
The Stability Box for Minimizing Total Weighted Flow
Time under Uncertain Data

Yuri N. Sotskov1, Tsung-Chyan Lai2, and Frank Werner3

1 United Institute of Informatics Problems, National Academy of Sciences of Belarus,
Surganova Str 6, Minsk, Belarus

2 Department of Business Administration, National Taiwan University,
Roosevelt Rd 85, Taipei, Taiwan

3 Faculty of Mathematics, Otto-von-Guericke-University, Magdeburg, Germany
sotskov@newman.bas-net.by, tclai@ntu.edu.tw,

frank.werner@ovgu.de

Abstract. We consider an uncertain single-machine scheduling problem, in which
the processing time of a job can take any real value from a given closed interval.
The criterion is to minimize the sum of weighted completion times of the n jobs, a
weight being associated with each job. For a job permutation, we study the stability
box, which is a subset of the stability region. We derive an O(n log n) algorithm
for constructing a job permutation with the largest dimension and volume of a sta-
bility box. The efficiency of such a permutation is demonstrated via a simulation
on a set of randomly generated instances with 1000 ≤ n ≤ 2000. If several per-
mutations have the largest dimension and volume of a stability box, the developed
algorithm selects one of them due to a mid-point heuristic.

Keywords: Single-machine scheduling, Uncertain data, Total weighted flow
time, Stability analysis.

1 Introduction

In real-life scheduling, the numerical data are usually uncertain. A stochastic [6] or a
fuzzy method [8] are used when the job processing times may be defined as random
variables or as fuzzy numbers. If these times may be defined neither as random vari-
ables with known probability distributions nor as fuzzy numbers, other methods are
needed to solve a scheduling problem under uncertainty [1,7,13]. The robust method
[1,2,3] assumes that the decision-maker prefers a schedule hedging against the worst-
case scenario. The stability method [4,5,10,11,12,13] combines a stability analysis, a
multi-stage decision framework and the solution concept of a minimal dominant set of
semi-active schedules.

In this paper, we implement the stability method for a single-machine problem with
interval processing times of the n jobs (Section 2). In Section 3, we derive an O(n log n)
algorithm for constructing a job permutation with the largest dimension and volume of
a stability box. Computational results are presented in Section 4. We conclude with
Section 5.

N. Pina et al. (Eds.): Simulation & Modeling Methodologies, Technologies & Appl., AISC 197, pp. 39–55.
DOI: 10.1007/978-3-642-34336-0 3 c© Springer-Verlag Berlin Heidelberg 2013

40 Y.N. Sotskov, T.-C. Lai, and F. Werner

2 Problem Setting

The jobs J = {J1, J2, ..., Jn}, n ≥ 2, have to be processed on a single machine,
a positive weight wi being given for any job Ji ∈ J . The processing time pi of a
job Ji can take any real value from a given segment [pLi , p

U
i], where 0 ≤ pLi ≤ pUi .

The exact value pi ∈ [pLi , p
U
i] may remain unknown until the completion of the job

Ji ∈ J . Let T = {p ∈ Rn
+ | pLi ≤ pi ≤ pUi , i ∈ {1, 2, . . . , n}} denote the set

of vectors p = (p1, p2, . . . , pn) (scenarios) of the possible job processing times. S =
{π1, π2, . . . , πn!} denotes the set of permutations πk = (Jk1 , Jk2 , . . . , Jkn) of the jobs
J . Problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi is to find an optimal permutation πt ∈ S:

∑

Ji∈J
wiCi(πt, p) = γt

p = min
πk∈S

{
∑

Ji∈J
wiCi(πk, p)

}

. (1)

Hereafter, Ci(πk, p) = Ci is the completion time of job Ji ∈ J in a semi-active
schedule [6,13] defined by the permutation πk.

Since a factual scenario p ∈ T is unknown before scheduling, the completion time
Ci of a job Ji ∈ J can be determined after the schedule execution. Therefore, one
cannot calculate the value γk

p of the objective function

γ =
∑

Ji∈J
wiCi(πk, p)

for a permutation πk ∈ S before the schedule realization.
However, one must somehow define a schedule before to realize it. So, the problem

1|pLi ≤ pi ≤ pUi |
∑

wiCi of finding an optimal permutation πt ∈ S defined in (1)
is not correct. In general, one can find only a heuristic solution (a job permutation) to
problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi the efficiency of which may be estimated either

analytically or via a simulation.
In the deterministic case, when a scenario p ∈ T is fixed before scheduling (i.e.,

equalities pLi = pUi = pi hold for each job Ji ∈ J), problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi

reduces to the classical problem 1||∑wiCi. In contrast to the uncertain problem 1|pLi ≤
pi ≤ pUi |

∑
wiCi, problem 1||∑wiCi is called deterministic. The deterministic prob-

lem 1||∑wiCi is correct and can be solved exactly in O(n log n) time [9] due to
the necessary and sufficient condition (2) for the optimality of a permutation πk =
(Jk1 , Jk2 , . . . , Jkn) ∈ S:

wk1

pk1

≥ wk2

pk2

≥ . . . ≥ wkn

pkn

, (2)

where the strict inequality pki > 0 holds for each job Jki ∈ J . Using the sufficiency of
condition (2), problem 1||∑wiCi can be solved to optimality by the weighted shortest
processing time rule: process the jobs J in non-increasing order of their weight-to-
process ratios

wki

pki
, Jki ∈ J .

Stability Box for Scheduling under Uncertain Data 41

3 The Stability Box

In [12], the stability box SB(πk, T) within a set of scenarios T has been defined for
a permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S. To present the definition of the stability
box SB(πk, T), we need the following notations.

We denote J (ki) = {Jk1 , Jk2 , . . . , Jki−1} and J [ki] = {Jki+1 , Jki+2 , . . . , Jkn}.
Let Ski denote the set of permutations (π(J (ki)), Jki , π(J [ki])) ∈ S of the jobs J ,
π(J ′) being a permutation of the jobs J ′ ⊂ J . Let Nk denote a subset of set N =
{1, 2, . . . , n}. The notation 1|p|∑wiCi will be used for indicating an instance with a
fixed scenario p ∈ T of the deterministic problem 1||∑wiCi.

Definition 1. [12] The maximal closed rectangular box

SB(πk, T) = ×ki∈Nk
[lki , uki] ⊆ T

is a stability box of permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S, if permutation πe =
(Je1 , Je2 , . . . , Jen) ∈ Ski being optimal for the instance 1|p|∑wiCi with a scenario
p = (p1, p2, . . . , pn) ∈ T remains optimal for the instance 1|p′|∑wiCi with a sce-
nario p′ ∈ {×i−1

j=1[pkj , pkj]}×[lki , uki]×{×n
j=i+1[pkj , pkj]} for each ki ∈ Nk. If there

does not exist a scenario p ∈ T such that permutation πk is optimal for the instance
1|p|∑wiCi, then SB(πk, T) = ∅.

The maximality of the closed rectangular box SB(πk, T) = ×ki∈Nk
[lki , uki] in Defini-

tion 1 means that the box SB(πk, T) ⊆ T has both a maximal possible dimension |Nk|
and a maximal possible volume.

For any scheduling instance, the stability box is a subset of the stability region
[13,14]. However, we substitute the stability region by the stability box, since the latter
is easy to compute [11,12]. In [11], a branch-and-bound algorithm has been developed
to select a permutation in the set S with the largest volume of a stability box. If several
permutations have the same volume of the stability box, the algorithm from [11] selects
one of them due to simple heuristics. The efficiency of the constructed permutations has
been demonstrated on a set of randomly generated instances with 5 ≤ n ≤ 100.

In [12], an O(n log n) algorithm has been developed for calculating a stability box
SB(πk, T) for the fixed permutation πk ∈ S and an O(n2) algorithm has been devel-
oped for selecting a permutation in the set S with the largest dimension and volume of
a stability box. The efficiency of these algorithms was demonstrated on a set of ran-
domly generated instances with 10 ≤ n ≤ 1000. All algorithms developed in [11,12]
use the precedence-dominance relation on the set of jobs J and the solution concept of
a minimal dominant set S(T) ⊆ S defined as follows.

Definition 2. [10] The set of permutations S(T) ⊆ S is a minimal dominant set for
a problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi, if for any fixed scenario p ∈ T , the set S(T)

contains at least one optimal permutation for the instance 1|p|∑wiCi, provided that
any proper subset of set S(T) loses such a property.

Definition 3. [10] Job Ju dominates job Jv , if there exists a minimal dominant set S(T)
for the problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi such that job Ju precedes job Jv in every

permutation of the set S(T).

42 Y.N. Sotskov, T.-C. Lai, and F. Werner

Theorem 1. [10] For the problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi, job Ju dominates job Jv
if and only if inequality (3) holds:

wu

pUu
≥ wv

pLv
. (3)

Due to Theorem 1 proven in [10], we can obtain a compact presentation of a minimal
dominant set S(T) in the form of a digraph (J ,A) with the vertex set J and the arc
set A. To this end, we can check inequality (3) for each pair of jobs from the set J and
construct a dominance digraph (J ,A) of the precedence-dominance relation on the set
of jobs J as follows. The arc (Ju, Jv) belongs to the set A if and only if inequality (3)
holds. The construction of the digraph (J ,A) takes O(n2) time.

3.1 Illustrative Example

For the sake of simplicity of the calculation, we consider a special case 1|pLi ≤ pi ≤
pUi |

∑
Ci of the problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi when each job Ji ∈ J has a weight

wi equal to one. From condition (2), it follows that the deterministic problem 1||∑Ci

can be solved to optimality by the shortest processing time rule: process the jobs in
non-decreasing order of their processing times pki , Jki ∈ J .

A set of scenarios T for Example 1 of the uncertain problem 1|pLi ≤ pi ≤ pUi |
∑

Ci

is defined in columns 1 and 2 in Table 1.

Table 1. Data for calculating SB(π1, T) for Example 1

1 2 3 4 5 6 7 8

i pLi pUi
wi

pU
i

wi

pL
i

d−i d+i
wi

d+i

wi

d−i

1 2 3 1
3

0.5 1 0.5 2 1
2 1 9 1

9
1 1

6
1
3

3 6
3 8 8 1

8
1
8

1
6

1
9

9 6
4 6 10 0.1 1

6
0.1 1

9
9 10

5 11 12 1
12

1
11

0.1 1
11

11 10
6 10 19 1

19
0.1 1

15
1
12

12 15
7 17 19 1

19
1
17

1
15

1
19

19 15
8 15 20 1

20
1
15

1
20

1
19

19 20

In [12], formula (9) has been proven. To use it for calculating the stability boxSB(πk,
T), one has to define for each job Jki ∈ J the maximal range [lki , uki] of possible vari-
ations of the processing time pki preserving the optimality of permutation πk (see Def-
inition 1). Due to the additivity of the objective function γ =

∑
Ji∈J wiCi(πk, p), the

lower bound d−ki
on the maximal range of possible variations of the weight-to-process

ratio
wki

pki
preserving the optimality of the permutation πk = (Jk1 , Jk2 , . . . , Jkn) ∈ S

is calculated as follows:

Stability Box for Scheduling under Uncertain Data 43

d−ki
= max

{
wki

pUki

, max
i<j≤n

{
wkj

pLkj

}}

, i ∈ {1, 2, . . . , n− 1}, (4)

d−kn
=

wkn

pUkn

. (5)

The upper bound d+ki
, Jki ∈ J , on the maximal range of possible variations of the

weight-to-process ratio
wki

pki
preserving the optimality of the permutation πk is calcu-

lated as follows:

d+ki
= min

{
wki

pLki

, min
1≤j<i

{
wkj

pUkj

}}

, i ∈ {2, 3, . . . , n}, (6)

d+k1
=

wk1

pLk1

. (7)

For Example 1, the values d−ki
, i ∈ {1, 2, . . . , 8}, defined in (4) and (5) are given in

column 5 of Table 1. The values d+ki
defined in (6) and (7) are given in column 6. In

[12], the following claim has been proven.

Theorem 2. [12] If there is no job Jki , i ∈ {1, 2, . . . , n − 1}, in permutation πk =
(Jk1 , Jk2 , . . . , Jkn) ∈ S such that inequality

wki

pLki

<
wkj

pUkj

(8)

holds for at least one job Jkj , j ∈ {i+1, i+2, . . . , n}, then the stability box SB(πk, T)
is calculated as follows:

SB(πk, T) = ×d−
ki

≤d+
ki

[
wki

d+ki

,
wki

d−ki

]

. (9)

Otherwise, SB(πk, T) = ∅.

Using Theorem 2, we can calculate the stability box SB(π1, T) of the permutation
π1 = (J1, J2, . . . , J8) in Example 1. First, we convince that there is no job Jki , i ∈
{1, 2, . . . , n− 1}, with inequality (8). Due to Theorem 2, SB(π1, T) �= ∅.

The bounds
wki

d+
ki

and
wki

d−
ki

on the maximal possible variations of the processing times

pki preserving the optimality of the permutation π1 are given in columns 7 and 8 of
Table 1. The maximal ranges (segments) of possible variations of the job processing
times within the stability box SB(π1, T) are dashed in a coordinate system in Fig. 1,
where the abscissa axis is used for indicating the job processing times and the ordinate
axis for the jobs from set J .

Using formula (9), we obtain the stability box for permutation π1 as follows:

SB(π1, T) =

[
w2

d+2
,
w2

d−2

]

×
[
w4

d+4
,
w4

d−4

]

×
[
w6

d+6
,
w6

d−6

]

×
[
w8

d+8
,
w8

d−8

]

= [3, 6]× [9, 10]× [12, 15]× [19, 20].

44 Y.N. Sotskov, T.-C. Lai, and F. Werner

2 4 6 8 10 12 14 16 18 20

J1

J2

J3

J4

J5

J6

J7

J8

Fig. 1. The maximal ranges [li, ui] of possible variations of the processing times pi, i ∈
{2, 4, 6, 8}, within the stability box SB(π1, T) are dashed

Each job Ji, i ∈ {1, 3, 5, 7}, has an empty range of possible variations of the time pi
preserving the optimality of permutation π1 since d−i > d+i (see columns 5 and 6 in
Table 1). The dimension of the stability box SB(π1, T) is equal to 4 = 8 − 4. The
volume of this stability box is equal to 9 = 3 · 1 · 3 · 1.

In [12], an O(n log n) algorithm STABOX has been developed for calculating the
stability box SB(πk, T) for a fixed permutation πk ∈ S.

For practice, the value of the relative volume of a stability box is more useful than
its absolute value. The relative volume of a stability box is defined as the product of the
fractions (

wi

d−i
− wi

d+i

)

:
(
pUi − pLi

)
(10)

for the jobs Ji ∈ J having non-empty ranges [li, ui] of possible variations of the pro-
cessing time pi (inequality d−i ≤ d+i must hold for such a job Ji ∈ J).

The relative volume of the stability box for permutationπ1 in Example 1 is calculated
as follows: 3

8 · 1
4 · 3

9 · 1
5 = 1

160 . The absolute volume of the whole box of the scenarios
T is equal to 2880 = 1 · 8 · 4 · 1 · 9 · 2 · 5. The relative volume of the rectangular box T
is defined as 1.

3.2 Properties of a Stability Box

A job permutation in the set S with a larger dimension and a larger volume of the
stability box seems to be more efficient than one with a smaller dimension and (or) a
smaller volume of stability box.

We investigate properties of a stability box, which allow us to derive an O(n log n)
algorithm for choosing a permutation πt ∈ S which has

(a) the largest dimension |Nt| of the stability box SB(πt, T) = ×ti∈Nt [lti , uti] ⊆ T
among all permutations πk ∈ S and

Stability Box for Scheduling under Uncertain Data 45

(b) the largest volume of the stability box SB(πt, T) among all permutations πk ∈ S
having the largest dimension |Nk| = |Nt| of their stability boxes SB(πk, T).

Definition 1 implies the following claim.

Property 1. For any jobs Ji ∈ J and Jv ∈ J , v �= i,

(wi/ui, wi/li)
⋂[

wv/p
U
v , wv/p

L
v

]
= ∅.

Let Smax denote the subset of all permutations πt in the set S possessing properties (a)
and (b). Using Property 1, we shall show how to define the relative order of a job Ji ∈ J
with respect to a job Jv ∈ J for any v �= i in a permutation πt = (Jt1 , Jt2 , . . . , Jtn) ∈
Smax. To this end, we have to treat all three possible cases (I)–(III) for the intersection

of the open interval
(

wi

pU
i
, wi

pL
i

)
and the closed interval

[
wv

pU
v
, wv

pL
v

]
. The order of the jobs

Ji and Jv in the desired permutation πt ∈ Smax may be defined in the cases (I)–(III)
using the following rules.

Case (I) is defined by the inequalities

wv

pUv
≤ wi

pUi
,

wv

pLv
≤ wi

pLi
(11)

provided that at least one of inequalities (11) is strict.
In case (I), the desired order of the jobs Jv and Ji in permutation πt ∈ Smax may be

defined by a strict inequality from (11): job Jv proceeds job Ji in permutation πt.
Indeed, if job Ji proceeds job Jv, then the maximal ranges [li, ui] and [lv, uv] of

possible variations of the processing times pi and pv preserving the optimality of πk ∈
S are both empty (it follows from equalities (4) – (7) and (9)). Thus, the following
property is proven.

Property 2. For case (I), there exists a permutation πt ∈ Smax, in which job Jv pro-
ceeds job Ji.

Case (II) is defined by the equalities

wv

pUv
=

wi

pUi
,

wv

pLv
=

wi

pLi
. (12)

Property 3. For case (II), there exists a permutation πt ∈ Smax, in which the jobs Ji
and Jv are located adjacently: i = tr and v = tr+1.

Proof. The maximal ranges [li, ui] and [lv, uv] of possible variations of the processing
times pi and pv preserving the optimality of πk ∈ S are both empty.

If job Ji and job Jv are located adjacently, then the maximal range [lu, uu] of possible
variations of the processing time pu for any job Ju ∈ J \ {Ji, Jv} preserving the
optimality of the permutation πk is no less than that if at least one job Jw ∈ J \{Ji, Jv}
is located between job Ji and job Jv.

If equalities (12) hold, one can restrict the search for a permutation πt ∈ Smax by a
subset of permutations in set S with the adjacently located jobs Ji and Jv (Property 3).
Moreover, the order of such jobs {Ji, Jv} does not influence the volume of the stability
box and its dimension.

46 Y.N. Sotskov, T.-C. Lai, and F. Werner

Remark 1. Due to Property 3, while looking for a permutation πt ∈ Smax, we shall
treat a pair of jobs {Ji, Jv} satisfying (12) as one job (either job Ji or Jv).

Case (III) is defined by the strict inequalities

wv

pUv
>

wi

pUi
,

wv

pLv
<

wi

pLi
. (13)

For a job Ji ∈ J satisfying case (III), let J (i) denote the set of all jobs Jv ∈ J , for
which the strict inequalities (13) hold.

Property 4. (i) For a fixed permutation πk ∈ S, job Ji ∈ J may have at most one
maximal segment [li, ui] of possible variations of the processing time pi ∈ [pLi , p

U
i]

preserving the optimality of permutation πk.
(ii) For the whole set of permutations S, only in case (III), a job Ji ∈ J may have

more than one (namely: |J (i)|+1 > 1) maximal segments [li, ui] of possible variations
of the time pi ∈ [pLi , p

U
i] preserving the optimality of this or that particular permutation

from the set S.

Proof. Part (i) of Property 4 follows from the fact that a non-empty maximal segment
[li, ui] (if any) is uniquely determined by the subset J−(i) of jobs located before job
Ji in permutation πk and the subset J +(i) of jobs located after job Ji. The subsets
J−(i) and J +(i) are uniquely determined for a fixed permutation πk ∈ S and a fixed
job Ji ∈ J .

Part (ii) of Property 4 follows from the following observations. If the open inter-

val
(

wi

pU
i

, wi

pL
i

)
does not intersect with the closed interval

[
wv

pU
v
, wv

pL
v

]
for each job Jv ∈

J , then there exists a permutation πt ∈ Smax with a maximal segment [li, ui] =[
wi/p

U
i , wi/p

L
i

]
preserving the optimality of permutation πt.

Each job Jv ∈ J with a non-empty intersection
(

wi

pU
i

, wi

pL
i

)⋂[
wv

pU
v
, wv

pL
v

]
�= ∅ sat-

isfying inequalities (11) (case (I)) or equalities (12) (case (II)) may shorten the above
maximal segment [li, ui] and cannot generate a new possible maximal segment. In case
(III), a job Jv satisfying inequalities (13) may generate a new possible maximal seg-
ment [li, ui] just for job Ji satisfying the same strict inequalities (13) as job Jv does.
So, the cardinality |L(i)| of the whole set L(i) of such segments [li, ui] is not greater
than |J (i)|+ 1.

Let L denote the set of all maximal segments [li, ui] of possible variations of the
processing times pi for all jobs Ji ∈ J preserving the optimality of a permutation
πt ∈ Smax. Using Property 4 and induction on the cardinality |J (i)|, we proved

Property 5. |L| ≤ n.

3.3 A Job Permutation with the Largest Volume of a Stability Box

The above properties allows us to derive an O(n logn) algorithm for calculating a per-
mutation πt ∈ Smax with the largest dimension |Nt| and the largest volume of a stabil-
ity box SB(πt, T).

Stability Box for Scheduling under Uncertain Data 47

Algorithm. MAX-STABOX

Input: Segments [pLi , p
U
i], weights wi, Ji ∈ J .

Output: Permutation πt ∈ Smax, stability box SB(πt, T).

Step 1: Construct the list M(U) = (Ju1 , Ju2 , . . . , Jun) and the list
W(U) = (

wu1

pU
u1

,
wu2

pU
u2

, . . . ,
wun

pU
un

) in non-increasing order of wur

pU
ur

.

Ties are broken via decreasing wur

pL
ur

.

Step 2: Construct the list M(L) = (Jl1 , Jl2 , . . . , Jln) and the list
W(L) = (

wl1

pL
l1

,
wl2

pL
l2

, . . . ,
wln

pL
ln

) in non-increasing order of wlr

pL
lr

.

Ties are broken via decreasing wlr

pU
lr

.

Step 3: FOR j = 1 to j = n DO
compare job Juj and job Jlj .

Step 4: IF Juj = Jlj THEN job Juj has to be located in position j in
permutation πt ∈ Smax GOTO step 8.

Step 5: ELSE job Juj = Ji satisfies inequalities (13). Construct the set
J (i) = {Jur+1 , Jur+2 , . . . , Jlk+1

} of all jobs Jv satisfying
inequalities (13), where Ji = Juj = Jlk .

Step 6: Choose the largest range [luj , uuj] among those generated for the
job Juj = Ji.

Step 7: Partition the set J (i) into the subsets J−(i) and J+(i) generating
the largest range [luj , uuj]. Set j = k + 1 GOTO step 4.

Step 8: Set j := j + 1 GOTO step 4.
END FOR

Step 9: Construct the permutation πt ∈ Smax via putting the jobs J in the
positions defined in steps 3 – 8.

Step 10: Construct the stability box SB(πt, T) using algorithm STABOX
derived in [12]. STOP.

Steps 1 and 2 of algorithm MAX-STABOX are based on Property 3 and Remark 1. Step
4 is based on Property 2. Steps 5 – 7 are based on Property 4, part (ii). Step 9 is based
on Property 6 which follows.

To prove Property 6, we have to analyze algorithm MAX-STABOX. In steps 1, 2 and
4, all jobs J t = {Ji | Juj = Ji = Jlj} having the same position in both lists M(U)
and M(L) obtain fixed positions in the permutation πt ∈ Smax.

The positions of the remaining jobs J \ J t in the permutation πt are determined in
steps 5 – 7. The fixed order of the jobs J t may shorten the original segment [pLi , p

U
i] of

a job Ji ∈ J \ J t. We denote such a reduced segment as [p̂Li , p̂
U
i]. So, in steps 5 – 7,

the reduced segment [p̂Li , p̂
U
i] has to be considered instead of original segment [pLi , p

U
i]

for a job Ji ∈ J \ J t.
Let L′ denote the maximal subset of set L (see Property 5) including exactly one

element from each set L(i), for which job Ji ∈ J satisfies the strict inequalities (13).

48 Y.N. Sotskov, T.-C. Lai, and F. Werner

Property 6. There exists a permutation πt ∈ S with the set L′ ⊆ L of maximal seg-
ments [li, ui] of possible variations of the processing time pi, Ji ∈ J , preserving the
optimality of the permutation πt.

Proof. Due to Property 2 and steps 1 – 4 of algorithm MAX-STABOX, the maximal
segments [li, ui] and [lv, uv] (if any) of jobs Ji and Jv satisfying (11) preserve the
optimality of the permutation πt ∈ Smax.

Let J ∗ denote the set of all jobs Ji satisfying (13). It is easy to see that

⋂

Ji∈J
(p̂Li , p̂

U
i] = ∅.

Therefore, ⋂

Ji∈J
J (i) = ∅.

Hence, step 9 is correct: putting the set of jobs J in the positions defined in steps 3 – 8
does not cause any contradiction of the job orders.

Obviously, steps 1 and 2 takeO(n log n) time. Due to Properties 4 and 5, steps 6, 7 and 9
take O(n) time. Step 10 takes O(n logn) time since algorithm STABOX derived in [12]
has the same complexity. Thus, the whole algorithm MAX-STABOX takes O(n log n)
time. It is easy to convince that, due to steps 1 – 5, the permutation πt constructed
by algorithm MAX-STABOX possesses property (a) and, due to steps 6, 7 and 9, this
permutation possesses property (b).

Remark 2. Algorithm MAX-STABOX constructs a permutation πt ∈ S such that the
dimension |Nt| of the stability box SB(πt, T) = ×ti∈Nt [lti , uti] ⊆ T is the largest one
for all permutations S, and the volume of the stability box SB(πt, T) is the largest one
for all permutations πk ∈ S having the largest dimension |Nk| = |Nt| of their stability
boxes SB(πk, T).

Returning to Example 1, one can show (using Algorithm MAX-STABOX) that permu-
tation π1 = (J1, J2, . . . , J8) has the largest dimension and volume of a stability box.
Next, we compare SB(π1, T) with the stability boxes calculated for the permutations
obtained by the three heuristics defined as follows.

The lower-point heuristic generates an optimal permutation πl ∈ S for the instance
1|pL|∑wiCi with

pL = (pL1 , p
L
2 , . . . , p

L
n) ∈ T. (14)

The upper-point heuristic generates an optimal permutation πu ∈ S for the instance
1|pU |∑wiCi with

pU = (pU1 , p
U
2 , . . . , p

U
n) ∈ T. (15)

The mid-point heuristic generates an optimal permutation πm ∈ S for the instance
1|pM |∑wiCi with

pM =

(
pU1 − pL1

2
,
pU2 − pL2

2
, . . . ,

pUn − pLn
2

)

∈ T. (16)

Stability Box for Scheduling under Uncertain Data 49

We obtain the permutation πl = (J2, J1, J4, J3, J6, J5, J8, J7) with the stability box

SB(πl, T)=

[
w2

d+2
,
w2

d−2

]

×
[
w6

d+6
,
w6

d−6

]

=[1, 2]× [10, 11].

The volume of the stability box SB(πl, T) is equal to 1. We obtain the permutation πu=
(J1, J3, J2, J4, J5, J7, J6, J8) and the permutation πm=(J1, J2, J4, J3, J5, J6, J8, J7).
The volume of the stability box

SB(πu, T)=

[
w4

d+4
,
w4

d−4

]

×
[
w8

d+8
,
w8

d−8

]

=[9, 10]× [19, 20]

is equal to 1. The volume of the stability box

SB(πm, T)=

[
w2

d+2
,
w2

d−2

]

×
[
w6

d+6
,
w6

d−6

]

=[3, 6]× [12, 15]

is equal to 9 = 3 ·3. It is the same volume of the stability box as that of permutation π1.
Note, however, that the dimension |Nm| of the stability box SB(πm, T) is equal to 2,
while the dimension |N1| of the stability box SB(π1, T) of the permutation π1 ∈ Smax

is equal to 4. Thus, πm �∈ Smax since permutation πm does not possess property (a).

4 Computational Results

There might be several permutations with the largest dimension and relative volume of
a stability box SB(πt, T) since several consecutive jobs in a permutation πt ∈ Smax

may have an empty range of possible variations of their processing times preserving the
optimality of the permutation πt. In the computational experiments, we break ties in
ordering such jobs by adopting the mid-point heuristic which generates a subsequence
of these jobs as a part of an optimal permutation πm ∈ S for the instance 1|pM |∑wiCi

with the scenario pM ∈ T defined by (16).
Our choice of the mid-point heuristic is based on the computational results of the

experiments conducted in [12] for the problem 1|pLi ≤ pi ≤ pUi |
∑

wiCi with 10 ≤
n ≤ 1000. In those computational results, the subsequence of a permutation πm ∈ S
outperformed both the corresponding subsequence of the permutation πl ∈ S and that
of the permutation πu ∈ S defined by (14) and (15), respectively.

We coded the algorithm MAX-STABOX combined with the mid-point heuristic for
ordering consecutive jobs having an empty range of their processing times preserving
the optimality of the permutation πt ∈ Smax in C++. This algorithm was tested on a PC
with AMD Athlon (tm) 64 Processor 3200+, 2.00 GHz, 1.96 GB of RAM. We solved
(exactly or approximately) a lot of randomly generated instances. Some of the compu-
tational results obtained are presented in Tables 2 – 4 for randomly generated instances
of the problem 1|pLi ≤ pi ≤ pUi |

∑
wiCi with the number n ∈ {1000, 1100, . . . , 2000}

of jobs.
Each series presented in Tables 2 – 4 contains 100 solved instances with the same

combination of the number n of jobs and the same maximal possible error δ% of the

50 Y.N. Sotskov, T.-C. Lai, and F. Werner

random processing times pi ∈ [pLi , p
U
i]. The integer center C of a segment [pLi , p

U
i]

was generated using the uniform distribution in the range [L,U]: L ≤ C ≤ U . The
lower bound pLi for the possible job processing time pi ∈ [pLi , p

U
i] was defined as

pLi = C · (1 − δ
100), the upper bound pUi of pi ∈ [pLi , p

U
i] was defined as pUi =

C · (1 + δ
100). The same range [L,U] for the varying center C of the segment [pLi , p

U
i]

was used for all jobs Ji ∈ J , namely: L = 1 and U = 100. In Tables 2 – 4, we
report computational results for the series of instances of the problem 1|pLi ≤ pi ≤
pUi |

∑
wiCi with the maximal possible errors δ% of the job processing times from the

set {0.25%, 0.4%, 0.5%, 0.75%, 1%, 2.5%, 5%, 15%, 25%}.
For each job Ji ∈ J , the weight wi ∈ R1

+ was uniformly distributed in the range
[1, 50]. It should be noted that the job weights wi were assumed to be known before
scheduling (in contrast to the actual processing times p∗i of the jobs Ji ∈ J , which
were assumed to be unknown before scheduling).

The number n of jobs in each instance of a series is given in column 1 of Table 2,
Table 3 and Table 4. The maximum possible error δ% of the random processing times
pi ∈ [pLi , p

U
i] is given in column 2. Column 3 represents the average relative number |A|

of the arcs in the dominance digraph (J ,A) constructed using condition (3) of Theorem
1. The relative number |A| is calculated in percentages of the number of arcs in the

complete circuit-free digraph of order n as follows:
(
|A| : n(n−1)

2

)
· 100%. Column 4

represents the average dimension |Nt| of the stability box SB(πt, T) of the permutation
πt with the largest relative volume of a stability box. |Nk| is equal to the number of
jobs with a non-zero maximal possible variation of the processing time preserving the
optimality of permutation πt ∈ Smax. Column 5 represents the average relative volume
of the stability box SB(πt, T) of the permutations πt with the largest dimension and
relative volume of a stability box. If SB(πt, T) = T for all instances in the series, then
column 5 contains the number one.

In the experiments, we answered the question of how large the relative error Δ of the
objective function γ =

∑n
i=1 wiCi was for the permutation πt ∈ Smax with the largest

dimension and relative volume of a stability box SB(πt, T):

Δ =
γt
p∗ − γp∗

γp∗
,

where p∗ is the actual scenario (unknown before scheduling), γp∗ is the optimal objec-
tive function value for the scenario p∗ ∈ T and γt

p∗ =
∑n

i=1 wiCi(πt, p
∗).

Column 6 represents the number of instances (among the 100 instances in a series)
for which a permutation πt with the largest dimension and relative volume of the sta-
bility box SB(πt, T) provides an optimal solution for the instance 1|p∗|∑wiCi with
the actual processing times p∗ = (p∗1, p∗2, . . . , p∗n) ∈ T .

From the experiments, it follows that, if the maximal possible error of the processing
times is not greater than 0.4%, then the dominance digraph (J ,A) is a complete circuit-
free digraph. Therefore, the permutation πt ∈ Smax provides an optimal solution for
such an instance 1|p∗|∑wiCi.

The average (maximum) relative error Δ of the objective function value γt
p∗ calcu-

lated for the permutation πt ∈ Smax constructed by the algorithm MAX-STABOX with

Stability Box for Scheduling under Uncertain Data 51

Table 2. Randomly generated instances with [L,U] = [1, 100], wi ∈ [1, 50] and n ∈
{1000, 1100, 1200, 1300}

Number Maximal Relative Average Relative Number Average Maximal CPU
of jobs error of pi arc number dimension volume of of exact error error time

n δ% |A| (in %) |Nt| SB(πt, T) solutions Δ Δ (in s)

1 2 3 4 5 6 7 8 9

1000 0.25% 100 1000 1 100 0 0 8.62
1000 0.4% 100 1000 1 100 0 0 8.56
1000 0.5% 100 989.61 0.227427 11 ≈ 0 ≈ 0 8.69
1000 0.75% 99.545177 451.29 ≈ 0 0 0.000023 0.000031 8.98
1000 1% 99.192559 330.65 ≈ 0 0 0.000042 0.000051 8.96
1000 2.5% 97.591726 124 0.000001 0 0.000157 0.000181 8.9
1000 5% 94.889794 54.86 0.001976 0 0.000526 0.000614 8.84
1000 15% 84.39185 12.29 0.011288 0 0.004309 0.004858 8.86
1000 25% 73.954372 4.71 0.09081 0 0.012045 0.013303 8.89

1100 0.25% 100 1100 1 100 0 0 11.51
1100 0.4% 100 1100 1 100 0 0 11.46
1100 0.5% 99.997839 1087.27 0.200252 11 ≈ 0 ≈ 0 11.51
1100 0.75% 99.539967 478.35 ≈ 0 0 0.000023 0.00003 12.1
1100 1% 99.188722 349.3 ≈ 0 0 0.000043 0.000049 12.05
1100 2.5% 97.611324 131.01 0.000001 0 0.000155 0.000175 11.8
1100 5% 94.862642 57.35 0.006242 0 0.000528 0.000593 11.79
1100 15% 84.288381 11.46 0.017924 0 0.004371 0.004899 11.76
1100 25% 74.076585 4.29 0.133804 0 0.01189 0.013289 11.8

1200 0.25% 100 1200 1 100 0 0 15.4
1200 0.4% 100 1200 1 100 0 0 15.12
1200 0.5% 99.998 1185.27 0.174959 5 ≈ 0 0.000001 15.42
1200 0.75% 99.540619 515.8 ≈ 0 0 0.000023 0.000029 16
1200 1% 99.190977 375.34 ≈ 0 0 0.000042 0.000051 16.06
1200 2.5% 97.581479 138.75 0.000002 0 0.000156 0.000177 15.81
1200 5% 94.88253 62.06 0.006396 0 0.000534 0.000596 15.51
1200 15% 84.376763 12.88 0.042597 0 0.004332 0.004733 15.33
1200 25% 74.100395 5.01 0.08078 0 0.011872 0.01351 15.21

1300 0.25% 100 1300 1 100 0 0 19.75
1300 0.4% 100 1300 1 100 0 0 19.38
1300 0.5% 99.997583 1280.26 0.084004 2 ≈ 0 ≈ 0 19.54
1300 0.75% 99.549162 543.2 ≈ 0 0 0.000023 0.000026 20.3
1300 1% 99.199789 400.41 ≈ 0 0 0.000042 0.000053 20.32
1300 2.5% 97.602491 148.41 0.000004 0 0.000157 0.000186 20.01
1300 5% 94.877326 65.23 0.019927 0 0.000532 0.000588 19.95
1300 15% 84.388473 13.47 0.024207 0 0.004364 0.004758 19.52
1300 25% 73.975873 5.5 0.08254 0 0.011962 0.013812 19.52

respect to the optimal objective function value γp∗ defined for the actual job processing
times is given in column 7 (in column 8, respectively).

52 Y.N. Sotskov, T.-C. Lai, and F. Werner

Table 3. Randomly generated instances with [L,U] = [1, 100], wi ∈ [1, 50] and n ∈
{1400, 1500, 1600, 1700}

Number Maximal Relative Average Relative Number Average Maximal CPU
of jobs error of pi arc number dimension volume of of exact error error time

n δ% |A| (in %) |Nt| SB(πt, T) solutions Δ Δ (in s)

1 2 3 4 5 6 7 8 9

1400 0.25% 100 1400 1 100 0 0 24.92
1400 0.4% 100 1400 1 100 0 0 24.8
1400 0.5% 99.997556 1377.21 0.078809 1 ≈ 0 0.000001 24.97
1400 0.75% 99.539142 575.2 ≈ 0 0 0.000023 0.000029 25.67
1400 1% 99.198461 422.65 ≈ 0 0 0.000042 0.00005 25.63
1400 2.5% 97.594897 154.9 0.000001 0 0.000157 0.000178 25.1
1400 5% 94.869044 70.36 0.002356 0 0.000533 0.000615 25.29
1400 15% 84.364242 14.35 0.029338 0 0.004339 0.004841 24.72
1400 25% 74.096446 5.18 0.14077 0 0.011998 0.013041 24.27

1500 0.25% 100 1500 1 100 0 0 31.44
1500 0.4% 100 1500 1 100 0 0 31.08
1500 0.5% 99.997493 1474.09 0.070241 0 ≈ 0 0.000001 31.64
1500 0.75% 99.544441 607.5 ≈ 0 0 0.000042 0.000052 32.39
1500 1% 99.193199 444.29 ≈ 0 0 0.000042 0.000052 32.39
1500 2.5% 97.61593 167.25 0.000005 0 0.000155 0.000171 31.43
1500 5% 94.861654 71.34 0.00282 0 0.000533 0.000582 31.36
1500 15% 84.409904 14.93 0.05372 0 0.004394 0.00492 30.46
1500 25% 74.281235 5.46 0.148403 0 0.011936 0.013685 30.33

1600 0.25% 100 1600 1 100 0 0 38.63
1600 0.4% 100 1600 1 100 0 0 38.67
1600 0.5% 99.997452 1569.35 0.046151 0 ≈ 0 0.000001 38.8
1600 0.75% 99.54273 638.18 ≈ 0 0 0.000023 0.00003 39.76
1600 1% 99.192323 464.89 ≈ 0 0 0.000042 0.000048 40.04
1600 2.5% 97.601128 174.91 0.000004 0 0.000157 0.000177 38.71
1600 5% 94.861356 76.990000 0.003505 0 0.000532 0.000581 38.46
1600 15% 84.343239 14.75 0.036278 0 0.004341 0.004811 37.34
1600 25% 74.123830 5.75 0.087651 0 0.011899 0.013192 36.34

1700 0.25% 100 1700 1 100 0 0 47.29
1700 0.4% 100 1700 1 100 0 0 47.18
1700 0.5% 99.997432 1665.41 0.034556 1 ≈ 0 0.000001 47.12
1700 0.75% 99.544993 671.09 ≈ 0 0 0.000023 0.000027 48.25
1700 1% 99.203930 495.13 ≈ 0 0 0.000041 0.000049 48.47
1700 2.5% 97.598734 180.99 0.000072 0 0.000156 0.000172 46.88
1700 5% 94.852439 80.53 0.001601 0 0.000533 0.000585 46.33
1700 15% 84.358524 17.27 0.028854 0 0.004379 0.0049 45.26
1700 25% 74.030579 6.03 0.082325 0 0.012069 0.013255 44.24

For all series presented in Tables 2 – 4, the average (maximum) error Δ of the value
γt
p∗ of the objective function γ =

∑n
i=1 wiCi obtained for the permutation πt ∈ Smax

Stability Box for Scheduling under Uncertain Data 53

Table 4. Randomly generated instances with [L,U] = [1, 100], wi ∈ [1, 50] and n ∈
{1800, 1900, 2000}

Number Maximal Relative Average Relative Number Average Maximal CPU
of jobs error of pi arc number dimension volume of of exact error error time

n δ% |A| (in %) |Nt| SB(πt, T) solutions Δ Δ (in s)

1 2 3 4 5 6 7 8 9

1800 0.25% 100 1800 1 100 0 0 56.18
1800 0.4% 100 1800 1 100 0 0 56.27
1800 0.5% 99.99761 1764.02 0.02624 0 ≈ 0 0.000001 56.72
1800 0.75% 99.547537 706.21 ≈ 0 0 0.000023 0.000028 57.38
1800 1% 99.193797 517.06 ≈ 0 0 0.000042 0.000049 57.33
1800 2.5% 97.600247 190.97 0.000042 0 0.000156 0.000177 55.81
1800 5% 94.899074 84.82 0.007274 0 0.000529 0.000602 55.27
1800 15% 84.408342 17.67 0.040758 0 0.004348 0.004723 53.42
1800 25% 74.162869 6.38 0.126377 0 0.011981 0.013095 51.86

1900 0.25% 100 1900 1 100 0 0 65.65
1900 0.4% 100 1900 1 100 0 0 66.81
1900 0.5% 99.997533 1858.51 0.018832 0 ≈ 0 0.000001 66.69
1900 0.75% 99.54191 733.81 ≈ 0 0 0.000023 0.000028 67.75
1900 1% 99.189512 534.79 ≈ 0 0 0.000042 0.000049 68.58
1900 2.5% 97.596318 199.82 0.000022 0 0.000156 0.000173 66.36
1900 5% 94.856400 89.93 0.002011 0 0.000534 0.000596 65.68
1900 15% 84.331351 17.61 0.048813 0 0.004372 0.004844 62.97
1900 25% 74.188836 6.82 0.092068 0 0.011965 0.013234 60.74

2000 0.25% 100 2000 1 100 0 0 78.41
2000 0.4% 100 2000 1 100 0 0 78.93
2000 0.5% 99.997489 1953.88 0.017798 2 ≈ 0 ≈ 0 79.06
2000 0.75% 99.542435 764.35 ≈ 0 0 0.000023 0.000027 78.83
2000 1% 99.197383 565.09 ≈ 0 0 0.000042 0.000048 78.1
2000 2.5% 97.605895 210.17 0.000035 0 0.000156 0.000173 75.8
2000 5% 94.867102 93.63 0.014015 0 0.000535 0.000606 75.02
2000 15% 84.412199 17.95 0.040101 0 0.004339 0.004751 74.08
2000 25% 73.977021 6.64 0.147426 0 0.01203 0.013046 71.22

with the largest dimension and relative volume of a stability box was not greater than
0.012069 (not greater than 0.013812).

The CPU-time for an instance of a series is presented in column 5. This time includes
the time for the realization of the O(n2) algorithm for constructing the dominance di-
graph (J ,A) using condition (3) of Theorem 1 and the time for the realization of the
O(n log n) algorithm MAX-STABOX for constructing the permutation πt ∈ Smax and
the stability box SB(πt, T). This CPU-time grows rather slowly with n, and it was not
greater than 79.06 s for each instance.

54 Y.N. Sotskov, T.-C. Lai, and F. Werner

5 Conclusions

In [12], an O(n2) algorithm has been developed for calculating a permutation πt ∈ S
with the largest dimension and volume of a stability box SB(πt, T). In Section 3, we
proved Properties 1 – 6 of a stability box allowing us to derive an O(n log n) algorithm
for calculating such a permutation πt ∈ Smax. The dimension and volume of a stabil-
ity box are efficient invariants of the uncertain data T , as it was shown in simulation
experiments on a PC reported in Section 4.

The results that we presented may be generalized to the problem 1|prec, pLi ≤ pi ≤
pUi |

∑
wiCi, where the precedence constraints are given a priori on the set of jobs. If the

deterministic problem 1|prec|∑wiCi for a particular type of precedence constraints is
polynomially solvable, then the above results may be used for the uncertain counterpart
1|prec, pLi ≤ pi ≤ pUi |

∑
wiCi. In the latter problem, the dominance digraph (J ,A)

contains the arc (Ju, Jv) only if this arc does not violate the precedence constraint given
between the jobs Ju and Jv a priori.

Acknowledgements. The first and second authors were supported in this research by
National Science Council of Taiwan. The authors are grateful to Natalja G. Egorova for
coding algorithm MAX-STABOX and other contributions.

References

1. Daniels, R., Kouvelis, P.: Robust scheduling to hedge against processing time uncertainty in
single stage production. Management Science 41(2), 363–376 (1995)

2. Kasperski, A.: Minimizing maximal regret in the single machine sequencing problem with
maximum lateness criterion. Operations Research Letters 33, 431–436 (2005)

3. Kasperski, A., Zelinski, P.: A 2-approximation algorithm for interval data minmax regret
sequencing problem with total flow time criterion. Operations Research Letters 36, 343–344
(2008)

4. Lai, T.-C., Sotskov, Y.: Sequencing with uncertain numerical data for makespan minimiza-
tion. Journal of the Operations Research Society 50, 230–243 (1999)

5. Lai, T.-C., Sotskov, Y., Sotskova, N., Werner, F.: Optimal makespan scheduling with given
bounds of processing times. Mathematical and Computer Modelling 26(3), 67–86 (1997)

6. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems. Prentice-Hall, Englewood Cliffs
(2002)

7. Sabuncuoglu, I., Goren, S.: Hedging production schedules against uncertainty in manufac-
turing environment with a review of robustness and stability research. International Journal
of Computer Integrated Manufacturing 22(2), 138–157 (2009)

8. Slowinski, R., Hapke, M.: Scheduling under Fuzziness. Physica-Verlag, Heidelberg (1999)
9. Smith, W.: Various optimizers for single-stage production. Naval Research Logistics Quar-

terly 3(1), 59–66 (1956)
10. Sotskov, Y., Egorova, N., Lai, T.-C.: Minimizing total weighted flow time of a set of jobs

with interval processing times. Mathematical and Computer Modelling 50, 556–573 (2009)
11. Sotskov, Y., Egorova, N., Werner, F.: Minimizing total weighted completion time with uncer-

tain data: A stability approach. Automation and Remote Control 71(10), 2038–2057 (2010)

Stability Box for Scheduling under Uncertain Data 55

12. Sotskov, Y., Lai, T.-C.: Minimizing total weighted flow time under uncertainty using domi-
nance and a stability box. Computers & Operations Research 39, 1271–1289 (2012)

13. Sotskov, Y., Sotskova, N., Lai, T.-C., Werner, F.: Scheduling under Uncertainty. Theory and
Algorithms. Belorusskaya nauka, Minsk (2010)

14. Sotskov, Y., Wagelmans, A., Werner, F.: On the calculation of the stability radius of an opti-
mal or an approximate schedule. Annals of Operations Research 83, 213–252 (1998)

	The Stability Box for Minimizing TotalWeighted Flow
Time under Uncertain Data
	Introduction
	Problem Setting
	The Stability Box
	Illustrative Example
	Properties of a Stability Box
	A Job Permutation with the Largest Volume of a Stability Box

	Computational Results
	Conclusions

