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Abstract. This paper presents surrogate model-based methods to generate  
circuit performance models, device models, and high-speed IO buffer  
macromodels. Circuit performance models are built with design parameters and 
parametric variations, and they can be used for fast and systematic design space 
exploration and yield analysis. Surrogate models of the main device characteris-
tics are generated in order to assess the effects of variability in analog circuits.  
A new variation-aware IO buffer macromodel is developed by integrating sur-
rogate modeling and a physically-based model structure. The new IO model 
provides both good accuracy and scalability for signal integrity analysis. 
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1 Introduction 

Advances in integrated circuit (IC) technologies have enabled the single-chip  
integration of multiple analog and digital functions, resulting in complex mixed-signal 
Systems-on-a-Chip (SoCs). However, as the IC technology further scales, process 
variations become increasingly critical and lead to large variances in the important 
transistor parameters. As a result, circuit performance varies significantly, and some 
circuits may even fail to work. The large process uncertainties have caused significant 
performance yield loss. In addition, reliability issues and environmental variations 
(such as supply voltage and temperature) contribute to further yield reduction and 
make it more challenging to create a reliable, robust design.  In handling this prob-
lem, it is important to consider the effects of variations in circuit modeling and design 
analysis at an early stage. However, this is a nontrivial task. In this paper, we apply 
surrogate modeling to handle the complexities in variation-aware circuit macromode-
ling, design analysis, and device modeling. We demonstrate the benefits of using 
surrogate modeling in enhancing the accuracy, flexibility, and efficiency in those 
applications. 

2 Circuit Performance Macromodeling with Variations 

2.1 Overview of the Method 

Circuit designers are confronted with large design spaces and many design variables 
whose relationships need to be analyzed. In this situation, tasks such as sensitivity 
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analysis, design space exploration, and visualization become difficult, even if a single 
simulation takes only a short period of time. The analyses are getting impractical as 
when some of the circuit simulations are computationally expensive and time-
consuming. Moreover, when variations are considered in a circuit design, the situation 
becomes even more complex.  One way to reduce the design complexities and costs 
is to build performance models which can be used as replacements for the real circuit 
performance responses. 

In this work, performance models are built by directly approximating circuit per-
formance parameters (e.g. S-parameter, gain, power consumption, noise figure, etc.) 
with design variables  (e.g. transistor size, bias voltage, current, etc.) and parametric 
variations   (e.g. Vth, tox, Leff). The idea is illustrated in Fig. 1. This method is data-
driven and black-box by nature, and thus it can be applied to a wide range of circuit 
design problems.  

2.2 Model Construction 

Techniques. Global surrogate modeling [1] is used to create performance models 
with good accuracy over the complete design space. This is different from building 
local surrogate model for the purpose of optimization [2]. 

Surrogate modeling accuracy and efficiency are determined by several key factors 
including the sampling plan, model template, and validation. These factors are the 
three steps in surrogate modeling. Multiple techniques are available and they need  
to be carefully selected according to the nature of the problem and computational 
complexity. 

In the first step, the key question in designing the sampling plan is how to  
efficiently choose samples for fitting models, considering that the number of samples 
is limited by the computational expense. Traditionally, methods such as Latin Hyper- 
cube sampling or orthogonal arrays, is used for one-shot sampling [3]. Recently, 
adaptive sampling techniques were developed in order to achieve better efficiency in 
sampling [4, 5]. Adaptive sampling is an iterative sampling process which analyzes 
the data from previous iterations in order to select new samples in the areas that are 
more difficult to fit. 

In the model template selection step, the surrogate model type needs to be  
determined. Popular surrogate model types include Rational Functions, Kriging mod-
els, Radial Basis Function (RBF) models, Artificial Neural Networks (ANNs), and 
Support Vector Machines (SVMs). After the model type has been selected, model 
complexity also needs to be decided.  Model complexity is controlled by a set of 
hyper-parameters which would be optimized during a modeling process. 

The step of model validation establishes the predictive capabilities of the models 
and estimates their accuracy. One popular method is five-fold cross-validation [6] in 
which the training data are divided into five subsets.  A surrogate model is con-
structed five times, each time four subsets are used for model construction and one 
subset is used for error measurement. Model error can be measured as a relative error, 
for example Root Relative Square Error (RRSE), Bayesian Estimation Error Quotient 
(BEEQ), etc., or an absolute error, e.g. Maximum Absolute Error (MAE), Root Mean 
Square Error (RMSE), etc.  
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Fig. 1. Circuit performance modeling 

Automatic Modeling Flow. In this work, we constructed an automatic modeling flow 
that is able to generate performance models from transistor-level circuit simulations, 
as shown in Fig. 2. Before the modeling starts, a set of input and output parameters 
are defined. The modeling techniques are also configured, including the model tem-
plate, adaptive sampling strategy, and accuracy measurement. An accuracy target is 
defined as well. At the beginning of the modeling process, a small set of initial sam-
ples are generated. Then transistor-level SPICE simulations are performed using this 
initial set, and the corresponding responses are collected and used as the modeling 
data. Surrogate models are then constructed and their parameters optimized. The 
model accuracy is measured and the optimization continues until only negligible im-
provements can be made by changing the model parameters. If the desired accuracy is 
not reached, the adaptive sampling is evoked to add a new set of samples. The process 
continues until the fit reaches the targeted accuracy. When the process finishes, the 
model expressions are be exported and used in the follow design steps. 

 

Fig. 2. Automatic adaptive performance surrogate modeling flow 
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In the examples presented in this section, the modeling techniques are explored us-
ing the SUrrogate MOdeling (SUMO) Matlab Toolbox [7]. SUMO is a plug in-based, 
adaptive platform that can be customized flexibly. The toolbox makes it feasible to 
test a variety of modeling techniques. Transient circuit simulators, including Cadence 
Virtuoso Spectre®, and Synopsys HSPICE®, are used here for performing transistor-
level circuit simulations.  

2.3 Circuit Case Demonstration 

Performance models are very helpful for visualizing the design space and gaining 
insight into circuit behavior. In this section, a low-noise-amplifier (LNA) circuit is 
designed in a 0.13 μm CMOS process [8], the simplified circuit schematic of which is 
shown in Fig.3. 

In this example, we consider the transistors’ driving strength (tr_strengh) as a main 
source of process variations.  Transistor strength describes the variations in the tran 
sistor speed and the current. The data is provided by the foundry and it is set between 
-3σ and +3σ. Additionally, temperature is considered as an environmental variation, 
and it varies in the range of -20°C to 60°C. Two design parameters are considered. 
One is reference current Iref which is used to generate the input DC bias. Iref is set in 
the range of 50 μA to 200 μA. The other parameter is mlna which is the multiple of 
the widths of the amplifier transistors M1and M2. mlna is in the range of 0.5 to  
2. Here the performance of interest is the voltage gain at the center frequency  
(maxlnagain). 

 

Fig. 3. Simplified low-noise-amplifier circuit schematic 

The Kriging performance model maxlnagain(tr_strength, T, mlna, Iref) was con-
structed using the data obtained from transistor-level simulations in HSPICE®. Latin 
Hypercube sampling with corner points was used as the initial sampling strategy.  
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The adaptive sampling method LOLA-Voronoi [5] determined the non-linear regions 
of the true response and sampled those more densely. 5-fold cross validation with 
root-relative-square-error (RRSE) was used for the model validation. The definition 
of RRSE is defined as 
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where iy , iy and y are the actual, predicted, and mean actual response values.  

The constructed model has an RRSE of 4.72%. Fig. 4 shows the plots of the model 
surfaces used to explore the design space. The results show the effects of the design 
parameters and the parametric variations. It is seen that both transistor variations and 
temperature variations can significantly impact performance.  It is possible to mod-
ulate the design parameters, in order to achieve an optimal gain value under the spe-
cific variations. 

 

       (a) mlna=0.5                     (b)mlna=1.25                           (c)mlna=2 

Fig. 4. Plot of the model surfaces. (a)—(c) are for different mlna values. The three slices in 
each plot are for three Iref values. Black is for 50 μA, light grey is for 125μA, and dark grey is 
for 200μA. 

3 Scalable and Variation-Sensitive IO Macromodel 

Good macromodels of input/output circuits are essential for fast timing, signal-
integrity, and power-integrity analysis in high-speed digital systems. The most popu-
lar approach to IO modelling is to use the traditional table-based input-output buffer 
information specification (IBIS) [9]. IBIS models are simple, portable, IP-protected, 
and fast in simulation. However, they are unable to simulate continuous PVT varia-
tions and unsuitable for statistical analysis. We propose a new type of macromodel, 
called the surrogate IBIS model, to solve the problem [10]. In the new method, an 
equivalent circuit structure is used to capture the static and dynamic circuit behaviors, 
while surrogate modeling is used to approximate each element over a range of 
Process-Voltage-Temperature (PVT) parameters, so that the macromodel is able to 
dynamically adapt to the PVT variations in analysis. 
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3.1 Proposed Macromodel Structure 

Fig. 5 shows the proposed macromodel structure that is composed of physically-based 
equivalent model elements [10]. Ipu and Ipd represent the nonlinear output current. 
Time-variant coefficients Kpu and Kpd determine the partial turn-on of the pull-
up/down networks during switching transitions. Cpower and Cgnd represent the nonli-
near parasitic capacitance between the output and the supply rails. Surrogate models 
of these model elements are constructed, to capture the effects of supply voltage, ter-
minal voltages, semiconductor process, and temperature.  

 

Fig. 5. Structural IO buffer macromodel template with surrogate model elements 

3.2 Macromodel Construction 

The automatic modeling process described in Section 2 was used to construct surro-
gate models for the model elements in Fig. 5. The method is demonstrated with the 
single-ended output buffer circuit shown in Fig. 6. The circuit is designed in 180 nm 
CMOS process with a 3.3 V normal supply voltage. The threshold voltage variations 
ΔVth in the MOS transistors are considered as the main process variations and they are 
assumed to be within ±20% of the nominal value Vth0.  The parameter P = ΔVth/Vth0 is 
used to describe the threshold voltage variation. The supply voltage Vs is assumed to 
fluctuate within ±30% of the nominal supply (3.3 V) and temperature (T) is set in the 
range of 0 to 100°C. In the modeling process, those PVT-related parameters are sam-
pled adaptively in their ranges. 

Here modeling data was extracted from transistor-level SPICE circuit simulations. 
Fig. 7 (a) shows the circuit test-bench to extract the pull-up output current Ipu (VS, Vpu, 
T, ΔVth). The parameter Vpu is defined as the voltage difference between the power 
supply rail and the output, and it ranges from﹣VCC to﹢2VCC covering the maximum 
reflection case [11]. Transient simulations were performed and the simulation time 
was long enough (in this case it was 1 ms with 1 ns step size) to record a stable output 
current Ipu.  
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Fig. 6. Simplified schematic of the driver circuit 

      
                         (a) Ipu                                                (b) Capacitance  

Fig. 7. Test-benches for extracting model elements: (a) pull-up current Ipu (a) output capacit-
ance Cgnd and Cpower 

The data was used to fit rational function models in the form:  
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where P and Q are polynomial functions in X={x1,x2,…,xn}and Q is non zero. P and 
Q have no common factor of positive degree. 

Similarly, the pull-down current model Ipd was extracted by turning on the pull-
down network and turning off the pull-up network. Ipd was extracted as a model func-
tion of PVT variations and Vpd, where Vpd is defined as the voltage difference between 
the output and the ground.  

The test setup for extracting the output parasitic capacitance is shown in Fig. 7(b).  
An AC signal is attached to the output ports and the imaginary currents in the power 
and the ground ports are measured. The capacitances Cpower and Cgnd were derived 
using 
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where 
VCC( )Iℑ and gnd( )Iℑ are the imaginary parts of the measured currents,  f  is 

the frequency of the AC source, and VAC is the AC voltage amplitude. The time-
variant transition coefficients Kpu and Kpd were obtained according to the 2EQ/2UK 
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algorithm [12]. Fig. 8(a) shows the test to obtain the switching output voltage wave-
forms. A simplified circuit to illustrate the 2EQ/2UK algorithm is shown in Fig. 8(b). 
The switching output voltage waveforms wfm1 and wfm2 were obtained with different 
terminal voltage Vterm, and the unknown coefficients Kpu and Kpd are derived using the 
equations  

1 1pu pu wfm pd pd wfm out( ) ( ( )) ( ) ( ( )) 0K t I V t K t I V t I− − =  

2 2pu pu wfm pd pd wfm out( ) ( ( )) ( ) ( ( )) 0K t I V t K t I V t I− − =  
(4) 

where out out term load( ) /I V V R= − .  Ipu and Ipd are the output current models. 
 
 

  
                     (a)                                                      (b) 

Fig. 8. (a) Test-benches for extracting model elements output capacitance Cgnd and Cpower (b) 
illustration of 2EQ/2UK algorithm. 

To implement the new model, we modified the Verilog-A behavioral version of the 
IBIS model [13] and applied the surrogate model expressions for the model elements. 
The surrogate models were implemented in the form of analog functions.  

3.3 Test Results 

In this section the surrogate IBIS model is compared to the reference provided by the 
transistor-level simulation, and to the traditional IBIS model extracted from SPICE 
using the S2IBIS3 v1.0 tool [14].  

The test setup is shown in Fig. 9 where the driver is connected to a 0.75-m long 
lossy transmission line (RLGC model) with a loading resistor. The characteristic im-
pedance of the transmission line is 50 Ω. The loading resistor is 75 Ω. Two test cases 
were examined. The results are shown in Fig. 10. 
1. Case 1, used a 250 MHz square wave as a test input signal. The input data has the 
pattern “01010” with a 0.1-ns rise/fall time and 2-ns bit-period. The supply voltage 
varied from 2.8 to 3.8 V. 
2. Case 2, used a data pattern with a 1024 bit long pseudorandom bit sequence 
(PRBS) with 2-ns bit time. The power supply voltage was constant. 
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Fig. 9. Test setup for model validation 
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Fig. 10. Output voltage at the far end of the transmission line, (a) Case 1, black solid line—
transistor-model, grey solid line—traditional IBIS, black dash line—proposed surrogate IBIS. 
Black dash-dot line—supply voltage. (b) Case 2, grey solid line—transistor, black dashed 
line—macromodel. 

The accuracy of the macromodels is quantified by computing the timing error and 
the maximum relative voltage error. The timing error is defined as the time difference 
between the reference and the macromodel voltage responses measured for crossing 
half of the output voltage swing.  The maximum relative voltage error is defined as 
the maximum error between the reference and macromodel voltage responses divided 
by the voltage swing.  

The results show that in Case 1 when there are large variations of the supply vol-
tage, the surrogate IBIS model has much better accuracy both of the timing error and 
of the relative voltage error than the traditional IBIS model. The maximum timing 
error of the surrogate-IBIS model is 79 ps, and the maximum relative voltage error is 
6.77%. The surrogate IBIS model achieves the improved accuracy by capturing the 
complex output capacitance characteristics, the effects of the supply voltage, and gate 
modulation effects on the output current [15]. In Case 2, the result shows that the 
surrogate-IBIS achieves good accuracy. In this case, the maximum timing error is 70 
ps (3.5% of the bit-time) and the maximum relative voltage error is 6.45%. We also 
analyze the eye-diagram of the output in Case 2. The eye-width (W) was measured 
when the eye-height (H) was equal to 1 V.  The results under different PVT condi-
tions show that the eye-width differences within 0.04 ns (2% of the bit-time).  
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In summary, the proposed surrogate-IBIS macromodel achieves good accuracy in 
the analysis. The macromodels obtained show good accuracy in capturing the  
effects of reflections and variations, and their scalability makes flexible design  
analysis possible. 

4 Surrogate-Based Device Modeling  

Scaling of device sizes induced high variability of transistor parameters. There are 
two major reasons for this. Firstly, quantum mechanics-based phenomena such as the 
drain induced barrier lowering (DIBL) or gate tunnelling which are negligible in long-
channel devices become more significant.  Additional physics-based effects in-
creased the dependence of many circuit design quantities including the drain current, 
Ids, and device transconductance, gm, on the transistor process parameters such as the 
oxide thickness, tox. Furthermore, the tolerance of semiconductor manufacturing com-
ponents did not scale down as the transistor sizes shrink [16]. As a consequence, the 
amount of uncertainty in the design quantities remained constant while device sizes 
become smaller leading to higher percentages of variability with respect to the no-
minal values of the transistor process parameters.  The experimental data revealed 
that the traditional process corner analysis might not reflect the real distribution of the 
critical transistor parameters such as the threshold voltage Vth [17] while the Monte 
Carlo analysis become more computationally intensive with increasing number of 
variability factors. 

The response surface of design quantities which become more complex with the 
presence of extreme process variations can be accurately captured by surrogate mod-
elling. Surrogate modelling aims to express the output quantity in terms of a few input 
parameters by evaluating a limited number of samples. These samples are used by the 
basis functions which establish the response surface of the desired output. Coeffi-
cients of the basis functions should be optimized to minimize the modelling error.  
This approach has been applied to the problem of Ids modelling in order to assess the 
effects of variability in analogue circuit building blocks, in particular, the differential 
amplifiers [18]. In this section, the modeling of gm of n-channel transistors will be 
discussed.  

The transconductance gm is an important quantity for analog circuits, particularly in 
determining the AC performance of amplifiers, mixers, and voltage controlled oscilla-
tors. The modeling here is based on 65 nm device technology (IBM 10SF design kit) 
and uses six process parameters (tox, intrinsic threshold voltage Vth,0, intrinsic  drain-
source resistance Rds,0, intrinsic mobility µ0, channel length variation ΔLeff, and chan-
nel doping Nch) as input to the model in addition to the terminal voltages of the tran-
sistor (gate-source voltage Vgs, drain-source voltage Vds , and bulk-source voltage Vbs) 
and the temperature T. The choice of these process parameters is based on their physi-
cal origin which ensures a weak correlation between each parameter. BSIM model Ids 
equations are analytically differentiated to yield gm [19]: 

.m ds gsg I V= ∂ ∂  (5) 
 

The gm expression is validated by extensive SPICE circuit simulations over the 
process corners and at temperature extremes so that it can be used to evaluate the 
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samples, each a function of the ten parameters described above. Although an analytic 
equation for gm is used in this work, the modelling methodology is general and can 
employ simulations or measurement results given that they have the same input and 
output parameters.  

Kriging basis functions are used to construct the surrogate model with the neces-
sary coefficients being optimized using the MATLAB toolbox Design and Analysis of 
Computer Experiments (DACE) [20]. The device width is assumed to be 10 µm. The 
finalized model is tested for accuracy using the root relative square error (RRSE) 
metric where RRSE can be given by Equation (1).  

The gm model is constructed using a total number of 2560 input samples, and tested 
with 6400 samples other than the input samples. The resulting model yields an RRSE 
of 3.96% indicating to a high level of accuracy.  

The model can be used to observe the changes in gm with respect to its input para-
meters. Examples of this are provided in Figure 8. The graphs provide critical insight 
to the designer about the fundamental relations and trade-offs between the chosen 
process parameters, terminal voltages, and temperature.  Higher gm values are ob-
tained with smaller Vth,0, Leff, and tox, as well as larger µ0. This information becomes 
especially vital when variability of the circuit performance that depends on gm must 
be considered. In the example of an RF cascode low-noise amplifier , voltage gain Av, 
input and output return ratios, S11 and S22, as well as the optimum noise impedance, 
Zopt, are complex functions of the gm value of the common source transistor [21]. Any  
 

   
                          (a)                                                     (b) 

 
(c) 

Fig. 11. 3D graphs showing the trade-offs between the different inputs on the modeled gm 
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variability of the process parameters of this transistor may push the design outside of 
the specification range. In this case, information presented in Fig.11 (a)—(c) can be 
used to change the matching network of the amplifier such that it can yield the desired 
design metrics in all cases of process variability. 

Finally, it should be noted that surrogate model-based device modeling is not li-
mited to one single design quantity. Response surface models of other important de-
sign metrics can also be developed by using the methodology described here. As an 
example, consider the bandwidth of a single-stage amplifier. The bandwidth is both a 
function of process parameters used in gm modeling and a function of the junction 
capacitances of the transistor. However, these junction capacitances depend also on 
some process parameters. The exact relationships can be quantified by analytical ex-
pressions as given in the device model equations [19]. Once the additionally required 
parameters are determined, then the surrogate modeling process can be applied as in 
gm modeling. 

5 Surrogate Model-Based Circuit Design 

5.1 Yield-Aware Circuit Optimization 

As IC technologies scale down to 65 nm and beyond, it is more challenging to create 
reliable and robust designs in the presence of large process (P) and environmental 
variations (e.g. supply voltage (V), temperature (T)) [22]. Without considering PVT 
fluctuations, the optimal circuit design would possibly minimize the cost functions by 
pushing many performance constraints to their boundaries, and result in a design that 
is very sensitive to process variations. Therefore, we need to not only search for the 
optimal case at the nominal conditions, but also carefully consider the circuit robust-
ness in the presence of variations.  However, the fulfillment of all these requirements 
introduces more complications in circuit design.  

 

Fig. 12. Illustration of Pareto fronts with different yield levels 

Yield is defined as the number of dies per wafer that meet all predefined perfor-
mance metrics. Monte Carlo analysis of a circuit is an important technique used for 
yield estimation. However, this method requires a large number of sampling points to 
achieve sufficient accuracy and therefore it is very time-consuming. One solution to 
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reduce computational cost is to use the performance surrogate models proposed in 
Section 2. As performance models are constructed as a function of selected design 
parameters and parametric variations, they can be used instead of using circuit-level 
simulations. Therefore, yield estimation can be achieved without large computational 
cost. 

One application of a variation-aware performance model is to obtain the yield-
aware Pareto fronts [23] which is best trade-offs of the overall circuit performance 
and yield. In this application, in addition to searching for the general Pareto-optimal 
designs, performance yield at those design points is evaluated by using the variation-
aware performance model. As a result, the yield-aware Pareto fronts can be generated. 
An illustration is shown in Fig. 12. P1 and P2 are the performance parameters to trade-
off, and the curves are the Pareto fronts with different yield levels. The yield-aware 
Pareto fronts of sub-blocks could be further used in yield-aware system design. 

5.2 Surrogate-Based Circuit Optimization 

Simulation-based circuit optimization is a very good application of surrogate  
modeling, as the process requires a great number of iterative evaluations of objective 
functions. In an optimization process, surrogate models are used to guide the search 
instead of achieving the global accuracy.  

In the surrogate-based optimization process, generally there are two types of simu-
lation models, a low-fidelity and a high-fidelity model. In our circuit design problems, 
the transistor-level circuit simulation is used as a high-fidelity model while the built 
surrogate model is used as the low-fidelity model. The general surrogate-based opti-
mization process is shown in Fig. 13 [24]. 

 

Fig. 13. General surrogate-based optimization flow 
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The Gaussian-based Kriging model can be used as an approximation method since 
this model is able to provide estimation of the uncertainty in the prediction. Adaptive 
sampling methods (e.g. [3]) can be used to balance exploration (improving the general 
accuracy of the surrogate model) and exploitation (improving the accuracy of the 
surrogate model in the local optimum area) during optimization. An alternative me-
thod, space mapping [25], maps the input/output space of a low-fidelity model to the 
input/output space of the high-fidelity model. These methods can significantly im-
prove the optimization efficiency when physically-based and computational efficient 
low-fidelity models are available. 

6 Summary 

This work presents the applications of surrogate modeling in variation-aware circuit 
macromodeling and design analysis. Surrogate modeling can facilitate the design 
exploration and optimization with variation-aware performance models. Also, surro-
gate modeling can be used to enhance the accuracy and scalability of IO macromo-
dels. Moreover, the surrogate model-based method is able to generate device models 
with critical variability parameters. The surrogate-based method greatly reduces the 
complexities and costs of variation-aware macromodeling and circuit design. 
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