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Abstract. Mathematical optimization of models based on simulations usually
requires a substantial number of computationally expensive model evaluations
and it is therefore often impractical. An improved surrogate-based optimization
methodology, which addresses these issues, is developed for the optimization of
a representative of the class of one-dimensional marine ecosystem models. Our
technique is based upon a multiplicative response correction technique to cre-
ate a computationally cheap but yet reasonably accurate surrogate from a tem-
porarily coarser discretized physics-based coarse model. The original version of
this methodology was capable of yielding about 84% computational cost sav-
ings when compared to the fine ecosystem model optimization. Here, we demon-
strate that by employing relatively simple modifications, the surrogate model
accuracy and the efficiency of the optimization process can be further improved.
More specifically, for the considered test case, the optimization cost is reduced
three times, i.e., from about 15% to only 5% of the cost of the direct fine model
optimization.

Keywords: Marine Ecosystem Models, Surrogate-based Optimization,
Parameter Optimization, Response Correction, Data Assimilation.

1 Introduction

Numerical simulations nowadays play an important role to simulate the earth’s climate
system and to forecast its future behavior. The processes to be modeled and simulated
are ranging from fluid mechanics (in atmosphere and oceans) to bio- and biochemical
interactions, e.g., in marine or other type of ecosystems. The underlying models are
typically given as time-dependent partial differential or differential algebraic equations
[7,10,12].

Among them, marine ecosystem models describe photosynthesis and other biogeo-
chemical processes in the marine ecosystem that are important, e.g., to compute and
predict the oceanic uptake of carbon dioxide (CO2) as part of the global carbon cycle
[17]. They are typically coupled to ocean circulation models. Since many important
processes are non-linear, the numerical effort to simulate the whole or parts of such a
coupled system with a satisfying accuracy and resolution is quite high.
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There are processes in the climate system where where even without much simplifi-
cation (through e.g. “parametrizations” to reduce the system size, see for example [12])
several quantities or parameters are unknown or very difficult to measure. This is for
example the case for growth and dying rates in marine ecosystem models [5,17], one of
which our work in this paper is based on. Before a transient simulation of a model (e.g.,
used for predictions) is possible, the latter has to be calibrated, i.e., relevant parameters
have to be identified using measurement data (sometimes also known as data assimila-
tion). For this purpose, large-scale optimization methods become crucial for a climate
system forecast.

The aim of parameter optimization is to adjust or identify the model parameters such
that the model response fits given measurement data. The mathematical task thus can
be classified as a least-squares type optimization or inverse problem [2,3,21]. This opti-
mization (or calibration) process requires a substantial number of function and option-
ally sensitivity or even Hessian matrix evaluations. Evaluation times for the high-fidelity
model of several hours, days or even weeks are not uncommon. As a consequence, opti-
mization and control problems are often still beyond the capability of modern numerical
algorithms and computer power. For such problems, where the optimization of coupled
marine ecosystem models is a representative example, development of faster methods
that would reduce the number of expensive simulations necessary to yield a satisfactory
solution becomes critical.

Computationally efficient optimization of expensive simulation models (high-fidelity
or fine models) can be realized using surrogate-based optimization (SBO), see for ex-
ample [1,6,9,15]. The idea of SBO is to exploit a surrogate, a computationally cheap
and yet reasonably accurate representation of the high-fidelity model. The surrogate
replaces the original high-fidelity model in the optimization process in the sense of pro-
viding predictions of the model optimum. Also, it is updated using the high-fidelity
model data accumulated during the process. The prediction-updating scheme is nor-
mally iterated in order to refine the search and to locate the high-fidelity model opti-
mum as precisely as possible. One of possible ways of creating the surrogate, our work
in this paper is based on, is to utilize a physics-based low-fidelity (or coarse) model. The
development and use of low-fidelity models obtained by, e.g., coarser discretizations (in
time and/or space) or by parametrizations is common in climate research [12], whereas
their applications for surrogate-based parameter optimization in this area is new.

In [14], a surrogate-based methodology has been developed for the optimization of
climate model parameters. As a case study, a selected representative of the class of
one-dimensional marine ecosystem models was considered. Since biochemistry mainly
happens locally in space and since the complexity of the biogeochemical processes
included in this specific model is high, this model serves as a good test example for the
applicability of surrogate-based optimization approaches. The technique described in
[14] is based on a multiplicative response correction of a temporally coarser discretized
physics-based low-fidelity model. It has been successfully applied and demonstrated to
yield substantial computational cost savings of the optimization process when compared
to a direct optimization of the high-fidelity model.

In this paper, we demonstrate that by employing simple modifications of the original
response correction scheme, one can improve the surrogate’s accuracy, as well as further
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reduce the computational cost of the optimization process. We verify our approach by
using synthetic target data and by comparing the results of SBO with the improved
surrogate to those obtained with the original one. The optimization cost is reduced three
times when compared to previous results, i.e., from about 15% to only 5% of the cost of
the direct high-fidelity ecosystem model optimization (used as a benchmark method).
The corresponding time savings are increased to from 84% to 95%.

It should be emphasized that the proposed approach does not rely on high-fidelity
model sensitivity data. As a consequence, the first-order consistency condition between
the surrogate and the high-fidelity model (i.e., agreement of their derivatives) is not
fully satisfied. Nevertheless, the combination of the knowledge about the marine system
under consideration embedded in the low-fidelity model and the response correction is
sufficient to obtain a quality solution in terms of good model calibration, i.e., its match
with the target output.

The paper is organized as follows. The high-fidelity ecosystem model, considered
here as a test problem, as well as the low-fidelity counterpart that we use as a basis to
construct the surrogate model, are described in Section 2. The optimization problem
under consideration is formulated in Section 3. The original and improved response
correction schemes and the comparison of the corresponding surrogate model qualities
are discussed in Section 4. Numerical results for an illustrative SBO run are provided
in Section 5. Section 6 concludes the paper.

2 Model Description

The considered example for the class of one-dimensional marine ecosystem models
simulates the interaction of dissolved inorganic nitrogen, phytoplankton, zooplankton
and detritus (dead material), thus is of so-called NPZD type [13]. The model uses pre-
computed ocean circulation and temperature data from an ocean model (in a sometimes
called off-line mode), i.e., no feedback by the biogeochemistry on the circulation and
temperature is modeled, see again [13]. The original high-fidelity (fine) model and its
low-fidelity (coarse) counterpart which we use as a basis to construct a surrogate for
further use in the optimization process are briefly described below.

2.1 The High-Fidelity Model

The NPZD model simulates one water column at a given horizontal position. This
is motivated by the fact that there have been special time series studies at fixed loca-
tions. Clearly, the computational effort in a one-dimensional simulation is significantly
smaller than in the three-dimensional case. However, as pointed out in the introduction,
the model – from point of view of the complexity of the included processes – serves as
a good test example for the applicability of SBO approaches.

In the NPZD model, the concentrations (in mmol N m−3) of dissolved inorganic
nitrogen N , phytoplankton P , zooplankton Z , and detritus (i.e., dead material) D are
summarized in the vector y = (y(l))l=N,P,Z,D and described by the following coupled
PDE system
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in (−H, 0)× (0, T ), with additional appropriate initial values. Here, z denotes the only
remaining, vertical spatial coordinate, and H the depth of the water column. The terms
Q(l) are the biogeochemical coupling (or source-minus-sink) terms for the four tracers
and u = (u1, . . . , un) is the vector of unknown physical and biological parameters,
with n = 12 for this specific model. The sinking term (with the sinking velocity u1) is
only apparent in the equation for detritus. In the one-dimensional model no advection
term is used, since a reduction to vertical advection would make no sense. Thus, the
circulation data (taken from an ocean model) are the turbulent mixing coefficient κ =
κ(z, t) and the temperature Θ = Θ(z, t), which goes into the nonlinear coupling terms
Q(l) but is omitted in the notation.

The parameters u to be optimized are, for example, growth and dying rates of the
tracers and thus appear in the nonlinear coupling terms Q(l)

l=N,P,Z,D in (1). For the sake
of brevity and for the purpose of this paper we omit the explicit formulation of the
coupling terms as well as the explicit physical meaning of the involved parameter. For
details we refer the reader to [13,16].

2.2 Numerical Solution

The continuous model (1) is discretized and solved using an operator splitting method
[11], an explicit Euler time stepping scheme for the nonlinear coupling terms Q and the
sinking term while using an implicit scheme for the diffusion term. For further details
we refer the reader to [13,14].

More explicitly, in every discrete time step, at first the nonlinear coupling operators
Qj (that depend on tj directly and/or via the temperature field Θ) are computed at every
spatial grid point and integrated by four explicit Euler steps with step size τ/4. Then,
an explicit Euler step with full step size τ is performed for the sinking term. Finally, an
implicit Euler step for the diffusion operator, again with full step size τ , is applied.

In the original model, the time step τ is chosen as one hour. By choosing this time
step, all relevant processes are captured and further decrease of the time step does not
improve the accuracy of the model. The model with this particular time step will be
referred to as the high-fidelity or fine one in the following.

We furthermore denote by yj ≈ y(·, tj) the discrete fine model solution of the con-
tinuos model (1) in time step j (containing all tracers N,P, Z,D) given as

yj = (yji)i=1,...,I , j = 1, . . . ,Mf , y ∈ R
MfI , I = nznt, (2)

where I denotes the number of spatial discrete points nz times the number of tracers
nt, which is four for the considered model, and where Mf denotes the total number of
discrete time steps, given the discrete time step τf . More specifically, the model consists
of nz = 66 vertical layers and is integrated over totally Mf = 8760 time steps/year ×
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5 years = 43800 discrete time step. We will furthermore use the subscript f to distin-
guish the relevant fine model variables, which read yf , τf and Mf , from those we will
introduce for the coarse model, respectively.

2.3 The Low-Fidelity Model

Marine ecosystem model, are typically given as coupled time-dependent partial differ-
ential equations, compare [5,17]. One straightforward way to introduce a low-fidelity
(or coarse) model for these models is to reduce the spatial and/or temporal resolution,
whereas, in this paper, we exploit the latter one.

The coarse model, which is a less accurate but computationally cheap representation
of yf is obtained by using a coarser time discretization with a discrete time step τc
given as

τc = βτf , (3)

with a coarsening factor β ∈ N \ {0, 1}, while keeping the spatial discretization fixed.
The state variable for this coarser discretized model will be denoted by yc, the corre-
sponding number of discrete time steps by Mc = Mf/β, i.e., we have

(yc)j = ((yc)ji)i=1,...,I , j = 1, . . . ,Mc, yc ∈ R
McI , I = nznt . (4)

Note that the parameters u for this model are the same as for the fine one.
Clearly, the choice of the temporal discretization, or equivalently, the coarsening

factor β, determines the quality of the coarse model and of a surrogate if based upon
the latter one. Moreover, both the computational cost, the performance and quality of
the solution obtained by a SBO process might be affected.

Altogether, we seek for a reasonable trade-off between the accuracy and speed of the
coarse model. From numerical experiments, a value of β = 40 turned out be a reason-
able choice, as was shown in [14]. Numerical results presented in Section 4 demonstrate
that such a coarse model leads to a reliable approximation of the original fine ecosys-
tem model when a response correction technique as described in this paper is utilized.
Furthermore, it was observed that, for this specific choice of β, while additionally re-
stricting the parameter u1, i.e., the sinking velocity, using an appropriate upper bound,
the resulting model response does not show any numerical instabilities.

3 Optimization Problem

The task of parameter optimization in climate science typically is to minimize a least-
squares type cost function measuring the misfit between the discrete model output y =
y(u) and given observational data yd [2,21]. In most cases, the problem is constrained
by parameter bounds. The optimization problem can generally be written as

min
u∈Uad

J(y(u) ), (5)

where

J(y ) := ||y − yd ||2,
Uad := {u ∈ R

n : bl ≤ u ≤ bu},bl,bu ∈ R
n, bl < bu .

(6)
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The inequalities in the definition of the set Uad of admissible parameters are meant
component-wise. The functional J may additionally include a regularization term for
the parameters. However, from numerical experiments, it turned out that such a term is
not necessary to ensure a well performing optimization process.

Additional constraints on the state variable y might be necessary, e.g., to ensure non-
negativity of the temperature or of the concentrations of biogeochemical quantities. In
our example model, however, by using appropriate parameter bounds bl and bu, non-
negativity of the state variables can be ensured. This was already observed and used in
[16].

4 Surrogate-Based Optimization

For many nonlinear optimization problems, a high computational cost of evaluating
the objective function and its sensitivity, and, in some cases, the lack of sensitivity in-
formation, is a major bottleneck. The need for decreasing the computational cost of the
optimization process is especially important while handling complex three-dimensional
models.

Surrogate-based optimization [1,6,9,15] is a methodology that addresses these issues
by replacing the original high-fidelity or fine model y by a surrogate, in the following
denoted by s, a computationally cheap and yet reasonably accurate representation of y.

Surrogates can be created by approximating sampled fine model data (functional
surrogates). Popular techniques include polynomial regression, kriging, artificial neural
networks and support vector regression [15,18,19]. Another possibility, exploited in this
work, is to construct the surrogate model through appropriate correction/alignment of a
low-fidelity or coarse model (physics-based surrogates) [20].

Physics-based surrogates inherit physical characteristics of the original fine model
so that only a few fine model data is necessary to ensure their good alignment with the
fine model. Moreover, generalization capability of the physics-based models is typi-
cally much better than for functional ones. As a results, SBO schemes working with
this type of surrogates normally require small number of fine model evaluations to
yield a satisfactory solution. On the other hand, their transfer to other applications is
less straightforward since the underlying coarse model and chosen correction approach
is rather problem specific. The specific correction technique exploited in this work is
recalled in Section 4.1 (see also [14]).

The surrogate model is updated at each iteration k of the optimization algorithm,
typically using available fine model data from the current and/or also from previous
iterates. The next iterate, uk+1, is obtained by optimizing the surrogate sk, i.e.,

uk+1 = argmin
u∈Uad

J ( sk(u) ), (7)

where, again Uad denotes the set of admissible parameters. The updated surrogate sk+1

is determined by re-aligning the coarse model at uk+1 and optimized again as in (7).
The process of aligning the coarse model to obtain the surrogate and subsequent opti-
mization of this surrogate is repeated until a user-defined termination condition is satis-
fied, which can be based on certain convergence criteria, assumed level of cost function
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value or a specific number of iterations (particularly if the computational budget of the
optimization process is limited).

If the surrogate sk satisfies so-called zero-order and first-order consistency condi-
tions with the fine model at uk, i.e.,

sk(uk) = yf (uk), s′k(uk) = y′
f (uk), (8)

with y′ and s′k(uk) denote the derivatives of the responses, the surrogate-based scheme
(7) is provable convergent to at least a local optimum of (5) under mild conditions
regarding the coarse and fine model smoothness, and provided that the surrogate opti-
mization scheme (7) is enhanced by the trust-region (TR) safeguard, i.e.,

uk+1 = argmin
u∈Uad,

‖u−uk ‖≤ δk

J ( sk(u) ), (9)

with δk being the trust-region radius updated according to the TR rules. We refer the
reader to e.g. [4,8] for more details.

4.1 Surrogate Model Using Basic Multiplicative Response Correction

It has been found in [14] that a natural way of constructing the surrogate would be multi-
plicative response correction. This approach is motivated by the fact that the qualitative
relation of the fine and coarse model response is rather well preserved (at least locally)
while moving from one parameter vector to another. As a result, a multiplicative correc-
tion allows constructing a surrogate model with a good generalization capability. The
technique is briefly recalled below.

The surrogate response sk(u), at iteration k of the optimization process, is generated
by multiplicative correction of the smoothed coarse model response, denoted by ỹc,
which we briefly formulate as

s̄k(u) := ak ỹc(u),

ak :=
ỹβ
f (uk)

ỹc(uk)

⎫⎪⎪⎬
⎪⎪⎭

k = 1, 2, . . .

β = Mf/Mc

(10)

where the operations in (10) are meant point-wise and where ak denote the correction
factors which are included in the vector ak . They are defined as the point-wise divi-
sion of the smoothed and down-sampled fine model response, denoted by ỹβ

f , by the
smoothed coarse model response at the point uk.

It was observed that smoothing allows us to remove the numerical noise from the
coarse model response and identify the main characteristics of the traces of interest (see
[14] for details). The fine model response is smoothed accordingly in the formulation
(10).

Down-sampling was necessary to make the fine model response commensurable
with the corresponding response of the coarse model. The down-sampled fine model
response yβ

f is simply given as

yβji := yβj,i, j = 1, . . . ,Mc, i = 1, . . . , I . (11)
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Fig. 1. Surrogate’s, fine (down-sampled, smoothed) and coarse (smoothed) model responses
sk, ỹ

β
f and ỹc for the tracer detritus at the uppermost depth layer at two points uk and corre-

sponding perturbation ūk , illustrating the generalization capability of the surrogate

By definition, the surrogate model is zero-order consistent with the (down-sampled and
smoothed) fine model in the point uk, i.e.,

sk(uk) = ỹβ
f (uk) . (12)

As we do not use sensitivity information from the fine model, the first-order consistency
condition cannot be satisfied exactly. Nevertheless, as was shown in [14], this surrogate
model exhibits quite good generalization capability, which means that the surrogate
provides a reasonable approximation of the fine one in the neighborhood of uk.

Figure 1 shows the surrogate’s, fine (down-sampled) and coarse model responses
sk, ỹ

β
f and ỹc at two different points, uk and ūk. The surrogate model is established at

uk and, therefore, its response is perfectly aligned with the one of the fine model at uk,
whereas its prediction is still reasonably accurate at ūk.

Note that only the selected tracers for a chosen section in the whole time interval
and at one selected depth layer are shown. The total dimension of the model response
is too large to present a full response here. We emphasize that shown responses are
representative for the overall qualitative behavior the other tracers, time sections and
depth layers.

4.2 Difficulties of Basic Surrogate Formulation

Occasionally, when using the surrogate given in (10), there might occur a situation
where the coarse model response is close to zero (and maybe even negative due to
approximation errors) and a few magnitudes smaller than the fine one, which leads to
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Fig. 2. Responses as in Figure 1 for a different time interval using the basic surrogate formulation
(10) (top) and exploiting the modifications (13) of the response correction scheme (bottom)

large (possibly negative) correction factors ak. While such a correction ensures zero-
order consistency at the point where it was established (i.e., uk), it may lead to (locally)
poor approximation in the vicinity of uk.

Figures 2 and 3 (top) illustrate these issues by showing the smoothed surrogate’s,
fine (down-sampled) and coarse model responses sk, ỹ

β
f and ỹc for the state detritus

at one illustrative time interval and depth layer. Shown are the model responses at the
same points uk and its neighborhood ūk ∈ Bδ(uk) as in Figure 1.

It should be pointed out that the overall shape of the surrogate’s response still pro-
vides a reasonable approximation of the fine model one (and more accurate than the
corresponding coarse model response) despite of the distortion illustrated in Figures 2
and 3. This is supported by the fact that even without addressing these issues, the SBO
was able to yield satisfactory results, not only with respect to the quality of the final so-
lution, but, most importantly, in terms of the low computational cost of the optimization
process. This was already demonstrated in [14].

4.3 Improved Response Correction Scheme

The response distortion described in the previous section is problematic towards the
end of the surrogate-based optimization run when a higher accuracy of the surrogate is
required to locate the fine model optimum more accurately. The ”‘spikes”’ appearing
in the response due to large values of the correction term can be viewed, in a way, as
a numerical noise that slows down the algorithm convergence and makes the optimum
more difficult to locate.

A few simple means described below can address these issues and further improve
the accuracy of the surrogate’s response as well as the performance of the optimiza-
tion algorithm. We introduce non-negative bounds for the coarse model response (the
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Fig. 3. Responses as in Figure 2, but for yet another section within the whole time interval. Again,
after employing the improvements in (13), the positive and negative peaks are removed (bottom).

negative response is non-physical and is a result of numerical errors due to using large
time steps in the numerical solution of the coarse model) and an upper bound aub for
the correction factors. We furthermore restrict the correction factors to one in case the
fine and coarse model responses are below a certain threshold ε which should be of the
order of the discretization error below which the responses can be treated as zero.

More specifically, the following modifications of the model outputs and the scaling
factors are performed for each iteration k

(i) yc =

{
0; if yc ≤ 0

yc; else
, (ii) ak =

{
aub; if ak ≥ aub

ak; else
,

(iii) ak = 1 if (ỹβ
f ≤ ε and ỹc ≤ ε),

(13)

where the operations are again meant point-wise and where (i) is applied before smooth-
ing. From numerical experiments, aub = 10 turned out to be a reasonable choice and
we furthermore consider ε = 10−4.

Figure 2 (bottom) shows the surrogate’s, fine (down-sampled) and coarse model re-
sponse for the same illustrative tracer, time interval and depth layer, however, while
employing the improvements given in (13). It can be observed that the positive and
negative peaks present in the surrogate responses shown in Figure 2 (top) are removed
after applying (13). As additional evidence, Figure 3 (bottom) shows the same model
responses but for a different section within the whole time interval.

The numerical results presented in Section 5 demonstrate that this enhanced response
correction scheme allows us to further improve the computational efficiency of the SBO.
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5 Numerical Results

For all optimization runs, we use the MATLAB1 function fmincon, exploiting the
active-set algorithm. The following cost functions

J(z) := ‖ z− yd ‖2 =

I∑
i=1

Mc∑
j=1

(zji − (yd)ji)
2
, (14)

J̃(z) := ‖ z− ỹd ‖2 =

I∑
i=1

Mc∑
j=1

(zji − (ỹd)ji)
2
, (15)

were the target data – as a test case – is given by model generated, attainable data as

yd := yβ
f (ud) .

For the optimization runs presented in this paper we employ the following cost func-
tions: for the fine model optimization, we use (14) with z = yβ

f , for the coarse model
optimization, (15) with z = ỹc and for the SBO, (15) with z = sk, whereas (14)
was used in the termination condition and to compare the results and where the down-
sampled fine model response yβ

f is defined by (11). Sampling was necessary to yield
a comparable fine model optimization run while in (15) the smoothed target data is
considered accordingly, since the coarse model and thus also the surrogate’s response
are smoothed. Note that the cost functions we employ are not normalized by the total
number of discrete model points. The dimension of the responses is of the order of
105. Clearly, this has to be taken into account for presented cost function values in the
following.

We perform an exemplary direct fine and coarse model optimization as well as a SBO
based on the surrogate in (10) exploiting the original and improved response correction
scheme (cf. Sections 4.1, 4.3). In the following, the solutions of the four optimization
runs are compared through visual inspection of the (down-sampled) fine model response
yβ
f and the corresponding cost function value J(yβ

f ) (cf. (14)) at the respective optima.
The optimization cost is measured in equivalent fine model evaluations which are

determined taking into account the coarsening factor β. More specifically, one evalu-
ation of the coarse model with a coarsening factor β is equivalent to 1/β evaluations
of the fine model. On the other hand, the cost of one iteration of the SBO (in terms of
equivalent fine model evaluations) equals to the number of coarse model evaluations
necessary to optimize the surrogate model divided by this factor β, and increased by
the cost for the response correction. Recall that the specific correction (10) we use in
this paper requires one fine model evaluation only.

Figure 4 shows the value of the cost function J(yβ
f ) versus the equivalent number of

fine model evaluations for the SBO algorithm using the surrogate model exploiting the
original and the improved correction scheme, as well as for the fine and coarse model
optimization. Points 1 and 3 in Figure 4 indicate those solutions obtained in the SBO

1 MATLAB is a registered trademark of The MathWorks, Inc.,
http://www.mathworks.com

http://www.mathworks.com
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Fig. 4. Values of the cost function J versus the optimization cost measured in equivalent number
of fine model evaluations for an exemplary SBO run exploiting the original and the improved
correction scheme, as well as for a fine and coarse model optimization run. Points 1 and 3 cor-
respond to a termination condition of J ≤ 50 (upper horizontal line), ensuring good visual
agreement between the fine model output and the target. Solution at point 2 in the improved SBO
is significantly more accurate and obtained at the same cost as the one at point 1. Overall, SBO
converges to a cost function value of to J ≈ 10−1 (lower horizontal line).

runs that correspond to a termination condition of J ≤ 50. This particular value was
selected as it ensures good visual agreement between the fine model output and the
target. Point 2 denotes the solution in the improved SBO run which could be obtained
at the same optimization cost as the one at point 1 in the original SBO run.

Figure 5 shows the fine model response at the solutions u∗
s1 and u∗

s2 (corresponding
to points 1 and 2 in Figure 4) obtained using the SBO algorithm with the original and
improved response correction scheme (cf. Sections 4.1 and 4.3) as well the responses
at the solutions u∗

f ,u
∗
c of a direct fine and coarse model optimization. For illustration,

responses for two representative tracers and for a selected depth level and time interval
are shown. Corresponding parameter values are provided in Table 1.

It can be observed that coarse model optimization yields a solution far away from the
target and a rather inaccurate parameter match (cf. Table 1), whereas the optimization
cost of only 11 equivalent fine model evaluations is very low. However, results indicate
that the accuracy of the coarse model is not sufficient to use this very model directly in
an optimization.



Marine Ecosystem Model Calibration through Enhanced SBO 205

Fig. 5. Synthetic target data yd at optimal parameters ud and fine model response yβ
f (down-

sampled) for two illustrative tracers and at the uppermost depth layer for the solutions u∗
f ,u

∗
c ,u

∗
s1

and u∗
s2 of a direct fine and coarse model optimization as well as of a SBO run exploiting the

original and the improved correction scheme. Solutions u∗
s1 and u∗

s2 correspond to points 1 and
2 in Figure 4

On the other hand, direct fine model optimization yields a solution u∗
f with an almost

perfect fit of the target data (cf. Figure 5) and of the optimal parameters ud (cf. Table
1), corresponding to a very low cost function of J ≈ ·10−2. However, the optimization
cost is substantially higher: about 980 fine model evaluations.

In [14], we demonstrated that in a exemplary SBO run based on the original response
correction scheme, a reasonably accurate solution u∗

s1 could be obtained at the cost of
approximately 60 equivalent fine model evaluations only (point 1 in Figure 4). This
resulted in a significant reduction of the total optimization cost of about 84% when
compared to the direct fine model optimization (correspondingly, 375 evaluations were
required in the fine model optimization to reach this cost function value, cf. Figure 4).

Exploiting the improved scheme, a similarly accurate solution – both in terms of
parameter match and optimal fit of the target data – can be obtained at a remarkably
lower cost of only 17 equivalent fine model evaluations (point 3 in Figure 4). This is
over three times less than for the original response correction scheme corresponding to
a reduction of the total optimization cost of about 96%. Specific parameter values and
model responses of this solution are omitted here, since they are similar to those of the
original solution u∗

s1.
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Table 1. Solutions u∗
c ,u

∗
f ,u

∗
s1 and u∗

s2 of an illustrative coarse, fine model optimization and of
a SBO run, exploiting the original and the improved correction scheme. Solutions u∗

s1 and u∗
s2

correspond to points 1 and 2 in Figure 4.

iterate u1 u2 . . . u12

SBO (original and improved scheme)

u∗
s1 0.705 0.626 0.044 0.015 0.060 0.937 1.908 0.016 0.147 0.020 0.629 4.237

u∗
s2 0.738 0.604 0.028 0.010 0.036 1.024 1.678 0.010 0.206 0.020 0.541 4.318

Coarse model optimization

u∗
c 0.300 1.066 0.036 0.065 0.064 0.025 0.040 0.065 0.010 0.012 0.730 3.448

Fine model optimization

u∗
f 0.747 0.596 0.025 0.010 0.030 0.999 2.046 0.010 0.203 0.020 0.493 4.310

ud 0.750 0.600 0.025 0.010 0.030 1.000 2.000 0.010 0.205 0.020 0.500 4.320

On the other hand, when exploiting the improved correction scheme, a solution u∗
s2

(point 2 in Figure 4) with a significantly higher accuracy – again both in terms of pa-
rameter match and optimal fit of the target data – can be obtained (cf. Figure 5 and
Table 1) at the same cost as were required for the original one u∗

s1, i.e., 60 equivalent
fine model evaluations.

It should be emphasized that the surrogate model utilized in this work only satisfies
zero-order consistency with the fine model. Still, as demonstrated in this section, the
performance of our surrogate-based optimization process is satisfactory, particularly in
terms of obtaining a good match between the model response and a given target output.
Improved matching between the optimized model parameters and those corresponding
to the target output could be obtained by executing larger number of SBO iterations
(cf. Figure 4), which is mostly because of low sensitivity of the model with respect
to some of the parameters. Also, the use of derivative information together with the
trust-region convergence safeguards [4,8] would bring further improvement in terms of
matching accuracy. Clearly, the trade-offs between the accuracy of the solution and the
extra computational overhead related to sensitivity calculation has to be investigated.
The aforementioned issues will be the subject of future research.

6 Conclusions

Parameter identification in climate models can be computationally very expensive or
even beyond the capabilities of modern computer power. Before a transient simulation
of a model (e.g., used for predictions) is possible, the latter has to be calibrated, i.e.,
relevant parameters have to be identified using measurement data. This is the point
where large-scale optimization methods become crucial for a climate system forecast.

Using the high-fidelity (or fine) model under consideration in conventional opti-
mization algorithms that require large number of model evaluations is often infeasible.
Therefore, the development of faster methods that aim at reducing the optimization cost,
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such as surrogate-based optimization (SBO) techniques, are highly desirable. The idea
of SBO is to replace the high-fidelity model in the optimization run by a surrogate, its
computationally cheap and yet reasonably accurate representation.

As a case study, we have investigated parameter optimization of a representative of
the class of one-dimensional marine ecosystem models. As demonstrated in our previ-
ous work, a simple multiplicative response correction applied to a temporally coarser
discretized physics-based low-fidelity (coarse) model of the system of interest is suffi-
cient to create a reliable surrogate of the original, high-fidelity ecosystem model, which
can be used as a prediction tool to calibrate the latter. This approach allowed us to yield
remarkably good results, both in terms of the quality of the final solution and, most
importantly, in terms of the relative reduction in the total optimization cost, about 84%
when compared to the direct fine model optimization.

In this paper, we demonstrated that the correction scheme can be enhanced to alle-
viate the difficulties of its original version, which results in further improvement of the
surrogate model accuracy and overall performance of the optimization algorithm utiliz-
ing this surrogate. The optimization cost was reduced by a factor of three (from 16% to
5% of the direct high-fidelity model optimization optimization cost), which corresponds
to the cost savings of 95%.

Improvements of the present approach by utilizing additionally sensitivity informa-
tion of the low- and the high-fidelity model in the alignment of the low-fidelity model
as well as trust-region convergence safeguards applied to enhance the optimization pro-
cess are expected to further improve the robustness of the algorithm and the accuracy
of the solution. The trade-offs between the accuracy and extra costs due too sensitivity
evaluation will have to be inspected.
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