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  Abbreviations  

  DCM    Dynamic causal model   
  EPI    Echo planar imaging   
  fMRI     Functional magnetic  resonance 

imaging   
  FFX    Fixed-effects analysis   
  FPR    False-positive rate   
  FWE    Family-wise error   
  FWHM     Full width at half maximum   
  GLM    General linear model   
  HRF     Haemodynamic response function   
  MIP    Maximum intensity projection   
  PET    Positron emission tomography   
  RFT    Random  fi eld theory   
  RFX    Random-effects analysis   
  SPM     Statistical parametric map(ping)   
  SVC    Small volume correction   
  TR    Time to repeat   
  VBM    Voxel-based morphometry         

    6.1   Introduction 

 Statistical parametric mapping (SPM) is an estab-
lished statistical data analysis framework through 
which regionally speci fi c effects in structural and 
functional neuroimaging data can be character-
ised. SPM is also the name of a free and open 
source academic software package through which 
this framework (amongst other things) can be 
implemented. In this chapter, we will give an 
overview of the underlying concepts of the SPM 
framework and will illustrate this by describing 
how to analyse a typical block-design functional 
MRI (fMRI) data set using the SPM software. An 
exhaustive description of SPM would be beyond 
the scope of this introductory chapter; for more 
information, we refer interested readers to 
 Statistical Parametric Mapping: The Analysis of 
Functional Brain Images  (Friston et al.  2007  ) . 

 The aim of the SPM software 1  is to communicate 
and disseminate neuroimaging data analysis meth-
ods to the scienti fi c community. It is developed by 
the SPM co-authors, who are associated with the 
Wellcome Trust Centre for Neuroimaging, including 
the Functional Imaging Laboratory, UCL Institute of 
Neurology. For those interested, a history of SPM 
can be found in a special issue of the NeuroImage 
journal, produced to mark 20 years of fMRI 
(Ashburner  2011  ) . In brief, SPM was created by Karl 
Friston in approximately 1991 to carry out statistical 
analysis of positron emission tomography (PET) 
data. Since then, the SPM project has evolved to 
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 support newer imaging modalities such as functional 
magnetic resonance imaging (fMRI) and to incorpo-
rate constant development and improvement of exist-
ing methods. The second half of the last decade saw 
an emphasis on the development of methods for the 
analysis of MEG and EEG (M/EEG) data, giving 
rise to the current version of SPM, SPM8. 

 The SPM framework is summarised in 
Fig.  6.1 . The analysis pipeline starts with a raw 
imaging data sequence at the top left corner of 
the  fi gure and ends with a statistical parametric 
map (also abbreviated to SPM) showing the 
signi fi cance of regional effects in the bottom right 
corner. The SPM framework can be partitioned 
into three key components, all of which will be 
described in this chapter: 

   Preprocessing, or spatially transforming data: • 
images are spatially aligned to each another to 
correct for the effect of subject movement dur-
ing scanning (realignment/motion correction), 
then spatially normalised into a standard space 
and smoothed.  
  Modelling the preprocessed data: parametric • 
statistical models are applied at each voxel (a 
 vo lume  el ement, the three-dimensional exten-
sion of a pixel in 2D) of the data, using a gen-
eral linear model (GLM) to describe the data 
in terms of experimental effects, confounding 
effects and residual variability.  
  Statistical inference on the modelled data: • 
classical statistical inference is used to test 
hypotheses that are expressed in terms of 

Statistical parametric map (SPM)Image time-series Design matrixKernel

Realignment Smoothing General linear model

Parameter estimates

Template

Random
field theory

p < 0.05

Normalisation
Statistical
inference

  Fig. 6.1    Flowchart of the SPM processing pipeline, start-
ing with raw imaging data and ending with a statistical 
parametric map ( SPM ). The raw images are motion- 
corrected, then subject to non-linear warping so that they 
match a template that conforms to a standard anatomical 
space. After smoothing, the general linear model is 
employed to estimate the parameters of a model encoded 

by a design matrix containing all possible predictors of 
the data. These parameters are then used to derive univari-
ate test statistics at every voxel; these constitute the SPM. 
Finally, statistical inference is performed by assigning  p  
values to unexpected features of the SPM, such as high 
peaks or large clusters, through the use of the random  fi eld 
theory       
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GLM parameters. This results in an image in 
which the voxel values are statistics: this is a 
statistical parametric map (SPM). For such 
classical inferences, a multiple comparisons 
problem arises from the application of mass-
univariate tests to images with many voxels. 
This is solved through the use of random  fi eld 
theory (RFT), resulting in inference based on 
corrected  p  values.    
 In this chapter, we will illustrate the concepts 

underpinning SPM through the analysis of an 
actual fMRI data set. The data set we will use was 
the  fi rst ever fMRI data set collected and analy-
sed at the Functional Imaging Laboratory (by 
Geraint Rees, under the direction of Karl Friston) 
and is locally known as the Mother of All 
Experiments. The data set can be downloaded 
from the SPM website, 2  allowing readers to 
reproduce the analysis pipeline that we will 
describe on their own computers. (For more 
detailed step-by-step instructions to this analysis, 
we refer readers to the SPM manual. 3    ) The pur-
pose of the experiment was to explore equipment 
and techniques in the early days of fMRI. The 
experiment consisted of a single session in a sin-
gle subject; the subject was presented with alter-
nating blocks of rest and auditory stimulation, 
starting with a rest block. The auditory stimula-
tion consisted of binaurally, bi-syllabic words 
presented at a rate of 60 words/min. Ninety-six 
whole brain echo planar imaging (EPI) scans 
were acquired on a modi fi ed 2 T Siemens 
MAGNETOM Vision System, with a repetition 
time (TR) of 7 s. Each block lasted for six scans, 
and there were 16 blocks in total, each lasting for 
42 s. Each scan consisted of 64 contiguous slices 
(64 × 64 × 64, 3 × 3 × 3 mm 3  voxels). A structural 
scan was also acquired prior to the experiment 
(256 × 256 × 54, 1 × 1 × 3 mm 3  voxels). 

 Acquisition techniques have tremendously 
improved since this data set was acquired – a TR 
of 7 s seems very slow in comparison with today’s 
standards – but the analysis pipeline is identical 
to that of more recent data sets and  fi ts nicely 
with the purpose of illustration in this chapter. 

While analysing this block, or epoch, designed 
experiment, we will point out the few steps that 
differ in the analysis of event-related data sets. 

 After an overview of the SPM software, we 
will describe in the next sections the three key 
components of an SPM analysis, namely, (i) spa-
tial transformations, (ii) modelling and (iii) sta-
tistical inference.  

    6.2   SPM Software Overview 

    6.2.1   Requirements 

 The SPM software is written in MATLAB 4  (The 
MathWorks, Inc.), a high-level technical comput-
ing language and interactive environment. SPM is 
distributed under the terms of the GNU General 
Public Licence. The software consists of a library 
of MATLAB M- fi les and a small number of C- fi les 
(which perform some of the most computationally 
intensive operations) and will run on any platform 
supported by MATLAB: 32- and 64-bit Microsoft 
Windows, Mac OS and Linux. This means that a 
prospective SPM user must  fi rst install commer-
cially available software MATLAB. More 
speci fi cally, SPM8 requires either MATLAB ver-
sion 7.1 (R14SP3, released in 2005) or any more 
recent version (up to 7.13 (R2011b) at time of 
writing). Only core MATLAB software is required; 
no extra MATLAB toolboxes are needed. 

 A standalone version of SPM8, compiled 
using the MATLAB Compiler, is also available 
from the SPM development team upon request. 
This allows the use of most of the SPM functions 
without the need for a MATLAB licence (although 
this comes at the expense of being able to modify 
the software).  

    6.2.2   Installation 

 The installation of SPM simply consists of 
unpacking a ZIP archive from the SPM website 
on the user computer and then adding the root 

   2     http://www. fi l.ion.ucl.ac.uk/spm/data/auditory/      

   3    http://www. fi l.ion.ucl.ac.uk/spm/doc/manual.pdf         4     http://www.mathworks.com/      
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SPM directory to the MATLAB path. If needed, 
more details on the installation can be found on 
the SPM wiki on Wikibooks. 5  

 SPM updates (which include bug  fi xes and 
improvements to the software) take place regu-
larly (approximately every 6 months) and are 
advertised on the SPM mailing list. 6  SPM is a 
constantly evolving software package, and we 
therefore recommend that users either subscribe 
to the mailing list or check the SPM website so 
that they can bene fi t from ongoing developments. 
Updates can be easily installed by unpacking 
the update ZIP archive on top of the existing 
installation so that newer  fi les overwrite exist-
ing ones. We would, however, advise users not 
to install updates mid-analysis (unless a speci fi c 
update is needed), to ensure consistency within 
an analysis.  

    6.2.3   Interface 

 To start up SPM, simply type  spm  in the MATLAB 
command line and choose the modality in which 
you wish to use SPM in the new window that 
opens. A shortcut is to directly type  spm fmri . 
The SPM interface consists of three main win-
dows, as shown in Fig.  6.2 . The Menu window 
(1) contains entry points to the various functions 
contained in SPM. The Interactive window (2) 
is used either when SPM functions require 
 additional information from the user or when an 
additional function-speci fi c interface is available. 
The Graphics window (3) is the window in which 
results and  fi gures are shown. Additional win-
dows can appear, such as the Satellite Graphics 
window (4), in which extra results can be dis-
played, or the Batch Editor window (5). SPM can 
run in batch mode (in which several SPM func-
tions can be set up to run consecutively through a 
single analysis pipeline), and the Batch Editor 
window is the dedicated interface for this. The 
window can be accessed through the ‘Batch’ but-
ton in the Menu window.  

 The Menu window is subdivided into three 
sections, which re fl ect the key components of an 
SPM analysis: spatial preprocessing, modelling 
and inference.  

    6.2.4   File Formats 

 In general, the  fi rst step when using SPM is to 
convert the raw data into a format that the soft-
ware can read. Most MRI scanners produce image 
data that conform to the DICOM (Digital Imaging 
and Communications in Medicine) standard. 7  
The DICOM format is very  fl exible and power-
ful, but this comes at the expense of simplicity. 
As a consequence, the neuroimaging community 
agreed in 2004 to use a simpler image data for-
mat, the NIfTI (Neuroimaging Informatics 
Technology Initiative) 8  format, to facilitate 
interoperability between fMRI data analysis soft-
ware. The Mayo Clinic Analyze format was used 
prior to this but had several shortcomings which 
the NIfTI format overcame (including variability 
in the format versions used by different software 
packages which caused uncertainty about the lat-
erality of the brain). 

 A NIfTI image  fi le can consist either of two 
 fi les, with the extensions  .hdr  and  .img , or a single 
 fi le, with the extension  .nii . The two versions can 
be used in SPM interchangeably (note that you 
can also come across a compressed version of 
these  fi les with a  .gz  extension; these are not sup-
ported in SPM and will need to be uncompressed 
outside the software before use). The  header  ( .hdr ) 
 fi le contains meta-information about the data, 
such as the voxel size, the number of voxels in 
each direction and the data type used to store val-
ues. The  image  ( .img )  fi le contains the raw 3D 
array of voxel values. A  fi le with the  .nii  extension 
contains all of this information in one  fi le. A key 
piece of information stored in the header is the 
 voxel-to-world mapping : this is a spatial transfor-
mation that maps from the stored data coordinates 
(voxel column  i , row  j , slice  k ) into a real-world 

   5     http://en.wikibooks.org/wiki/SPM/      

   6    http://www. fi l.ion.ucl.ac.uk/spm/support/      

   7     http://dicom.nema.org/      

   8    http://nifti.nimh.nih.gov/      
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  Fig. 6.2    Interface of the SPM8 software for the fMRI modality: ( 1 ) Menu window, ( 2 ) Interactive window, ( 3 ) Graphics 
window, ( 4 ) Satellite Results window and ( 5 ) Batch editor interface       
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position ( x ,  y ,  z mm ) in space. The real-world posi-
tion can be in either a standardised space such as 
Talairach and Tournoux space or Montreal 
Neurological Institute (MNI) space or a subject-
speci fi c space based on scanner coordinates. 

 FMRI data can be considered as 4D data – a 
time series of 3D data – and can therefore be 
stored as a single  fi le in the NIfTI format where 
the  fi rst three dimensions are in space and the 
fourth is in time. However, use of multiple 3D 
(spatial)  fi les rather than a single 4D  fi le is rec-
ommended with SPM for the time being because 
the software handles them more ef fi ciently. 

 DICOM image data can be converted into NIfTI 
 fi les in SPM using the ‘DICOM Import’ button in 
the Menu window. This is usually a straightforward 
process. If needed, however, NIfTI data obtained 
from the  fi le converter of any other software pack-
age (such as the LONI Debabeler 9  or dcm2nii 10 ) can 
also be used in SPM; the output NIfTI images are 
interoperable between software packages. 

 The auditory data set used in this chapter has 
already been converted from the DICOM format. 
We have 96 pairs of fMRI  fi les, namely  fM00223_*.
{hdr,img} , and one pair of structural  fi les, namely 
 sM00223_002.{hdr,img} . These images are actu-
ally stored in the Analyze format because they were 
acquired prior to 2004; SPM8 can read Analyze for-
mat as well as NIfTI format but will save new 
images in the NIfTI format. 

 Images can be displayed in SPM using the 
‘Display’ and ‘Check Reg’ buttons from the 
Menu window. The  fi rst function displays a sin-
gle image and some information from its header, 
while the second displays up to 15 images at the 
same time. This can be used to check the accu-
racy of alignment, for example.   

    6.3   Spatial Transformations 

 A number of preprocessing steps must be applied 
to the fMRI data to transform them into a form 
suitable for statistical analysis. Most of these 

steps correspond to some form of image registra-
tion, and Fig.  6.3  illustrates a typical preprocess-
ing pipeline. There is no universal pipeline to use 
in all circumstances – options depend on the data 
themselves and the aim of the analysis – but the 
one presented here is fairly standard.  

 The  fi rst preprocessing step is to apply a 
motion correction algorithm to the fMRI data 
(this is the  realignment function ). This may even-
tually include some form of distortion correction. 
A structural MRI of the same subject is often 
acquired and should be brought into alignment 
with the fMRI data in a second step ( coregister 
function ) .  The warps needed to spatially norma-
lise the structural image into some standard space 
should then be estimated ( normalise function ) 
and applied to the motion-corrected functional 
images to normalise them into the same standard 
space ( write normalise function ). The  fi nal step 
will typically be to smooth the functional data 
spatially by applying a Gaussian kernel to them 
( smooth function ). 

 The type of spatial  transformations  that should 
be applied to data depends on whether the data to 
be transformed all come from the same subject 
( within-subject  transformations) or from multiple 
different subjects ( between-subject  transforma-
tions). The choice of  objective function  (the crite-
rion to assess the quality of the registration) used 
to estimate the deformation also depends on the 
modality of data in question. Realignment is a 
 within-subject ,  within-modality  registration, 
while coregistration is a  within-subject ,  between-
modality  registration. Normalisation is a  between-
subject  registration. Within-subject registration 
will generally involve a  rigid body  transforma-
tion, while a between-subject registration will 
need estimation of af fi ne or non-linear warps; 
this is because a more complex transformation is 
required to warp together the anatomically vari-
able brains of different subjects than to warp 
together different images of the same brain. 
A criterion to compare two images of the same 
modality can be the sum of squares of the differ-
ences of the two images, while the comparison 
between two images of different modalities will 
involve more advanced criteria. An  optimisation 
algorithm  is then used in the registration step to 

   9     http://loni.ucla.edu/Software/Debabeler      

   10     http://www.cabiatl.com/mricro/mricron/dcm2nii.html      

http://loni.ucla.edu/Software/Debabeler
http://www.cabiatl.com/mricro/mricron/dcm2nii.html


576 fMRI Data Analysis Using SPM

maximise (or minimise) the objective function. 
Once the parameters have been estimated, the tar-
get image can be transformed to match the source 
image by resampling the data using an  interpola-
tion  scheme. This step is referred to as  reslicing  
when dealing with rigid transformations. 

    6.3.1   Data Preparation 

 Before preprocessing an fMRI data set, the  fi rst 
images acquired in a session should be discarded. 
This is because much of the very large signal 
change that they contain is due to the time it takes 
for magnetisation to reach equilibrium. This can 
be easily seen by looking at the  fi rst few images 
at the beginning of the time series using the dis-
play function. Some scanners might handle these 
‘ dummy scans ’ automatically by acquiring a few 
scans before the real start of the acquisition, but 
this should be checked. In our example data set, 
we are going to discard the  fi rst 12 scans, leav-
ing us with 84 scans. This is more than neces-
sary here but it preserves the simplicity of the 

experimental design as it corresponds to one 
complete cycle of auditory stimulation and rest. 

 It is good practice to manually reorient the 
images next so that they roughly match the nor-
malised space that SPM uses (MNI space). This 
will help the convergence of the registration algo-
rithms used in preprocessing; the algorithms use 
a local optimisation procedure and can fail if the 
initial images are not in rough alignment. In prac-
tice, the origin ( 0 ,  0 ,  0  mm) should be within 5 cm 
of the anterior commissure (a white matter track 
which connects the two hemispheres across the 
midline), and the orientation of the images should 
be within about 20° of the SPM template. To 
check the orientation of images, display one 
image of the time series using the ‘Display’ but-
ton and manually adjust their orientation using 
the translation (right, forward, up) and rotation 
(pitch, roll, yaw) parameters in the bottom left 
panel until the prerequisites are met. To actually 
apply the transformation to the data, you need to 
press the ‘Reorient images’ button and select all 
the images to reorient. With the auditory data set, 
the structural image is already correctly  orientated, 
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  Fig. 6.3    Flowchart    of a standard pipeline to preprocess 
fMRI data. After realignment ( 1 ) to correct for movement, 
structural and functional images are coregistered ( 2 ) then 

normalised ( 3 ,  4 ) to conform to a standard anatomical 
space (e.g. MNI space) before being spatially smoothed 
using a Gaussian kernel ( 5 )       
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but the functional scans should be translated by 
about    [ 0 , − 31 , − 36 ] mm. See Fig.  6.4  for a screen-
shot of the ‘Display’ interface illustrating how to 
change the origin of a series of images.   

    6.3.2   Realignment 

 As described above, the  fi rst preprocessing step 
is to realign the data to correct for the effects of 
subject movement during the scanning session. 

Despite restraints on head movement, coopera-
tive subjects still show displacements of up to 
several millimetres, and these can have a large 
impact on the signi fi cance of the ensuing infer-
ence; in the unfortunate situation where a sub-
ject’s movements are correlated with the 
experimental task, spurious activations can be 
observed if no correction was performed prior to 
statistical analysis. Alternatively, movements 
correlated with responses to an experimental 
task can in fl ate unwanted variance components 

  Fig. 6.4    Interface of the 
‘Display’ option. The 
location of the crosshair, in 
 blue , is indicated in the 
 bottom left panel , both in mm 
and voxel. Here, a translation 
of [0, −31, −36] mm allows 
to set the origin of the image 
([0, 0, 0] mm) near the 
anterior commissure       
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in the voxel time series and reduce statistical 
power. 

 The objective of realignment is to determine 
the rigid body transformation that best maps the 
series of functional image volumes into a com-
mon space. A rigid body transformation can be 
parameterised by six parameters in 3D: three 
translations and three rotations. The realignment 
process involves the estimation of the six param-
eters that minimise the mean squared difference 
between each successive scan and a reference 
scan (usually the  fi rst or the average of all scans 
in the time series) (Friston et al.  1995  ) . 

 Unfortunately, even after realignment, there 
may still be some motion-related artefacts 
remaining in the functional data (Friston et al. 
 1996b  ) ; this is mainly because the linear, rigid 
body realignment transformation cannot capture 
non-linear effects. These non-linear effects can 
be the consequence of subject movement 
between slice acquisition, interpolation artefacts, 
magnetic  fi eld inhomogeneities or spin-excita-
tion history effects. One solution is to use the 
movement parameter estimates as covariates of 
no interest during the modelling of the data. This 
will effectively remove any signal that is corre-
lated with functions of the movement parameters 
but can still be problematic if the movement 
effects are correlated with the experimental 
design. An alternative option is to use the 
‘Realign and Unwarp’ function (Andersson et al. 
 2001  ) . The assumption in this function is that the 
residual movement variance can be largely 
explained by susceptibility-by-movement inter-
action: the non-uniformity of the magnetic  fi eld 
is the source of geometric distortions during 
magnetic resonance acquisition, and the amount 
of distortion depends partly on the position of 
the head of the subject within the magnetic  fi eld; 
hence, large movements will result in changes in 
the shape of the brain in the images which can-
not be captured by a rigid body transformation. 
The ‘Realign and Unwarp’ function uses a gen-
erative model that combines a model of geomet-
ric distortions and a model of subject motion to 
correct images. The ‘Realign and Unwarp’ func-
tion can be combined with the use of  fi eld maps 
(see the FieldMap toolbox), to further correct 
those geometric distortions introduced during 
the echo planar imaging (EPI) acquisition 

(Jezzard and Balaban  1995  ) . The resulting cor-
rected images will have less movement-related 
residual variance and better matching between 
functional and structural images than will the 
uncorrected images. 

 For the auditory data set, functional data 
are motion-corrected using ‘Realign: Estimate 
and Reslice’. Data have to be entered session 
by session to account for large subject move-
ments between sessions that the algorithm is 
not expecting. With regard to the reslicing, it is 
suf fi cient to write out only the mean image. The 
output of the estimation will be encoded in the 
header of each image through modi fi cation of 
the original voxel-to-world mapping. It is best 
to reslice the data just once at the end of all the 
preprocessing steps; this ensures that all the 
af fi ne transformations are taken into account in 
one step, preventing unnecessary interpolation 
of the data. The estimated movement param-
eters (see Fig.  6.5 ) are saved in a text  fi le in the 
same folder as the data with an ‘ rp_ ’ pre fi x and 
will be used later in the analysis.   

    6.3.3   Coregistration 

 Coregistration is the process of registering two 
images of the same or different modalities from 
the same subject; the intensity pattern might dif-
fer between the two images, but the overall shape 
remains constant. Coregistration of single subject 
structural and functional data  fi rstly allows func-
tional results to be superimposed on an anatomi-
cal scan for clear visualisation. Secondly, spatial 
normalisation is more precise when warps are 
estimated from a detailed anatomical image than 
from functional images; if the functional and 
structural images are in alignment, warps esti-
mated from the structural image can then be 
applied to the functional data. 

 As with realignment, coregistration is per-
formed by optimising the six parameters of a 
rigid body transformation; however, the objective 
function is different as image intensities cannot 
be compared directly as they were with the sum 
of squared differences. Instead, the similarity 
measures that are used rely on a branch of 
applied mathematics called  information theory  
(Collignon et al.  1995 ; Wells et al.  1996  ) . The 



60 G. Flandin and M.J.U. Novak

most  commonly used similarity measure is called 
 mutual information ; this is a measurement of 
shared information between data sets, based on 
joint probability distributions of the intensities of 
the images. The mutual information is assumed 
to be maximal when the two images are perfectly 
aligned and will serve here as the objective func-
tion to maximise. 

 For the auditory data set, the structural image 
should be coregistered to the mean functional 
image (computed during realignment) using 
‘Coregister: Estimate’. Once again, there is no 
need to reslice at this stage; reslicing can be 
postponed until later to minimise interpolation 
steps. In the interface, the  reference  image (the 
target) is the mean functional image, while the 
 source  image is the structural image. Default 
parameters can be left as they are; they have 
been optimised over years and should satisfy 
most situations. The output of the algorithm will 
be stored in the header of the structural image by 
adjusting its voxel-to-world mapping. Figure  6.6  
shows the alignment of the two images after 
registration.   

    6.3.4   Spatial Normalisation 

 Spatial normalisation is the process of warping 
images from a number of individuals into a com-
mon space. This allows signals to be compared 
and averaged across subjects so that common 
activation patterns can be identi fi ed: the goal of 
most functional imaging studies. Even single 
subject analyses usually proceed in a standard 
anatomical space so that regionally speci fi c 
effects can be reported within a frame of refer-
ence that can be related to other studies (Fox 
 1995  ) . The most commonly used coordinate sys-
tem within the brain imaging community is the 
one described by Talairach and Tournoux  (  1988  ) , 
although new standards based on digital atlases 
(such as the Montreal Neurological Institute 
(MNI) space) are nowadays widespread 
(Mazziotta et al.  1995  ) . 

 The rigid body approach used previously 
when registering brain images from the same 
subject is not appropriate for matching brain 
images from different subjects; it is insuf fi ciently 
complex to deal with interindividual differences 
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  Fig. 6.5    Plot of the 
estimated movement 
parameters (three transla-
tions and three rotations) 
for the auditory data set as a 
function of time (or scan). 
Movements are small for 
this subject but we can still 
observe some slow drifts 
over time       
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in anatomy. More complex transformations (i.e. 
with more degrees of freedom) such as af fi ne or 
 non-linear transformations  are used instead. 
(Non-linear registration is also used when char-
acterising change in a subject’s brain anatomy 
over time, such as those due to growth, ageing, 
disease or surgical intervention.) 

 The normalisation deformation model has to 
be  fl exible enough to capture most changes in 
shape but must also be suf fi ciently constrained 
that realistic brain warps are generated;     a priori , 
we expect the deformation to be spatially smooth. 
This can be nicely framed in a Bayesian setting 
by adding a prior term to the objective function to 
incorporate prior information or add constraints 
to the warp. For instance, consider a deformation 
model in which each voxel is allowed to move 
independently in three dimensions. There would 
be three times as many parameters in this model 
than there are voxels. To deal with this, the defor-
mation parameters need to be regularised; the 
prior term enables this. Priors become more 
important as the number of parameters specify-
ing the mapping increases, and they are central to 
high-dimensional non-linear warping schemes. 
The approach taken in SPM is to parameterise the 
deformations by a linear combination of smooth, 
continuous basis functions, such as low-frequency 
cosine transform basis functions (see Fig.  6.7 ) 
(Ashburner and Friston  1999  ) . These models 

have a relatively small number of parameters, 
about 1,000 (although this is of course large in 
comparison with 6 parameters for a rigid body 
transformation and 12 for an af fi ne transforma-
tion), and allow a better description of the 
observed structural changes whilst providing rea-
sonably smoothed deformations. The optimisa-
tion procedure relies on an iterative local 
optimisation algorithm and needs reasonable 
starting estimates (hence the reorientation of the 
images at the very beginning of the analysis 
pipeline). This is the model underlying the 
‘Normalise’ button in SPM. For this function, the 
user should select a template image (in MNI 
space) in the same modality as the experimental 
image to be normalised.  

 In practice, better alignment can be achieved 
by matching grey matter with grey matter and 
white matter with white matter. The process of 
classifying voxels into different tissue types is 
called  segmentation , and an approach combining 
segmentation and normalisation will provide bet-
ter results than normalisation alone. This is the 
strategy implemented via the ‘Segment’ button in 
SPM; it is referred to as  Uni fi ed segmentation  
(Ashburner and Friston  2005  ) . Uni fi ed 
 segmentation uses a generative model which 
involves (i) a mixture of Gaussians to model 
intensity distributions, (ii) a bias correction com-
ponent to model smooth intensity variations in 

  Fig. 6.6    Coregistered mean functional and structural images using mutual information. Some important dropouts in 
the functional data can be observed       
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space and (iii) a non-linear registration with tis-
sue probability maps, parameterised using the 
low-dimension approach described in the previ-
ous paragraph. 

 We will use the uni fi ed segmentation approach 
on the auditory data set. The segmentation of the 
structural image (using, by default, tissue proba-
bility maps of grey matter, white matter and cere-
brospinal  fl uid that can be found in the ‘ tpm ’ 
folder of the SPM installation) will generate a 
few  fi les: images with pre fi xes ‘ c1 ’ and ‘ c2 ’ are 
estimated maps of grey and white matter, respec-
tively, while the image with an ‘ m ’ pre fi x is the 
bias-corrected version of the structural image. 
Importantly, the estimated parameters of the 
deformation are saved in a MATLAB  fi le ending 
with ‘ seg_sn.mat ’. This  fi le can be used to apply 
the deformation, that is, to normalise the func-
tional images (as they are in the same space as the 
structural scan thanks to the coregistration step) 
with the ‘Normalise: Write’ button. A new set of 
84 images will be written to disk with a ‘ w ’ pre fi x 
(for warp). The same procedure can be applied to 
the bias-corrected structural scan in order to later 
superimpose the functional activations on the 

anatomy of the subject. In both instances, some 
parameters have to be updated: the voxel size of 
the new set of images is preferably chosen in 
relation to the initial resolution of the images, for 
example, to the nearest integer. Here we used [ 3 , 
 3 ,  3 ] for the functional data and [ 1 ,  1 ,  3 ] for the 
structural scan. Also, the interpolation scheme 
can be changed to use higher-order interpolation 
(the default is trilinear), such as a fourth-degree 
B-spline (Unser et al.  1993  ) . The coordinates of 
locations within a normalised brain can now be 
reported as MNI coordinates in publications 
(Brett et al.  2002  ) . 

 On a  fi nal note, spatial normalisation may 
require some extra care when dealing with patient 
populations with gross anatomical pathology, 
such as stroke lesions. This can generate a bias in 
the normalisation as the generative model is 
based on anatomically ‘normal’ data. Solving 
this usually involves imposing constraints on the 
warping to ensure that the pathology does not 
bias the deformation of undamaged tissue, for 
example, by decreasing the precision of the data 
in the region of pathology so that more impor-
tance is afforded to the anatomically normal pri-
ors. This is the principle of lesion masking (Brett 
et al.  2001  ) . There is evidence, however, that the 
Uni fi ed Segmentation approach is actually quite 
robust in the presence of focal lesions (Crinion 
et al.  2007 ; Andersen et al.  2010  ) .  

    6.3.5   Spatial Smoothing 

 Spatial smoothing consists of applying a spatial 
low-pass  fi lter to the data. Typically, this takes the 
form of a 3D Gaussian kernel, parameterised by its 
full width at half maximum (FWHM) along the 
three directions. In other words, the intensity at 
each voxel is replaced by a weighted average of 
itself and its neighbouring voxels, where the 
weights follow a Gaussian shape centred on the 
given voxel. The underlying mathematical opera-
tion is a convolution, and the effect of smoothing 
with different kernel sizes is illustrated in Fig.  6.8 .  

 It might seem counterintuitive to reduce the 
resolution of fMRI data through smoothing, but 
there are four reasons for doing this. Firstly, 

  Fig. 6.7    Cosine transformation basis functions (in 2D) 
used by normalisation and uni fi ed segmentation. They 
allow deformations to be modelled with a relatively small 
number of parameters. The basis function registration 
estimates the global shapes of the brains, but is not able to 
account for high spatial frequency warps       
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smoothing increases the signal-to-noise ratio in 
the data. The matched  fi lter theorem stipulates 
that the optimal smoothing kernel corresponds to 
the size of the effect that one anticipates. A ker-
nel similar in size to the anatomical extent of the 
expected haemodynamic response should there-
fore be chosen. Secondly, thanks to the central 
limit theorem, smoothing the data will render 
errors, or noise, more normally distributed, and 
will validate the use of inference based on para-
metric statistics. Thirdly, as we shall see later, 
when using the random  fi eld theory to make 
inference about regionally speci fi c effects, there 
are speci fi c assumptions that require smoothness 
in the data to be substantially greater than the 
voxel size (typically, as a rule of thumb, about 
three times the voxel size). Fourthly, small mis-
registration errors are inevitable in group studies; 
smoothing increases the degree of anatomical 
and functional overlap across subjects, reduces 
the effects of misregistration and thereby 
increases the signi fi cance of ensuing statistical 
tests. 

 In practice, there is no de fi nitive amount of 
smoothing that should be applied to any data set; 
choice of smoothing kernel depends on the reso-
lution of the data, the regions under investigation 
and single subject versus group analysis amongst 
other things. Commonly used FWHMs are 
between 6- and 12-mm isotropic. 

 For the auditory data set, we will smooth the 
84 normalised scans with a [ 6 ,  6 ,  6 ]-mm FWHM 
kernel to produce a new set of 84 images with an 
‘ s ’ pre fi x.   

    6.4   Modelling and Statistical 
Inference 

 Statistical parametric mapping is a voxel by 
voxel hypothesis testing approach through 
which regions that show a signi fi cant experi-
mental effect of interest are identi fi ed (Friston 
et al.  1991  ) . It relies upon the construction of 
statistical parametric maps (SPMs), which are 
images with values at each voxel that are, under 
the null hypothesis, distributed according to a 
known probability density function (usually the 
Student’s  t-  or  F -distributions). The parameters 
used to compute a standard univariate statisti-
cal test at each and every voxel in the brain are 
obtained from the estimation of a  general linear 
model  which partitions observed responses into 
 components of interest (such as the  experimental 
effect of interest), confounding factors (exam-
ples of such will be given later) and error (or 
‘noise’) (Friston et al.  1994a  ) . Hence, SPM is 
a  mass-univariate  approach: statistics are cal-
culated independently at each voxel. The  ran-
dom  fi eld theory  is then used to characterise 
the SPM and resolve the multiple comparisons 
problem induced by making inferences over a 
volume of the brain containing multiple voxels 
(Worsley et al.  1992,   1996 ; Friston et al.  1994b  ) . 
‘Unlikely’ topological features of the SPM, like 
activation peaks, are interpreted as regionally 
speci fi c effects attributable to the experimental 
manipulation. 

 In this section, we will describe the general 
linear model in the context of fMRI time series. 
We will then estimate its parameters using the 

  Fig. 6.8    Axial slice of a functional MRI scan smoothed 
with 3D Gaussian kernels of different isotropic FHWMs. 
From  top to bottom  and  left to right , these show the 
effects of smoothing with kernels of the following 
FWHMs: 0, 2, 4, 6, 8, 10, 12, 14 and 16 mm       
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 maximum likelihood method  and describe how to 
test hypotheses by making statistical inferences 
on some of the parameter estimates by using 
 contrast . The resulting statistical parameters are 
assembled into an image: this is the SPM. The 
random  fi eld theory provides adjusted  p  values to 
control false-positive rate for the search volume. 

    6.4.1   The General Linear Model 

 After the spatial preprocessing of the fMRI data, 
we can assume that all data from one particular 
voxel are derived from the same part of the brain, 
and that in any single subject, the data from that 
voxel form a sequential time series. A time series 

selected from a (carefully chosen) voxel in the 
auditory data set is shown in Fig.  6.9a : variation 
in the response over time can be seen. There are 
84 values, or data points, or observations. The 
aim is now to de fi ne a generative model of these 
data. This involves de fi ning a prediction of what 
we might expect to observe in the measured 
BOLD signal given our knowledge of the acqui-
sition apparatus and the experimental design. 
Here, the paradigm consisted of alternating peri-
ods (or ‘blocks’) of rest and auditory stimulation, 
with each block lasting for six scans. We expect 
that a voxel in a brain region sensitive to auditory 
stimuli will show a response that alternates with 
the same pattern and would thus, in the absence 
of noise, look like the plot in Fig.  6.10a .   
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  Fig. 6.9    Predictors of an 
fMRI time series: ( a ) raw 
time series at a given voxel 
in the brain, ( b ) stimulus 
function convolved with the 
canonical haemodynamic 
response function, 
( c ) constant term modelling 
the mean whole brain 
activity, ( d ,  e ) the  fi rst two 
components of a discrete 
cosine basis set modelling 
slow  fl uctuations       
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656 fMRI Data Analysis Using SPM

 However, we also know that with fMRI we are 
not directly measuring the neuronal activity, but 
the brain oxygen level-dependent (BOLD) signal 
with which it is associated. The observed BOLD 
signal corresponds to neuronally mediated hae-
modynamic change which can be modelled as a 
convolution of the underlying neuronal process 
by a  haemodynamic response function  (HRF). 
This function is called the  impulse response func-

tion : it is the response that would be observed in 
the BOLD signal in the presence of a brief neu-
ronal stimulation at  t =  0. The  canonical HRF  
used in SPM is depicted in Fig.  6.11 . The HRF 
models the fact that the BOLD response peaks 
about 5 s after the neuronal stimulation and takes 
about 32 s to go back to baseline, in a slow and 
smooth fashion, undershooting towards the end 
before reaching baseline.  
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  Fig. 6.10    Effect of convolution by the haemodynamic response function: ( a ) stimulus function constructed as a boxcar 
function and ( b ) after convolution with the canonical HRF       
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  Fig. 6.11    Canonical 
haemodynamic response 
function (HRF) as used by 
SPM. This is the typical 
BOLD response to a single, 
impulse stimulation       
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 We can thus improve our prediction by modi-
fying the box car stimulus function of Fig.  6.10a  
to take into account the shape of the HRF. This is 
done through convolution, by assuming a linear 
time-invariant model. This convolution operation 
is conceptually the same as the one that was used 
in the smoothing preprocessing step; that was a 
convolution in space with a Gaussian kernel, 
whilst here it is a convolution in time with the 
canonical HRF. The output of this mathematical 
operation is displayed in Fig.  6.10b . 

 Looking at the raw time series of Fig.  6.9a , we 
can also directly observe that the mean of the sig-
nal is not zero; this should also be part of our pre-
diction model. We model the (non-zero) mean of 
the signal with a predictor that is held constant 
over time, as shown in Fig.  6.9c . 

 Furthermore, we can also observe some slow 
 fl uctuations in the measured signal: what seems 
to be the response to the  fi rst block of stimulation 
has a higher amplitude than the response to the 
last one shown. There are indeed some low-fre-
quency components in fMRI signals; these can 
be attributed to scanner drift (small changes in 
the magnetic  fi eld of the scanner over time) and/
or to the effect of cardiac and respiratory cycles. 
As slow  fl uctuations are something that we 
expect in the data, we should also de fi ne predic-
tors for them. A solution is to model the 
 fl uctuations through a discrete cosine transform 
basis set: a linear combination of cosine waves at 
several frequencies can accommodate a range of 
 fl uctuations. In order to remove any function 
with a cycle longer than 128 s (the default in 
SPM) and given the sampling rate and the num-
ber of scans, nine components are here required 
in the basis set. The  fi rst two components are dis-
played in Fig.  6.9d, e . Together, the set of cosine 
waves will effectively act as a high-pass  fi lter 
with a 128-s cutoff. 

 Our best prediction of the observed data in 
Fig.  6.9a  will then be a linear superposition of all 
the effects and confounds de fi ned above and dis-
played in Fig.  6.9b–e . This is the assumption 
underlying the general linear model (GLM): the 
observed response (BOLD signal)  y  is expressed 
in terms of a linear combination of explanatory 

variables plus a well-behaved error term      e      (Friston 
et al.  1994a  ) :

         

 The matrix  X  contains column-wise all the 
predictors that we have de fi ned: everything we 
know about the experimental design and all 
potential confounds. This matrix is referred to as 
the  design matrix . The one described so far is 
depicted in Fig.  6.12 : it has 84 rows and 11 col-
umns, each representing a predictor (or explana-
tory variable, covariate, regressor). This is just 
another way of representing conjointly the time 
series of Fig.  6.9  as an image where white repre-
sents a high value and black a low one.  

 The relative contribution of each of these col-
umns to the response is controlled by the param-
eters      b     . These are the weights or regression 
coef fi cients of the GLM and will correspond to 
the size of the effects that we are measuring.      b      is 

y X= b+ e
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  Fig. 6.12    Design matrix for the auditory data set: the 
 fi rst column models the condition-speci fi c effect (boxcar 
function convolved with the HRF); the next column is a 
constant term, while the last nine columns are the compo-
nents of a discrete cosine basis set modelling signal drifts 
over time. Note that a design matrix as displayed in SPM 
will not show the last nine terms       
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a vector whose length is the number of regressors 
in the design matrix, that is, its number of col-
umns. The      b     -parameters are the unknown factor 
in this model. 

 Finally, the error term      e      contains everything 
that cannot be explained by the model; these val-
ues are also known as the residuals, that is, the 
difference between the data  y  and the model 
 prediction  X    b     . In the simplest case,      e      is assumed 
to follow a Gaussian distribution with a mean of 
zero and a standard deviation      s     . 

 The general linear model is a very generic 
framework that encompasses many standard 
statistical analysis approaches: multiple regres-
sion, analysis of variance (ANOVA), analysis 
of covariance (ANCOVA) and  t  tests can all be 
framed in the context of a GLM and corre-
spond to a particular form of the design 
matrix. 

 Fitting the GLM, or inverting the generative 
model, is the process of estimating its parameters 
given the data that we observed. This corresponds 
to adjusting the      b     -parameters of the model in 
order to obtain the best  fi t of the model to the 
data. Another way of thinking of this is that we 
need to  fi nd the      b     -parameters that minimise the 
error term      e     . It can be shown that under the 
assumption that the errors are normally distrib-
uted, the parameters can be estimated using the 
following equation:

         

 This is the ordinary least squares (OLS) equa-
tion that relates the estimated parameters     b̂   to the 
design matrix  X  and the observed time series  y . 

 Figure  6.13  shows how the GLM with the 
design matrix shown in Fig.  6.12   fi ts the time 
series shown in Fig.  6.9a  and reproduced in 
Fig.  6.13a  in blue. The predicted time series is 
overlaid in red; it is a linear combination of the 
stimulus function (Fig.  6.13b ), the mean whole 
brain activity (Fig.  6.13c ) and the low-frequency 
drifts (Fig.  6.13d ). The residuals are displayed 
in Fig.  6.13e ; they are the difference between 
the observed time series and its model 
prediction.  

 This procedure is repeated for all voxels 
within the brain, generating maps of the esti-
mated regression coef fi cients     b̂  . The variance of 
the noise     2ŝ   is also estimated voxel-wise. As 
mentioned above, this is essentially a mass- 
univariate approach: the same model (design 
matrix  X ) is  fi tted independently to the time 
series at every voxel, providing local estimates 
of the effect sizes. 

 Following on from this description of how 
data are modelled, there are a few more consider-
ations that need to be taken into account:

   In practice, the low-frequency components • 
from the discrete cosine transform (DCT) 
basis set are not added to the design matrix, 
but the data and design are instead temporally 
 fi ltered before the model is estimated. This is 
mathematically identical but computationally 
more ef fi cient as drift effects will always be 
confounds of no interest that are not tested. 
Hence, in practice they do not appear in the 
design matrix as in Fig.  6.12 , but they are still 
dealt within the background (and the degrees 
of freedom of the model are adjusted 
accordingly).  
  When using the canonical HRF to model the • 
transfer function from neuronal activity to 
BOLD response, we assumed that it was 
known and  fi xed. However, in practice this is 
not actually the case; the HRF varies across 
brain regions and across individuals. A  solution 
is to use a set of basis functions rather than a 
single function in order to add some  fl exibility 
to the modelling of the response. The HRF 
will then be modelled as a linear combination 
of these basis functions. A popular choice, 
providing  fl exibility and parsimony, is to use 
the  informed  basis set: this consists of the 
canonical HRF and its temporal and disper-
sion derivatives, as shown in Fig.  6.14 . 
According to the weight given to each of the 
components, the informed basis set allows us 
to model a shift in the latency of the response 
(with the temporal derivative) and changes in 
the width of the response (with the dispersion 
derivative). When using the informed basis 
set, each experimental condition is modelled 

( ) 1T Tˆ X X X y
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by a set of three regressors, each of which is 
the neuronal activity stimulus function con-
volved separately with one of the three com-
ponents. The predicted response for that 
condition will be a linear condition of these 
three regressors. The temporal derivative is 
also useful to model slice-timing issues. In 
multislice acquisitions, different slices are 
acquired at different times. A solution is to 
temporally realign the data as if they were 
acquired at the same time through interpola-
tion. This is called slice-timing correction and 
is a possible option during the preprocessing 
of the data. Using the informed basis set is an 
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  Fig. 6.13    Fit of the GLM 
de fi ned earlier on the fMRI 
time series of Fig.  6.9 : 
( a ) observed fMRI time 
series in  blue  and model 
prediction in  red ,  fi tted 
predictors for the 
( b ) condition-speci fi c 
effect, ( c ) constant term, 
( d ) slow frequency 
 fl uctuations and 
( e ) residuals       
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  Fig. 6.14    The ‘informed’ basis set: the canonical HRF 
( blue ) and its temporal ( green ) and dispersion ( red ) 
derivatives       
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alternative way to correct for the same effect 
(please see (Sladky et al.  2011  )  for a recent 
comparison of the two approaches).   
  fMRI data exhibit short-range serial or tempo-• 
ral correlations. This means that the error at 
time  t  is correlated with the error at previous 
time points. This has to be modelled, because 
ignoring these correlations may lead to invalid 
statistical testing. An error covariance matrix 
must therefore be estimated by assuming some 
kind of non-sphericity, a departure from the 
independent and identically distributed 
assumptions of the noise (Worsley and Friston 
 1995  ) . A popular model used to capture the 
typical form of serial correlation in fMRI data 
is the autoregressive model of order 1, AR(1), 
relating the error at time  t  to the error at time 
 t  − 1 with a single parameter. It can be esti-
mated ef fi ciently and precisely by pooling its 
estimate over voxels. Once the error covari-
ance matrix is estimated, the GLM can be 
inverted using weighted least squares (WLS) 
instead of OLS; alternatively, the estimated 
error covariance matrix can be used to whiten 
data and design, that is, to  undo  the serial cor-
relation, so that OLS can be applied again. 
This is the approach implemented in SPM.  
  It is also possible to add regressors to the design • 
matrix without going through the  convolution 
process described above. An important example 
is the modelling of residual movement-related 
effects. Because movement expresses itself in 
the data directly and not through any haemody-
namic convolution, it can be added directly as a 
set of explanatory variables. Similarly, in the 
presence of an abrupt artefact in the data cor-
rupting one scan, a strategy is to model it as a 
regressor that is zero everywhere but one at that 
scan. This will effectively covary out that arte-
factual value in the time series, reducing the 
in fl ated variance that it was contributing to. 
This is better than manually removing that scan 
prior to analysis as it preserves the temporal 
process.  
  An important distinction in experimental design • 
for fMRI is that between event- and epoch-
related designs. Event-related fMRI is simply 
the use of fMRI to detect responses to individual 
trials (Josephs et al.  1997  ) . The neuronal activ-

ity is usually modelled as a delta function – an 
 event  – at the trial onset. Practically speaking, in 
SPM we assume that the duration of a trial is 
zero. In an epoch-related design, however, we 
assume that the duration of the trial is greater 
than zero. This is the case in block-design stud-
ies, in which the responses to a sequence of tri-
als (which all evoke the same experimental 
effect of interest) are modelled together (as an 
epoch). There are otherwise no conceptual 
changes in the statistical analysis of event-
related and epoch-related (block) designs. One 
of the advantages of event-related designs is 
that trials of different types can be intermixed 
instead of blocking events of the same type 
together, allowing the measurement of a greater 
range of psychological effects. There are a num-
ber of considerations which impact on the 
choice of an experimental design, including the 
constraints imposed by high-pass  fi ltering and 
haemodynamic convolution of the data affect-
ing its ef fi ciency. We refer interested readers to 
Chapter 15 of (Friston et al.  2007  )  or its online 
version 11  for a thorough examination of design 
ef fi ciency.    
 For the auditory data set, the  fi rst step is to 

specify the design matrix; this is done through 
the ‘Specify  fi rst-level’ button. After specifying a 
directory in which the results will be stored, the 
inputs to specify are the units in which the onsets 
and duration of each trial will be entered (these 
can be either ‘scans’ or ‘seconds’; we will use 
‘scans’ in this example), the TR (7 s) and the 
actual preprocessed data to be analysed (the 84 
 fi les with an ‘ sw ’ pre fi x). In this data set, there is 
just one condition to specify: the onsets are       [6 18 
30 42 54 66 78], corresponding to the scan num-
ber at the beginning of each auditory stimulation 
block, and the durations are [ 6 ], indicating that 
each auditory stimulation block lasts for six scans 
(with a rest block in between each one). The 
movement parameters can be added as extra 
regressors using the ‘Multiple regressors’ entry 
by selecting the  ‘rp_*.txt’   fi le that was saved dur-
ing the realignment. Other parameters can be left 
as default, especially the high-pass  fi lter cut-off 

   11    h t t p : / / imag ing .mrc -cbu . cam.ac .uk / imag ing /
DesignEf fi ciency      

http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
http://imaging.mrc-cbu.cam.ac.uk/imaging/DesignEfficiency
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(128 s), the use of the canonical HRF only and 
the modelling of serial correlation using an AR(1) 
model. The output is an  SPM.mat   fi le; this con-
tains all the information about the data and the 
model design. The design matrix is also displayed 
for review. As expected, it has eight columns: the 
 fi rst column is the block stimulus function con-
volved by the HRF, the following six columns are 
the movement parameters (three translations and 
three rotations, see Fig.  6.5 ) and the last column 
is a constant term modelling the whole brain 
activity. The ‘Estimate’ button then allows us to 
invert this GLM and estimate its parameters. 
A number of image  fi les will be created, includ-
ing eight maps of the estimated regression 
coef fi cients, one for each column of the design 
matrix ( beta_*.{hdr,img} ) and one mask image 
( mask.{hdr,img} ), which contains a binary vol-
ume indicating which voxels were included in the 
analysis.  

    6.4.2   Contrasts 

 Having speci fi ed and estimated parameters of the 
general linear model, the next step is to make a 
statistical inference about those parameters. This 
is done by using their estimated variance. Some of 
the parameters will be of interest (those pertaining 
to the experimental conditions), while others will 
be of no interest (those pertaining to confounding 
effects). Inference allows one to test the null 
hypothesis that all the estimates are zero, using the 
 F -statistic to give an  SPM{F} , or that some par-
ticular linear combination (e.g. a subtraction) of 
the estimates is zero, using the  t - statistic to give an 
 SPM{t} . A linear combination of regression 
coef fi cients is called a  contrast , and its correspond-
ing vector of weights  c  is called a contrast vector. 

 The  t -statistic is obtained by dividing a con-
trast (speci fi ed by contrast weights) of the associ-
ated parameter estimates by the standard error of 
that contrast. The latter is estimated using the 
variance of the residuals     2ŝ   .

         

 This is essentially a signal-to-noise ratio, com-
paring an effect size with its precision. 

 An example of a contrast vector would be 
    T [1 1 0 ]c = - ¼    to compare the difference in 
responses evoked by two conditions, modelled by 
the  fi rst two condition-speci fi c regressors in the 
design matrix. In SPM, a  t  test is signed, in the 
sense that a contrast vector     T [1 1 0 ]c = - ¼   is 
looking for a greater response in the  fi rst condi-
tion than in the second condition, while a contrast 
    T [ 1 1 0 ]c = - ¼    is looking for the opposite 
effect. In other words, it means that a  t -contrast 
tests the null hypothesis     T 0c b =   against the one-
sided alternative     T 0c b >   . The resulting  SPM{t}  
is a statistic image, with each voxel value being 
the value of the  t -statistic for the speci fi ed con-
trast at that location. Areas of the  SPM{t}  with 
high voxel values (higher than one might expect 
by chance) indicate evidence for ‘neural 
activations’. 

 Similarly, if you have a design where the third 
column in the design matrix is a covariate, then 
the corresponding parameter is essentially a 
regression slope, and a contrast with weights 
    T [0 0 1 0 ]c = ¼   tests the hypothesis of zero 
regression slope, against the alternative of a 
 positive slope. This is equivalent to a test of no 
correlation, against the alternative of positive cor-
relation. If there are other terms in the model 
beyond a constant term and the covariate, then this 
correlation is a partial correlation, the correlation 
between the data and the covariate after account-
ing for the other effects (Andrade et al.  1999  ) . 

 Sometimes, several contrasts of parameter 
estimates are jointly interesting. In these 
instances, an  SPM{F}  is used and is speci fi ed 
with a matrix of contrast weights which can be 
thought of as a collection of  t -contrasts. An 
 F -contrast might look like this

         

 This would test for the signi fi cance of the  fi rst 
or the second parameter estimates. The fact that 
the second weight is negative has no effect on the 
test because the  F -statistic is blind to sign as it is 
based on sums of squares. The  F -statistic can 
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also be interpreted as a model comparison device, 
comparing two nested models using the extra 
sum-of-squares principle. For the  F -contrast 
above, this corresponds to comparing the 
speci fi ed full model with a reduced model where 
the  fi rst two columns would have been removed. 
 F -contrasts are mainly used either as two-sided 
tests (the  SPM{F}  then being the square of the 
corresponding  SPM{t} ) or to test the signi fi cance 
of effects modelled by several columns. Effects 
modelled by several columns might include the 
use of a multiple basis set to model the HRF, a 
polynomial expansion of a parametric modulated 
response or a contrast testing more than two lev-
els in a factorial design. 

 As with the  SPM{t} , the resulting  SPM{F}  is a 
statistic image, with voxel values the value of the 
 F -statistic for the speci fi ed contrast at that loca-
tion. Areas of the  SPM{F}  with high voxel values 
indicate evidence for ‘neural activations’.  

    6.4.3   Topological Inference 

 Having computed the statistic, we need to 
decide whether it represents convincing evi-
dence of the effect in which we are interested; 
this decision is the process of making a statisti-
cal inference. This is done by testing the statis-
tic against the null hypothesis that there is no 
effect. Here, the null hypothesis is distributed 
according to a known parametric probability 
density function, a Student’s  t-  or  F -distribution. 
Then, by choosing a signi fi cance level (which is 
the level of control over the false-positive error 
rate, usually chosen as  0.05 ), we can derive a 
critical threshold above which we will reject the 
null hypothesis and accept the alternative 
hypothesis that there is convincing evidence of 
an effect. If the observed statistic is lower than 
the critical threshold, we fail to reject the null 
hypothesis and we must conclude that there is 
no convincing evidence of an effect. A  p  value 
can also be computed to measure the evidence 
against the null hypothesis: this is the probabil-
ity of observing a statistic at least as large as the 
one observed under the null hypothesis (i.e. by 
chance). 

 The problem we face in functional imaging is 
that we are not dealing with a single statistic 
value, but with an image that comprises many 
thousands of voxels and their associated statisti-
cal values. This gives rise to the multiple com-
parisons problem, which is a consequence of the 
use of a mass-univariate approach: as a general 
rule, without using an appropriate method of cor-
rection, the greater the number of voxels tested, 
the greater the number of false positives. This is 
clearly unacceptable and requires the de fi nition 
of a new null hypothesis which takes into account 
the whole volume, or family, of statistics con-
tained in an image: the  family-wise  null hypoth-
esis that there is no effect  anywhere  in the entire 
search volume (e.g. the brain). We then aim to 
control the family-wise error rate (FWER) – the 
probability of making one or more false positives 
over the entire search volume. This results in 
adjusted  p  values,  corrected  for the search 
volume. 

 A traditional statistical method for controlling 
FWER is to use the Bonferroni correction, in 
which a voxel-wise signi fi cance level simply cor-
responds to the family-wise signi fi cance level 
(e.g. 0.05) divided by the number of tests (i.e. 
voxels). However, this approach assumes that 
every test (voxel statistic) is independent and is 
too conservative to use in the presence of correla-
tion between tests, such as the case with func-
tional imaging data. Functional imaging data are 
intrinsically smoothed due to the acquisition pro-
cess and have also been smoothed as part of the 
spatial preprocessing; neighbouring voxel statis-
tics are therefore not independent. The random 
 fi eld theory (RFT) provides a way of adjusting 
the  p  value to take this into account (Worsley 
et al.  1992 ; (Friston et al.  1994b ; Worsley et al. 
 1996  ) . Providing that data are smooth, the RFT 
adjustment is less severe (i.e. more sensitive) than 
a Bonferroni correction for the number of voxels. 
The  p  value is a function of the search volume 
and  smoothness  (parameterised as the FWHM of 
the Gaussian kernel required to simulate images 
with the same apparent spatial smoothness as the 
one we observe). A description of the random 
 fi eld theory is well beyond the scope of this chap-
ter, but it is worth mentioning that one of the 
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assumptions for its application on discrete data 
 fi elds is that the observed  fi elds are smooth. This 
was one of the motivations for smoothing the 
fMRI data as a preprocessing step. In practice, 
smoothness will be estimated from the data them-
selves (to take into account both intrinsic and 
explicit smoothness) (Kiebel et al.  1999  ) . The 
RFT correction discounts voxel sizes by express-
ing the search volume in terms of smoothness or 
resolution elements ( resels ). 

 To make inferences about regionally speci fi c 
effects, the SPM is thresholded using height and 
spatial extent thresholds that are speci fi ed by the 
user. Corrected  p  values can then be derived that 
pertain to topological features of the thresholded 
map (Friston et al.  1996a  ) :

   The number of activated regions (i.e. the num-• 
ber of clusters above the height and volume 
threshold). These are  set-level  inferences.  
  The number of activated voxels (i.e. the vol-• 
ume or extent) comprising a particular cluster. 
These are  cluster-level  inferences.  
  The height of each local maxima, or peak, within • 
that cluster. These are  peak-level  inferences.    
 Set-level inferences are generally more pow-

erful than cluster-level inferences, which are 
themselves generally more powerful than peak-
level inferences. The price paid for this increased 
sensitivity is a reduced localising power. Peak-
level tests permit individual maxima to be 
identi fi ed as signi fi cant, whereas cluster and set-
level inferences only allow clusters or a set of 
clusters to be declared signi fi cant. In some cases, 
however, focal activation might actually be 
detected with greater sensitivity using tests based 
on peak height (with a spatial extent threshold of 
zero). In practice, this is the most commonly used 
level of inference, re fl ecting the fact that charac-
terisation of functional anatomy is generally 
more useful when speci fi ed with a high degree of 
anatomical precision. 

 When making inferences about regional 
effects in SPMs, one often has some idea  a priori  
about where the activation should be. In this 
instance, a correction for the entire search vol-
ume is inappropriately stringent. Instead, a small 
search volume within which analyses will be car-
ried out can be speci fi ed beforehand, and an RFT 

correction applied restricted to that region only 
(Worsley et al.  1996  ) . This is often referred to as 
a small volume correction (SVC). 

 For the auditory data set, inference is per-
formed through the ‘Results’ button by select-
ing the  SPM.mat   fi le from the previous step. To 
test for the positive effect of passive  listening 
to words versus rest, the  t -contrast to enter is 
    T [1 0 0 0 0 0 0 0]c =   . Two  fi les will 
be created on disk at this stage: a  con_0001.
{hdr,img}   fi le of the contrast image (here identi-
cal to  beta_0001.{hdr,img} ) and the correspond-
ing  SPM{T}   spmT_0001.{hdr,img} . Choosing a 
0.05 FWE-corrected threshold yields the results 
displayed in Fig.  6.15 . The maximum intensity 
projection (MIP) image gives an overview of the 
activated regions, the auditory cortices. This can be 
overlaid on the anatomy of the subject (the norma-
lised ‘ wm*.img ’ image  fi le) using the menu entry 
‘Overlays > Sections’ of the Interactive window. 
The button ‘whole brain’ will display the results 
table (see Fig.  6.16 ) listing the  p  values adjusted 
for the search volume (the whole brain here) for 
all topological features of the excursion set: local 
maxima height for peak-level inference, cluster 
extent for cluster-level  inference and number of 
clusters for set-level inference. The footnote of the 
results table lists some numbers pertaining to the 
RFT: the estimated FWHM smoothness is [ 10.9 , 
 10.9 ,  9.2 ] in mm and the number of resels is 1,450 
here. These are the values re fl ecting the size and 
smoothness of the search volume that are used to 
control for the FWER.   

 Guidelines for reporting an fMRI study in a 
publication are given in Poldrack et al.  (  2008  ) .  

    6.4.4   Population-Level Inference 

 Neuroimaging data from multiple subjects can be 
analysed using  fi xed-effects (FFX) or random-
effects (RFX) analyses (Holmes and Friston  1998  ) . 
FFX analysis is used for reporting case studies, 
while RFX is used to make inferences about the 
population from which the subjects were drawn. 
In the former, the error variance is estimated on a 
scan-by-scan basis and contains contributions from 
within-subject variance only. We are therefore not 
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making formal inference about population effects 
using FFX, but are restricted to informal inferences 
based on separate case studies or summary images 
showing the average group effect. (This is imple-
mented in SPM by concatenating data from all 
subjects into the same GLM, simply modelling 
subjects as coming from separate sessions.) 
Conversely, random-effects analyses take into 

account both sources of variance (within- and 
between-subject). The term ‘ random effect ’ indi-
cates that we have accommodated the randomness 
of different responses from subject to subject. 

 Both analyses are perfectly valid but only in 
relation to the inferences that are being made: 
inferences based on  fi xed-effect analyses are about 
the particular subjects studied. Random-effects 
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  Fig. 6.15    Results of the statistical inference for the audi-
tory data set when looking for regions showing an 
increased activity when words are passively listened to in 
comparison with rest.  Top right : design matrix and con-
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 SPM{t}  displayed as a maximum intensity projection over 
three orthogonal planes. To control for  p  < 0.05 corrected, 
the applied threshold was  T  = 5.28.  Lower panel : 
Thresholded  SPM{t}  overlaid on the normalised structural 
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analyses are usually more conservative but allow 
the inference to be generalised to the population 
from which the subjects were drawn. 

 In practice, RFX analyses can be implemented 
using the computationally ef fi cient ‘ summary-
statistic ’ approach. Contrasts of parameters esti-
mated from a   fi rst-level  (within-subject) analysis 
are entered into a  second-level  (between-subject) 
analysis. The second-level design matrix then 
simply tests the null hypothesis that the contrasts 
are zero (and is usually a column of ones, 
 implementing a one-sample  t  test). The validity 
of the approach rests upon the use of balanced 
designs (all subjects have identical design matri-
ces and error variances) but has been shown to be 
remarkably robust to violations of this assump-
tion (Mumford and Nichols  2009  ) . 

 For our auditory data set, if we had scanned 12 
subjects, for example, each of whom performed 
the same task, the group analysis would entail (i) 
applying the same spatial preprocessings to each 
of the 12 subjects, (ii)  fi tting a  fi rst-level GLM 
independently to each of the 12 subjects, (iii) 
de fi ning the effect of interest for each subject with 
a contrast vector     T [1 0 0 0 0 0 0 0]c =    
and producing a contrast image containing 
the contrast of the parameter estimates at each 

voxel and (iv) feeding each of the 12 contrast 
images into a second-level GLM, through which 
a one-sample  t  test could be carried out across 
all 12 subjects to  fi nd the activations that show 
signi fi cant evidence of a population effect.   

    6.5   Conclusions 

 In this chapter we have described how statistical 
parametric mapping can be used to identify and 
characterise regionally speci fi c effects in func-
tional MRI data. We have also illustrated the 
principles of SPM through the  analysis of a 
block-design data set using the SPM software. 
After preprocessing the data to correct them for 
movement and normalise them into a standard 
space, the general linear model and random  fi eld 
theory are used to analyse and make classical 
inferences. The GLM is used to model BOLD 
responses to given experimental manipulations. 
The estimated parameters of the GLM are used to 
compute a standard univariate statistical test at 
each and every voxel, leading to the construction 
of statistical parametric maps. The random  fi eld 
theory is then used to resolve the multiple com-
parisons problem induced by inferences over a 
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volume of the brain containing many voxels. RFT 
provides a method for adjusting  p  values for the 
search volume of a statistical parametric map to 
control false-positive rates. 

 We have here described the fundamental 
methods used to carry out fMRI analyses in 
SPM. There are, however, many additional 
approaches and tools that can be used to re fi ne 
and extend analyses, such as voxel-based mor-
phometry (VBM) to analyse structural data sets 
(Ashburner and Friston  2000 ; Ridgway et al. 
 2008  )  and dynamic causal modelling (DCM) to 
study effective connectivity (Friston et al.  2003 ; 
Seghier et al.  2010 ; Stephan et al.  2010  ) . While 
the key steps of the SPM approach we describe 
above remain broadly constant, SPM software 
(along with many other software analysis pack-
ages) is constantly evolving to incorporate 
advances in neuroimaging analysis; we encour-
age readers to explore these exciting new 
developments.      
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