
N. Pina et al. (Eds.): Simulation & Modeling Methodologies, Technologies & Appl., AISC 197, pp. 113–129. 
DOI: 10.1007/978-3-642-34336-0_8                                          © Springer-Verlag Berlin Heidelberg 2013 

A Process Based on the Model-Driven Architecture  
to Enable the Definition of Platform-Independent 

Simulation Models 

Alfredo Garro*, Francesco Parisi, and Wilma Russo 

Department of Electronics, Computer and System Sciences (DEIS),  
University of Calabria, via P. Bucci 41C, Rende (CS), 87036, Italy 

{garro,w.russo}@unical.it, fparisi@deis.unical.it 

Abstract. Agent-Based Modeling and Simulation (ABMS) offers many  
advantages for dealing with and understanding a great variety of complex sys-
tems and phenomena in several application domains (e.g. financial, economic, 
social, logistics, chemical, engineering) allowing to overcome the limitations of 
the classical and analytical modelling techniques. However, the definition of 
agent-oriented models and the use of the existing agent-based simulation plat-
forms often require advanced modelling and programming skills, thus hindering 
a wider adoption of the ABMS mainly in those domains that would benefit 
more from it. To promote and ease the exploitation of ABMS, especially among 
domain experts, the paper proposes the jointly exploitation of both Platform-
Independent Metamodels and Model-Driven approaches by defining a  
Model-Driven process (MDA4ABMS) which conforms to the OMG Model-
Driven Architecture (MDA) and enables the definition of Platform-Independent 
simulation Models from which Platform-Dependent simulation Models and  
the related code can be automatically obtained with significant reduction of  
programming and implementation efforts. 

Keywords: Agent-based Modeling and Simulation, Model-driven Develop-
ment, Model-driven Architecture, Platform-independent Simulation Models. 

1 Introduction 

Approaches which combine agent-based modeling with simulation make it possible to 
support not only the definition of the model of a system at different levels of com-
plexity through the use of autonomous, goal-driven and interacting entities (agents) 
organized into societies which exhibit emergent properties, but also the execution of 
the obtained model to simulate the behavior of the complete system so that knowledge 
of the behaviors of the entities (micro-level) produces an understanding of the overall 
outcome at the system-level (macro-level). 

Despite the acknowledged potential of Agent-Based Modeling and Simulation 
(ABMS) for analyzing and modeling complex systems in a wide range of application 

                                                           
* Corresponding author. 



114 A. Garro, F. Parisi, and W. Russo 

domains (e.g. financial, economic, social, logistics, chemical, engineering) [30], these 
approaches are slow to be widely used as the obtained agent-based simulation models 
are at a too low-abstraction level, strongly platform-dependent, and therefore not easy 
to verify, modify and update [17, 22, 28]; moreover, significant implementation ef-
forts which are even more for domain experts, typically lacking of advanced pro-
gramming skills, are required [30]. In particular, agent-based simulation models can 
be currently obtained mainly through either direct implementation or manual adaption 
of a conceptual system model for a specific ABMS platform. The former approach 
inevitably suffers from the limitations and specific features of the chosen platform, 
whereas the latter requires additional adaptation efforts, the magnitude of which in-
creases depending on the gap between the conceptual and implementation models of 
the system. 

To overcome these issues, solutions based on approaches well-established in con-
texts other than the ABMS can be exploited; in particular: (i) approaches based on 
Platform-Independent Metamodels, which enable the exploitation of more high-level 
design abstractions in the definition of Platform-Independent Models and the subse-
quent automatic code generation for different target platforms [1]; (ii) Model-Driven 
approaches, which enable the definition of a development process as a chain of model 
transformations [4]. Therefore, some solutions for the ABMS context currently ex-
ploit either the approach based on Platform-Independent Metamodels [3, 21, 30] or 
that based on Model-Driven [18, 22, 28]. The former approach makes available in this 
context the benefits of exploiting the high level abstraction typical of Platform-
Independent Models which also enables the exchange of models regardless of the 
specific platform used for the simulation; in addition, Platform-Independent Models 
can be reviewed by domain experts working on different target platforms (possibly on 
the basis of the simulation result obtained), and then shared with other domain ex-
perts. The latter approach enables the definition of complete and integrated processes 
able to guide domain experts from the analysis of the system under consideration to 
its agent-based modeling and simulation. In fact, according to the Model-Driven pa-
radigm, the phases which compose a process, the work-products of each phase and the 
transitions among the phases in terms of model transformations are fully specified; in 
addition, as the Model-Driven paradigm makes it possible the automatic code genera-
tion from a set of (visual) models of the system, the focus can be geared to system 
modeling and simulation analysis rather than to programming and implementation 
issues. 

Under these considerations, this paper proposes the jointly exploitation of both 
Platform-Independent Metamodels and Model-Driven approaches as a viable solution 
able to fully address the highlighted issues so to promote a wider adoption of the 
ABMS especially in those domains that would benefit more from it. In particular, the 
paper proposes a Model-Driven process [4] able to guide and support ABMS practi-
tioners in the definition of Platform-Independent Models starting from a conceptual 
and domain-expert-oriented modeling of the system without taking into account  
simulation configuration details. The proposed process conforms to the OMG  
Model-Driven Architecture (MDA) [32] and then allows to (automatically) produce 
Platform-Specific simulation Models (PSMs) starting from a Platform-Independent 
simulation Model (PIM) obtained on the basis of a preliminary Computation Indepen-
dent Model (CIM). 



 A Process Based on the Model-Driven Architecture to Enable the Definition 115 

The remainder of this paper is organized as follows: available ABMS languages, 
methodologies and tools are briefly discussed along with the main drawbacks which 
still hinder their wider adoption (Section 2), the proposed MDA-based process for 
ABMS (MDA4ABMS) is presented (Section 3) and then exemplified (Section 4) with 
reference to a popular problem (the Demographic Prisoner’s Dilemma) able to 
represent several social and economic scenarios. Finally, conclusions are drawn and 
future works delineated. 

2 ABMS: Languages, Methodologies and Tools 

Several approaches have been proposed to support the definition of agent-based mod-
els and/or their implementation for specific simulation platforms; in the following, 
these approaches, grouped on the basis of the main features they provide, are briefly 
discussed and their main drawbacks, which still hinder their wider adoption, are high-
lighted. 

1. Agent-based Modeling and Simulation Platforms. ABMS platforms, which also 
provide a visual editor for defining simulation models and, in particular, for specify-
ing agent behaviours, as well as semi-automatic code generation capabilities, are cur-
rently available, e.g. Repast for Python Scripting (RepastPy) [11], Repast Simphony 
(Repast S) [29], the Multi-Agent Simulation Suite (MASS) [19], Ascape [35], SeSAm 
[25], and Escape [3]. 

Although the existing ABMS tools attempt to offer comfortable modeling and si-
mulation environments, their exploitation is comfortable only when used for simple 
models. In fact, to model complex systems where basic behavior templates provided 
by the tools must be extended, significant programming skills are essential. Moreover, 
as these tools do not refer to any specific ABMS process, their use is mainly based on 
the extension and refinement of the examples and case studies provided, thus limiting 
such platform-dependent models to lower levels of abstraction and flexibility. Finally, 
the agent models adopted are often purely reactive and do not take into account orga-
nizational issues. 

2. Agent-based Modeling Languages. Agent modeling languages, mainly coming 
from the Agent-Oriented Software Engineering (AOSE) domain, can be exploited for 
a clear, high level and often semantically well-founded definition of ABMS models; 
some of the wider adopted proposals are the Agent-Object-Relationship (AOR) Mod-
eling [42], the Agent UML (AUML) [5], the Agent Modeling Language (AML) [10] 
and the Multi-Agent Modelling Language (MAML) [20]. 

These languages, which do not refer to a specific modeling process, are high-level 
languages based on graphical and, in some cases, easily customizable notations. Their 
capabilities make them more suitable as languages for depicting models than as pro-
gramming languages. Moreover, compared to the models offered by agent-based si-
mulation toolkits, the agent models expressed by these languages are richer, both at 
micro (agent) and macro (organization) levels. However, the definition of these agent 
models often requires advanced modeling skills and the transition from the produced 
design models to specific operational models must be often manually performed; this 



116 A. Garro, F. Parisi, and W. Russo 

task, in absence of tools enabling (semi)automatic transitions, can be quite difficult 
due to the consistent gap between the design and the operational model of the system. 

3. AOSE Processes and Methods for Agent-based Modeling and Simulation. 
Processes and methodologies for the analysis, design and implementation of agent-
based models, can be derived from the AOSE domain and possibly adapted for 
ABMS. Specifically, among the several available AOSE methodologies (such as 
PASSI [13], PASSIM [14], ADELFE [7], GAIA [43] and GAIA2 [44], TROPOS [8], 
SONIA [2], SODA+zoom [27], MESSAGE [9], INGENIAS [36], O-MaSE [16], 
SADDE [39], and Prometheus [34]), some of these, such as GAIA2 [44], 
SODA+zoom [27] and MESSAGE [9], provide processes, techniques and/or abstrac-
tions which are particularly suited for the ABMS context; moreover, specific ABMS 
extensions of AOSE methodologies can be found in [23, 37, 40]. 

Although these proposals can represent reference methods for guiding domain ex-
perts through the different phases of an ABMS process, only few of them go beyond 
the high level design phase and deal with detailed design and model implementation 
issues. As a consequence, they fail in supporting domain experts in the definition of 
agent-based models which can be directly and effortless executed on ABMS plat-
forms able to fully handle the phases of simulation and result analysis. In fact, the 
adaptation between the models obtained and the target simulation models requires 
significant efforts which are time-consuming, error-prone and demands advanced 
programming skills. 

4. Model-driven Approaches for ABMS. To fully support and address not only the 
design but also the implementation of simulation models on available ABMS plat-
forms, some Model-Driven approaches for ABMS have been proposed [18, 22, 28]. 
However, as they refer to specific ABMS platforms, their exploitation is strongly 
related to the adoption of these platforms (e.g. Repast Simphony for [18], BoxedE-
conomy for [22], MASON for [28]). 

With reference to other MDA-based approaches, which aim to provide a methodo-
logical support for the design of agent-based distributed simulations compliant to the 
High Level Architecture (HLA) [12, 41], in the ABMS context a still debated issue 
[26] concerns the trade-off between the overhead which the HLA layer introduces and 
the provided distribution and interoperability benefits. Specifically, some approaches 
conceive HLA as the PSM level of an MDA Architecture and provide a process for 
transforming a System PIM, based on UML, in a HLA-based System PSM [12]. On 
the contrary, HLA is conceived as the PIM level in [41] where the Federation Archi-
tecture Metamodel (FAMM) for describing the architecture of a HLA compliant  
federation is proposed to enable the definition of platform-independent simulation 
models (based on HLA) and the subsequent code generation phase. 

3 The MDA4ABMS Process 

This section describes the proposed MDA4ABMS process which combines the Mod-
el-Driven approach and the exploitation of Platform-Independent Metamodels so 
making available in the ABMS context the benefits of both exploited approaches. The 
MDA4ABMS process relies on the Model-Driven Architecture (MDA) [32] and the 



 A Process Based on the Model-Driven Architecture to Enable the Definition 117 

Agent Modeling Framework (AMF) which is proposed in [3] for supporting the plat-
form-independent modeling. 

MDA, which is the most mature Model-Driven proposal launched by the Object 
Management Group (OMG), is based on the process depicted in Figure 1 where three 
main abstraction levels of a system and the resulting model transformations are intro-
duced; in particular, the models related to the provided abstraction levels are the fol-
lowing: 

• a Computation Independent Model (CIM) which describes context, requirements 
and organization of a system at a conceptual level; 

• a Platform-Independent Model (PIM) which specifies architectural and behavioral 
aspects of the system without referring to any specific software platform; 

• the Platform-Specific Models (PSMs) which describe the realization of the system 
for specific software platforms and from which code and other development arti-
facts can be straightforwardly derived. 

Transformations between these models (M1 Layer) are enabled by both the corres-
ponding metamodels in the M2 Layer and the mappings among metamodels. Each 
metamodel is defined as instance of the meta-metamodel represented in the M3 Layer 
by the Meta Object Facility (MOF) [31]. 

The MDA process provides the reference architecture for supporting the generation 
of target models given a source model as well as the mapping between its metamodel 
and the target metamodels. To exploit the MDA process in the ABMS domain and 
obtain agent-based models for specific platforms starting from a platform-independent 
model, the basic MDA concepts, which have been specifically conceived for the 
Software Engineering domain, have to be mapped into the ABMS counterparts. 

To address these issues, the proposed MDA4ABMS process characterizes the fol-
lowing items (which are highlighted in Figure 1): (i) a reference CIM metamodel for 
the definition of CIMs which supports the agent-based conceptual system modeling 
carried out through both abstract and domain-expert oriented concepts (see Section 
3.1); (ii) a PIM metamodel for the definition of Platform-Independent ABMS Models 
(See Section 3.2); (iii) mappings among these metamodels so to enable ABMS model 
transformations (see Section 3.3). The solution identified for the PIM level allows the  
 

CI M
Metamodel

PIM
Metamodel

PSM'
Metamodel

PSM''
Metam odel

CIM
Model

PI M
Model

PSM'
Mo del

PSM''
Model

<<instance of>>

<<instance of>>

<<ins tance of>>

<<instance of>>

mapping transformation
<<based on>>

mapping

mapping

transformation

transformation

<<based on>>

Code

<<based on>>

Code

CONCEPTUAL
SYSTEM

MODELING

HIGH LEVEL
DESIGN

DETAILED
DESIGN

IMPLEMENTATION

MOF
Me tam odel

<<
ins

tan
ce

 of
>>

<<instan
ce 

of>
>

<<instance of>>

<<instance of>>

M3 Layer M2 Layer M1 Layer

M0 Layer

Items spezialized in the MDA4ABMS process

 

Fig. 1. The MDA-based process 



118 A. Garro, F. Parisi, and W. Russo 

automatic generation of PSMs and the related code for several popular ABMS plat-
forms [3, 29, 35]; on the basis of the provided PIM metamodel, other PSM metamo-
dels for the definition of PSM models can be defined for other and new simulation 
platforms. 

3.1 The CIM Metamodel 

The CIM metamodel of the MDA4ABMS process is defined by adopting for the be-
havior of agents a light and task-based model which combines the strengths of several 
well-known, task-based agent models [6]. This metamodel is quite general and plain, 
as required by the abstraction level for which it has been conceived, but powerful 
enough for representing, at a conceptual level, a great variety of systems in typical 
ABMS domains. 

In particular, the CIM metamodel reported in Figure 2 is centered on the concept of 
Agent. An Agent, which is situated in an Environment constituted by Resources, is 
characterized by a Behavior and a set of Properties. Agents can be organized into 
Societies which in turn can be organized in sub-societies. A Behavior is composed by 
a set of Tasks organized according to Composition Task Rules which define 
precedence relations between Tasks. Each Task, which can act on a set of environ-
ment’s Resources, is structured as an UML 2.0 Activity Diagram which consists of a 
set of linked Actions that can be either Control Flow (pseudo) actions (i.e. start, end, 
split, join, decision, merge, sequence) or Computation and Interaction actions  
(i.e. outgoing or incoming signals). 

Property

Ag ent

instances: int = 1

Behavior Task

0..*

1..*

Activity

A ction

1..*

Control Flow

C omputation

I nteraction

is linked to
0..*

1

Res ource

Society

0..*

0..*

Com position
Task Rule

1..*1

1..*

1..*

0..*
1 1..*

1..*

Environm ent

1..* 0..* acts on

is s ituated

0..*

1

1

 

Fig. 2. The CIM metamodel 

3.2 The PIM Metamodel 

The definition of a PIM metamodel, able to represent a reference metamodel for the 
definition of Platform-Independent ABMS Models from which different Platform 
Specific Models (PSMs) can be derived, results in a challenging, long-term standardi-
zation process which should also take into account the features of the main ABMS 
platforms. A more practical solution can be based on the exploitation of the Agent 
Modeling Framework (AMF) [3] which is meant to provide a reference representation 
of platform-independent models that can be used to generate simulation models for 
widely adopted ABMS platforms. In particular, by using the AMF approach, PIM 



 A Process Based on the Model-Driven Architecture to Enable the Definition 119 

models can be defined through a hierarchical visual editor and represented by XML 
documents [38] which are exploited for the generation of PSMs and related code. 

Starting from the AMF proposal, the PIM metamodel of the MDA4ABMS process 
(see Figure 3) has been effortlessly defined. This metamodel is centered on the con-
cept of (Simulation) Context (SContext) which represents an abstract environment in 
which (Simulation) Agents (SAgents) can act. An SAgent is provided with an internal 
state consisting of a set of SAttributes, a visualization style SStyle, and a group of 
AActs (AGroup) which constitute its behavior. An AAct is characterized by an Execu-
tion Setting which establishes when its execution can start, its periodicity and its 
priority. 

SContexts, which are themselves SAgents, can be organized hierarchically and con-
tain sub-SContexts. SAgents in an SContext can be organized by using SProjections 
which are structures designed to define and enforce relationships among SAgents in 
the SContext. In particular, a SNetwork projection defines the relationships of both 
acquaintance and influence between SAgents whereas SGrid, SSpace, SGeography 
and SValueLayer projections define either the physical space or logical structures in 
which the agents can be situated. 

SContext SAgent AGroup AAct

Execution Setting
1 1

AScheduleARuleAI nizialize

SProjection
0..*

0..* 1..*

SStyle

1

1

0..*

1

SSpaceSNetworkSGrid SGeography SValueLa yer

0..*

SAttribute
APerform

 

Fig. 3. The PIM metamodel 

3.3 From CIM to PIM 

With reference to an MDA-based process, a target model can be obtained by trans-
forming a source model (M1 Layer in Figure 1) on the basis of the mapping between 
the source and target metamodels (M2 Layer in Figure 1). To this end, to enable the 
definition of instances of concepts of the target metamodel from instances of concepts 
of the source metamodel, mapping rules among the corresponding concepts along 
with additional guidelines should be provided [24, 32]. 

This section, which deals with the mapping between the CIM and PIM metamodels 
(see Section 3.1 and 3.2) of the MDA4ABMS process, provides the mapping rules 
(Section 3.3.2) and some guidelines (Section 3.3.3) enabling to transform the CIM 
entities into PIM entities by taking into account specific aspects (see Section 3.3.1) of 
the AMF-based PIM metamodel. The subsequent generation of several PSMs (and 
code for the related ABMS platforms) from the obtained PIM can be then easily car-
ried out by the visual and Eclipse-based modelling environment provided by the AMF 
framework [3]. 



120 A. Garro, F. Parisi, and W. Russo 

3.3.1 Main Aspects of an AMF-Based PIM 
Some main aspects have to be considered in the definition of an AMF-based PIM; in 
this section, the focus is on those which are relevant since they affect the simulation 
execution of the derived PSMs and which, in particular, concern the proper definition 
of the Execution Setting of an AAct, and the exploitation of SAttributes to enable 
communication among SAgents (see Figure 3). 

An AMF-based PIM is defined according to a time-stepped driven simulation ap-
proach (the simulation time is incremented in fixed steps) [30], in which, at each si-
mulation step t, a set of AAct instances which can be executed and their execution 
order are defined. Specifically, in a step t: (i) for each AAct, belonging to the AGroup 
of an SAgent SA, the number of its instances depends on the number of SA instances; 
(ii) the AAct Execution Settings determine the AAct instances to be executed and 
their execution order. 

The Execution Setting of an AAct is characterized by the tuple <startingTime, pe-
riod, priority> where: 

• startingTime is the first simulation step at which the instances of the AAct are to 
be executed; 

• for each instance of the AAct, period is the number of simulation steps which 
must elapse between two subsequent executions; 

• in a simulation step the priority value affects the execution order of the enabled 
AActs instances (an AAct is enabled at the simulation step t if t is equal to the 
AAct startingTime which is incremented by a multiple of its period). 

In a simulation step t all enabled AAct instances (regardless of whether they belong to 
a specific SAgent instance) belong to the same set, Enabled(t), from which the AActs 
are scheduled for execution on the basis of their priority (see Figure 4). As a conse-
quence, the AAct Execution Settings have to be properly defined to guarantee right 
execution order between AAct instances of both the same SAgent instance (intra-agent 
AAct interleaving) and different SAgent instances (inter-agent AAct interleaving). 

Moreover, in defining the AAct Execution Settings, the different AAct types 
should be also considered (see Figure 3). In particular, AActs of type AInitialize are 
executed once and before any other AAct of the SAgent (starting Time and period are 
both fixed to 0), AActs of type ARule are executed once at each iteration (starting 
Time and period are both fixed to 1), no fixed settings are associated to AActs of the 
ASchedule and APerform types as ASchedule supports periodicity greater than that of  

 
ActScheduling (t) { 
   AAI = Enabled(t); /* Enabled(t) returns the set of enabled AAct instances at t */ 
   while (not empty AAI) { 
          MPE = maxPriorityEnabled(AAI) ; /* maxPriorityEnabled(AAI) returns a set  
                                       consisting of the AAct instances with maximum priority in AAI */ 
          AAI = AAI - MPE; 

                while (not empty MPE) { 
    aa = randomGet(MPE); /* randomGet(MPE) returns an AAct instance randomly  
                                             chosen in (and removed from) MPE */   

    execute (aa); 
          }       
   }     
} 

Fig. 4. Execution of an AMF-based simulation step 



 A Process Based on the Model-Driven Architecture to Enable the Definition 121 

a single iteration, whereas AActs of type APerform, in each iteration in which they are 
scheduled, are over and over again executed until their escape conditions are met. 

With respect to the communication among SAgents, since the SAttributes of an 
SAgent can be freely accessed by all the instances of the SAgent, and the SAttributes 
of an SContext by all the instances of all the SAgents in the SContext, communication 
among instances of the same SAgent (intra-agent communication) can exploit SAgent 
SAttributes whereas communication among instances of different SAgents (inter-
agent communication) can be enabled by SContext SAttributes. 

Finally, the design of SAgent communications should take into account how ran-
dom choices among the enabled AAct (see Figure 4) affect the values of the SAttri-
butes on which the communication is based. 

3.3.2 Mapping from CIM to PIM Metamodels: Mapping Rules 
The automatic generation of a PIM starting from a given CIM is enabled by the 
QVT/R-based representation of mapping rules [32, 33]. Specifically, due to the dif-
ferent abstraction level between the concepts of the reference CIM and PIM metamo-
dels (see Section 3.1 and 3.2), the mapping rules introduced in this Section along with 
the QVT/R-based representation allow to obtain a preliminary PIM which needs to be 
refined by applying additional guidelines (see Section 3.3.3). 

The preliminary transformation of a CIM into a PIM, which involves the definition 
of instances of concepts of the PIM metamodel from instances of concepts of the CIM 
metamodel by exploiting the mapping rules among the corresponding concepts, con-
sists in the following steps which are listed in the order they should be performed: 
R1. each Society is transformed into a Simulation Context (SContext) and any en-
closed Society into a (sub)SContext of the corresponding enclosing Society; SAttri-
butes of each SContext are, then, originated by the Properties of the corresponding 
Society; 

R2. each Agent belonging to a Society is transformed into an SAgent of the corres-
ponding SContext, generating the SAgent SAttributes on the basis of the Agent Prop-
erties, and introducing the SAgent AGroup which groups the AActs constituting its 
behavior; 

R3. on the basis of the set of Resources, which compose the Environment in which 
Agents are situated, a set of SProjections, whose types (SNetwork, SGrid, SSpace, 
SGeography, SValueLayer) depend on the characteristics of the mapped Resources, 
are then introduced in the corresponding SContext; 

R4. AActs associated to each SAgent are to be defined on the basis of the behavior of 
the corresponding Agent which is composed by a set of Tasks organized according to 
Composition Task Rules; this transformation is not direct as requires to take into ac-
count the specific aspects of both an AMF-based PIM (see Section 3.3.1) and the 
simulation scenarios to be represented; 

R5. Actions which constituted the Tasks mapped into an AAct have to be properly 
realized by exploiting the wide set of predefined functions provided by AMF [3]. 

With reference to the above introduced rules, in the following, some guidelines are 
provided which address some relevant issues related to: (i) the different communica-
tion mechanisms adopted by CIM and PIM metamodels, the former based on  



122 A. Garro, F. Parisi, and W. Russo 

incoming and outgoing signals (see Section 3.1), and the latter on shared SAttributes 
(see Section 3.3.1); (ii) the setting of both AAct Execution Settings and related AAct 
types which have to ensure compliance with the Composition Rules of the correspond-
ing Tasks. Moreover, AAct Execution Settings and related AAct types should also be 
set to guarantee intra and inter-agent AAct interleavings (see Section 3.3.1) which 
adhere to the simulation scenarios under consideration. 

The QVT/R-based representation of the above introduced  mapping rules is exem-
plified in Figure 5 where the rule R2 for transforming an Agent into an SAgent is 
reported by using the QVT/R graphical notation [33]. 

a:  A gent

   instances = x

<<domain>>
s a: SAgent

sat: SAttribute

  at name = pn
atvalue  = av

<<domain>>

c im : CIMM pim : PIMM

C E

when

where

CIMtoPIM(cim, pim)

PropertyToSAttribute(p, sat)
BehaviorToAGroup(b, ag)

AgentToSAgent

b: Behavior ag: AGroupp: Property

pname = pn
pvalue = pv

 

Fig. 5. The QVT/R graphical notation: rule R2 

3.3.3 Mapping from CIM to PIM Metamodels: Guidelines 
Beside the above introduced mapping rules among concepts of the source and target 
metamodels, further support for CIM to PIM transformation can be provided through 
guidelines which take into account not only the different abstraction level of the con-
cepts in the metamodels but also the main aspects related to the simulation execution 
model of an AMF-based PIM (see Section 3.3.1). In particular, these guidelines pro-
pose viable solutions for guiding the choice among the mapping alternatives which 
often characterize the transformation process from a conceptual level (CIM) to a less 
abstract level (PIM) typically relying on a simulation execution model. In the follow-
ing some of these guidelines are proposed and exploited in Section 4: 

G1. A set of Tasks of an Agent which, according to the Composition Task Rules, can 
be grouped in a sequence of Tasks and in which Tasks are related by Actions of the 
Interaction type (i.e. the involved Tasks send/receive messages to/from the other 
Tasks in the sequence) can be mapped in a single AAct of an SAgent. The interactions 
among the involved Tasks are then modeled by accessing and modifying the properly 
introduced SAttributes of the SAgent. 

G2. In case of Tasks which should be executed at the same simulation steps, the 
Execution Setting of the resulting AActs must have the same startingTime and period 
whereas priorities must be properly set according to the task organization specified by 
the Composition Task Rules. 

G3. The SAttributes of an SContext should be properly defined not only for mapping 
the Properties of the corresponding Society but also for supporting interactions among 
different SAgents belonging to the SContext. 



 A Process Based on the Model-Driven Architecture to Enable the Definition 123 

G4. Tasks (or group of Tasks) that must be executed at every simulation step are 
mapped into ARules, except for Tasks containing a Do-While loop which should be 
mapped into APerforms. Tasks that must be executed with a periodicity different from 
a single simulation step should be mapped into ASchedule; finally, Tasks that must be 
executed once before any other Tasks should be mapped into AInizialize (an AAct of 
type AInitialize should nevertheless be provided for setting the SAttributes). 

4 Exploiting the Proposed MDA-Based Process 

In this section, the MDA4ABMS process is exemplified with reference to the well-
known Demographic Prisoner’s Dilemma which was introduced by Epstein in 1998 
[15] and is able to represent several social and economic complex scenarios in which 
interesting issues regard the identification of starting configurations and conditions 
that allow initial populations to reach stable configurations (in terms of both density 
and geographic distribution). Specifically, in these scenarios k players are spatially 
distributed over an n-dimensional toroidal grid. Each player is able to move to empty 
cells in its von Neumann neighborhood of range 1 (feasible cells), is characterized by 
a fixed pure strategy (c for cooperate or d for defect) and is endowed with a level of 
wealth w which will be decremented or incremented depending of the payoff earned 
by the player in each round of the Prisoner’s Dilemma game played during its life 
against its neighbors [15]. The player dies when its wealth level w becomes negative, 
whereas, when w exceeds a threshold level wb, an offspring can be produced with 
wealth level w0 deducted from the parent and plays using the same strategy as the 
parent unless a mutation (with a given rate m) occurs. A player also dies if its age 
exceeds a value agemax randomly fixed at the player creation. 

4.1 The CIM Model 

For the Demographic Prisoner’s Dilemma, the CIM model envisages a DPDGame 
Society of k Player Agents which are situated in an Environment which includes a 
Grid Resource constituted by an n-dimensional toroidal grid. Main Properties of the 
DPDGame Society are Prisoner’s Dilemma payoffs, initial and threshold wealth levels 
(w0, wb), and mutation rate (m), and those of the Player Agent are its wealth level w, 
age, and strategy. The Behavior of the Player Agent is obtained by composing the set 
of Tasks reported in Table 1 according to the Composition Task Rules shown in  
Table 2; corresponding UML Activity diagrams are reported in Figure 6. 

4.2 The PIM Model 

In this section, the transformation from the defined CIM to a PIM is detailed with 
reference to a simulation scenario where all players are required to play exactly one 
round in a simulation step. 

The transformation from the CIM to a PIM is enabled by the mapping between the 
CIM and PIM metamodels (see Sections 3.3.2, 3.3.3) which originates: the 
DPDGame SContex from the DPDGame Society (rule R1), the Player SAgent from 
the Player Agent (rule R2), the GameSpace SProjection from the Grid Resource  



124 A. Garro, F. Parisi, and W. Russo 

(rule R3), the Acts (with their related Execution Settings) associated to the Player 
SAgent from the Tasks and associated Composition Task Rules composing the Beha-
vior of the Player (rule R4). 

Table 1. Indentified tasks 

Task Id Task Name Description 

T1 Walk The player can move to a feasible cell of the Grid. 

T2 Challenge 
If the von Neumann neighborhood (of range 1) of the player is not empty the 
player communicates its strategy to its randomly selected opponent player. 

T3 Update Age The player age is incremented by 1. 

T4 Fission 

If the player’s wealth level w is greater than the threshold wb a new child 
player can be created in a feasible cell of its parent and endowed with w0 and 
the same strategy of the parent (unless a mutation with rate m occurs). The 
wealth level of the parent player is decremented by w0. 

T5 Die 
If the wealth level of the player is negative or its age is greater than agemax the 
player is removed from the Grid. 

T6 Accept Dare 
When the strategy of an opponent player is provided the player strategy is 
communicated to the opponent and the earned payoff is added to the player’s 
wealth level.  

T7 
Update Wealth 

Level 
If the strategy of an opponent player is provided the earned payoff is added to 
the player’s wealth level 

 

Select an available cell in the
von Neumann neighborhood

of range 1

Move to the
selected cell

[else]

[available
cell  found]

Die

[else]

[ wealth <0 ||
age > max age]  

(T1) Walk  (T5) Die 

Select an opponent  player
in th von Neumann

neighborhood of range 1

[else]

[opponent
player found]

Send my Strategy
to the opponent  player  

Receive the Strategy
of an opponent player

Update
Wealth Level

Send my Strategy
to the opponent  player

 
(T2) Challenge  (T6) Accept Dare 

Increment age
by one

 
Receive the Strategy

of an opponent  player

Update
Wealth Level

 
(T3) Update Age (T7) Update Wealth Level 

Select an available cell in
the von Neumann

neighborhood of range 1

Create a new
Player Agent

Set the wealth level of the
new agen t to the initial

wealth level  w0

Decrements  my wealth
level of w0

Compute a random value v
belonging to the interval [0,1]

Set the s trategy
of the created
agen t to mine

Mutate strategy of
the created agent

[else]

[ wealth level greater than
repruduction  threshold]

[available
 cell found]

[else]

[v<=mutation rate]

[else]

 
(T4) Fission

Fig. 6. The UML activity diagrams of the Player Agent tasks 

 



 A Process Based on the Model-Driven Architecture to Enable the Definition 125 

Table 2. Composition task rules 

Task Id Set of Enabling Tasks 
T1 - 
T2 {T1} 
T3 {T1} 
T4 {T7} 
T5 {T3, T4} 
T6 {T2} 
T7 {T6} 

 

Table 3. Group of acts (AGroup) for the player agent 

AAct AAct Execution Setting Tasks 
Random Walk <1,1, a> T1 
Play Neighbor <1,1, b>, with b<a T2, T6, T7 
Update Age <1,1, c>, with c<a  T3 
Fission <1,1, d>, with d<c & d<b T4 
Die <1,1, e>, with e<d T5 

 

In Table 3 the Acts derived for the Player SAgent along with the associated Tasks 
(see Table 1 and 2) and Execution Settings are reported. As the AMF communication 
mechanism among instances of an SAgent is based on access to the SAttributes of the 
SAgent (see Section 3.3.1), a single AAct (Play Neighbor) is derived from tasks T2, 
T6 and T7 which carried out this kind of communication (guideline G1). Execution 
Settings of the AActs in Table 3 are characterized by both startingTime and period 
equal to one to guarantee that all the Player SAgents perform all their AActs in each 
simulation step, and priorities are set (guideline G2) on the basis of the Compositions 
Task Rules (see Table 2). On the basis of the AAct Execution Setting (see  
Section 3.3.1) in Table 3 the type of AActs is obtained (guideline G4). 

In Figure 7.a an example of a PIM model representation, obtained by exploiting the 
visual and Eclipse-based modelling environment provide by AMF, is reported. More-
over, an AAct of the AInizialize type (Inizialize) has been introduced for setting up 
the SAttributes of the DPDGame SContext and the Player SAgent (guideline G4). In 
Figure 7.b. the definition of the Random Walk and Update Age AActs is reported 
where the actions associated to each AAct are defined by exploiting the wide set of 
functions provided by AMF (rule R5). 

Starting from this definition of the PIM model, AMF is able to automatically gen-
erate the PSM models and the related code for the ABMS platforms which are cur-
rently supported: Repast Simphony [29], Ascape [35] and Escape [3]. The simulation 
of the system can then be executed in a target simulation environment and simulation 
results can be thoroughly analyzed by exploiting several analysis tools (as Matlab, R, 
VisAd, iReport, Jung) which can be directly invoked from the environment. 

 

 
(a) DPDGame model in AMF (b) Random Walk and Update Age AActs 

Fig. 7. The AMF-based PIM model of the DPDGame 



126 A. Garro, F. Parisi, and W. Russo 

5 Conclusions 

A wider adoption of the ABMS is still hindered by the lack of approaches able to 
fully support the experts of typical ABMS domains (e.g. financial, economic, social, 
logistics, chemical, engineering) in the definition and implementation of agent-based 
simulation models. In this context, the paper has proposed a solution, centered on the 
joint use of the Model-Driven Architecture and AMF-based Platform-Independent 
Metamodel, which aims to overcome the main drawbacks of available ABMS lan-
guages, methodologies and tools. In particular, the proposed process (MDA4ABMS) 
allows to (automatically) produce Platform-Specific simulation Models (PSMs) start-
ing from a Platform-Independent simulation Model (PIM) obtained on the basis of a 
Computation Independent Model (CIM), thus allowing domain experts to exploit 
more high-level design abstractions in the definition of simulation models and to ex-
change/update/refine the so obtained simulation models regardless to the target plat-
form chosen for the simulation and result analysis. Moreover, the semi-automatic 
model transformations, enabled by the defined metamodels and related mappings, 
ease the exploitation of the proposed modeling notation and process, while the adop-
tion of the standard UML notation and the visual modeling tool provided by AMP 
reduce the learning curve of the process. 

The MDA4ABMS process has been exemplified with reference to the well-known 
Demographic Prisoner’s Dilemma which is able to represent several social and eco-
nomic complex scenarios thus demonstrating the efficacy of the process and the re-
lated tools in supporting domain experts from the definition of conceptual simulation 
models to their concrete implementation on different target ABMS platforms. 

Ongoing research efforts are devoted to: (i) define and extensive experiment a full-
fledged ABMS methodology based on the MDA4ABMS process and able to seam-
lessly guide domain experts from the analysis of a complex system to its agent-based 
modeling and simulation; (ii) look for frameworks different from AMF (e.g. HLA) 
suitable to define PIM metamodels able to support the modeling of simulation scena-
rios with specific requirements such as distribution and/or human participation. 

References 

1. Agt, H., Bauhoff, G., Cartsburg, M., Kumpe, D., Kutsche, R., Milanovic, N.: Metamode-
ling Foundation for Software and Data Integration. In: Yang, J., Ginige, A., Mayr, H.C., 
Kutsche, R.-D. (eds.) UNISCON 2009. LNBIP, vol. 20, pp. 328–339. Springer, Heidelberg 
(2009) 

2. Alonso, F., Frutos, S., Martínez, L., Montes, C.: SONIA: A Methodology for Natural 
Agent Development. In: Gleizes, M.-P., Omicini, A., Zambonelli, F. (eds.) ESAW 2004. 
LNCS (LNAI), vol. 3451, pp. 245–260. Springer, Heidelberg (2005) 

3. The AMP project, http://www.eclipse.org/amp/  
4. Atkinson, C., Kühne, T.: Model-driven development: A metamodeling foundation. IEEE 

Software 20(5), 36–41 (2003) 
5. Bauer, B., Müller, J.P., Odell, J.: Agent UML: A Formalism for Specifying Multiagent 

Software Systems. In: Ciancarini, P., Wooldridge, M.J. (eds.) AOSE 2000. LNCS, 
vol. 1957, pp. 91–103. Springer, Heidelberg (2001) 



 A Process Based on the Model-Driven Architecture to Enable the Definition 127 

6. Bernon, C., Cossentino, M., Gleizes, M.-P., Turci, P., Zambonelli, F.: A Study of Some 
Multi-agent Meta-models. In: Odell, J.J., Giorgini, P., Müller, J.P. (eds.) AOSE 2004. 
LNCS, vol. 3382, pp. 62–77. Springer, Heidelberg (2005) 

7. Bernon., C., Gleizes, M.P., Picard, G., Glize, P.: The Adelfe Methodology for an Intranet 
System Design. In: Proc. of the Fourth International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS), Toronto, Canada (2002) 

8. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: TROPOS: an agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-
agent Systems 8(3), 203–236 (2004) 

9. Caire, G., Coulier, W., Garijo, F.J., Gomez, J., Pavón, J., Leal, F., Chainho, P., Kearney, 
P.E., Stark, J., Evans, R., Massonet, P.: Agent Oriented Analysis Using Message/UML.  
In: Wooldridge, M.J., Weiß, G., Ciancarini, P. (eds.) AOSE 2001. LNCS, vol. 2222,  
pp. 119–135. Springer, Heidelberg (2002) 

10. Cervenka, R., Trencansky, I.: The Agent Modeling Language - AML. Whitestein Series in 
Software Agent Technology. Birkhäuser (2007) 

11. Collier, N., North, M.: Repast for Python Scripting. In: Proc. of the Agent 2004 Confe-
rence on Social Dynamics: Interaction, Reflexivity and Emergence, Chicago, IL (2004) 

12. D’Ambrogio, A., Iazeolla, G., Pieroni, A., Gianni, D.: A Model Transformation approach 
for the development of HLA-based distributed simulation systems. In: Proc. of the Interna-
tional Conference on Simulation and Modeling Methodologies, Technologies and Applica-
tions, Noordwikerhout, The Netherlands, July 29-31 (2011) 

13. Cossentino, M.: From requirements to code with the PASSI methodology. In: Henderson-
Sellers, B., Giorgini, P. (eds.) Agent-Oriented Methodologies, pp. 79–106. Idea Group 
Inc., Hershey (2005) 

14. Cossentino, M., Fortino, G., Garro, A., Mascillaro, S., Russo, W.: PASSIM: a simulation-
based process for the development of Multi-Agent Systems. J. of Agent-Oriented Software 
Engineering 2(2), 132–170 (2008) 

15. Dorofeenko, V., Shorish, J.: Dynamical Modeling of the Demographic Prisoner’s Dilem-
ma. In: Computing in Economics and Finance. Society for Computational Economics 
(2002) 

16. Garcia-Ojeda, J.C., DeLoach, S.A., Robby, R., Oyenan, W. H., Valenzuela, J.: O-MaSE: A 
Customizable Approach to Developing Multiagent Development Processes. In: Proc. of 
the 8th International Workshop on Agent Oriented Software Engineering, Honolulu HI 
(May 2007) 

17. Garro, A., Russo, W.: Exploiting the easyABMS methodology in the logistics domain. In: 
Proceedings of the Int’l Workshop on Multi-Agent Systems and Simulation (MAS&S 
2009) as Part of the Multi-Agent Logics, Languages, and Organisations Federated Work-
shops (MALLOW 2009), Turin, Italy, September 7-11 (2009) 

18. Garro, A., Russo, W.: easyABMS: a domain-expert oriented methodology for Agent Based 
Modeling and Simulation. Simulation Modeling Practise and Theory 18, 1453–1467 
(2010) 

19. Gulyás, L., Bartha, S., Kozsik, T., Szalai, R., Korompai, A., Tatai, G.: The Multi-Agent 
Simulation Suite (MASS) and the Functional Agent-Based Language of Simulation 
(FABLES). In: SwarmFest 2005, Torino, Italy, June 5-7 (2005) 

20. Gulyas, L., Kozsik, T., Corliss, J.B.: The multi-agent modelling language and the model 
design interface. J. of Artificial Societies and Social Simulation 2(3) (1999) 

21. Hahn, C., Madrigal-Mora, C., Fischer, K.: Interoperability through a Platform-Independent 
Model for Agents. In: Enterprise Interoperability II, New Challenges and Approaches. 
Springer (2007) 



128 A. Garro, F. Parisi, and W. Russo 

22. Iba, T., Matsuzawa, Y., Aoyama, N.: From Conceptual Models to Simulation Models: 
Model Driven Development of Agent-Based Simulations. In: Proc. of the 9th Workshop 
on Economics and Heterogeneous Interacting Agents, Kyoto, Japan (2004) 

23. Iglesias, C.A., Garijo, M., Gonzalez, J.C., Velasco, J.R.: Analysis and Design of Multia-
gent Systems Using MAS-CommonKADS. In: Singh, M.P., Rao, A., Wooldridge, M.J. 
(eds.) ATAL 1997. LNCS (LNAI), vol. 1365, Springer, Heidelberg (1998) 

24. Karow, M., Gehlert, A.: On the Transition from Computation Independent to Platform In-
dependent Models. In: Proc. of the 12th Americas Conference on Information Systems, 
Acapulco, Mexico (August 2006) 

25. Klügl, F., Herrler, R., Fehler, M.: SeSAm: implementation of agent-based simulation using 
visual programming. In: Proc. of AAMAS 2006, pp. 1439–1440 (2006) 

26. Lees, M., Logan, B., Theodoropoulos, G.: Distributed Simulation of Agent-Based Systems 
with HLA. ACM Transactions on Modeling and Computer Simulation (TOMACS) 17(3), 
11–35 (2007) 

27. Molesini, A., Omicini, A., Ricci, A., Denti, E.: Zooming Multi-Agent Systems. In: Müller, 
J.P., Zambonelli, F. (eds.) AOSE 2005. LNCS, vol. 3950, pp. 81–93. Springer, Heidelberg 
(2006) 

28. Nebrijo Duarte, J., de Lara, J.: ODiM: A Model-Driven Approach to Agent-Based Simula-
tion. In: Proc. of the 23rd European Conference on Modelling and Simulation, Madrid, 
Spain, June 9-12 (2009) 

29. North, M.J., Howe, T.R., Collier, N.T., Vos, J.R.: Repast Simphony Runtime System. In: 
Proc. of the Agent 2005 Conference on Generative Social Processes, Models, and Mechan-
isms, Chicago, IL (2005b) 

30. North, M.J., Macal, C.M.: Managing Business Complexity: Discovering Strategic Solu-
tions with Agent-Based Modeling and Simulation. Oxford University Press (2007) 

31. Object Management Group (OMG). Meta Object Facility (MOF) Specifications (version 
2.0), http://www.omg.org/spec/MOF/2.0/ 

32. Object Management Group (OMG). Model Driven Architecture (MDA) Guide Version 
1.0.1, http://www.omg.org/cgi-bin/doc?omg/03-06-01 

33. Object Management Group (OMG). MOF Query/Views/Transformations (QVT) Specifi-
cations (version 1.0), http://www.omg.org/spec/QVT/1.0/ 

34. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents. 
In: AAMAS 2002: Proc. of the 1st International Joint Conference on Autonomous Agents 
and Multiagent Systems, pp. 37–38. ACM Press (2002) 

35. Parker, M.T.: What is Ascape and Why Should You Care? J. Artificial Societies and So-
cial Simulation 4(1) (2001) 

36. Pavón, J., Gómez-Sanz, J.J., Fuentes, R.: The INGENIAS Methodology and Tools. In: 
Agent-Oriented Methodologies. pp. 236–276. Idea Group Publishing (2005) 

37. Pavon, J., Sansores, C., Gómez-Sanz, J.J.: Modelling and simulation of social systems with 
INGENIAS. Int. J. of Agent-Oriented Software Engineering 2(2), 196–221 (2008) 

38. Schauerhuber, A., Wimmer, M., Kapsammer, E.: Bridging existing Web modeling lan-
guages to model-driven engineering: a metamodel for WebML. In: Proc. of the 6th Int. 
Conference on Web Engineering (ICWE 2006), Palo Alto, CA. ACM Press (2006) 

39. Sierra, C., Sabater, J., Agusti, J., Garcia, P.: Evolutionary Programming in SADDE. In: 
Procedings of the First International Conference on Autonomous Agents and Multi-Agent 
Systems, AAMAS 2002, Bologna, Italy, July 15-19, vol. 3, pp. 1270–1271. ACM Press 
(2002) 



 A Process Based on the Model-Driven Architecture to Enable the Definition 129 

40. Streltchenko, O., Finin, T., Yesha, Y.: Multi-agent simulation of financial markets. In: 
Kimbrough, S.O., Wu, D.J. (eds.) Formal Modeling in Electronic Commerce. Springer 
(2003) 

41. Topçu, O., Adak, M., Oǧuztüzün, H.: A metamodel for federation architectures. ACM 
Transactions on Modeling and Computer Simulation (TOMACS) 18(3), 10–29 (2008) 

42. Wagner, G.: AOR Modelling and Simulation: Towards a General Architecture for Agent-
Based Discrete Event Simulation. In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. 
(eds.) AOIS 2003. LNCS (LNAI), vol. 3030, pp. 174–188. Springer, Heidelberg (2004) 

43. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia methodology for agent-oriented 
analysis and design. Journal of Autonomous Agents and Multi-Agent Systems 3(3), 285–
312 (2000) 

44. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing Multiagent Systems: the Gaia 
Methodology. ACM Trans. on Software Engineering and Methodology 12(3), 317–370 
(2003) 

 


	A Process Based on the Model-Driven Architectureto Enable the Definition of Platform-Independent Simulation Models
	Introduction
	ABMS: Languages, Methodologies and Tools
	The MDA4ABMS Process
	The CIM Metamodel
	The PIM Metamodel
	From CIM to PIM

	Exploiting the Proposed MDA-Based Process
	The CIM Model
	The PIM Model

	Conclusions
	References




