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    17.1   Principles of Brain 
Organization 

 Elucidating the neural correlates underlying dys-
function in neurological or psychiatric disease 
is one of the major long-term goals in systems 
neuroscience research. Knowing pathophysi-
ological mechanisms giving rise to complex dis-
orders like schizophrenia or Parkinson’s disease 
will, however, remain futile without understand-
ing physiological brain organization. The human 
brain, like that of other mammals, is organized 
according to two fundamental principles:  func-
tional segregation  and  functional integration  
(Friston  2002  ) . The former emphasizes that the 
human brain—and in particular the cerebral 
 cortex—is not a homogenous entity but can be 
subdivided into regionally distinct  modules  such 

as cortical areas or subcortical nuclei based on 
functional or microstructural properties. The idea 
of  functional integration , conversely, is based on 
the observation that no brain region is by itself 
suf fi cient to perform any cognitive, sensory, or 
motor process. Rather, all of these mental capaci-
ties or  tasks  have to rely on a dynamic interplay 
and exchange of information between different 
regions sustaining different computational pro-
cesses. Importantly, however, functional integra-
tion and functional segregation are not mutually 
exclusive but rather complementary concepts of 
brain organization as any interaction will need 
to take place between specialized regions, each 
 performing a distinct computational sub-process 
(Friston  2002 ; Eickhoff et al.  2009  ) . 

    17.1.1   Specialized Modules 
in the Brain: The Nodes 
of Connectivity Models 

 In particular invasive research in nonhuman pri-
mates with electrodes penetrating the cerebral 
cortex has demonstrated that the regional speci-
alization of the brain, that is, the cognitive or sen-
sory processes that are served by particular 
location of the cortex, is determined by both the 
intrinsic (structure) and extrinsic (connectivity) 
properties of a cortical area (Broca  1863 ; 
Brodmann  1909 ; Eickhoff et al.  2005 ; Schleicher 
et al.  2005 ; Grodzinsky and Santi  2008  ) . In com-
parison to the fundamental distinction between 
 functional segregation and functional integration 
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outlined above, this evidence provides a slightly 
different focus as it suggests that specialization 
for a particular function or process is not neces-
sarily an intrinsic property of a region indepen-
dent of its connectivity. Rather, functional 
specialization of a cortical area is seen as a 
(potentially necessary) result of both its local 
anatomical and neurochemical features as well as 
its distinct pattern of inputs and outputs, that is, 
connectivity. A module of functional specializa-
tion may hence not be completely de fi ned with-
out its (potential) connectivity but is rather 
provided by the intersection of regionally speci fi c 
architecture and connectivity patterns. Each cog-
nitive, sensory or motor task, or mental capacity 
then relies on the coordinated activity and inter-
action of such modules. 

 Brain organization and disturbances thereof 
in neurological and psychiatric disorders might 
thus only be targeted by considering (i) the ana-
tomical differentiation of the cerebral cortex into 
microstructurally distinct areas; (ii) the speci fi c 
response properties or, more general, the pattern 
of recruitment of brain regions during the perfor-
mance of various mental operations; and  fi nally 
(iii) interaction with other brain regions. Research 
in nonhuman primates has a long tradition for 
such integrated analysis of regional brain organi-
zation (Kobbert et al.  2000 ; Le et al.  1986 ; 
Behrens et al.  2003 ; Friston  1994  ) . Here, func-
tional properties of a microstructurally distinct 
area (e.g., as determined by cytoarchitectonic, 
myeloarchitectonic, or receptorarchitectonic cri-
teria) may be probed by recording single cells or 
local  fi eld potentials (LFPs). Axonal connectiv-
ity of the very same location may be revealed by 
injecting a tracing dye that is transported to 
interconnected brain regions. All of these tech-
niques, however, ultimately entail sacri fi cing the 
examined animal and hence are not feasible in 
 human s. Recent advances in neuroimaging tech-
niques, however, have enabled not only the inte-
gration of structural and functional data on the 
organization of the human cerebral cortex but in 
particular also the modeling of functional inter-
actions, thereby allowing a mechanistic insight 
into the dynamic interplay between cortical 
regions.   

    17.2   Structure-Function 
Relationships in the Brain 

    17.2.1   Regional Functional 
Specialization 

 Functional neuroimaging approaches such as 
positron emission tomography (PET) and func-
tional magnetic resonance imaging (fMRI) are 
well established for the in vivo investigation of 
functional specialization in the human brain 
(Biswal et al.  1995 ; Fox and Raichle  2007 ; 
Greicius et al.  2003 ; Sporns et al.  2004 ; Buckner 
 2010  ) . Based on the measurement of local 
changes in cerebral blood  fl ow, glucose, or oxy-
gen metabolism, these techniques allow the local-
ization of regionally speci fi c neural activation 
underlying a certain motor, sensory, or cognitive 
task. Although spatial precision in group activa-
tion studies is in fl uenced by factors such as inter-
individual variability, averaging effects, and 
imperfect spatial normalization (Eickhoff et al. 
 2009  ) , group fMRI studies enable localizing 
speci fi c response patterns and testing hypotheses 
about, for example, a functional differentiation 
between two regions or a dichotomy between the 
neural correlates of two processes in the range of 
a centimeter or less.  

    17.2.2   Regional Structural 
Specialization 

 The structural examination of the human brain, in 
particular the histological mapping of the cere-
bral cortex, has a long tradition in neuroscience 
(Brodmann  1909  ) . These analyses rely on the 
investigation of human postmortem tissue, where 
cell bodies, myelinated  fi bers, or the presence of 
speci fi c molecules may be visualized using cell 
staining, radioactive labeling, or in situ hybrid-
ization. More recently, high- fi eld imaging meth-
ods also opened the possi bility of assessing the 
microstructural properties of the human brain 
in vivo (Stephan et al.  2007a  ) . However, currently, 
no in vivo imaging approach seems capable of 
providing a microstructural account of the human 
brain as precise as histological postmortem data. 
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Therefore, combining functional imaging and 
histological maps has been proposed for an inte-
grated description of regional segregation 
(Eickhoff et al.  2005  ) . The currently prevalent 
approach for analyzing the correspondence 
between structure and function in the human 
brain is thus to perform both analyses separately 
(evidently in two groups of subjects) and then to 
integrate the obtained data by means of probabi-
listic brain atlases (Friston et al.  2003 ; Kiebel 
et al.  2006 ; Stephan et al.  2008  ) . These atlases 
may be generated on the basis of automated anal-
yses of histological sections in micrometer reso-
lution (Schleicher et al.  2005  ) , which are then 
warped to a common reference brain, for exam-
ple, the MNI brain, to describe the location and 
variability of cortical areas on the group level in 
standard space. In contrast to classical anatomi-
cal brain atlases that present the observer-depen-
dent parcellation of one or a few brains as 
drawings or schematic surface views, probabilis-
tic atlases thus allow the direct and quantitative 
assessment of structure-function correlations 
(Fig.  17.1 ; Eickhoff et al.  2005  ) .   

    17.2.3   Regional Structure-Function 
Relationships 

 Advances in the mapping of regional specializa-
tion enable a description of the mental processes 
that recruit a speci fi c, structurally de fi ned area 
and have provided plenty of evidence that ana-
tomical borders indeed constrain functional spe-
cialization (Friston et al.  2003  ) . However, such a 
 localization approach  is not suf fi cient to describe 
brain function, as a single region may be  special-
ized  for a broad range of mental operations. For 
example, the inferior frontal gyrus hosts a distinct 
cytoarchitectonic area which Korbinian 
Brodmann coined  area 44  (Brodmann  1909  ) . 
Pierre-Paul Broca already noticed that this part of 
the brain is strongly engaged in language produc-
tion (Broca  1863  ) . A number of neuroimaging 
studies, however, clearly showed that this region 
is not language speci fi c but recruited by a broad 
range of tasks ranging from speech to working 
memory and motor production (Grodzinsky and 

Santi  2008  ) . Does this contradict the fundamental 
idea of functional specialization? Not nece ssarily, 
when assuming that BA 44 is specialized toward 
a particular computational process rather to sus-
tain any particular (psychologically de fi ned) 
mental operations. These basic computations, 
however, which may be sequencing or temporo-
spatial updating like, would then be integral parts 
of many different task-speci fi c recruited net-
works. Hence, a network perspective seems to be 
much closer to the neurobiology underlying 
human brain function under both physiological 
and pathological conditions.   

    17.3   The Elusive Concept of Brain 
Connectivity 

 In spite of the pivotal role of connectivity analy-
ses for the understanding of human brain orga-
nization, the concept of brain connectivity in 
itself has remained somewhat enigmatic. First, 
there is no such thing as  the  connectivity of a 
particular brain region. Rather, several concep-
tually different aspects of brain connectivity 
may be distinguished. In the following, we will 
provide a short outline of the major concepts 
and approaches, their strength and drawback, 
and then focus on explicit network modeling as 
an approach to a mechanical understanding of 
the context-dependent interactions in health and 
disease.  

    17.4   Anatomical Connectivity 

 Anatomical connectivity in the strict sense denotes 
the presence of axonal connections between neu-
rons in different brain regions. Several years ago, 
knowledge on the anatomical connectivity of the 
human brain was mostly based on postmortem dis-
section techniques or on extrapolations from inva-
sive tract-tracing studies in nonhuman primates 
(Kobbert et al.  2000  ) . The advent of diffusion-
weighted imaging (DWI) and tractography 
approaches has more recently also enabled the 
in vivo explorations of anatomical connectivity in 
the human brain. DWI is based on the fact that in a 
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structured tissue such as a  fi ber bundle, water does 
not diffuse isotropic but rather primarily along the 
direction of the  fi ber. By employing MR sequences 
sensitive to random motion of water molecules 
along a diffusion-encoding direction in a pulsed 
 fi eld gradient (Le et al.  1986  ) , it becomes possible 
to characterize the diffusion characteristics and 
hence the  fi ber orientation in each voxel. From the 
 fi ber orientation directions in each voxel in combi-
nation with measures about diffusion uncertainty, 
it is possible to infer the course of a particular  fi ber 
tract in the brain. Such  tractography  (Fig   .  17.2 ) 
may be deterministic (following the principal 

diffusion direction at each voxel) or probabilistic 
(by repeated sampling of the possible diffusion 
directions in each voxel as re fl ected by the uncer-
tainty on orientation distributions; Behrens et al. 
 2003  ) . Although it should be noted that such 
approaches only delineate  fi ber tracts running 
from one region to another (rather than axonal 
connections between neurons in these regions), 
anatomical connectivity as revealed by diffusion 
imaging represents the structural scaffold, on 
which any functional interaction may be realized. 
It also represents a truly independent aspect of 
interregional integration and brain networks that is 

Healthy subjects Stroke patients

Affected
hemisphere

Patients > Controls

38% in Area 6

10% in Area 4

14% in Area 3a

8% in Area 3b

5% in Area 1

16% in Area 2

9% in Area PFt

a b

c

  Fig. 17.1    Blood oxygenation 
level-dependent (BOLD) 
activity during a simple motor 
task. ( a ) In healthy subjects, 
rhythmic  fi st closures of the 
right hand activate a 
 left-lateralized network of 
areas in frontal and parietal 
cortex. ( b ) BOLD activity in 
patients with motor de fi cits of 
the right hand is more 
widespread and also found in 
the unaffected (here right) 
hemisphere. ( c ) Using a 
probabilistic cytoarchitectonic 
atlas, enhanced activity can be 
localized in distinct cortical 
areas such as BA 6 (premotor 
cortex), BA 4 (primary motor 
cortex), primary somatosen-
sory cortex (BA 3a and 3b) and 
higher-order somatosensory 
areas (BA1, BA2, and PFt) 
(Adopted from Grefkes et al. 
 2008b  )        
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not confounded by using the same source of data 
as investigations into functional specialization. 
Anatomical connectivity studies, however, do not 
allow any inference on information transfer and 
dynamics within the hereby de fi ned networks.   

    17.5   Functional Connectivity 

 Functional connectivity is rather broadly de fi ned 
as the temporal coincidence of spatially distant 
neurophysiological events (Friston  1994  ) . That 
is, areas are presumed to be functionally coupled 
and hence components of the same network if 
their properties are consistently correlated. This 
de fi nition already stresses a key aspect that must 
be considered when dealing with functional con-
nectivity, that is, its correlative nature. Importantly, 
functional connectivity thus does not imply any 
causal relationship or a direct connection between 
functionally coupled areas. Rather, correlated 
activity in two regions may be mediated via addi-
tional structures relaying information from the 

 fi rst area to the second, including cortical- 
subcortical loops involving, for example, the 
basal ganglia or the cerebellum, or a third area 
may induce correlated activation in two regions 
not having any direct interaction. An example for 
the latter situation would be the feed-forward of 
stimulus-driven activity in sensory areas that is 
forwarded to parietal sensory areas for perceptual 
analysis and, in parallel, to premotor cortex for 
response preparation. 

    17.5.1   Resting-State Functional 
Connectivity 

 To date functional connectivity in neuroimaging 
is mainly analyzed by assessing coherent low-
frequency  fl uctuations in resting-state fMRI time 
series (Biswal et al.  1995  ) . Given the richness of 
fMRI data, which usually consists of several hun-
dred time points of voxel-wise data across the 
brain, this approach has the perspective to yield 
information on functional connectivity at the 
level of the entire brain. Resting-state fMRI time 
series are obtained while the subjects are scanned 
lying in the scanner without any imposed task. 
Given that raw MRI signal time courses are noisy 
due to scanner or motion-induced effects, there is 
an important need to reduce spurious correlations 
by multiple processing steps such as spatial and 
temporal  fi ltering as well as removal of signal 
contributions from motion, physiological noise, 
and global signal  fl uctuations. A large number of 
different studies have used data-driven 
approaches, in particular, independent compo-
nent analysis (ICA; Fox and Raichle  2007  ) , to 
delineate large-scale systems of coherent MRI 
signal changes providing evidence for the exis-
tence of several distinct components (i.e., func-
tional networks) in fMRI datasets obtained during 
a task-free,  resting  state in particular at lower 
 frequencies (<0.1 Hz; Greicius et al.  2003  ) . Most 
of these  resting-state networks  (RSNs) closely 
resemble networks that are commonly engaged 
in task-based fMRI studies (Fox and Raichle 
 2007  ) . The relationship of these components to 
task-related networks, however, warrants further 
examination as intuitive associations may be 

  Fig. 17.2    Illustration of the  fi ber tracts running from area 
OP 4 of the secondary somatosensory cortex to the primary 
motor cortex, as delineated by probabilistic tractography 
based on diffusion-weighted imaging of 17 healthy sub-
jects. Note that due to interindividual variability but also 
uncertainty about the  fi ber orientation in each voxel, there 
is a considerable variance in the data as demonstrated by 
the fact that only few voxels have high probabilities of 
belonging to this particular tract (coded in  bright yellow )       
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premature (Rehme et al.  2013 ). There is also an 
ongoing debate on the physiological basis of such 
correlations. They have been suggested to arise 
from intrinsic activity events constrained by ana-
tomical connections between the respective areas 
(Sporns et al.  2004  ) , that is, anatomical connec-
tivity. Other RSNs, however, are poorly explained 
by anatomical connections and it remains unre-
solved what drives  fl uctuations of suf fi cient mag-
nitude to propagate along anatomical connections 
(Buckner  2010  ) . This has motivated a modi fi ed 
view, which de-empathizes the  resting  aspect by 
assuming that the brain is never at  rest  (Fox and 
Raichle  2007  ) . Rather, the  resting  state should 
re fl ect ongoing activity composed of a vast vari-
ety of mental functions such as bodily perception, 
memories, emotions, and explicit cognitive 
thoughts, including inner speech (Eickhoff and 
Grefkes  2011  ) . That is, when lying in an MRI 
scanner without a speci fi c task, subjects are not 
resting but rather performing all sorts of mental 
operations in succession or parallel. The correla-
tion in the MR signal-time course between two 
regions should thus re fl ect the degree to which 
these jointly participate in the various mental net-
works (Laird et al.  2011a  ) .  Resting-state  activity 
would hence consist of a, more or less random, 
sampling of all the different task-related networks 
that the brain is capable of. It has hence been pro-
posed to refrain from the term  resting state  in 
favor of  endogenous ,  task-free functional con-
nectivity  or  functional connectivity in the absence 
of a structured task set .   

    17.5.2   Task-Based Functional 
Connectivity 

 The notion of functional connectivity in the 
absence of an structured task easily leads to the 
complementary aspect of  task-based  or  task-
dependent  functional connectivity which may be 
inferred from correlation analysis between time 
series from different brain regions while perform-
ing a particular task (Rehme et al.  2013 ). In this 
case, however, inference is limited to the task at 
hand or, more precisely, the particular experiment 
rather than addressing the core question about 

“which other regions does a particular area work 
with?” In other words, if a particular area is acti-
vated, which other brain regions are also co- 
activated more likely than chance? An answer to 
this question has emerged from the advent of large-
scale databases on functional neuroimaging results 
(Fig  17.3 ), which enabled new approaches to task-
based functional connectivity analysis (Eickhoff 
et al.  2010  ) . Such resources, like the BrainMap 
database (  http://brainmap.org/    ; Logothetis  2000 ; 
Friston et al.  2003  ) , contain a summary of the 
results of several thousands of functional neuroim-
aging experiments. Given the high standardization 
when reporting neuroimaging data and the ubiqui-
tous adherence to standard coordinate systems, the 
results reported in these studies can be readily 
integrated to assess co-activation probabilities. In 
practice, functional connectivity of a seed region is 
established by retrieving all experiments from a 
database that feature at least one focus of activa-
tion within this seed region of interest (Eickhoff 
et al.  2010 ; Laird et al.  2009a ,  2009b  ) . Coordinate-
based meta-analysis is then performed over all 
activation foci reported in these experiments to test 
for signi fi cant convergence, which (outside the 
seed itself) re fl ects above-chance co-activation. In 
doing so,  meta-analytic connectivity mapping  
(MACM) closely follows the de fi nition of func-
tional connectivity by testing for coincidences of 
neurophysiological events (Laird et al.  2011 ). In 
MACM, however, unit of observation is not a 
speci fi c point in an acquired (e.g., resting-state 
fMRI) time series but a particular neuroimaging 
experiment. Thus, functional connectivity is not 
expressed as coherent  fl uctuation across time but 
rather as coherent activation across experiments 
(Eickhoff and Grefkes  2011 ; Fig.  17.4 ).  

 The fact that functional connectivity analyses 
are fundamentally correlative in nature represents 
both their major strength and mostly severe draw-
back. As noted above, a correlation between neu-
roimaging signals on any scale does not imply a 
direct interaction. Moreover, given the absence of 
a speci fi c model on the nature of the interactions, 
functional connectivity analyses tend to be rather 
susceptible to various physiological confounds or 
epiphenomena. On the other hand, the fact that 
only minimal assumptions need to be made for 

http://brainmap.org/
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functional connectivity analyses also renders 
them a particularly unbiased and robust approach 
toward the mapping of interacting networks.   

    17.6   Effective Connectivity 

 Effective connectivity in the brain is de fi ned as 
the causal in fl uence one area exerts over another 
(Friston  1994  ) , thus providing an approach 

toward to understanding how different brain 
regions affect another. Importantly, in contrast to 
the correlative nature of functional connectivity 
analyses, effective connectivity measurements 
are based on explicit models, how in fl uences 
between brain regions are mediated. Model 
parameters are then  fi tted using the measured 
fMRI signal. 

 In spite of the considerable differences 
between methods and concepts for effective 
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  Fig. 17.3    Demonstration of resting-state functional con-
nectivity analysis, seeding from the left primary motor 
cortex. Following spatial (realignment, spatial normaliza-
tion, smoothing) and temporal (confound removal, band-
pass  fi ltering for the range of 0.001–0.008 Hz) 
preprocessing, the fMRI time series of the seed is extracted 
as displayed in the  lower left . Subsequently, the similarly 

time series of all other voxels in the brain are correlated 
with the seed’s time series. Signi fi cant correlations are 
shown in  green , signi fi cant anti-correlations in  red . The 
signi fi cantly correlated time series of the right motor cor-
tex is displayed ( green ) on the seed time series ( black ) in 
the  lower right panel        
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connectivity modeling, all approaches allow 
inference on directed in fl uences. This has led to 
the common custom of representing effective 
connectivity analyses as directed graphs, where 
nodes represent the individual brain regions that 
were either included in the analysis or inferred 
from it (Bullmore and Sporns  2009 ).    The directed 
edges of the graph then express the causal 
in fl uences of one region on another, that is, effec-
tive connectivity. The dependency on an explicit 
model of interactions between areas is the major 
advantage of effective connectivity analyses. 
Since models re fl ect hypotheses about functional 
integration in the brain, the comparison of differ-
ent models allows the comparison of competing 
hypotheses. Models of effective connectivity are 
thus hypothesis-driven investigations of how 
data are propagated and processed in and between 
different areas of the brain. However, the reli-
ance on the explicit and implicit assumptions 
going into a particular model and its parameter 
estimation scheme has also been voiced as the 
most fundamental limitation of effective 
connectivity modeling. In particular, while 
model- and hypothesis-based analyses enable a 
mechanistic assessment of interaction processes, 
any inference drawn from these analyses cru-
cially depends on the validity of the modeling 

assumptions. Moreover, estimating effective con-
nectivity from fMRI time presents a major chal-
lenge, since fMRI measurements do not re fl ect 
any neuronal signal directly but rather after its 
convolution with a hemodynamic response func-
tion (HRF; Logothetis  2000  ) . Inference hence 
has to be based on a constrained approximation 
or inference of neuronal responses based on the 
measured time series rather than on the hemody-
namic observation (David et al.  2008 ). 

 Above these fundamental aspects that must 
be considered for all approaches for assessing 
effective connectivity, there are also major lines 
of conceptual and practical distinctions between 
them. Some methods such as psycho-physiolog-
ical interactions (PPI) or Granger causality map-
ping (GCM) enable spatial inference (Friston 
et al.  1997 ; Roebroeck et al.  2005 ). That is, 
given a particular seed region or a set of seed 
regions, areas showing functional connectivity 
with these, either by in fl uencing the seed or 
being in fl uenced by it, may be delineated. Other 
approaches, for example, dynamic causal mod-
elling (DCM) or structural equation modeling 
(SEM), do not aim at localizing effects but rather 
model the interactions within a prede fi ned net-
work or regions (Friston et al.  2003 ; 
McIntosh and Gonzalez-Lima  1994 ; Stephan 

  Fig. 17.4    Task-based functional connectivity of the right 
primary motor cortex. The  left panel  illustrates the loca-
tion of the seed region on the MNI single subject template. 
Subsequently, the BrainMap database was  fi ltered to iden-
tify all those experiments that featured at least one activa-
tion within this region of interest. The location of all foci 

of activation reported in the thus identi fi ed experiments is 
shown in the  upper-right panel . By performing a quantita-
tive meta-analysis over the identi fi ed experiments, loca-
tions where the reported foci signi fi cantly converge and 
which thus show signi fi cant above-chance co-activation 
likelihood with the seed may be identi fi ed       
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 2004 ). Models of effective connectivity also dif-
fer in whether external perturbations of a system 
are explicitly incorporated in a model, assumed 
to be stochastic, or in equilibrium. Examples for 
the former would be PPIs and DCM; the proba-
bly prime example for the latter is SEM. Finally, 
modeling schemes may also  differ with respect 
to the level of hemodynamic modeling involved 
(David et al.  2008 ; Stephan et al.  2007b ; Penny 
et al.  2004 ). 

    17.6.1   Dynamic Causal Modelling 

 In contrast to other methods, which are rooted in 
non-brain imaging applications, dynamic causal 
modelling (DCM) represents an approach to 
effective connectivity modeling that has been 
speci fi cally designed for the analysis of fMRI 
time series (Friston et al.  2003  ) . Given this con-
ceptual speci fi city and the fact that it represents 
by far the most common approach to fMRI-based 
effective connectivity analysis, we will hence 
here focus on the theory and application of DCM 
while referring the reader to specialized literature 
on other approaches (Stephan et al.  2007a ; Kiebel 
et al.  2006  ) . 

 The key concept behind DCM is to consider 
the brain as a nonlinear dynamic system in 
which external perturbations (inputs, which 
consist of the experimental manipulations) cause 
changes in neuronal activity or interregional 
coupling strength, that is, connectivity. The 
ensuing changes in neuronal activity states, 
which are explicitly modeled in DCM, in turn 
then cause changes in the blood oxygen level-
dependent (BOLD) signal observable with 
fMRI. That is, DCM considers a hidden level of 
neuronal dynamics (neuronal states) which are 
driven by the experimental inputs (sensory stim-
ulation or contextual in fl uences such as task set-
tings). These dynamics are explicitly modeled 
by a set of differential equations but, however, 
cannot be directly observed, that is, measured 
by fMRI. Rather, these neuronal dynamics give 
rise to externally assessable outputs such as 
BOLD signal changes though the hemodynamic 
response that they evoke. In DCM, the effective 

connectivity within the assessed dynamic neu-
ronal system is, therefore, expressed in terms of 
coupling between unobservable brain states (e.g., 
the modeled neuronal activity in the different 
regions comprised in the model), rather than 
being inferred directly from the measured time 
series. It must be noted that the neuronal states, 
which are central to DCM as it is their dynamics 
and interactions that are at the heart of the model, 
do not directly correspond to a particular physi-
ological quantity (Friston et al.  2003  ) . 
Consequently, they do not represent multi-unit 
activity, spike rates, or local  fi eld potentials. 
Rather they represent the population dynamic of 
the represented area in an abstract form. The neu-
ronal state of region  k  at a particular time  t  is 
given by  z  

 k ( t )
 . Aggregating the neuronal states of 

all modeled regions at a particular time then pro-
vides the neuronal state vector  z  

( t )
 , which describes 

the state of the entire system considered for a par-
ticular point in time. Key to the modeling is now 
to explain the change in the neuronal state vari-
able of each region, which means the dynamic of 
activity as a function of (i) the in fl uences other 
areas exert over it (ii) the modulations of these 
in fl uences brought upon by the experimental 
manipulations, and (iii) the direct driving input of 
the latter. This is implemented by a set of differ-
ential equations that re fl ect the change of the neu-
ronal state vector z over time as a function of its 
current state (via the exerted effective connectiv-
ity) and the experimental perturbations that act 
on the neuronal system. For the purpose of the 
model, experimental factors are represented by a 
set of input functions  u , with  u  

 j 
  corres ponding to 

the time course (denoting presence or absence) of 
the  j th condition or manipulation. In the standard 
form of DCM for fMRI, changes in neuronal 
states over time are represented in the following 
equation forming the generative model of the 
neuronal level (Stephan et al.  2008  ) :

         

 In this formulation of effective connectivity 
architecture, the endogenous connectivity matrix 
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A (square matrix, whose size re fl ects the number 
of regions) represents the task- or process- 
independent component of interregional interac-
tions, that is, the propagation of neuronal activity 
from one area to another expressed as the change 
of neuronal state as a function of the current state 
of the system. The task-dependent modulations 
in matrix B represent the changes in coupling 
strength brought upon by a particular stimulus or 
task. More speci fi cally,  B  ( j )  (of the same size as 
A) re fl ects the additive effect that is present when 
the respective context  u  

 j 
  is present. If the respec-

tive context is not present, as re fl ected by a value 
of 0 in the input function, the term  i  

 j 
   B  ( j )  becomes 

zero and only the remaining components of the 
effective connectivity model become expressed. 
Nonlinear effects are modeled in D which repre-
sents the modulatory in fl uence of a particular 
region on the coupling strength between two 
other regions (i.e., gating). That is, the change of 
neuronal states is modeled as a nonlinear (multi-
plicative) interaction between the activity in two 
other regions such that the current state of region 
A only in fl uences the change in the neuronal state 
of region B (exerting effective connectivity) when 
activity is also present in region C. Finally, the 
driving inputs C re fl ect direct effects of experi-
mental conditions, again separated according to 
the individual input functions  u  

( j )
  on the different 

regions. These driving inputs are particularly rel-
evant, as they inject activity into the system, 
which is then propagated between the different 
regions and returns back to baseline level due to 
negative self-coupling, that is, dampening of 
activity, within each region. In that context, it 
must be noted that while the driving inputs mostly 
re fl ect sensory stimuli, they are not limited to 
those. Rather, activity could also enter a particu-
lar  higher-order  brain region, like the SMA or the 
DLPFC, in a given endogenously driven context 
in the same manner that it could enter a sensory 
area in the case of an external, for example, visual 
stimulus. 

 The modeled neuronal dynamics are then 
linked to the observable changes in the BOLD 
response via a biophysically validated hemo-
dynamic forward model translating neuronal 
states into predicted measurements (Friston et al. 

 2003  ) . While this approach entails two separate 
layers of modeling, the neuronal and the hemody-
namic, each of which has its own sets of parame-
ters to be estimated, it has two major advantages. 
First, DCM allows building mechanistic models 
of neuronal dynamics, interactions, and causal 
effects at the neuronal level, which evidently is of 
primary interest. Second, by not de-convolving 
the observed MRI time series by a canonical 
hemodynamic response function but rather esti-
mating the regionally speci fi c HRF from the 
acquired data (under biological constraints), it 
may accommodate moderate deviations of the 
hemodynamic effects from their canonical form. 
The latter is in particular relevant in the applica-
tion to clinical populations such as patient post-
stroke, which may show generalized vascular 
changes that could impact the form of hemody-
namic responses. In the conceptual framework of 
DCM, effective connectivity within a given brain 
network is inferred from the coupling parameters 
computed for the hidden neuronal states as 
detailed above. In this context, effects are deemed 
causal in the sense of control theory, describing 
how dynamics in one neuronal population cause 
dynamics in another and how such interactions 
are modulated by contextual manipulations. That 
is, rather than computing a measure of connectiv-
ity from the actual data, DCM  fi ts a model of neu-
ronal states; their interactions and evoked 
hemodynamics to the measured fMRI time series 
and effective connectivity in the modeled system 
are then given by the estimated parameters of the 
neuronal model. 

    17.6.1.1   Model Estimation 
 Estimation of the (in particular neuronal) model 
parameters and hence inference on effective con-
nectivity is based on perturbing the system 
through experimental manipulation, for example, 
by engaging subjects with different tasks while 
measuring the evoked effects on the BOLD time 
series of the regions included in the model. The 
parameters of the model that best translate the 
input functions based on the experimental design 
into the measured time series may be estimated 
by Bayesian inversion. For the hemodynamic 
parameters, the use of a Bayesian framework has 
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the major advantage that it allows to incorporate 
prior knowledge about biophysically plausible 
ranges for the different parameters controlling the 
hemodynamic response such as vessel stiffness or 
transit time (Friston et al.  2003 ; Stephan et al. 
 2007a  ) . For the neuronal parameters, in turn, 
shrinkage priors are employed, that is, the a priori 
expected effective connectivity for any connec-
tion in the model is zero. The precision of these 
shrinkage priors then determines how much the 
model is allowed to adapt the parameters to  fi t the 
observed data and plays a major role in ensuring 
model stability. In particular, the larger the model, 
that is, the more areas it contains, the higher the 
danger of activity  spiraling up  and the model 
becoming instable (Friston et al.  2003  ) . 
Consequently, the precision of the shrinkage prior 
increases with model size, making the model 
more conservative as now the prior expectation of 
zero, that is, no connectivity, has a higher in fl uence 
on the posterior parameter estimates.  

    17.6.1.2   Model Comparison 
 Bayesian model inversion does not only provide 
estimates (posterior densities) for the model 
parameters but also an approximation to the log 
evidence of the model for the observed data. This 
log evidence can be used to compare alternative 
DCMs of the same data, that is, to decide between 
alternative hypotheses on the architecture of the 
neuronal interactions underlying an observed 
pattern of activation (Penny et al.  2004  ) . This for-
mal approach to comparing different hypothesis 
on the model structure has been conceptualized 
as one of the major advantages of DCM over 
other approaches to effective connectivity.  

    17.6.1.3   Deterministic and Stochastic 
Models 

 As noted above, perturbation is especially impor-
tant in the classical formulation of DCM (Friston 
et al.  2003  ) , as here the modeled neuronal net-
work is considered completely deterministic and 
only driven by external inputs without which it 
would remain idle. Without such driving input, 
however, the system would stay and remain at 
rest. More recent developments, however, have 
added stochastic behavior and may thus alleviate 

the strong dependency of DCM analyses on the 
experimental manipulation and the assumption 
that neural population dynamics may be correctly 
captured from the modeled inputs (Daunizeau 
et al.  2009  ) . In spite of these revisions, the main-
stay of DCM analyses is still the modeling of 
task-speci fi c contextual in fl uences aiming at an 
interpretation of functional neuroimaging data in 
terms of the underlying connectivity patterns. As 
such, the model and its parameters obviously are 
strongly conditioned on the performed experi-
mental task and its particular setup. DCM thus 
primarily represents as a tool providing an addi-
tional layer of insight into the causes of regionally 
speci fi c activation patterns rather than revealing 
information about functional connectivity pat-
terns that go beyond the particular experiment. In 
other words, DCM represents the most 
con fi rmative modeling approach currently avail-
able for effective connectivity modeling in healthy 
subjects and patients.    However, it must be remem-
bered that con fi rmatory models of connectivity 
like DCM strongly depend on a priori assump-
tions, for example, on the included regions, the 
assessed model space and  fi nally the assumptions 
underlying the modeling approach itself such as 
the form of the hemodynamic priors.  

    17.6.1.4   Application: Modeling 
Effective Connectivity 
in the Motor System 

 Models of effective connectivity like DCM can 
be used to explain activation patterns observed in 
conventional fMRI analyses. As shown in 
Fig.  17.1 , simple unilateral hand movements 
elicit a typical lateralized activation pattern with 
highest BOLD activity in contralateral primary 
motor cortex (M1). Patients with motor de fi cits 
due to a brain lesion resulting from stroke show 
several changes in neural activity during move-
ments of the affected hand, especially in the 
unaffected hemisphere. Applying DCM to the 
dataset of healthy subjects reveals that neural 
coupling among key motor areas is symmetri-
cally organized (Fig.  17.5a ). Estimating the con-
stant part of connectivity, that is, coupling 
irrespective of moving the left or right hand 
(DCM A matrix), reveals that motor areas such 
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as the supplementary motor area (SMA), lateral 
premotor cortex (PMC), and primary motor cor-
tex (M1) show a strong positive coupling with 
each other, especially between SMA and M1 
(Grefkes et al.  2008a  ) . The interhemispheric cou-
pling parameters between left and right M1 are 
negative, suggesting mutual inhibition in the 
absence of a particular hand movement 
(Fig.  17.5a ). In contrast, moving the left or the 
right hand induces a side-speci fi c modulation of 
interregional connectivity. Neural coupling is 
strongly enhanced in the hemisphere contralat-
eral to the moving hand, while ipsilateral areas, 
especially ipsilateral M1, are inhibited 
(Fig.  17.5b ). Patients suffering from stroke-
induced motor de fi cits in the subacute phase (i.e., 
in the  fi rst few weeks and months poststroke) 

show several changes in this pattern of “normal” 
cortical connectivity within and across hemi-
spheres (Grefkes et al.  2008b  ) . Especially endog-
enous (i.e., movement-independent) coupling 
between ipsilesional SMA and ipsilesional M1 is 
signi fi cantly reduced compared to healthy con-
trol subjects (Fig.  17.5a , right panel). Importantly, 
the amount of  hypoconnectivity  between SMA 
and M1 correlates with the individual motor 
de fi cit, suggesting that reduced motor perfor-
mance may—at least to some extent—be caused 
by ineffective processing between ipsilesional 
SMA and M1. Likewise, the negative coupling 
with contralesional SMA is signi fi cantly reduced 
in the group of stroke patients (Fig.  17.5a , right 
panel). As these disturbances in effective con-
nectivity are independent from which hand was 

Intrinsic coupling in controls

Hand-specific modulation of coupling
in controls Significant differences in patients

n = 12 Movements of the right/paretic hand

M 1M 1 M 1 M 1

PMCPMC PMCPMC
SMASMASMA SMA

M 1 M 1

PMCPMC
SMA SMA

M 1 M 1

PMC
SMASMA

PMC

Significant differences in patients

a

b

lesioned hemisphere

lesioned hemisphere

  Fig. 17.5    Connectivity among motor regions in healthy 
subjects and patients with hemiparesis caused by subcorti-
cal stroke. Coupling parameters (rate constants in 1/s) indi-
cate connection strength, which is also coded in the size 
and color of the  arrows  representing effective connectivity. 
Positive ( green ) values represent facilitatory, negative ( red ) 
values inhibitory in fl uences on neuronal activity. The 
greater the absolute value, the more predominant the effect 
one area has over another. ( a ) Neural coupling in healthy 
subjects: In healthy subjects, the intrinsic coupling of 
motor areas is well balanced within and across hemi-
spheres, while movements of the right hand induce a 
hemispheric-speci fi c modulation of interregional coupling. 

( b ) Signi fi cant changes of coupling parameters in stroke 
patients.  Gray arrows  denote no signi fi cant difference to 
healthy control subjects, while  white arrows  indicate a loss 
of coupling in the patient group. Patients with subcortical 
stroke show a signi fi cant reduction in intrinsic SMA-M1 
coupling in the lesioned hemisphere and a decoupling of 
ipsilesional areas from contralesional SMA ( white arrows ). 
Movements of the paretic hand are associated with a path-
ological inhibition of ipsilesional M1 exerted by contrale-
sional M1, which does not occur in healthy subjects and 
correlate with the motor de fi cit of the paretic hand (adapted 
from Grefkes et al.  2008b , with permission)       
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moved by the patients, they might explain the 
 fi nding that the unaffected hand of stroke patients 
often shows subtle motor de fi cits when compared 
to healthy control subjects (Nowak et al.  2007  ) . 
Apart from changes in movement-independent 
coupling, the DCM analysis also revealed 
signi fi cant changes in the modulation of interre-
gional coupling evoked by moving the paretic or 
non-paretic hand. While in healthy subjects con-
tralateral M1 exerts an inhibitory in fl uence on 
M1 activity ipsilateral to the moving hand, stroke 
patients show an additional inhibitory in fl uence 
on ipsilesional M1 originating from contrale-
sional M1, which is not present in healthy sub-
jects or when patients move their unaffected hand 
(Fig.  17.5b , right panel). Importantly, the strength 
of this pathological inhibition from contrale-
sional M1 correlates with the motor impairment 
of the paretic hand (Grefkes et al.  2008b  ) . This 
means that especially in patients with stronger 
motor de fi cits, ipsilesional M1 activity is nega-
tively in fl uenced by contralesional M1 which 
exerts a detrimental effect upon motor perfor-
mance of the paretic hand. Reducing contrale-
sional M1 excitability by means of repetitive 
transcranial magnetic stimulation (rTMS) is 
associated with a signi fi cant reduction of patho-
logical coupling between contralesional and 
ipsilesional M1 compared to an rTMS control 
stimulation site (Grefkes et al.  2010  ) . In addition, 
intrinsic neural coupling between ipsilesional 
SMA and ipsilesional M1 is signi fi cantly 
enhanced after rTMS applied over contralesional 
M1, and the increase in coupling correlates with 
the increase in motor performance of the paretic 
hand (Grefkes et al.  2010  ) . Hence, a focal stimu-
lation by means of TMS does not only alter con-
nectivity of the region stimulated but also of 
areas distant to the stimulation site. This also 
implies that behavioral effects evolving after 
stimulation are based on a remodeling of the 
whole network rather than being caused by excit-
ability changes of a single motor region. In par-
ticular, a more effective integration of ipsilesional 
M1 into the motor network architecture might 
constitute a key factor for improving motor per-
formance of stroke patients by means of rTMS 
(Grefkes et al.  2010  ) .     

    17.7   Conclusion 

 A connectivity-based approach of analyzing 
functional imaging data allows hypothesis-driven 
investigations of the interactions among brain 
regions under physiological and pathological 
conditions. In contrast to  classical  voxel-wise 
analyses of fMRI data aimed at localizing neural 
activity, models of connectivity make use of a 
network perspective in which the change of neu-
ral activity of a given brain region is explained by 
interactions with other brain regions. In this con-
text, it is important to underline that there is no 
such thing as  the  connectivity in the brain, but 
rather several different characteristics may be 
assessed. Structural, task-based and task-inde-
pendent functional as well as effective connectiv-
ity all focus on different properties and aspects of 
network properties and may hence inform our 
knowledge on the physiological and pathological 
organization of the human brain.      
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