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Abstract. Crash simulation results show both deterministic and stochastic 
behavior. For optimization in automotive design it is very important to 
distinguish between effects caused by variation of simulation parameters and 
effects triggered, for example, by buckling phenomena. We propose novel 
methods for the exploration of a simulation database featuring non-linear 
multidimensional interpolation, tolerance prediction, sensitivity analysis, robust 
multiobjective optimization as well as reliability and causal analysis. The 
methods are highly optimized for handling bulky data produced by modern 
crash simulators. The efficiency of these methods is demonstrated for 
industrially relevant benchmark cases. 
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1 Introduction 

Simulation is an integral component of virtual product development today. The task 
of simulation consists mainly in solution of physical models in the form of ordinary or 
partial differential equations. From the viewpoint of product development the real 
purpose is product optimization, and the simulation is "only" means for the purpose. 
Optimization means searching for the best possible product with respect to multiple 
objectives (multiobjective optimization), e.g. total weight, fuel consumption and 
production costs, while the simulation provides an evaluation of objectives for a 
particular sample of a virtual product. 

The optimization process usually requires a number of simulation runs, the results 
form a simulation dataset. To keep simulation time as short as possible, "Design of 
Experiments" (DoE, [1]) is applied, where a space of design variables is sampled by a 
limited number of simulations. On the basis of these samples, a surrogate model is 
constructed, e.g. a response surface [2], which describes the dependence between 
design variables and design objectives. Modern surrogate models [3, 4, 12-15] 
describe not only the value of a design objective but also its tolerance limits, which 
allow to control precision of the result. Moreover, not only scalar design objectives 
but whole simulation results, even highly resolved in space/time, (”bulky” dataset) 
can be modeled [12-15]. 
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In this paper we will concentrate on the stochastic  aspects of simulation processes. 
Industrial simulations, e.g. virtual crash tests, often possess a random component, 
related to physical and numerical instabilities of the underlying simulation model and 
uncertainties of its control parameters. Under these conditions the user is interested 
not only in the mean value of an optimization criterion, e.g. crash intrusion, but also 
in its scatter over simulations. In practice, it is required to fulfil optimization 
objectives with a certain confidence, e.g. 6-sigma. This task belongs to the scope of 
robustness or reliability analysis. 

Often, the confidence intervals are so large that one has to reduce scatter before 
optimization. There is a part of scatter deterministically related to the variation of 
design variables, which can be found by means of sensitivity analysis. The other part 
is purely stochastic. It can be triggered by microscopic variations of design variables 
and - even if they are fixed - by the numerical process itself, e.g. by random 
scheduling in multiprocessing simulation. These microscopic sources are then 
amplified by inherent physical instabilities of the model related e.g. to buckling, 
contact phenomena or material failure. Stochastic analysis allows to track the sources 
of scatter, to reconstruct causal chains and to identify hidden parameters describing 
chaotic behavior of the model. If uncontrolled, these parameters propagate scatter to 
the optimization objectives. The challenge is to put them under control, at least 
partially, e.g. by predeformation of buckling parts, adjustment of contact conditions, 
placement of additional welding points etc. In this way the scatter of simulation can 
be suppressed and optimization becomes more robust. 

In Sec.2 we will overview the methods for metamodeling of bulky simulation 
results; in Sec.3 we describe stochastic methods for reliability and causal analysis; 
Sec.4 presents applications of these methods to real-life examples in automotive 
design. The approaches presented in this paper have been implemented in software 
tools DiffCrash [9-11] and DesParO [12-15] and have been subjects of international 
patent applications (DPMA 10 2009 057295.3 and  PCT/ EP2010/061439). 

2 RBF Metamodel 

Numerical simulations define a mapping y=f(x): Rn→Rm from n-dimensional space of 
simulation parameters to m-dimensional space of simulation results. In crash test 
simulation the dimensionality of simulation parameters x is moderate (n~10-30), 
while simulation results y are dynamical fields sampled on a large grid, typically 
containing millions of nodes and hundreds of time steps, resulting in values of m~108. 
High computational complexity of crash test models restricts the number of 
simulations available for analysis (typically Nexp<103) which is preferred to be as 
small as possible.  

Metamodeling with radial basis functions (RBF) is a representation of the form  

f(x)=i=1.. Nexp ci Φ(|x-xi|), (1)

where Φ() are special functions, depending only on the Euclidean distance between 
the points x and xi. The coefficients ci can be obtained by solving a linear system 
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yi=j cj Φ(|xi-xj|), (2)

where yi=f(xi). The solution can be found by direct inversion of the moderately sized 
Nexp*Nexp system matrix Φij=Φ(|xi-xj|). The result can be written in a form of 
weighted sum f(x)=iwi(x)yi, with the weights  

wi(x)=jΦ-1
ijΦ(|x-xj|). (3)

A suitable choice for the RBF, providing non-degeneracy of Φ-matrix for all finite 
datasets of distinct points and all dimensions n, is the multi-quadric function [5] 
Φ(r)=(b2+r2)1/2, where b is a constant defining smoothness of the function near data 
point x=xi. RBF interpolation can also be combined with polynomial detrending, 
adding a polynomial part p():  

f(x)=i=1..Nexp ci Φ(|x-xi|)+p(x). (4)

This allows reconstructing exactly polynomial (including linear) dependencies and 
generally improving precision of interpolation. The precision can be controlled via the 
following cross-validation procedure: the data point is removed, data are interpolated 
to this point and compared with the actual value at this point. For an RBF metamodel 
this procedure leads to a direct formula [13-15]  

erri  = finterpol(xi)-factual(xi) = -ci/(Φ-1)ii. 
(5) 

Specifics of Bulky Data: although RBF metamodel is directly applicable for 
interpolation of multidimensional data, it contains one matrix-vector multiplication 
f(x)=yw(x), comprising O(mNexp) floating point operations per every interpolation. 
Here yij, i=1..m, j=1..Nexp is the data matrix, where every column forms one 
experiment, every row forms a data item varied in experiments.  

Dimensional reduction technique applicable for acceleration of this computation is 
provided by principal component analysis (PCA). At first, an average value is row-
wise subtracted, forming centered data matrix dyij = yij - <yi>. For this matrix a 
singular value decomposition (SVD) is written: dy=UΛVT, where Λ is a diagonal 
matrix of size Nexp*Nexp, U is a column-orthogonal matrix of size m*Nexp, V an 
orthogonal square matrix of size Nexp*Nexp:  

UTU=1, VTV=VVT=1. 
(6)

A computationally efficient method [14] for this decomposition in the case m>>Nexp 
is to find Gram matrix G=dyTdy, to perform its spectral decomposition G=VΛ2VT, 
and to compute the remaining U-matrix with post-multiplication U=dyVΛ-1. The 
Λ values are non-negative and sorted in non-ascending order. If all these values in the 
range k>Nmod are omitted (set to zero), the resulting reconstruction of y-matrix will 
have a deviation δy. L2-norm of this deviation gives   

err2 = ij δyij
2 = k>Nmod Λk

2 (7)

(Parseval’s criterion). This formula allows controlling precision of reconstructed y-
matrix. Usually Λk rapidly decreases with k, and a few first Λ values give sufficient 
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precision. The result of interpolation is represented as a product df=Ψg of SVD 
modes Ψ=UΛ (principal components) to SVD-transformed RBF weights g=VTw. 
Finally one has f(x)=<y>+df(x), computational cost of interpolation is reduced to O(m 
Nmod), plus once-charged O(m Nexp2) cost of SVD. This method is convenient when 
interpolation should be performed many times (>>Nexp), e.g. for interactive 
exploration of database. 

More generally, for representation of bulky data one can use clustering techniques 
[14]. They also decompose bulky data over a few basis vectors (modes) and 
accelerate linear algebra operations with them. 

3 Reliability Analysis 

The purpose of reliability analysis is an estimation of confidence limits (CL) for 
simulation results: P(y<CL)=C, where P is probability measure and C is a user 
specified confidence level. For example, median corresponds to 50% CL, i.e. 
P(y<med)=0.5; while 68% CL corresponds to confidence interval [CLmin,CLmax), 
where P(y<CLmin)=0.16, P(y≥CLmax)=1-P(y<CLmax)=0.16; etc. Several methods 
for solution of this task are available. 

3.1 First Order Reliability Method (FORM) 

FORM is applicable for linear mapping f(x) and normal distribution of simulation 
parameters: 

ρ(x)~exp(-(x-x0)
Tcovx

-1(x-x0)/2). (8)

Here x0=<x> is mean value of x and  

 (covx)ij =<(x-x0)i(x-x0)j> 
(9)

is covariance matrix of x. In this case y is also normally distributed, with mean value  

y0=<y>=med(y)=f(x0) 
(10)

and covariance matrix 

covy = J covx J
T, (11)

where Jij = ∂fi /∂xj is Jacoby matrix of f(x), called also sensitivity matrix. The diagonal 
part of covy  gives standard deviations σy

2 directly defining CL(y), e.g.  

CLmin/max(68%)=<y>±σy, (12)

CLmin/max (99.7%)=<y>±3σy. (13)

In particular, when simulation parameters are independent random values, covx 

becomes diagonal: covx =diag(σx
2), and  

σyi
2=j=1..n (∂fi /∂xj)

2σxj
2. (14)



 Analysis of Bulky Crash Simulation Results: Deterministic and Stochastic Aspects 229 

A finite difference scheme used to compute Jacoby matrix of f(x) requires Nexp=O(n) 
simulations, e.g. 2n for central difference scheme plus one experiment at x0, 
Nexp=2n+1. The algorithm possesses computational complexity O(nm) and can be 
implemented efficiently  as reading data from Nexp simultaneously open data streams 
and writing CL to a single output data stream. In this way the memory requirements 
can be minimized and parallelization can be done straightforwardly. 

3.2 Second Order Reliability Method (SORM) 

SORM is applicable for slightly non-linear mapping f(x), which can be approximated 
by quadratic functions. The distributions ρ(x) are normal or can be cast to normal 
ones by a suitable transformation of parameter. For quadratic approximations CL can 
be explicitly computed [6] using main curvatures in the space of normalized variables 
zi=(x-x0)i/σxi, i.e. eigenvalues of Hesse matrix Hi

jk=∂2fi /∂zj∂zk. These eigenvalues can 
be also used to estimate non-linearity of the mapping f(z), by maximizing the 1st and 
2nd Taylor's terms over a ball of radius R:  

max|z|≤RJz=|J|R,  max|z|≤R|zTHz/2|=Hmax R2/2, (15)

so that the linear term prevails over quadratic one, in this ball, iff |J|>>Hmax R/2. 
Here  

Jij = ∂fi /∂zj, |J|=(j Jij
2)1/2 (16)

and Hmax is maximal absolute eigenvalue of H. Both this criterion and estimation of 
main curvatures require full Hesse matrix, i.e. Nexp=O(n2) simulations. Practically, 
the usability of SORM is limited, because strongly non-linear functions would 
involve higher order terms and because distributions of simulation parameters can 
strongly deviate from normal ones. 

3.3 Confidence Limits Determination with Monte Carlo Method (CL-MC) 

In the case of non-linear mapping f(x) and arbitrary distribution ρ(x) general Monte 
Carlo method is applicable. The method is based on estimation of probability  

PN(y<CL) = num.of (yn<CL)/N (17)

for a finite sample {y1,...,yN}. By the law of large numbers [7], FN=PN(y<CL) is 
consistent unbiased estimator for F=P(y<CL), i.e. FN→F with probability 1, when 
N→∞ and <FN> = F for all finite N. By the central limit theorem [7], the error of such 
estimation errN=FN-F at large N is distributed normally with zero mean and standard 
deviation σ∼(F(1-F)/N)1/2. Algorithmically the method consists of three phases: 
 

(CL1) generation of N random points in parameter space according to user specified  
           distribution ρ(x),  
(CL2) numerical simulations for given parameter values,  
(CL3) determination of confidence limits by one-pass reading of simulation results,  
           sorting m samples {y1,...,yN} and selection of k-th item in every sample with  
           k=[(N-1)F+1] as a representative for CL. 
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The analysis phase of the algorithm possesses computational complexity O(mN log 
N) and can be efficiently implemented using data stream operations similar to FORM. 
Precision of the method is estimated using standard deviation formula above. 
Remarkably, the precision depends neither on dimension of parameter space n, nor on 
the length of simulation result m, but only on sample size N=Nexp and user-specified 
confidence level F=C. For instance, CL determination at the level 68% (F=0.16) with 
4% precision requires Nexp=84, while for 68%±1% one needs Nexp=1344. 

3.4 Monte Carlo Combined with RBF Metamodel (MC-RBF) 

Large sample size is required for precise determination of CL with Monte Carlo 
method. To reduce the number of required simulations, RBF metamodel can represent 
the mapping f(x) during analysis phase of CL-MC. While a metamodel can be 
constructed using a moderate number of simulations, e.g. Nexp~100, determination of 
CL can be done with N>>Nexp. Application of RBF metamodel for CL computation 
proceeds similarly to CL-MC. The only difference is that Nexp parameter points 
generated at phase (CL1) are used as input for the metamodel. They should not 
necessarily possess user specified distribution, but one providing better precision of 
metamodel, i.e. better covering "the corners" of parameter space. It is especially 
important for populating tails of distribution, corresponding to high confidence e.g. 
99.7% CL. Uniform distribution is suitable for this purpose. Then, after numerical 
simulations at phase (CL2), and after filtering out failed experiments, the actual 
distribution ρ(x) is used to generate N parameter points, and construct RBF weight 
matrix wij=wi(xj), i=1..Nexp, j=1..N. This matrix is used in phase (CL3) for 
multiplication with simulation results yik, k=1..m, comprising O(m N Nexp) 
operations, which usually prevails over O(m N log N) operations needed for sorting 
of interpolated samples.  

4 Causal Analysis 

Causal analysis is determination of cause-effect relationships between events. In 
context of crash test analysis, this usually means identification of events or properties 
causing the scatter of the results. This allows to find sources of physical or numerical 
instabilities of the system and helps to reduce or completely eliminate them.  

Causal analysis is generally performed by means of statistical methods,  
particularly, by estimation of correlation of events. It is commonly known that 
correlation does not imply causation (this logical error is often referred as "cum hoc 
ergo propter hoc": "with this, therefore because of this"). Instead, strong correlation of 
two events does mean that they belong to the same causal chain. Two strongly 
correlated events either have direct causal relation or they have a common cause, i.e. a 
third event in the past, triggering these two ones. This common cause will be 
revealed, if the whole causal chain i.e. a complete sequence of causally related  events 
will be reconstructed. Practical application of causal analysis requires formal methods 
for reconstruction of causal chains. 
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A practical problem of causal analysis in crash-test simulations is often not a 
removal of a prime cause of scatter, which is the crash event itself. It is more an 
observation of propagation paths of the scatter, with a purpose to prevent this 
propagation, by finding regions where scatter is amplified (e.g. break of a welding 
point, pillar buckling, slipping of two contact surfaces etc). Since a small cause can 
have large effect, formally earliest events in the causal chain can have a microscopic 
amplitude ("butterfly effect"). Therefore it is reasonable to search for amplifying 
factors and try to eliminate them, not the microscopic sources. 

As input for causal analysis the centered data matrix dyij, i=1..m, j=1..Nexp is used. 
Here every column forms one experiment, every row forms a data item varied in 
experiments, and the mean value <y> is row-wise subtracted from the matrix. Then 
every data item is transformed to a z-score vector [8]: 

zij=dyij/|dyi|, |dyi|=sqrt(j dyij
2), (18)

or by means of the equivalent alternative formula  

zij=dyij /(s(yi)(Nexp)
1/2), s(yi)=(jdyij

2/Nexp)
 1/2. (19)

Here s(yi) is the root mean square deviation of the i-th data item, which can serve as a 
measure of scatter. In this way the data items are transformed to m vectors in Nexp-
dimensional space. All these z-vectors belong to an (Nexp-2)-dimensional unit-norm 
sphere, formed by intersection of a sphere |z|=1 with a hyperplane j zij=0. The scalar 
product of two z-vectors is equal to Pearson's correlator of data items:  

(z1,z2) = j z1j z2j  = corr(y1,y2). (20)

An important role of this representation is the following. Strongly correlated data 
items correspond either to coincident (z1=z2) or  opposite (z1=-z2) z-vectors. If not the 
sign but only the fact of dependence is of interest, one can glue opposite points 
together formally considering a sphere of z-vectors as projective space. Using this 
representation, one can apply [13,14] general purpose clustering methods such as k-
means to group data items distributed on this sphere to a few strongly correlated 
components. 

In spite of their numerical efficiency, these clustering methods neglect temporal 
ordering of events, while in causal analysis the task is to find an earliest physically 
significant event in the causal chain. In crash test simulation such events correspond 
to bifurcation points, where the scatter appears "ex nihilo". Such points are clearly 
visible as spikes in dynamical scatter plots s(y), the problem is that there are too many 
of them. Although decision between potential candidates by a formal algorithm can be 
difficult, an engineering knowledge allows narrowing the search to significant parts 
where scatter propagation can be really initiated by physical effects, such as buckling 
of longitudinal, break of welding point etc. The other problem is that in bifurcation 
points new scatter is just appeared and it is generally hidden under the consequences 
of previous effects. At first one needs to separate scatter contributions. 

Considering two data items dy(a) and dy(b), one can define contribution relevant to 
the data item (a) in (b) as follows:  
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dy| a(b) = corr(a,b)s(b)z(a). (21)

After subtraction of this contribution a residual dy(b)-dy| a(b) does not correlate with 
dy(a), and the scatter 

s2|a(b)=<(dy(b)-dy|a(b))2>=s2(b)(1-corr2(a,b)) (22)

does not increase. 
Armed with this subtraction procedure, we propose the following algorithm for 

causal analysis. 
 

Temporal clustering:   
(T1) visualize scatter state-by-state;  
(T2) isolate bifurcation point;  
(T3) subtract its contribution from the scatter in consequent states;  
(T4) if scatter is still remaining, goto (T1). 

 

Here subtraction of scatter from previous bifurcations reveals new bifurcations hidden 
under the consequences of previous ones.  The remaining scatter monotonously falls 
during the iterations, and the iterations can be stopped when the scatter becomes small 
everywhere or in the regions of interest.  

The geometrical meaning of subtraction procedure: b-b|a=b-(a,b)/(a,a)a is an 
orthogonal projection in the space of data items and the whole sequence is Gram-
Schmidt (GS) orthonormalization procedure applied in the order of appearance of 
bifurcation points ai. The obtained orthonormal basis gi=GS(ai) can be used for 
reconstruction of all data by the formula:  

dy=iΨigi+res, Ψi=(dygi). (23)

The norm of residual is controlled by remaining scatter, which is small according to 
our stop criterion:  

|res|2/Nexp=s⊥
2(y)=s2(y)-iΨi

2/Nexp. (24)

Algorithmically every i-th iteration one computes a scalar field  Ψi describing 
contribution of i-th bifurcation point to scatter of the model and a scalar field si⊥

2(y) 
used for determination of the next bifurcation point  ai+1, or for stop criterion 
si⊥

2(y)<threshold. This requires O(mNexp) floating point operations per iteration.  
Matrix decomposition of the form dy=Ψg is similar to PCA described above, with 

the other meaning of the modes Ψ. Like in PCA, Ψ are scalar fields distributed over 
dynamical model which are common for all experiments. They have the other 
temporal profile than PCA modes, reflecting causal structure of scatter: they start at 
corresponding bifurcation points and propagate forward in time.  Differently from 
PCA modes, they are not orthogonal columnwise, i.e. with respect to scalar product 
over the model. g-coefficients form Nexp*Nmod columnwise  orthonormal matrix. 
Like corresponding matrix in PCA, they define an orthonormal basis in the space of 
experiments, with respect to the scalar product coincident with Pearson's correlator. 
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The scatter associated with design variables can be treated by the same method, if 
one puts data items containing variation of design variables as the first candidates for  
bifurcation points. The corresponding Ψ-modes will represent sensitivities of 
simulation results to variation of parameters. The remaining scatter represents 
indeterministic part of the dependence. The corresponding Ψ-modes are bifurcation 
profiles and their g-coefficients are those hidden variables which govern purely 
stochastic behavior of the model. One can either take hidden variables into account 
when performing reliability analysis, or try to put them under control for reducing 
scatter of the model. 

5 Examples 

5.1 Audi B-Pillar Crash Test 

The model shown on Fig.1 contains 10 thousand nodes, 45 timesteps, 101 
simulations. Two parameters are varied representing thicknesses of two layers 
composing a part of a B-pillar. The purpose is to find a Pareto-optimal combination of 
parameters simultaneously minimizing the total mass of the part and crash intrusion in 
the contact area. To solve this problem, we have applied the methods described in 
Sec.2, namely RBF metamodeling of target criteria for multiobjective optimization 
and PCA for compact representation of bulky data. Based on these methods, our 
interactive optimization tool DesParO supports real-time interpolation of bulky data, 
with response times in the range of milliseconds.  As a result, the user can 
interactively change parameter values and immediately see variations of complete 
simulation result, even on an ordinary laptop computer. 

In more details, Fig.1 shows the optimization problem loaded in the Metamodel 
Explorer, where design variables (thicknesses1, 2) are presented at the left and design 
objectives (intrusion and mass) at the right. First, the user imposes constraints on 
design objectives, trying to minimize intrusion and mass simultaneously, as indicated 
by red ovals on Fig.1 (upper part). As a result, “islands” of available solutions become 
visible along the axes of design variables. Exploration of these islands by moving 
corresponding sliders shows that there are two optimal configurations, related cross-
like, as indicated on Fig.1 (middle). For these configurations, both constraints on 
mass and intrusion are satisfied, while they correspond to physically different 
solutions, distinguished by an auxiliary velocity criterion. For every criterion also its 
tolerance is shown corresponding to 1-sigma confidence limits, as indicated by 
horizontal bars under the corresponding slider as well as +/- errors in the value box. 
This indication allows satisfying constraints with 3-sigma (99.7%) confidence, as 
shown on the images. The Geometry Viewer, shown at the bottom of Fig.1, allows to 
inspect the optimal design in full details.  
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Fig. 1. Audi B-Pillar crash test in DesParO Metamodel Explorer. (top): constraints on intrusion 
and mass are imposed. (center): two optimal designs are found. (bottom): inspection of optimal 
design in DesParO Geometry Viewer. 

E.g. on the two images at the bottom, one can see the difference between small and 
large thickness values resulting in softer or stiffer crash behavior. 

While performing constraint optimization, the user immediately sees how small 
mass solutions disappear when intrusion is minimized. This gives an intuitive feeling 
for the trade-off (Pareto behavior) between optimization objectives. With these 
capabilities and complementary information such as auxiliary criteria and interactive 
interpolation of bulky simulation results, “the” optimal solution, i.e. a single 
representative on the Pareto front, can be selected by a user decision. 
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Fig. 2. Temporal clustering of Ford Taurus crash test using DiffCrash. (upper left): original 
scatter in mm. (upper right – center left – center right): consequent iterations of scatter 
subtraction. (bottom): two major bifurcations found. 

5.2 Ford Taurus Crash Test 

The crash model shown on Fig.2 contains 1 million nodes, 32 timesteps, 25 
simulations. Processing of this model with the temporal clustering algorithm 
described above has been performed on a 16-CPU Intel-Xeon 2.9GHz workstation 
with 24GB main memory. It required 3min per iteration and converged in 4 iterations.  

Crash intrusions in the foot room of the driver and passenger are commonly 
considered as critical safety characteristics of car design. These characteristics possess 
numerical uncertainties, the analysis of which falls in the subject of Sec.3-4. The 
upper left part of Fig.2 shows the scatter measure s(y), in mm, distributed on the 
model. The scatter in the foot room is so large (>10mm) that direct minimization of 
intrusion is impossible. Temporal clustering allows to identify sources of this scatter 
and to subtract relevant contributions. Further images show how the scatter decreases 
in these subtractions. After the 4th iteration the scatter in the foot room reaches a safe 
level (<3mm). Several bifurcation points have been identified and subtracted per 
iteration; in this way the performance of the algorithm has been optimized. The two 
major bifurcations found are shown on the bottom part of Fig.2. They represent 
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buckling phenomena on the left longitudinal rail and a fold on the floor of the vehicle, 
which appear in earlier time steps. In total, 15 bifurcation points have been identified, 
representing statistically independent sources of scatter. The whole scatter in the 
model can be decomposed over the corresponding basis functions Ψ(y). In this way 
the dimensionality of the problem is reduced to 15 variables (g-coefficients) 
completely describing the stochastic behavior of the model. 

6 Conclusions 

We have presented and discussed methods for nonlinear metamodeling of a 
simulation database featuring continuous exploration of simulation results, tolerance 
prediction and rapid interpolation of bulky FEM data. For the purpose of robust 
optimization, the approach has been extended by the methods of reliability and causal 
analysis. The efficiency of the methods has been demonstrated for several application 
cases from automotive industry. 

Further plans include to use the results of causal analysis as a basis for 
modifications of a simulation model for improving its stability. We also plan to 
consider non-linear relationships between stochastic variables. Linear methods such 
as PCA and GS determine only a linear span over principal components, while some 
stochastic variables can become non-linear functions of others. For determination of 
such dependencies the methods of curvilinear component analysis (CCA) can be 
applied. 
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