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Abstract. Vehicular Ad-hoc Networks (VANETs) are having a significant im-
pact on Intelligent Transportation Systems, specially on the improvement of road
safety. Cooperative/Chain Collision Avoidance (CCA) application comes up as a
solution for decreasing accidents on the road, therefore it is highly convenient to
study how the system of vehicles in a platoon will behave at different stages of
technology deployment until full penetration in the market. In the present paper
we describe an analytical model to compute the average number of accidents in
a chain of vehicles. The use of this model when the CCA technology penetra-
tion rate is not 100% leads to a vast increase in the number of operations. Using
the OpenMP directives for parallel processing with shared memory we achieve a
significant reduction in the computation time consumed by our analytical model.

Keywords: OpenMP, VANET, Supercomputing, Cooperative/Chain Collision
Avoidance application.

1 Introduction

Vehicular networks, also known as VANETs, are defined as ad-hoc mobile networks
with two main communication features. On the one hand, VANETs are in charge of
transmitting information among vehicles (V2V communications). In this first case, cars
carry out the information interchange without any infrastructure support for regulating
the access. On the other hand, an intercommunication among vehicles and infrastruc-
tures also exists (V2I communications), making possible a connection through cars and
a backbone network, reaching in this way those vehicular entities allocated out of the
direct communication range.

One of the aims of vehicular networks development is the improvement of road
safety. The main goal of these innovative systems is to provide drivers a better knowl-
edge about road conditions, decreasing the number of accidents and their severity, and
simultaneously aiding to a more comfortable and fluent driving. Other vehicular ap-
plications are also considered, such as Internet access, driving cooperation and public
information services support.

A Cooperative/Chain Collision Avoidance (CCA) application [1] uses VANET com-
munications for warning drivers and decreasing the number of traffic accidents. CCA
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takes advantage of vehicles with cooperative communication skills, in a way that these
cars are able to react to possible accident risks or emergence situations. The CCA mecha-
nism generates an encapsulated notification which is sent as a message through a one-hop
communication scheme to all vehicles within a potential danger coverage (relay schemes
are also possible). It should be noted that the establishment of this VANET application
will be deployed gradually, equipping vehicles with the proper hardware and software
so as they can communicate in an effective way within the vehicular environment.

In our research we consider a platoon (or chain) of N vehicles following a leading
one. The leading vehicle stops instantly and the following vehicles start to brake when
they are aware of the risk of collision, because of a warning message reception or the
perception of a reduction in the speed of the vehicle immediately ahead. To test the
worst case situation, vehicles cannot change lane or perform evasive maneuvers.

We have developed a first approach mathematical model to calculate the average
percentage of accidents in the platoon, varying the number of considered vehicles,
their average speed, the average inter-vehicle spacing and the penetration ratio of the
CCA technology. Specifically when the CCA penetration ratio is taken into account, the
growth in the number of operations of the analytical model is such that the sequential
computation of a numerical solution is no longer feasible. Consequently, we resort to
the use of the OpenMP parallelization techniques for solving those computational cases
considered as unapproachable by means of sequential procedures.

Additionally, we execute our programs in the Ben-Arabi Supercomputing environ-
ment [2], taking the advantage of utilizing the fourth fastest Supercomputer in Spain.
In the current work we show how the parallelization techniques coordinated with su-
percomputing resources make the simulation process a more suitable and efficient one,
allowing a thorough evaluation of the CCA application.

The remainder of this paper is organized as follows. In Section 2 we briefly review
the related work. In Section 3 the OpenMP environment is briefly reviewed and the
Ben-Arabi Supercomputer architecture introduced. A description of the mathematical
model, its implementation and parallelization are provided in Sections 4 and 5. Finally,
some results are shown and discussed in Section 6 to illustrate the performance of the
resulting parallel algorithm. In this section it is also described our unsuccessful experi-
ence of using the MPI parallelization technique to further reduce the computation times.
Conclusions and future work are remarked in Section 7. Let us mention that this paper
is an extension of the work presented by the authors in [3].

2 Related Work

So far, most typical High Performance Computing (HPC) problems focused on those
fields related with certain fundamental problems in several areas of science and engi-
neering. Other typical applications are the ones related to commerce, like databases and
data mining [4]. That is the reason why we consider our VANET mathematical model
approximation as a non-classical issue to be solved under HPC conditions, contributing
to extend the use of supercomputing to other fields of interest.

In the implementation of our mathematical model we parallelize a sparse matrix-
vector multiplication. This operation is considered as a relevant computational kernel in



Speeding Up the Evaluation of a Mathematical Model for VANETs Using OpenMP 25

scientific applications, which performs not optimally on modern processors because of
the lack of compromise between memory and computing power and irregular memory
access patterns [5]. In general, we find quite a lot of done work in the field of sparse
matrix-vector multiplications using parallelization techniques [6], [7], [8]. These papers
study in depth the optimal performance of this operation, but in this paper, we show
that even using a simpler parallelization routine, the computation time is noticeably
shortened.

Several mathematical models have been developed to study different aspects of
VANETs. Most of them are related with the vehicle routing optimization [9], [10], the
broadcasting methods [11], [12], [13], the mobility of vehicles [14], [15] and the com-
munication delay time [16], [17], [18]. Other related VANET issues have been studied
as well, like network connectivity [19], or survivability [20]. In this paper we focus on
collision models for a chain of vehicles, particularly those based on physical parameters
to assess the collision process itself [21], [22], [23].

However in an attempt of searching related work we find that few work has been
done specifically regarding to the parallelization of these VANET mathematical mod-
els, strictly speaking. Moreover, to the best of our knowledge, only the vehicle routing
problem has been approached using parallelization techniques [24], [25], [26].

Summing up, in this paper we describe a preliminary model (although computation-
ally expensive) for a CCA application to compute the number of chain collisions and
we address the benefits of using parallelization techniques in the VANET field.

3 Supporting Tools

3.1 The OpenMP Technique

OpenMP is a well-known open standard for providing parallelization mechanisms to
multiprocessors with shared memory [27]. OpenMP API supports shared memory pro-
gramming, multi-platform techniques for the programming languages like Fortran, C
and C++, and for every architecture including Unix and Windows platforms. OpenMP
is a scalable and portable model developed for hardware and software distributors which
provides shared memory programmers with a simple and flexible interface for devel-
oping parallel applications which can run not only in a personal computer but also in a
supercomputer.

OpenMP uses the parallel paradigm known as fork-join with the generation of mul-
tiple threads, where a heavy computational task is divided into k threads (forks) with
less weight and afterwards it collects their results and combines them at the end of the
execution in a single result (join).

The master thread runs sequentially till it finds an OpenMP guideline and since this
moment a bifurcation is generated with the corresponding slave threads. These threads
can be distributed and executed in different processors, decreasing in this way the
execution time.
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Fig. 1. The scenario under consideration. d is the average inter-vehicle distance.

3.2 The Ben-Arabi Supercomputer

Our model is executed under the Ben-Arabi supercomputer resources, which is placed
in the Scientific Park of Murcia (Spain). The Ben-Arabi system consists of two different
architectures; on the one hand the central node HP Integrity Superdome SX2000 with
128 cores of the Intel Itanium-2 dual-core Montvale (1.6 Ghz, 18 MB of cache L3)
processor and 1.5 TB of shared memory, called Ben. On the other hand, Arabi is a
cluster consisting of 102 nodes, which offers a total of 816 Intel Xeon Quad-Core E5450
(3 GHz y 6 MB of cache L2) processor cores and a total of 1072 GB of shared memory.

We run our mathematical model within a node of the Arabi cluster environment using
2, 4 and 8 processors in order to compare the resulting execution times. Les us remark
that we are using a shared memory parallelization technique, so we are not allowed to
combine the use of processors from different nodes.

Next we summarize the technical features of the cluster:

– Capacity: 9.72 Tflops.
– Processor: Intel Xeon Quad-Core E5450.
– Nodes number: 102.
– Processors number: 816.
– Processors/Node: 8.
– Memory/Node: 32 nodes of 16 GB and 70 of 8 GB.
– Memory/Core: 3 MB (6 MB shared among 2 cores).
– Clock frequency: 3 Ghz.

4 Model Description

We are interested in evaluating the performance of a CCA application for a chain of
N vehicles when the technology penetration rate is not 100%. We consider the inter-
vehicle spacing is normally distributed and each vehicle Ci, i ∈ {1, ..., N}, moves at
constant velocity Vi. Vehicles drive in convoy (see Figure 1), reacting to the first colli-
sion of another car, C0, according to two possible schemes: starting to brake because of
a previously received warning message transmited by a collided vehicle (if the vehicle
is equipped with CCA technology) or starting to decelerate after noticing a reduction
in the speed of the vehicle immediately ahead (if the vehicle under consideration is not
equipped with CCA technology).

With this model the final outcome of a vehicle depends on the outcome of the preced-
ing vehicles. Therefore, the collision model is based on the construction of the following
probability tree. We consider an initial state in which no vehicle has collided. Once the
danger of collision has been detected, the first vehicle in the chain C1 (immediately
after the leading one) may collide or stop successfully. From both of these states two
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Fig. 2. Probability tree diagram that defines the model. Si,j represents the state with i collided
vehicles and j successfully stopped vehicles.

possible cases spring as well, that is either the following vehicle in the chain C2 may
collide or stop successfully. And so on until the last vehicle in the chain. At the last
level of the tree we have N +1 possible outcomes (final outcomes) which represent the
number of collided vehicles in the chain, that is, from 0 to N collisions (Figure 2).

The transition probability between the nodes of the tree is the probability of collision
of the corresponding vehicle in the chain pi (or its complementary). These probabili-
ties are calculated recursively, regarding different kinematic parameters, as the average
velocity of the vehicles in the chain (used to compute the distance to stop), the average
inter-vehicle distance and the driver’s reaction time, among others.

We start calculating the collision probability of the nearest to the incidence vehicle,
C1. The position of Ci when it starts to decelerate is normally distributed with mean
μi = −i ∗ d and standard deviation σ = d/2, where d is the average inter-vehicle
distance. Vehicle C1 will collide if and only if the distance to C0 is less than the distance
that it needs to stop, Ds, so its collision probability is given by:

p1 = 1−
∫ −L−Ds

−∞
f(x;μ1, σ) dx , (1)

where L is the average vehicle length and f(x;μ, σ) is the probability density function
of the normal distribution with mean μ and standard deviation σ.

To compute the collision probability of the second vehicle we will use the average
position of the first vehicle when it has stopped (either by collision or successfully stop).
This average position is determined by:

X1 =

∫ −L

−∞
x · f(x;μ1 +Ds, σ) dx + (−L) ·

∫ +∞

−L

f(x;μ1 +Ds, σ) dx . (2)
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The second term of the sum means that the vehicle cannot cross the position −L when
it collides, since we are assuming that when a vehicle collides it stops instantly at the
point of collision.

Once we have obtained X1 we can compute p2, and recursively we can obtain all the
collision probabilities:

pi = 1−
∫ Xi−1−L−Ds

−∞
f(x;μi, σ) dx, i = 2, . . . , N , (3)

where

Xi =

∫ Xi−1−L

−∞
x·f(x;μi+Ds, σ) dx + (Xi−1−L)·

∫ +∞

Xi−1−L
f(x;μi+Ds, σ) dx, i = 2, . . . , N .

(4)

We want to remark that this model for the collision probabilities is a preliminary approx-
imation and does not describe realistically the collision process. However, the method
to compute the probabilities of the path outcomes is independent of the correctness
or accuracy of the transition probabilities used, and the goal of this paper is to evalu-
ate the benefits of parallelization for this technique to compute the average number of
accidents. An improved model for the transition probabilities can be found in [28].

Let us note how every path in the tree from the root to the leaves leads to a possible
outcome involving every vehicle in the chain. The probability of a particular path is the
product of the transition probabilities that belongs to the path. Since there are multiple
paths that lead to the same final outcome (leaf node in the tree), the probability of that
outcome will be the sum of the probabilities of every path reaching it.

In order to compute the probabilities of the final outcomes, we can construct a
Markov chain whose state diagram is shown in Figure 2 and is based on the previ-
ously discussed probability tree. It is a homogeneous Markov chain with (N+1)(N+2)

2
states,

(S0,0, S1,0, S0,1, . . . , SN,0, SN−1,1, . . . , S1,N−1, S0,N) . (5)

The transition matrix P of the resulting Markov chain is a square matrix of dimension
(N+1)(N+2)

2 , which is a sparse matrix, since from each state it is only possible to move
to two of the other subsequent states.

Then, we need to compute the probabilities of going from the initial state to each of
the N + 1 final states in N steps, which are given by matrix PN . Therefore, the final
outcome probabilities are the last N + 1 entries of the first row of the matrix PN .

Let Πi be the probability of reaching the final outcome with i collided vehicles, that
is, state Si,N−i. We obtain the average of the total number of accidents in the chain
using the weighted sum:

Nacc =

N∑
i=0

i ·Πi . (6)

Our purpose is to evaluate the functionality of the CCA system depending on the cur-
rent penetration rate of this technology. So that, we have to solve the model assuming
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different technology penetration ratios. This assumption implies that we have to calcu-
late the number of collisions once for each of the possible combinations in the chain of
vehicles equipped with and without CCA technology, that is,(

N

m

)
=

N !

(N −m)! m!
, (7)

where N is the total number of vehicles in the chain and m is the number of vehicles
equipped with the CCA technology. It is worth to notice that the number of combina-
tions for m vehicles set with CCA technology and N − m without it is the same that
for N − m vehicles with CCA and m without it. Therefore, in order to analyze the
computation time, we solve the model varying the CCA penetration rate between 0%
and 50%, since the rest of cases are computationally (but not numerically) identical. As
we can see in Table 1, the number of combinations grows quickly by an increase on the
CCA penetration rate as well as by an increase on the number of vehicles.

Table 1. Number of combinations of N = {10, 20, 30} vehicles with and without CCA
technology

CCA% 10 veh. 20 veh. 30 veh.
0% 1 1 1

10% 10 190 4060

20% 45 4845 593775

30% 120 38760 14307150

40% 210 125970 86493225

50% 252 184756 155117520

In addition to that, we also aim at evaluating the impact on the number of accidents
of the inter-vehicle distance d, varying this parameter in a wide range.

5 Implementation

In this section we firstly introduce the algorithm for the model implementation (Algo-
rithm 1) and then, we explain the method we have used to parallelize it.

Examining the algorithm we can make the following observations:

1. The iterations of the for loop that covers the number of Combinations resulting from
the CCA technology penetration rate are independent for each other, so they can be
executed in parallel by different threads.

2. The same occurs with the for loop that covers the RangeOfDistances (for the inter-
vehicle spacing) to be evaluated.

3. Since the collision probabilities of the vehicles in the platoon is computed recur-
sively, each iteration of the for loop that considers each vehicle in the chain needs
the results of the preceding iteration, so this loop should be executed sequentially.

4. To obtain the first row of matrix PN we have to multiply N times a vector of di-
mension (N+1)(N+2)

2 by a matrix of dimension (N+1)(N+2)
2 × (N+1)(N+2)

2 . The
vector-matrix multiplication can be also parallelized so that each thread executes the
multiplication of the vector by part of the matrix columns. However, the N multipli-
cations should be done one after the other, that is, sequentially.
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Algorithm 1. Computation of the number of collisions in a chain of vehicles.

for all comb in Combinations do
for all d in RangeOfDistances do

for i = 1 to N do
pi = f(pi−1, comb, d, i, veloc, reactT ime)

end for
for j = 0 to N do

Πj = PN(1, (N+1)(N+2)
2

− j)
end for

Nacc =
N∑

j=0

j ·Πj

end for
end for

Table 2. Resulting programs with different parallelized tasks. X means that the corresponding
parallelization takes place.

Program A B C
Program 1
Program 2 ×
Program 3 ×
Program 4 ×
Program 5 × ×
Program 6 × ×
Program 7 × ×
Program 8 × × ×

For the sake of clarity, we will parallelize the following tasks:

– A: Vector-Matrix multiplication.
– B: Average inter-vehicle distance variation.
– C: Technology penetration rate variation.

Next, we will combine the different parallelized tasks (see Table 2) and execute the
resulting programs in order to assess the actual improvement obtained from each one.

6 Results

In this section we summarize the results obtained by executing the programs shown in
Table 2 in a node of the Arabi cluster. We have used 2, 4 and 8 processors in order to
assess the improvement on the execution time achieved by each one.

The parameters used to execute the model are the following:

– CCA penetration rate: 0%− 50%, in 10% steps.
– Average inter-vehicle distance: 6− 70m, in 1 meter steps.
– Number of vehicles: 20 vehicles.
– Average velocity: 33m/s.
– Average driver’s reaction time: 1 s.



Speeding Up the Evaluation of a Mathematical Model for VANETs Using OpenMP 31

Table 3. Execution times in minutes and speedup (SU) for each program using 2 processors

0% 10% 20% 30% 40% 50%
Time SU Time SU Time SU Time SU Time SU Time SU

P1 0.002 1.00 0.307 1.00 7.848 1.00 62.876 1.00 203.896 1.00 297.975 1.00

P2 0.002 1.00 0.247 1.24 6.694 1.17 40.693 1.54 125.658 1.62 188.396 1.58

P3 0.001 2.00 0.175 1.75 4.315 1.82 33.858 1.86 110.142 1.85 159.558 1.87

P4 0.003 0.67 0.147 2.09 3.655 2.15 29.323 2.14 95.671 2.13 157.483 1.90

P5 0.001 2.00 0.173 1.77 4.326 1.81 34.208 1.84 108.542 1.88 161.026 1.85

P6 0.004 0.50 0.167 1.84 4.227 1.86 33.009 1.90 107.534 1.90 156.688 1.90

P7 0.002 1.00 0.167 1.84 4.176 1.88 32.771 1.92 106.119 1.92 156.433 1.90

P8 0.002 1.00 0.168 1.83 4.226 1.86 32.962 1.91 107.422 1.90 158.509 1.88

Fig. 3. Execution times in minutes for each program using 2 processors

6.1 Execution with 2 Processors

The computation times resulting from the execution of the eight programs with the
selected penetration rates of CCA technology using 2 processors are gathered in
Table 3 and illustrated in Figure 3.

Now we focus on the results associated to the 50% CCA penetration rate, since for
this value we obtain the highest number of combinations, specifically for a chain of 20
vehicles we obtain a total of 184756 combinations. Therefore, it is for this particular
penetration rate when we obtain a higher execution time and it can be considered as the
critical case in terms of the solving time.

The sequential program (Program 1) lasts a total of 297.975 minutes, that is ap-
proximately 5 hours of computation. If we make a comparison among the parallelized
programs we conclude that the best result is given by the Program 7, with a computation
time of 156.433 minutes, what implies around 2.6 hours of calculation time. It is worth
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Table 4. Execution times in minutes and speedup for each program using 4 processors

0% 10% 20% 30% 40% 50%
Time SU Time SU Time SU Time SU Time SU Time SU

P1 0.002 1.00 0.308 1.00 7.838 1.00 62.653 1.00 203.757 1.00 297.930 1.00

P2 0.001 2.00 0.199 1.55 5.053 1.55 30.676 2.04 94.173 2.16 135.907 2.19

P3 0.001 2.00 0.098 3.14 2.473 3.17 19.488 3.21 59.724 3.41 95.360 3.12

P4 0.004 0.50 0.078 3.95 1.998 3.92 16.072 3.90 51.830 3.93 86.175 3.45

P5 0.002 1.00 0.101 3.05 2.494 3.14 19.933 3.14 63.464 3.21 95.158 3.13

P6 0.005 0.40 0.091 3.38 2.251 3.48 18.013 3.48 59.810 3.40 89.064 3.34

P7 0.004 0.50 0.089 3.46 2.232 3.51 17.754 3.53 57.699 3.53 85.988 3.46

P8 0.003 0.67 0.090 3.42 2.245 3.49 17.926 3.49 59.453 3.43 88.422 3.37

mentioning that Program 7 is built by a combination of the parallelized tasks B and
C, parallelizing the for loops that cover the range of average inter-vehicle distances and
the number of combinations resulting from the technology penetration rate respectively.
We obtain thus:

– Sequential time (P1): 297.975 minutes.
– Parallel time (P7): 156.433 minutes.

The achieved speedup (P1/P7) is 1.9, which implies an improvement of around 47.5%
referred to the execution time.

6.2 Execution with 4 Processors

The computation times resulting from the execution of the eight programs with the
selected penetration rates of CCA technology using 4 processors are presented in Table
4 and depicted in Figure 4.

When the CCA penetration rate equals the 50% we reach the highest computational
load. So we also analyze the results with this penetration rate using 4 processors, focus-
ing on the best and worst execution times achieved. The reference is still the sequential
Program 1 with a duration of 297.93 minutes (around 5 hours). If we make a compar-
ison among the parallelized programs we conclude that the best result is given again
by the Program 7 with a calculation time of 85.988 minutes (around 1.43 hours). We
obtain thus:

– Sequential time (P1): 297.93 minutes.
– Parallel time (P7): 85.988 minutes.

The achieved speedup is 3.46, which implies an improvement of around 71.1% referred
to the execution time.

6.3 Execution with 8 Processors

The computation times resulting from the execution of the eight programs with the
selected penetration rates of CCA technology using 8 processors are gathered in
Table 5 and illustrated in Figure 5.
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Fig. 4. Execution times in minutes for each program using 4 processors

Table 5. Execution times in minutes and speedup for each program using 8 processors

0% 10% 20% 30% 40% 50%
Time SU Time SU Time SU Time SU Time SU Time SU

P1 0.002 1.00 0.308 1.00 7.844 1.00 62.695 1.00 203.416 1.00 296.691 1.00

P2 0.003 0.67 0.193 1.59 4.610 1.70 26.578 2.36 78.644 2.58 117.415 2.53

P3 0.001 2.00 0.067 4.60 1.767 4.44 13.634 4.60 45.213 4.50 62.572 4.74

P4 0.008 0.25 0.047 6.55 1.155 6.79 9.310 6.73 32.142 6.33 54.165 5.48

P5 0.002 1.00 0.071 4.34 1.739 4.51 15.125 4.14 45.858 4.43 62.572 4.74

P6 0.005 0.40 0.055 5.60 1.258 6.23 10.158 6.17 35.275 5.76 54.006 5.49

P7 0.008 0.25 0.054 5.70 1.232 6.37 10.041 6.24 34.800 5.84 50.402 5.89

P8 0.007 0.28 0.051 6.04 1.248 6.28 10.143 6.18 35.376 5.75 53.031 5.59

Finally we analyze what happens if we use 8 processors to solve the problem. Once
more, we obtain for the parallelized Program 7 the least computation time, 50.402 min-
utes with a 50% CCA penetration rate. So if we compare this result with the execution
time of the sequential program we obtain an improvement of the 83%, that is, a speedup
factor of 5.89.

6.4 Results Discussion

In conclusion, on the one hand, we have achieved an improvement of 83% in the compu-
tation time of the most complex case, what can be considered as a pretty much outstand-
ing improvement. On the other hand, if we compare the best execution times between
the two technical extremes under study, that is the use of 2 or 8 processors belonging
to the shared nodes architecture in the Arabi cluster, we reach to an improvement of



34 C. Garcı́a-Costa et al.

Fig. 5. Execution times in minutes for each program using 8 processors

67.78%, which implies an upwards trend with increasing the number of processors, as
expected. Moreover, we can observe that those programs including the parallelization
of task C, which implies an acceleration on the loop varying the CCA technology pen-
etration rate, are the fastest ones. Nevertheless, the results obtained from Program 2
show that the improvement achieved parallelizing only the vector-matrix multiplication
(task A) is already significant, reaching 60.4% using 8 processors.

Analyzing the speedup for programs 7 and 8 it surprises that P7, with two parallelized
tasks, wins P8 including one more task. But this is a common fact in parallel computing
due to load balancing and synchronization overhead [29]. This explains also that all
programs including parallelized task C have similar execution times, since this is the
heaviest computational task and outshines the improvement derived from the A and B
tasks parallelization.

Let us compare now the obtained results for the Program 7, the one with the best
execution times, centering on the 50% CCA penetration rate, since as we already men-
tioned, this is the heaviest option in terms of computational load. We find out an inverse
relationship between computation time and the number of processors in use, since when
we duplicate the number of processors the execution time of Program 7 is reduced al-
most to a half. Specifically, the speedup achieved passing from 2 to 4 processors is 1.82,
and from 4 to 8 processors, 1.7. However, this speedup is limited according to Amdahl’s
law [30]. We have calculated for each program the theoretical speedup obtained from
this law, as depicted in Figure 6.

Amdahl’s law states that if α is the proportion of a program that can be made parallel
then the maximum speedup, SU , that can be achieved by using n processors is:

SU =
1

(1− α) + α
n

. (8)
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Fig. 6. Theoretical speedup limits calculated from Amdahl’s law

We can estimate α by using the measured speedup SU on a specific number of proces-
sors sn as follows:

αestimated =
1

SU − 1
1
sn − 1

. (9)

The results show that for Program 2 the speedup obtained with 8 processors is almost
the limit for it, but the speedup for Program 7 can still grow up to 20, which implies
reducing the execution time to less than 15 minutes.

Unfortunately, we have not been able to check how the results of Amdahl’s law
approach to reality. We tried to execute the Program 7 in the Superdome Ben, but ex-
ecuting it using 32 cores the time consumed was much higher than using 2 cores in a
node of the cluster. It is owing to the computing speed (819 Gflops in the Superdome
and 9.72 Tflops in the cluster).

As an alternative, we tried using MPI (Message Passing Interface Standard) [31]
in order to execute our programs using different nodes of the cluster simultaneously.
However, we encountered the problem of an excessive memory requirement, due to the
need to replicate data across processes, and consequently we failed in the execution of
the programs by this way too.

7 Conclusions and Outlook

Thanks to OpenMP parallelization techniques running under a supercomputing shared
memory environment we succeded to evaluate the perfomance of a CCA application
at different stages of technology deployment. To conclude, we were able to solve a
program with a sequential execution time of 297.975 minutes in only 50.402 minutes.

Regarding the problems we have encountered, as future work, we aim to improve
our analytical model, trying to reduce as possible the computational and memory costs.
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We are also facing similar tasks to improve the efficiency of the VANET simulation
environments we are using in order to validate our mathematical analyses.
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