemma follows from Lemma 1.2.2 part (i). �

If either A or B is abelian then a positive map φ : A → B is completely positive.
In the next two theorems we prove this.

Theorem 1.2.4 Let A and B be C∗-algebras with B abelian. Then every positive
map φ : A → B is completely positive. In particular, each state on A considered as
a positive map of A into C is completely positive.
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Proof We first show that if ρ is a pure state on B ⊗ Mk then ρ is a product state.
Indeed, since B ⊗ C1 is the center of B ⊗ Mk , if 0 ≤ b ≤ 1 in B ⊗ C1 then for all
a ≥ 0 in B ⊗ Mk , ρ(ba) ≤ ρ(a). Since ρ is pure it follows that ρ(ba) = ρ(b)ρ(a).
Thus, if ω = ρ|B⊗C1 and η = ρ|C1⊗Mk

then for b ∈ B,a ∈ Mk ,

ρ(b ⊗ a) = ρ
(
(b ⊗ 1)(1 ⊗ a)

)= ρ(b ⊗ 1)ρ(1 ⊗ a)

= ω(b)η(a) = ω ⊗ η(b ⊗ a),

proving the assertion.
Let now φ : A → B be a positive map. Let ρ be a pure state of B ⊗ Mk . With ω

and η as above

ρ ◦ (φ ⊗ ik) = (ω ◦ φ) ⊗ (η ◦ ik)

is the tensor product of two positive linear functionals, hence is positive. Since this
holds for all pure states ρ, φ ⊗ ik is positive, so φ is completely positive. �

Theorem 1.2.5 Let A and B be C∗-algebras with A abelian. Then every positive
map φ : A → B is completely positive.

We first give a simple proof when A is finite dimensional. In that case let
e1, . . . , em be the minimal projections in A, so Aei = Cei . Define φi(a) = φ(aei).
Then φi is the composition of the homomorphism a 
→ aei and a positive map
C → B(H), so is clearly completely positive, hence so is φ =∑m

i=1 φi .

Proof of Theorem 1.2.5 We may assume A = C0(X)—the continuous complex
functions vanishing at infinity on a locally compact Hausdorff space, or if A is
unital that A = C(X)—the continuous functions on a compact Hausdorff space. Let
a = (fij) ∈ Mn(A)+. Assume B ⊂ B(H), and let ξ1, . . . , ξn be vectors in H . We
wish to show

n∑

i,j=1

(
φ(fij)ξj , ξi

)=
⎛

⎜
⎝
(
φ(fij)

)
⎛

⎜
⎝

ξ1
...

ξn

⎞

⎟
⎠ ,

⎛

⎜
⎝

ξ1
...

ξn

⎞

⎟
⎠

⎞

⎟
⎠≥ 0. (1.1)

By the Riesz-Markoff Theorem there exists a regular measure m on X such that∑n
i=1(φ(f )ξi, ξi) = ∫ f dm for all f ∈ A. Then by the Riesz-Markov and Radon-

Nikodym theorems there exist measurable functions hij such that

(
φ(f )ξj , ξi

)=
∫

f hijdm for allf ∈ A. (1.2)
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Let λ1, . . . , λn ∈C. Then we have for f ≥ 0,

∫
f (γ )

⎛

⎜
⎝
(
hij(γ )

)
⎛

⎜
⎝

λ1
...

λn

⎞

⎟
⎠ ,

⎛

⎜
⎝

λ1
...

λn

⎞

⎟
⎠

⎞

⎟
⎠dm

=
∫

f (γ )
∑

i,j

hij(γ )λjλi dm

=
∑

i,j

(
φ(f )ξj , ξi

)
λjλi

=
⎛

⎜
⎝

⎛

⎜
⎝

φ(f ) · · · 0
...

. . .
...

0 · · · φ(f )

⎞

⎟
⎠

⎛

⎜
⎝

λ1ξ1
...

λnξn

⎞

⎟
⎠ ,

⎛

⎜
⎝

λ1ξ1
...

λnξn

⎞

⎟
⎠

⎞

⎟
⎠

≥ 0,

since φ(f ) ≥ 0 when f ≥ 0. It follows that for each λ = (λ1, . . . , λn) ∈ C
n,

((hij(γ ))λ,λ) ≥ 0 almost everywhere. Letting λ run through a countable dense set
in C

n we conclude that (hij(γ )) ≥ 0 almost everywhere.
Since the evaluation f 
→ f (γ ) is a state for γ ∈ X, it is completely posi-

tive by Theorem 1.2.4, so the matrix (fij(γ )) ∈ M+
n for all γ ∈ X. Therefore by

Lemma 1.2.3 the Schur product
(
fij(γ )hij(γ )

)≥ 0

almost everywhere, and so
∑

i,j

fij(γ )hij(γ ) ≥ 0 almost everywhere.

Thus from (1.1) and (1.2)

∑

i,j

(
φ(fij)ξj , ξi

)=
∫ ∑

i,j

fij(γ )hij(γ ) dm ≥ 0,

completing the proof. �

Remark 1.2.6 An alternative proof of the above theorem would be to show that
the cone (A ⊗ Mk)

+ of positive operators in A ⊗ Mk equals the cone A+ ⊗ M+
k

generated by operators a ⊗ b with a ∈ A+, b ∈ M+
k . In that case, if a ∈ (A ⊗ Mk)

+
then a is of the form a =∑ai ⊗bi , ai ∈ A+, bi ∈ M+

k , so (φ ⊗ ιk)(a) =∑φ(ai)⊗
bi ≥ 0, and therefore φ is completely positive.

The main result on completely positive maps is the Stinespring Theorem, which
is an extension of the GNS construction for states to completely positive maps.
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Theorem 1.2.7 Let A be a unital C∗-algebra and φ : A → B(H). Then φ is com-
pletely positive if and only if there exist a Hilbert space K , a bounded linear opera-
tor V : H → K and a ∗-homomorphism π : A → B(K) such that

φ(a) = V ∗π(a)V for all a ∈ A.

Furthermore ‖V ‖2 ≤ ‖φ(1)‖.

Proof If φ is of the above form then φ is completely positive by Lemma 1.2.2.
The proof of the converse is a generalization of the proof of the GNS-

representation for a state. We define a sesquilinear form on A ⊗ H by
〈∑

j

bj ⊗ ηj ,
∑

i

ai ⊗ ξi

〉
=
∑(

φ
(
a∗
i bj

)
ηj , ξi

)
,

for ai, bj ∈ A, ηj , ξi ∈ H , i = 1, . . . , k, j = 1, . . . , l. In particular, if η = (η1, . . . ,

ηl), then

〈
l∑

i

bj ⊗ ηj ,
∑

j

bi ⊗ ηi

〉

=
l∑

i

(
φ
(
b∗
i bj

)
ηj , ηi

)

= ((φ(b∗
i bj

))
η,η
)≥ 0,

since φ is in particular l-positive, and

(
b∗
i bj

)=
⎛

⎜
⎝

b∗
1 0 · · · 0
...

...

b∗
l 0 · · · 0

⎞

⎟
⎠

⎛

⎜⎜⎜
⎝

b1 · · · bl

0 0
...

...

0 · · · 0

⎞

⎟⎟⎟
⎠

∈ Ml(A)+.

We therefore have a positive semidefinite sesquilinear form, and if we let

N = {u ∈ A ⊗ H : 〈u,u〉 = 0
}

then 〈 , 〉 induces a Hilbert space inner product on (A⊗H)/N . We let K denote the
completion of the pre-Hilbert space (A ⊗ H)/N .

For each a ∈ A we let π(a) be the linear map on A ⊗ H defined by

π(a)
(∑

aj ⊗ ξj

)
=
∑

aaj ⊗ ξj .

If
∑

aj ⊗ ξj ∈ A ⊗ H let ξ = (ξ1, . . . , ξk). We then have
〈
π(a)

(∑

j

aj ⊗ ξj

)
,π(a)

(∑

i

ai ⊗ ξi

)〉

=
∑(

φ
(
a∗
i a∗aaj

)
ξj , ξi

)
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= ((φ(a∗
i a∗aaj

))
ξ, ξ
)

≤ ‖a‖2((φ
(
a∗
i aj

))
ξ, ξ
)

= ‖a‖2
〈∑

aj ⊗ ξj ,
∑

ai ⊗ ξi

〉
.

In particular π(a) maps N into itself. π(a) therefore determines a bounded linear
operator, also denoted by π(a), of A⊗H/N into itself. It is clear that ‖π(a)‖ ≤ ‖a‖.
Thus π(a) extends to a linear operator on K , which we again denote by π(a). It is
easy to check that π : A → B(K) is a unital ∗-homomorphism.

Define V : H → K by

V ξ = 1 ⊗ ξ + N.

Then

‖V ξ‖2 = 〈V ξ,V ξ 〉 = 〈1 ⊗ ξ,1 ⊗ ξ 〉 = (φ(1)ξ, ξ
)

≤ ∥∥φ(1)
∥∥‖ξ‖2,

so in particular, V is bounded and ‖V ‖2 ≤ ‖φ(1)‖.
Finally, if a ∈ A and ξ, η ∈ H then

(
V ∗π(a)V ξ, η

)= 〈π(a)(1 ⊗ ξ),1 ⊗ η
〉

= 〈a ⊗ ξ,1 ⊗ η〉
= (φ(a)ξ, η

)
.

Thus φ(a) = V ∗π(a)V , completing the proof. �

For more on the Stinespring Theorem see Sect. 3.5.
The Stinespring Theorem has immediate formulations to other classes of maps,

as we shall now see.

Definition 1.2.8 Let A be a C∗-algebra and φ : A → B(H). We say that φ is copos-
itive if t ◦ φ is completely positive, where t is the transpose map on B(H). φ is de-
composable if φ is the sum of a completely positive and a copositive map. Otherwise
φ is indecomposable.

Remark 1.2.9 Note that if t ′ is the transpose map on B(H) with respect to another
orthonormal basis, then there is a unitary operator u ∈ B(H) such that t ′ = Adu ◦ t .
Thus by Lemma 1.2.2 the definition of copositive maps is independent of the choice
of basis, and thus of t .

The same is the situation with maps of the form t ◦ φ with φ k-positive. We shall
come back to these and k-positive maps in Chaps. 6 and 8, where it will be shown
that they fit well into the classification scheme for positive maps. The remaining
class which is very poorly understood, is that of atomic maps, where a positive map
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φ : A → B(H) is said to be atomic if it cannot be written as a sum φ = φ1 + t ◦ φ2

with φ1 and φ2 two 2-positive maps.

Definition 1.2.10 Let A and B be C∗-algebras and φ : A → B a self-adjoint linear
map. We say that φ is a Jordan homomorphism if φ(a2) = φ(a)2 for all self-adjoint
operators a ∈ A.

Note that since ab + ba = (a + b)2 − a2 − b2, a Jordan homomorphism preserves
the Jordan product a ◦ b = 1

2 (ab + ba).

Theorem 1.2.11 Let A be a unital C∗-algebra and φ : A → B(H) a positive map.
Then

(i) If φ is copositive then there exist a Hilbert space K , a bounded linear op-
erator V : H → K and an anti-homomorphism π : A → B(K) such that
φ(a) = V ∗π(a)V for a ∈ A.

(ii) If φ is decomposable then there exist K and V as in (i) and a Jordan homomor-
phism π : A → B(K) such that φ(a) = V ∗π(a)V for a ∈ A.

Proof (i) Let K0 be a Hilbert space such that A ⊂ B(K0), and let t0 denote the
transpose on B(K0) and t the transpose on B(H). Let B = t0(A). Then B is a C∗-
algebra anti-isomorphic to A. Define φ′ : B → B(H) by φ′(b) = φ(t0(b)). This is
well-defined because t0 = t−1

0 . Since φ is copositive, t ◦ φ is completely positive,
hence by Lemma 1.2.2 (iv) φ′ = t ◦ (t ◦ φ) ◦ t0 is completely positive. Therefore
by the Stinespring Theorem, 1.2.7, there exist V and π ′ as in the statement of the
Stinespring Theorem such that φ′ = V ∗π ′V . Then if a ∈ A,

φ(a) = φ ◦ t0 ◦ t0(a) = φ′(t0a) = V ∗π ′(t0(a)
)
V = V ∗π(a)V,

where π is a ∗-anti-homomorphism, proving (i).
(ii) Suppose φ = φ1 +φ2 with φ1 : A → B(H) completely positive and φ2 : A →

B(H) copositive. By the Stinespring Theorem and (i) there exist Hilbert spaces Ki ,
a homomorphism π1 : A → B(K1), and an anti-homomorphism π2 : A → B(K2)

such that φi = V ∗
i πiVi where Vi : H → Ki . Let V : H → K1 ⊕ K2 by

V ξ = V1ξ ⊕ V2ξ.

Define π : A → B(K1 ⊕ K2) by

π(a) = π1(a) + π2(a).

Thus π is a Jordan homomorphism, and for a ∈ A,

V ∗π(a)V = V ∗
1 π1(a)V2 + V ∗

2 π2(a)V2 = φ1(a) + φ2(a) = φ(a),

completing the proof of the theorem. �
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1.3 Inequalities

The Stinespring Theorem, 1.2.7, yields several inequalities for positive maps. From
the theorem it follows that if φ = V ∗πV , then ‖V ‖2 ≤ ‖φ‖, hence if ‖φ‖ ≤ 1 then
‖V ‖ ≤ 1.

Theorem 1.3.1 Let A be a C∗-algebra and φ : A → B(H) be a positive map with
‖φ‖ ≤ 1. Then for a ∈ A we have:

(i) If A is unital and φ is completely positive then φ(a∗a) ≥ φ(a)∗φ(a).
(ii) If a is a normal operator then φ(a∗a) ≥ φ(a)∗φ(a).

(iii) If a is a self-adjoint operator then φ(a2) ≥ φ(a)2.
(iv) φ(a∗a + aa∗) ≥ φ(a)∗φ(a) + φ(a)φ(a)∗.

Proof (i) If φ is completely positive, φ = V ∗πV as in the Stinespring Theorem with
‖V ‖ ≤ 1. Thus

φ
(
a∗a
)= V ∗π

(
a∗a
)
V = V ∗π(a)∗π(a)V ≥ V ∗π(a)∗V V ∗π(a)V

= φ(a)∗φ(a).

(ii) If a is a normal operator in A then the C∗-algebra C(a) generated by a and
1 is abelian and φ has a positive extension to C(A) with norm ‖φ‖ ≤ 1. Then the
restriction of φ to C(a) is completely positive by Theorem 1.2.5. Hence (ii) follows
from (i). (iii) is immediate from (ii). (iv) The operators a + a∗ and i(a − a∗) are
self-adjoint. Thus by (iii)

φ
((

a + a∗)2)+ φ
((

i
(
a − a∗))2)≥ φ

(
a + a∗)2 + φ

(
i
(
a − a∗))2.

A straightforward computation now yields the desired result. �

Corollary 1.3.2 Let A be a unital C∗-algebra and φ a 2-positive map with ‖φ‖ ≤ 1
of A into B(H). Then φ(a∗a) ≥ φ(a)∗φ(a) for all a ∈ A.

Proof Let ι2 denote the identity map on M2. Since φ ⊗ ι2 is positive, Theo-
rem 1.3.1 (iii) implies

(
φ(a∗a) 0

0 φ(aa∗)

)
= φ ⊗ ι2

(
a∗a 0

0 aa∗
)

= φ ⊗ ι2

((
0 a∗
a 0

)2
)

≥ φ ⊗ ι2

(
0 a∗
a 0

)2

=
(

φ(a)∗φ(a) 0
0 φ(a)φ(a)∗

)
,

proving that φ(a∗a) ≥ φ(a)∗φ(a). �

In Sect. 1.1 we showed that if φ is positive ‖φ‖ ≤ 2‖φ(1)‖. Using Theorem 1.3.1
we can now improve this.
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Theorem 1.3.3 Let A be a unital C∗-algebra and φ : A → B(H) a self-adjoint
linear map. If φ is positive then ‖φ‖ = ‖φ(1)‖. Conversely, if φ(1) = 1 and ‖φ‖ = 1,
then φ is positive.

Proof Multiplying φ by a scalar we may assume ‖φ‖ = 1. By the Russo-Dye The-
orem, see Appendix A1.5, the unit ball of A is the closed convex hull of the unitary
operators in A. Thus 1 = sup‖φ(u)‖, where the sup is taken over all unitary opera-
tors in A. But by Theorem 1.3.1(ii) if φ is positive, then

∥∥φ(u)
∥∥2 = ∥∥φ(u)∗φ(u)

∥∥≤ ∥∥φ(u∗u
)∥∥= ∥∥φ(1)

∥∥≤ 1.

Thus 1 = sup‖φ(u)‖2 ≤ ‖φ(1)‖ ≤ 1, so ‖φ(1)‖ = 1 = ‖φ‖. Conversely if φ is a
self-adjoint linear map such that φ(1) = 1, and ‖φ‖ = 1, then for each state ρ of
B(H), ρ ◦ φ is a state, hence is positive. Since this holds for all states, φ is posi-
tive. �

1.4 The Adjoint Map

If K and H are finite dimensional Hilbert spaces, then B(K) and B(H) with the
Hilbert-Schmidt inner product 〈a, b〉 = Tr(ab∗) are Hilbert spaces. Thus a linear
map φ : B(K) → B(H) can be considered as a bounded operator between Hilbert
spaces and therefore has an adjoint map defined by

Tr
(
φ(a)b

)= Tr
(
aφ∗(b)

)
, a ∈ B(K), b ∈ B(H). (1.3)

In the infinite dimensional case we must assume φ is normal, i.e. if (aα)α∈I is an
increasing net in B(K)+ with least upper bound a, so aα ↗ a ∈ B(K), implies
φ(aα) ↗ φ(a), then φ is weakly continuous on bounded sets, see Appendix A.1.
Since every normal state on B(H) is defined by a density operator, which is a pos-
itive trace class operator, a normal positive map φ has an adjoint map φ∗ mapping
the trace class operators T (H) on H into T (K), defined by (1.3).

Definition 1.4.1 Let M be a von Neumann algebra and φ : M → B(H) be a normal
positive map. Then the null space of φ is the sup of all projections e ∈ M such that
φ(e) = 0. If f is the null space of φ then 1 − f is the support of φ, denoted by
suppφ. We say φ is faithful if the null space of φ is 0, i.e. if a ≥ 0 and φ(a) = 0
then a = 0.

Proposition 1.4.2 Let K and H be Hilbert spaces and φ : B(K) → B(H) a normal
positive map. Then we have:

(i) φ∗ : T (H) → B(K) is positive.
(ii) φ(1) = 1 if and only if TrK ◦ φ∗ = TrH , where TrK and TrH are the traces on

B(K) and B(H) respectively.
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(iii) Let e = suppφ. Then eφ∗(b)e = φ∗(b) for all b ∈ T (H).
(iv) If V : H → K is linear then (AdV )∗ = AdV ∗.

Proof (i) This follows since a ∈ B(K) is positive if and only if Tr(ab) ≥ 0 for all
positive b ∈ T (K).

(ii) TrH (φ(1)b) = TrK(φ∗(b)) for all b ∈ T (H). Thus (ii) follows.
(iii) Since φ(e) = φ(1) we have for b ∈ T (H)

0 = Tr
(
(1 − e)φ∗(b)

)= Tr
(
(1 − e)φ∗(b)(1 − e)

)
.

Hence for all b ≥ 0 in T (H), (1 − e)φ∗(b)(1 − e) = 0, so that (1 − e)φ∗(b) = 0
for all positive b, and therefore φ∗(b) = eφ∗(b) = (eφ∗(b))∗ = φ∗(b)e. Thus (iii)
follows easily, since the positive operators span T (H).

(iv) This follows since

Tr
(
AdV (a)b

)= Tr
(
V ∗aV b

)= Tr
(
aV bV ∗)= Tr

(
aAdV ∗(b)

)
. �

If H is finite dimensional then T (H) = B(H), so 1 ∈ T (H). Then we can add
the following to Proposition 1.4.2.

Proposition 1.4.3 Let H be finite dimensional and φ : B(K) → B(H) be weakly
continuous on bounded sets. Then we have:

(i) φ is positive if and only if φ∗ is positive.
(ii) If f = suppφ∗ then φ∗ : f B(H)f → eB(K)e is faithful, where e = suppφ.

(iii) φ is k-positive if and only if φ∗ is k-positive. Hence φ is completely positive if
and only if φ∗ is completely positive.

(iv) If φ is faithful then the range projection of φ∗(1) equals 1.

Proof (i) This follows by the argument of Proposition 1.4.2(i).
(ii) If f = suppφ∗ then φ∗(b)=φ∗(f bf ), so by Proposition 1.4.2(iii) φ∗(f bf )=

eφ∗(b)e, and (ii) follows by definition of suppφ∗.
(iii) We have (φ ⊗ ιk)

∗ = φ∗ ⊗ ι∗k = φ∗ ⊗ ιk . Thus by (i) φ is k-positive if and
only if φ∗ is k-positive.

(iv) If the range projection of φ∗(1) is not the identity then there exists a 1-
dimensional projection p orthogonal to φ∗(1). Then Tr(φ(p)) = Tr(pφ∗(1)) = 0.
Since φ is faithful p = 0, completing the proof. �

1.5 Notes

The main results in the present chapter are closely related to completely positive
maps. The definition is due to Stinespring [70], who proved Theorem 1.2.7. As the
reader can see, the proof is a generalization of the proof of the GNS construction
for states. Our proof follows closely the proof in the book by Effros and Ruan [14].
The theorem has been extended to ∗-algebras of unbounded operators by Timmer-
mann [90].
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The ideas of the Stinespring Theorem go back to Naimark [52], who proved the
theorem in the case when the map is from an abelian C∗-algebra into B(H). Thus
Theorem 1.2.5 is due to him. Our proof follows closely the one due to Stinespring.
The other theorem on positive maps being automatically completely positive, The-
orem 1.2.4, is due to the author [71], see also [85]. Among the inequalities in Theo-
rem 1.3.1 the most famous is the third, φ(a2) ≥ φ(a)2. This inequality was proved
by Kadison [36] and is usually referred to as the Kadison-Schwarz inequality. Corol-
lary 1.3.2 is due to Choi [6], and Theorem 1.3.3 to Russo and Dye [65].



Chapter 2
Jordan Algebras and Projection Maps

The order structure in C∗-algebras is closely related to Jordan algebras. In this chap-
ter we shall study this connection. In the first part we shall study general positive
maps, and in the second and third projection maps, i.e. positive idempotent maps of
C∗-algebras into themselves.

2.1 Jordan Properties of Positive Maps

The class of Jordan algebras which we shall encounter, are contained in C∗-algebras.

Definition 2.1.1 A JC-algebra J is a norm closed real linear subspace of the self-
adjoint operators in B(H) for a Hilbert space H , such that a, b ∈ J implies a ◦ b =
1
2 (ab + ba) ∈ J .

a ◦ b is called the Jordan product of a and b. Since 2a ◦ b = (a + b)2 − a2 − b2,
one could equivalently just require that a ∈ J implies that a2 ∈ J . Thus the self-
adjoint part Asa of a C∗-algebra A is a JC-algebra.

Definition 2.1.2 Let A and B be C∗-algebras and φ : A → B a self-adjoint linear
map. Then φ is an order-isomorphism if φ is bijective and φ(a) ≥ 0 if and only if
a ≥ 0.

The close relation between the order-structure and the Jordan structure is clear
from the following theorem.

Theorem 2.1.3 Let A and B be unital C∗-algebras and φ : A → B a unital self-
adjoint linear map. Then φ is an order-isomorphism if and only if φ is a Jordan
isomorphism.

Proof Since a self-adjoint operator is positive if and only if it is of the form a2 with
a self-adjoint, it is clear that a Jordan isomorphism is an order-isomorphism.

E. Størmer, Positive Linear Maps of Operator Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_2,
© Springer-Verlag Berlin Heidelberg 2013

13

http://dx.doi.org/10.1007/978-3-642-34369-8_2
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Conversely assume φ is an order-isomorphism. By the Kadison-Schwarz inequal-
ity, Theorem 1.3.1(iii), φ(a2) ≥ φ(a)2 for all self-adjoint a ∈ A. Since the inverse
map φ−1 is also positive and unital, it also satisfies the Kadison-Schwarz inequality,
hence for a self-adjoint in A,

a2 = φ−1(φ
(
a2))≥ φ−1(φ(a)2)≥ φ−1(φ(a)

)2 = a2,

so that φ(a2) = φ(a)2, hence φ is a Jordan isomorphism. �

Definition 2.1.4 Let A and B be C∗-algebras and φ : A → B a positive map. The
definite set for φ is the set D = {a ∈ Asa : φ(a2) = φ(a)2}. The multiplicative do-
main for φ is the set Mφ = {a ∈ A : φ(ba) = φ(b)φ(a)} for all b ∈ A.

We say φ is a Schwarz map if it satisfies the Schwarz inequality φ(a∗a) ≥
φ(a)∗φ(a) for all a ∈ A. Then φ is in particular a contraction, since φ(1) ≥ φ(1)2.
By Corollary 1.3.2 each 2-positive contraction is a Schwarz map.

Proposition 2.1.5 Let A and B be C∗-algebras and φ : A → B a Schwarz map.
Suppose a ∈ A satisfies

φ
(
a∗)φ(a) = φ

(
a∗a
)
.

Then

φ
(
b∗a
)= φ(b)∗φ(a) and φ

(
a∗b
)= φ(a)∗φ(b)

for all b ∈ A. Hence a belongs to the multiplicative domain Mφ for φ.

Proof With a and b as above and t ∈R we have, using the assumption on a,

t
(
φ(a)∗φ(b) + φ(b)∗φ(a)

)

= φ(ta + b)∗φ(ta + b) − t2φ(a)∗φ(a) − φ(b)∗φ(b)

≤ φ
(
(ta + b)∗(ta + b)

)− t2φ(a)∗φ(a) − φ(b)∗φ(b)

≤ tφ
(
a∗b + b∗a

)+ (φ(b∗b
)− φ(b)∗φ(b)

)
.

Since this holds for all t ∈R,

φ(a)∗φ(b) + φ(b)∗φ(a) = φ
(
a∗b + b∗a

)
. (2.1)

Replacing b by −ib and then multiplying by i gives

φ(a)∗φ(b) − φ(b)∗φ(a) = φ
(
a∗b − b∗a

)
. (2.2)

Adding (2.1) and (2.2) and then subtracting one from the other yields the two equa-
tions in the proposition.

The last statement is obvious from the first of the two equations. �
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Corollary 2.1.6 Let A and B be C∗-algebras and φ : A → B a Schwarz map. Then
the multiplicative domain Mφ for φ is a subalgebra of A.

Proof If a, b ∈ Mφ and c ∈ A, then

φ
(
(ab)c

)= φ
(
a(bc)

)= φ(a)φ(bc) = φ(a)φ(b)φ(c)

= φ(ab)φ(c),

hence ab ∈ Mφ . Since Mφ is clearly a linear set it is an algebra. �

Proposition 2.1.7 Let A and B be C∗-algebras and φ : A → B positive with
‖φ‖ ≤ 1. Suppose a belongs to the definite set D for φ. Then for all b ∈ Asa we
have

(i) φ(a ◦ b) = φ(a) ◦ φ(b).
(ii) φ(aba) = φ(a)φ(b)φ(a).

Furthermore, D is a JC-subalgebra of Asa.

Proof In the proof of Proposition 2.1.5 we use the Schwarz inequality only for
operators a, b, and ta+b, so when they are self-adjoint we only needed the Kadison-
Schwarz inequality. Therefore (i) follows from (2.1).

(ii) follows from (i) via the identity

aba = 2(a ◦ b) ◦ a − a2 ◦ b.

To show D is a JC-algebra let a, b ∈ D. Then by (i) and (ii)

4φ
(
(a ◦ b)2)= φ

(
abab + ab2a + ba2b + baba

)

= 2φ
(
a ◦ (bab)

)+ φ
(
ab2a

)+ φ
(
ba2b

)

= 2φ(a) ◦ φ(bab) + φ
(
ab2a

)+ φ
(
ba2b

)

= 2φ(a) ◦ φ(b)φ(a)φ(b) + φ(a)φ(b)2φ(a) + φ(b)φ(a)2φ(b)

= 4
(
φ(a) ◦ φ(b)

)2

= 4φ(a ◦ b)2,

so that a ◦ b ∈ D. We have

φ
(
(a + b)2)= φ

(
a2 + 2a ◦ b + b2)= φ(a)2 + 2φ(a) ◦ φ(b) + φ(b)2

= (φ(a) + φ(b)
)2 = φ(a + b)2,

hence a + b ∈ D. �

Proposition 2.1.7 raises a natural problem, namely, what kind of JC-algebra is
the definite set D for different kinds of positive maps. In the finite dimensional
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case the irreducible JC-algebras are: (Mn)sa, the real symmetric matrices in Mn; if
the quaternions Q are represented by 2 × 2-matrices, the self-adjoint block matrices
Mn(Q)sa in M2n(C) with entries in Q, and the spin factors to be defined in Sect. 2.3.

A JC-algebra J is said to be reversible if it is closed under symmetric products,
i.e. if a1, . . . , ak ∈ J then

a1a2 . . . ak + akak−1 . . . a1 ∈ J.

In this case if R is the real algebra generated by J then Rsa = J . In the above
examples only the spin factors are not reversible.

Proposition 2.1.8 Let A be a C∗-algebra and φ : A → B(H) a unital positive map.
Let D be the definite set of φ. Then we have:

(i) If φ is decomposable then D is a reversible JC-algebra of Asa.
(ii) If φ is completely positive then D is the self-adjoint part of a C∗-subalgebra

of A.

Proof (i) By Proposition 2.1.7 D is a JC-subalgebra of Asa. By Theorem 1.2.11
there exist a Hilbert space K , a bounded linear operator V : H → K , and a Jordan
homomorphism π : A → B(K) such that φ(a) = V ∗π(a)V for a ∈ A. Then for
a ∈ D,

V ∗π(a)2V = V ∗π
(
a2)V = φ

(
a2)= φ(a)2 = (V ∗π(a)V

)2
.

Since V ∗V = φ(1) = 1, e = V V ∗ is a projection, and if we set π(a) = x, we have
ex2e = exexe, so

(
(1 − e)xe

)∗
(1 − e)xe = ex2e − exexe = 0,

hence (1 − e)xe = 0, so that xe = exe = (exe)∗ = ex, hence π(a) = x ∈ {e}′, the
commutant of e.

Conversely, if a ∈ Asa with π(a)e = eπ(a), then

φ
(
a2)= V ∗π(a)2V = V ∗π(a)eπ(a)V = V ∗π(a)V V ∗π(a)V = φ(a)2.

Then D = π−1({e}′ ∩ π(Asa)).
Since π is the sum of a homomorphism and an anti-homomorphism, as was

shown in the proof of Theorem 1.2.11, we have for a1, . . . , an ∈ Asa

π

(
n∏

1

ai +
1∏

n

ai

)

=
n∏

1

π(ai) +
1∏

n

π(ai).

In particular if ai ∈ D, by the above characterization of D, π(
∏n

1 ai +∏1
n ai) com-

mutes with e and hence belongs to π(D), so
∏n

1 ai +∏1
n ai ∈ D, hence D is re-

versible, proving (i).
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(ii) If in the above proof φ is completely positive, by the Stinespring Theo-
rem 1.2.7, π is a homomorphism. Thus

D = {a ∈ Asa : π(a)e = eπ(a)
}
,

hence if a, b ∈ D then π(ab)e = π(a)π(b)e = eπ(ab). It follows that each a in
the C∗-algebra C∗(D) generated by D satisfies π(a)e = eπ(a). Thus D = C∗(D)sa
proving (ii). �

2.2 Projection Maps

Definition 2.2.1 Let A be a C∗-algebra and P : A → A a positive map with
‖P ‖ ≤ 1. Then P is a projection map if P 2 = P ◦ P = P . If P(A) is a C∗-
subalgebra of A then P is called a conditional expectation.

These maps, and especially conditional expectations, have been very important in
the theory of von Neumann algebras. We shall mainly be interested in their structure
and as examples of positive maps. For simplicity of the arguments we shall mostly
consider faithful projection maps.

Theorem 2.2.2 Let A be a C∗-algebra and P : A → A a faithful projection map.
Then

(i) P(Asa) is a JC-subalgebra of Asa contained in the definite set for P .
(ii) If P is a Schwarz map then P(A) is a C∗-subalgebra of A contained in the

multiplicative domain for P .

Proof We first show (ii), because (i) follows by the same arguments. So assume P

is a Schwarz map, and let a ∈ P(A). Then

P
(
P
(
a∗a
)− a∗a

)= P
(
a∗a
)− P

(
a∗a
)= 0.

From the Schwarz inequality

P
(
a∗a
)− a∗a ≥ P(a)∗P(a) − a∗a = a∗a − a∗a = 0,

so by faithfulness of P , P(a∗a) = P(a)∗P(a) = a∗a, so by Proposition 2.1.5 a

belongs to the multiplicative domain for P . Thus P(ba) = P(b)a for all b ∈ A. In
particular, if b ∈ P(A), then ab = P(ab) ∈ P(A), so P(A) being closed under the
∗-operation, is a C∗-subalgebra of the multiplicative domain.

To show (i) apply the above arguments to a ∈ Asa. Then it follows that P(a2) =
a2 = P(a)2, so a belongs to the definite set for P , and as in the proof of (ii) it
follows from Proposition 2.1.7 that P(Asa) is a JC-subalgebra of Asa, and P(a ◦
b) = a ◦ P(b) for all b ∈ A. �

We make the following observation.
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Lemma 2.2.3 If A is a unital C∗-algebra and P : A → A is a faithful projection
map, then P(1) = 1.

Proof Since ‖P ‖ ≤ 1, P(1) ≤ 1. But P(1 − P(1)) = 0, so by faithfulness of P ,
P(1) = 1. �

Theorem 2.2.4 Let A be a unital C∗-algebra, A ⊂ B(H), and P : A → A a faithful
decomposable projection map. Then P(Asa) is a reversible JC-algebra.

Proof By Proposition 2.1.8 and Lemma 2.2.3 the definite set D of P is a reversible
JC-subalgebra, and by Theorem 2.2.2, P(Asa) ⊂ D. By the definition of D, the
restriction P |D is a Jordan homomorphism.

Let P = V ∗πV as in the proof of Proposition 2.1.8. Since π is the sum of a
homomorphism and an anti-homomorphism, so is the restriction of P to D. Hence
P preserves symmetric products, so that if a1, . . . , ak ∈ D then

n∏

1

P(ai) +
1∏

n

P (ai) = P

(
n∏

1

ai +
1∏

n

ai

)

∈ P(D) = P(Asa).

Thus P(Asa) is a reversible JC-algebra. �

We have now seen how the image of a projection map depends on positivity
properties of the map. A natural problem is whether there are results in the converse
direction. This is true for Theorem 2.2.4, i.e. if P(Asa) is reversible then P is de-
composable, see [76], but we shall not prove this because the proof is too much of
a detour into Jordan algebra theory to belong here. It was shown by Robertson [64]
that the assumption in Theorem 2.2.4 can be weakened, because if P is the sum of
a 2-positive and a 2-copositive map, then P is automatically decomposable.

However, if the image is a C∗-algebra, a converse is easier to prove. Remember,
since each completely positive map is a Schwarz map by Theorem 1.3.1 it follows
by Theorem 2.2.2 that the image of a faithful completely positive projection map is
a C∗-algebra. We first prove a simple lemma.

Lemma 2.2.5 Let A be a C∗-algebra. Then every positive operator in Mn(A) is a
sum of n positive operators of the form (a∗

i aj ) for a1, . . . , an ∈ A.

Proof Let b ∈ Mn(A) be the matrix whose kth row is a1, . . . , an and the other entries
are 0. Then b∗b = (a∗

i aj ), so each operator (a∗
i aj ) is positive. Now let a ∈ Mn(A)+.

Then a = b∗b for b ∈ Mn(A). Write b = b1 + · · · + bn where bk is the kth row of
b and 0 elsewhere. Then b∗

i bj = 0 when i �= j , so a = b∗b =∑n
i=1 b∗

i bi , is of the
form desired. �

If B ⊂ B(H) is a C∗-algebra and ξ ∈ H we denote by [Bξ ] the orthogonal pro-
jection of H onto the closure of the subspace of H consisting of vectors bξ, b ∈ B .
Since abξ ∈ Bξ for a and b ∈ B , [Bξ ] is invariant under B , hence belongs to the
commutant B ′ of B . If [Bξ ] = 1 then ξ is said to be a cyclic vector for B .
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Theorem 2.2.6 Let B ⊂ A be unital C∗-algebras. Suppose P : A → B is a surjec-
tive projection map. Then P is completely positive.

Proof We may assume A ⊂ B(H). Assume first there exists a unit vector η0 in H

cyclic for B . We have to show that if a ∈ Mn(A)+ then P ⊗ ιn(a) ∈ Mn(A)+, where
we identify Mn(A) with A⊗Mn. By Lemma 2.2.5 we may assume a = (a∗

i aj ) with
a1, . . . , an ∈ A. Let ξ1, . . . , ξn ∈ H . We have to show

n∑

i,j=0

(
P
(
a∗
i aj

)
ξj , ξi

)≥ 0, (2.3)

see (1.1).
Let ε > 0. Since η0 is cyclic for B there exist bi ∈ B such that

‖biη0 − ξi‖ < ε/n2 max‖ξi‖, i = 1, . . . , n.

By Proposition 2.1.5 applied to the bi ’s we get

∑

i,j

(
P
(
a∗
i aj

)
ξj , ξi

)≥
∑

i,j

(
P
(
a∗
i aj

)
bjη0, biη0

)− ε

=
∑

i,j

(
P
(
b∗
i a

∗
i aj bj

)
η0, η0

)− ε

= (P

(∑

i,j

(aibi)
∗(aj bj )η0, η0

)
− ε

≥ −ε.

Since ε is arbitrary, (2.3) follows.
In the general case there exists a sequence (ηk) in H such that

∑
k[Bηk] = 1,

where [Bηk] denotes the projection onto the closure of the set {bηk : b ∈ B}. Then
we have by the above, since [Bηk] ∈ B ′,

∑

i,j

(
P
(
a∗
i aj

)
ξj , ξi

)=
∑

i,j,k

([Bηk]P
(
a∗
i aj

)[Bηk]ξj , ξi

)

=
∑

i,j,k

(
P
(
a∗
i aj

)[Bηk]ξj , [Bηk]ξi

)
,

which is nonnegative by the first part of the proof, since ηk is cyclic for [Bηk]B[Bηk]
as acting on [Bηk]H . �

Corollary 2.2.7 Let A be a unital C∗-algebra and P : A → A a faithful projection
which is a Schwarz map. Then P is completely positive.
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Proof By Theorem 2.2.2 P(A) is a C∗-subalgebra of A. By Lemma 2.2.3 P is
unital, and by Theorem 2.2.6 P is completely positive. �

When we described the ranges of projection maps we assumed the maps were
faithful. We shall now see what happens when they are not faithful. It is then sim-
plest to replace the C∗-algebras by von Neumann algebras and assume the projec-
tion maps to be normal. By a JW-algebra we mean a weakly closed JC-algebra.

Proposition 2.2.8 Let M be a von Neumann algebra and P : M → M be a normal
unital projection map. Let e denote the support of P (Definition 1.4.1). Then Pe

defined by Pe(a) = eP (eae)e is a faithful projection map of eMe onto eP (M)e,
hence eP (Msa)e is a JW-algebra.

Proof We first show Pe is a projection map. Let a ∈ M . Then since P(eae) = P(a),

P 2
e (a) = eP

(
eP (eae)e

)
e = eP

(
P(a)

)
e = eP (a)e = eP (eae)e = Pe(a),

so Pe is a projection map. To show Pe is faithful on eMe assume a ≥ 0 and
Pe(a) = 0. Then, using that P is faithful on eMe, we have

0 = eP (eae)e = P
(
eP (eae)e

)= P
(
P(eae)

)= P(eae),

so that eae = 0, and Pe(eMsae) is a JC-algebra by Theorem 2.2.2. Since P is nor-
mal, P is weakly continuous on bounded sets, see Appendix A.1, hence P(M) is
weakly closed. Thus eP (Msa)e is a JW-algebra. �

Proposition 2.2.9 Let M be a von Neumann algebra and P : M → M a normal
unital projection map. Let e be the support of P and N = P(Msa). Then e belongs
to the commutant N ′ of N , and N + f Msaf is a JW-subalgebra of Msa, where
f = 1 − e.

Proof Let a ∈ N . By Proposition 2.1.7,

P(aea) = aP (e)a = a2 = P
(
a2),

so P(a(1−e)a) = 0. Hence by definition of the support ea(1−e)ae = 0. Therefore
ea(1 − e) = 0, and so ea = eae = ae.

By Proposition 2.2.8 eNe is a JW-subalgebra of eMsae. Thus by the above

N = Ne + Nf ⊂ eNe + f Msaf,

so that N + f Msaf is a JW-subalgebra of Msa. �

It should be remarked that in both of the last two propositions we could have
assumed M to be a JW-algebra rather than a von Neumann algebra. The proofs
would be the same.
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There are many theorems in the literature showing the existence of projection
maps of C∗- or von Neumann algebras into themselves. We shall need one, which
we for simplicity state for finite dimensional algebras, even though the result is true
under much more general circumstances.

Proposition 2.2.10 Let A be a C∗-algebra acting on a finite dimensional Hilbert
space. Let Tr be a faithful trace on A, and let B be a JC-subalgebra of Asa. Then
there exists a faithful projection map P : A → B+ iB given by the formula Tr(ab) =
Tr(P (a)b) for all b ∈ B .

Proof With the inner product < a,b >= Tr(ab∗), A becomes a pre-Hilbert space,
and B + iB is a complex subspace. If a ∈ A the map b 
→ Tr(ab) is a continuous
linear functional on B + iB , so by the Riesz representation theorem there exists an
operator P(a) ∈ B + iB such that

Tr(ab) = Tr
(
P(a)b

)
, b ∈ B.

Clearly P so defined is linear, unital, and idempotent. If a ≥ 0 then Tr(P (a)b) ≥ 0
for all b ∈ B+. If P(a) were not positive, by spectral theory there would exist
non zero projections commuting with P(a), e, f ∈ B with e + f = 1, such that
P(a)e ≥ 0, 0 �= P(a)f ≤ 0. But then

0 ≤ Tr
(
P(a)f

)
< 0,

a contradiction. Thus P(a) ≥ 0, and P is a projection map. Finally, if a ≥ 0 and
P(a) = 0, then Tr(a) = Tr(P (a)) = 0, so a = 0, since Tr is faithful, and therefore
P is faithful. �

If φ is a unital positive map of a C∗-algebra into itself, then its fixed point set has
Jordan structure. Our next result describes this in more detail.

Theorem 2.2.11 Let M be a von Neumann algebra and φ : M → M a normal
unital positive map. Let Mφ = {a ∈ M : φ(a) = a} be the fixed point set for φ. Then
we have:

(i) There exists a projection map P : M → Mφ .

Assume that there exists a faithful normal state on M such that ω ◦ φ = ω. Then
we have:

(ii) P is normal, faithful, and M
φ
sa is a JW-subalgebra of Msa.

(iii) If φ is 2-positive then Mφ is a von Neumann subalgebra of M .

Proof For each n ∈ N let φn = 1
n

∑n
k=1 φk . Since the unit ball in the set of positive

maps of M into itself is BW-compact, see Appendix A.1.1, there is a subnet (φnα )

of (φn) which converges pointwise weakly to a positive unital map P : M → M .
Then we have for all n ∈ N,
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φn
(
P(a)

)= φn

(

lim
α

1

nα

nα∑

k=1

φk(a)

)

= lim
α

1

nα

nα∑

1

φn+k(a)

= lim
α

1

nα

(
nα∑

1

φk(a) −
n∑

1

φk(a) +
n∑

1

φk+nα (a)

)

= lim
α

1

nα

nα∑

1

φk(a)

= P(a).

In particular, φn(P (a)) = P(a), and we have

P 2(a) = P
(
P(a)

)= lim
α

φnα

(
P(a)

)= P(a),

so P is a projection. Clearly φ(a) = a implies P(a) = a. Conversely, if P(a) = a,
then by the above, a = P(a) = φ(P (a)) = φ(a), so a ∈ Mφ . Thus P(M) = Mφ ,
and we have proved (i).

Now assume there is a faithful normal state ω such that ω ◦ φ = ω. Then clearly
ω ◦ φn = ω, and since ω is weakly continuous on the unit ball of M by the Ap-
pendix A.1, ω ◦ P = ω. Let (aα) be an increasing net in M+ such that aα ↗ a ∈ M .
Then

0 = limω(a − aα) = ω
(
P(a) − P(aα)

)
.

Since P is positive, P(aγ ) ≤ P(a), so x = supα P (aα) ≤ P(a), hence P(a) =
supα P (aα), proving that P is normal. If a ≥ 0 and P(a) = 0 then 0 = ω(P (a)) =
ω(a), so a = 0, thus P is faithful. Since the support of P is 1, M

φ
sa = P(Msa) is a

JW-algebra by Proposition 2.2.8, proving (ii).
(iii) If φ is 2-positive, then, since the composition of two 2-positive maps is 2-

positive, it follows that P is 2-positive, hence by Corollary 1.3.2, P is a Schwarz
map. But then by Theorem 2.2.2 Mφ = P(M) is a von Neumann subalgebra
of M . �

2.3 Spin Factors

The canonical anticommutation relations give rise to an interesting class of JC-
algebras, called spin factors. Algebraically they are quite different from the re-
versible ones we have encountered so far. We shall in the present section study
projections onto spin factors and show they have properties which are very different
from the others we have considered.
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Definition 2.3.1 Let H be a Hilbert space. A spin system in B(H) is a collection
P of at least two symmetries, i.e. self-adjoint unitary operators different from ±1
such that s ◦ t = 1

2 (st + ts) = 0 whenever s �= t in P . A JC-algebra A is called a
spin factor if it is the real linear span of 1 and a spin system.

Given a spin system P let H0 be its real linear span. Then any two elements
a, b ∈ H0 can be written as a =∑i αisi , b =∑i βisi , αi,βi ∈ R, si ∈ P distinct.
From this we get

a ◦ b =
(∑

i

αiβi

)
1,

from which it follows that H0 is a real pre-Hilbert space with inner product defined
by

〈a, b〉1 = a ◦ b.

It is clear that H0 +R1 is a Jordan subalgebra of B(H)sa, whose norm closure is the
spin factor obtained from P . It is also clear that if P1 and P2 are two spin systems
with the same number of symmetries, then the spin factors are Jordan isomorphic;
just take a bijection between P1 and P2 and extend it linearly.

In order to give an example of a spin factor let

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 i

−i 0

)
,

be the Pauli spin matrices in M2. Let σ⊗k
3 denote the k-fold tensor product σ3 ⊗

· · · ⊗ σ3 of σ3 with itself k times in M2k , and let similarily 1⊗k denote the k-fold
tensor product of 1 with itself in M2k . Let

s1 = σ1 ⊗ 1⊗n−1,

s2 = σ2 ⊗ 1⊗n−1,

s3 = σ3 ⊗ σ1 ⊗ 1⊗n−2,

s4 = σ3 ⊗ σ2 ⊗ 1⊗n−2,

...

s2n−1 = σ⊗n−1
3 ⊗ σ1,

s2n = σ⊗n−1
3 ⊗ σ2.

(2.4)

Then Pk = {s1, . . . , sk}, k ∈ {2n − 1,2n} is a spin system in M2n , and the real
linear span Vk of Pk and 1 is a k + 1 dimensional spin factor. We say a JC-algebra
is irreversible if it is not reversible.

Lemma 2.3.2 The spin factors V4 and Vk, k ≥ 6, are irreversible.
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Proof V4 is the span of s1, . . . , s4 and 1, so it is of dimension 5. Suppose
1
2 (s1s2s3s4 + s4s3s2s1) ∈ V4, and let s = s1s2s3s4. Since sisj = −sj si for i �= j ,
s∗ = s4s3s2s1 = s, and s2 = 1, so s is a symmetry in V4. Furthermore s ◦ si = 0, so
P = {s1, s2, s3, s4, s} is a spin system such that the span of P and 1 is of dim 6,
contradicting the fact that dimV4 = 5, hence s = 1

2 (s1s2s3s4 + s4s3s2s1) �∈ V4, so V4

is not reversible.
Let Pk and Vk be as above with k ≥ 6, and suppose s ∈ Vk . Let l > k. Then

sl ◦ si = 0 for all si ∈ Pk , and thus

sls = sls1s2s3s4 = s1s2s3s4sl = ssl .

Since s ∈ Vk , s = α1 +∑k
i=1 αisi with α,αi ∈ R. Thus

αsl −
∑

αisisl = αsl +
∑

αislsi = sls = ssl = αsl +
∑

αisisl .

Thus
∑

αisisl = 0. Since sl is a symmetry,
∑

αisi = 0. But s1, . . . , sk are lin-
early independent, so αi = 0 for all i, hence s = α1, contradicting the fact that
{s, s1, . . . , s4} is a spin system. It follows that s �∈ Vk , so Vk is irreversible. �

By Proposition 2.2.10 if Vk ⊂ Mn, k ≥ 2, then there exists a faithful projection
P of Mn onto Vk . By Theorem 2.2.4 and Lemma 2.3.2 this projection cannot be
decomposable unless k ∈ {2,3,5}. We thus have

Proposition 2.3.3 Let k = 4 or k ≥ 6, and Vk ⊂ Mn. Then the projection map P :
Mn → Vk + iVk given by Tr(P (a)b) = Tr(ab), a ∈ Mn,b ∈ Vk , is indecomposable.

We thus have an infinite family of indecomposable maps. However, a stronger
result is true. Recall that a map is atomic if it is not of the form φ1 + φ2 ◦ t for φ1

and φ2 both 2-positive.

Theorem 2.3.4 Let P : Mn → Mn be a faithful projection map such that P(Mn)sa

is a spin factor of dimension 5 or greater than or equal to 7. Then P is atomic.

In order to prove the theorem we need the following lemma.

Lemma 2.3.5 Let M be a von Neumann algebra and B a JW-subalgebra of Msa.
Suppose φ : M → M is a positive map such that φ(x) ≤ x for all x ∈ B+. Then

φ(b) = φ(1)b = bφ(1) for all b ∈ B.

Proof Given a projection e ∈ B we have 0 ≤ φ(e) ≤ e, so that (1 − e)φ(e) = 0.
Replacing e by 1 − e gives eφ(1 − e) = 0, and subtraction of these two equations
results in φ(e) = eφ(1), and taking adjoints φ(e) = φ(1)e. Since B is the weakly
closed linear span of its projections, the lemma follows. �
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Proof of Theorem 2.3.4 We can assume P(Mn)sa = Vk with k = 4 or k ≥ 6, and the
spin system is the one defined in (2.4). Let A be the C∗-algebra generated by V4.
Then A is isomorphic to M4 = M2 ⊗ M2. Let t denote the transpose on M2 such
that σ t

i = σi, i = 1,2, and let β = Adσ3. Since σ t
3 = −σ3 and β(σi) = −σi, i = 1,2,

it follows that the map α(a) = (t ⊗ t ◦ β)(a) is a ∗-anti-automorphism of A such
that α(a) = a for a ∈ V4.

In order to prove the theorem we assume P is not atomic and will produce a
contradiction. So assume P = φ + ψ with φ 2-positive and ψ = ψ ′ ◦ t ′, with ψ ′
2-positive, t ′ being the transpose on Mn extending t . By Theorem 2.2.6 and Propo-
sition 2.2.10 there exists a completely positive projection map P1 : Mn → A. Then
Q = α ◦ P1 is a projection map of Mn onto A such that Q ◦ t ′ is 2-positive and
Q(a) = a for all a ∈ V4.

Let 0 < ε < 1/2, and let

Pε = (1 − 2ε)P + ει + εQ,

where ι is the identity map on Mn. Then

Pε = φ0 + ψ0,

where φ0 = (1 − 2ε)φ + ει is 2-positive, and ψ0 = (1 − 2ε)ψ + εQ is such that
ψ0 ◦ t ′ is 2-positive. Moreover, h = φ0(1)1/2, k = ψ0(1)1/2 are invertible. We then
have unital positive maps φ1,ψ1 : Mn → Mn such that

φ1(a) = h−1φ0(a)h−1, ψ1 = k−1ψ0(1)k−1.

Then φ1 and ψ1 ◦ t ′ are 2-positive, and

Pε(a) = hφ1(a)h + kψ1(a)k = φ0(a) + ψ0(a).

Now Pε(a) = a for all a ∈ V4. Thus by Lemma 2.3.5

φ0(a) = h2a = ah2, ψ0(a) = k2a = ak2, for all a ∈ V4.

It follows that ha = ah and ka = ak for all a ∈ V4. Therefore

φ1(a) = a = ψ1(a) for all a ∈ V4.

Since φ1 is positive and unital and φ1(si) = si , i = 1, . . . ,4, φi(s
2
i ) = φi(1) = 1 =

s2
i , si belongs to the multiplicative domain for φ1. Hence by iterated use of Proposi-

tion 2.1.5, since φ1 is a Schwarz map by Corollary 1.3.2, we have for s = s1s2s3s4,

φ1(s) = φ1(s1s2s3s4) = s1s2s3s4 = s.

Similarly, by the same result for maps satisfying the inequality φ(a∗a) ≥ φ(a)φ(a)∗,
we get ψ1(s) = s. Now h and k commute with all operators in V4, hence with s.
Thus we get

Pε(s) = hφ1(s)h + kψ1(s)k = hsh + ksh = (h2 + k2)s = s,
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since h2 + k2 = Pε(1) = 1. Letting ε → 0 we get

P(s) = lim
ε→0

Pε(s) = s ∈ Vk.

But from the proof of Lemma 2.3.2, s �∈ Vk , so we have obtained the desired contra-
diction. �

2.4 Notes

Some of the results in this chapter have been part of the theory of C∗-algebras for
several years. Theorem 2.1.3 was proved by Kadison [35] already in 1952. Definite
sets and multiplicative domains appeared later. Proposition 2.1.7 on definite sets was
shown by Broise [3] in 1967. Multiplicative domains were introduced by Choi [6]
and Proposition 2.1.5 is due to him. Proposition 2.1.8 is due to Robertson [62]. For
further work on multiplicative domains see [33].

Projection maps, and especially conditional expectations, have been important
in von Neumann algebra theory since the paper of Tomiyama [92] in 1957. In our
treatment of projection maps we have avoided the applications of von Neumann al-
gebras, because that would divert our attention more than desired from the emphasis
on positivity properties of the maps. See Takesaki’s book [87] for some of this the-
ory. In the case of automorphism groups of C∗-algebras there often exist invariant
projection maps onto the fixed point algebra, see e.g. [40, 61, 74].

Among the results in Sect. 2.2, Theorem 2.2.2 can be traced back to [92], while
Theorem 2.2.4 is due to the author [76]. Theorem 2.2.6 is due to Nakamura, Take-
saki and Umegaki [54]. Proposition 2.2.9 can be found in [15] and the same with
Proposition 2.2.10, but that result and its generalizations were known before, see for
example [86].

For the theory of JC-algebras, and in particular spin factors see the book of
Hanche-Olsen and the author [22]. Proposition 2.3.3 appeared in [76], and is the
first example of an infinite family of indecomposable map in different dimensions
found in the literature. Other such families were later exhibited by Terhal [89], see
Theorem 7.4.8 below and Tanashashi and Tomiyama [88], see Remark 7.3.7. Theo-
rem 2.3.4 is due to Robertson [63], see also [18].



Chapter 3
Extremal Positive Maps

The unit ball of the set of positive maps from a C∗-algebra into another C∗-algebra
is a convex set, and it is natural to expect that the maps which are extreme points,
have special properties. We shall in the present chapter study different classes of
extremal maps.

Section 3.1 is on general results and the most obvious extremal maps. Section 3.2
is devoted to Jordan homomorphisms, Sect. 3.3 to maps such that the composition
with pure states are pure states, and Sect. 3.4 to maps called nonextendible maps,
which have strong extremality properties.

Finally, in Sect. 3.5 we prove a Radon-Nikodym theorem for completely positive
maps together with its applications to extremal maps.

3.1 General Properties of Extremal Maps

Definition 3.1.1 Let A and B be C∗-algebras and φ : A → B a positive map. We
say that φ is extremal if the only positive maps ψ : A → B , such that φ − ψ is
positive, are of the form λφ with 0 ≤ λ ≤ 1.

Thus if φ is positive with ‖φ‖ ≤ 1, φ cannot be the convex combination
λψ1 + (1 − λ)ψ2 of two positive maps ψ1 and ψ2 of norms less than or equal to 1
unless both ψ1 and ψ2 are positive multiples of φ. We list some simple properties
of extremal maps.

Lemma 3.1.2 Let φ : A → B be a positive map, A and B being C∗-algebras. Then
we have:

(i) If e is a projection in A such that φ(e) = φ(1), then the restriction of φ to eAe

is an extremal map eAe → B if and only if φ is extremal.
(ii) If α : B → C with C another C∗-algebra, is an order-isomorphism of B onto

C, then α ◦ φ is extremal if and only if φ is extremal.

E. Størmer, Positive Linear Maps of Operator Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_3,
© Springer-Verlag Berlin Heidelberg 2013
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Proof (i) Assume φ is extremal and ψ : eAe → B a positive map such that 0 ≤ ψ ≤
φ|eAe . Extend ψ to a map ψ0 on A defined by ψ0(a) = ψ(eae).

If 0 ≤ a ∈ A then, since φ(a) = φ(eae) from the assumption on φ,

0 ≤ ψ0(a) = ψ(eae) ≤ φ(eae) = φ(a).

Since φ is extremal, ψ0 = λφ, hence ψ = λφ|eAe for some λ ≥ 0.
Conversely, if 0 ≤ ψ ≤ φ then 0 ≤ ψ |eAe ≤ φ|eAe , so extremality of φ|eAe im-

plies ψ |eAe = λφ|eAe . Since 0 ≤ ψ(1 − e) ≤ φ(1 − e) = 0, it follows that

ψ(a) = ψ(eae) = λφ(eae) = λφ,

so φ is extremal.
(ii) This is obvious, since 0 ≤ ψ ≤ α ◦ φ if and only if 0 ≤ α−1 ◦ ψ ≤ φ. �

As remarked in Sect. 1.1 we use the notation B(A,H) (resp. B(A,H)+) for the
bounded linear (resp. positive) maps of A into B(H).

Proposition 3.1.3 Let H and K be Hilbert spaces and V : H → K a bounded
linear operator. Then the map AdV (a) = V ∗aV is extremal in B(B(K),H)+.

Proof We first consider the case when K = H and V = 1, so AdV = ι—the identity
map. Suppose ψ is a positive map of B(H) into itself such that ψ ≤ ι. Let f be
projection in B(H). Then ψ(f ) ≤ f , hence by Lemma 2.3.5 applied to M = B(H),
B = B(H)sa, ψ(a) = ψ(1)a for all a ∈ B(H). In particular ψ(1) commutes with a

for all a ∈ B(H), so ψ(1) = λ1, and ψ = λι, proving that ι is extremal.
We next consider the case when V is invertible. Then AdV is an order-

isomorphism, so by the above paragraph and Lemma 3.1.2, AdV = ι ◦ AdV is ex-
tremal.

Let e = rangeV ∗ = supportV , and f = rangeV = support V ∗. Thus AdV :
f B(K)f → eB(H)e. If V : eH → f K is invertible, then AdV : f B(K)f →
eB(H)e is extremal in B(f B(K)f, eH)+ by the previous paragraph. Since any
positive map ψ ≤ AdV maps 1 − f to 0 and eψ(a)e = ψ(a) for all a, it follows
that AdV is extremal in B(B(K),H)+.

Finally, if V is not invertible on eH choose an increasing net (eγ ) of projections
converging strongly to e such that V eγ is invertible on eγ H . Let fγ = rangeV eγ .
Then by Appendix A.1 fγ → f strongly. If ψ ≤ AdV is a map in B(B(K),H)+
then ψ ◦ Adfγ ≤ AdV ◦ Adfγ = Adfγ V , so by the previous paragraph, ψ ◦ Adfγ =
λγ Adfγ V for a number λγ ≥ 0. Let λ be a limit point for (λγ ), then

ψ = lim
γ

ψ ◦ Adfγ = lim
γ

λγ Adfγ V = λAdV,

proving that AdV is extremal. �

Proposition 3.1.4 Let A and B be C∗-algebras and φ : A → B be an extreme point
of the convex set of positive unital maps of A into B . Let a ∈ A belong to the center of
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A and assume φ(a) belongs to the center of B . Then a belongs to the multiplicative
domain for φ.

Proof We have

a = 1

2

(
a + a∗)+ 1

2i
i
(
a − a∗).

Since a∗ satisfies the same assumptions as a, we may assume a is self-adjoint and
‖a‖ < 1. Then ‖φ(a)‖ < 1, so 1−a and 1−φ(a) are positive and invertible. Define
ψ : A → B by

ψ(b) = φ
(
(1 − a)b

)(
1 − φ(a)

)−1
.

Since 1 − a and (1 − φ(a))−1 belong to the centers of A and B respectively, there
is λ > 0 such that 0 ≤ ψ ≤ λφ. Furthermore

ψ(1) = φ(1 − a)
(
1 − φ(a)

)−1 = 1,

so by assumption on φ as an extreme point, ψ = φ. Thus (1 − φ(a))φ(b) = φ(1 −
a)b), hence φ(a)φ(b) = φ(ab) for all b ∈ A. �

Our next result is contained in Theorems 3.4.3 and 3.4.4 in Sect. 3.4, but will be
needed in Sect. 3.3.

Proposition 3.1.5 Let A and B be unital C∗-algebras and φ a Jordan homomor-
phism of A into B . Then φ is an extreme point of the unit ball of positive maps from
A → B .

Proof We may assume φ(1) = 1. Suppose φ = 1
2 (ψ + η) with ψ , η belonging to

the unit ball of positive maps of A into B , and suppose there exists a self-adjoint
operator a ∈ A such that ψ(a) �= η(a). Then by the Kadison-Schwarz inequality,
Theorem 1.3.1,

φ
(
a2)= φ(a)2 = 1

4

(
ψ(a) + η(a)

)2 = 1

2

(
ψ(a)2 + η(a)2)− 1

4

(
ψ(a) − η(a)

)2

<
1

2

(
ψ(a)2 + η(a)2)≤ 1

2

(
ψ
(
a2)+ η

(
a2))

= φ
(
a2).

This is a contradiction so ψ(a) = η(a), and hence ψ = η = φ. �

Corollary 3.1.6 Let A and B be unital abelian C∗-algebras. Let φ : A → B be a
unital positive map. Then φ is a homomorphism if and only if φ is an extreme point
of the convex set of unital positive maps of A into B .
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Proof This is immediate from Propositions 3.1.4 and 3.1.5. �

We conclude this section with a characterization of automorphisms of B(H).
Recall the notation [Aξ ] for the projection onto the closed subspace generated by
vectors aξ , a ∈ A, ξ ∈ H . If A = C we use the notation [ξ ] instead of [Cξ ] for the
1-dimensional projection on the subspace generated by the vector ξ .

Proposition 3.1.7 Let φ be an automorphism of B(H). Then there exists a unitary
operator U such that φ = AdU .

Proof Since φ maps minimal projections onto minimal projections, for each ξ ∈ H

there is η ∈ H such that φ([ξ ]) = [η]. Composing φ by an inner automorphism
AdU , we may assume φ([ξ ]) = [ξ ] for a unit vector ξ . Each unit vector in B(H) is
cyclic, so [B(H)ξ ] = 1. Define an operator V ∈ B(H) by

V aξ = φ(a)ξ, a ∈ B(H). (3.1)

Then

V abξ = φ(ab)ξ = φ(a)φ(b)ξ = φ(a)V bξ.

Thus

V a = φ(a)V, for all a ∈ B(H). (3.2)

Since φ([ξ ]) = [ξ ],
‖V aξ‖2 = (V aξ,V aξ) = (φ(a)ξ,φ(a)ξ

)= (φ(a∗a
)
ξ, ξ
)= (φ([ξ ]a∗a[ξ ])ξ, ξ

)

= (a∗aξ, ξ
)(

φ
([ξ ])ξ, ξ

)= (a∗aξ, ξ
)= ‖aξ‖2.

Thus V is an isometry, which by (3.1) is surjective. Thus V is unitary, so by (3.2)
φ(a) = V aV ∗. Let U = V ∗. Then φ = AdU . �

3.2 Jordan Homomorphisms

An important class of maps is that of Jordan homomorphisms. It follows from a
result of Jacobson and Rickart [29] together with some structure theory for von
Neumann algebras and second dual techniques for C∗-algebras, that each Jordan
homomorphism of a C∗ algebra into another is the sum of a homomorphism and
an anti-homomorphism much like that of the proof of Theorem 1.2.11, see [72]
hence they are not extremal, even though they are extreme points of the unit ball. To
simplify our approach we shall restrict our attention to the simpler case of Jordan
automorphisms of B(H), where we can use more elementary techniques together
with the extremality properties we have shown for Jordan homomorphisms. We start
with the n × n matrices Mn and in particular M2. Let (eij)

n
i,j=1 denote a complete

set of matrix units for Mn.
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Lemma 3.2.1 Let ρ be a linear functional on Mn. Then

(i) The density matrix for ρ is (ρ(eij))
t .

(ii) If ρ is a state then ρ is pure if and only if

∣∣ρ(eij)
∣∣2 = ρ(eii)ρ(ejj ) for all 1 ≤ i, j ≤ n.

Proof (i) follows since Tr((ρ(eij))
t ekl) = ρ(ekl) for all k, l.

(ii) ρ is a pure state if and only if its density matrix is a 1-dimensional projection,
hence by (i) if and only if (ρ(eij)) is a 1-dimensional projection, so (ii) follows. �

Lemma 3.2.2 Denote by C2 the convex set of unital positive maps of M2 into itself.
Let φ be an extreme point of C2. Then there exists a pure state ρ of M2 such that
ρ ◦ φ is a pure state.

Proof Let ρ be a linear functional on M2. Then its density operator is positive if and
only if ρ is positive, hence by Lemma 3.2.1 if and only if ρ(e11) ≥ 0, ρ(e22) ≥ 0
and |ρ(e12)|2 ≤ ρ(e11)ρ(e22). Suppose there is no pure state ρ such that ρ ◦ φ is a
pure state. Then for all pure states ρ, by Lemma 3.2.1(ii),

ρ
(
φ(e11)

)
ρ
(
φ(e22)

)
>
∣∣ρ
(
φ(e12)

)∣∣2.

Since the set of pure states on M2 is compact there exists α > 0 such that

α ≤ ρ
(
φ(e11)

)
ρ
(
φ(e22)

)− ∣∣ρ(φ(e12)
)∣∣2

for all pure states ρ. Since |ρ(φ(e12))|2 ≤ 1

(1 ± α)
∣∣ρ
(
φ(e12)

)∣∣2 ≤ ρ
(
φ(e11)

)
ρ
(
φ(e22)

)
.

Define two maps ψ+ and ψ− of M2 into itself as follows; ψ± is linear, ψ±(eii) =
φ(eii), i = 1,2, and

ψ±(e12) = (1 ± iδ)φ(e12), ψ±(e21) = (1 ∓ iδ)φ(e21),

where 0 < δ < α1/2, so that |1 ± iδ|2 = 1 + δ2 < 1 + α. By the characteriza-
tion of positive linear functionals in the beginning of the proof ρ ◦ ψ± is a pos-
itive linear functional for all states ρ, hence ψ± is a positive map. Furthermore
ψ±(1) = φ(1) = 1, so ψ± ∈ C2. Since φ = 1

2 (ψ+ + ψ−), and φ is extreme,
ψ+ = ψ−, so that φ(e12) = 0. Then φ(e22) = 1 − φ(e11), so the range of φ is an
abelian subalgebra of M2. Composing φ by AdV for a suitable unitary operator V ,
we can by an application of Lemma 3.1.2 assume the range of φ is contained in the
diagonal algebra D2. If φ(M2) ⊂ C1, then φ is a state, so pure since φ is extreme,
a case which is ruled out. Thus φ(M2) = D2. Therefore φ(e11) = xe11 + ye22,
φ(e22) = (1 − x)e11 + (1 − y)e22.

There are two cases. Assume first one of the four entries is 0; say y = 0. Then 1−
y = 1. Thus Tr(e22φ(e11)) = 0, Tr(e22φ(e22)) = 1, so the state ω(a) = Tr(e22φ(a))
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is pure, a case which is ruled out. Assume next 0 < x < 1, and 0 < y < 1. Then there
exists α > 0 such that φ(eii) ≥ α1, i = 1,2. Thus φ(a) ≥ αTr(a)1 for all a ≥ 0. By
extremality φ(a) = 1

2 Tr(a) for all a, which is impossible since φ is extremal. We
have thus obtained a contradiction to the assumption that ρ ◦ φ is never pure for ρ a
pure state. The proof is complete. �

Lemma 3.2.3 Let φ be extreme in C2. Then there is a unitary operator U such that

AdU ◦ φ

(
a b

c d

)
=
(

a αb + βc

αc + βb γ a + εb + εc + δd

)
,

where 0 ≤ γ ≤ 1, δ = 1 − γ .

Proof Write φ in the form φ(a) =∑φij(a)eij, where φij is a linear functional on
M2. By Lemma 3.2.2 we can compose φ by AdU for a suitable unitary U so we can
assume φ11 is the pure state φ11((aij)) = a11. Thus φ11(e22) = 0, so φ12(e22) = 0 =
φ12(e11). Thus φ is of the form described in the lemma. �

Theorem 3.2.4 Let φ be a normal Jordan automorphism of B(H). Then φ is either
an automorphism or an anti-automorphism, hence is of the form AdU or AdU ◦ t

for a unitary operator U .

Proof We first assume dimH = 2, so B(H) = M2. By Proposition 3.1.5 φ is ex-
treme in C2, hence we can assume φ is of the form described in Lemma 3.2.3, i.e.

φ

(
a b

c d

)
=
(

a αb + βc

αc + βb γ a + εb + εc + δd

)
,

with γ + δ = 1. In particular

φ

(
0 1
0 0

)
=
(

0 α

β ε

)
,

hence

0 = φ

((
1

0

)2
)

= φ

(
1

0

)2

=
(

αβ αε

εβ αβ + ε2

)
.

Thus, αβ = αε = εβ = αβ + ε2 = 0. There are three cases.

(i) α = 0. Then εβ = ε2 = 0, so

φ

(
0 1
0 0

)
=
(

0 0
β 0

)
, φ

(
0

1

)
=
(

β

0

)
.

(ii) β = 0. Then similarily

φ

(
0 1
0 0

)
=
(

0 α

0 0

)
, φ

(
0 0
1 0

)
=
(

0
α

)
.
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(iii) ε = 0. Then αβ = 0, so one of the two cases (i) or (ii) occurs. In case (i)
φ
( 1

1

)= ( β

β

)
, so the square is 1, hence |β| = 1. In case (ii) |α| = 1. It follows that

in case (i) φ is an anti-automorphism, and in case (ii) an automorphism.

Now consider the general case. Let p be a 1-dimensional projection. Then p is
a minimal projection, so φ(p) is a minimal projection, hence is a 1-dimensional
projection. Let e be a 2-dimensional projection. Then it is the sum of two 1-
dimensional projections, so φ(e) is a 2-dimensional projection, and φ : eB(H)e →
φ(e)B(H)φ(e) is a Jordan isomorphism, hence by the first part of the proof ap-
plied to the composition of φ by an isomorphism of φ(e)B(H)φ(e) onto eB(H)e,
φ is either an isomorphism or an anti-isomorphism. Let now p and q be distinct 1-
dimensional projections in B(H) and e = span(p, q). Then e is a 2-dimensional
projection, and so is φ(e). By the above applied to e, if φ is an isomorphism,
φ(pq) = φ(p)φ(q), and in the anti-isomorphism case φ(pq) = φ(q)φ(p).

Let Xp (resp. Yp) be the set of 1-dimensional projections q in B(H) such that
0 �= pq �= p and φ(pq) = φ(p)φ(q) (resp. φ(pq) = φ(q)φ(p)). Then either Xp or
Yp is non-empty, say Xp �= ∅. Let q ∈ Xp . Then q is an interior point of Xp . Indeed,
let γ = ‖pq‖,

c = ∥∥φ(pq) − φ(q)φ(p)
∥∥.

Then γ > 0, c > 0. Let f be a 1-dimensional projection such that f �= p and

‖f − q‖ ≤ δ = min(c/4, γ /2).

Then ‖fp‖ ≥ ‖qp‖ − ‖(f − q)p‖ ≥ γ /2. Furthermore,

c = ∥∥φ(pq) − φ(q)φ(p)
∥∥

≤ ∥∥φ(pq) − φ(pf )
∥∥+ ∥∥φ(pf ) − φ(f )φ(p)

∥∥+ ∥∥(φ(f ) − φ(q)
)
φ(p)

∥∥

≤ δ + ∥∥φ(pf ) − φ(f )φ(p)
∥∥+ δ.

Hence
∥∥φ(pf ) − φ(f )φ(p)

∥∥≥ c − c/2 = c/2.

Then f ∈ Xp , proving that q is an interior point of Xp .
Let g �= p be a 1-dimensional projection such that gp �= 0. Let ψ,ξ, η be unit

vectors such that p = [ψ], g = [ξ ], q = [η]. Multiplying ξ and η by scalars we may
assume (ξ,ψ) > 0, (η,ψ) > 0. Let

ξ(t) = (1 − t)η + tξ, t ∈ [0,1],
be the line segment in H from η to ξ . Then ‖ξ(t)‖ ≤ 1, and (ξ(t),ψ) = (1 −
t)(η,ψ) + t (ξ,ψ) > 0, so p[ξ(t)] �= 0. It follows from the previous paragraph ap-
plied to q = [ξ(0)] and thus to each [ξ(t)] that the set of t such that [ξ(t)] ∈ Xp is
open. Since the set is trivially closed, it follows that g = [ξ(1)] ∈ Xp .
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We have thus shown that every 1-dimensional projection with gp �= 0 belongs to
Xp . Since each projection g ⊥ p obviously satisfies the identity φ(pg) = φ(p)φ(g),
this identity is therefore shown for all 1-dimensional projections g. Since p was
arbitrary, it follows by linearity and normality of φ that φ is an isomorphism. Simi-
larly, if Yp �= ∅, φ is an anti-isomorphism.

The last statement follows from Proposition 3.1.7, and the fact that the transpose
t is an anti-automorphism of B(H), and the composition of two anti-isomorphisms
is an isomorphism. �

3.3 Maps which Preserve Vector States

In Lemma 3.2.2 we saw that for each extreme point φ of the convex set of unital
maps of M2 into itself, there is a pure state φ of M2 such that ρ ◦ φ is a pure state.
A natural problem is to study maps in the extreme converse direction, i.e. maps
φ : A → B , with A, B C∗-algebras, such that ρ ◦ φ is a pure state for all pure states
ρ of B . It was shown in [71] that for all such maps π ◦ φ is either a pure state, or an
anti-homomorphism or homomorphism of A for all irreducible representations of
B . We shall in the present section restrict ourselves to maps of B(K) into B(H) for
which ωξ ◦ φ is a vector state of B(K) for all vector states ωξ of B(H) defined by
ωx(a) = (aξ, ξ). We then apply this to maps which carry positive rank 1 operators
to positive rank 1 operators.

Lemma 3.3.1 Let K and H be Hilbert spaces and φ ∈ B(B(K),H) a unital pos-
itive map such that for each vector state ωη of B(H) there is a vector state ωξ of
B(K) such that ωξ ◦φ = ωη. For such a pair ξ, η, either φ([η]) = [ξ ] or φ([η]) = 1.
In the latter case φ(a) = ωη(a)1 for all a ∈ B(H). Furthermore φ is weakly con-
tinuous.

Proof We first show φ is weakly continuous. Let (aα)α∈J be a net in B(K) such
that aα → a is weakly. Let ξ be a unit vector in H and η a unit vector in K such
that ωξ ◦ φ = ωη. Then ωξ (φ(aα)) = ωη(aα) → ωη(a) = ωξ (φ(a)).

Since each weakly continuous linear functional on B(H) is a linear combination
of vector states, (φ(aα))α∈J converges weakly to φ(a), so φ is weakly continuous.

Let ξ and η be as above. Then 0 ≤ φ([η]) ≤ 1 and ωξ (φ([η])) = 1. Thus
φ([η])[ξ ] = [ξ ] ≤ φ([η]). To prove the lemma we first assume n = dimH < ∞,
and use induction on n. If n = 1 the lemma is trivial.

Suppose n = 2 and φ([η]) �= [ξ ]. We may then assume B(H) = M2 and

φ
([η])=

(
1 0
0 p

)
, (3.3)

with 0 < p ≤ 1. Let μ be a unit vector in K orthogonal to [η]. Let f = [η] + [μ].
Then f B(K)f ∼= M2. Let (eij), i, j = 1,2, denote the matrix units in M2 such that
[η] = e11, [μ] = e22. If ωρ is a vector state of M2 then ωρ ◦ φ = ωτ for a unit vector
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τ ∈ K , so its restriction to f B(K)f is ωf τ , which is a scalar multiple of a vector
state, so by Lemma 3.2.1 satisfies the equality

ωρ ◦ φ(e11)ωρ ◦ φ(e22) = ∣∣ωρ ◦ φ(e12)
∣∣2. (3.4)

In particular this holds for ρ = η. Since also 0 ≤ φ(e11 + e22) ≤ 1, we have

φ(e22) =
(

0 0
0 q

)
, φ(e12) =

(
0 r

s t

)
.

Since ρ = (ρ1, ρ2) is a vector in C
2 the following equations hold, cf. (3.3):

ωρ ◦ φ(e11) = |ρ1|2 + p|ρ2|2,
ωρ ◦ φ(e22) = q|ρ2|2,
ωρ ◦ φ(e12) = t |ρ2|2 + rρ1ρ2 + sρ1ρ2.

Thus, using (3.4)

|t |ρ2|2 + rρ1ρ2 + sρ1ρ2|2

= |t |2|ρ2|4 + (|r|2 + |s|2)|ρ1|2|ρ2|2 + 2�((rt + st)|ρ2|2ρ1ρ2
)+ 2�(rs(ρ1ρ2)

2)

= q|ρ2|2
(|ρ1|2 + p|ρ2|2

)
. (3.5)

Now, if f1, f2, f3 are complex valued functions of the two complex variables ρ1
and ρ2 such that

f1
(|ρ1|, |ρ2|

)= �(f2
(|ρ1|, |ρ2|

)
ρ1ρ2 + f3

(|ρ1|, |ρ2|
)
(ρ1ρ2)

2),

then it is easily verified that f1 = f2 = f3 = 0. With

f1
(|p1|, |ρ2|

)= (|ρ1|2 + p|ρ2|2
)
q|ρ2|2 − |t |2|ρ2|4 − (|r|2 + |s|2)|ρ1|2|ρ2|2

and f2 and f3 the two real parts in (3.5), we get

rt + st = 0 = rs, |t |2 = pq, |r|2 + |s|2 = q.

Thus q = 0, and φ([μ]) = φ(e22) = 0. Since this holds for every unit vector [μ]
orthogonal to η, and since φ is weakly continuous, φ([η]) = 1, as asserted.

Suppose n ≥ 3, and assume the lemma is proved whenever dimH ≤ n − 1. Let
e be a projection in B(H) containing ξ , and dim e = k < n. Then Ade ◦ φ has the
same properties as φ with respect to composition with vector states,

Ade ◦ φ : B(K) → eB(H)e,

and ωξ ◦ φ = ωη. By induction assumption eφ([η])e equals [ξ ] or e. If eφ([η])e =
[ξ ] then

0 = e
(
φ
([η])− [ξ ])e = ((φ([η])− [ξ ])1/2

e
)∗((

φ
([η])− [ξ ])1/2

e
)
,
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so (φ([η]) − [ξ ])e = 0, hence φ([η])e = [ξ ] = eφ([η]), taking adjoints. Similarily,
if eφ([η])e = e, then e(1 − φ([η]))e = 0, and eφ([η]) = φ([η])e = e. Thus φ([η])
commutes with every projection containing ξ . Since n ≥ 3 this is possible only if
φ([η]) equals [ξ ] or 1.

If H is not finite dimensional it follows from the above that φ([η]) commutes
with every finite dimensional projection containing [ξ ]. Hence φ([η]) equals [ξ ]
or 1. �

Theorem 3.3.2 Let K and H be Hilbert spaces and φ ∈ B(B(K),H) be a positive
unital map such that for each unit vector ξ ∈ H there is a unit vector η ∈ K such
that ωξ ◦φ = ωη. Then either φ(a) = ωρ(a)1 for a vector ρ ∈ K , or there is a linear
isometry V : H → K such that φ = AdV or φ = AdV ◦ t , t being the transpose on
B(K).

Proof By Lemma 3.3.1 φ is weakly continuous. Let Tr denote the trace on either
B(K) or B(H). Thus if ωξ ◦ φ = ωη we have for a ∈ B(K)

Tr
(
φ∗([ξ ])a)= Tr

([ξ ]φ(a)
)= ωξ ◦ φ(a)

= ωη(a) = Tr
([η]a).

Thus φ∗([ξ ]) = [η], and φ∗ : B(H) → B(K) is faithful and maps 1-dimensional
projections to 1-dimensional projections. Let ξ and μ be mutually orthogonal unit
vectors in H . Let η and ρ be unit vectors in K such that ωξ ◦ φ = ωη, and ωμ ◦
φ = ωρ . By Lemma 3.3.1 either φ([η]) = 1, in which case support φ = [η], so that
φ(a) = φ([η]a[η]) = ωη(a)1, so φ is a vector state, or φ([η]) = [ξ ], φ([ρ]) = [μ].
In the latter case

0 ≤ ωη

([ρ])= ωξ

(
φ
([ρ]))= ωξ

([μ])= 0,

so η and ρ are orthogonal. Since φ∗([ξ ]) = [η] and φ∗([μ]) = [ρ], it follows that
φ∗ maps mutually orthogonal 1-dimensional projections onto mutually orthogonal
projections. Thus φ∗ is a Jordan isomorphism on finite rank operators in B(H)

into those of B(K). Thus for each finite dimensional projection e ∈ B(H), φ∗ is a
Jordan isomorphism of eB(H)e into φ∗(e)B(K)φ∗(e), and onto, since they have the
same dimensions. It follows from Theorem 3.2.4 that φ∗ is either an isomorphism or
anti-isomorphism of eB(H)e onto φ∗(e)B(K)φ∗(e), and implemented by a unitary
operator U : eK → φ∗(e)H . By Proposition 1.4.2 the adjoint map of AdU is AdU∗,
and the adjoint of the transpose map t is t . Thus φ : φ∗(e)B(K)φ∗(e) → eB(H)e is
either an isomorphism or an anti-isomorphism. Let f = ∨eφ

∗(e), where the span is
over all finite dimensional projections in B(H). Since φ is weakly continuous it is
either an isomorphism or anti-isomorphism of f B(K)f onto B(H). �

Remark 3.3.3 Theorem 3.3.2 has a generalization to C∗-algebras. Recall that if ρ

is a state of a C∗-algebra B then there are a Hilbert space Hρ , a ∗-representation
πρ of B on Hρ and a vector ξρ ∈ Hρ such that ρ(a) = ωξρ ◦ πρ(a) for a ∈ B .
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Furthermore, ρ is a pure state if and only if πρ is irreducible. Then the generalization
of Theorem 3.3.2 states, see [71]: Let A and B be unital C∗-algebras and φ : A → B

a positive unital map. Then ρ ◦ φ is a pure state of A and for all pure states ρ of
B if and only if for each irreducible representation ψ of B on a Hilbert space H ,
ψ ◦ φ is either a pure state of A or ψ ◦ φ = V ∗πV , where V is a linear isometry
of H into a Hilbert space K , and π is an irreducible ∗-homomorphism or ∗-anti-
homomorphism of A into B(K).

Many problems on maps of operator algebras are what are called preserver prob-
lems. Then one studies maps which preserve selected properties. For a treatment on
this topic we refer the reader to the book [51] of Molnár. Our next result, which is
close to Theorem 3.3.2, is of this type.

Theorem 3.3.4 Let K and H be finite dimensional Hilbert spaces and φ ∈
B(B(K),H) a positive map such that rank φ(p) ≤ 1 for all 1-dimensional pro-
jections p ∈ B(K). Then one of the following three conditions holds:

(i) There exist a state ω on B(K) and a positive rank 1 operator q ∈ B(H) such
that φ(a) = qω(a) for a ∈ B(K).

(ii) φ = AdU with U : H → K a bounded linear operator.
(iii) φ(a) = (AdU(a))t for a ∈ B(K), t is the transpose on B(H).

Proof Let e = support of φ. Then φ : eB(K)e → B(H) is faithful, so we may re-
strict attention to eB(K)e and assume φ is faithful. By Proposition 1.4.3(iv) φ∗(1)

is invertible. Let h = φ∗(1)−1/2. Then hφ∗(1)h = 1, so the map ψ(a) = hφ∗(a)h is
unital and positive. Then for a ∈ B(K), b ∈ B(H) we have

Tr
(
aψ(b)

)= Tr
(
hahφ∗(b)

)= Tr
(
φ(hah)b

)
.

If p is a 1-dimensional projection in B(K) then hph = λq for a 1-dimensional
projection q , so by the assumption on φ, φ(hph) = λφ(q) is positive of rank 1. It
follows that the functional

ω′(a) = Tr
(
pψ(a)

)= Tr
(
phφ∗(a)h

)= Tr
(
φ(hph)a

)= λTr
(
φ(q)a

)
,

for a ∈ B(H), is a scalar multiple of a pure state on B(H). Furthermore, ω′(1) =
Tr(pψ(1)) = Tr(p) = 1, so ω′ is a pure state. Thus ψ : B(H) → B(K) preserves
vector states. By Theorem 3.3.2 and 3.2.4 ψ is either

(i) a vector state, i.e. ψ(a) = ωξ (a)1.
(ii) ψ(a) = V ∗aV , V : K → H is a linear isometry of K into H .

(iii) ψ(a) = V ∗atV , with V as in (ii).

If ρ is a state on B(K) with density operator d then for a ∈ B(H)

Tr
(
aρ∗(b)

)= Tr
(
ρ(a)b

)= Tr
(
Tr(da)b

)= Tr
(
daTr(b)

)
,
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so that ρ∗(b) = dTr(b). By construction, φ∗ = h−1ψh−1. Thus we have in case (i),
ψ(a) = Tr(qa) for a 1-dimensional projection q , so that

Tr
(
φ(a)b

)= Tr
(
ah−1ψ(b)h−1)

= Tr
(
ah−1Tr(qb)h−1)

= Tr
(
ah−2)Tr(qb)

= Tr
(
qTr
(
ah−2)b

)
,

so that φ(a) = qTr(ah−2) is as in (i) in the theorem.
In case (ii)

Tr
(
φ(a)b

)= Tr
(
ah−1ψ(b)h−1)= Tr

(
h−1ah−1V ∗bV

)= Tr
((

V h−1)a
(
V h−1)∗b

)
,

so that φ(a) = AdU with U∗ = V h−1 : H → K .
In case (iii) we similarily have

Tr
(
φ(a)b

)= Tr
(
h−1ah−1V ∗btV

)= Tr
((

AdU(a)
)t

b
)
,

so that φ(a) = t ◦ AdU . �

It turns out that 2-positive and 2-copositive extremal maps in B(B(K),H)+ are
of the form described in Theorem 3.3.4. We conclude the section with a proof of
this. Assume for simplicity that K and H are finite dimensional. Recall that if ξ is a
vector in an n-dimensional Hilbert space, ξ = (ξ1, . . . , ξn) then ξ can be identified
with the 1 × n column matrix

ξ =
⎛

⎜
⎝

ξ1
...

ξn

⎞

⎟
⎠ .

Then ξ∗ = [ξ1, . . . , ξn]. If η is another vector we get

ξ∗η = 〈η, ξ 〉,
and if they are unit vectors, ξη∗ is the partial isometry from η to ξ . In particular ξξ∗
is the projection [ξ ].

Lemma 3.3.5 Let φ ∈ B(B(K),H) be of the form φ(x) = AxA∗ with A : K → H

non-zero. Choose unit vectors ξ ∈ K,ω ∈ H and λ > 0 such that

φ
(
ξξ∗)ω = λω.

Define B : K → H by

Bη = λ−1/2φ
(
ηξ∗)ω.

Then B = eitA for some t ∈ [0,2π).
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Proof By assumption

λω = Aξξ∗A∗ω = Aξ(Aξ)∗ω = Aξ 〈ω,Aξ 〉.
Thus Aξ = zω for some z ∈ C. Since

|z|2ω = zω〈ω,zω〉 = Aξ{ω,Aξ 〉 = λω,

|z| = λ1/2. Let η ∈ K . Then

Bη = λ−1/2Aηξ∗A∗ω = λ−1/2Aη〈ω,Aξ 〉 = λ−1/2zAη = eitAη,

where t satisfies λ−1/2z = eit. Thus B = eitA. �

Proposition 3.3.6 Let φ ∈ B(B(K),H)+. Let λ, ξ , ω, B be defined by φ as in
Lemma 3.3.5. Let ψ ∈ B(B(K),H)+ be the map ψ(x) = BxB∗. Then ψ ≤ φ if and
only if for all η ∈ K , ρ ∈ H we have the inequality

∣∣〈φ
(
ηξ∗)ω,ρ

〉∣∣2 ≤ 〈φ(ξξ∗)ω,ω
〉〈
φ
(
ηη∗)ρ,ρ

〉
.

Proof Clearly ψ ≤ φ if and only if for all η ∈ K , ρ ∈ H

〈
ψ
(
ηη∗)ρ,ρ

〉≤ 〈φ(ηη∗ρ,ρ
〉
.

The left hand side of the above inequality is equal to
〈
Bηη∗B∗ρ,ρ

〉= 〈Bη(Bη)∗ρ,ρ
〉

= 〈Bη〈ρ,Bη〉, ρ〉

= ∣∣〈Bη,ρ〉∣∣2

= λ−1
∣∣〈φ
(
ηξ∗)ω,ρ

〉∣∣2,

by definition of B . If the inequality in the proposition is satisfied it follows that
〈
ψ
(
ηη∗)ρ,ρ

〉≤ λ−1〈φ
(
ξξ∗)ω,ω

〉〈
φ
(
ηη∗)ρ,ρ

〉

= 〈φ(ηη∗)ρ,ρ
〉
,

by choice of λ. Thus ψ ≤ φ.
Conversely, if ψ ≤ φ, then by the above computations

λ−1
∣∣〈φ
(
ηξ∗)ω,ρ

〉∣∣2 ≤ (φ(ηη∗)ρ,ρ
〉
,

so the inequality in the proposition follows from the definition of λ. �

Theorem 3.3.7 Let φ ∈ B(B(K),H)+ be an extremal map. Assume φ is 2-positive
(resp. 2-copositive). Then φ is a completely positive of the form φ = AdV with
V : H → K (resp. φ is copositive of the form AdV ◦ t).
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Proof Let ξ , ω, λ be as in Lemma 3.3.5. Let η ∈ K . Consider the positive matrix

X =
(

ξξ∗ ξη∗
ηξ∗ ηη∗

)
=
(

0 ξ

η 0

)(
0 ξ

η 0

)∗
∈ M2

(
B(K)

)
.

Since φ is 2-positive the matrix

φ2(X) =
(

φ(ξξ∗) φ(ξη∗)
φ(ηξ∗) φ(ηη∗)

)
∈ M2

(
B(H)

)+
.

Thus for each ρ ∈ H we have

( 〈φ(ξξ∗)ω,ω〉 〈φ(ξη∗)ρ,ω〉
〈φ(ηξ∗)ω,ρ〉 〈φ(ηη∗)ρ,ρ〉

)
=
(

ω 0
0 ρ

)∗
φ2(X)

(
ω 0
0 ρ

)
≥ 0.

Thus the inequality in Proposition 3.3.6 is satisfied, so by the theorem ψ ≤ φ.
Since φ is extremal ψ = AdB∗ = μφ for some μ > 0. Hence φ = AdV with
V = μ−1/2B∗.

If φ is 2-copositive then φ ◦ t is 2-positive and still extremal by Lemma 3.1.2, so
φ ◦ t = AdV , hence φ = AdV ◦ t . �

3.4 Nonextendible Maps

If A is a C∗-algebra and φ ∈ B(A,H) is a unital completely positive map the
Stinespring Theorem, 1.2.7, states that there are a Hilbert space K , an isometry
V : H → K , and a representation π : A → B(K) such that φ = V ∗πV .

Since V ∗V = 1, V V ∗ is a projection, which we can look at as the projection
P : K → H , where we consider H as a subspace of K . Then φ has the form PπP .
We can thus consider π as an extension of φ to a map π : A → B(K). We therefore
make the following definition.

Definition 3.4.1 Let A be a unital C∗-algebra, and H ⊂ K two Hilbert spaces. Let
P be the orthogonal projection of K onto H . Let φ ∈ B(A,H) and Φ ∈ B(A,K)

be positive unital maps. We say

(i) Φ is an extension of φ and write Φ ⊃ φ if φ(a) = PΦ(a)P for all a ∈ A.
(ii) Φ ⊃ φ is trivial if H is invariant under the action of Φ(a) for all a ∈ A, i.e.

Φ(a)ξ = φ(a)ξ for a ∈ A and ξ ∈ H .
(iii) φ is called nonextendible if all extensions Φ ⊃ φ are trivial.

Note that if Φ ⊃ φ is an extension as above, and
∑n

1 ai ⊗ ξi ∈ A ⊗ H , consider
the element

∑

k

φ(ai)ξi = P
(∑

Φ(ai)ξi

)
∈ H.
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Then
∥∥∥
∑

φ(ai)ξi

∥∥∥≤
∥∥∥
∑

Φ(ai)ξi

∥∥∥. (3.6)

If the extension Φ ⊃ φ is trivial then
∑

Φ(ai)ξi ∈ H , so we have equality in
(3.6). Conversely, if for all

∑
i ai ⊗ ξi ∈ A ⊗ H we have equality in (3.6), then∑

i φ(ai)ξi =∑i Φ(ai)ξi , so the extension Φ ⊃ φ is trivial. We have shown:

Lemma 3.4.2 Let φ ∈ B(A,H) be a positive unital map. Then φ is nonextendible
if and only if

∥∥∥
∑

φ(ai)ξi

∥∥∥=
∥∥∥
∑

Φ(ai)ξi

∥∥∥

for all extensions Φ ⊃ φ and ai ∈ A, ξi ∈ H .

We say a positive map φ : A → B(H) is irreducible if the commutant of φ(A) is
the scalar operators, i.e. the only operators which commute with φ(a) for all a ∈ A,
are the scalar multiples of the identity operator 1.

Theorem 3.4.3 Let A be a C∗-algebra and φ ∈ B(A,H) be a unital positive map.
Then

(i) If φ is nonextendible then φ is an extreme point of the convex set of positive
unital maps of A into B(H).

(ii) If φ is both nonextendible and irreducible then φ is an extremal map.

Proof Assume φ ∈ B(A,H)+ is nonextendible and φ = λφ1 + μφ2 with φi : A →
B(H) positive linear maps, λ,μ > 0 and λ + μ = 1. The operators φi(1) are invert-
ible on the subspace φi(1)H . Let Hi denote the closure of φi(1)H .

Let

ψi(a) = φi(1)−1/2φi(a)φi(1)−1/2, a ∈ A.

Then ψi(a) defines an operator on Hi , which we still denote by ψi(a). Let

K = H1 ⊕ H2, Φ = ψ1 ⊕ ψ2.

Then

Φ : A → B(K)

is unital and positive. Let V : H → K be the linear operator

V (ξ) = (λφ1(1)
)1/2

ξ ⊕ (μφ2(1)
)1/2

ξ.

Then a straightforward computation yields

(
φ(a)ξ, η

)= (Φ(a)V ξ,V η
)
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for ξ, η ∈ H and a ∈ A. In particular, if we put a = 1, we see that V is an isometric
imbedding of H into K . Thus Φ ⊃ φ is an extension of φ. By assumption φ is
nonextendible. Thus Φ is a trivial extension. In our definition we considered H as a
subspace of K . In the general case one must consider the case when H is imbedded
in K as it is here, with V : H → K . Thus we have

Φ(a)V ξ = V φ(a)ξ for a ∈ A,ξ ∈ H.

By the definitions of V and Φ = ψ1 ⊕ ψ2 we get

Φ(a)V ξ = λ1/2φ1(1)−1/2φ1(a)ξ ⊕ μ1/2φ2(1)−1/2φ2(a)ξ.

This is equal to

V φ(a)ξ = λ1/2φ1(1)1/2φ(a)ξ ⊕ μ1/2φ2(a)1/2φ(a)ξ,

so that

φi(1)φ(a)ξ = φi(a)ξ, for all ξ ∈ H,

hence φi = φi(1)φ.
In case (i) in the theorem φi(1) = 1, so φi = φ, and the conclusion in (i) follows.
In case (ii) φi(a) = φi(1)φ(a) for all a. Taking adjoints for a self-adjoint we

see that φi(1) commutes with the self-adjoint operator φ(a), and therefore φi(1) ∈
φ(A)′, which we assumed is the scalar operators. Thus φi is a scalar multiple of φ,
and thus φ is extremal. �

It is a quite special property to be a nonextendible map. Our next result is an
example of a nonextendible map. It is an extension of Proposition 3.1.5, where it
was shown that Jordan homomorphisms were extremal in the set of positive unital
maps.

Theorem 3.4.4 Let A be a C∗-algebra and φ ∈ B(A,H) a unital Jordan homo-
morphism. Then φ is nonextendible.

Proof Since φ(1) is always a projection the assumption that φ is unital is just made
for convenience. Let Φ ⊃ φ be an extension, so φ(a) = PΦ(a)P , where P is the
projection of K onto H , Φ : A → B(K) positive and unital. If a ∈ A is self-adjoint
then the Kadison-Schwarz inequality, Theorem 1.3.1, applied to Φ , implies with 1
the identity in B(K),

0 ≤ PΦ(a)(1 − P)Φ(a)P

= PΦ(a)2P − φ(a)2

= PΦ(a)2P − φ
(
a2)

= P
(
Φ(a)2 − Φ

(
a2))P ≤ 0.
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It follows that (1 − P)Φ(a)P = 0, hence Φ(a)ξ ∈ H for all ξ ∈ H . Thus Φ is a
trivial extension of φ. �

In the converse direction we see that if φ is a nonextendible unital completely
positive map, then the Stinespring Theorem, 1.2.7, shows that φ has an extension
which is a representation, hence by nonextendibility φ, is itself a homomorphism.
It is interesting that this conclusion holds in much more generality. Recall from
Definition 1.2.1 that a map φ ∈ B(A,H) is 2-positive if φ ⊗ ι is positive, where ι is
the identity map of M2 onto itself. This means that

(
a b

b∗ c

)
∈ M2(A)+ ⇒

(
φ(a) φ(b)

φ(b)∗ φ(c)

)
∈ M2

(
B(H)

)+
.

Theorem 3.4.5 Let A be a C∗-algebra and φ ∈ B(A,H) a unital 2-positive nonex-
tendible map. Then φ is a homomorphism.

Proof Let a, b ∈ A with a ≥ 0. Then

(
a ab∗
ba bab∗

)
=
(

a1/2 0
0 b

)(
1 a1/2

a1/2 a

)(
a1/2 0

0 b∗
)

≥ 0.

Let b be fixed, and, then since φ is 2-positive,

ψ(a) =
(

φ(a) φ(ab∗)
φ(ba) φ(bab∗)

)

defines a positive map of A into B(H ⊕H). Then ψ(1) is invertible on ψ(1)H ⊕H .
Let K denote the closure of ψ(1)H ⊕ H . Define a map Φ : A → B(H ⊕ H) by

Φ(a) = ψ(1)−1/2ψ(a)ψ(1)−1/2.

Then Φ is a positive unital map of A into B(K). Let V : H → K be the linear
operator defined by

V ξ = ψ(1)1/2(ξ ⊕ 0).

Thus for ξ, η ∈ H we immediately get

(
φ(a)ξ, η

)= (Φ(a)V ξ,V η
)
.

In particular, if a = 1, so φ(a) = 1, we see that V : H → K is an isometric imbed-
ding, and so

φ(a) = V ∗Φ(a)V .

Thus Φ is an extension of φ, and since φ is nonextendible, Φ ⊃ φ is a trivial exten-
sion. Therefore

Φ(a)V ξ = V φ(a)ξ.
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Using the defining formulas for Φ and V we then get

ψ(1)−1/2
(

φ(a) φ(ab∗)
φ(ba) φ(bab∗)

)(
ξ

0

)
= Φ(a)V ξ = V φ(a)ξ = ψ(1)1/2

(
φ(a)ξ

0

)
.

If we multiply on the left by ψ(1)1/2, we get
(

φ(a) φ(ab∗)
φ(ba) φ(bab∗)

)(
ξ

0

)
=
(

1 φ(b)∗
φ(b) φ(bb∗)

)(
φ(a)ξ

0

)
,

hence φ(ba)ξ = φ(b)φ(a)ξ for all ξ ∈ H , proving that φ is a homomorphism. �

3.5 A Radon-Nikodym Theorem

One version of the classical Radon-Nikodym theorem for measures states that if
μ and η are finite measures on a measure space, and η ≤ μ, then there exists a
measurable function 0 ≤ f ≤ 1 such that

∫
g dη =

∫
fg dμ

for all integrable functions g. We shall in the present section prove an analogous
result for completely positive maps and then apply this to characterize maps which
are extremal among the completely positive ones. We first show a sharpening of the
Stinespring Theorem 1.2.7.

Lemma 3.5.1 Let A be a C∗-algebra and φ : A → B(H) a completely positive
map. Then there exist a Hilbert space K , a representation π of A on K , a bounded
operator V : H → K with the property that the closed subspace

[
π(A)V H

]= {π(a)V ξ : a ∈ A,ξ ∈ H
}−

equals K , and such that φ = V ∗πV .

Proof Let W ∗π0W be a Stinespring decomposition of φ as in Theorem 1.2.7 with
π0 a representation of A on a Hilbert space K0, and W : H → K0 a bounded op-
erator. Let e be the projection onto [π0(A)WH ]. Then e belongs to the commutant
π0(A)′ of π0(A), because if a, b ∈ A then

π0(b)
(
π0(a)Wξ

)= π0(ba)Wξ ∈ [π0(A)WH
]
.

Let K = eK0, π = eπ0 and V = eW , then

V ∗π(a)V = V ∗eπ0(a)eV = Wπ0(a)W = φ(a),

and
[
π(A)V H

]= [eπ0(A)WH
]= eK0 = K. �
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Lemma 3.5.2 Let φ1 and φ2 be completely positive maps of A into B(H) such
that φ2 − φ1 is completely positive. Let φi(a) = V ∗

i πi(a)Vi be the Stinespring de-
compositions such that [πi(A)ViH ] = Ki, i = 1,2. Then there exists an operator
T : K2 → K1 with ‖T ‖ ≤ 1 such that

(i) T V2 = V1.
(ii) T π2(a) = π1(a)T , a ∈ A.

Proof Let ξ1, . . . , ξn ∈ H , a1, . . . , an ∈ A. Then

∥∥∥∥
∑

j

π1(aj )V1ξj

∥∥∥∥

2

=
∑

ij

(
V ∗

1 π1
(
a∗
i aj

)
V1ξj , ξi

)

=
∑

ij

(
φ1
(
a∗
i aj

)
ξj , ξi

)

≤
∑

ij

(
φ2
(
a∗
i aj

)
ξj , ξi

)

=
∥∥∥
∑

π2(aj )V2ξj

∥∥∥
2
,

since φ2 −φ1 is completely positive and (a∗
i aj ) ∈ (A⊗Mn)

+. Therefore there exists
a unique contraction T defined on [π2(A)V H ] = K2 which satisfies T π2(a)V2ξ =
π1(a)V1ξ for all a ∈ A,ξ ∈ H . Taking a = 1, we have T V2 = V1. If a, b ∈ A then

T π2(a)π2(b)V2ξ = T π2(ab)V2ξ = π1(ab)V1ξ = π1(a)T π2(b)V2ξ,

so that T π2(a) = π1(a)T , using that [π2(A)V2H ] = K2. �

Let φ be a completely positive map of A into B(H) with Stinespring de-
composition φ = V ∗πV . If 0 ≤ T ≤ 1 is an operator in π(A)′ then the map
φT (a) = V ∗T π(a)V is a completely positive map of A into B(H), because if
W = T 1/2V , then φT (a) = W ∗π(a)W , so is completely positive by the Stinespring
theorem, 1.2.7. If we apply this to 1 − T , we see that φ − φT = φ1−T is also com-
pletely positive.

Theorem 3.5.3 Let A be a C∗-algebra and φ and ψ completely positive maps of A

into B(H) such that φ −ψ is completely positive. Let φ = V ∗πV be the Stinespring
decomposition of φ with [π(A)V H ] = K . Then there is a unique operator T ∈
π(A)′ with 0 ≤ T ≤ 1 such that ψ(a) = φT (a) = V ∗T π(a)V .

Proof The map T → φT is clearly linear, and if φT = 0 then for all a, b ∈ A and
ξ, η ∈ H we have

(
T π(a)V ξ,π(b)V η

)= (V ∗T π
(
b∗a
)
V ξ,η

)= (φT

(
b∗a
)
ξ, η
)= 0.

Since [π(A)V H ] = K , T = 0, so we have uniqueness in the theorem.
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It remains to show that ψ = φT for 0 ≤ T ≤ 1, T ∈ π(A)′. By Lemma 3.5.1
ψ has a Stinespring decomposition, ψ = W ∗σW , where W : H → K1 and K1 =
[σ(A)WH ]. By Lemma 3.5.2 there is a contraction X : K → K1 such that XV =
W and Xπ(a) = σ(a)X for all a ∈ A, and taking adjoints, π(a)X∗ = X∗σ(a) for
a ∈ A. Let T = X∗X. Then clearly 0 ≤ T ≤ 1, and T π(a) = X∗σ(a)X = π(a)T ,
so that T ∈ π(A)′. Finally, we have for ξ, η ∈ H ,

(
φT (a)ξ, η

)= (X∗Xπ(a)V ξ,V η
)

= (Xπ(a)V ξ,XV η
)

= (σ(a)XV ξ,XV η
)

= (σ(a)Wξ,Wη
)

= (ψ(a)ξ, ξ
)
,

completing the proof of the theorem. �

We can now show the promised characterization of maps extremal in the cone of
completely positive maps. For this we make the following,

Definition 3.5.4 Let φ : A → B(H) be completely positive. We say φ is pure if
every completely positive map ψ : A → B(H) with φ − ψ completely positive is a
scalar multiple of φ.

It is well known that a state is pure if and only if its GNS-representation is irre-
ducible. This extends to completely positive maps as follows.

Corollary 3.5.5 Let φ : A → B(H) be completely positive with Stinespring decom-
position φ = V ∗πV , such that V : H → K and [π(A)V H ] = K . Then φ is pure if
and only if π is irreducible.

Proof Let φ be pure. By the comments before Theorem 3.5.3 the set {T ∈ π(A)′ :
0 ≤ T ≤ 1} consists of scalar multiple of the identity, which implies that π(A) is
irreducible.

Conversely, if π is irreducible and ψ : A → B(H) is a map such that ψ and φ−ψ

are completely positive, then by Theorem 3.5.3 ψ = φT for some T ∈ π(A)′,0 ≤
T ≤ 1. Since π(A)′ consists of scalar operators, T = λ1 for some 0 ≤ λ ≤ 1, so ψ

is a scalar multiple of φ, hence φ is pure. �

In the finite dimensional case we get a stronger extremality result for pure maps.
The result can easily be extended to maps φ : A → B(H), where A is a C∗-algebra
all of whose irreducible representations are finite dimensional.

Corollary 3.5.6 Let K0 be a finite dimensional Hilbert space and φ : B(K0) →
B(H) completely positive. Then φ is pure if and only if it is an extremal positive
map in B(B(K0),H)+.
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Proof It is clear that if φ is extremal then it is in particular pure. Conversely,
assume φ is pure with Stinespring decomposition φ = V ∗πV , where by Corol-
lary 3.5.5 π is irreducible. Since K0 is finite dimensional, π(B(K0)) = B(K), K as
in Corollary 3.5.5, and by finiteness π is an isomorphism. By Proposition 3.1.3
AdV : B(K) → B(H) is extremal. Let ψ ∈ B(B(K0),H)+, with ψ ≤ φ. Then
ψ ◦ π−1 ≤ AdV , so by extremality of AdV , ψ ◦ π−1 = λAdV for 0 ≤ λ ≤ 1. Thus
ψ = λAdV ◦ π = λφ, so φ is extremal. �

3.6 Notes

Extreme points of the convex set of unital positive maps were studied in [71]. The
results in Sect. 3.1, except Proposition 3.1.7, are mostly variations of results in [71].
Proposition 3.1.7 is a special case of well known results on automorphisms of von
Neumann algebras.

As mentioned in the introduction to Sect. 3.2 Jacobson and Rickart [29] showed
that Jordan homomorphisms of matrix algebras over certain rings are sums of ho-
momorphisms and anti-homomorphisms. Their result was used by Kadison [35] to
show that surjective Jordan homomorphisms between C∗-algebras were sums of
homomorphisms and anti-homomorphims, and finally the author [72] showed the
same result for Jordan homomorphisms of a C∗-algebra into another C∗-algebra.
Theorem 3.2.4 is a special case of Kadison’s result, but the proof is quite different
from the proofs in the papers referred to above. In [9] surjective Jordan homomor-
phisms were characterized as those positive maps which map invertible operators
onto invertible operators.

Theorem 3.3.2 and its proof is taken from [71], but its followup, Theorem 3.3.4
is, with a different proof, due to Marciniak [50]. For a closely related result for
maps which are not necessarily positive, see [31, 46–48]. Theorem 3.3.7 is also due
to Marciniak [50]. For further work on nonextendible maps see [95, 96].

The contents of Sect. 3.4 on nonextendible maps are all due to Woronowicz [99],
see also [42].

The Radon-Nikodym type theorem, Theorem 3.5.3 is due to Arveson [1].
If K and H are finite dimensional the facial structure of the cone B(B(K),H)+

has been studied by several authors; see [45] for a survey. In this context maps which
generate exposed rays in B(B(K),H)+, called exposed maps have attracted much
attention as they form a dense subset of the extremal maps, see e.g. [13, 19].



Chapter 4
Choi Matrices and Dual Functionals

In the theory of positive maps from the n × n matrices Mn (=B(K) with K = C
n)

into B(H), the Choi matrix corresponding to a map is very important. The present
chapter is devoted to the close relationship between maps and their Choi matrices.
In Sect. 4.1 we present the basic definitions and results. Then in Sect. 4.2 we intro-
duce the dual functional to a map and show how its properties reflect the positivity
properties of the map.

4.1 The Choi Matrix

In this section K is a finite dimensional Hilbert space. The vector space of linear
maps of B(K) into B(H) can be identified with B(K) ⊗ B(H). In our treatment
this identification will be done via the Choi matrix for a map.

Definition 4.1.1 Let K = C
n and let φ : B(K) → B(H) be a linear map. Let (eij),

i, j = 1, . . . , n be a complete set of matrix units for B(K). Then the Choi matrix for
φ is the operator

Cφ =
n∑

i,j=1

eij ⊗ φ(eij) ∈ B(K) ⊗ B(H).

The map φ → Cφ is clearly linear and injective, and given an operator
∑

eij ⊗
aij ∈ B(K) ⊗ B(H), then we can define a linear map φ by φ(eij) = aij. Thus the
map φ → Cφ is surjective. This map is often called the Jamiolkowski isomorphism.

As defined the Choi matrix depends on the choice of matrix units (eij). The next
lemma describes it with respect to another set of matrix units. Recall the notation
B(B(K),H) is the linear space of all linear maps from B(K) into B(H).

Lemma 4.1.2 Let φ ∈ B(B(K),H) have Choi matrix Cφ with respect to a complete
set of matrix units (eij). Let (fij) be another complete set of matrix units and w
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Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_4,
© Springer-Verlag Berlin Heidelberg 2013
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a unitary operator such that w∗eijw = fij. Then the Choi matrix C
f
φ with respect to

(fij) is given by

C
f
φ = Ad(w ⊗ 1)(Cφ◦Adw).

Proof

Cφ◦Adw =
∑

eij ⊗ φ
(
w∗eijw

)

=
∑

eij ⊗ φ(fij)

= (w ⊗ 1)

(∑

i,j

fij ⊗ φ(fij)
(
w∗ ⊗ 1

))
.

Hence C
f
φ = (w∗ ⊗ 1)Cφ◦Adw(w ⊗ 1). �

Two special cases are important.

Proposition 4.1.3 Let ω be a linear functional on B(K) with density operator h,
viz. ω(a) = Tr(ha), a ∈ B(K). Let a ∈ B(H)+, and identify bω with the map a →
ω(a)b of B(K) into B(H). Then

Cbω = ht ⊗ b.

Proof

Cbω =
∑

eij ⊗ ω(eij)b

=
∑

ω(eij)eij ⊗ b

=
∑

Tr(heij)eij ⊗ b

=
∑

hjieij ⊗ b

= ht ⊗ b. �

Proposition 4.1.4 Suppose dimH = m < ∞. Let ξ1, . . . , ξn (resp. η1, . . . , ηm) be
an orthonormal basis for K (resp. H ), and (eij) (resp. (fkl)) be the corresponding
complete set of matrix units, so eijξk = δjkξi , and similarly for (fkl). Let V : H → K

be defined by V ηk =∑i vikξi . Let

g(i,k),(j,l) = eij ⊗ fkl.

Then the set (g(i,k),(j,l)) is a complete set of matrix units for B(K ⊗ H), and

CAdV =
∑

vjlvikg(i,k),(j,l)

is a positive scalar multiple of the projection onto ω =∑vikξi ⊗ ηk .
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Proof It is obvious that (g(i,k),(j,l)) is a complete set of matrix units for B(K ⊗ H).
Let ξ =∑akηk ∈ H . Then

(
ξ,V ∗ξi

)= (V ξ, ξi) =
∑

k

ak(V ηk, ξi)

=
∑

k

akvik =
∑

k

ak(ηk, vikηk) =
∑

k

(ξ, vikηk).

Thus

V ∗ξi =
∑

k

vikηk, for all i. (4.1)

It follows that

V ∗eijV ηk = V ∗eij

∑

s

vskξs = V ∗vjkξi =
∑

l

vjkvilηl.

Therefore we get

CAdV (ξs ⊗ ηt ) =
(∑

ij

eij ⊗ V ∗eijV

)
(ξs ⊗ ηt )

=
∑

ξi ⊗ vstvikηk

=
(∑

ik

eis ⊗ vstvikfkt

)
(ξs ⊗ ηt )

=
(∑

ik

vstvikg(i,k)(s,t)

)
(ξs ⊗ ηt ).

Thus

CAdV =
∑

i,j,k,l

vjlvikg(i,k)(j,l). �

In the above proposition the rank of V is reflected in how ω is written as a tensor
product of vectors.

Definition 4.1.5 Let ξ ∈ K ⊗H . Then ξ has Schmidt rank r denoted by SRξ , if r is
the smallest number m such that ξ can be written as ξ =∑m

i=1 ξi ⊗ ηi with ξi ∈ K ,
ηi ∈ H .

Then we can find an orthonormal family ω1, . . . ,ωr ∈ H and vectors ρi ∈ K

such that ξ =∑r
i=1 ρi ⊗ ωi . To show this, note that the span of the ηi ’s must be

r-dimensional by minimality of r , so we can write the ηi ’s as linear combinations
of r orthonormal vectors ω1, . . . ,ωr in H . Using this we can give more specific
information on V and ω in the last proposition.
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Proposition 4.1.6 Let V : H → K and ω be as in Proposition 4.1.4. Then CAdV =
λ[ω] for some λ ≥ 0. ω has Schmidt rank r if and only if rankV = r .

Proof Suppose rankV = r . Choose an orthonormal basis η1, . . . , ηm for H such
that V ∗V ηk = λkηk with λ1, . . . , λr > 0 and λk = 0 for k > r . Let ξ1, . . . , ξn be an
orthonormal basis for K . By Proposition 4.1.4

CAdV = λ[ω], ω =
∑

k

(∑

i

vikξi

)
⊗ ηk

and

V ηk =
∑

i

vikξi .

Thus by (4.1)

λkηk = V ∗V ηk =
∑

i

V ∗vikξi =
∑

i,l

vikvilηl, (4.2)

hence vil = 0 for l �= k, and
∑

i |vik|2 = λk . Thus vik �= 0 for some i when k ≤ r , so
that ω has Schmidt rank r .

Conversely, if SRω = r , choose and orthonormal basis η1, . . . , ηm in H such that

ω =
r∑

k=1

(∑

i

vikξi

)
⊗ ηk =

∑

ik

vikξi ⊗ ηk.

If we define V : H → K by V ηk =∑i vikξi �= 0 if k ≤ r , and V ηk = 0 for k > r ,
Proposition 4.1.4 shows us that CAdV is a scalar multiplum of [ω]. By construction
V has rank r . Since φ → Cφ is an isomorphism, and AdV = AdW if and only if
W = zV, |z| = 1, the rank of V is uniquely defined whenever CAdV = λ[ω] with
λ > 0. Thus rankV = r . �

Remark 4.1.7 If dimK = n, and ι denotes the identity map of B(K) into itself, then
for V = 1 we get

Cι = CAd1 =
∑

eij ⊗ eij

is n times the projection onto 1√
n
ξi ⊗ ξi , called the maximally entangled state. For

more on entanglement see the discussion after Proposition 4.1.11 and Sect. 7.4.

Note that by Proposition 4.1.6 rankV = 1 if and only if CAdV = λ[ξ ]⊗ [η] if and
only if ω = ξ ⊗ η is a product vector.

As an immediate consequence of Proposition 4.1.4 we have

Theorem 4.1.8 Let K and H be finite dimensional and φ ∈ B(B(K),H). Then the
following conditions are equivalent:
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(i) φ is completely positive.
(ii) Cφ ≥ 0.

(iii) φ =∑m
i=1 AdVi with Vi : H → K linear, and m ≤ dimK · dimH .

(iv) φ =∑k
i=1 AdWi , with Wi : H → K linear and k ∈N.

Proof (i) ⇒ (ii). Let n = dimK , m = dimH . If φ is completely positive then ιn ⊗
φ : Mn ⊗ B(K) → Mn ⊗ B(H) is positive, where ιnis the identity map on Mn.
Hence

Cφ =
∑

ij

eij ⊗ φ(eij) = ιn ⊗ φ

(∑

ij

eij ⊗ eij

)
≥ 0.

(ii) ⇒ (iii). If Cφ ≥ 0 then Cφ =∑mn
i=1 λi[ωi] with ωi an orthonormal basis for

K ⊗ H , 1 ≤ i ≤ mn, λi ≥ 0. By Proposition 4.1.4 [ωi] = CAdVi
for an operator

Vi : H → K . Thus φ =∑mn
1 λiAdVi . If we replace Vi by λ

−1/2
i Vi whenever λi �= 0,

we have (iii).
(iii) ⇒ (iv) is trivial.
(iv) ⇒ (i). This follows since ιn ⊗ AdV = Ad(ιn ⊗ V ) is positive, so AdV is

completely positive (see also Lemma 1.2.2). �

The decomposition (iii) in the above theorem is usually called the Kraus decom-
position for φ.

Corollary 4.1.9 Let φ : B(K) → B(H), with K = Cn, H = Cm, and let k =
min(m,n). Then φ is completely positive if and only if φ is k-positive.

Proof Suppose φ is k-positive. Assume first k = n. Then ιn ⊗ φ is positive, so
Cφ = ιn ⊗ φ(

∑
ij eij ⊗ eij) ≥ 0. Thus by Theorem 4.1.8 φ is completely positive. If

k = m then φ∗ : B(H) → B(K) is k-positive from Proposition 1.4.3, hence by the
first part φ∗ is completely positive. Then by the same proposition φ is completely
positive. The converse is obvious. �

The above corollary can be extended to maps of C∗-algebras. Then it states that
every k-positive map of a C∗-algebra A into another B is completely positive if
and only if either A or B has all its irreducible representations on Hilbert spaces of
dimension less than or equal to k, see [93].

We shall need to know the Choi matrix for φ∗ when φ ∈ P(H), the cone of
positive maps of B(H) into itself.

Lemma 4.1.10 Let dimH = n and ξ1, . . . , ξn be an orthonormal basis for H . Let
J be the conjugation of H ⊗ H defined by

Jzξi ⊗ ξj = zξj ⊗ ξi

with z ∈ C. Let φ ∈ P(H). Then Cφ∗ = JCφJ .
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Proof Let V = (vij)i,j≤n ∈ B(H), and let eij denote the matrix units such that
eijξk = δjkξi . Then a straightforward computation yields

AdV (ekl) = V ∗eklV = (vkivlj )ij.

Since V ∗ = (vji) it follows that

AdV ∗(ekl) = V eklV
∗ = (vikvjl)ij.

From the definition of J it thus follows that

JCAdV J (zξp ⊗ ξq) = J

(∑

ijkl

ekl ⊗ vkivlj eij

)
zξq ⊗ ξp

=
∑

vkivlj eijξp ⊗ zeklξq

=
(∑

ik

vikvjlekl ⊗ eij

)
(zξp ⊗ ξq)

=
(∑

ekl ⊗ V eklV
∗)(zξp ⊗ ξq)

= CAdV ∗(zξp ⊗ ξq),

where we at the third equality sign exchanged (i, j) with (k, l). Since the vectors
ξp ⊗ ξq form a basis for H ⊗ H , JCAdV J = CAdV ∗ . Now, if φ is a positive map
then Cφ is self-adjoint, hence the difference between two positive operators, which
both are Choi matrices for completely positive maps by Theorem 4.1.8. Hence by
Theorem 4.1.8 again φ is a real linear sum of maps AdV . By Proposition 1.4.2 the
adjoint map of AdV is AdV ∗. Applying this to each summand AdV , we thus get
JCφJ = Cφ∗ . �

Proposition 4.1.11 Let H be a Hilbert space of arbitrary dimension. Let φ ∈
B(B(K),H). Then φ is positive if and only if Tr(Cφ a ⊗ b) ≥ 0 for all a ∈ B(K)+
and b a positive trace class operator on H .

Proof Computing we get

Tr(Cφa ⊗ b) =
∑

ij

Tr
((

eij ⊗ φ(eij)
)
(a ⊗ b)

)

=
∑

ij

Tr(eija)Tr
(
φ(eij)b

)

=
∑

ajiTr
(
φ(eij)b

)

= Tr
(
φ
(
at
)
b
)
.
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Since this holds for all positive trace class operators b, and a ≥ 0 if and only if
at ≥ 0, φ(a) ≥ 0 if and only if Tr(Cφa ⊗ b) ≥ 0 for all positive a and b. �

In quantum information theory Cφ is often called an entanglement witness when
φ is not completely positive, because the proposition shows that if h =∑ai ⊗bi ≥ 0
is the density operator for a state ω on B(K ⊗H), then ω is entangled, i.e. h cannot
be written in the above form with all ai, bi ≥ 0, if there exists a positive map φ :
B(K) → B(H) such that Tr(Cφh) < 0.

Let φ ∈ B(B(K),H) be a self-adjoint linear map, so φ(a) is self-adjoint when a

is self-adjoint. Then it is easily seen that Cφ is a self-adjoint operator, hence is the
difference of two positive operators C+

φ and C−
φ such that C+

φ C−
φ = 0.

We shall see later, Theorem 7.4.3, that C−
φ contains much information. Presently

we concentrate on C+
φ . Let c ≥ 0 be the smallest positive number such that c1 ≥ Cφ .

Then c = ‖C+
φ ‖. Hence, if c �= 0 there exists a map φcp : B(K) → B(H) such that

its Choi matrix Cφcp = 1 − 1
c
Cφ is a positive operator. Thus if Tr is identified with

the positive map a → Tr(a)1, it is straightforward to show that CTr = 1, so 1
c
φ =

Tr − φcp. By Theorem 4.1.8, φcp is completely positive. We have

Theorem 4.1.12 Let φ ∈ B(B(K),H) be a self-adjoint linear map such that −φ is
not completely positive. Then there exists a completely positive map φcp : B(K) →
B(H) such that

∥∥C+
φ

∥∥−1
φ = Tr − φcp.

Furthermore, φ is positive if and only if ρ(Cφcp) ≤ 1 for all product states ρ =
ω1 ⊗ ω2 on B(K) ⊗ B(H).

Proof The existence of φcp was shown above. To show the second part let ρ(x) =
Tr ⊗ Tr((a ⊗ b)x) be a product state on B(K) ⊗ B(H) with density operator a ⊗ b.
Then

ρ(Cφcp) = Tr ⊗ Tr(Cφcpa ⊗ b),

so that Tr(Cφa ⊗b) ≥ 0 if and only if ρ(Cφcp) ≤ 1. Hence the theorem follows from
Proposition 4.1.11. �

Recall from Definition 1.2.1 that a map φ is k-positive if ιk ⊗ φ is positive,
where ιk denotes the identity map on Mk . We now give several characterizations of
k-positive maps, one of them in terms of the Choi matrix.

Definition 4.1.13 An operator C on K⊗H is called k-block positive if (C
∑k

i=1 ξi ⊗
ηi,
∑k

i=1 ξi ⊗ ηi) ≥ 0 for all choices of vectors ξ1, . . . , ξk ∈ K , and η1, . . . , ηk ∈ H .

Remark 4.1.14 Note that a vector ξ ∈ K ⊗H is of the form
∑k

i=1 ξi ⊗ηi if and only
if ξ = (1 ⊗ q)ψ for a vector ψ ∈ K ⊗ H and projection q ∈ B(H) of dimension k.
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Indeed, if ξ =∑k
i=1 ξi ⊗ ηi let q denote the projection onto the span of η1, . . . , ηk ,

then ξ = (1 ⊗ q)ξ . Conversely, if ξ = (1 ⊗ q)ψ with ψ =∑n
i=1 ξi ⊗ηi , q as above,

we can choose a basis γ1, . . . , γk for qH such that qηi =∑αijγj . Then

1 ⊗ q(ψ) =
∑

ξi ⊗ qηi =
∑

αijξi ⊗ γj =
k∑

j=1

(∑

i

αijξi

)
⊗ γj .

The same argument also yields that ξ =∑k
1 ξi ⊗ ηi if and only if ξ = p ⊗ q(ψ) for

ψ ∈ K ⊗H , and p and q k-dimensional projections in B(K) and B(H) respectively.

Theorem 4.1.15 Let φ ∈ B(B(K),H) and k ≤ min(dimK,dimH). Then the fol-
lowing conditions are equivalent.

(i) φ is k-positive.
(ii) φ ◦ AdV is completely positive for all V ∈ B(K) with rankV ≤ k.

(iii) AdW ◦ φ is completely positive for all W ∈ B(H) with rankW ≤ k.
(iv) Cφ is k-block positive.

Proof The proof goes as follows. (i) ⇔ (ii) ⇒ (iv) ⇒ (iii) ⇒ (i).
(i) ⇒ (ii). Let φ be k-positive and V ∈ B(K) with rankV ≤ k. Let e = supportV .

Then dim e ≤ k. Thus

φ ◦ AdV = φ ◦ AdV ◦ Ade : eB(K)e → B(H).

Since eB(K)e ∼= Ml with l ≤ k, and φ is k-positive, φ ◦ AdV is completely positive
by Corollary 4.1.9.

(ii) ⇒ (i). Let (eij)i,j≤k be a complete set of matrix units for Mk . Let a =∑
i,j≤k eij ⊗aij ∈ (Mk ⊗B(K))+. Again by Corollary 4.1.9 a = Cψ for a completely

positive map ψ : Mk → B(K). By Theorem 4.1.8 ψ =∑AdVi with Vi : K → C
k .

Since k ≤ dimK we may assume C
k ⊂ K , hence Vi ∈ B(K) with rankVi ≤ k for

all i. Thus by (ii) φ ◦ ψ is completely positive, hence by Theorem 4.1.8

ιk ⊗ φ(a) = ιk ⊗ φ(Cψ) = Cφ◦ψ ≥ 0,

so that φ is k-positive.
(ii) ⇒ (iv). Let ξ =∑k

1 ξi ⊗ ηi ∈ K ⊗ H have Schmidt rank k. Let q be a k-
dimensional projection in B(H) such that qηi = ηi for all i. Let (eij) be a complete
set of matrix units in B(K) such that Cφ =∑ eij ⊗ φ(eij). Then we have

CAdq◦φ =
∑

eij ⊗ Adq
(
φ(eij)

)= Ad(1 ⊗ q)(Cφ).

Thus by (ii) and Theorem 4.1.8 Ad(1 ⊗ q)(Cφ) ≥ 0. It follows that

(Cφξ, ξ) = (Cφ(1 ⊗ q)ξ, (1 ⊗ q)ξ
)= (Ad(1 ⊗ q)(Cφ)ξ, ξ

)≥ 0.

Thus Cφ is k-block positive.
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(iv) ⇒ (iii). Let W ∈ B(H) with rankW ≤ k. Let ξ =∑ ξi ⊗ ηi ∈ K ⊗ H . Let
e support W , so dim e ≤ k. Then there exist k vectors α1, . . . , αk ∈ H such that
eηi =∑n

1 cijαj , cij ∈ C. We can therefore write 1 ⊗Wξ =∑k
1 ξ ′

j ⊗βj with ξ ′
j ∈ K ,

βj ∈ H . Thus 1 ⊗ Wξ has Schmidt rank≤ k, hence by the assumption that Cφ is
k-block positive (Cφ(1 ⊗ W)ξ, (1 ⊗ W)ξ) ≥ 0. Thus

CAdw◦φ = (1 ⊗ AdW)(Cφ) ≥ 0,

so that AdW ◦ φ is completely positive.
(iii) ⇒ (i). Let V ∈ B(H) with rankV ≤ k. Then (AdV )∗ = AdV ∗. Hence

φ∗ ◦ AdV ∗ = (AdV ◦ φ)∗ : B(H) → B(K).

Since by assumption AdV ◦φ is completely positive, so is φ∗ ◦AdV ∗. We have there-
fore shown that φ∗ ◦AdW is completely positive for all W ∈ B(H) with rankW ≤ k.
Therefore by the equivalence (i) ⇔ (ii) applied to φ∗ : B(H) → B(K), φ∗ is k-
positive, hence so is φ. �

4.2 The Dual Functional of a Map

In the previous section we studied the duality between positive maps of B(K)

into B(H) as matrices via the Jamiolkowski isomorphism φ → Cφ ∈ B(K ⊗ H).
In this section we consider the duality between maps and linear functionals on
B(K)⊗T (H), or more generally A⊗T (H), where T (H) denotes the trace class
operators on B(H), and A is an operator system, i.e. a unital linear subspace of
B(K) such that a ∈ A implies a∗ ∈ A.

Definition 4.2.1 Let A be an operator system and φ : A → B(H) a bounded linear
map. Then its dual functional φ̃ on A ⊗ T (H) is the functional defined by

φ̃(a ⊗ b) = Tr
(
φ(a)bt

)
,

where t is the transpose on B(H) defined by a fixed orthonormal basis.

φ̃ is well defined because φ(a) is a bounded operator in B(H), and b is a trace
class operator. Let the projective norm on the algebraic tensor product of A and
T (H) be defined by

‖x‖∧ = inf

{
∑

‖ai‖‖bi‖1 : x =
n∑

i=1

ai ⊗ bi, ai ∈ A,bi ∈ T (H)

}

where ‖b‖1 is the trace norm ‖b‖1 = Tr(|b|). We denote by A⊗̂T (H) the com-
pletion of the algebraic tensor product with respect to the projective norm, and by
A+⊗̂T (H)+ the closed cone generated by operators

∑
i ai ⊗ bi with ai ∈ A+, bi ∈

T (H)+. A⊗̂T (H) is called the projective tensor product of A and T .
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Lemma 4.2.2 Let A be an operator system. Then the map φ → φ̃ is an iso-
metric isomorphism of the space of bounded linear maps of A into B(H) and
(A⊗̂T (H))∗. Furthermore φ is positive if and only if φ̃ is positive on A+⊗̂T (H)+.

Proof Let x =∑n
1 ai ⊗ bi ∈ A⊗̂T (H) be a finite tensor. Then

∣∣φ̃(x)
∣∣=
∣
∣∣∣
∑

i

Tr
(
φ(ai)b

t
i

)
∣
∣∣∣

≤
∑∣∣Tr

(
φ(ai)b

t
i

)∣∣

≤
∑∥∥φ(ai)

∥∥‖bi‖1

≤ ‖φ‖
∑

‖ai‖‖bi‖1.

Thus ‖φ̃‖ ≤ ‖φ‖.
Conversely, since ‖ ‖∧ is a cross norm,

‖φ‖ = sup
‖a‖=1

∥∥φ(a)
∥∥= sup

‖a‖=1,‖b‖1=1

∣∣Tr
(
φ(a)bt

)∣∣

= sup
∣∣φ̃(a ⊗ b)

∣∣

= sup‖φ̃‖‖a ⊗ b‖
≤ sup‖φ̃‖‖a‖‖b‖1

≤ ‖φ̃‖.

Thus the map φ → φ̃ is an isometry. The last part of the lemma follows from the
proof of Proposition 4.1.11. �

The connection between the Choi matrix Cφ and φ̃ is given by the following
result.

Lemma 4.2.3 Let K be finite dimensional and φ ∈ B(B(K),H). Then Ct
φ is the

density operator for φ̃.

Proof Since the transpose is Tr-invariant, if a ⊗ b ∈ B(K) ⊗ T (H),

Tr
(
Ct

φa ⊗ b
)= Tr

(
Cφat ⊗ bt

)

=
∑

ij

Tr
(
eija

t ⊗ φ(eij)b
t
)

=
∑

ij

Tr
(
eija

t
)
Tr
(
φ(eij)b

t
)
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=
∑

aijTr
(
eijφ

∗(bt
))

= Tr
(
aφ∗(bt

))

= φ̃(a ⊗ b),

proving the lemma. �

We shall often encounter the situation when we compose a map by the transpose
map both in the domain and the range of φ. Let as before t denote the transpose
both of B(K) and B(H).

Definition 4.2.4 Let φ ∈ B(B(K),H). Then we denote by

φt = t ◦ φ ◦ t.

The basic properties are given in

Lemma 4.2.5 Let φ ∈ B(B(K),H). Then we have

(i) If φ is k-positive (resp. completely positive), so is φt .
(ii) If φ = AdV then φt = AdV t∗.

(iii) If dimK < ∞ then Cφt = Ct
φ , where Ct

φ is the transpose on B(K ⊗ H).

Proof (i) Let ι = ιk be the identity map on Mk . Then

ι ⊗ φt = (ι ⊗ t) ◦ (ι ⊗ φ) ◦ (ι ⊗ t) = (t ⊗ t) ◦ (ι ⊗ φ) ◦ (t ⊗ t),

is positive, since t ⊗ t is the transpose on B(K ⊗H), so is a positive map, and ι⊗φ

is a positive map when φ is k-positive.
(ii) (AdV )t (a) = (AdV (at ))t = (V ∗atV )t = V taV ∗t .
(iii) Cφt =∑ eij ⊗ φt (eij) =∑ eij ⊗ φ(eji)

t = (
∑

eji ⊗ φ(eji))
t = Ct

φ . �

The relationship between φ̃ and φt is given in the next result.

Lemma 4.2.6 Let K and H be finite dimensional. Let π : B(K) ⊗ B(K) →
B(K) be defined by π(a ⊗ b) = bta. Then Tr ◦ π is positive and linear. Let
φ ∈ B(B(K),H). Then

φ̃ = Tr ◦ π ◦ (ι ⊗ φ∗t
)
.

Proof Linearity of Tr ◦ π is clear. To show positivity let x =∑ai ⊗ bi ∈ B(K) ⊗
B(K). Then

Tr ◦ π
(
xx∗)=

∑

ij

Tr ◦ π
(
aia

∗
j ⊗ bib

∗
j

)

=
∑

Tr
(
b∗t
j bt

iaia
∗
j

)
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=
∑

ij

Tr
((

bt
j aj

)∗(
bt
iai

))

= Tr
((∑

bt
j aj

)∗(∑
bt
iai

))
≥ 0,

so Tr ◦ π is positive. The formula in the lemma follows from the computation

φ̃(a ⊗ b)=Tr
(
φ(a)bt

)=Tr
(
aφ∗(bt

))=Tr
(
aφ∗t (b)t

)=Tr ◦ π
(
ι ⊗ φ∗t (a ⊗ b)

)
.

�

In the finite dimensional case we showed in Theorem 4.1.8 that φ ∈ B(B(K),H)

is completely positive if and only if Cφ ≥ 0, hence by Lemma 4.2.3 if and only if φ̃

is positive. We now show a generalization of this. When H is infinite dimensional
we define the positive cone (A⊗̂T (H))+ in A⊗̂T (H) for A an operator system,
to be the closure of the positive cone in the algebraic tensor product A ⊗ T (H).

Theorem 4.2.7 Let A be an operator system and φ : A → B(H). Then φ is com-
pletely positive if and only if φ̃ is a positive linear functional on A⊗̂T (H).

Proof We first assume H is finite dimensional. Then we have

φ̃t (a ⊗ b) = φ̃∗(b ⊗ a), a ∈ A,b ∈ B(H). (4.3)

This follows from the computation

φ̃t (a ⊗ b) = Tr
(
φ
(
at
)t

bt
)= Tr

(
atφ∗(b)

)= φ̃∗(b ⊗ a).

Assume φ̃ is a positive linear functional on A ⊗ B(H). Since 1 ⊗ 1 is an in-
terior point of the positive cone (A ⊗ B(H))+ in the algebraic tensor product
A ⊗ B(H), and φ̃ is positive on (A ⊗ B(H))+, it follows from Appendix A.3.1
that φ̃ has an extension to a positive linear functional ρ on B(K) ⊗ B(H). Since
ρ(1 ⊗ 1) = φ̃(1 ⊗ 1), ρ is bounded, and by the definition of the dual functional and
Lemma 4.2.2, ρ is of the form ρ = ψ̃ for a positive map ψ ∈ B(B(K),H).

Let
∑

i ai ⊗ bi ≥ 0 in B(K)⊗B(H). Then
∑

at
i ⊗ bt

i = (
∑

ai ⊗ bi)
t ≥ 0, hence∑

bt
i ⊗ at

i ≥ 0. Thus by (4.3)

ψ̃∗(∑bi ⊗ ai

)
= ψ̃ t

(∑
ai ⊗ bi

)
= ψ̃
(∑

at
i ⊗ bt

i

)
≥ 0,

so ψ̃∗ is positive.
To continue the proof assume first K finite dimensional. Then, ψ̃∗ ≥ 0 im-

plies Cψ∗t = Ct
ψ∗ ≥ 0 by Lemma 4.2.3, hence ψ∗ is completely positive by The-

orem 4.1.8. In the general case let e be a finite dimensional projection in B(K) such
that et = e. Then

(
Ade ◦ ψ∗)̃ = ψ̃∗t ◦ Ad(1 ⊗ e), (4.4)
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which is positive, so ψ∗ : B(H) → eB(K)e is completely positive by the finite
dimensional case. Since this holds for all e as above, ψ∗ is completely positive. But
then ψ is completely positive by Proposition 1.4.3. Since ψ̃ is an extension of φ̃, ψ

is an extension of φ. Thus φ is completely positive.
If dimH = ∞, we use the same argument, and let (eγ ) be a net of finite dimen-

sional projections in B(H), such that eγ = et
γ , and eγ → 1. Then as in (4.4)

(Adeγ ◦ φ)̃ = φ̃t ◦ Ad(1 ⊗ eγ ) (4.5)

is positive, so by the first part of the proof Adeγ ◦ φ is completely positive, and
finally by taking limits φ is completely positive.

Conversely suppose φ is completely positive. Assume first that dimH = n < ∞,
so B(H) = Mn. Let φn = φ ⊗ ιn. Then φn is a positive map A ⊗ Mn → Mn ⊗ Mn.
Let π : Mn ⊗ Mn → Mn be defined by φ(a ⊗ b) = bta. By Lemma 4.2.6 Tr ◦ π is
positive. Let

∑
i ai ⊗ bi ∈ (A ⊗ Mn)

+. Then we have

φ̃

(∑

i

ai ⊗ bi

)
=
∑

i

Tr
(
φ(ai)b

t
i

)

=
∑

i

Tr ◦ π
(
φ(ai) ⊗ bi

)

= Tr ◦ π

(
φn

(∑

i

ai ⊗ bi

))
≥ 0,

so φ̃ is positive. In the general case let (eγ ) be an increasing net in B(H) as in the
previous paragraph. Then Adeγ ◦ φ : A → eγ B(H)eγ is completely positive, so by
the above (Adeγ ◦ φ)̃ is positive.

For each a ∈ B(H), eγ aeγ → a strongly. Thus for each trace class operator b,

Tr(aeγ beγ ) = Tr(eγ aeγ b) → Tr(ab).

Hence eγ beγ → b as trace class operators. Thus if
∑

ai ⊗ bi ∈ (A ⊗ T (H))+ we
get

φ̃

(∑

i

ai ⊗ bi

)
=
∑

i

Tr
(
φ(ai)b

t
i

)

= lim
∑

i

Tr
(
φ(ai)eγ bt

i eγ

)

is positive, since
∑

i ai ⊗ eγ bieγ = Ad(1 ⊗ eγ )(
∑

ai ⊗ bi) ≥ 0. Thus φ̃ ≥ 0. �

4.3 Notes

The results in Sect. 4.1 are due to several authors. The Kraus decomposition was
noted by Kraus [41] and the Jamiolkowski isomorphism by Jamiolkowski [30]
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a year later. Then Choi introduced the Choi matrix [7] and showed Theorem 4.1.8.
Propositions 4.1.4, 4.1.6, and Theorem 4.1.15 can be found in [67–69], but some of
these results were previously known in the literature in one form or the other, see
[2, Sect. 10.3].

The results in Sect. 4.2 can be found in [78], except for Lemma 4.2.6, which is
taken from [80].



Chapter 5
Mapping Cones

In the theory of positive maps the completely positive ones have by far attracted
most attention. We shall in the present chapter see that if we consider cones of
positive maps with selected properties then we can prove results similar to those for
completely positive maps. In Sect. 5.1 we introduce the main concepts and prove
the basic results, and in Sect. 5.2 we show a Hahn-Banach like extension theorem
for maps positive with respect to cones.

5.1 Basic Properties

The problems on positive maps φ : A → B(H) encountered in the present chapter
are to a great extent independent of the C∗-algebra structure of A. We shall there-
fore concentrate on the more general situation when A is an operator system, i.e. a
complex linear subspace of B(K) such that a∗ ∈ A whenever a ∈ A with 1 ∈ A. Let
as before B(A,H) denote the linear space of bounded linear maps of A into B(H),
and let P(H) denote the positive linear maps of B(H) into itself. The BW-topology
(see Appendix A.1.1) on B(A,H) is the topology where a bounded net (φα) in
B(A,H) converges to φ ∈ B(A,H) whenever φα(a) → φ(a) in the weak topology
for all a ∈ A. With the duality of B(A,H) and (A⊗̂T (H))∗ given by φ → φ̃ in
Definition 4.2.1 we have that φα → φ in the BW-topology if and only if φ̃α → φ̃ in
the w∗-topology on bounded functionals in (A⊗̂T (H))∗. This is easily seen, since
φα(a) → φ(a) weakly if and only if φ̃α(a ⊗ b) = Tr(φα(a)bt ) → Tr(φ(a)bt ) =
φ̃(a ⊗ b) for all a ⊗ b ∈ A ⊗ T (H).

It should be remarked that if A and H are finite dimensional then the BW-
topology reduces to the norm topology on B(A,H).

Definition 5.1.1 A mapping cone is a BW-closed convex subcone C of the positive
maps P(H) of B(H) into itself such that

(i) if 0 �= a ∈ B(H)+ then there is φ ∈ C such that φ(a) �= 0,
(ii) C is invariant in the sense that if φ ∈ C and a, b ∈ B(H), then the map

E. Størmer, Positive Linear Maps of Operator Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_5,
© Springer-Verlag Berlin Heidelberg 2013
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x → a∗φ
(
b∗xb

)
a = Ada ◦ φ ◦ Adb(x) ∈ C .

Note that if H is finite dimensional condition (ii) is by Theorem 4.1.8 equiva-
lent to

(iii) If φ ∈ C and α,β ∈ CP(H), the cone of completely positive maps, then α ◦φ ◦
β ∈ C .

Many well known cones are mapping cones. Clearly P(H) and CP(H) are mapping
cones.

The cone Pk(H) consisting of all k-positive maps in P(H) is a mapping cone,
since if φ ∈ Pk(H) and a, b ∈ B(H) then

ιk ⊗ Ada ◦ φ ◦ Adb = Ad(1 ⊗ a) ◦ (ιk ⊗ φ) ◦ Ad(1 ⊗ b)

is positive, so Ada ◦ φ ◦ Adb ∈ Pk(H).
Some other classes are defined as follows.

Definition 5.1.2 For each k ∈ N let SPk(H) denote the closed convex cone gener-
ated by maps AdV ∈ P(H) with V ∈ B(H) having rank less than or equal to k.

A map φ ∈ SP1(H) is called super-positive and a map φ ∈ SPk(H), k ≥ 2 is
k-super-positive. Super-positive maps are also called entanglement breaking in the
literature.

Lemma 5.1.3 SP1(H) is generated by maps a → ω(a)x with ω a normal state on
B(H) and x ∈ B(H)+. In particular, if φ ∈ SP1(H) and α,β ∈ P(H) then both
α ◦ φ, φ ◦ β ∈ SP1(H).

Proof If φ = AdV with rankV = 1, let q be the range projection of V . Then q is
the projection onto the 1-dimensional subspace spanned by a unit vector η. Thus

AdV (a) = V ∗qaqV = V ∗(aη, η)V = ωη(a)V ∗V,

is of the form described in the lemma. Here ωη is the vector state ωη(a) = (aη, η).
Conversely, if φ(a) = ω(a)x with ω a normal state on B(H), then ω is a convex

sum of vector states. We may therefore assume ω = ωη with η as above, and q = [η].
We have to approximate φ in the BW-topology by maps of the form

∑
AdVi with

Vi of rank 1. Let a1, . . . , an ∈ B(H). By weak approximation we may assume there
is a finite dimensional projection e ∈ B(H) such that q, ak, x ∈ eB(H)e for all k.
Let (eij) be a complete set of matrix units for eB(H)e with e11 = q . Then

φ(ak) = ωη(ak)x = x1/2Tr(e11ake11)x
1/2

= x1/2
∑

i

ei1ake1ix
1/2

=
∑(

e1ix
1/2)∗ak

(
e1ix

1/2),

is of the form
∑

AdVi with Vi = e1ix
1/2 of rank 1. Thus φ ∈ SP1(H).
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Note that since the normal states are w∗-dense in the state space of B(H) it
suffices to consider normal states in the lemma. �

Since for each a �= 0 in B(H)+ there is a normal state ω such that ω(a) �= 0, it
follows that SP1(H) is a mapping cone. Since rankV ≤ k implies rank aV b ≤ k for
all a, b ∈ B(H), and SPk(H) ⊃ SP1(H), it is clear that SPk(H) is also a map-
ping cone. The name “entanglement braking” comes from the last statement of
Lemma 5.1.3.

Another characterization of the super-positive maps is given in the next propo-
sition. Recall that a linear functional ρ on A ⊗ B is said to be separable if it is of
the form ρ =∑i ωi ⊗ ρi with ωi and ρi positive linear functionals on A and B

respectively.

Proposition 5.1.4 Let φ ∈ P(H). Then φ is super-positive if and only if its dual
functional φ̃ is a w∗-limit of separable functionals.

Proof Since T (H) is weakly dense in B(H), by Lemma 5.1.3 SP1(H) is the map-
ping cone generated by maps of the form a → ω(a)x with ω a state on B(H) and x

a positive operator in T (H). Let ρ denote the positive functional, ρ(b) = Tr(xbt )

on B(H). Thus, if φ(a) = ω(a)x then

φ̃(a ⊗ b) = Tr
(
ω(a)xbt

)= ω(a)Tr
(
xbt
)= ω ⊗ ρ(a ⊗ b),

and the proposition follows easily. �

Lemma 5.1.5 If C is a mapping cone in P(H) then SP1(H) ⊂ C ⊂ P(H).

Proof By definition C ⊂ P(H). By condition (i) in Definition 5.1.1 if e is a 1-
dimensional projection in B(H) there is φ ∈ C such that φ(e) �= 0. Let ω be the
pure state on B(H) defined by eae = ω(a)e. Then the map

a → φ(eae) = ω(a)φ(e)

belongs to SP1(H) ∩ C . Since every vector state is of the form ω ◦ AdU for a
unitary operator U , and each normal state is a norm limit of convex combinations
of vector states, and each positive operator is approximated in the weak topology
by finite sums

∑
λiei with λi > 0 and ei 1-dimensional projections, it follows that

SP1(H) ⊂ C . �

In order to study positivity properties of maps relative to a mapping cone we need
the following cones.

Definition 5.1.6 Let C be a mapping cone in P(H), and let A be an operator sys-
tem. Then P(A,C ) is defined by

P(A,C ) = {x ∈ (A⊗̂T (H)
)
sa

: ι ⊗ α(x) ≥ 0 for all α ∈ C
}
,

where ι is the identity map on A.
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Lemma 5.1.7 In the above notation P(A,C ) is a proper norm closed convex cone
in A⊗̂T (H) containing the cone A+ ⊗ T (H)+.

Proof Since ‖b‖ ≤ ‖b‖1 for all b ∈ T (H), if α ∈ P(H) and
∑

i ai ⊗ bi ∈ A ⊗
T (H), we have

∥
∥∥∥ι ⊗ α

(∑

i

ai ⊗ bi

)∥∥∥∥=
∥
∥∥∥
∑

ai ⊗ α(bi)

∥
∥∥∥≤ ‖α‖

∑
‖ai‖‖bi‖

≤ ‖α‖
∑

‖ai‖‖bi‖1.

It follows that ‖ι ⊗ α(x)‖ ≤ ‖α‖‖x‖∧ for all x ∈ A⊗̂T (H) where as before ‖x‖∧
is the projective norm of x ∈ A⊗̂T (H). In particular ι ⊗ α is a bounded map of
A⊗̂T (H) into A ⊗ B(H), and so P(A,C ) is well defined and closed. Since it is
trivially convex, it remains to show that it is proper. For this let x ∈ P(A,C ) be
such that ι⊗α(x) = 0 for all α ∈ C . If ω ∈ A∗ we have ω ⊗α(x) = 0 for all α ∈ C .
Since SP1(H) ⊂ C by Lemma 5.1.5, ω ⊗ ρ(x) = 0 for all states ρ on B(H) and
ω ∈ A∗. Since these functionals span a w∗-dense subspace of (A⊗̂T (H))∗, x = 0.
In particular, if x ∈ P(A,C ) ∩ (−P(A,C )) then

ι ⊗ α(x) ∈ (A ⊗ B(H)
)+ ∩ (−(A ⊗ B(H)

)+)= {0}
for all α ∈ C . Thus x = 0, and P(A,C ) is a proper cone. Since it is trivial that
(A⊗̂T (H))+ ⊃ A+ ⊗ T (H)+, the proof is complete. �

Lemma 5.1.8 Let H be finite dimensional and C a mapping cone in P(H). Then
the linear isomorphisms of B(H) onto itself belonging to C are norm dense in C .

Proof Let n = dimH and identify B(H) with Mn. We first show there exists a linear
isomorphism of B(H) onto itself belonging to SP1(H). Since dimMn = n2 each
set of n2 + 1 positive matrices in Mn is linearly dependent. Since spanM+

n = Mn

there exists a basis {aij : i, j = 1, . . . , n} for Mn with aij ∈ M+
n . Similarly M∗

n has a
basis consisting of n2 states ωij, i, j = 1, . . . , n. Then the linear map of Mn into itself
defined by a → (ωij(a)) is a linear isomorphism, hence is in particular surjective.
But then the map

β(a) =
∑

ij

ωij(a)aij

is a linear isomorphism of Mn onto itself belonging to SP1(H), see Lemma 5.1.3.
To complete the proof let ε > 0 and α ∈ C , and let β be as above. Scaling β

we may assume ‖β‖ < ε/2 and α + β �= 0. If α(a) + β(a) = 0 for some a ∈ Mn

then −1 ∈ Spec(β−1 ◦ α)—the spectrum of β−1 ◦ α. Since Spec(β−1 ◦ α) is finite
there exists λ ∈ [ 1

2 , 3
2 ] such that −1 �∈ λSpec(β−1 ◦ α) = Spec(λβ−1 ◦ α). Thus

λβ−1 ◦ α(a) �= −a for all a, so that γ = α + λ−1β is a linear isomorphism of Mn

into itself, so onto by finite dimensionality, satisfying ‖α−γ ‖ ≤ λ−1‖β‖ < ε. Since
β ∈ SP1(H), γ ∈ C by Lemma 5.1.5, completing the proof. �
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We can now state the crucial positivity condition for maps with respect to map-
ping cones.

Definition 5.1.9 Let C be a mapping cone in P(H) and A an operator system. Then
a map φ ∈ B(A,H) is said to be C -positive if its dual functional φ̃ is positive on
the cone P(A,C ), or equivalently

∑

i

Tr
(
φ(ai)b

t
i

)≥ 0 for all
∑

ai ⊗ bi ∈ P(A,C ).

Since P(A,C ) ⊃ A+ ⊗T (H)+ by Lemma 5.1.7 it is immediate from Lemma 4.2.2
that a C -positive map is positive.

Proposition 5.1.10 Let C be a mapping cone in P(H) and A an operator sys-
tem. Let φ ∈ B(A,H) be C -positive, and let V ∈ B(H), β : A → A be completely
positive. Then AdV ◦ φ ◦ β is C -positive.

Proof For simplicity of notation let α = AdV . Recall that αt = t ◦ α ◦ t with t

the transpose map on B(H), and α∗ is the adjoint map defined by Tr(α(a)b) =
Tr(aα∗(b)), a ⊗ b ∈ A ⊗ T (H). We first show α ◦ φ is C -positive. Let a ⊗ b ∈
A ⊗ T (H). Then

α̃ ◦ φ(a ⊗ b) = Tr
(
α ◦ φ(a)bt

)= Tr
(
φ(a)α∗(bt

))

= Tr
(
φ(a)α∗t (b)t

)

= φ̃
(
ι ⊗ α∗t (a ⊗ b)

)
,

so α̃ ◦ φ = φ̃ ◦ (ι ⊗ α∗t ).
For each matrix a, a∗t∗ = at . Thus with α = AdV , α∗t = AdV ∗t∗ = AdV t by

Lemma 4.2.5 and Proposition 1.4.2. If ψ ∈ C , then ψ ◦ α∗t ∈ C by definition of
mapping cone. Thus if x ∈ P(A,C ) den

ι ⊗ ψ
(
ι ⊗ α∗t

)
(x) = ι ⊗ ψ ◦ α∗t (x) ≥ 0,

hence ι ⊗ α∗t (x) ∈ P(A,C ), so by the above α̃ ◦ φ(x) ≥ 0. Thus AdV ◦ φ is C -
positive.

We next show φ ◦ β is C -positive, where β is a completely positive map of A

into itself. We then have

φ̃ ◦ β(a ⊗ b) = φ̃
(
β(a) ⊗ b

)= φ̃ ◦ (β ⊗ ι)(a ⊗ b),

so φ̃ ◦ β = φ̃ ◦ (β ⊗ ι).
If x ∈ P(A,C ) and ψ ∈ C then

ι ⊗ ψ(β ⊗ ι)(x) = (β ⊗ ι) ◦ (ι ⊗ ψ)(x) ≥ 0,
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since β ⊗ ι is positive when β is completely positive. Thus β ⊗ ι(x) ∈ P(A,C ), so
φ̃ ◦ β = φ̃(β ⊗ ι(x)) ≥ 0, proving that φ ◦ β is C -positive. �

If dimH < ∞ then by Theorem 4.1.8 each completely positive map is a sum of
maps of the form AdV . Thus we get

Corollary 5.1.11 Let H be finite dimensional and C a mapping cone in P(H). If
φ ∈ B(A,H) is C -positive then α ◦ φ ◦ β is C -positive for all completely positive
maps α ∈ CP(H) and β : A → A.

In Proposition 5.1.10 we had to restrict attention to maps AdV , or finite sums of
such in order to conclude that AdV ◦ φ ◦ β was C -positive. As can be seen from
the proof, the reason for this is that if α ∈ CP(H) we cannot conclude that α∗ is
well defined on B(H), as it is only defined on T (H). To avoid technicalities we
therefore state the following definition for finite dimensional Hilbert spaces.

Definition 5.1.12 Let H be finite dimensional. A mapping cone C in P(H) is said
to be symmetric if φ ∈ C implies both φ∗ and φt belong to C .

It is clear that the cones Pk(H), SPk(H), CP(H), P(H) are all symmetric map-
ping cones. We next show that if C is symmetric the C -positive maps have a more
intuitive interpretation than in Definition 5.1.9.

Theorem 5.1.13 Let A be an operator system and H a finite dimensional Hilbert
space. Let C be a symmetric mapping cone in P(H) and denote by CC the BW-
closed cone in B(A,H) generated by all maps of the form α ◦ ψ with α ∈ C and
ψ : A → B(H) completely positive. Then a map φ ∈ B(A,H) is C -positive if and
only if φ ∈ CC .

We first prove a lemma.

Lemma 5.1.14 Let C be a symmetric mapping cone in P(H). Suppose α ∈ C is a
linear isomorphism of B(H) onto itself. Let A be an operator system and let

Pα = {x ∈ A ⊗ B(H) : ι ⊗ α∗t (x) ≥ 0
}
.

If φ ∈ B(A,H) is such that φ̃ is positive on Pα , then there exists ψ ∈ B(A,H)

which is completely positive such that φ = α ◦ ψ .

Proof Let ψ = α−1 ◦ φ. Then ψ ∈ B(A,H). The proof is complete as soon as we
can show ψ is completely positive. For this let x =∑ai ⊗ bi ∈ (A ⊗ B(H))+.
Then, since α∗t is also invertible,

ι ⊗ α∗t
(∑

ai ⊗ (α∗t
)−1

(bi)
)

= x ≥ 0, (5.1)
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so that
∑

ai ⊗ (α∗t )−1(bi) ∈ Pα . Since φ̃ is positive on Pα we have

ψ̃(x) =
∑

i

Tr
(
ψ(ai)b

t
i

)

=
∑

Tr
(
φ(ai)

(
α−1)∗(bt

i

))

=
∑

Tr
(
φ(ai)

((
α−1)∗t

(bi)
)t)

= φ̃
(∑

ai ⊗ (α−1)∗t
(bi)
)
.

For a map α we have (α−1)∗ = (α∗)−1, because this holds for invertible operators
on a Hilbert space. Since t−1 = t we get

(
α−1)∗t = ((α∗)−1)t = t ◦ (α∗)−1 ◦ t = (t ◦ α∗ ◦ t

)−1 = (α∗t
)−1

.

Therefore by (5.1) ψ̃ is positive, hence by Theorem 4.2.7, ψ is completely positive.
Since φ = α ◦ ψ the proof is complete. �

Proof of Theorem 5.1.13 Suppose φ ∈ CC . Now, sums of C -positive maps are C -
positive, and if (ψα) is a net of C -positive maps converging to ψ ∈ P(H) in the
BW-topology, then as remarked in the beginning of Sect. 5.1, ψ̃α → ψ̃ in the w∗-
topology. Thus we may, in order to show φ is C -positive, assume φ = α ◦ ψ with
α ∈ C , ψ is completely positive, ψ ∈ B(A,H). Let x =∑ai ⊗ bi ∈ P(A,C ).
Since C is symmetric

∑
ai ⊗ α∗t (bi) ∈ (A ⊗ B(H))+, hence

φ̃(x) =
∑

Tr
(
α ◦ ψ(ai)b

t
i

)=
∑

Tr
(
ψ(ai)α

∗t (bi)
t
)

= ψ̃
(∑

ai ⊗ α∗t (bi)
)

≥ 0,

because ψ̃ is positive by Theorem 4.2.7. Thus φ is C -positive.
Assume φ is C -positive. By Lemma 5.1.8 CC is generated by maps α with α

a linear isomorphism of B(H) onto itself belonging to C . Let α ∈ C be a linear
isomorphism, and let Pα be as in Lemma 5.1.14. Then

P(A,C ) =
⋂

α

Pα,

the intersection being taken over all linear isomorphisms in C . The dual cone of
P(A,C ) in (A ⊗ B(H))∗ is the cone spanned by all dual cones of Pα’s. Hence it is
the w∗-closure of all finite sums

∑
φ̃α with φ̃α positive on Pα .

By Lemma 5.1.14, φα = α ◦ ψα , ψα completely positive map of A into B(H).
For such a sum we have

∑
φ̃α =

∑
(α ◦ ψα)̃ =

(∑
α ◦ ψα

)̃
.
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Since our given map is C -positive there exists a bounded net (φγ ) of the form
φ̃γ =∑ φ̃α as above such that φ̃γ → φ̃ in the w∗-topology. Hence φ̃ is a w∗-limit
of maps (

∑
α ◦ ψα)̃, hence φ is a BW-limit of maps

∑
α ◦ ψα with α a linear iso-

morphism in C and ψα ∈ B(A,H) completely positive. But that means φ ∈ CC . �

Remark 5.1.15 Since the identity map is completely positive it is obvious that
P(A,CP(H)) = (A⊗̂T (H))+ for an operator system A. Also, it is immediate by
Lemma 5.1.3 that

P
(
A,SP1(H)

)

= {x ∈ A⊗̂T (H) : ρ ⊗ ω(x) ≥ 0 for all states ρ of A and ω of B(H)
}

because ι ⊗ ω(x) ≥ 0 for all states ω of B(H) if and only if ρ ⊗ ω(x) ≥ 0 for all
states ρ of A.

We shall see later, Remark 7.1.4, that if H is finite-dimensional, then P(B(K),

P (H)) = B(K)+ ⊗ B(H)+.

Proposition 5.1.16 Let H be finite dimensional. Then P(B(H),P (H)) = B(H)+⊗
B(H)+. In particular, if h ∈ B(H)+ is the density operator for a state ρ, then
ι ⊗ α(h) ≥ 0 for all α ∈ P(H) if and only if h ∈ B(H)+ ⊗ B(H)+, i.e. if and only
if ρ is a separable state.

Proof By Theorem 5.1.13 a map φ : B(H) → B(H) is P(H)-positive if and only
if φ ∈ P(H), which by Lemma 4.2.2 is equivalent to φ̃ being positive on B(H)+ ⊗
B(H)+. Since P(B(H),P (H)) ⊃ B(H)+ ⊗B(H)+, and a linear functional is pos-
itive on the smallest cone if and only if it is positive on the largest, it follows from
the Hahn-Banach theorem for cones, that P(B(H),P (H)) = B(H)+ ⊗ B(H)+.
The last statement is obvious. �

5.2 The Extension Theorem

In this section we prove the analogue of the Hahn-Banach theorem for C -positive
maps. For this we need two lemmas.

Lemma 5.2.1 Let H be a Hilbert space and C a mapping cone in P(H). Let A be
an operator system and e a finite dimensional projection in B(H). Then 1 ⊗ e is an
interior point of (1 ⊗ e)P (A,C )(1 ⊗ e).

Proof Since each map in C is positive, it is clear that 1 ⊗ e ∈ P(A,C ). Let α ∈ C .
By Lemma 5.1.8 we can add a linear isometry in C of eB(H)e onto itself of small
norm to α, so we may assume the range projection of Ade ◦α(1) equals e. Since e is
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finite dimensional, there is a ∈ (eB(H)e)+ such that a(Ade ◦α(1))a = aα(1)a = e.
Again, since e is finite dimensional,

M = sup
{‖ι ⊗ γ ‖ : γ = Ade ◦ γ ′, γ ′ ∈ C , γ ′(1) = e

}

is finite. Let β = Ada ◦ α. Then β ∈ C , and β(1) = e, so ‖ι ⊗ β‖ ≤ M . Let x ∈
A ⊗ T (H) be self-adjoint and ‖x‖ < 1/M . Then

1 ⊗ e + ι ⊗ β(x) ≥ 0.

Hence

ι ⊗ α(1 ⊗ 1 + x) = (ι ⊗ Ada−1) ◦ (ι ⊗ β)(1 ⊗ 1 + x)

= (ι ⊗ Ada−1)(1 ⊗ e + ι ⊗ β(x)
)≥ 0.

Since α was an arbitrary map in C , 1 ⊗ 1 + x ∈ P(A,C ). But then

1 ⊗ e + (1 ⊗ e)x(1 ⊗ e) ∈ (1 ⊗ e)P (A,C )(1 ⊗ e),

so 1 ⊗ e is an interior point of (1 ⊗ e)P (A,C )(1 ⊗ e). �

Lemma 5.2.2 Let A ⊂ B be operator systems on the same Hilbert space. Let C be
a mapping cone in P(H) and e a finite dimensional projection in B(H). Then

(1 ⊗ e)P (A,C )(1 ⊗ e) = (1 ⊗ e)P (B,C )(1 ⊗ e) ∩ A⊗̂T (H).

Proof If x ∈ P(A,C ) then for all α ∈ C ,

ι ⊗ α(x) ∈ (A ⊗ B(H)
)+ ⊂ (B ⊗ B(H)

)+
,

hence x ∈ P(B,C ). Thus P(A,C ) ⊂ P(B,C ) ∩ A⊗̂T (H), and therefore (1 ⊗
e)P (A,C )(1 ⊗ e) ⊂ (1 ⊗ e)P (B,C )(1 ⊗ e) ∩ A⊗̂T (H).

Conversely, if x ∈ P(B,C ) ∩ A⊗̂T (H), then ι ⊗ α(x) ≥ 0 for all α ∈ C . Since
(1 ⊗ e)x(1 ⊗ e) ∈ (1 ⊗ e)P (B,C )(1 ⊗ e) ∩ A⊗̂T (H), it follows that

(1 ⊗ e)x(1 ⊗ e) ∈ (1 ⊗ e)P (A,C )(1 ⊗ e). �

We are now in position to prove the extension theorem for C -positive maps.

Theorem 5.2.3 Let A ⊂ B be operator systems on the same Hilbert space, and
let C be a mapping cone in P(H). Then each C -positive map φ ∈ B(A,H) has a
C -positive extension ψ ∈ B(B,H).

Proof Let e be a finite dimensional projection in B(H) such that e = et . Let φe

denote the map Ade ◦ φ ∈ B(A, eH), where B(eH) is identified with eB(H)e. By
Lemma 5.2.1 1 ⊗ e is an interior point of (1 ⊗ e)P (A,C )(1 ⊗ e). Since the dual
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functional φ̃ of φ is positive on P(A,C ), φ̃ is positive on (1 ⊗ e)P (A,C )(1 ⊗ e)

hence so is φ̃e = φ̃ ◦ (ι⊗Ade), as is easily shown. By Lemma 5.2.2 it follows from a
theorem of Krein, see Appendix A.3.1 that φ̃e has an extension ψ̃e in B(B,T (H))∗
which is positive on (1 ⊗ e)P (B,C )(1 ⊗ e), hence ψ̃e is the dual of a map ψe in
B(B, eH). Since a ⊗ ebe ∈ (1 ⊗ e)P (B,C )(1 ⊗ e) for a ∈ A+, ebe ∈ B(eH), ψe

is a positive map by Proposition 4.1.11. Note that if H is finite dimensional and we
let e = 1, then ψe is the desired extension of φ.

Since 1 ∈ A, A being an operator system, and ψe is positive, by Theorem 1.3.3

∥
∥ψe

∥
∥= ∥∥ψe(1)

∥
∥= ∥∥φe(1)

∥
∥≤ ∥∥φ(1)

∥
∥= ‖φ‖. (5.2)

To complete the proof let (eγ ) be an increasing net of finite dimensional projections
in B(H) converging strongly to 1, and eγ = et

γ . For each γ let by the above ψγ be an
extension of φeγ to B(B,H) such that ψ̃γ is positive on (1 ⊗ eγ )P (B,C )(1 ⊗ eγ ).
By (5.2) the net (ψγ ) is uniformly bounded, so by compactness of the unit ball in
B(B,H), (ψγ ) has a BW-limit point ψ ∈ B(B,H). Let a subnet (ψα) converge
to ψ . Since each ψα is an extension of φeγ , so is ψ . Hence ψ is an extension of φ.
To show ψ is C -positive let x =∑n

i=1 ai ⊗ bi ∈ P(B,C ). Then

(1 ⊗ eα)x(1 ⊗ eα) ∈ (1 ⊗ eα)P (B,C )(1 ⊗ eα) for all α,

hence, since eα = et
α , and bi ∈ T (H), so eαbt

i eα is close to bt
i in norm for large α,

ψ̃(x) = ψ̃
(∑

ai ⊗ bi

)
=
∑

i

Tr
(
ψ(ai)b

t
i

)

= lim
α

∑

i

Tr
(
ψα(ai)b

t
i

)

= lim
α

∑

i

Tr
(
ψα(ai)eαbt

i eα

)

= lim
α

ψ̃α

(
(1 ⊗ eα)x(1 ⊗ eα)

)

≥ 0.

Since operators like x are norm dense in P(B,C ), ψ̃ is positive on P(B,C ), hence
ψ is C -positive. �

As a consequence of Theorem 5.2.3 it suffices in many cases to study maps from
B(K) into B(H) rather than maps from operator systems into B(H). The proof we
shall now give of Arveson’s extension theorem for completely positive maps is an
example of this.

Corollary 5.2.4 Let A ⊂ B(K) be an operator system. Let φ ∈ B(A,H) be a com-
pletely positive map. Then φ has a completely positive extension ψ ∈ B(B(K),H).
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Proof By Theorem 4.2.7 φ is completely positive if and only if φ̃ is positive on
A⊗̂T (H), hence on P(A,CP(H)), by Remark 5.1.15. Thus φ is completely pos-
itive if and only if φ is CP(H)-positive, hence the corollary follows from Theo-
rem 5.2.3. �

If A ⊂ B(H), the C -positive maps of A into B(H) with H finite dimensional
have a very nice form when C is symmetric.

Theorem 5.2.5 Let A be an operator system contained in B(H) with H finite di-
mensional, and let C be a symmetric mapping cone in P(H). Then a map of A into
B(H) is C -positive if and only if it is the restriction of a map in C to A.

Proof Let φ ∈ B(A,H) be C -positive. By Theorem 5.2.3 φ has a C -positive exten-
sion to a map in P(H). We may thus replace A by B(H). Let CC denote the BW-
closed cone in P(H) generated by maps of the form α ◦ψ with α ∈ C , ψ ∈ CP(H).
By Theorem 5.1.13 φ ∈ CC . By Proposition 5.1.10, each α ◦ψ ∈ C , hence φ, being
a limit of such maps, belongs to C . This shows that the φ we started with is the
restriction to A of a map in C .

Conversely, if α ∈ C then α ∈ CC , hence is C -positive by Theorem 5.1.13. Thus
the restriction to A is C -positive. �

5.3 Notes

Most of the results in Chap. 5 have been taken from [78], but not all. Proposi-
tion 5.1.4 is due to P. Horodecki, P.W. Shor, and M.B. Ruskai [26], with a different
proof, see also [79]. Proposition 5.1.16 is due to M., P., and R. Horodecki [25]. The
Arveson Extension Theorem, Corollary 5.2.4 was shown by Arveson in [1] and has
been very important in the study of completely positive maps.



Chapter 6
Dual Cones

If C is a closed convex cone in a Hilbert space H , its dual cone is defined as the
cone

C◦ = {ξ ∈ H : 〈ξ, η〉 ≥ 0 for all η ∈ C
}

If K and H are finite dimensional Hilbert spaces we shall study dual cones in
B(B(K),H) with respect to the Hilbert-Schmidt structure. Because of the Exten-
sion Theorem 5.2.3 we shall concentrate on B(B(K),H) rather than B(A,H) as
we did previously.

The chapter is divided into three sections. In Sect. 6.1 we develop the basic theory
for the dual cone of the cone of C -positive maps. In Sect. 6.2 we describe the dual
cone for the main mapping cones. These results are used in Sect. 6.3 to show that all
positive maps of M2 into itself are decomposable. Finally, in Sect. 6.4 we consider
tensor products of positive maps.

6.1 Basic Results

Throughout this section K and H are finite dimensional. B(B(K),H) denotes the
linear maps of B(K) into B(H).

Definition 6.1.1 Let S ⊂ B(B(K),H) be a closed convex cone. Then its dual
cone S◦ is defined as

S◦ = {φ ∈ B
(
B(K),H

) : Tr(CφCψ) ≥ 0 for all ψ ∈ S
}
,

where as before, Cφ and Cψ are the Choi matrices for φ and ψ . Here Tr denotes the
usual trace on B(K ⊗ H).

We shall mainly study dual cones for mapping cones and C -positive maps. Note
that in the Hilbert space case considered above, it is well known that C◦◦ = C. Thus
we get the same result for S as above.
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Lemma 6.1.2 Let S ⊂ B(B(K),H)+, the positive maps of B(K) into B(H), be a
closed convex cone. Then S◦◦ = S.

Our first result on dual cones shows that the dual cone of a mapping cone has
similar properties. In this case K = H .

Theorem 6.1.3 Let C be a mapping cone in P(H). Then its dual cone C ◦ is a
mapping cone. Furthermore, if C is symmetric, so is C ◦.

Proof We first show C ◦ is a mapping cone. By Lemma 5.1.5 C ⊃ SP1(H), the
super-positive maps in P(H). By Proposition 4.1.3 the Choi matrix for a super-
positive map is a sum

∑
i ai ⊗bi ∈ B(H)+ ⊗B(H)+. Thus by Lemma 4.1.10 a map

φ is positive if and only if it is in the dual cone of SP1(H). Since C ◦ ⊂ SP1(H)◦ it
follows that every map in C ◦ is positive.

Now let α ∈ CP(H), the completely positive maps in P(H), ψ ∈ C ◦, and φ ∈ C .
Then by Proposition 1.4.3 α∗ ∈ CP(H), so α∗ ◦ φ ∈ C . Hence

Tr(CφCα◦ψ) = Tr
(
Cφ(ι ⊗ α)(Cψ)

)= Tr
(
ι ⊗ α∗(Cφ)Cψ

)= Tr(Cα∗◦φCψ) ≥ 0.

It follows that α ◦ ψ ∈ C ◦.
By Lemma 4.1.10, if ξ1, . . . , ξn is an orthonormal basis for H and J the con-

jugation on H ⊗ H given by Jzξi ⊗ ξj = ∑ zξj ⊗ ξi , then Cα∗ = JCαJ for
α ∈ P(H). The map a → Ja∗J is an anti-automorphism of order 2 of B(H ⊗ H),
so by uniqueness of the trace, Tr(Ja∗J ) = Tr(a) for all a ∈ B(H ⊗ H). Thus if
φ ∈ C ,ψ ∈ C ◦, α ∈ CP(H), we have

Tr(CφCψ◦α) = Tr
(
Cφ(ι ⊗ ψ)(Cα)

)

= Tr(Cψ∗◦φCα)

= Tr(JCφ∗◦ψJCα)

= Tr(Cφ∗◦ψJCαJ )

= Tr
(
ι ⊗ φ∗(Cψ)Cα∗

)

= Tr(CψCφ◦α∗)

≥ 0,

since φ ◦ α∗ ∈ C . Thus ψ ◦ α ∈ C ◦, so C ◦ is a mapping cone.
Assume C is a symmetric mapping cone. Let ψ ∈ C ◦. We have to show ψt and

ψ∗ ∈ C ◦. Let φ ∈ C . Then, since Cφt = Ct
φ by Lemma 4.2.5,

0 ≤ Tr(CψCφ) = Tr(Cψtt Cφ) = Tr
(
Ct

ψt Cφ

)= Tr
(
Cψt Ct

φ

)= Tr(Cψt Cφt ).

Since φ ∈ C if and only if φt ∈ C , it follows that ψt ∈ C ◦. Similarly we have by
Lemma 4.1.10
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Tr(Cψ∗Cφ) = Tr(JCψJCφ) = Tr(CψJCφJ ) = Tr(CψCφ∗) ≥ 0.

So ψ∗ ∈ C ◦, since φ∗ ∈ C if and only if φ ∈ C . �

Notation 6.1.4 Let C be a mapping cone in P(H). We denote by PC (K) the closed
cone in B(B(K),H)+ of C -positive maps of B(K) into B(H).

Remark 6.1.5 Note that if K = H then by Theorem 5.2.5 if C is symmetric, then
PC (H) = C . Thus by Theorem 6.1.3, PC (H)◦ = C ◦ = PC ◦(H).

If K �= H the situation is more complicated.

Theorem 6.1.6 Let C be a symmetric mapping cone in P(H) and φ ∈ B(B(K),H)

a positive map. Then the following conditions are equivalent.

(i) φ ∈ PC (K)◦.
(ii) Cφ ∈ P(B(K),C ), i.e. ι ⊗ α(Cφ) ≥ 0 for all a ∈ C .

(iii) φ̃ ◦ (ι ⊗ α) ≥ 0 for all α ∈ C .
(iv) α ◦ φ is completely positive for all α ∈ C .

Proof We shall prove the equivalences (i) ⇔ (ii) ⇒ (iii) ⇒ (i), and (iii) ⇔ (iv).
(i) ⇔ (ii). Let (eij) be a complete set of matrix units for B(K), and let p =∑
ij eij ⊗ eij, so by definition Cφ =∑ eij ⊗ φ(eij) = ι ⊗ φ(p). By Theorem 5.1.13

PC (K) is generated by maps of the form α ◦ ψ with α ∈ C , ψ ∈ B(B(K),H)

completely positive. We thus have

φ ∈ PC (K)◦ ⇔ Tr(CφCα◦ψ) ≥ 0 for all α,ψ as above

⇔ Tr
(
ι ⊗ α∗(Cφ)Cψ

)≥ 0 for all α,ψ

⇔ ι ⊗ α∗(Cφ) ≥ 0,

because by Theorem 4.1.8 B(K ⊗ H)+ = {Cψ : ψ ∈ B(B(K),H) completely pos-
itive}. Thus φ ∈ PC (K)◦ if and only if ι ⊗ α(Cφ) ≥ 0 for all α ∈ C , because C is
symmetric, hence if and only if Cφ ∈ P(B(K),C ).

(ii) ⇒ (iii). We have for α ∈ C

ι ⊗ αt (Cφ) = (t ⊗ t) ◦ (ι ⊗ α) ◦ (t ⊗ t)(Cφ)

= (t ⊗ t) ◦ (ι ⊗ α)
(
Ct

φ

)
.

Since αt ∈ C and t ⊗ t is an anti-automorphism of B(K ⊗ H), ι ⊗ α(Ct
φ) ≥ 0 for

all α ∈ C , by (ii). By Lemma 4.2.3, if x ∈ B(K ⊗ H)+,

φ̃ ◦ (ι ⊗ α)(x) = Tr
(
Ct

φ(ι ⊗ α)(x)
)= Tr

(
ι ⊗ α∗(Ct

φ

)
x
)≥ 0,

since α∗ ∈ C . Thus (iii) follows.
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(iii) ⇒ (i). If φ̃ ◦ (ι⊗α) is positive, and p is as in the first paragraph of the proof,

0 ≤ φ̃ ◦ (ι ⊗ α)(p) = Tr
(
Ct

φCα

)= Tr(CφCαt )

for all α ∈ C . Since α ∈ C if and only if αt ∈ C , since C is symmetric, φ ∈ PC (K)◦.
(iii) ⇔ (iv). By the computations in the proof of (ii) ⇔ (iii) φ̃ ◦ (ι⊗α) is positive

for all α ∈ C if and only if Cα◦φ = ι ⊗ α(Cφ) ≥ 0 for all α ∈ C if and only if α ◦ φ

is completely positive by Theorem 4.1.8, for all α ∈ C . �

Theorem 6.1.6 gave conditions for a map to belong to PC (K)◦ in terms of prop-
erties of its Choi matrix, its dual functional and composition with maps in C . We
now show that a map φ belongs to PC (K)◦ if and only if φ is C ◦-positive.

Theorem 6.1.7 Let C be a symmetric mapping cone in P(H). Then

PC (K)◦ = PC ◦(K).

We divide the proof into two lemmas.

Lemma 6.1.8 Let KC denote the closed convex cone generated by the cones

ι ⊗ α
(
B(K ⊗ H)+

)
, α ∈ C .

Then

C ◦ = {β ∈ P(H) : ι ⊗ β(x) ≥ 0 for all x ∈ KC }

= {β ∈ P(H) : β ◦ α ∈ CP(H) for all α ∈ C
}
.

Proof Let β ∈ P(H). Then we have

ι ⊗ β(x) ≥ 0 for all x ∈ KC

⇔ (ι ⊗ β) ◦ (ι ⊗ α) ≥ 0 for all α ∈ C

⇔ ι ⊗ β ◦ α ≥ 0 for all α ∈ C

⇔ β ◦ α ∈ CP(H) for all α ∈ C

⇔ α∗ ◦ β∗ = (β ◦ α)∗ ∈ CP(H) for all α ∈ C

⇔ β∗ ∈ C ◦ by Theorem 6.1.6 since C is symmetric.

⇔ β ∈ C ◦ by Theorem 6.1.3,

proving the lemma. �

Lemma 6.1.9 KC = P(B(K),C ◦).



6.1 Basic Results 79

Proof If x ∈ KC then by Lemma 6.1.8 ι ⊗ β(x) ≥ 0 for all β ∈ C ◦, hence KC ⊂
P(B(K),C ◦). By the proof of Lemma 5.2.1, 1 ⊗ 1 is an interior point of KC .
If the inclusion is strict there exists y0 ∈ P(B(K),C ◦) such that y0 �∈ KC . Thus
by the Krein theorem, see Appendix A.3.1 there exists a linear functional φ̃ on
B(K ⊗ H) with φ ∈ B(B(K),H) such that φ̃ is positive on KC , while φ̃(y0) < 0.
By Theorem 6.1.6(iii), since φ̃ is positive on KC , φ ∈ PC (K)◦. Write y0 in the
form y0 =∑i ai ⊗ bi , ai ∈ B(K), bi ∈ B(H), and let π : B(K) ⊗ B(K) → B(K)

be given by π(a ⊗ b) = bta. By Lemma 4.2.6

Tr ◦ π
(
ι ⊗ φ∗t (y0)

)= φ̃(y0) < 0. (6.1)

Since by Lemma 4.2.6, Tr ◦ π is positive, ι ⊗ φ∗t (y0) is not positive. We shall show
that ι ⊗ φ∗t (y0) ≥ 0, so we obtain a contradiction, and thus completing the proof of
the lemma.

First note that φt ∈ PC (K)◦. Indeed, by Theorem 6.1.6 α ◦ φ is completely pos-
itive for all α ∈ C , hence αt ◦ φt = (α ◦ φ)t is completely positive, so α ◦ φt is
completely positive since C is symmetric, and therefore φt ∈ PC (K)◦.

We have y0 ∈ P(B(K),C ◦). Let ψ ∈ B(B(K),H) be a map such that y0 = Cψ .
Then Cα◦ψ = ι ⊗ α(Cψ) ≥ 0 for all α ∈ C ◦, hence α ◦ ψ is completely positive for
all α ∈ C ◦, hence by Theorem 6.1.6, ψ ∈ PC ◦(K)◦.

Let γ ∈ B(B(H),K) be completely positive, and let α ∈ C . Then α ◦ (φt ◦ γ ) =
(α ◦ φt ) ◦ γ is completely positive since α ◦ φt is completely positive. Since this
holds for all α ∈ C , φt ◦ γ ∈ PC (H)◦, which by Remark 6.1.5 equals C ◦. Thus
φt ◦ γ ∈ C ◦, hence γ ∗ ◦ φt∗ = (φt ◦ γ )∗ ∈ C ◦ since C ◦ is symmetric. Again by
Theorem 6.1.6, γ ∗ ◦ φt∗ ◦ ψ is completely positive, hence for all x ∈ B(K ⊗ H)+

0 ≤ Tr(Cγ ∗◦φt∗◦ψ x) = Tr
(
Cφt∗◦ψ(ι ⊗ γ )(x)

)
.

Now γ was an arbitrary completely positive map of B(H) into B(K). Hence it
follows that B(K ⊗ K)+ is the closed convex cone generated by the set

{
ι ⊗ γ (x) : x ∈ B(K ⊗ H)+, γ ∈ B

(
B(H),K

)
completely positive

}
.

It follows that ι ⊗ φt∗(Cψ) = Cφt∗◦ψ ≥ 0. Now φt∗ = φ∗t . Indeed, if a ∈ B(K),
b ∈ B(H),

Tr
(
φ∗t (a)b

)= Tr
(
φ∗(at

)t
b
)= Tr

(
φ∗(at

)
bt
)

= Tr
(
atφ
(
bt
))= Tr

(
aφt (b)

)= Tr
(
φt∗(a)b

)
.

Thus we have shown ι ⊗ φ∗t (y0) ≥ 0, contradicting (6.1). �

Proof of Theorem 6.1.7 By Theorem 6.1.6, if φ ∈ B(B(K),H), then φ ∈ PC (K)◦
if and only if φ̃ ◦ (ι⊗α) is positive for all α ∈ C , if and only if φ̃ is positive on KC ,
so by Lemma 6.1.9 if and only if φ is C ◦-positive, i.e. φ ∈ PC ◦(K). �
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6.2 Examples of Dual Cones

In this section we describe the dual cones of the main mapping cones. H is, except
in Theorem 6.2.6, a finite dimensional Hilbert space.

Proposition 6.2.1 P(H)◦ = SP1(H)—the super-positive maps in P(H).

Proof By Proposition 4.1.11, a map φ ∈ P(H) if and only if Tr(Cφa ⊗ b) ≥ 0
for all a, b ∈ B(H)+, so by Proposition 4.1.3 if and only if Tr(CφCψ) ≥ 0 for all
ψ ∈ SP1(H), hence if and only if φ ∈ SP1(H)◦. Thus the proposition follows from
Lemma 6.1.2. �

Proposition 6.2.2 CP(H)◦ = CP(H).

Proof Since each self-adjoint operator is the Choi matrix for a self-adjoint map, it
follows by Theorem 4.1.8 that an operator is positive if and only if it is the Choi
matrix for a completely positive map. Thus a map φ ∈ P(H) belongs to CP(H)◦
if and only if Tr(CφCψ) ≥ 0 for all ψ ∈ CP(H) if and only if Tr(Cφx) ≥ 0 for
x ∈ B(H ⊗ H)+, if and only if Cφ ≥ 0, if and only if φ ∈ CP(H). �

Recall from Definition 5.1.2 that a map φ in P(H) belongs to the cone SPk(H)

of k-super-positive maps if and only if φ = ∑i AdVi , where Vi ∈ B(H) has
rankVi ≤ k. Since the rank of the product of two operators is smaller than or equal
to the minimum of the ranks of the two operators, it is clear that SPk(H) is a
mapping cone. Since rankV ∗ = rankV t = rankV for V ∈ B(H), it follows from
Lemma 4.2.5 and Proposition 1.4.2 that SPk(H) is a symmetric mapping cone. Re-
call that Pk(H) denotes the mapping cone of k-positive maps. It is also easily seen
to be symmetric, see e.g. Lemma 4.2.5.

Proposition 6.2.3 Pk(H)◦ = SPk(H).

Proof By Theorem 4.1.15 a map φ belongs to Pk(H) if and only if AdV ◦ φ is
completely positive for all V ∈ B(H) with rankV ≤ k, which holds if and only if
for all ψ ∈ CP(H),

0 ≤ Tr(CAdV ◦φCψ) = Tr(CφCAdV ∗◦ψ),

if and only if 0 ≤ Tr(CφCψ) for all ψ ∈ SPk(H), using Theorem 4.1.8, hence if and
only if φ ∈ SPk(H)◦. By Lemma 6.1.2, Pk(H)◦ = SPk(H). �

In Definition 1.2.8 we defined a map φ ∈ P(H) to be copositive if t ◦φ ∈ CP(H),
and φ is decomposable if φ = φ1 + φ2 with φ1 ∈ CP(H) and φ2 copositive. We can
do the same for maps in the cones Pk(H) and SPk(H) and call a map φ co-k-positive
if t ◦ φ ∈ Pk , and similarly co-k-super-positive if t ◦ φ ∈ SPk(H).
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We denote the corresponding cones by coPk(H) and coSPk(H). For two map-
ping cones C1 and C2 their intersection C1 ∩ C2 is a mapping cone, as is the closed
cone C1 ∨ C2 they generate. By standard results from Hilbert space

(C1 ∩ C2)
◦ = C ◦

1 ∨ C ◦
2 , (C1 ∨ C2)

◦ = C ◦
1 ∩ C ◦

2 .

We thus get from Proposition 6.2.3,

(
Pk(H) ∩ coPl (H)

)◦ = SPk(H) ∨ coSPl (H) when k, l ≤ dimH,

(
Pk(H) ∨ coPl (H)

)◦ = SPk(H) ∩ coSPl (H).

Recall from Remark 1.2.9 that a map φ ∈ P(H) is atomic if it is not the sum of a 2-
positive and a co-2-positive map, hence if φ �∈ P2(H) ∨ coP2(H), or by the above,
if φ �∈ (SP2(H) ∩ coSP2(H))◦. This yields a technique for showing that a map is
atomic. One example of this will be shown in Chap. 7.

Proposition 6.2.4 Let φ ∈ B(B(K),H). Then φ is Pk-positive if and only if φ is
k-positive. In particular φ is P(H)-positive if and only if φ is positive.

Proof It follows from Theorem 4.1.15 that a map φ ∈ B(B(K),H) is k-positive
if and only if AdV ◦ φ is completely positive for all V ∈ B(K) with rankV ≤ k.
But these maps AdV generate SPk(H), hence by Theorem 6.1.6, φ is k-positive if
and only if φ ∈ PSPk

(K)◦, which equals PPk
(K) by Proposition 6.2.3 and Theo-

rem 6.1.7.
The last part follows since P(H) = P1(H). �

Remark 6.2.5 Recall that a map φ is decomposable if it is the sum of a completely
positive and a copositive map. Thus φ ∈ P(H) is decomposable if and only if

φ ∈ CP(H) ∨ coCP(H) = (CP(H) ∩ coCP(H)
)◦

.

If as above dimH < ∞ then by Lemmas 6.1.8 and 6.1.9 φ is decomposable if and
only if ι ⊗ φ(x) ≥ 0 whenever x = Cψ with ψ ∈ CP(H) ∩ coCP(H), i.e. when-
ever x and t ⊗ ι(x) are positive. If dimH = n we can identify B(H) ⊗ B(H) with
Mn(B(H)) and reformulate the above as follows: φ is decomposable if and only if
φ(xij) ∈ Mn(B(H))+ whenever (xij) and (xji) are in Mn(B(H))+.

We shall now generalize this result to maps on C∗-algebras.

Theorem 6.2.6 Let A be a C∗-algebra and φ a unital positive map of A into B(H),
where H is an arbitrary Hilbert space. Then φ is decomposable if and only if for all
n ∈N whenever (xij) and (xji) belong to Mn(A)+ then (φ(xij)) ∈ Mn(B(H))+.

Proof Suppose φ is decomposable. By Theorem 1.2.11 and its proof φ = v∗πv,
where π is a Jordan homomorphism π of A into B(K) for some Hilbert space K ,
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such that π is the sum of a homomorphism and an anti-homomorphism, and v :
H → K a bounded linear operator. Thus if (xij) and (xji) ∈ Mn(A)+ it is immediate
that (φ(xij)) ∈ Mn(B(H))+.

Conversely suppose (xij) and (xji) ∈ Mn(A)+ implies (φ(xij)) ∈ Mn(B(H))+.
We may assume A ⊂ B(K) for a Hilbert space K . Let t denote the transpose map
on B(K) with respect to some orthonormal basis. Let

V =
{(

x 0
0 xt

)
∈ M2

(
B(K)

) : x ∈ A

}
.

Then V is a self-adjoint subspace of M2(B(K)) containing the identity. Let n ∈
N and let θn on Mn(B(K)) be defined by θn((xij)) = (xt

ji). Hence if we write
Mn(B(K)) in tensor form B(K) ⊗ Mn, then θn = t ⊗ t . Then θn is an anti-
isomorphism of order 2. Hence if (xij) ∈ Mn(A) then (xji) ∈ Mn(A)+ if and only if
(xt

ij) = θn((xji)) ∈ Mn(B(K))+. Therefore both (xij) and (xji) belong to Mn(A)+ if
and only if

((
xij 0
0 xt

ij

))
∈ Mn(V )+.

Let φ : V → B(H) be defined by

φ

((
x

xt

))
= φ(x).

Then φ is completely positive by our hypothesis on φ and the above equivalence.

By Corollary 5.2.4 φ has a completely positive extension φ : M2(B(K)) → B(H).
Thus by Stinespring’s theorem, 1.2.7, there are a Hilbert space L, a bounded linear

map v : H → L and a representation π1 : M2(B(K)) → B(L) such that φ = v∗π1v.
Let π2 be the Jordan homomorphism of A into M2(B(K)) defined by

π2(x) =
(

x 0
0 xt

)
, x ∈ A.

Then π2 is the sum of a homomorphism and an anti-homomorphism, and so is π =
π1 ◦ π2. Thus φ(x) = v∗π(x)v is decomposable. �

In the next section we shall show that all maps in P(H) with H = C
2, are decom-

posable. For this we shall need our next proposition. Recall that if ξ = (ξ1, . . . , ξn) ∈
C

n then ξ = (ξ1, . . . , ξn). Then if ξ is a unit vector, [ξ ] = (ξiξj ), so that [ξ ] = [ξ ]t .
Recall also that SP1(H) denotes the super-positive maps in P(H).

Proposition 6.2.7 Let H be finite dimensional. Then SP1(H) = CP(H)∩coCP(H)

if and only if for all operators a ∈ B(H ⊗ H)+ such that (t ⊗ ι)(a) ≥ 0 there exists
a nonzero product vector ξ ⊗ η ∈ rangea such that ξ ⊗ η ∈ range(t ⊗ ι)(a). In
particular, if these conditions hold, then every map φ ∈ P(H) is decomposable.
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Proof Suppose SP1(H) = CP(H) ∩ coCP(H), and let a ≥ 0 with t ⊗ ι(a) ≥ 0.
Then a = Cφ with φ ∈ CP(H) ∩ coCP(H), so φ ∈ SP1. By Proposition 5.1.4 its
dual functional φ̃ is separable, hence Cφ being the transpose of the density matrix
for φ̃ by Lemma 4.2.3, is a sum

∑
i ai ⊗bi with ai, bi ∈ B(H)+. If ξi ∈ rangeai and

ηi ∈ rangebi then ξi ⊗ ηi ∈ rangeat
i ⊗ bi , hence in range(t ⊗ ι)a, proving necessity

in the proposition.
Conversely let a = Cφ with φ extremal in CP(H) ∩ coCP(H). Let ξ ⊗ η ∈

rangea, ξ ⊗η ∈ range t ⊗ ι(a). Since H is finite dimensional and both a and t ⊗ ι(a)

are positive, there exists ε > 0 such that a ≥ ε[ξ ] ⊗ [η], and t ⊗ ι(a) ≥ ε[ξ ]t ⊗ [η].
Thus the map ψ with Cψ = a − ε[ξ ] ⊗ [η] belongs to CP(H) ∩ coCP(H), and is
majorized by φ. Since φ is extremal in CP(H) ∩ coCP(H), there exists λ > 0 such
that a = λ[ξ ] ⊗ [η], and φ ∈ SP1(H), so SP1(H) = CP(H) ∩ coCP(H).

Finally, from the last statement, we have, using Propositions 6.2.1, 6.2.2 and
Remark 6.2.5,

P(H) = (SP1(H)
)◦ = (CP(H) ∩ coCP(H)

)◦ = CP(H) ∨ coCP(H),

proving that each map in P(H) is decomposable. �

6.3 Maps on the 2 × 2 Matrices

The only cases where the positive maps from B(K) into B(H) are fully understood
are when dimK = 2 and dimH ≤ 3, or when dimK = 3 and dimH = 2. In this
section we consider the case when dimK = dimH = 2. Our proof follows from
that of Woronowicz [98] and can without much work be extended to the case when
one of K and H is three dimensional.

Theorem 6.3.1 Every positive map of M2 into itself is decomposable.

Since each completely positive map is a sum of maps of the form AdV by Theo-
rem 4.1.8, and each map AdV is extremal by Proposition 3.1.3. It follows by com-
posing such a map by the transpose and using Lemma 3.1.2, that we have as an
immediate consequence of Theorem 6.3.1,

Corollary 6.3.2 A map in P(C2) is extremal if and only if it is of the form AdV or
t ◦ AdV .

In order to prove Theorem 6.3.1 we shall need a result on anti-automorphisms
of B(H) with H finite dimensional. Recall that a conjugation of H is a conju-
gate linear isometry J on H such that J 2 = 1. Then the map a → Ja∗J is an
anti-automorphism of order 2. In [73] it was shown that each anti-automorphism of
order 2 of a factor, i.e. a von Neumann algebra with center the scalars, is either of
the above form or of the form a → −J0a

∗J0 where J0 is a conjugate linear isometry
such that J 2

0 = −1. We shall need the following rather special result on the existence
of an anti-automorphism implemented by a conjugation.
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Proposition 6.3.3 Let H be finite dimensional and b ∈ B(H). Suppose there exist
λ > 0 and unit vectors ξ, η ∈ H such that

b∗b − bb∗ = λ[η] − λ[ξ ].

Then there exists a conjugation J on H such that Jb∗J = b, and Jξ = η.

Proof Note that if λ = 0, b is a normal operator, and the existence of J such that
Jb∗J = b, is an easy consequence of the spectral theorem. We have λ > 0. Multiply
b by λ−1/2 and assume

b∗b − bb∗ = [η] − [ξ ].
In the proof we shall consider products where each factor is either b or b∗. It will
therefore be convenient to write bi or b′

i , i ≥ 1, for bi, b
′
i ∈ {b, b∗}. Similarly we

shall denote by ξ∗ the vector η, and η∗ = ξ . In some cases we shall write ψ and ψ1

for ξ or η. In that case ψ∗ = ξ if and only if ψ = η, ψ∗ = η if ψ = ξ , and similarly
for ψ1. For s ∈ R let

A(s) = b + sb∗.

By direct computation we have

1

1 − s2

(
A(s)∗A(s) − A(s)A(s)∗

)= [η] − [ξ ].

For an integer n ≥ 1 we therefore have

(
A(s)nη, η

)− (A(s)nξ, ξ
)= Tr

(
A(s)n

([η] − [ξ ]))

= 1

1 − s2
Tr
(
A(s)n

(
A(s)∗A(s) − A(s)A(s)∗

))

= 1

1 − s2
Tr
(
A(s)n+1A(s)∗ − A(s)n+1A(s)∗

)

= 0.

With the notation introduced above this reduces to

(
A(s)nψ,ψ1

)= (A(s)nψ∗
1 ,ψ∗), (6.2)

because when ψ = ψ1 this follows from the above, and when ψ = ψ∗
1 , then ψ = ψ∗

1 ,
and ψ1 = ψ∗, so (6.2) is trivial.

Both sides of (6.2) are polynomials of order n in s. We shall compare the coeffi-
cients of sk for all k. To see the pattern most easily consider as an example

A(s)3 = b3 + (b2b∗ + bb∗b + b∗b2)s + (bb∗2 + b∗bb∗ + b∗2b
)
s2 + b∗3s3.
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For 0 ≤ k ≤ n let σk consist of all products b1kb2k · · ·bnk with n − k b’s and k

b∗’s. Then, as is easily seen by induction on n,

A(s)n =
n∑

k=0

(∑

σk

b1k · · ·bnk

)
sk.

Since each coefficient of sk is symmetric in the indices we have

∑

σk

b1k · · ·bnk =
∑

σk

bnk · · ·b1k.

By (6.2) we thus get from the uniqueness of the coefficients for each sk ,

∑

σk

(b1k · · ·bnkψ,ψ1) =
∑

σk

(
bnk · · ·b1kψ

∗
1 ,ψ∗),

or rather
∑

σk

{
(b1k · · ·bnkψ,ψ1) − (bnk · · ·b1kψ

∗
1 ,ψ∗)}= 0. (6.3)

As will be seen later, the existence of the conjugation J satisfying the conditions
of the proposition is equivalent to the following identity.

(b1b2 · · ·bmψ,ψ1) = (bm · · ·b2b1ψ
∗
1 ,ψ∗) (6.4)

for all products of bi ’s. For m = 0 this relation was shown in (6.2) with n = 0.
Use induction on n, and assume (6.4) holds for all m ≤ n − 1. Then using that
b∗b − bb∗ = [η] − [ξ ] and remembering our conventions on ψ and ψ1, and the fact
that for operators x and y,

(
x[η]yψ,ψ1

)= ([η]yψ, [η]x∗ψ1
)= (yψ,η)

(
x∗ψ1, η

)= (yψ,η)(xη,ψ1)

and using the induction hypothesis we have

(
b1 · · ·bkb

∗bbk+3 · · ·bnψ,ψ1
)− (b1 · · ·bkbb∗bk+3 · · ·bnψ,ψ1

)

= (b1 · · ·bk[η]bk+3 · · ·bnψ,ψ1
)− (b1 · · ·bk[ξ ]bk+3 · · ·bnψ,ψ1

)

= (b1 · · ·bkη,ψ1)(bk+3 · · ·bnψ,η) − (b1 · · ·bkξ,ψ1)(bk+3 · · ·bnψ, ξ)

= (bk · · ·b1ψ
∗
1 , η∗)(bn · · ·bk+3η

∗,ψ∗)− (bk · · ·b1ψ
∗
1 , ξ∗)(bn · · ·bk+3ξ

∗,ψ∗)

= (bn · · ·bk+3ξ,ψ∗)(bk · · ·b1ψ
∗
1 , ξ
)− (bn · · ·bk+3η,ψ∗)(bk · · ·b1ψ

∗, η
)

= (bn · · ·bk+3[ξ ]bk · · ·b1ψ
∗
1 ,ψ∗)− (bn · · ·bk+3[η]bk · · ·b1ψ

∗
1 ,ψ∗)

= (bn · · ·bk+3bb∗bk · · ·b2ψ
∗
1 ,ψ∗)− (bn · · ·bk+3b

∗bbk · · ·b1ψ
∗
1 ,ψ∗).
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By the equality of the first and the last expression of this computation we see that
the difference

(b1 · · ·bnψ,ψ1) − (bn · · ·b1ψ
∗
1 ,ψ∗)= α(k)

is independent of the order of the sequence b1, . . . , bn as long as the sequence con-
tains n − k entries of b and k entries of b∗. Thus all summands of (6.3) are equal to
α(k). Since the sum is 0, α(k) = 0, and therefore (6.4) is verified for m = n. Thus
by induction we have shown that (6.4) holds for all non-negative integers m. Let

u = b1 · · ·bnψ, v = b′
1 · · ·b′

mψ,

u∗ = b1
∗ · · ·bn

∗ψ∗, v∗ = b′
1
∗ · · ·b′

m
∗
ψ∗.

Then it follows from (6.4) that

(u, v) = (v∗, u∗). (6.5)

Let H0 be the subspace of H generated by all vectors of the form b1 · · ·bnψ . By
(6.5) there exists a conjugation J0 acting on H0 such that

J0b1 · · ·bnψ = b∗
1 · · ·b∗

nψ
∗.

If H0 = H this conjugation solves our problem. In the general case H = H0 ⊕ H1.
Then H0 is invariant under b and b∗, so b = c0 ⊕ c1, where ci is the restriction of b

to Hi . Since ξ, η ∈ H0 the operator c1 is normal. As remarked at the beginning of the
proof there exists a conjugation J1 on H1 such that J1c

∗
1J1 = c1. Thus J = J0 ⊕ J1

satisfies our requirements. �

We are now in position to prove Theorem 6.3.1. The proof will be divided
into some lemmas. Recall from the Appendix that we identify M2 ⊗ M2 with
M2(B(C2)) = M2(M2).

Lemma 6.3.4 Let H = C
2, and let

a =
(

1 b

b∗ c

)
∈ M2

(
B
(
C

2))

satisfy a ≥ 0 and t ⊗ ι(a) ≥ 0. Let s ∈ C and let Hs be the subspace of H spanned
by (b − s1)ker(c − b∗b) and (b − s1)∗ ker(c − bb∗). If 0 �= η ∈ H , η ⊥ Hs and
ξ = (1, s) ∈ C

2, then ξ ⊗ η ∈ rangea and ξ ⊗ η ∈ range(t ⊗ 1)a.

Proof Since η ⊥ (b−s1)ker(c−b∗b), (b−s1)∗η ⊥ ker(c−b∗b). For a self-adjoint
operator the kernel coincides with the orthogonal complement of the image. There-
fore there exists ψ ∈ H such that

(b − s1)∗η = (c − b∗b
)
ψ.
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Using this relation we easily find that

(
η

sη

)
=
(

1 b

b∗ c

)(
η + bψ

−ψ

)
,

so that (1, s) ⊗ η ∈ rangea. In the same way we show (1, s) ⊗ η ∈ range(t ⊗ ι)a. �

In the case when b in Lemma 6.3.4 is normal then the conclusion of the lemma
is immediate with the assumption on the vector η. Indeed we have

Lemma 6.3.5 If in Lemma 6.3.4 b is a normal operator then there exist ξ and η ∈ H

such that ξ ⊗ η ∈ rangea, ξ ⊗ η ∈ range(t ⊗ ι)(a).

Proof Let s be an eigenvalue of b and η the corresponding eigenvector, so bη = sη,
b∗η = sη. Then

(
η

sη

)
=
(

1 b

b∗ c

)(
η

0

)
and

(
η

sη

)
=
(

1 b∗
b c

)(
η

0

)
,

so the lemma follows with ξ = (1, s) since we can identify ξ ⊗ η with
( η

sη

)
, see the

Appendix. �

We next show that with the notation and assumptions as in Lemma 6.3.4 the
vector η ⊥ Hs exists, or b is normal.

Lemma 6.3.6 Let a be as in Lemma 6.3.4, and assume b is not normal. Then there
exist z ∈ C and a non-zero vector ψ ⊥ Hz.

Proof We first note that c − b∗b ≥ 0 and c − bb∗ ≥ 0. The first inequality follows,
since if α,β ∈ H then

(
a

(
α

β

)
,

(
α

β

))
= ‖α + bβ‖2 + ((c − b∗b

)
β,β
)
,

so that a ≥ 0 if and only if c − b∗b ≥ 0. Similarly t ⊗ ι(a) ≥ 0 if and only if c −
bb∗ ≥ 0.

Let n+ = dim ker(c−b∗b), n− = dim ker(c−bb∗). To prove the lemma we must
consider the following cases.

If n+ = 2 then c = b∗b, so that

0 = Tr
(
c − b∗b

)= Tr
(
c − bb∗)= 0,

hence b∗b = c = bb∗, and b is normal, a case which is ruled out by assumption.
Similarly n− �= 2.

If n+ + n− ≤ 1, then dimHs ≤ 1, so the existence of η ⊥ Hs is obvious.
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We are therefore left with the case n+ + n− = 2, and so by the above, n+ =
n− = 1. Then the operators c − b∗b and c − bb∗ have rank 1. Since they have the
same trace there exist λ > 0 and unit vectors ξ and η such that

c − b∗b = λ[ξ ], c − bb∗ = λ[η]. (6.6)

Furthermore [ξ ] �= [η], so ξ and η are not proportional.
Consider the vectors ξ , η, bξ , b∗η. Since dimH = 2, they are linearly dependent.

Therefore there are complex numbers α, β , γ , δ such that

αb∗η + βη = γ bξ + δξ. (6.7)

We may assume α and γ are real and non-negative, since possible phase factors can
be absorbed in ξ and η. Also we may assume α + γ > 0, since otherwise η and ξ

would be proportional.
By Proposition 6.3.3 there exists a conjugation J on H such that JbJ = b∗ and

Jξ = η. Applying J to (6.7) we get

αbξ + βξ = γ b∗η + δη.

Combining this with (6.7) we obtain

(b − s1)ξ = (b − s1)∗η, (6.8)

where s = − β+δ
α+γ

.
Let ψ ∈ H , z,w ∈ C. Since b∗b − bb∗ = λ[ξ ] − λ[η] with ξ and η unit vectors,

and using (6.4) it follows from a straightforward computation that

∥∥(b − z1)ψ + wη
∥∥2 + ∣∣(ξ,ψ) + (s − z)w

∣∣2

= ∥∥(b − z1)∗ψ + wξ
∥∥2 + ∣∣(η,ψ) + (s − z)w

∣∣2. (6.9)

For each z ∈C let

Dz = (b − z1) + 1

z − s
v, z �= s,

where v is a partial isometry such that v∗v = [ξ ], vv∗ = [η]. The determinant detDz

is a rational function of z and tends to infinity as z → ∞. Since any rational function
defined on the one-point compactification of the complex plane takes any complex
value, there exists z ∈ C such that detDz = 0. Thus there exists a nonzero vector
ψ ∈ H such that Dzψ = 0, or more explicitly

(b − z1)ψ + (ψ, ξ)

z − s
η = 0.

This shows that (b − z1)ψ is proportional to η. Since c − bb∗ = λ[η], (b − z1)ψ is
orthogonal to ker(c − bb∗), and consequently

ψ ⊥ (b − z1)∗ ker
(
c − bb∗).
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Let w = (ψ,ξ)
s−z

. We see that the left side of (6.9) is zero, hence the summands on the
right side are zero, in particular (b − z1)∗ψ is proportional to ξ , so (b − z1)∗ψ is
orthogonal to ker(c − b∗b), and so

ψ ⊥ (b − z1)ker
(
c − b∗b

)
.

We have thus found the desired vector orthogonal to Hz for some z ∈C. �

In the above lemmas we considered operators a of the form

a =
(

1 b

b∗ c

)
.

We must now extend the results to the general case.

Lemma 6.3.7 Let a = ( x b
b∗ c

) ∈ (M2 ⊗M2)
+ satisfy (t ⊗ ι)(a) ≥ 0. Then there exists

a product vector ξ ⊗ η ∈ rangea such that ξ ⊗ η ∈ range(t ⊗ ι)(a).

Proof Clearly x, c ≥ 0. There are two cases.

Case 1 x is invertible. Let

a1 =
(

x−1/2 0
0 x−1/2

)
a

(
x−1/2 0

0 x−1/2

)
.

Then a1 has the form in Lemmas 6.3.4 and 6.3.5. Thus by the lemmas there exists
a product vector ξ ⊗ η ∈ rangea1 such that ξ ⊗ η ∈ range(t ⊗ ι)(a1). But then (1 ⊗
x1/2) ξ ⊗ η ∈ rangea, and (1 ⊗ x1/2) ξ ⊗ η ∈ range t ⊗ ι(a).

Case 2 x is non-invertible. Since dimH = 2, x = λp with p a 1-dimensional pro-
jection. Let q = 1 − p. Then

(
0 qb

b∗q c

)
=
(

q

1

)
a

(
q

1

)
≥ 0

and
(

0 qb∗
bq c

)
=
(

q

1

)
t ⊗ ι(a)

(
q

1

)
≥ 0.

Hence

qb = b∗q = qb∗ = bq = 0. (6.10)

Suppose cq �= 0. If q = [η] then cη �= 0, so by (6.10)

(
0
cη

)
= a

(
0
η

)
and

(
0
cη

)
= (t ⊗ ι)(a)

(
0
η

)
. (6.11)
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Thus
( 0

cη

)= ( 0
1

)⊗ cη is the desired product vector.
If cq = 0 then all operators x, b, c act on the 1-dimensional Hilbert space pH , in

which case the lemma is trivial, or can be deduced from Lemma 6.3.5 if desired. �

Proof of Theorem 6.3.1 By Lemma 6.3.6 for each operator a ∈ (M2 ⊗ M2)
+ such

that (t ⊗ ι)(a) ≥ 0, there exists a product vector ξ ⊗ η ∈ rangea such that ξ ⊗ η ∈
range(t ⊗ 1)(a). Then by Proposition 6.2.7 each map in P(H) is decomposable. �

6.4 Tensor Products

A major problem with positive maps is that their tensor products are usually not
positive. It follows from the Stinespring Theorem 1.2.7, that the tensor product of
two completely positive maps is positive, indeed it is completely positive. As a con-
sequence the tensor product of two copositive maps is copositive. We shall see that
this result follows from the fact that CP(H)◦ = CP(H), see Proposition 6.2.2, and
similarly for copositive maps.

We assume in this section that H is a finite dimensional Hilbert space, and (eij)

is a complete set of matrix units for B(H). We put p =∑ij eij ⊗ eij. Then we have

Theorem 6.4.1 Let C be a symmetric mapping cone in P(H), and let φ ∈ P(H).
Then the following conditions are equivalent:

(i) φ ∈ C ◦—the dual cone of C .
(ii) φ ◦ ψ is completely positive for all ψ ∈ C .

(iii) ψ ⊗ φ is positive for all ψ ∈ C .
(iv) ψ ⊗ φ(p) ≥ 0 for all ψ ∈ C .

We first do some preliminaries. Let π : B(H) ⊗ B(H) → B(H) be the map
π(a ⊗ b) = bta. By Lemma 4.2.6 if φ ∈ P(H) then

φ̃ = Tr ◦ π ◦ (ι ⊗ φ∗t
)
, (6.12)

where ι is the identity map on B(H). Note also that since Cι = p is the Choi matrix
for ι, we have by Lemma 4.2.3,

ι̃(x) = Tr
(
Ct

ι x
)= Tr(px), x ∈ B(H ⊗ H).

Thus by (6.12) applied to ι we obtain, since ι̃ = Tr ◦ π , and the fact that φ∗t = φt∗,
see the proof of Lemma 6.1.9,

φ̃(x) = Tr ◦ π
(
ι ⊗ φ∗t (x)

)= Tr
(
p
(
ι ⊗ φ∗t (x)

))= Tr
(
ι ⊗ φt (p)x

)
. (6.13)

Lemma 6.4.2 Let φ,ψ ∈ P(H). Then we have

(i) (φ ◦ ψ)̃(x) = Tr((ψ∗ ⊗ φt )(p)x), x ∈ B(H ⊗ H).
(ii) ψ∗t ⊗ φ(p) = ι ⊗ (φ ◦ ψ)(p).
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(iii) Furthermore if γ ∈ B(B(H),K) for another Hilbert space K , then Cγ ◦φ◦ψ =
ψ∗t ⊗ γ (Cφ).

Proof Using the above formulas we get for a, b ∈ B(H),

(φ ◦ ψ)̃(a ⊗ b) = Tr ◦ π
(
ι ⊗ (φ ◦ ψ)∗t (a ⊗ b)

)

= Tr ◦ π
(
a ⊗ (ψ∗ ◦ φ∗)(bt

)t)

= Tr
(
a
(
ψ∗ ◦ φ∗)(bt

))

= Tr
(
ψ(a)φ∗(bt

))

= Tr ◦ π
(
ψ(a) ⊗ φ∗t (b)

)

= Tr
(
p
(
ψ(a) ⊗ φ∗t (b)

))

= Tr
((

ψ∗ ⊗ φt
)
(p)(a ⊗ b)

)
,

proving (i).
We also have by (6.13) that

(φ ◦ ψ)̃(x) = Tr
(
ι ⊗ (φ ◦ ψ)t (p)x

)
. (6.14)

It is straightforward to show (φ ◦ ψ)t = φt ◦ ψt . We therefore get from (6.14)
and (i)

ψ∗ ⊗ φt (p) = ι ⊗ (φ ◦ ψ)t (p) = ι ⊗ φt ◦ ψt(p).

Since P(H) is symmetric and the last equation holds for all φt and ψt in P(H),
(ii) follows.

To show (iii) notice that it is immediate from the definition of the Choi matrix
that

Cγ ◦(φ◦ψ) = ι ⊗ γ (Cφ◦ψ).

Thus by (ii)

Cγ ◦φ◦ψ = ι ⊗ γ
(
ψ∗t ⊗ φ

)
(p)

= (ψ∗t ⊗ γ
)
(ι ⊗ φ)(p)

= ψ∗t ⊗ γ (Cφ). �

Proof of Theorem 6.4.1 The pattern of the proof is (i) ⇔ (ii) ⇔ (iv) and (i) ⇒
(iii) ⇒ (iv).

(i) ⇔ (ii). By Theorem 5.2.5 C = PC (H)—the C -positive maps in P(H). By
Theorem 6.1.3 C ◦ is symmetric. Thus by Theorem 6.1.6 φ ∈ C ◦ if and only if
φ∗ ∈ C ◦ if and only if ψ ◦φ∗ is completely positive if and only if φ ◦ψ∗ = (ψ ◦φ∗)∗
is completely positive if and only if φ ◦ ψ is completely positive for all ψ ∈ C ,
proving (i) ⇔ (ii).

(ii) ⇔ (iv). By Theorem 4.1.8 and Lemma 6.4.2 φ ◦ ψ is completely positive if
and only if
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0 ≤ Cφ◦ψ = ι ⊗ φ ◦ ψ(p) = ψ∗t ⊗ φ(p).

Since C is symmetric the equivalence (ii) ⇔ (iv) follows.
Clearly (iii) ⇒ (iv).
(i) ⇒ (iii). With the chosen complete set of matrix units (eij) we have p =∑ eij ⊗

eij, which is a positive rank 1 operator with range the vector
∑

i ξi ⊗ ξi , where
ξ1, . . . , ξn, n = dimH , is an orthonormal basis for H such that eijξk = δjkξi . Let
ξ =∑ ξi ⊗ ηi be a vector in H ⊗ H . Let v ∈ B(H) be defined by vξi = ηi , so

ξ = 1 ⊗ v

(∑

i

ξi ⊗ ξi

)
.

Let q be the 1-dimensional projection [ξ ] onto Cξ . Then it follows that

Ad(1 ⊗ v)(p) = λq for some λ > 0.

We have thus shown that given a 1-dimensional projection q ∈ B(H) then there
exists v ∈ B(H) such that

1 ⊗ Adv(p) = q.

Since C ◦ is a mapping cone by Theorem 6.1.3, and φ ∈ C ◦, φ ◦ Adv ∈ C ◦. Thus
by Theorem 6.1.6 φ ◦ Adv ◦ ψ is completely positive for all ψ ∈ C , hence by
Lemma 6.4.2

ψ∗t ⊗ φ(q) = (ψ∗t ⊗ φ ◦ Adv
)
(p) = ι ⊗ (φ ◦ Adv ◦ ψ)(p) ≥ 0.

Since C is symmetric, ψ ⊗φ(q) ≥ 0 for all ψ ∈ C and 1-dimensional projections q .
It follows that ψ ⊗ φ is positive for all ψ ∈ C . Thus (i) ⇒ (iii), and the proof is
complete. �

The above theorem is about maps in P(H). We next apply the theorem to maps
from different B(K)’s into B(H).

Corollary 6.4.3 Let H , K , L be finite dimensional Hilbert spaces. Let C be a
symmetric mapping cone in P(H). Suppose ψ ∈ B(B(K),H) is C -positive and
φ ∈ B(B(L),H) is C ◦-positive. Then ψ ⊗ φ : B(K ⊗ L) → B(H ⊗ H) is positive.

Proof By Theorem 5.1.13 it suffices to consider maps of the form ψ = α ◦ β with
α ∈ C , β : B(K) → B(H) completely positive, and φ = γ ◦ δ with γ ∈ C ◦, δ :
B(L) → B(H) completely positive.

Thus

ψ ⊗ φ = (α ⊗ γ ) ◦ (β ⊗ δ)

is positive, since β ⊗ δ is completely positive, and α ⊗ γ is positive by Theo-
rem 6.4.1. �
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6.5 Notes

Duality of cones of positive maps has been studied for some time, see e.g [17, 21, 27]
and [2].

The results in Sects. 6.1, 6.2 and 6.4, except for the examples 6.2.1 and 6.2.3 in
Sect. 6.2, which are taken from [69], are to a great extent taken from papers by the
author. However, Proposition 6.2.4 was shown by Itoh [28]. For Theorem 6.1.3 see
[82], for Theorem 6.1.6 [80], and for Theorem 6.2.6 see [77]. The results in Sect. 6.4
are taken from [84].

For an extension of Remark 6.2.5 to maps which are sums of k-positive and l-
copositive maps, see [16].

Section 6.3 on maps on M2 is due to Woronowicz [98]. Related results on maps
on M2 can be found in [71].



Chapter 7
States and Positive Maps

The duality φ → φ̃ between the bounded maps of B(K) into B(H), B(B(K),H),
and the dual (B(K)⊗̂T (H))∗ of the projective tensor product of B(K) and T (H),
see 4.2, shows a close relationship between positive maps and linear functionals. In
this chapter we shall elaborate on this relationship. In Sect. 7.1 we shall translate
the duality theorem, 6.1.6, to a theorem on linear functionals and show some con-
sequences. In Sect. 7.2 we consider PPT-states on tensor products B(K) ⊗ B(H)

and show their relationship to decomposable maps. Section 7.3 is devoted to en-
tanglement. It turns out that the negative part C−

φ of the Choi matrix Cφ for a map
φ contains much information related to entanglement. Finally in Sect. 7.4 we shall
relate positive maps to super-positive maps.

7.1 Positivity Properties of Linear Functionals

The main result in the present section is the following theorem, which is essentially
a translation of Theorem 6.1.6 to linear functionals. We denote by PC (K) the C -
positive maps from B(K) into B(H).

Theorem 7.1.1 Let K and H be finite dimensional Hilbert spaces and C a sym-
metric mapping cone in P(H). Let ρ be a linear functional on B(K) ⊗ B(H) with
density operator h, so ρ(x) = Tr(hx). Then the following conditions are equiva-
lent.

(i) ρ = φ̃ with φ ∈ PC (K)◦.
(ii) ρ(Cα) ≥ 0 for all α ∈ C .

(iii) ι ⊗ α(h) ≥ 0 for all α ∈ C , i.e. h ∈ P(B(K),C ).
(iv) ρ ◦ (ι ⊗ α) ≥ 0 for all α ∈ C .
(v) ρ is positive on the cone P(B(K),C ◦).

Proof (i) ⇔ (ii). By Lemma 4.2.2 ρ = φ̃ for some φ ∈ B(B(K),H). By Lem-
ma 4.2.3 Ct

φ is the density operator for φ̃. We thus have for α ∈ C , using
Lemma 4.2.5,

E. Størmer, Positive Linear Maps of Operator Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_7,
© Springer-Verlag Berlin Heidelberg 2013
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ρ(Cα) = Tr
(
Ct

φCα

)= Tr
(
CφCt

α

)= Tr(CφCαt ).

Since C is symmetric it follows that φ ∈ PC (K)◦ if and only if ρ(Cα) ≥ 0 for all
α ∈ C , proving (i) ⇔ (ii).

(iii) ⇔ (iv). We let (eij) be a complete set of matrix units for B(K) and p =∑
eij ⊗ eij. Then since Ct

φ = Cφt ,

ι ⊗ α(h) = ι ⊗ α
(
Ct

φ

)= (ι ⊗ α) ◦ (ι ⊗ φt
)
(p). (7.1)

Hence

ρ ◦ (ι ⊗ α)(x) = Tr
(
Cφt ι ⊗ α(x)

)= Tr
(
ι ⊗ (α∗ ◦ φt

)
(p)x

)
.

Thus by (7.1) ρ ◦ (ι ⊗ α) ≥ 0 for all α ∈ C if and only if ι ⊗ (α ◦ φt )(p) ≥ 0 for all
α ∈ C , if and only if ι ⊗ α(h) ≥ 0 for all a ∈ C , proving (iii) ⇔ (iv).

(i) ⇔ (iii). Since p = pt = t ⊗ t (p) we have

(t ⊗ t) ◦ (ι ⊗ α ◦ φt
)
(p) = ι ⊗ (t ◦ α ◦ t ◦ φ)

(
t ⊗ t (p)

)

= ι ⊗ αt ◦ φ
(
pt
)

= ι ⊗ αt ◦ φ(p).

Since C is symmetric, and t ⊗ t is an anti-isomorphism, it follows from (7.1) that
α ◦ φ is completely positive if and only if ι ⊗ α(h) ≥ 0. Hence by Theorem 6.1.6
φ ∈ PC (K)◦ if and only if ι ⊗ α(h) ≥ 0, i.e. (i) ⇔ (iii).

(i) ⇔ (v). By Theorem 6.1.7 PC (K)◦ = PC ◦(K). Thus φ ∈ PC (K)◦ if and only
if φ is C ◦-positive if and only if ρ = φ̃ is positive on P(B(K),C ◦), proving (i) ⇔
(v). Thus all conditions (i), . . . , (v) are equivalent. �

Corollary 7.1.2 Let K and H be finite dimensional Hilbert spaces and ρ a state
on B(K) ⊗ B(H) with density operator h. Then ρ is separable if and only if ι ⊗
α(h) ≥ 0 for all α ∈ P(H).

Proof By Proposition 5.1.4 the mapping cone SP1(H) of super-positive maps in
P(H) consists of maps φ with φ̃ a separable positive linear functional. By Proposi-
tion 6.2.1 SP1(H) = P(H)◦. Thus by the equivalence (i) ⇔ (iii) in Theorem 7.1.1
ρ (= φ̃) is separable if and only if ι ⊗ α(h) ≥ 0 for all α ∈ P(H). �

Remark 7.1.3 The above corollary can easily be extended to the infinite dimensional
case if we assume ρ is a normal state and the maps α are normal. The proof is then
obtained by reduction to the finite dimensional case by considering e ⊗ f h e ⊗ f

for e and f finite dimensional projections in B(K) and B(H) respectively, and then
taking limits. Considering adjoint maps we can also show the analogue result when
the α’s map B(H) into B(K).

Remark 7.1.4 An equivalent formulation of Corollary 7.1.2 is the identity

P
(
B(K),P (H)

)= B(K)+ ⊗ B(H)+. (7.2)
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Indeed, by definition of P(B(K),P (H)), (Definition 5.1.6), a positive operator h ∈
B(K ⊗H) belongs to P(B(K),P (H)) if and only if ι⊗α(h) ≥ 0 for all α ∈ P(H),
so by Corollary 7.1.2, if and only if Tr(h · ) is a separable positive linear functional,
i.e., if and only if h ∈ B(K)+ ⊗ B(H)+.

Thus by Lemma 5.2.1, 1 ⊗ 1 is an interior point of B(K)+ ⊕ B(H)+. Since
CTr = 1 ⊗ 1, it follows that for each positive linear functional ρ of small enough
norm, Tr + ρ is separable. In Sect. 7.5 we shall prove a strengthening of this result.

7.2 PPT-States

PPT-states, i.e. states with positive partial transpose, are rough approximations to
separable states, and have attracted much attention in the literature. We show in this
section how they relate to positive maps and in particular to decomposable maps.
They are defined as follows.

Definition 7.2.1 Let A be an operator system and H a Hilbert space. A state ρ on
A⊗̂T (H) is said to be a PPT-state if ρ ◦ (ι ⊗ t) is a state on A⊗̂T (H) as well.

Theorem 7.2.2 Let A and H be as above and ρ a state on A⊗̂T (H). Let φ ∈
B(A,H) be the map such that ρ = φ̃. Then ρ is a PPT-state if and only if φ is both
completely positive and copositive.

Proof Since ρ is a state φ, is completely positive by Theorem 4.2.7. Let a ∈ A and
b be a trace class operator on H . Since the trace is invariant under transposition,

φ̃ ◦ (ι ⊗ t)(a ⊗ b) = φ̃
(
a ⊗ bt

)= Tr
(
φ(a)b

)

= Tr
(
t ◦ φ(a)bt

)= (t ◦ φ)̃(a ⊗ b).

Thus ρ = φ̃ is PPT if and only if both φ and t ◦ φ are completely positive, hence if
and only if φ is both completely positive and copositive. �

Corollary 7.2.3 Let H = C
2. Then a state ρ on M2 ⊗ M2 is separable if and only

if it is PPT.

Proof By Theorem 6.3.1 each positive map in P(C2) is decomposable. Hence

CP
(
C

2)∩ coCP
(
C

2)= P
(
C

2)◦ = SP1
(
C

2).

It follows that a map is both completely positive and copositive if and only if it is
super-positive. Hence the corollary follows from Proposition 5.1.4. �

If φ ∈ B(B(K),H) for K and H finite dimensional we have the following appli-
cation of Theorem 7.1.1 to PPT-states.
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Corollary 7.2.4 Let K and H be finite dimensional and ρ a state on B(K)⊗B(H)

with density operator h. Let C = CP(H) ∨ coCP(H) be the mapping cone gener-
ated by CP(H) and coCP(H). Then the following conditions are equivalent.

(i) ρ is a PPT-state.
(ii) α ◦ φ is completely positive for all α ∈ C , where ρ = φ̃.

(iii) ι ⊗ α(h) ≥ 0 for all α ∈ C .

Proof Since by Proposition 6.2.2 CP(H)◦ = CP(H) and similarly for coCP(H),
C ◦ = CP(H) ∩ coCP(H). Therefore by Theorem 7.2.2 φ̃ is PPT if and only if
φ ∈ C ◦, hence by Theorem 7.1.1 if and only if ι ⊗ α(h) ≥ 0 for all α ∈ C , hence
(i) ⇔ (iii).

(ii) ⇔ (iii). By Theorem 7.1.1 ι ⊗ α(h) ≥ 0 for all α ∈ C if and only if φ ∈
PC (K)◦, which by Theorem 6.1.6 is equivalent to α ◦ φ being completely positive
for all α ∈ C . �

The relationship between PPT-states and decomposable maps is clear from the
next result.

Corollary 7.2.5 Let φ ∈ P(H). Then φ is decomposable if and only if ρ(Cφ) ≥ 0
for all PPT-states ρ on B(H) ⊗ B(H).

Proof φ is decomposable if and only if φ ∈ CP(H) ∨ coCP(H) = (CP(H) ∩
coCP(H))◦, hence by Theorem 7.2.2, if and only if Tr(CφCψ) ≥ 0 for all ψ with ψ̃

a PPT-state. Since ψ̃ is PPT if and only if ψ̃ t is PPT it follows that φ is decompos-
able if and only if ρ(Cφ) ≥ 0 for all PPT-states ρ. �

7.3 The Choi Map

For some time it was a problem whether all PPT-states were separable. By Corol-
lary 7.2.5 and the proof of Corollary 7.2.3 this would via Proposition 4.1.11 be the
same as saying that all positive maps are decomposable. But we saw in Proposi-
tion 2.3.3 that the positive projection of Mn onto the spin factor Vk , k = 4 or k ≥ 6,
is indecomposable, so there exist PPT-states which are not separable.

A celebrated example of an indecomposable positive map is the Choi map in
P(C3). It was the first example known of an indecomposable map and has been
generalized to higher dimensions. We shall for simplicity of the argument only study
the simplest case, namely

Definition 7.3.1 The Choi map is the map φ ∈ P(C3) defined as follows: If x =
(xij) ∈ M3 then

φ(x) =
⎛

⎝
x11 + x33 −x12 −x13

−x21 x22 + x11 −x23
−x31 −x32 x33 + x22

⎞

⎠= �(x) − x,
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where

�(x) =
⎛

⎝
2x11 + x33 0 0

0 2x22 + x11 0
0 0 2x33 + x22

⎞

⎠ .

It is not immediate that φ is positive. For this we shall need two lemmas.

Lemma 7.3.2 Let ξ0 be a unit vector in the finite dimensional Hilbert space H , let
p = [ξ0] be the projection onto Cξ0, and let a ∈ B(H)+ be invertible. Then a ≥ p if
and only if (a−1ξ0, ξ0) ≤ 1.

Proof Suppose (a−1ξ0, ξ0) ≤ 1. By the Cauchy-Schwarz inequality for states

1 = (ξ0, ξ0)
2 = (a1/2ξ0, a

−1/2ξ0
)2 ≤ (aξ0, ξ0)

(
a−1ξ0, ξ0

)
.

If it is not the case that a ≥ p, then (aξ0, ξ0) < 1, hence (a−1ξ0, ξ0) > 1, contrary
to assumption. Thus a ≥ p. Conversely, if a ≥ p then, since H is finite dimensional
and a is invertible, there is ε > 0 such that a ≥ p + ε(1−p). Thus a−1 ≤ p + 1

ε
(1−

p), so that pa−1p ≤ p. Thus (a−1ξ0, ξ0) = (pa−1pξ0, ξ0) ≤ 1. �

Lemma 7.3.3 Let α,β, γ ≥ 0. Then

α

2α + γ
+ β

2β + α
+ γ

2γ + β
≤ 1.

Proof Put

x = γ

α
, y = α

β
, z = β

γ
.

Then xyz = 1, so the inequality in the lemma becomes

1

2 + x
+ 1

2 + y
+ 1

2 + z
≤ 1.

If we multiply out this reduces to showing

xy + xz + yz ≥ 3,

or since z = 1
xy

, to showing

f (x, y) = x2y2 + x + y − 3xy ≥ 0 for x, y ≥ 0.

Then f (0,0) = 0, f (x, y) → +∞ if either x → +∞ or y → +∞. Straightforward
calculus shows that the only minimum point for f in (0,∞)× (0,∞) is (1,1), with
value f (1,1) = 0. Thus f (x, y) ≥ 0, and the lemma is proved. �
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Proposition 7.3.4 The Choi map is positive.

Proof It suffices to show φ(p) ≥ 0 for all 1-dimensional projections p. Let p = [ξ0]
for a unit vector ξ0 = (α1, α2, α3) ∈ C

3. Then

�(p) =
⎛

⎝
2|α1|2 + |α3|2 0

0 2|α2|2 + |α1|2 0
0 0 2|α3|2 + |α2|2

⎞

⎠ .

By Lemma 7.3.3

(
�(p)−1ξ0, ξ0

)= |α1|2
2|α1|2 + |α3|2 + |α2|2

2|α2|2 + |α1|2 + |α3|2
2|α3|2 + |α2|2 ≤ 1.

Thus by Lemma 7.3.2

φ(p) = �(p) − p ≥ 0,

so φ is positive. �

One can show that φ is atomic and extremal. The proofs are rather involved, so
we shall only prove the following result.

Proposition 7.3.5 The Choi map φ is not 2-positive.

Proof Let ξ0 = (0,1,1,1,1,0) ∈ C
6 = C

3 ⊗C
2. Let p = [ξ0]. Then

p = 1

4

⎛

⎜⎜⎜⎜
⎜⎜
⎝

0 0 0 0 0 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 1 1 1 1 0
0 0 0 0 0 0

⎞

⎟⎟⎟⎟
⎟⎟
⎠

= 1

4

(
p11 p12
p21 p22

)

with pij ∈ M3 as indicated. Then

ι2 ⊗ φ(p) = 1

4

(
φ(pij)

) ∈ M2 ⊗ M3.

A straightforward calculation shows that

(
ι2 ⊗ φ(p)ξ0, ξ0

)= −1

4
< 0.

Thus φ is not 2-positive. �

In addition to the negative result that φ is not 2-positive we next show that φ is
indecomposable.
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Proposition 7.3.6 There exists a PPT-state ρ such that ρ(Cφ) < 0. Hence φ is
indecomposable.

Proof We have

Cφ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

1 0 0 0 −1 0 0 0 −1
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

−1 0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0

−1 0 0 0 −1 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

.

Let S ∈ M3 ⊗ M3 be the matrix

S =

⎛

⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜
⎝

2 0 0 0 2 0 0 0 2
0 1 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
2 0 0 0 2 0 0 0 2
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 4 0
2 0 0 0 2 0 0 0 2

⎞

⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟
⎠

.

Then S ≥ 0 and ι ⊗ t (S) ≥ 0, as is easily checked. Let ρ = 1
21 Tr(S · ). Then ρ is a

PPT-state, and ρ(Cφ) < 0, so by Corollary 7.2.5 φ is indecomposable. �

We note that the state ρ is entangled, because φ is positive, so Tr(Cφa ⊗ b) ≥ 0
for all a, b ∈ M+

3 , using Proposition 4.1.11.

Remark 7.3.7 The Choi map has a natural extension to Mn. Let P be the positive
projection of Mn onto the diagonal. Let s be the shift unitary in Mn, so s = (δi,i+1),
where δi,j is the Kronecker symbol, and where the indices are understood modulo n.
Then we have an extension of the Choi map to P(Cn) defined by

φ(a) = (n − 1)P (a) +
k∑

i=1

P
(
siasi∗)− x.

It was shown by Tanahashi and Tomiyama [88] and Ha [17] that for n ≥ 3 and
1 ≤ k ≤ n − 2, φ is atomic, hence in particular indecomposable.
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7.4 Entanglement

A state on a tensor product B(K) ⊗ B(H) is called entangled if it is not separable.
We shall see in this section how entanglement is related to positive maps. We first
give a definition of entanglement related to a given mapping cone.

Definition 7.4.1 Let C be a mapping cone in P(H), C ⊃ CP(H) with dimH < ∞,
and let K be another finite dimensional Hilbert space. Let

SC = {ρ ∈ B(K ⊗ H)∗ : ρ = Tr(Cψ · ) is a state with ψ ∈ PC (K)◦
}
,

where as before PC (K) denotes the cone of C positive maps of B(K) into B(H).
We say a state ω on B(K ⊗ H) is C -entangled if ω �∈ SC .

Note that if C = P(H), then C ◦ = SP1(H), so by Theorem 6.1.7 PC (K)◦ =
PC ◦(K) is the cone of SP1(H)-positive maps, so the corresponding states are sepa-
rable by Proposition 5.1.4. Thus in this case a state is C -entangled if and only if it
is entangled.

We shall need the following lemma. If C is a symmetric mapping cone it follows
from Theorem 6.1.6.

Lemma 7.4.2 Let C ⊃ CP(H) be a mapping cone in P(H) and K finite dimen-
sional. Then each map in PC (K)◦ is completely positive.

Proof Let φ ∈ B(B(K),H) belong to PC (K)◦. Then Tr(CφCψ) ≥ 0 for all ψ ∈
PC (K). Since C ⊃ CP(H), PC (K) ⊃ PCP(K). By, for example Theorem 5.1.13,
PCP(K) consists of the completely positive maps of B(K) into B(H). By Theo-
rem 4.1.8 a map ψ in B(B(K),H) is completely positive if and only if Cψ ≥ 0.
Thus Tr(Cφx) ≥ 0 for all x ∈ B(K ⊗ H)+, hence Cφ ≥ 0, and therefore φ is com-
pletely positive by Theorem 4.1.8. �

If φ ∈ B(B(K),H)+, we let as before, see Sect. 4.1, C+
φ and C−

φ denote the pos-

itive and negative parts of the Choi matrix Cφ , so Cφ = C+
φ − C−

φ with C+
φ C−

φ = 0.

Theorem 7.4.3 Let e be a projection in B(K ⊗ H) and C be a mapping cone
in P(H) such that C strictly contains CP(H). Then each state ω on B(K ⊗ H)

with support in e is C -entangled if and only if there exists a C -positive map φ ∈
B(B(K),H) with support C−

φ = e.

Proof Suppose φ is a C -positive map as in the theorem. Let ω be a state with
support ω ≤ e. Then

ω(Cφ) = ω(eCφe) = −ω
(
C−

φ

)
< 0.
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Thus if ψ is a map in B(B(K),H) such that Cψ is the density matrix for ω, then
Tr(CψCφ) < 0, so ψ �∈ PC (K)◦, and therefore ω �∈ SC .

Conversely let μ = supρ∈SC
ρ(e). We claim that μ < 1. We have

1 = ‖e‖ = sup
{
Tr(eh) : 0 ≤ h ≤ 1, Tr(h) = 1

}
.

Now Tr(eh) = Tr(h) if and only if h ≤ e. For such an h the state Tr(h · ) is by
assumption C -entangled, hence Tr(h · ) �∈ SC . It follows that Tr(eCψ) < 1 for all
states Tr(Cψ · ) in SC . By compactness of SC and continuity of the maps ψ →
Tr(eCψ), μ < 1 as claimed.

Let λ = 1/μ, and let φ be the map defined by Cφ = 1 − λe. If Tr(Cψ · ) ∈ SC , so
in particular ψ ∈ PC (K)◦, then by definition of μ

Tr(CφCψ) = 1 − λTr(eCψ) ≥ 1 − λμ = 0. (7.3)

If ψ ∈ PC (K)◦ then ψ is completely positive by Lemma 7.4.2, so Tr(Cψ · ) is au-
tomatically positive and therefore a positive multiple of a state in SC ◦ . Thus (7.3)
implies that φ ∈ PC (K)◦◦ = PC (K), using Lemma 6.1.2. Thus φ is C -positive,
with C+

φ = 1 − e, and C−
φ = (λ − 1)e with support e. �

As an immediate corollary we have

Corollary 7.4.4 Let φ ∈ B(B(K),H) be C -positive with C as in Theorem 7.4.3.
Then every state with support in the support of C−

φ is entangled. In particular, this
holds for all positive maps φ : B(K) → B(H).

Remark 7.4.5 If φ : B(K) → B(H) is unital and positive, and f is the projection
onto the eigenspace of Cφ corresponding to the eigenvalues λ > 1, then each state
with support majorized by f is entangled. Indeed, since Tr(a)1−a ≥ 0 for all a ≥ 0,
the map ψ = Tr − φ = φ ◦ (Tr − ι) is positive, Cψ = 1 − Cφ , so C−

ψ = f , hence our
assertion follows from Corollary 7.4.4.

Corollary 7.4.4 has a natural extension to k-positive maps. Recall that a vec-
tor ξ ∈ K ⊗ H has Schmidt rank k if k is the smallest number m such that
ξ =∑m

i=1 ξi ⊗ ηi . For simplicity we state the next result for the case K = H .

Corollary 7.4.6 Let φ ∈ P(H) be k-positive and not completely positive. Let ξ be
a unit vector in support C−

φ . Then the Schmidt rank of ξ is greater than k.

Proof Let ρ = ωξ be the vector state defined by ξ . Then [ξ ] = supportρ ≤
supportC−

φ , hence by Theorem 7.4.3 ρ is Pk-entangled. Thus ρ = Tr([ξ ]·) =
Tr(Cψ · ) with ψ �∈ Pk(H)◦. By Proposition 6.2.3 Pk(H)◦ = SPk(H) is the cone
of k-super-positive maps. By Proposition 4.1.4 ψ = AdV . Since AdV ∈ SPk(H) if
and only if rankV ≤ k, it follows that rankV > k. Since [ξ ] = CAdV it follows from
Proposition 4.1.6 that ξ has Schmidt rank SR(ξ) > k. �
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Remark 7.4.7 The above corollary can easily be extended to the case when dimK =
m �= n = dimH . See [43] and also [32]. In the last reference. it was also shown that
it follows from [91] that

dim suppC−
φ ≤ (m − k)(n − k).

Using Theorem 7.4.3 we can obtain a large class of indecomposable maps. Let
as before K and H be finite dimensional Hilbert spaces. An orthogonal family of
product vectors ξi ⊗ ηi in K ⊗ H is called an unextendible product basis if the
orthogonal complement of the span of {ξi ⊗ ηi} contains no product vector.

Theorem 7.4.8 Let {ξi ⊗ηi} be an unextendible product basis for K ⊗H , and let X

denote the linear span of {ξi ⊗ηi} in K ⊗H . Let e denote the orthogonal projection
onto the orthogonal complement X⊥ of X. Then there exists λ > 1 such that the map
φ : B(K) → B(H) with Cφ = 1 − λe is indecomposable.

Proof Applying Theorem 7.4.3 and its proof to the symmetric mapping cone P(H)

we see that there exists λ > 1 such that the map φ ∈ B(B(K),H) with Cφ = 1 − λe

is positive. Let [ξi] (resp [ηi]) denote the one dimensional projection onto Cξi (resp.
Cηi ). Then

e = 1 ⊗ 1 −
∑

i

[ξi] ⊗ [ηi].

We assert that ι ⊗ t (e) is a projection. Indeed, suppose f,g ∈ B(K),p, q ∈ B(H)

are projections such that f ⊗ p⊥g ⊗ q , then f ⊗ pt⊥g ⊗ qt . This follows, since

Tr ⊗ Tr
((

f ⊗ pt
)(

g ⊗ qt
))= Tr ⊗ Tr

(
fg ⊗ ptqt

)

= Tr(fg)Tr
(
ptqt
)

= Tr(fg)Tr(pq)

= Tr ⊗ Tr
(
(f ⊗ p)(g ⊗ q)

)= 0.

It follows that ι ⊗ t (e) being the sum of the orthogonal projections [ξi] ⊗ [ηi]t
is a projection as claimed. But then ι ⊗ ψ(e) ≥ 0 for all completely positive and
copositive maps in B(B(H),K) and thus for all decomposable maps of B(H) into
B(K).

Let (eij) be a complete set of matrix units in B(K) and p =∑ eij ⊗ eij. Then
Cφ = ι ⊗ φ(p). We thus have for the trace Tr on B(K ⊗ H),

Tr
(
p
(
ι ⊗ φ∗)(e)

)= Tr
(
ι ⊗ φ(p)e

)

= Tr(Cφe)

= Tr(e − λe)

= (1 − λ)Tr(e) < 0.
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Thus ι⊗ φ∗(e) is not positive, hence φ∗ is indecomposable by the above paragraph.
But then φ is also indecomposable. �

7.5 Super-positive Maps

One of the main problems in the study of states and positive maps in quantum in-
formation theory is to find criteria for when a state is separable, or equivalently for
a positive map to be super-positive. We have already seen two approaches, that of
PPT-states and the Horodecki theorem, Corollary 7.1.2. A third approach is that of
optimal maps, i.e. maps which do not majorize any completely positive maps. For
those maps one can construct their SPA, physical structural approximation, which
for a unital map φ is defined by having a Choi matrix of the form 1−p

d2 1 + pCφ ,
where d = dimH , and p ∈ [0,1] is maximal such that the above Choi matrix is
positive. It was conjectured that the corresponding state is separable, see e.g. [12].
This has recently been shown to be false, as shown in [20] and [83].

In the present section we shall show a similar result for any positive map, namely
that φ(1)Tr + φ is always super-positive. Our approach is close to that used in the
study of the SPA above. For this we need some preliminary results.

Lemma 7.5.1 Let H have an orthonormal basis ξ1, . . . , ξd , and let (eij) be the
matrix units such that eijξk = δjkξi . Let V denote the flip V ξ ⊗η = η⊗ξ on H ⊗H .
Then

V =
∑

eij ⊗ eji,

and Ad(U ⊗ U)(V ) = V for all unitary operators U in B(H).

Proof
∑

eij ⊗ eji(ξk ⊗ ξl) =∑ δjkξi ⊗ δilξj = ξl ⊗ ξk , so V is given by the formula
in the lemma. To show V is invariant let U be a unitary operator, and ξ ⊗η ∈ H ⊗H .
Then

Ad(U ⊗ U)(V )ξ ⊗ η = (U∗ ⊗ U∗)V (Uξ ⊗ Uη)

= (U∗ ⊗ U∗)(Uη ⊗ Uξ)

= η ⊗ ξ

= V (ξ ⊗ η). �

Lemma 7.5.2 Let (eij)i,j=1,2 be the usual matrix units in M2. Let A ∈ M2 ⊗ M2
be invariant under all automorphisms of M2 ⊗ M2 of the form Ad U ⊗ U with U

unitary in M2. Then A is of the form

A = a1 + bV,

with V as in Lemma 7.5.1.
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Proof The proof goes in three steps.

Step 1 Let U =( 1 0
0 −1

)
. Then it follows easily that

A =

⎛

⎜⎜
⎝

a1 0 0 b4
0 a2 b3 0
0 b2 a3 0
b1 0 0 a4

⎞

⎟⎟
⎠ .

Step 2 Let U =( 0 z
1 0

)
with |z| = 1. Then with A as above

A = Ad U ⊗ U(A) =

⎛

⎜⎜
⎝

a4 0 0 z2b1
0 a3 b2 0
0 b3 a2 0

z2b4 0 0 a1

⎞

⎟⎟
⎠ .

Thus a1 = a4, a2 = a3, z2b1 = b4, b2 = b3. Since this holds for all z ∈ C with
|z| = 1, b1 = b4 = 0. Therefore

A =

⎛

⎜⎜
⎝

a1 0 0 0
0 a2 b2 0
0 b2 a2 0
0 0 0 a1

⎞

⎟⎟
⎠ .

If we subtract b = b2 from a1 we see that A has the form

A =

⎛

⎜⎜
⎝

a 0 0 0
0 c 0 0
0 0 c 0
0 0 0 a

⎞

⎟⎟
⎠+

⎛

⎜⎜
⎝

b 0 0 0
0 0 b 0
0 b 0 0
0 0 0 b

⎞

⎟⎟
⎠ .

The right summand is b
∑

eij ⊗ eji, which is invariant under all automorphisms
Ad U ⊗ U by Lemma 7.5.1. Therefore the right summand is invariant, so it remains
to show

Step 3 a = c. Rewriting we have
⎛

⎜⎜
⎝

a

c

c

a

⎞

⎟⎟
⎠= (a − c)

⎛

⎜⎜
⎝

1
0

0
1

⎞

⎟⎟
⎠+ c1 ⊗ 1

= (a − c)e11 ⊗ e11 + (a − c)e22 ⊗ e22 + c1 ⊗ 1.

Since 1 ⊗ 1 is invariant we have (a − c)[e11 ⊗ e11 + e22 ⊗ e22] is invariant. But if
we choose U such that
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Ad U(e11) = 1

2

(
1 1
1 1

)
, Ad U(e22)

1

2

(
1 −1

−1 1

)
,

then it is easily seen that

e11 ⊗ e11 + e22 ⊗ e22 �= Ad(U ⊗ U)(e11 ⊗ e11 + e22 ⊗ e22).

Therefore a − c = 0, completing the proof of Step 3, and therefore of the lemma. �

We next extend Lemma 7.5.2 to arbitrary dimensions.

Lemma 7.5.3 Let A ∈ Md ⊗ Md be invariant under all automorphisms Ad U ⊗ U

with U unitary in Md . Then A is of the form A = a 1 ⊗ 1 + bV with V the flip on
C

d ⊗C
d .

Proof Let ξ1, . . . , ξd be an orthonormal basis for H = C
d and (eij) the correspond-

ing complete set of matrix units. Let n �= m belong to {1, . . . , d}, and let Fmn be
the orthogonal projection onto span{ξi ⊗ ξj : i, j ∈ {m,n}}. If {m,n} �= {p,q} with
p �= q , r ∈ {m,n,p,q} and equal to only one of them, and U is the unitary operator
such that Uξr = −ξr , and Uξj = ξj for j �= r , then

(Aξm ⊗ ξn, ξp ⊗ ξq) = (AUξm ⊗ Uξn,Uξp ⊗ Uξq) = −(Aξm ⊗ ξn, ξp ⊗ ξq),

hence (Aξm ⊗ ξn, ξp ⊗ ξq) = 0 whenever {m,n} �= {p,q}. Since any permutation
of the basis elements is implemented by a unitary operator, A depends only on the
matrix elements m,n,p,q , such that {m,n} = {p,q}, i.e.

A =
∑

a(m,p)(n,q)emp ⊗ enq (7.4)

with a(m,p)(n,q) = 0 unless m = n = p = q , or m = p �= q = n, or m = q �= n = p.
Considering the unitaries U in Md such that Uξi = ξi for i �= m,n and

U ⊗ UFmnC
d ⊗ C = FmnC

d ⊗ C it follows that Ad U ⊗ U(FmnMd ⊗ MdFmn) =
FmnMd ⊗ MdFmn. Furthermore FmnAFmn is fixed under the restrictions of Ad U ⊗
U . Thus by Lemma 7.5.2

FmnAFmn = aFmn + bVmn, (7.5)

where Vmn is the restriction of the flip V to FmnC
d ⊗C

d . If we take U self-adjoint
such that Uξm = ξp , Uξn = ξq and Uξj = ξj for j �∈ {m,n,p,q} then

Ad U ⊗ U(FmnAFmn) = FpqAFpq.

Thus the coefficients a and b in (7.5) remain the same for FmnAFmn and FpqAFpq.
It follows that the coefficients a(m,p)(n,q) in (7.4) are given by the formula
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a(m,p)(n,q) =

⎧
⎪⎨

⎪⎩

a + b when m = p, n = q,

b when m = q �= p = n,

0 otherwise.

But this means that A = a 1 ⊗ 1 + bV with V as in Lemma 7.5.1. �

Theorem 7.5.4 Let H be a finite dimensional Hilbert space and φ ∈ P(H). Then
the map φ(1)Tr + φ is super-positive.

Proof We first show that Tr + t , t being the transpose, is super-positive. Let G

denote the compact group G = {Ad U ⊗ U : U unitary in B(H)}. Let dU denote
the normalized Haar measure on G. Then

P(A) =
∫

G

Ad U ⊗ U(A)dU

is a unital positive projection of B(H ⊗ H) onto the fixed point algebra of G,
which by Lemma 7.5.3 equals the span {a1 ⊗ 1 + bV : a, b ∈ C}. Clearly P is
trace invariant, so if h is the density operator for a state ρ on B(H ⊗ H), then
Tr(P (h)) = Tr(h) = 1. Thus

P(h) = a1 ⊗ 1 + bV, a, b ∈R, (7.6)

has trace 1. By Lemma 7.5.1 Tr(V ) = d where d = dimH , so that

1 = Tr
(
P(h)

)= ad2 + bd. (7.7)

We have

Tr
(
P(h)V

)=
∫

Tr
(
Ad U ⊗ U(h)V

)
dU

=
∫

Tr
(
hAd U∗ ⊗ U∗(V )

)
dU

= Tr(hV ). (7.8)

Let e = (hihj ) be a 1-dimensional projection in B(H), and let h = e ⊗ e, so ρ =
Tr(h · ) is a product state. Then by Lemma 7.5.1

Tr(hV ) = Tr

(
e ⊗ e

∑

ij

eij ⊗ eji

)

=
∑

ij

Tr(eeij)Tr(eeji)

=
∑

ij

(hihj )(hjhi)

=
∑

ij

|hi |2|hj |2 = 1.



7.5 Super-positive Maps 109

By (7.6) P(h)V = aV + b1 ⊗ 1. Thus by (7.7) and (7.8)

1 = Tr
(
P(h)V

)= Tr(aV + b1 ⊗ 1) = ad + bd2.

Combining this with (7.7) we get

a = b = 1/d(d + 1).

Hence

P(h) = 1

d(d + 1)
(1 ⊗ 1 + V ),

which is the Choi matrix for 1
d(d+1)

(Tr + t).

Let e(U) = Ad U(e), and put ψ = 1
d(d+1)

(Tr + t). Then Cψ = P(h), so if φ ∈
P(H) we have

Tr(CψCφ) = Tr

((∫
e(U) ⊗ e(U)dU

)
Cφ

)
=
∫

Tr
(
e(U) ⊗ e(U)Cφ

)
dU ≥ 0,

since the integrand is positive by Proposition 4.1.11. Since this holds for all φ ∈
P(H), by Proposition 6.2.1 ψ ∈ P(H)◦ = SP1(H). Thus Tr + t is super-positive.

The super-positive maps have the property that their compositions with positive
maps remain super-positive, hence Tr + ι = t ◦ (Tr + t) is super-positive. Thus if φ

is a positive map then

φ(1)Tr(a) + φ(a) = φ
(
Tr(a)1

)+ φ(a) = φ ◦ (Tr + ι)(a)

is super-positive, completing the proof of the theorem. �

If ‖φ‖ ≤ 1 then, since Tr as a map in P(H) is super-positive, (‖φ‖ − φ(1))Tr is
super-positive, hence we have, since ‖φ‖Tr + φ = (‖φ‖ − φ(1))Tr + φ(1)Tr + φ.

Corollary 7.5.5 If φ ∈ P(H) has norm ‖φ‖ ≤ 1, then Tr + φ is super-positive.

If we translate the theorem to states we get the following

Corollary 7.5.6 Let ρ be a state on B(H ⊗H) with d = dimH . Let ρ2 be the state
on the second factor defined by ρ2(b) = ρ(1 ⊗ b). Then the state 1

d+1 (Tr ⊗ ρ2 + ρ)

is separable.

Proof Since ρ is a state, ρ = φ̃ for a completely positive map φ, see Theorem 4.2.7.
By Theorem 7.5.4 the map ψ = φ(1)Tr + φ is super-positive, hence ψ̃ is separable
by Proposition 5.1.4. We have

ψ̃(a ⊗ b) = Tr
((

φ(1)Tr(a) + φ(a)
)
bt
)

= Tr(a)Tr
(
φ(1)bt

)+ Tr
(
φ(a)bt

)
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= Tr(a)ρ(1 ⊗ b) + ρ(a ⊗ b)

= (Tr ⊗ ρ2 + ρ)(a ⊗ b),

proving the corollary. �

If a map φ is not completely positive and Cφ = C+
φ − C−

φ , then C−
φ is a nonzero

positive operator. We next give an estimate for the norm of C−
φ .

Corollary 7.5.7 Let φ ∈ P(H) with ‖φ‖ ≤ 1. Then Cφ ≥ −1⊗1, hence ‖C−
φ ‖ ≤ 1.

Proof By Corollary 7.5.5 Tr + φ is super-positive so in particular completely posi-
tive. Hence

0 ≤ CTr+φ = CTr + Cφ = 1 + Cφ = 1 + C+
φ − C−

φ .

Since C+
φ C−

φ = 0, it follows that C−
φ ≤ 1. �

It follows that for all φ ∈ P(H),‖C−
φ ‖ ≤ ‖φ‖.

7.6 Notes

Behind much of the theory in Chap. 7 lies the duality φ → φ̃. Theorem 7.1.1 is
essentially a translation of Theorem 6.1.6 to states and is taken from [82]. Corol-
lary 7.1.2 is in the form given, a celebrated result of Horodecki [25], and is often
referred to as one of the main results which show the importance of general positive
maps rather than completely positive maps. The identity (7.2) in Remark 7.1.4 can
be found in [78] in the case K = H .

PPT-states were introduced by Peres [60]. Theorem 7.2.2 and its corollaries have
been observed independently by several authors. For a discussion on PPT-states,
see [2]. By work of Woronowicz [98] Corollary 7.2.3 is also true for states on M2 ⊗
M3 and M3 ⊗ M2.

The Choi map described in Sect. 7.3 was introduced by Choi [8]. It has in gener-
alized form been studied by others, see [4, 44] and [55], because it is an indecom-
posable map in the least possible dimension, 3 × 3 matrices. It and its extension to
higher dimensions as in Remark 7.3.7 have been shown to be both atomic and ex-
tremal see [17, 55–57, 88]. Related results on extremal and indecomposable maps
were obtained in [39]. The example in 7.3.6 was exhibited in [77]. This was before
the introduction of PPT-states by Peres, see also [21]. An example of a PPT-state
which was not separable was later exhibited by P. Horodecki [23].

Theorem 7.4.3 is due to Skowronek and the author, [68], but a related result for
P(H) is due to Parthasarathy [58]. For Corollary 7.4.6 see the paper by Kuah and
Sudarshan [43] and Sarbicki [66]. Theorem 7.4.8 is due to Terhal [89].
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Section 7.5 is based on work of Werner [97], Horodecki [24] and Chruściński,
Pytel [11]. They were mainly interested in optimal maps and whether they were
super-positive. Theorem 7.5.4 is different and new, being a result on all possible
positive maps, but it can easily be deduced from [24].



Chapter 8
Norms of Positive Maps

As we saw in Chap. 1 the uniform norm of a positive map φ from an operator system
A into B(H) is defined by

‖φ‖ = sup
‖a‖≤1

∥∥φ(a)
∥∥,

which equals ‖φ(1)‖ if A is a unital C∗-algebra. However, there are many other
norms that could be used. In this chapter we shall consider some of these norms,
first for general positive maps in B(B(K),H) and then for the so-called Werner
maps of the form Tr − AdV , V : H → K .

8.1 Norms of Maps

Let K and H be finite dimensional Hilbert spaces, C a mapping cone in P(H) and
PC (K) the C -positive maps in B(B(K),H), and PC (K)◦ the dual cone of PC (K).
Let in analogy with Definition 7.4.1

SC = {ρ ∈ B(K ⊗ H)∗ : ρ = Tr(Cψ · ),Tr(Cψ) = 1,ψ ∈ PC (K)◦
}
.

Thus SC is a convex set of linear functionals. Note that if C ⊃ CP(H), then as
pointed out in the proof of Lemma 7.4.2, every map ψ ∈ PC (K)◦ is completely
positive, hence the definitions of SC given in Definition 7.4.1 and above, coincide.
If a ∈ B(K ⊗ H) let

‖a‖SC = sup
{∣∣ρ(a)

∣∣ : ρ ∈ SC
}
,

and if φ ∈ B(B(K),H), let

‖φ‖C = sup
{∣∣Tr(CφCψ)

∣∣ : ρ = Tr(Cψ · ) ∈ SC
}
.

Then ‖φ‖C = ‖Cφ‖SC .

E. Størmer, Positive Linear Maps of Operator Algebras,
Springer Monographs in Mathematics, DOI 10.1007/978-3-642-34369-8_8,
© Springer-Verlag Berlin Heidelberg 2013

113

http://dx.doi.org/10.1007/978-3-642-34369-8_8


114 8 Norms of Positive Maps

Lemma 8.1.1 ‖ ‖SC and ‖ ‖C are norms on B(K ⊗ H) and B(B(K),H) respec-
tively.

Proof The norm properties ‖λa‖SC = |λ|‖a‖SC and ‖λφ‖C = |λ|‖φ‖C are clear,
and the same is subadditivity, i.e. ‖φ + ψ‖C ≤ ‖φ‖C + ‖ψ‖C . Since the composi-
tion of a super-positive map with a positive map is super-positive by Lemma 5.1.3,
the super-positive maps in B(B(K),H) belong to the dual cone PC (K)◦ by Theo-
rem 6.1.6. Thus SC contains all states with density operator corresponding to super-
positive maps, hence all separable states by Proposition 5.1.4. By Lemma 5.1.7 and
its proof, if ω(a) = 0 for all separable states then ρ(a) = 0 for all states ρ, hence
a = 0. Thus ‖ ‖SC and ‖ ‖C are norms. �

Recall that if φ ∈ B(B(K),H) is positive then Cφ is a self-adjoint operator with
positive and negative parts C+

φ and C−
φ , so Cφ = C+

φ −C−
φ , and C+

φ C−
φ = 0. Let φ+

and φ− be the completely positive maps such that Cφ+ = C+
φ , Cφ− = C−

φ . Then we
have

Proposition 8.1.2 Let C be a mapping cone in P(H) containing CP(H). Let φ ∈
B(B(K),H) be C -positive. Then

∥∥φ+∥∥
C ≥ ∥∥φ−∥∥

C ,

or equivalently, ‖C+
φ ‖SC ≥ ‖C−

φ ‖SC .

Proof As noted in Lemma 7.4.2, since C ⊃ CP(H), PC (K)◦ is contained in the
cone of completely positive maps of B(K) into B(H). Therefore if ρ = Tr(Cψ ·) ∈
SC , then ρ is a state. Since φ ∈ PC (K),

0 ≤ Tr(CφCψ) = Tr
(
C+

φ Cψ

)− Tr
(
C−

φ Cψ

)
.

Thus, since Cψ ≥ 0 by Theorem 4.1.8,
∥∥φ+∥∥

C ≥ sup
ψ

Tr
(
C−

φ Cψ

)= ∥∥φ−∥∥
C .

Since ‖C+
φ ‖SC = ‖φ+‖C , and the same for φ−, the proof is complete. �

The reader should note the related result, Corollary 7.5.7, that if φ is unital then
‖C−

φ ‖ ≤ 1 = ‖φ‖.
We saw in Theorem 4.1.12 that each positive map in B(B(K),H) can be written

in the form
∥
∥C+

φ

∥
∥−1

φ = Tr − φcp,

where Tr is the usual trace on B(K) identified with the map a → Tr(a)1, and φcp ∈
B(B(K),H) is completely positive. In the next proposition we just consider Tr −
φcp.
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Proposition 8.1.3 Let C be a mapping cone in P(H) containing CP(H). Let φ =
Tr − φcp as above. Then φ is C -positive if and only if

‖φcp‖C ≤ 1.

Proof By Lemma 6.1.2 PC (K) = PC (K)◦◦, so φ is C -positive if and only if
Tr(CφCψ) ≥ 0 for all ψ ∈ PC (K)◦, if and only if Tr(CφCψt ) ≥ 0 for all ψ such
that ψ̃ ∈ SC (recall that Cψt is the density operator for ψ̃ by Lemma 4.2.3). Now
CTr = 1. Thus φ is C -positive if and only if

0 ≤ inf
ψ̃∈SC

Tr(CφCψt )

= inf
ψ̃

Tr
(
(1 − Cφcp)Cψt

)

= 1 − sup
ψ̃

Tr(CφcpCψt )

= 1 − ‖φcp‖C ,

if and only if ‖φcp‖ ≤ 1, where we used that C ⊃ CP(H) to conclude that
sup Tr(CφcpCψt ) = ‖φcp‖C . �

We next specialize to the cone of k-positive maps Pk . Recall from Proposi-
tion 6.2.3 that Pk(H)◦ = SPk(H), where SPk(H) is the cone of maps of the form∑

i AdVi , where each Vi ∈ B(H) has rankVi ≤ k. For a vector ξ ∈ K ⊗ H its
Schmidt rank is by Definition 4.1.5 the smallest m such that

∑m
i=1 ξi ⊗ ηi ∈ K ⊗ H

represents ξ , i.e. SR(ξ) = minm, with m as above. For a self-adjoint operator
a ∈ B(K ⊗ H) we define a norm

‖a‖S(k) = sup
{∣∣(aξ, ξ)

∣∣ : ξ ∈ K ⊗ H,‖ξ‖ = 1,SR(ξ) ≤ k
}
.

Lemma 8.1.4 Let φ be a positive map in B(B(K),H). Then

‖φ‖Pk(H) = ‖Cφ‖S(k).

Proof Recall from Theorem 5.1.13 that the cone PSPk
(K) of k-super-positive maps

is generated as a cone by maps α ◦ β with α ∈ SPk(H) and β ∈ B(B(K),H)

completely positive. Since SPk(H) is generated by maps AdV with V ∈ B(H)

with rankV ≤ k and β is a sum of maps AdW with W : H → K , it follows that
PSPk

(K) is generated by maps V : H → K with rankV ≤ k. Recall also from
Proposition 4.1.6 that if [ξ ] is the 1-dimensional projection on the space Cξ then
[ξ ] = CAdV with V : H → K , and rankV = SR(ξ). Using this we have for φ in the
lemma,

‖Cφ‖S(k) = sup
{∣∣(Cφξ, ξ)

∣∣ : ‖ξ‖ = 1, SR(ξ) ≤ k
}

= sup
{∣∣Tr
(
Cφ[ξ ])∣∣ : SR(ξ) ≤ k

}
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= sup
{∣∣Tr(CφCAdV )

∣∣ : Tr(CAdV ) = 1, rankV ≤ k
}

= sup
{∣∣Tr(CφCψ)

∣∣ : ψ ∈ SPk(K), Tr(Cψ) = 1
}

= ‖φ‖Pk(H). �

From this result we get immediately from Proposition 8.1.3

Proposition 8.1.5 Let φ ∈ B(B(K),H) be of the form φ = Tr − φcp with φcp com-
pletely positive. Then φ is k-positive if and only if ‖Cφcp‖S(k) ≤ 1.

In particular, if φcp = AdV we get

Corollary 8.1.6 Let V : H → K be a linear operator. Then the map φ = Tr − AdV

is k-positive if and only if

‖CAdV ‖S(k) ≤ 1.

It turns out that the norms ‖AdV ‖Pk(H) and ‖CAdV ‖S(k) are closely related to the
Ky Fan norms defined as follows.

Definition 8.1.7 Let a ∈ B(H)+, and dimH = d . For k ∈ {1, . . . , d} define the Ky
Fan norm of a to be

‖a‖(k) =
k∑

i=1

si ,

where s1 ≥ s2 ≥ · · · ≥ sd are the eigenvalues of a in decreasing order.

A useful characterization of the Ky Fan norm of a positive operator is given by
the Ky Fan maximum principle.

Lemma 8.1.8 Let a ∈ B(H)+. Then

‖a‖(k) = max

{
k∑

i=1

(aξi, ξi) : (ξi)
k
i=1 is an orthonormal set in H

}

= max
{
Tr(ae) : e k-dimensional projection in B(H)

}
.

Proof If e is a k-dimensional projection, then e =∑k
1[ξi] with {ξ, . . . , ξk} an or-

thonormal set of vectors in e(H). Since

Tr(ae) =
∑

Tr
(
a[ξi]

)=
∑

(aξi, ξi),

the last equality in the lemma is obvious.
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Let s1 ≥ s2 ≥ · · · ≥ sd be the eigenvalues of a in decreasing order. Let ηi be an
eigenvector for the eigenvalue si . Then (aηi, ηi) = si , so that

‖a‖(k) =
k∑

1

(aηi, ηi) ≤ max
k∑

1

(aξi, ξi) = Tr(ea),

with e and (ξi) as above. Thus ‖a‖(k) ≤ maxe Tr(ea).
We must next show the opposite inequality. By a small perturbation of the si

we may assume they are distinct. Let {ξ1, . . . , ξk} be an orthonormal set in H , and
arrange the indices so that

(aξ1, ξ1) ≥ (aξ2, ξ2) ≥ · · · ≥ (aξk, ξk).

We use induction to conclude that (aξi, ξi) ≤ si . Since s1 = ‖a‖, clearly (aξ1, ξ1) ≤
s1. Assume we have shown (aξi, ξi) ≤ si for i = 1, . . . ,m − 1. There are two cases.

Case (1). (aξm−1, ξm−1) ≥ sm.
In this case (aξm, ξm) ≤ sm, because the dimension of the eigenspace correspond-

ing to the eigenvalues greater than sm is m − 1, using that the si are assumed to be
distinct.

Case (2). (aξm−1, ξm−1) < sm.
Then (aξm, ξm) < sm, so in either case (aξm, ξm) ≤ sm, completing the induction

argument. It follows that
∑k

1(aiξi , ξi) ≤∑k
1 si = ‖a‖(k), completing the proof. �

In order to relate the norms for AdV discussed above to the Ky Fan norm we
have

Theorem 8.1.9 Let V ∈ B(H). Then

∥∥V V ∗∥∥
(k)

= sup
{
Tr(CAdV CAdW) : rankW ≤ k,Tr(CAdW) = 1

}

= ‖AdV ‖Pk(H).

Proof The last equality follows from the definition of ‖AdV ‖Pk(H) and the fact that
Pk(H)◦ = SPk(H), see Proposition 6.2.3.

We first show that ‖V V ∗‖(k) majorizes the right side of the equality in the theo-
rem. Let W ∈ B(H) have rankW ≤ k and Tr(CAdW) = 1. Then the range projection
e of W has dimension ≤ k, and W = eW . Let ξ1, . . . , ξd be an orthonormal basis
for H , and eij matrix units such that eij ξk = δjkξi . Suppose V ξk =∑i vikξi . Then
by Proposition 4.1.4

CAdV =
∑

vjlvikeij ⊗ ekl

is a scalar multiple of the projection onto Cξ with ξ =∑vikξi ⊗ ξk . Similarly by
our assumption on W , CAdW is the projection onto Cη with η =∑wikξi ⊗ ξk . We
thus have
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Tr(CAdV CAdW) = Tr
(∑

vjlvikeij ⊗ ekl

∑
wstwuveus ⊗ evt

)

=
∑

Tr(δjuδlvvjlvikwstwjleis ⊗ ekt)

=
∑

Tr
(∑

vjlvikwikwjleii ⊗ ekk

)

=
(∑

jl

vjlwjl

)(∑
vikwik

)

= Tr
(
V W ∗)Tr

(
V ∗W

)

= ∣∣Tr
(
V W ∗)∣∣2. (8.1)

Now CAdW is a 1-dimensional projection, so applying the above to V = W , we get

1 = Tr(CAdW) = Tr
(
C2

AdW

)= Tr
(
WW ∗). (8.2)

Since W = eW we thus have from the above and Lemma 8.1.8,

Tr(CAdV CAdW) = ∣∣Tr
(
V W ∗e

)∣∣2

≤ Tr
(
eV (eV )∗

)
Tr
(
WW ∗)

= Tr
(
eV V ∗)

≤ sup
rankf ≤k

Tr
(
f V V ∗)

= ∥∥V V ∗∥∥2
(k)

. (8.3)

It remains to show the opposite inequality. Since H is finite dimensional, we can by
compactness find a projection e with rank e ≤ k such that by Lemma 8.1.8

∥∥V V ∗∥∥
(k)

= sup
rankf ≤k

Tr
(
f V V ∗)= Tr

(
eV V ∗).

Let W = ‖V V ∗‖−1/2
(k) eV . Then rankW ≤ k, and

‖W‖2
HS = ∥∥V V ∗∥∥−1

(k)
Tr
(
(eV )(eV )∗

)= ∥∥V V ∗∥∥−1
(k)

Tr
(
eV V ∗)= 1.

In particular, 1 = ‖V V ∗‖−1/2
(k) Tr(WV ∗) = ‖V V ∗‖−1/2

(k) Tr(V W ∗). Since by (8.2),
Tr(CAdW) = 1, we thus have by (8.1)

∥∥V V ∗∥∥
(k)

= ∥∥V V ∗∥∥1/2
(k)

Tr
(
V W ∗) · 1

= ∥∥V V ∗∥∥1/2
(k)

Tr
(
V W ∗)∥∥V V ∗∥∥−1/2

(k)
Tr
(
WV ∗)

= ∣∣Tr
(
V W ∗)∣∣2

= Tr(CAdV CAdW).
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Thus the sup on the right side of the equation in the theorem is attained and equal to
‖V V ∗‖(k), and we have the asserted equality. �

Corollary 8.1.10 Let V ∈ B(H). Then the map Tr −AdV is k-positive if and only if
∥∥V V ∗∥∥

(k)
≤ 1.

Proof By Theorem 8.1.9 ‖V V ∗‖(k) = ‖AdV ‖Pk(H), which equals ‖CAdV ‖S(k) by
Lemma 8.1.4, so the corollary follows from Corollary 8.1.6. �

As a consequence it is easy to exhibit maps of the form Tr − AdV which are
k-positive but not (k + 1)-positive. Just take V with ‖V V ∗‖(k) = 1 < ‖V V ∗‖(k+1).
For more results along these lines see [5, 85, 94].

8.2 Notes

The treatment in the last chapter follows closely the paper [68]. For Proposition 8.1.3
see [81]. However, for k-positive maps of the form Tr − AdV the results had been
obtained earlier by Chruscinski and Kossakowski [10]. Corollary 8.1.6 is due to
Johnston and Kribs [32], where one also can find a proof of the Ky Fan maximum
principle, Lemma 8.1.8. For further study of norms and the relation to operator
spaces see [33].



Appendix

In this appendix we collect a few basic results which are needed in the text. They
are on topologies on B(H), tensor products, and an extension theorem for linear
functionals which are positive on a cone.

A.1 Topologies on B(H)

In addition to the norm topology we shall come across two topologies on B(H), the
strong and weak topologies. Their definitions are as follows. The strong topology
has neighborhood basis around a ∈ B(H) given by the sets

{
b ∈ B(H) : ‖bξi − aξi‖ < ε, ξ1, . . . , ξn ∈ H

}
.

The weak topology has neighborhood basis around a ∈ B(H) given by the sets
{
b ∈ B(H) : ∣∣(bξi, ηi) − (aξi, ηi)

∣∣< ε, ξ1, . . . , ξn, η1, . . . , ηn ∈ H
}
.

We refer the reader to Chap. 5 in [38] for the properties of the strong and weak
topologies. We now list with references to [38] in brackets some of the main results
we shall need.

A1.1 (5.1.2) The weak and strong closures of a convex subset of B(H) coincide.
If particular, a unital C∗-algebra is a von Neumann algebra if it is weakly closed, or
equivalently if it is strongly closed.

A1.2 (5.1.3) The unit ball in B(H) is weakly compact.

A1.3 (5.1.4) If (aα) is a monotone increasing net of self-adjoint operators in B(H)

with aα ≤ k1 for some k > 0 for all α, then (aα) is strongly convergent to a self-
adjoint operator a, and a is the least upper bound for (aα).

For us the last result is very important for going from the finite dimensional case
to infinite dimensions. Many properties of positive maps can be extended to infinite
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dimensions from the finite dimensional case, by considering eαφeα for φ : B(K) →
B(H), or similarly by considering φ(eα · eα) if φ : B(K) → B(H) where (eα) is
an increasing net of finite dimensional projections converging strongly to 1.

A positive map φ : A → B(H) with A a von Neumann algebra is said to be
normal if for each net (aα) in A as in Sect. A.1 we have φ(aα) → φ(a) strongly. In
particular if ω : A →C is a state we have the following theorem.

A1.4 (7.1.2) The following conditions on a state ω on a von Neumann algebra A

acting on a Hilbert space H are equivalent:

(i) ω =∑∞
i=1 ωξi

with
∑

i ‖ξi‖2 = 1 an orthogonal family of vectors in H .
(ii) ω =∑∞

1 ωηi
with ηi ∈ H ,

∑
i ‖ηi‖2 = 1.

(iii) ω is weakly continuous on the unit ball of A.
(iv) ω is strongly continuous on the unit ball of A.
(v) ω is normal.

It follows that a positive map φ : A → B(K) is normal if and only if φ is weakly con-
tinuous on the unit ball of A. Concerning the norm topology we have the following
result on the convex hull of the unitary operators in a C∗-algebra—the Russo-Dye
theorem, see [65] or (10.5.4).

A1.5 Let A be a unital C∗-algebra. Then the convex hull of the unitary operators
in A is norm dense in the unit ball of A.

Let A be an operator system and as before, B(A,H) the bounded linear maps of
A into B(H). Then the BW-topology (BW stands for bounded-weak) on B(A,H)

is the topology, where a bounded net (φα) in B(A,H) converges to φ ∈ B(A,H) if
φα(a) → φ(a) weakly for each a ∈ A.

Theorem A.1.1 With the above notation let A1 denote (resp. B(H)1) the unit ball
of A (resp. B(H)). Let

S = {φ ∈ B(A,H) : ‖φ‖ ≤ 1
}
.

Then S is compact in the BW-topology.

Proof Let X =∏a∈A1
B(H)1a , where B(H)1a = B(H)1, be the product space of

B(H)1 indexed by A1. By the Tychonoff theorem X is compact in the product
topology when B(H)1 is given the weak topology, so is weakly compact. Consider
the map S → X defined by

φ → φ′ = (φ(a)
) ∈ X,

where φ(a) is the ath coordinate of φ′. By definition of the BW-topology and the
product topology the map φ → φ′ is a homeomorphism of S onto its image S′ ⊂ X.
To show S is compact it follows from the compactness of X that it remains to show
S′ is closed in X. So let ψ ′ be a limit point of S′ in X. We must show there exists
φ ∈ S such that φ′ = ψ ′. Let ψ be the map of A1 into X such that ψ(a) = ψ ′(a)
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for a ∈ A1. Since A1 spans A, ψ can be extended linearly to a map φ : A → B(H).
To show φ ∈ B(A,H) we must show that φ is single valued and linear, hence to
show that if ai ∈ A1, αi ∈ C, i = 1, . . . , n, and

∑
i αiai = 0, then

∑
αiφ(ai) = 0.

For this let ρ be a normal state on B(H) and ε > 0. Let c = 1 +∑i |αi |. Since ψ ′
was a limit point of S′, and ψ ′(a) = φ(a) for a ∈ A1, there exists τ ∈ S such that
|ρ(τ(ai) − φ(ai))| < ε/c for all i. Then since

∑
αiai = 0, and τ is linear,

∣∣∣∣ρ
(∑

i

αiφ(ai)

)∣∣∣∣=
∣∣∣∣ρ
(∑

i

αiφ(ai)

)
−
∑

αiτ (ai)

∣∣∣∣< ε.

Since the normal states separate B(H), and ε is arbitrary
∑

i αiφ(ai) = 0. Thus
φ ∈ S, and ψ ′ = φ′ ∈ S′, so S′ is closed, proving the theorem. �

This proof is based on a more general result in [37]. Note that with H = C, the
above theorem reduces to the well known result that the state space of A is w∗-
compact.

A.2 Tensor Products

Let K and H be Hilbert spaces, and let (ξi)i∈I , I an index set, be an orthonormal
basis for K . Let Hi = H for i ∈ I , and let H̃ = ⊕i∈IHi be the Hilbert space direct
sum of the Hi . Let ξ =∑i∈I αiξi ∈ K and η ∈ H . Define the product vector ξ ⊗η ∈
H̃ by

ξ ⊗ η = (αiη)i∈I .

Then

‖ξ ⊗ η‖2 =
∑

|αi |2‖η‖2 = ‖ξ‖2‖η‖2,

so ξ ⊗ η is well defined. We define the algebraic tensor product of K and H as the
linear span of all product vectors as above, and denote by K ⊗ H the completion
in H̃ . We define an inner product on product vectors by

(ξ ⊗ η,ψ ⊗ μ) = (ξ,ψ)(η,μ), ξ,ψ ∈ K, η,μ ∈ H,

and extend it bilinearly to K ⊗ H . Thus K ⊗ H is a Hilbert space. If a ∈ B(K), b ∈
B(H) we let a ⊗ b be the operator on K ⊗ H defined by

a ⊗ b(ξ ⊗ η) = aξ ⊗ bη.

We let products and adjoints be given by coordinate action, i.e.

(a ⊗ b)(c ⊗ d) = ac ⊗ bd, a, c ∈ B(K), b, d ∈ B(H),

(a ⊗ b)∗ = a∗ ⊗ b∗.
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It follows that the linear span of all operators a ⊗ b is a ∗-subalgebra of B(K ⊗ H).
Its weak closure is the von Neumann algebra denoted by B(K) ⊗ B(H).

If (ηj )j∈J is an orthonormal basis for H , then (ξi ⊗ ηj )(i,j)∈I×J is an orthonor-
mal basis for K ⊗ H . One can then use this to show B(K) ⊗ B(H) = B(K ⊗ H).

Assume now K is finite dimensional; let n = dimK . Then B(K) ∼= Mn—the
complex n×n-matrices. Let (eij) be a complete set of matrix units for B(K), 1 ≤ i,
j ≤ n, so

∑
eii = 1, eijekl = δjkeil. Let a = (aij) =∑aijeij ∈ B(K). Then

a ⊗ b =
∑

aijeij ⊗ b.

If ei = (0, . . . ,0,1,0, . . . ,0) is the unit vector with 1 in the ith coordinate, then
(e1, . . . , en) is an orthonormal basis for K with eijek = δjkei . Thus if ξ =∑ ξiei ∈ K

and η ∈ H we get

a ⊗ b(ξ ⊗ η) =
(

(aij)

n∑

k=1

ξkek

)

⊗ bη

=
∑

aijξj ej ⊗ bη

=
(∑

a1j ξj e1 ⊗ bη, . . . ,
∑

anj ξj en ⊗ η
)
.

This can be written as matrices, where we now write the vectors as column vectors.
We then get

a ⊗ b(ξ ⊗ η) =
⎛

⎜
⎝

a11b · · · a1nb
...

...

an1b · · · annb

⎞

⎟
⎠

⎛

⎜
⎝

ξ1bη
...

ξnbη

⎞

⎟
⎠ .

Hence a ⊗ b is the n × n block matrix (aijb) over B(K), so that

B(K) ⊗ B(H) = Mn

(
B(H)

)
.

Since the flip a⊗b → b⊗a defines an isomorphism of B(K)⊗B(H) onto B(H)⊗
B(K) we can, if dimH = m < ∞, also consider a ⊗b with b = (bkl) ∈ B(H) as the
block matrix (abkl) ∈ Mm(B(K)). This will be done on some occasions.

A.3 An Extension Theorem

Results of the Hahn-Banach type, where one extends a linear functional or map
from a subspace to a larger space, are of crucial importance in functional analysis.
We shall need the following result of Krein, see [53, Ch. 1, §3, Theorem 2].

Theorem A.3.1 Suppose K is a convex cone in a real locally convex space X.
Assume K contains interior points, and let M be a subspace of X which contains
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at least one interior point of K . Then every linear functional f (x) on M which
is positive on K ∩ M can be extended to a linear functional F(x) on X which is
positive on K .
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