
5Generalized Linear Models

Linear models are well suited for regression analyses when the response variable
is continuous and at least approximately normal. In some cases, an appropriate
transformation is needed to ensure approximate normality of the response. In
addition, the expectation of the response is assumed to be a linear combination of
covariates. Again, these covariates may be transformed before being included in the
linear predictor. However, in many applications the response is not a continuous
variable, but rather binary, categorical, or a count variable as in the following
examples:
• Patent opposition (yes/no), see Sect. 2.3 (p. 33).
• Creditworthiness of a client (yes/no).
• Benign or malignant tumor.
• Person is unemployed, part-time employed, or fully employed.
• Tree is very damaged, averagely or lightly damaged, or not damaged at all.
• Number of cases of illness, insurance claims, or problematic credits within a

certain time frame.
Moreover, we are not always able to perform a satisfactory regression analysis for
certain types of continuous response variables using a linear model. This is the case
when dealing with a variable whose distribution is considerably skewed, as, for
example, a life span, the amount of damages, or income. Even though data with a
skewed distribution can sometimes be transformed into one with an approximately
symmetric distribution, it is often advantageous to apply, for example, a gamma
regression model to the original response variable.

Within a broad framework, generalized linear models (GLMs) unify many
regression approaches with response variables that do not necessarily follow a
normal distribution, including, for example, the logit model for binary response
variables (Sect. 2.3) as well as the classical linear model with normally distributed
errors. GLMs still rely on the assumption that the effect of covariates can be
modeled through a linear predictor, similar as in logit and linear models. We
start our description of GLMs with regression models for binary responses in
Sect. 5.1. Next, Sect. 5.2 describes regression models for count data, especially
Poisson regression. Section 5.3 is dedicated to models for nonnegative, continuous
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270 5 Generalized Linear Models

responses. Along with the introduction of suitable models, we discuss statistical
inference relying on the likelihood principle. Section 5.4 offers a general unified dis-
cussion of GLMs and likelihood inference, while Sect. 5.5 outlines quasi-likelihood
inference. Section 5.6 considers Bayesian GLMs. Finally, Sect. 5.7 transfers the
boosting idea outlined for linear models in Sect. 4.3 to GLMs.

5.1 Binary Regression

5.1.1 Binary Regression Models

As in the previous chapters, we assume that (ungrouped) data on n objects or
individuals are given in the form .yi ; xi1; : : : ; xik/, i D 1; : : : ; n, with the binary
response y coded by 0 and 1 and covariates denoted by x1; : : : ; xk . Similar to
linear and logit models in Example 2.8, x1; : : : ; xk may have been derived from an
appropriate transformation or coding of the original covariates. The main goal of a
binary regression analysis is then to model and estimate the effects of the covariates
on the (conditional) probability

�i D P.yi D 1/ D E.yi /;

for the outcome yi D 1 and given values of the covariates xi1; : : : ; xik . In this
specification, the response variables are assumed to be (conditionally) independent.

We already discussed the disadvantages of the linear probability model

�i D ˇ0 C ˇ1xi1 C : : : C ˇkxik

for binary response variables in Sect. 2.3. In particular, the linear predictor

�i D ˇ0 C ˇ1xi1 C : : : C ˇkxik D x0
i ˇ;

with ˇ = .ˇ0; ˇ1; : : : ; ˇk/0 and xi = .1; xi1; : : : ; xik/0 must lie in the interval Œ0; 1�

for all vectors x. This requires restrictions on the parameters ˇ that are difficult
to handle in the estimation process. Thus, all popular binary regression models
combine the probability �i with the linear predictor �i through a relation of the
form

�i D h.�i / D h.ˇ0 C ˇ1xi1 C : : : C ˇkxik/; (5.1)

where h is a strictly monotonically increasing cumulative distribution function on
the real line. This ensures h.�/ 2 Œ0; 1� and Eq. (5.1) can always be expressed in the
form

�i D g.�i /;

with the inverse function g D h�1. Within the framework of GLMs, h is called the
response function and g D h�1 is known as the link function. Logit and probit
models are the most widely used binary regression models.
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Logit Model
The logit model presented in Sect. 2.3 results from the choice of the logistic response
function

� D h.�/ D exp.�/

1 C exp.�/
(5.2)

or (equivalently) the logit link function

g.�/ D log
� �

1 � �

�
D � D ˇ0 C ˇ1x1 C : : : C ˇkxk: (5.3)

This yields a linear model for the logarithmic odds (log-odds) log.�=.1 � �//.
Transformation with the exponential function gives

�

1 � �
D exp.ˇ0/ exp.ˇ1x1/ � : : : � exp.ˇkxk/; (5.4)

implying that the effects of the covariates affect the odds �=.1 � �/ in an
exponential-multiplicative form; see Sect. 2.3 for this interpretation. Another
interpretation—which is also available for the two models introduced in the
following—results from the connection to latent linear models; see p. 274 for
details.

Probit Model
For h, we use the standard normal cumulative distribution function ˚ , i.e.,

� D ˚.�/ D ˚.x0ˇ/: (5.5)

A (minor) disadvantage is the required numerical evaluation of ˚ in the maximum
likelihood estimation of the parameter ˇ.

Complementary Log–Log Model
The complementary log–log model uses the extreme minimum-value cumulative
distribution function

h.�/ D 1 � exp.� exp.�// (5.6)

as response function, with the inverse

g.�/ D log.� log.1 � �//

as link function. In comparison to logit and probit models, this model is useful in
more specific applications, for example, when modeling discrete duration times; see,
e.g., Fahrmeir and Tutz (2001) for an introduction to discrete time duration models.

Figure 5.1 (left) shows the response functions of the three binary regression
models, i.e., the logistic distribution function (5.2), the standard normal distribution
function (5.5), and the extreme-value distribution function (5.6).

At first glance, the three models seem very different from each other: Even
though the response function of logit and probit models are both symmetric around
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Fig. 5.1 Response functions (left) and adjusted response functions (right) in binary regression
models: logit model (—), probit model (- - -), complementary log–log model (� � � )

zero, the logistic distribution function approaches 0 or 1 much slower for � ! �1
or � ! C1, respectively. In contrast, the response function of the complementary
log–log model is asymmetric, following a similar pattern as the logit response
function for small �, but showing a faster approach towards 1 as � ! C1. Thus,
statistical analyses involving the three models might be expected to lead to very
different results. However, for an adequate comparison of the models, we have to
keep in mind that we could have used the more general cumulative distribution
function h of a N.0; �2/ distribution with any choice of variance �2 6D 1, rather
than the standard normal cumulative distribution function of the N.0; 1/ distribution
that defines the probit model. Standardizing h yields the relation

�.�/ D h.x0ˇ/ D ˚.x0ˇ=�/ D ˚.x0 Q̌/;

where Q̌ D ˇ=� . Hence, even though the two response functions ˚ (with �2 D 1)
and h (with �2 6D 1, e.g. �2 D 4) differ from each other, the resulting model for
the probability �.�/ based on h.�/ with � D x0ˇ is equivalent to a probit model
with the rescaled parameters Q̌ D ˇ=� . In this sense, the requirement of �2 D 1

in the probit model is arbitrary and we might just as well have assumed �2 D 4.
We also obtain the same equivalence when deriving binary regression models from
latent linear models; see p. 274.

For a fair comparison of logit and probit models, we need to put each on equal
footing. Since the logistic distribution function has variance �2=3 with the circular
constant � D 3:141593 : : :, we need to compare it to a rescaled normal distribution
function whose variance is adjusted to �2 D �2=3. Figure 5.1 (right) shows the
similarity of the logit and the adjusted probit response function.

Statistical analyses with logit and probit models therefore lead to similar
estimated probabilities. The scaling Q̌ D ˇ=� or ˇ D Q̌ � will automatically be
taken into account in the estimation process. Thus, the estimated coefficients
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5.1 Binary Regression Models

Data

The binary response variables yi are coded 0=1 and are (conditionally)
independent given the covariates xi1, : : : , xik .

Models

The probability �i D P.yi D 1/ D E.yi / and the linear predictor

�i D ˇ0 C ˇ1xi1 C : : : C ˇkxik D x0
i ˇ

are connected by the response function h.�/ 2 Œ0; 1� via

�i D h.�i /:

Logit model

� D exp.�/

1 C exp.�/
” log

�

1 � �
D �.

Probit model

� D ˚.�/ ” ˚�1.�/ D �.

Complementary log–log model

� D 1 � exp.� exp.�// ” log.� log.1 � �// D �.

Q̌
1; Q̌

2; : : : of a logit model differ from the corresponding values ˇ1; ˇ2; : : : of
a probit model (with �2 D 1) approximately by the factor � D �=

p
3 � 1:814,

yet the estimated probabilities �.�/ are very similar. Since the ratios Q̌
1= Q̌

2 D
ˇ1=ˇ2 etc. are independent of � , therefore we should not interpret the absolute
(estimated) coefficients, but rather the ratios ˇ1=ˇ2 etc., as illustrated in Example 5.1
(p. 275).

Similar considerations apply to the comparison with the complementary log–log
model. Since the extreme-value distribution has variance �2 D �2=6 and expectation
�0.5772, the response function has to be adjusted to the variance �2 D �2=3

and expectation 0 for a comparison with the logistic distribution function. This
adjustment does have additional impact on the (estimated) intercept ˇ0. Figure 5.1
(right) shows the corresponding adjusted response function, which follows a similar
form as those of the logit and probit function for small �, but also shows clear
differences for larger �. Accordingly, the results of statistical analyses obtained with
the complementary log–log model differ more substantially from those obtained by
logit or probit models.
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Binary Models and Latent Linear Models
Binary regression models can be derived by considering a latent (unobserved)
continuous response variable, which is connected with the observed binary response
via a threshold mechanism. Suppose we are investigating the decision of some
individuals i D 1; : : : ; n when choosing between two alternatives y D 0 and y D 1.
Typical examples include decision problems, e.g., related to buying a certain product
or not. We further assume that individuals assign utilities ui0 and ui1 to each of the
two alternatives. The alternative that maximizes the utility is chosen, i.e., yi D 1 if
ui1 > ui0 and yi D 0 if ui1 � ui0.

Now suppose a researcher investigates the choice problem. However, one is
not able to observe the latent utilities behind the decision, but rather observes the
binary decisions yi together with a number of explanatory variables xi1; : : : ; xik ,
which may influence the choice between the two alternatives. Assuming that the
unobserved utilities can be additively decomposed and follow a linear model, we
obtain

ui1 D x0
i
Q̌

1 C Q"i1;

ui0 D x0
i
Q̌

0 C Q"i0;

with xi D .1; xi1; : : : ; xik/0. The unknown coefficient vectors Q̌
1 and Q̌

0 determine
the effect of the explanatory variables on the utilities. The “errors” Q"i1 and Q"i0

include the effects of unobserved explanatory variables. Equivalently, we may
choose to investigate utility differences, then obtaining

Qyi D ui1 � ui0 D x0
i .

Q̌
1 � Q̌

0/ C Q"i1 � Q"i0 D x0
i ˇ C "i ;

with ˇ D Q̌
1 � Q̌

0 and "i D Q"i1 � Q"i0. The connection to the observable binary
variables yi is now given by yi D 1 if Qyi D ui1 � ui0 > 0 and yi D 0 if Qyi D ui1 �
ui0 � 0.

Based on this framework, the binary responses yi follow a Bernoulli distribution,
i.e., yi � B.1; �i / with

�i D P.yi D 1/ D P. Qyi > 0/ D P.x0
i ˇ C "i > 0/ D

Z
I.x0

iˇ C "i > 0/f ."i / d"i ;

where I.�/ is the indicator function and f is the probability density of "i . We obtain
different models depending on the choice of f . Specifically, when "i follows a
logistic distribution, we obtain the logit model, while for standard normal errors
"i � N.0; 1/ we have the probit model �i D ˚.x0

i ˇ/. For "i � N.0; �2/, we have

�i D ˚.x0
i ˇ=�/ D ˚.x0

i
Q̌/;

through standardization with Q̌ D ˇ=� . This implies that regression coefficients
ˇ of a latent linear regression model can only be identified up to a factor 1=� .
However, the ratio of two coefficients, for example, ˇ1 and ˇ2, is identifiable, since
ˇ1=ˇ2 D Q̌

1= Q̌
2.
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5.2 Interpretation of the Logit Model

Based on the linear predictor

�i D ˇ0 C ˇ1xi1 C : : : C ˇkxik D x0
i ˇ;

the odds
�i

1 � �i

D P.yi D 1 j xi /

P.yi D 0 j xi /

follow the multiplicative model

P.yi D 1 j xi /

P.yi D 0 j xi /
D exp.ˇ0/ � exp.xi1ˇ1/ � : : : � exp.xikˇk/:

If, for example, xi1 increases by 1 unit to xi1 C1, the following changes apply
to the relationship of the odds:

P.yi D 1 j xi1; : : : /

P.yi D 0 j xi1; : : : /

ıP.yi D 1 j xi1 C 1; : : : /

P.yi D 0 j xi1 C 1; : : : /
D exp.ˇ1/:

ˇ1 > 0 W P.yi D 1/=P.yi D 0/ increases,

ˇ1 < 0 W P.yi D 1/=P.yi D 0/ decreases,

ˇ1 D 0 W P.yi D 1/=P.yi D 0/ remains unchanged.

Interpretation of Parameters
One of the main reasons for the popularity of the logit model is its interpretation as a
linear model for log-odds, as well as a multiplicative model for the odds �=.1 � �/,
as outlined in Sect. 2.3 and formulae (5.3) and (5.4). The latent linear model is useful
to interpret effects in the probit model, since the covariate effects can be interpreted
in the usual way with this model formulation (up to a common multiplicative factor).
In general, interpretation best proceeds in two steps: For the linear predictor, we
interpret the effects in the same way as in the linear model. Then we transform the
linear effect for � D x0ˇ into a nonlinear effect for � D h.�/ with the response
function h.

Example 5.1 Patent Opposition—Binary Regression
In Example 2.8 (p. 35), we analyzed the probability of patent opposition using a logit model
with linear predictor
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Table 5.1 Patent opposition: estimated regression coefficients for the logit, probit, and comple-
mentary log–log model. Adjusted coefficients for the probit and complementary log–log model are
also included

Variable Logit Probit Probit (adj.) Log–Log Log–Log (adj.)

intercept 201.740 119.204 216.212 164.519 211.744
year �0.102 �0.060 �0.109 �0.083 �0.106
ncit 0.113 0.068 0.123 0.088 0.113
nclaim 0.026 0.016 0.029 0.021 0.027
ustwin �0.406 �0.243 �0.441 �0.310 �0.398
patus �0.526 �0.309 �0.560 �0.439 �0.563
patgsgr 0.196 0.121 0.219 0.154 0.198
ncountry 0.097 0.058 0.105 0.080 0.103

�i D ˇ0 C ˇ1yeari C ˇ2nciti C ˇ3nclaimsi C ˇ4ustwini

Cˇ5patusi C ˇ6patgsgri C ˇ7ncountryi :

For an interpretation of the estimated parameters in the logit model compare Example 2.8.
For comparison, we now choose a probit model and a complementary log–log model using
the same linear predictor and reanalyze the data. Table 5.1 contains parameter estimates
for all three models. In order to compare the probit and logit fits, we have to multiply the
estimated coefficients of the probit model with the factor �=

p
3 � 1:814, following our

previous considerations. For example, we obtain the estimated effect �0:060 � 1:814 �
�0:109 for the covariate year compared to �0:102 in the logit model. For the other
coefficients, somewhat higher discrepancies occur at some places (see the fourth column
in Table 5.1); however, the discrepancies are much smaller than the standard deviations of
the estimates. Since, according to the interpretation of binary models, coefficients can only
be interpreted up to a factor of 1=� , the probit and the logit models provide essentially the
same results. After rescaling with the factor �=

p
6 � 1:283, we also obtain comparable

coefficients for the complementary log–log model, which are close to those of the logit
model; see column 6 in Table 5.1. 4

Grouped Data
Thus far, we have assumed individual data or ungrouped data, which means that one
observation .yi ; xi / is given for each individual or object i in a sample of size n.
Every binary, 0/1 coded value yi of the response variable and every covariate vector
xi D .xi1; : : : ; xik/ then belongs to exactly one unit i D 1; : : : ; n.

If some covariate vectors (i.e., rows of the design matrix) are identical, the data
can be grouped as in Sect. 4.1.2 (p. 181). Specifically, after sorting and summarizing
the data, the design matrix only contains rows with unique covariate vectors xi . In
addition, the number ni of replications of xi in the original sample of the individual
data and the relative frequencies Nyi of the corresponding individual binary values of
the response variables are given:
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Group 1
:::

Group i
:::

Group G

2
6666664

n1

:::

ni

:::

nG

3
7777775

2
6666664

Ny1

:::

Nyi

:::

NyG

3
7777775

2
6666664

1 x11 � � � x1k

:::
:::

1 xi1 xik

:::
:::

1 xG1 � � � xGk

3
7777775

The number of unique covariate vectors in the sample G is often much smaller
than the sample size n, especially when covariates are binary or categorial. Rather
than relative frequencies Nyi , we can also provide the absolute frequencies ni Nyi .
Grouped data are then often presented in condensed form in a contingency table, as
in the following Example 5.2.

The grouping of individual data decreases computing time, as well as memory
requirements, and is also done to ensure data identification protection. Moreover,
some inferential methods are only applicable for grouped data, especially when
testing the goodness of fit for the model or for model diagnostics; see Sect. 5.1.4
(p. 287).

Individual data yi are Bernoulli distributed with P.yi D 1/ D �i , i.e. yi �
B.1; �i /. If the response variables yi are (conditionally) independent, the absolute
frequencies ni Nyi of grouped data are binomially distributed, i.e.,

ni Nyi � B.ni ; �i /;

with E.ni Nyi / D ni �i , Var.ni Nyi / D ni �i .1 � �i /. The relative frequencies then
follow a “scaled” binomial distribution

Nyi � B.ni I �i /=ni ;

i.e., the range of values of the probability function for relative frequencies is f0;

1=ni , 2=ni , : : :, 1g, instead of f0; 1; 2; : : : ; ni g. The probability function is

P. Nyi D j=ni / D
 

ni

j

!
�

j
i .1 � �i /

ni �j j D 0; : : : ; ni :

The mean and the variance are given by

E. Nyi / D �i ; Var. Nyi / D �i .1 � �i /

ni

:

For modeling the probability �i , we can use the same binary regression models as
in case of individual data.
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Table 5.2 Grouped infection data

C-section

Planned Not planned

Infection Infection

Yes No Yes No

Antibiotics
Risk factor 1 17 11 87
No risk factor 0 2 0 0

No antibiotics
Risk factor 28 30 23 3
No risk factor 8 32 0 9

Example 5.2 Caesarean Delivery—Grouped Data
Table 5.2 contains grouped data on infections of mothers after a C-section collected at the
clinical center of the University of Munich. The response variable y “infection” is binary
with

y D
(

1 infection,

0 no infection:

After each childbirth the following three binary covariates were collected:

NPLAN D
(

1 C-section was not planned,

0 planned,

RISK D
(

1 risk factors existed,

0 no risk factors,

ANTIB D
(

1 antibiotics were administered as prophylaxis,

0 no antibiotics:

After grouping the individual data of 251 mothers, the data can be represented in the form
of a contingency table; see Table 5.2.

If we model the probability for an infection with a logit model

log
P(Infection)

P(No Infection)
D ˇ0 C ˇ1 NPLAN C ˇ2 RISK C ˇ3 ANTIB;

we obtain the estimated coefficients

Ǒ
0 D �1:89 ; Ǒ

1 D 1:07 ; Ǒ
2 D 2:03 ; Ǒ

3 D �3:25 :

The multiplicative effect exp. Ǒ
2/ D 7:6 implies that the odds of an infection is seven

times higher when risk factors are present, for fixed levels of the other two factors. Such
an interpretation of course requires that the chosen model without any interaction terms is
adequate. We will return to this question in Example 5.3.

If we select a probit model with the same linear predictor, we obtain the estimated
coefficients

Ǒ
0 D �1:09 ; Ǒ

1 D 0:61 ; Ǒ
2 D 1:20 ; Ǒ

3 D �1:90 :
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Similar to Example 5.1, the absolute values seem to be very different. However, the relative
effects, e.g., the ratios Ǒ

1= Ǒ
2, are again very similar. 4

Overdispersion
For grouped data, we can estimate the variance within a group via Nyi .1 � Nyi /=ni ,
since Nyi is the ML estimator for �i based on the data in group i , disregarding
the covariate information. In applications, this empirical variance is often much
larger than the variance O�i .1 � O�i /=ni predicted by a binomial regression model
with O�i D h.x0

i
Ǒ /. This phenomenon is called overdispersion, since the data

show a higher variability than is presumed by the model. The two main reasons
for overdispersion are unobserved heterogeneity, which remains unexplained by
the observed covariates, and positive correlations between the individual binary
observations of the response variables, for example, when individual units belong
to one cluster such as the same household. In either case, the individual binary
response variables within a group are then (in most cases positively) correlated.
The sum of binary responses is then no longer binomially distributed and has
a larger variance according to the variance formula for correlated variables; see
in Appendix B.2 Theorem B.2.4. This situation occurs in Sect. 5.2 for Poisson
distributed response variables, where a data example of overdispersion is presented.

The easiest way to address the increased variability is through the introduction
of a multiplicative overdispersion parameter � > 1 into the variance formula, i.e.,
we assume

Var.yi / D �
�i .1 � �i /

ni

:

Estimation of the overdispersion parameter is described in Sect. 5.1.5.

5.1.2 Maximum Likelihood Estimation

The primary goal of statistical inference is the estimation of parameters ˇ D
.ˇ0; ˇ1; : : : ; ˇk/0 and hypothesis testing for these effects, similar to linear models
in Chap. 3. The methodology of this section is based on the likelihood principle:
For given data .yi ; xi /, estimation of the parameters relies on the maximization of
the likelihood function. Hypotheses regarding the parameters are tested using either
likelihood ratio, Wald, or score tests; see Sect. 5.1.3. Appendix B.4.4 provides a
general introduction into likelihood-based hypothesis testing.

Due to the (conditional) independence of the response variables, the likelihood
L.ˇ/ is given as the product

L.ˇ/ D
nY

iD1

f .yi j ˇ/ (5.7)

of the densities of yi , which depend on the unknown parameter ˇ through �i D
E.yi / D h.x0

iˇ/. Maximization of L.ˇ/ or the log-likelihood l.ˇ/ D log.L.ˇ//



280 5 Generalized Linear Models

then yields the ML estimator Ǒ. It turns out that the ML estimator has no closed
form as for linear models. Instead we rely on iterative methods, in particular
Fisher scoring as briefly described in Appendix B.4.2. In order to compute the
ML estimator numerically we require the score function s.ˇ/ and the observed or
expected Fisher matrix H .ˇ/ or F .ˇ/.

We consider the case of individual data and describe the necessary steps for
deriving ML estimates in the binary logit model:
1. Likelihood
For binary response variables yi � B.1; �i / with �i D P.yi D 1/ D E.yi / D �i ,
the (discrete) density is given by

f .yi j �i / D �
yi

i .1 � �i /
1�yi :

Since �i D h.x0
i ˇ/, the density depends on ˇ for given xi , and we can therefore also

denote it as f .yi j ˇ/. The density also defines the likelihood contribution Li .ˇ/ of
the i th observation. Due to the (conditional) independence of the responses yi , the
likelihood L.ˇ/ is given by

L.ˇ/ D
nY

iD1

Li .ˇ/ D
nY

iD1

�
yi

i .1 � �i /
1�yi ;

i.e., the product of the individual likelihood contributions Li .ˇ/.

2. Log-likelihood
The log-likelihood results from taking the logarithm of the likelihood yielding

l.ˇ/ D
nX

iD1

li .ˇ/ D
nX

iD1

fyi log.�i / � yi log.1 � �i / C log.1 � �i /g;

with the log-likelihood contributions

li .ˇ/ D logLi .ˇ/ D yi log.�i / � yi log.1 � �i / C log.1 � �i /

D yi log

�
�i

1 � �i

�
C log.1 � �i /:

For the logit model, we have

�i D exp.x0
i ˇ/

1 C exp.x0
i ˇ/

or log

�
�i

1 � �i

�
D x0

i ˇ D �i

and .1 � �i / D .1 C exp.x0
i ˇ//�1. Therefore we obtain

li .ˇ/ D yi .x
0
i ˇ/ � log.1 C exp.x0

i ˇ// D yi �i � log.1 C exp.�i //:
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3. Score function
To calculate the ML estimator, defined as the maximizer of the log-likelihood l.ˇ/,
we require the score function, i.e., the first derivative of l.ˇ/ with respect to ˇ:

s.ˇ/ D @l.ˇ/

@ˇ
D

nX
iD1

@li .ˇ/

@ˇ
D

nX
iD1

si .ˇ/:

The individual contributions are given by si .ˇ/ D @li .ˇ/=@ˇ, or more specifically
for logistic regression, using the chain rule,

@li .ˇ/

@ˇ
D @li

@�i

@�i

@ˇ
D
�
yi � 1

1 C exp.�i /
exp.�i /

�
xi ;

with p-dimensional vector @�i =@ˇ D xi . Further substitution of �i D exp.x0
i ˇ/=

.1 C exp.x0
i ˇ// provides

si .ˇ/ D xi .yi � �i /

and the score function

s.ˇ/ D
nX

iD1

xi .yi � �i /: (5.8)

Here, s.ˇ/ depends on �i D �i .ˇ/ D h.x0
i ˇ/ D exp.x0

iˇ/=.1 C exp.x0
i ˇ// and is

therefore nonlinear in ˇ. From E.yi / D �i it follows

E.s.ˇ// D 0:

Equating the score function to zero leads to the ML equations

s. Ǒ/ D
nX

iD1

xi

 
yi � exp.x0

i
Ǒ/

1 C exp.x0
i

Ǒ/

!
D 0: (5.9)

This p-dimensional, nonlinear system of equations for Ǒ is usually solved iteratively
by the Newton–Raphson or Fisher scoring algorithm; see p. 283.
4. Information matrix
For the estimation of the regression coefficients and the covariance matrix of the
ML estimator Ǒ, we need the observed information matrix

H .ˇ/ D �@2l.ˇ/

@ˇ@ˇ0 ;

with the second derivatives @2l.ˇ/=@̌ j @̌ r as elements of the matrix @2l.ˇ/=@ˇ@ˇ0,
or the Fisher matrix (expected information matrix)
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F .ˇ/ D E

�
�@2l.ˇ/

@ˇ@ˇ0

�
D Cov.s.ˇ// D E.s.ˇ/s0.ˇ//:

The last equality holds since E.s.ˇ// D 0. To derive the Fisher matrix note that
F.ˇ/ is additive, i.e., F .ˇ/ D Pn

iD1 F i .ˇ/; where F i .ˇ/ D E.si .ˇ/si .ˇ/0/ is the
contribution of the i th observation. For F i .ˇ/ we obtain

F i .ˇ/ D E .si .ˇ/si .ˇ/0/

D E
�
xi x

0
i .yi � �i /

2
	

D xi x
0
i E .yi � �i /

2

D xi x
0
i Var.yi /

D xi x
0
i �i .1 � �i /:

We finally get

F .ˇ/ D
nX

iD1

F i .ˇ/ D
nX

iD1

xi x
0
i �i .1 � �i /:

Since �i D h.x0
i ˇ/, the Fisher matrix also depends on ˇ.

To derive the observed information matrix we use Definition A.29 of
Appendix A.8. We obtain H .ˇ/ D �@2l.ˇ/=@ˇ@ˇ0 D �@s.ˇ/=@ˇ0 through
another differentiation of

�s.ˇ/ D
nX

iD1

xi .�i .ˇ/ � yi /:

Using the chain rule, this yields

H .ˇ/ D �@s.ˇ/

@ˇ0 D
nX

iD1

xi
@�i .ˇ/

@ˇ0 D
nX

iD1

xi
@�i

@ˇ0
@�i .ˇ/

@�i
D

nX
iD1

xi x
0
i �i .ˇ/.1 � �i .ˇ//:

We thereby used
@�i

@ˇ0 D
�

@�i

@ˇ

�0
D x0

i

and

@�i .ˇ/

@�i

D .1 C exp.�i // exp.�i / � exp.�i / exp.�i /

.1 C exp.�i //2
D �i .ˇ/.1 � �i .ˇ//:

The expected and the observed information matrix are, thus, identical for the
logit model, i.e., H .ˇ/ D F .ˇ/. This relationship, however, does not hold for other
models, e.g., the probit or the complementary log–log model. In these models, we
usually use the Fisher matrix F .ˇ/, which is typically easier to compute than the
observed Fisher matrix H .ˇ/. Its general form will be given in Sect. 5.4.2.
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If now instead of individual data with binary response variables yi � B.1; �i /,
we rather consider a binomially distributed response yi � B.ni ; �i / or relative
frequencies

Nyi � B.ni ; �i /=ni ; i D 1; : : : ; n;

as, for example, in the case of grouped data, the formulae for l.ˇ/; s.ˇ/, and F .ˇ/

have to be modified appropriately. Analogous arguments than for individual data
yield

l.ˇ/ D
GX

iD1

fyi log.�i / � yi log.1 � �i / C ni log.1 � �i /g

s.ˇ/ D
GX

iD1

xi .yi � ni �i / D
GX

iD1

ni xi . Nyi � �i /

F .ˇ/ D
GX

iD1

xi x
0
i ni �i .1 � �i /:

Iterative Calculation of the ML Estimator
Several iterative algorithms that compute the ML estimator as the solution of the
ML equation s. Ǒ/ D 0 can be used for computing Ǒ. The most common method is
the Fisher scoring algorithm; see Sect. B.4.2 in Appendix B. Given starting values
Ǒ.0/, e.g., the least squares estimate, the algorithm iteratively performs updates

Ǒ.tC1/ D Ǒ.t/ C F �1. Ǒ.t//s. Ǒ.t//; t D 0; 1; 2; : : : : (5.10)

Once a convergence criterion is met, for example, jj Ǒ.tC1/ � Ǒ.t/jj=jj Ǒ.t/jj � "

(with jj � jj denoting the L2-norm of a vector), the iterations will be stopped, and
Ǒ � Ǒ.t/ is the ML estimator. Since F .ˇ/ D H .ˇ/ in the logit model, the Fisher

scoring algorithm corresponds to a Newton method. The iterations Eq. (5.10) can
also be expressed in the form of an iteratively weighted least squares estimation;
see Sect. 5.4.2 (p. 306).

The Fisher scoring iterations can only converge to the ML solution Ǒ if the Fisher
matrix F .ˇ/ is invertible for all ˇ. As in the linear regression model, this requires
that the design matrix X D .x1; : : : ; xn/0 has full rank p. Then F .ˇ/ is invertible
for the types of regression models that we have considered thus far. For example, in
case of the logit model, F .ˇ/ D P

i xi x
0
i �i .1 � �i / has full rank because X 0X DP

i xi x
0
i has full rank p and �i .1 � �i / > 0 for all ˇ 2 Rp. Hence, as in the linear

regression model, we will always assume that

rk.X/ D p:

Typically, the algorithm then converges and stops close to the maximum after only
a few iterations.

Nevertheless, it is possible that iterations diverge, i.e., that the successive
differences k Ǒ.tC1/ � Ǒ.t/k increase instead of converging towards zero. This is
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the case when the likelihood does not have a maximum for finite ˇ, i.e., if at
least one component in Ǒ.t/ diverges to ˙1, and no finite ML estimator exists.
In general, the non-existence of the ML estimator is observed in very unfavorable
data configurations, especially when the sample size n is small in comparison to the
dimension p.

Even though several authors have elaborated on conditions of the uniqueness and
existence of ML estimators, these conditions are, to some extent, very complex. For
practical purposes it is, thus, easier to check the convergence or divergence of the
iterative method empirically.

Example 5.3 Caesarian Delivery—Binary Regression
In Example 5.2, we chose a main effects model

� D ˇ0 C ˇ1 NPLAN C ˇ2 RISK C ˇ3 ANTIB

for the linear predictor, i.e., a model without interactions between the covariates. If we want
to improve the model fit by introducing interaction terms, we observe the following:

If we only include the interaction NPLAN � ANTIB, the corresponding estimated
coefficient is close to zero. If we include the interactions RISK � ANTIB or NPLAN � RISK,
we observe the problem of a nonexistent maximum, i.e., the ML estimator diverges. The
reason is that we exclusively observed “no infection” for the response variable for both
NPLAN D 0, RISK D 0, ANTIB D 1 and NPLAN D 1, RISK D 0, ANTIB D 0. This leads
to the divergence towards infinity for the estimated effects of ANTIB and RISK � ANTIB or
NPLAN and NPLAN �RISK, and a termination before convergence yields exceptionally high
estimated interaction effects and standard errors. Depending on the chosen software, the
user may receive a warning or not. In any case, very high estimated regression coefficients
and/or standard errors may be a sign for non-convergence of the ML estimator.

It is clear that the problem is dependent on the specific data configuration: If we were to
move one observation from the two empty cells over to the “infection” category, then the
interactions converge and finite ML estimators exist. 4

Comparison of the ML and Least Squares Estimator
In a linear regression model with normally distributed error terms, we have

yi � N.�i D x0
i ˇ; �2/:

Apart from constant factors, the score function is then given by

s.ˇ/ D
nX

iD1

xi .yi � �i /;

where E.yi / D �i D x0
i ˇ linearly depends on ˇ. For the logit model, the score

function (5.8) follows the same structure, with E.yi / D �i D �i . However, s.ˇ/ is
nonlinear in ˇ since �i D �i D exp.x0

i ˇ/=f1Cexp.x0
iˇ/g. The ML or least squares

system of equations for the linear model has the form

s. Ǒ/ D
nX

iD1

xi .yi � x0
i

Ǒ/ D X 0y � X 0X Ǒ D 0;
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with responses y D .y1; : : : ; yn/0. If the design matrix X has full rank p, we obtain
the estimated regression coefficients as the solution of the system of equations
X 0X Ǒ D X 0y in a single step, yielding

Ǒ D .X 0X/�1X 0y :

In contrast, the solution to the nonlinear system of equations (5.9) has to be obtained
numerically in several iterative steps in the logit model. The (observed and expected)
information matrix in the linear model is

F .ˇ/ D
nX

iD1

x0
i xi =�2 D 1

�2
X 0X :

The structure is again very similar to the one in the logit model, but the information
matrix does not depend on ˇ.

Asymptotic Properties of the ML Estimator
Under relatively weak regularity conditions, one can shows that asymptotically
(i.e., for n ! 1), the ML estimator exists, is consistent, and follows a normal
distribution. This result does not require that the sample size goes to infinity for
each distinct location in the covariate space, but it is sufficient that the total sample
size goes to infinity, i.e., n ! 1. Then, for a sufficiently large sample size n, Ǒ has
an approximate normal distribution

Ǒ a� N.ˇ; F �1. Ǒ//;
with estimated covariance matrix

bCov. Ǒ/ D F �1. Ǒ/
equal to the inverse Fisher matrix evaluated at the ML estimator Ǒ. The diagonal
element ajj of the inverse Fisher matrix A D F �1. Ǒ/ is then an estimator of the

variance of the j th component Ǒ
j of Ǒ, i.e.,

cVar. Ǒ
j / D ajj ;

and sej D p
ajj is the standard error of Ǒ

j or in other words an estimator for the

standard deviation
q

Var. Ǒ
j /. More details regarding the asymptotic properties of

the ML estimator can be found in Fahrmeir and Kaufmann (1985).

5.1.3 Testing Linear Hypotheses

Linear hypotheses have the same form as in linear models:

H0 W C ˇ D d versus H1 W C ˇ 6D d ;
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with C having full row rank r � p. We can use the likelihood ratio, the score and
the Wald statistics for testing; see Appendix B.4.4. The likelihood ratio statistic

lr D �2fl. Q̌/ � l. Ǒ/g
measures the deviation in log-likelihood between the unrestricted maximum l. Ǒ/
and that of the restricted maximum l. Q̌/ under H0, where Q̌ is the ML estimator
under the restriction C ˇ D d . For the special case

H0 W ˇ1 D 0 versus H1 W ˇ1 6D 0; (5.11)

where ˇ1 is a subset of ˇ, we test the significance of the effects belonging to ˇ1.
The computation of Q̌ then simply requires ML estimation of the corresponding
submodel. The numerical complexity is much greater for general linear hypotheses,
since maximization has to be carried out under the constraint C ˇ D d .

The Wald statistic

w D .C Ǒ � d/0ŒC F �1. Ǒ/C 0��1.C Ǒ � d/

measures the distance between the estimate C Ǒ and the hypothetical value d under
H0, weighted with the (inverse) asymptotic covariance matrix C F �1. Ǒ/C 0 of C Ǒ.

The score statistic
u D s0. Q̌/F �1. Q̌/s. Q̌/

measures the distance between 0 D s. Ǒ/, i.e., the score function evaluated at the
ML estimator Ǒ, and s. Q̌/, i.e., the score function evaluated at the restricted ML
estimator Q̌.

Wald tests are mathematically convenient when an estimated model is to be tested
against a simplified submodel, since it does not require additional estimation of the
submodel. Conversely, the score test is convenient when an estimated model is to be
tested against a more complex model alternative.

For the special hypothesis Eq. (5.11), the Wald and score statistic are reduced to

w D Ǒ 0
1

OA�1
1

Ǒ
1

and
u D s1. Q̌

1/
0 QA1s1. Q̌

1/;

where A1 represents the submatrix of A D F �1 and s1. Q̌
1/ represents the subvector

of the score function s. Q̌ / that corresponds to the elements of Q̌
1. The notation “O”

or “Q ” reflects the respective evaluation at Ǒ or Q̌.
Under weak regularity conditions, similar to those required for the asymptotic

normality of the ML estimators, the three test statistics are asymptotically equivalent
under H0 and approximately follow a �2-distribution with r degrees of freedom:

lr; w; u
a� �2

r :
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Critical values or p-values are calculated using this asymptotic distribution. For
moderate sample sizes, the approximation through the �2-distribution is generally
sufficient. For a smaller sample size, e.g., n � 50, the values of the test statistics
can, however, differ considerably.

In the special case H0 W ˇj D 0 versus H1 W ˇj ¤ 0 the Wald statistic equals the
squared “t-value”

w D t2
j D

Ǒ2
j

ajj

;

with ajj as the j th diagonal element of the asymptotic covariance matrix A D
F �1. Ǒ/. Then the test is usually based on tj which is asymptotically N.0; 1/

distributed. The null hypothesis is then rejected if jtj j > z1�˛=2 where z1�˛=2 is
the .1 � ˛=2/-quantile of the N.0; 1/ distribution.

5.1.4 Criteria for Model Fit and Model Choice

Assessing the fit of an estimated model relies on the following idea: When the data
have been maximally grouped, we can estimate the group-specific parameter �i

using the mean value Nyi . The use of these mean values as estimators corresponds
to the saturated model, i.e., the model which contains separate parameters for each
group. Thus the saturated model provides the best fit to the data and serves as a
benchmark when evaluating the fit of estimated regression models. We now can
formally test whether the departure between the estimated model and the saturated
model is significant or not. The Pearson statistic and the deviance are the most
frequently used goodness-of-fit statistics used for testing such a departure, both
requiring that the data have been grouped as much as possible.

The Pearson statistic is given by the sum of the squared standardized residuals:

�2 D
GX

iD1

. Nyi � O�i /
2

O�i .1 � O�i /=ni

;

where G represents the number of groups, Nyi is the relative frequency for group i ,
O�i D h.x0

i
Ǒ/ is the probability P.yi D 1/ estimated by the model, and O�i .1� O�i/=ni

is the corresponding estimated variance.
The deviance is defined by

D D �2

GX
iD1

fli . O�i / � li . Nyi /g ;

where li . O�i / and li . Nyi / represent the log-likelihood of group i for the estimated and
the saturated model, respectively. The Pearson statistic looks similar to conventional
chi-square statistics for testing if a random sample comes from a hypothesized
discrete distribution: The squared differences between data and estimates are
standardized by the variance and then summed up. The deviance compares the
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Table 5.3 Patent opposition: estimation results from the logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 201.740 22.321 9.04 <0.001 157.991 245.489
year �0.102 0.011 �9.10 <0.001 �0.124 �0.080
ncit 0.114 0.022 5.09 <0.001 0.070 0.157
nclaim 0.027 0.006 4.49 <0.001 0.015 0.038
ustwin �0.403 0.100 �4.03 <0.001 �0.599 �0.207
patus �0.526 0.113 �4.67 <0.001 �0.747 �0.306
patgsgr 0.197 0.117 1.68 0.094 �0.033 0.427
ncountry 0.098 0.015 6.55 <0.001 0.068 0.127

(maximum of the) log-likelihood of the estimated model to the value of the log-
likelihood of the saturated model, i.e., the largest value of the log-likelihood that
can be attained. For finite samples, the Pearson and the deviance statistic will differ,
but it can be shown that they are asymptotically equivalent for grouped data. If the ni

are sufficiently large for all groups i D 1; : : : ; G, both statistics are approximately
�2

G�p-distributed, where p represents the number of estimated coefficients. Based
on this approximate distribution, we can conduct a formal test for model fit by
comparing the observed value of the test statistic to the corresponding quantile of
the �2

G�p -distribution. Larger values in the observed test statistic indicate lack of fit
and therefore correspond to larger p-values. For a prespecified significance level ˛

a model is rejected if the .1 � ˛/-quantile is exceeded or the p-value is smaller than
˛. However, if ni is small (especially if ni D 1 as with ungrouped individual data),
conducting such a test can be problematic. In this case, large values of �2 or D do
not necessarily indicate a poor fit.

As already discussed for the coefficient of determination in linear regression
(section “Analysis of Variance and Coefficient of Determination” of Sect. 3.2.3),
a model choice strategy that tries to make the goodness-of-fit statistics as small as
possible will usually result in an overfit model choice. When comparing models
with different predictors and parameters, a compromise should be found between a
good model fit obtained with a large number of parameters and model complexity.
A well-known compromise is Akaike’s information criterion

AIC D �2l. Ǒ/ C 2p ;

in which the term 2p penalizes complex models with a large number of parameters.
When choosing between several models, we prefer those with small AIC values.
Rather than the AIC value, one also often considers AIC=n, i.e., the AIC
standardized for sample size n. Another alternative is the BIC; see Appendix B.5.4.

Example 5.4 Patent Opposition—Testing and Model Choice
Table 5.3 presents the estimated coefficients for the logit model in Example 5.1 (p. 275),
along with the corresponding standard errors, t-values, p-values, and 95 % confidence
intervals. For the log-likelihood and the AIC criterion of the estimated model, we have
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Table 5.4 Patent opposition: estimation results from the probit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 119.204 13.192 9.04 <0.001 93.349 145.060
year �0.060 0.007 �9.11 <0.001 �0.073 �0.047
ncit 0.068 0.014 5.02 <0.001 0.041 0.094
nclaim 0.016 0.004 4.46 <0.001 0.009 0.023
ustwin �0.243 0.060 �4.07 <0.001 �0.360 �0.126
patus �0.309 0.066 �4.72 <0.001 �0.438 �0.181
patgsgr 0.121 0.071 1.71 0.086 �0.017 0.260
ncountry 0.059 0.009 6.51 <0.001 0.041 0.076

Table 5.5 Patent opposition: estimation results of the extended logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 198.131 22.739 8.71 <0.001 153.563 242.699
year �0.101 0.011 �8.82 <0.001 �0.123 �0.078
ncit 0.113 0.022 5.08 <0.001 0.070 0.157
nclaim 0.026 0.006 4.45 <0.001 0.015 0.038
ustwin �0.409 0.100 �4.09 <0.001 �0.605 �0.213
patus �0.539 0.113 �4.77 <0.001 �0.761 �0.318
patgsgr 0.180 0.119 1.52 0.130 �0.053 0.414
ncountry 0.394 0.184 2.14 0.032 0.034 0.754
ncountry2 �0.038 0.024 �1.58 0.113 �0.085 0.009
ncountry3 0.001 0.001 1.50 0.134 �0.000 0.003

l. Ǒ/ D �1488:560 ; AIC D 2993:12 :

With a p-value of 0.094, the effect of the variable patgsgr is at best marginally significant.
If we choose ˛ D 5 % as the significance level, the hypothesis H0 W ˇ6 D 0 will not be
rejected. This implies that the increased probability of patent objection if the patent comes
from Germany, Switzerland, or Great Britain appears nonsignificant.

Table 5.4 contains the corresponding values for the probit model. Even though the
estimated coefficients and their standard deviations differ due to the absence of a proper
adjustment (see Example 5.1), the t-values and p-values are in good agreement and lead to
the same conclusions regarding the significance of the effects. With

l. Ǒ/ D �1488:407 ; AIC D 2992:815;

we obtain very similar values for the log-likelihood and the AIC criterion. Since the results
for the patent data are comparable for the logit and probit model, we only further describe
the findings for the logit model.

In order to examine whether or not the effect of the continuous covariate ncountry is
linear, we included a cubic polynomial

ˇ7 ncountry C ˇ8 ncountry2 C ˇ9 ncountry3

into the linear predictor as in Example 2.8 (p. 35) and estimated this modified logit model.
Table 5.5 contains the estimated coefficients, their standard errors, as well as t-values,
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Table 5.6 Credit scoring: description of the covariates including summary statistics

Mean/ Std.
Variable Description frequency in % dev. Min/max

acc1 1 D no running account 27.40
0 D good or bad running account 72.60

acc2 1 D good running account 39.40
0 D no or bad running account 60.60

duration Duration of the credit in months 20.90 12.06 4/72
amount Credit amount in 1000 Euro, 1.67 1.44 0.13/9.42
moral Previous payment behavior

1 D good 91.10
0 D bad 8.90

intuse Intended use
1 D private 65.70
0 D business 34.30

p-values, and 95 % confidence intervals. The t-values and the p-values corresponding to
ncountry2 and ncountry3 already indicate that the more conservative linear model may
be sufficient and that the nonlinearity is over-interpreted. The log-likelihood and the AIC
criterion for the extended model yields

l. Ǒ/ D �1487:232 ; AIC D 2994:463 :

This further confirms that we should rather choose the simpler model with linear modeling
of the ncountry effect. We can also investigate nonlinearity by testing the hypotheses

H0 W .ˇ8; ˇ9/ D .0; 0/ versus H1 W .ˇ8; ˇ9/ ¤ .0; 0/:

The likelihood ratio test statistic results in

lr D �2f�1488:56 � .�1487:23/g D 2:66 :

The 95 % quantile of the (approximate) �2.2/-distribution is �2
95 %.2/ D 5:99, thus H0

cannot be rejected, which also follows from the p-value of 0.269. In summary, the
assumption of a linear effect of covariate ncountry cannot be rejected. The Wald test also
leads to the same result. 4

Example 5.5 Credit Scoring—Binary Regression
When issuing credit, banks check the “solvency” or “creditworthiness” of clients, i.e., their
ability and willingness to pay back the credit in the specified time frame. To evaluate
creditworthiness using statistical methods (credit scoring), characteristics of the borrower
are requested that reflect his or her personal and economic situation and thus influence the
probability of creditworthiness. Binary regression models are suited for such evaluations
since they model the probability of a loan default for given characteristics of the client.

We use a data set on n D 1;000 private credits issued by a German bank published in
Fahrmeir, Hamerle, and Tutz (1996). Every client is associated with a binary response y

defined as

y D
(

1 client is not creditworthy,

0 client is creditworthy:

Among a total of 20 characteristics, we use those described in Table 5.6 as covariates.
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Table 5.7 Credit scoring: estimation results for the logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.487 0.266 1.83 0.067 �0.034 1.007
acc1 0.618 0.175 3.53 <0.001 0.275 0.960
acc2 �1.338 0.201 �6.65 <0.001 �1.732 �0.944
durationo 0.401 0.093 4.29 <0.001 0.218 0.584
amounto 0.066 0.092 0.72 0.474 �0.115 0.247
moral �0.986 0.251 �3.93 <0.001 �1.478 �0.494
intuse �0.426 0.158 �2.69 0.007 �0.736 �0.115

Table 5.8 Credit scoring: results for the extended logit model

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.474 0.270 1.75 0.079 �0.055 1.004
acc1 0.618 0.176 3.51 <0.001 0.272 0.963
acc2 �1.337 0.202 �6.61 <0.001 �1.734 �0.941
durationo 0.508 0.100 5.07 <0.001 0.312 0.705
duration2o �0.173 0.079 �2.20 0.028 �0.327 �0.019
amounto 0.035 0.098 0.36 0.720 �0.155 �0.224
amount2o 0.288 0.097 3.07 0.002 0.104 0.471
moral �0.995 0.255 �3.90 <0.001 �1.495 �0.495
intuse �0.404 0.160 �2.52 0.012 �0.718 �0.090

We model the probability P.y D 1/ for a weak creditworthiness with a logit model and
the linear predictor

� D ˇ0 C ˇ1 acc1 C ˇ2 acc2 C ˇ3 durationo C ˇ4 amounto C ˇ5 moral C ˇ6 intuse:

Since we will later also estimate quadratic orthogonal polynomials (see Example 3.5 on
p. 90) for the effects of the continuous covariates duration and amount we included
the linear parts durationo and amounto of these orthogonal polynomials in the predictor
rather than the original covariates. Table 5.7 lists the estimated coefficients, along with
their corresponding standard errors, t-values, p-values, and 95 % confidence intervals. The
p-value for the effect of amounto indicates that the corresponding effect is not significant.
The AIC value for this model is 1,043.815.

In a second step of our analysis, we assume a quadratic orthogonal polynomial for the
effects of the continuous covariates duration and amount to detect possible nonlinearity.
Table 5.8 contains the corresponding estimated results. All p-values, also those for squared
effects, now show significance. Furthermore, the lower AIC value of 1,035.371 indicates an
improved model fit.

Figure 5.2 shows the estimated linear effects of credit amount and duration together with
the quadratic, nonlinear effects. The “bathtub” shape of the squared effects of the credit
amount illustrates that small and large credit increases the risk of not paying back the credit.
This effect is missed when reducing the model to linear effects.

We finally apply the likelihood ratio and Wald test in order to test the model having
quadratic effects against the submodel with linear effects for credit amount and duration.
The likelihood ratio and the Wald statistic yield
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Fig. 5.2 Credit scoring: estimated linear (- - -) and quadratic (—) effects of credit amount and
credit duration

lr D 12:44 ; w D 11:47

with two degrees of freedom and corresponding p-values of 0.0020 and 0.0032, respectively.
Hence, both tests again confirm the specification of the more complex model with quadratic
effects. 4

5.1.5 Estimation of the Overdispersion Parameter

As discussed in Sect. 5.1 (p. 279), we may observe overdispersion when working
with grouped data. To allow for overdispersion, we assume

Var.yi / D �
�i .1 � �i /

ni

:

The overdispersion parameter � can be estimated as the average Pearson statistic or
the average deviance:

O�P D 1

n � p
�2 or O�D D 1

n � p
D :

This is analogous to the estimation of the error variance in the linear model, with �2

or D replacing the residual sum of squares.
Accordingly, we multiply the estimated covariance matrix with O�, i.e., bCov. Ǒ/ D

O�F �1. Ǒ/. Strictly speaking, this approach to treat overdispersion does not cor-
respond to a true likelihood method, but rather to a quasi-likelihood model; see
Sect. 5.5.
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Since we only need �i D E.yi / and Var.yi /, and not the likelihood itself for
the maximum likelihood estimation of ˇ, both ˇ and � can be formally estimated
just as if we considered a distribution with scale parameter �, such as a normal or
gamma distribution; see Sect. 5.4.2. In fact, the introduction of an overdispersion
parameter leads to one of the simplest forms of quasi-likelihood estimation. Even
though distributions with variance ��i .1 � �i /=ni exist, for example, the beta-
binomial distribution, their actual likelihood is not necessary and will also not be
used in the estimation process. Other approaches to account for overdispersion are,
for example, models with random effects; see Chap. 7. A good additional reference
on models with overdispersion is Collett (1991).

5.2 Count Data Regression

Count data are frequently observed when the number of certain events within a fixed
time frame or frequencies in a contingency table have to be analyzed. Sometimes, a
normal approximation can be sufficient, particularly when the events occur with
high frequencies. In situations with only a small number of counts, models for
categorial response variables (Chap. 6) can be an alternative. In general, however,
discrete distributions recognizing the specific properties of count data are most
appropriate. The Poisson distribution is the simplest and most widely used choice,
but model modifications and alternatives such as the negative binomial distribution
are also used. For details on such extensions, we refer to the specialized literature
on count data regression given in the final section of this chapter.

5.2.1 Models for Count Data

Log-Linear Poisson Model
The most widely used model for count data connects the rate 	i D E.yi / of the
Poisson distribution with the linear predictor �i D x0

i ˇ D ˇ0 Cˇ1xi1 C : : : Cˇkxik

via
	i D exp.�i / D exp.ˇ0/exp.ˇ1xi1/ � : : : � exp.ˇkxik/

or in log-linear form through

log.	i / D �i D x0
i ˇ D ˇ0 C ˇ1xi1 C : : : C ˇkxik: (5.12)

The effect of covariates on the rate 	 is, thus, exponentially multiplicative similar
to the effect on the odds �=.1 � �/ in the logit model. The effect on the logarithm
of the rate in Eq. (5.12) is linear.

Linear Poisson Model
The direct relationship

	i D �i D x0
i ˇ
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5.3 Log-Linear Poisson Model for Count Data

Data

The response variables yi take values f0; 1; 2; : : : g and are (conditionally)
independent given the covariates xi1; : : : ; xik .

Model Without Overdispersion

yi � Po.	i / with

	i D exp.x0
i ˇ/ or log.	i / D x0

iˇ:

Model with Overdispersion

E.yi / D 	i D exp.x0
i ˇ/; Var.yi / D �	i

with overdispersion parameter �.

is useful when the covariates have an additive effect on the rate. Since x0
i ˇ must not

be nonnegative, this usually implies restrictions for the parameter space of ˇ.

Overdispersion
The assumption of a Poisson distribution for the responses implies

	i D E.yi / D Var.yi /:

For similar reasons as in case with binomial data, a significantly higher empirical
variance is frequently observed in applications of Poisson regression. For this reason
it is often useful to introduce an overdispersion parameter � by assuming

Var.yi / D �	i :

As for binomial data, there are also more complex modeling approaches for count
data which take the additional variability into account. One possibility is the use
of the negative binomial distribution, which is closely related to the use of random
effects models; see Chap. 7.

Example 5.6 Number of Citations from Patents—Poisson Regression
We illustrate the use of regression models for counts with the patent data described in
Example 1.3 (p. 8). In contrast to Examples 5.1 and 5.4, we now choose the number of
citations for a patent, variable ncit, as the response. We also use the complete data set,
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i.e., patents which either belong to the biotechnology or to the pharmaceutical industry.
We incorporate the remaining variables described in Table 1.4 (p. 8) as covariates. As in
Sect. 3.1.2 (p. 92), we center the continuous covariates yearc, ncountryc, and nclaimsc
around their means and use these centered covariates in the linear predictor. Based on
previous descriptive analysis in Example 2.8, we exclude all observations with nclaims >

60 and ncit > 15 from further analysis.
As a first step, we examine a log-linear model for the rate 	i D E.nciti / with purely

linear predictor

log.	i / D �i D ˇ0 C ˇ1yearci C ˇ2ncountryci C ˇ3nclaimci C ˇ4biopharmi

C ˇ5ustwini C ˇ6patusi C ˇ7patgsgri C ˇ8oppi :

In Example 5.7, we estimate a Poisson model without an overdispersion parameter, as well
as a model that includes an overdispersion parameter � in the variance Var.nciti / D �	i .
To allow for possibly nonlinear effects of the continuous covariates, we further considered
polynomial effects for yearc, ncountryc, and nclaimsc and compare the different models
using AIC. 4

5.2.2 Estimation and Testing: Likelihood Inference

We again assume that the response variables yi are (conditionally) independent.
The derivations of the likelihood, score function, and the information matrix are
analogous to the developments for binary data in Sect. 5.1.

Maximum Likelihood Estimation
For the Poisson distributed response variable, the discrete density (or the likelihood
Li .ˇ/ of the i th observation) is given by

f .yi j ˇ/ D 	
yi

i exp.�	i/

yi Š
; E.yi / D 	i :

It depends on ˇ through 	i D x0
i ˇ in the linear Poisson model and through

	i D exp.x0
i ˇ/ in the log-linear Poisson model. The ML estimator for the log-linear

Poisson model is obtained in the following steps:
1. Log-likelihood
The log-likelihood is given by

l.ˇ/ D
nX

iD1

li .ˇ/ D
nX

iD1

.yi log.	i / � 	i /;

apart from the additive constant �nlog.yi Š/ (that is independent of ˇ). The Poisson
log-linear model with log.	i / D x0

iˇ D �i yields

l.ˇ/ D
nX

iD1

li .ˇ/ D
nX

iD1

yi .x
0
i ˇ/ � exp.x0

iˇ/ D
nX

iD1

.yi �i � exp.�i // :
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2. Score function
Differentiating according to the chain rule @li .ˇ/=@ˇ D .@li =@�i / � @�i =@ˇ D
@li =@�i � xi , we obtain the score function

s.ˇ/ D
nX

iD1

xi .yi � exp.�i // D
nX

iD1

xi .yi � 	i /:

3. Fisher information
Using the same arguments as in the logit model, we obtain the Fisher information

F .ˇ/ D E.s.ˇ/s0.ˇ// D
nX

iD1

xi x
0
i 	i ;

utilizing E.yi � 	i /
2 D Var.yi / D 	i .

4. Numerical computation
Due to 	i D exp.x0

i ˇ/, we obtain the nonlinear equation system

s. Ǒ/ D 0

for Ǒ. The numerical computation of Ǒ is again carried out using Fisher scoring
Eq. (5.10), inserting the corresponding expressions for s.ˇ/ and F .ˇ/. Similar to
linear and binary regression, we assume

rk.X/ D p

for the design matrix X D .x1; : : : ; xn/0. The remarks made in Sect. 5.1.2 also
apply for the convergence or divergence of the iterations in the Poisson model.

Under moderate regularity assumptions and for large n (more precisely for n !
1), we have the asymptotic result

Ǒ a� N.ˇ; F �1. Ǒ//

with estimated covariance matrix bCov. Ǒ/ D F �1. Ǒ/.

Testing Linear Hypotheses
We use the same test statistics as in binary regression models for testing linear
hypotheses C ˇ D d , where the appropriate expressions for l.ˇ/; s.ˇ/, and
F .ˇ/ associated with the Poisson model are to be inserted. In addition, the same
statements regarding the asymptotic or approximate �2-distribution of the test
statistics apply.
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5.2.3 Criteria for Model Fit and Model Choice

The criteria discussed in Sect. 5.1.2 for binary regression models can be transferred
to the Poisson case. Since Var.yi / D 	i for the Poisson distribution, we obtain the
Pearson statistic

�2 D
GX

iD1

.yi � O	i /
2

O	i =ni

:

The Poisson log-likelihood must be inserted into the definition of the deviance and
the AIC. Note that by convention 0 � log.0/ D 0 (for yi D 0).

5.2.4 Estimation of the Overdispersion Parameter

As previously stated, in situations where we allow for possible overdispersion with
the assumption Var.yi j xi / D �	i , the overdispersion parameter � can be estimated
as the average Pearson statistic or the average deviance:

O�P D 1

n � p
�2 or O�D D 1

n � p
D :

This is analogous to the estimation of the error variance in the linear model, with �2

or D replacing the residual sum of squares.
We then have to multiply the estimated covariance matrix with O�, i.e., bCov. Ǒ/ D

O�F �1. Ǒ/. Strictly speaking, this approach to the estimation of overdispersion does
not correspond to a true likelihood method, but rather to a quasi-likelihood model;
see Sect. 5.5.

Example 5.7 Number of Citations from Patents—Overdispersion
Table 5.9 shows estimation results for the log-linear Poisson model of Example 5.6 having
no overdispersion (i.e., � D 1) and only linear effects (AIC D 19; 092:25, deviance D
12; 085:31, Pearson-�2 D 14; 091:66).

The p-values indicate significance of all covariates, with the exception of ustwin. Since
overdispersion is very common with Poisson models, we reanalyze the model by estimating
the overdispersion parameter as the mean Pearson statistic or mean deviance. We obtain

O�P D 1

n � p
�2 D 2:935 resp. O�D D 1

n � p
D D 2:518 ;

with n D 4; 809, p D 9. In contrast to the Poisson model, the estimated variance or standard
deviation of the estimated regression coefficients needs to be multiplied by O� and O�1=2,
respectively, while the point estimates are the same as for the pure Poisson model without
overdispersion. Table 5.10 lists the results for O�P . In comparison to Table 5.9, we see that
the standard errors increase by the factor O�1=2

P D 1:71. This adjustment causes an increase
of the p-values, such that the effect of variable patus is now insignificant, while the analysis
without overdispersion resulted in a p-value that was significant.

In order to detect possibly nonlinear effects of the centered continuous covariates
yearc, ncountryc, and nclaimc, we construct polynomials of degree three. The centering
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Table 5.9 Number of citations from patents: model with linear effects and � D 1

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.158 0.033 4:85 <0.001 0.094 0.222
yearc �0.072 0.003 �24:17 <0.001 �0.078 �0.066
ncountryc �0.028 0.004 �6:60 <0.001 �0.036 �0.020
nclaimc 0.018 0.001 14:16 <0.001 0.016 0.021
biopharm 0.239 0.032 7:42 <0.001 0.176 0.302
ustwin 0.002 0.026 0:09 0.926 �0.048 0.053
patus �0.078 0.027 �2:84 0.005 �0.132 �0.024
patgsgr �0.198 0.032 �6:24 <0.001 �0.260 �0.136
opp 0.372 0.025 14:81 <0.001 0.322 0.421

Table 5.10 Number of citations from patents: model with linear effects and overdispersion

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.158 0.056 2.83 0.005 0.049 0.267
yearc �0.072 0.005 �14.11 <0.001 �0.082 �0.062
ncountryc �0.028 0.007 �3.85 <0.001 �0.042 �0.014
nclaimc 0.018 0.002 8.26 <0.001 0.014 0.022
biopharm 0.239 0.055 4.33 <0.001 0.131 0.347
ustwin 0.002 0.044 0.05 0.957 �0.084 0.088
patus �0.078 0.047 �1.66 0.098 �0.170 0.014
patgsgr �0.198 0.054 �3.64 <0.001 �0.305 �0.091
opp 0.372 0.043 8.64 <0.001 0.287 0.456

is conducted as described in section “Continuous Covariates” of Sect. 3.1.3. The model
obtains AIC D 18; 786:32, devianceD 11; 767:37, Pearson-�2 D 13; 815:96, O�D D 2:45,
O�P D 2:88. Compared to the model with only linear effects the fit is considerably improved.
Table 5.11 shows the results. The variable ustwin remains nonsignificant while patus is now
weakly significant. The other variables all remain significant (on a level of 5 %) with the
exception of some of the polynomial terms. This indicates that lower-order polynomials
might be sufficient to model the nonlinearity of the covariate effects. Figure 5.3 compares
linear and nonlinear effects of the continuous covariates. We leave the interpretation of the
results to the reader; see Example 2.13 (p. 54) on how to interpret the (nonlinear) effects in
Poisson regression models. 4

5.3 Models for Nonnegative Continuous Response Variables

The classical linear model

yi D x0
i ˇ C "i ; E."i / D 0; Var."i / D �2
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Table 5.11 Number of citations from patents: extended model with overdispersion

Variable Coefficient Standard error t-value p-value 95 % Confidence interval

intercept 0.17115 0.05558 3.08 0.002 0.06221 0.28009
yearc �0.09924 0.00966 �10.27 <0.001 �0.11818 �0.08031
yearc2 �0.00974 0.00226 �4.31 <0.001 �0.01417 �0.00531
yearc3 �0.00011 0.00030 �0.37 0.715 �0.00070 0.00048
ncountryc 0.01552 0.01322 1.17 0.241 �0.01040 0.04143
ncountryc2 �0.00213 0.00206 �1.03 0.301 �0.00618 0.00191
ncountryc3 �0.00157 0.00044 �3.60 <0.001 �0.00243 �0.00071
nclaimc 0.02611 0.00352 7.42 <0.001 0.01922 0.03301
nclaimc2 �0.00046 0.00036 �1.30 0.195 �0.00116 0.00024
nclaimc3 0.00000 0.00000 0.18 0.855 �0.00002 0.00002
biopharm 0.15504 0.05564 2.79 0.005 0.04598 0.26410
ustwin �0.00288 0.04338 �0.07 0.947 �0.08791 0.08215
patus �0.09502 0.04715 �2.02 0.044 �0.18743 �0.00260
patgsgr �0.20185 0.05446 �3.71 <0.001 �0.30859 �0.09511
opp 0.37154 0.04253 8.74 <0.001 0.28819 0.45489

is well suited for analyzing regression data when the errors "i have (at least
approximately) a normal distribution. In this case, the response variables yi , for
given covariate vector xi , are (conditionally) independent and follow a normal
distribution with

yi � N.�i ; �2/; �i D E.yi / D x0
i ˇ:

In many applications, the response variable cannot be negative, for example, in
case of life times, claim sizes, and costs. Such responses are also usually highly
non-normal, often following a (right) skewed distribution.

Lognormal Model
To enable the application of linear models, the response variable y is often
transformed logarithmically such that a usual linear model with normal errors can
be assumed for Qy D log.y/, i.e.,

Qyi D x0
i ˇ C "i or Qyi � N.x0

i ˇ; �2/:

This implies that the original variable y follows a log-normal distribution (see
Definition B.6 in Appendix B.1) with

E.yi / D exp.x0
i ˇ C �2=2/; Var.yi / D exp.2x0

i ˇ C �2/.exp.�2/ � 1/: (5.13)

We can obtain “plug-in” estimators for Eq. (5.13), using the least squares estimates
Ǒ and the estimated variance O�2 for the linear model. When estimating O�i D

exp. O�i / D exp.xi
Ǒ C O�2=2/, considerable bias can be induced by the nonlinear

back-transformation with the exponential function.
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Fig. 5.3 Number of citations from patents: linear (- - -) and nonlinear (—) effects of the
continuous covariates year, ncountry, and nclaim

Gamma Regression
To circumvent this difficulty, the assumption of a gamma distribution (see Defini-
tion B.9 in Appendix B.1), with expectation E.yi / D �i and scale parameter 
 for
the response variables yi , can be a valuable alternative. The variance is then given
by

Var.yi / D �2
i D �2

i =
:

For the nonnegative, gamma-distributed response, we have E.yi / D �i > 0. A direct
linear link

�i D x0
i ˇ

is again problematic, since we have to comply with the condition x0
i ˇ > 0. Thus a

multiplicative exponential model

�i D exp.�i / D exp.x0
i ˇ/ D exp.ˇ0/exp.ˇ1xi1/ � : : : � exp.ˇkxik/; (5.14)

with response function h.�/ D exp.�/, is often better suited than the linear link
function.
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Another possible choice for the response or link function is the reciprocal

�i D 1

�i

D 1

x0
iˇ

.

Since x0
i ˇ > 0 has to be fulfilled, the choice again implies restrictions for ˇ.

Even though the reciprocal response function is the so-called natural or canonical
response function for the gamma distribution (see Sect. 5.4), the multiplicative expo-
nential model (5.14) is usually more adequate for both modeling and interpretation.

5.4 Generalized Linear Models

5.4.1 General Model Definition

The linear model and the regression models for non-normal response variables
described in the preceding sections have common properties that can be summarized
in a unified framework:
1. The mean � D E.y/ of the response y is connected with the linear predictor

� D x0ˇ by a response function h or by a link function g D h�1:

� D h.�/ or � D g.�/:

2. The distribution of the response variables (normal, binomial, Poisson, and
gamma distribution) can be written in the form of a univariate exponential family:

5.4 Exponential Family

The density of a univariate exponential family for the response variable y is
defined by

f .y j �/ D exp

�
y� � b.�/

�
w C c.y; �; w/

�
:

The log-density is given by

log f .y j �/ D y� � b.�/

�
w C c.y; �; w/:

The parameter � is called the natural or canonical parameter. For the function
b.�/ it is required that f .y j �/ can be normalized and the first and second
derivative b0.�/ and b00.�/ exist. The second parameter � is a dispersion
parameter, while w is a known value (usually a weight).
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As a consequence, both the definition of GLMs and the corresponding statistical
inference can be presented in a unified framework. More generally, the resulting
concepts can also be applied to regression problems with distributions that do
not belong to the exponential family. To treat individual data and grouped data
simultaneously, we introduce the weight factor w. For individual data, we set w D 1,
whereas in the case when the response is summarized as a group mean, w is rather
set to the corresponding group size. In the case when the sum of the individual
responses of group i is selected for the response variable yi , the weight equals 1=ni .

The Bernoulli and Poisson distributions do not include a dispersion parameter,
i.e., � D 1. For the normal distribution, we have � D �2. The parameter � represents
the parameter of main interest that is connected to the linear predictor � D x0ˇ,
while the parameter � is often considered a “nuisance parameter” of secondary
interest. The term c.y; �; a/ does not depend on � . It can be shown that

E.y/ D � D b0.�/; Var.y/ D � b00.�/=w:

Example 5.8 Bernoulli, Poisson, and Normal Distribution
1. Bernoulli distribution: A Bernoulli variable has probability mass function or (discrete)

density
f .y j �/ D P.Y D y/ D �y.1 � �/1�y; y D 0; 1;

where P.Y D 1/ D � D E.Y / D � and Var.Y / D �.1 � �/. Taking the logarithm
yields

log.f .y j �// D ylog.�/ � ylog.1 � �/ C log.1 � �/:

If we define � D log.�/� log.1��/ D log.�=.1��// as the natural parameter and
take log.1 � �/ D �log.1 C exp.�// into account, we obtain the density in the form of
an exponential family:

f .y j �/ D exp.y� � log.1 C exp.�//;

with b.�/ D log.1 C exp.�//, � D 1 and c D 0. Differentiation results in b0.�/ D
exp.�/=.1Cexp.�// and b00.�/ D exp.�/=.1Cexp.�//2 . Solving � D log.�=.1��//

for � results in
� D exp.�/=.1 C exp.�// ;

so that
E.y/ D b0.�/ D �; Var.y/ D b00.�/ D �.1 � �/

holds.
2. Poisson distribution: A Poisson variable has the (discrete) density

f .y j 	/ D P.Y D y/ D 	y exp.�	/

yŠ
; y D 0; 1; : : :

The logarithm of this density results in

log.f .y j 	// D ylog.	/ � 	 � log.yŠ/:

With � D log.	/ as the natural parameter, we obtain

log.f .y j �// D y� � exp.�/ � log.yŠ/:
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Table 5.12 Univariate exponential families

(a) Density

f .y j �; �; w/ D exp

�
y� � b.�/

�
w C c.y; �; w/

�

(b) Exponential family parameters

Distribution �.�/ b.�/ �

Normal N.�; �2/ � �2=2 �2

Bernoulli B.1; �/ log.�=.1 � �// log.1 C exp.�// 1

Poisson Po.	/ log.	/ exp.�/ 1

Gamma G.�; 
/ �1=� � log.��/ 
�1

Inverse
Gaussian IG.�; �2/ �1=.2�2/ �.�2�/1=2 �2

(c) Expectation and variance

Distribution E.y/ D b0.�/ b00.�/ Var.y/ D b00.�/�=w

Normal � D � 1 �2=w

Bernoulli � D exp.�/

1Cexp.�/
�.1 � �/ �.1 � �/=w

Poisson 	 D exp.�/ 	 	=w
Gamma � D �1=� �2 �2
�1=w
Inverse
Gaussian � D .�2�/�1=2 �3 �3�2=w

It follows that b.�/ D exp.�/ D 	, � D 1 and c.y; �/ D �log.yŠ/. With b0.�/ D
b00.�/ D exp.�/ D 	, we obtain

E.y/ D � D 	; Var.y/ D 	;

i.e., the equality of expectation and variance that is characteristic for Poisson variables.
3. Normal distribution: The density of the normal distribution is

f .y j �/ D 1

.2��2/1=2
exp

�
� 1

2�2
.y � �/2

�
;

where � D E.y/ is the parameter of interest and �2 D Var.y/ is the nuisance parameter.
The density can be written in the form of an exponential family

f .y j �/ D exp

�
� y2

2�2
C y�

�2
� �2

2�2
� 1

2
log.2��2/

�

D exp

�
y� � �2=2

�2
� y2

2�2
� 1

2
log.2��2/

�

with � D �, � D �2, b.�/ D �2=2 D �2=2 and c.y; �/ D �y2=.2�2/ �
0:5 log.2��2/. It follows, as expected, that

b0.�/ D � D � D E.y/; b00.�/ D 1

and thus
Var.y/ D �b00.�/ D �2:

4
Similarly, one can derive the properties for the other distributions; see the

summary in Table 5.12.



304 5 Generalized Linear Models

5.5 Generalized Linear Model

Distributional Assumptions

For given covariates xi D .1; xi1; : : : ; xik/0, the response variables are
(conditionally) independent and the (conditional) density of yi belongs to
an exponential family with

f .yi j �i / D exp

�
yi �i � b.�i /

�
wi C c.yi ; �; wi /

�
:

The parameter �i is the natural parameter and � is a common dispersion
parameter, independent of i . For E.yi / D �i and Var.yi /, we have

E.yi / D �i D b0.�i /; Var.yi / D �2
i D � b00.�i /=wi :

The weight parameter wi is 1 for ungrouped data (i D 1; : : : ; n). In the
case when the sum of the individual responses of group i is selected for
the response variable yi , the weight equals 1=ni for grouped data (i D
1; : : : ; G). Note wi D ni when the group mean, rather than the sum, is
selected.

Structural Assumptions

The (conditional) mean �i is connected to the linear predictor �i D x0
i ˇ D

ˇ0 C ˇ1xi1 C : : : C ˇkxik through

�i D h.�i / D h.x0
i ˇ/ or �i D g.�i /;

where

h is a (one-to-one and twice differentiable) response function and
g is the link function, i.e., the inverse g D h�1.

In summary, a specific GLM is completely determined by the type of the
exponential family (Gaussian, binomial, Poisson, gamma, inverse Gaussian), the
choice of the link or response function, and the definition and selection of covariates.

The choice of an appropriate response or link function is, as presented in the pre-
ceding examples, dependent on the type of the response variable. Every exponential
family has a unique canonical (or natural) link function, defined by �i D �i D x0

i ˇ.
According to Table 5.12, the linear model �i D �i D x0

i ˇ corresponds to the natural
link function for the normal distribution, whereas the logit model is obtained in
binary regression models, and the log-linear model results for Poisson models.
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5.6 Maximum Likelihood Estimation in GLMs

Definition

The ML estimator Ǒ maximizes the (log-)likelihood and is defined as the
solution

s. Ǒ/ D 0

of the score function given by

s.ˇ/ D
X

xi

h0.�i /

�2
i

.yi � �i / D X 0D˙ �1.y � �/;

where D D diag.h0.�1/; : : : ; h0.�n//, ˙ D diag.�2
1 ; : : : ; �2

n / and � D
.�1; : : : ; �n/0 is the vector of expectations E.yi / D �i D h.�i /.
The Fisher matrix is

F .ˇ/ D
X

xi x
0
i Qwi D X 0W X

where W D diag. Qw1; : : : ; Qwn/ is the diagonal matrix of working weights

Qwi D .h0.�i //
2

�2
i

:

Numerical Computation

The ML estimator Ǒ is obtained iteratively using Fisher scoring in form of
iteratively weighted least squares estimates

Ǒ.tC1/ D .X 0W .t/X/�1X 0W .t/ Qy .t/; t D 0; 1; 2; : : :

with working weights and observations given in Eqs. (5.17) and (5.16).

For canonical link functions, the log-likelihood is always concave so that the ML
estimator is always unique (if it exists). Moreover, it can be shown that the expected
and observed information matrix coincide, i.e., F.ˇ/ D H.ˇ/.
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5.4.2 Likelihood Inference

Inference in GLMs is again based on the likelihood principle. Let

X D

0
B@

x0
1
:::

x0
n

1
CA D

0
B@

1 x11 � � � x1k

:::
:::

1 xn1 � � � xnk

1
CA

be the design matrix with rk.X/ D p. In Sect. 5.8.2 we derive the log-likelihood
l.ˇ/, score function s.ˇ/, and Fisher information F .ˇ/; see Box 5.6 for a summary.
Based on the score function and the Fisher information, Sect. 5.8.2 also shows that
the ML estimator for ˇ can be iteratively obtained as

Ǒ.tC1/ D �
X 0W .t/X

	�1
X 0W .t/ Qy .t/; t D 0; 1; 2; : : : : (5.15)

Here, Qy.t/ D
�

Qy1

�
O�.t/
1

�
; : : : ; Qyn

�
O�.t/
n

��0
is a vector of “working observations” with

elements

Qyi

�
O�.t/
i

�
D O�.t/

i C
�
yi � h

�
O�.t/
i

��

h0
�

O�.t/
i

� ; (5.16)

where O�.t/
i D x0

i
Ǒ.t/ is the actual predictor, h is the response function, and h0.�/ D

@h.�/=@� is the derivative of h with respect to �. The matrix

W .t/ D diag
�

Qw1

�
O�.t/
1

�
; : : : ; Qwn

� O�.t/
n

	�

is a diagonal matrix of the “working weights”

Qwi

�
O�.t/
i

�
D
�
h0
�

O�.t/
i

��2

�2
i

�
O�.t/
i

� ; (5.17)

where �2
i

�
O�.t/
i

�
is the (conditional) variance Var.yi / evaluated at � D O�.t/

i . The

required quantities to compute the weighted least squares estimator can be easily
obtained from Table 5.12. A key role in the iterations Eq. (5.15) plays the Fisher
matrix F .ˇ/ D X 0W X . Since the elements Qwi of the diagonal matrix W depend on
the covariates xi and on ˇ, invertibility of F .ˇ/ in Eq. (5.15) does not follow from
the invertibility of X 0X (or equivalently the full rank of X ) in general. However,
usually (almost) all of the weights are positive such that F .ˇ/ is invertible, which
we assume in the following. Then, according to the stopping criterion, the algorithm
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5.7 Asymptotic Properties of the ML Estimator

Let Ǒ
n denote the ML estimator based on a sample of size n. Under regularity

conditions, Ǒ
n is consistent and asymptotically normal:

Ǒ
n

a� N.ˇ; F �1.ˇ//:

This result holds even if the estimator F . Ǒ/ replaces F .ˇ/.

typically converges close to a maximum after a number of iterative steps. With
the natural link function, it can be shown that the achieved maximum is unique.
However, this statement does not hold in general and therefore several different
starting values should be used to help ensure the global maximum is achieved.

Asymptotic Properties of ML Estimates
As in section “Asymptotic Properties of the Least Squares Estimator” of Sect. 3.2.3
we index the model quantities with the number of observations n. For regressors
with compact support, .X 0

nXn/�1 ! 0 or 	min.X 0
nXn/ ! 1 are sufficient for

asymptotic normality and weak consistency in case of models with canonical link
function (where 	min denotes the smallest eigenvalue of X 0

nXn). Compare also
section “Asymptotic Properties of the Least Squares Estimator” of Sect. 3.2.3 for
a brief discussion and some examples of these conditions. For non-canonical link
function, stronger conditions on the limiting behavior of X 0

nX n have to be imposed.
If, in the case of stochastic regressors, the observations .yi ; xi / are independent and
identically distributed, e.g., .y; x/, and comply with the assumptions of a general
linear model, asymptotic normality follows under mild regularity conditions on the
marginal distribution of x.

Under the same assumptions, Ǒ
n asymptotically exists with probability 1, i.e.,

lim
n!1 P. Ǒ

n exists/ D 1:

Details and general proofs can be found in Fahrmeir and Kaufmann (1985).
The inverse of the Fisher information matrix F .ˇ/, evaluated at the ML estimator

Ǒ, is the asymptotic or approximate covariance matrix A D F �1. Ǒ/ of Ǒ. The
diagonal element ajj is an estimator for the variance �2

j D Var. Ǒ
j / of the j th

component and
p

ajj for the standard deviation �j .

Estimation of the Scale or Overdispersion Parameter
Recall that Var.yi / D � b00.�i /=wi for general exponential families. Denote by
v.�i / D b00.�i / the so-called variance function; see Table 5.12 for the specific
expression of b00. Note that b00.�i / implicitly depends on �i through the relation
b0.�i / D �i .
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Using the variance function the dispersion parameter can then be estimated
consistently by

O� D 1

G � p

GX
iD1

.yi � O�i /
2

v. O�i /=ni

;

where p denotes the number of regression parameters, O�i D h.x0
i

Ǒ/ is the estimated
expectation, v. O�i / is the estimated variance function, and the data should be grouped
as much as possible. We then substitute O� for � in every term containing �, as, for
example, in F . Ǒ/.

Testing Linear Hypotheses
For testing linear hypotheses

H0 W C ˇ D d versus H1 W C ˇ 6D d ;

where C has a full row rank r � p, we can use the likelihood ratio statistic lr ,
the Wald statistic w, and the score statistic u as discussed in more detail for binary
responses in Sect. 5.1.3; see also Appendix B.4.4 (p. 662) for a general presentation
of likelihood-based hypothesis testing. In the corresponding definitions, the specific
formulae for the chosen GLM have to be used for l.ˇ/, s.ˇ/, and F.ˇ/. Under
conditions similar to those for the asymptotic results on ML estimation, we have
lr; w; s

a� �2
r , allowing for the computation of appropriate critical values and

(approximate) p-values.

Criteria for Model Fit and Model Selection
The Pearson statistic

�2 D
GX

iD1

.yi � O�i /
2

v. O�i /=wi

and the deviance

D D �2

GX
iD1

fli . O�i / � li . Nyi /g

are the two most common global statistics to verify the fit of a model relative to the
saturated model. Here, O�i and v. O�i / are the estimated expectations and variance
functions, respectively, and the i th log-likelihood contribution of the saturated
model is li . Nyi /; where Nyi replaces �i . This results in the maximum possible value of
the log-likelihood. For both model fit statistics, the data should be grouped as much
as possible. When ni is sufficiently large in all groups i D 1; : : : ; G, both statistics
are approximately or asymptotically (for n ! 1) ��2.G � p/-distributed, where
p denotes the number of estimated parameters. In this situation, we can use both
statistics for formal testing of model fit, i.e., for comparing the estimated model fit
to that of the saturated model. For small ni , especially for ni D 1, such formal tests
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5.8 Testing Linear Hypotheses

Hypotheses

H0 W C ˇ D d versus H1 W C ˇ 6D d :

Test Statistics
1. Likelihood ratio statistic: lr D �2fl. Q̌/ � l. Ǒ/g
2. Wald statistic: w D .C Ǒ � d/0ŒC F �1. Ǒ/C 0��1.C Ǒ � d/

3. Score statistic: u D s0. Q̌/F �1. Q̌/s. Q̌/
where Q̌ is the ML estimator under H0.

Test Decision

For large n and under H0, we have the asymptotic results

lr; w; u
a� �2

r

where r is the (full) row rank of C . We reject H0 when

lq; w; u > �2
r.1 � ˛/:

can be problematic, even with a large sample size n. Large values of �2 or D then
will not necessarily indicate a poor model fit.

The AIC for model selection is defined generally as

AIC D �2l. Ǒ/ C 2p :

If the model contains a dispersion parameter �, as is the case with the normal
distribution, its maximum likelihood estimator should be substituted into the
respective model. Accordingly, the total number of parameters must be increased
to p C 1.

5.5 Quasi-likelihood Models

For GLMs, the response is assumed to be a member of the exponential family, e.g.,
the Gaussian, Poisson, or binomial distribution. This distributional assumption, in
combination with the mean structure E.y/ D � D h.x0ˇ), implies a specific
variance structure Var.y/ D � b00.�/=w, where the variance function v.�/ D
b00.�/ is determined by the exponential family. If the empirical variance does not
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comply with the estimated variance O� b00. O�/=w, the distribution of the data will be
incorrectly specified, i.e., the data do not agree with the chosen distribution from the
exponential family.

Quasi-likelihood models allow for a separate specification of the mean and the
variance structure. Furthermore, it is not necessary that these specifications corre-
spond to a proper likelihood function. It suffices to specify a correct expectation
structure E.y/ D h.x0ˇ/, together with a “working” variance structure �2

i , and
to define parameter estimates as the roots of a quasi-score function or generalized
estimating equation (GEE) that has the same form as in usual GLMs; see the formula
for s.ˇ/ in Box 5.6.

We then start directly with the specification of a generalized estimating function

s.ˇ/ D
nX

iD1

xi

h0.�i /

�2
i

.yi � �i /: (5.18)

Similar as in the score function of Box 5.6 that was obtained as the derivative of the
log-likelihood of a GLM, we assume that the expectation �i D h.x0

i ˇ/ of yi given
xi is correctly specified with

E.yi / D �i D h.x0
i ˇ/:

We then have

E.s.ˇ// D
nX

iD1

xi

h0.�i /

�2
i

.E.yi / � �i / D 0;

as for a real score function, a property that is crucial for the consistency of parameter
estimates.

In contrast, it is not necessary that the specified variance �2
i in Eq. (5.18) equals

the true variance Var.yi /, but it can rather be specified with the help of a given quasi-
variance function v.�/, i.e., �2.�/ D � v.�/=w. We then call �2.�/ D � v.�/=w
the working variance.

The simplest form of a (working) variance function results from overdispersion
in binomial and Poisson models with wi D ni and

�2
i .�i / D �

�i .1 � �i /

ni

or
�2

i .	i / D �	i ;

respectively. In this case, the quasi-score function (5.18) is identical to the score
function of a binomial or Poisson model up to a constant factor 1=�, but it no longer
corresponds to the derivative of a log-likelihood function.

The (working) variance function is often parameterized with another parameter
� as

�2.�/ D �v.�I �/:
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An important special case is
v.�I �/ D �� ;

where we obtain the variance function of the Gaussian, Poisson, gamma, and of the
inverse Gaussian distribution, for � D 0; 1; 2; 3, respectively.

The quasi-ML estimator Ǒ is defined as the root of the quasi-score function, i.e.,
as the solution to the generalized estimating equation (GEE)

s. Ǒ/ D 0:

As in case of ML estimation, the solution is obtained iteratively. The quasi-Fisher
information matrix F .ˇ/ D E.�@s.ˇ/=@ˇ0/ becomes

F .ˇ/ D
nX

iD1

xi x
0
i Qwi ;

with working variance �2
i included in the working weights Qwi D .h0.�i //

2=�2
i .

However, F .ˇ/ differs from V .ˇ/ D Cov.s.ˇ// D E.s.ˇ/s0.ˇ// in general. In
fact, we have

V .ˇ/ D
nX

iD1

xi x
0
i Qwi

�2
0i

�2
i

:

Thus only in the case when the working variances equal the true variances �2
0i we

obtain F .ˇ/ D V .ˇ/ as in ML estimation.
Under regularity assumptions, quasi-ML estimators are consistent and asymptot-

ically normal

ˇ
a� N

�
ˇ; OF �1 OV OF �1

�

with estimates OF D F . Ǒ / and

OV D
nX

iD1

xix
0
i .h

0. O�i //
2 .yi � O�i /

2

�4
i . Ǒ /

for F .ˇ/ and V .ˇ/. Compared with the asymptotic properties of the ML estimator,

only the asymptotic covariance matrix Cov. Ǒ / D OF �1
has to be corrected to the

“sandwich” matrix OA D OF �1 OV OF �1
. Thus, quasi-likelihood models allow consistent

and asymptotically normal estimation of ˇ but with some loss of (asymptotic)
efficiency. To keep this loss minimal, the working variance structure should be not
far off the true variance structure.

5.6 Bayesian Generalized Linear Models

The Bayesian approach for linear models discussed in Sect. 4.4 can, in principle,
be applied to GLMs. However, the application is more complicated both mathemat-



312 5 Generalized Linear Models

ically and numerically. Fully Bayesian inference usually requires the use of MCMC
simulation techniques that are more complex than the corresponding techniques for
linear models. This section gives a brief overview of Bayesian inference in GLMs.
We limit the discussion to models without dispersion parameters, specifically
focusing on binomial and Poisson models. A more complete discussion of Bayesian
GLMs and extensions can be found in Dey, Gosh, and Mallick (2000), as well as in
the corresponding sections in Fahrmeir and Tutz (2001).

In Bayesian GLMs, we assume a prior density p.ˇ/ for the parameter vector ˇ

which is considered a random variable. Similar to Bayesian linear models discussed
in Sect. 4.4 we assume a multivariate Gaussian prior, i.e.,

ˇ � N.m; M /; (5.19)

where m is the prior mean vector and M the prior covariance matrix. A typical
choice is m D 0 and M D I thereby assuming independence among the regression
coefficients. A noninformative prior is obtained by m D 0 and the limit M �1 D 0.
Other choices such as a combination of informative and noninformative priors,
Bayesian ridge and LASSO or spike and slab priors, that have been discussed
extensively for Bayesian linear models, can be used as well. We restrict the
discussion here to the normal prior (5.19) because the only difficulty compared to
linear models is inference regarding the regression coefficients. Inference for the
hyperparameters is typically based on identical MCMC updating steps as for linear
models. The reason is that their full conditionals are independent of the specific
observation model. For instance, the Bayesian LASSO assumes

ˇ1; : : : ; ˇk j �2
1 ; : : : ; �2

k � N.0; diag.�2
1 ; : : : ; �2

k //:

While updating the regression coefficients in the Bayesian LASSO might be
problematic because the full conditional is not Gaussian (see below), updating the
variances �2

j proceeds exactly as described in Sect. 4.4.2.
We now discuss the difficulties involved with Bayesian inference for non-Gaussian

data. According to Bayes’ theorem, inference relies on the posterior density p.ˇ j y/,
given the (conditionally independent) response variables y D .y1; : : : ; yn/0 and
covariates. Suppressing the notational dependence on covariates, this yields

p.ˇ j y/ D L.ˇ j y/ p.ˇ/R
L.ˇ j y/ p.ˇ/ dˇ

/ L.ˇ j y/ p.ˇ/ ; (5.20)

where

L.ˇ j y/ D
nY

iD1

fi .yi j ˇ/

is the likelihood of a given GLM, for example, a binomial logit model or a log-linear
Poisson model. The posterior mean is defined as

E.ˇ j y/ D
Z

ˇ p.ˇ j y/dˇ
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and the corresponding posterior covariance matrix

Cov.ˇ j y/ D
Z

.ˇ � E.ˇ j y//.ˇ � E.ˇ j y//0 p.ˇ j y/ dˇ

provides a measure for the precision of the posterior mean. At first glance, it seems
straightforward to put Bayesian inference into effect. However, the integrations
involved are problematic, as their analytical solution is only possible in a few special
cases. Numerical integration methods are applicable, as long as the dimension of
ˇ remains relatively small (about � 5); extensions to more complex models are
described in the following chapters, yet remain widely intractable. Hence, we have
two options: First, posteriori mode or MAP (maximum a posteriori) estimation, for
which we have to maximize the numerator in Eq. (5.20), or second, fully Bayesian
inference with MCMC techniques.

5.6.1 Posterior Mode Estimation

The posterior mode ǑMAP maximizes the posterior density p.ˇ j y/ or the log-
posterior

log.p.ˇ j y// D l.ˇ/ C log p.ˇ/ ;

where l.ˇ/ is the log-likelihood of the given GLM. For a Gaussian prior

ˇ � N.m; M /; M positive definite;

we obtain the special case

log.p.ˇ j y// D l.ˇ/ � 1

2
.ˇ � m/0M �1.ˇ � m/ ;

where terms independent of ˇ have been left out. Now log.p.ˇ j y// can also be
viewed as a penalized (log-)likelihood, where the penalty term .ˇ � m/0M �1.ˇ �
m/ penalizes large deviations from the prior mean m. This penalization potentially
overcomes the problem of non-existence or divergence of the ML estimators. We
also refer to the estimator ǑMAP as a penalized ML estimator.

For the limiting case M�1 ! 0 of a flat prior

p.ˇ/ / const;

the penalty disappears, which results in the posterior mode estimator equaling the
(unpenalized) ML estimator.

The ridge estimator with shrinkage parameter 	 D 1=.2�2/ results as a special
case with m D 0 and M D �2diag.0; 1; : : : ; 1/; see also section “Bayesian Ridge
Regression” of Sect. 4.4.2. The penalty then simplifies to

	 ˇ0diag.0; 1; : : : ; 1/ˇ D 	.ˇ2
1 C ˇ2

2 C : : : C ˇ2
k/ ;
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and the parameter 	 regularizes shrinkage of the ML estimator Ǒ towards 0 and
therefore stabilizes the ML estimator in cases of large variability.

Estimation of the posterior mode proceeds analogously to ML estimation. With
a Gaussian prior distribution, the score function s.ˇ/ becomes the penalized score
function

sp.ˇ/ D @ log.p.ˇ j y//

@ˇ
D s.ˇ/ � M�1.ˇ � m/

and the Fisher information matrix F .ˇ/ becomes

F p.ˇ/ D �E

�
�@2 log.p.ˇ j y//

@ˇ@ˇ0

�
D F .ˇ/ C M �1 :

Computation is carried out with a modified Fisher scoring algorithm or IWLS
algorithm, in which sp.ˇ/ and F p.ˇ/ replace s.ˇ/ and F .ˇ/, respectively.

Under regularity assumptions, for n ! 1, Ǒ
MAP has an asymptotic (or approxi-

mate) normal distribution with

ǑMAP
a� N

�
ˇ; F �1

p . ǑMAP/
�

;

and, as a consequence, the posterior mode Ǒ
MAP and the (expected) curvature

F �1
p . Ǒ

MAP/ are good approximations of the posterior mean E.ˇ j y/ and of the
posterior covariance matrix Cov.ˇ j y/, respectively.

5.6.2 Fully Bayesian Inference via MCMC Simulation Techniques

Fully Bayesian inference relies on MCMC techniques (see Appendix B.5) for
drawing random numbers from the posterior p.ˇ j y/. Posterior means, medians,
quantiles, variances, etc. are then approximated with their empirical analogues. For
the Gaussian prior ˇ � N.m; M / and also for the limiting case M �1 ! 0 of a
non-informative prior p.ˇ/ / const, we have

p.ˇ j y/ / exp

�
l.ˇ/ � 1

2
.ˇ � m/0M�1.ˇ � m/

�
:

With the exception of some special cases, no closed analytical form exists for
the normalizing constant of this posterior. We therefore use MCMC techniques
for drawing samples ˇ.t/; t D 1; : : : ; T , from p.ˇ j y/. Dellaportas and Smith
(1993) recommend a Gibbs sampler based on adaptive rejection sampling, which
is implemented in the software WinBUGS. We prefer to draw the entire parameter
vector ˇ.t/, in every iteration step t , with a Metropolis–Hastings (MH) algorithm
based on IWLS proposals; see Gamerman (1997) and Lenk and DeSarbo (2000).
IWLS proposals q.ˇ� j ˇ.t//, for the update ˇ.tC1/, rely on a normal distribution
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5.9 Bayesian GLMs

Posterior Distribution

p.ˇ j y/ D L.ˇ j y/p.ˇ/R
L.ˇ j y/p.ˇ/dˇ

/ L.ˇ j y/p.ˇ/;

where L.ˇ j y/ is the likelihood of a GLM and p.ˇ/ is the prior distribu-
tion.

Posterior Mode

The posterior mode ǑMAP maximizes the posterior density p.ˇ j y/. With a
normal prior distribution

ˇ � N.m; M /;

this is equivalent to maximizing the penalized log-likelihood

log.p.ˇ j y// D l.ˇ/ � 1

2
.ˇ � m/0M �1.ˇ � m/ ;

with l.ˇ/ D log L.ˇ j y/. The iterative calculation of ǑMAP via IWLS relies
on the penalized score function and Fisher information matrix

sp.ˇ/ D s.ˇ/ � M�1.ˇ � m/ F p.ˇ/ D F .ˇ/ C M �1:

Fully Bayesian Inference

Fully Bayesian inference is accomplished using an MH algorithm with
IWLS proposals for drawing random numbers from the posterior density
p.ˇ j y/.
Let ˇ.t/ be the actual state of the Markov chain. We then draw the IWLS
proposal ˇ� from a normal distribution density q.ˇ�jˇ.t// with

ˇ� � N.�.t/; .X 0W .t/X C M �1/�1/:

The Fisher matrix F
.t/
p D X 0W .t/X CM �1 is evaluated at the current state

ˇ.t/ and
�.t/ D .F .t/

p /�1.X 0W .t/ Qy .t/ C M �1m/;

with W .t/ D W .ˇ.t// and the current working observations Qy.t/ (defined in
the same way as for ML estimation). The probability of acceptance is then
given by

˛.ˇ� j ˇ.t// D min



L.ˇ�/ p.ˇ�/ q.ˇ.t/ j ˇ�/

L.ˇ.t// p.ˇ.t// q.ˇ� j ˇ.t//

�
;

with the likelihood L.ˇ/ of the GLM evaluated at the proposed and current
value, ˇ� and ˇ.t/, respectively.
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Table 5.13 Number of citations from patents: Bayesian Poisson model

Variable Coefficient Standard deviation 2.5 % Quantile 97.5 % Quantile

intercept 0.156 0.031 0.090 0.218
yearc �0.072 0.003 �0.077 �0.066
ncountryc �0.028 0.004 �0.036 �0.020
nclaimc 0.018 0.001 0.015 0.021
biopharm 0.240 0.032 0.180 0.301
ustwin 0.003 0.025 �0.043 0.054
patus �0.078 0.029 �0.133 �0.019
patgsgr �0.199 0.032 �0.262 �0.138
opp 0.372 0.025 0.321 0.422

having expectation and covariance matrix that are a (first) approximation of the
posterior mode estimator and of the respective covariance matrix. Refer to Box 5.9
for details.

Example 5.9 Number of Citations from Patents—Bayesian Inference
We illustrate Bayesian inference through reanalyzing the log-linear Poisson model of
Example 5.7 (p. 297) with a flat prior p.ˇ/ / const for ˇ. With this choice, the posterior
mean obtained from a fully Bayesian model specification and the ML estimator, which is
identical to the posterior mode, should not differ too much from each other. Table 5.13
contains the posterior mean estimates, as well as the posterior standard deviations and
quantiles, for the Bayesian Poisson model with purely linear effects. Table 5.14 contains
the corresponding results obtained with nonlinear effects for the continuous covariates.
The results are based on bayesreg objects of the software BayesX. We find good
agreement with our previous results based on ML inference. Note, however, that the existing
overdispersion has not been taken into account so that the standard deviations are below the
standard errors of Table 5.11 (p. 299).

The fact that the results of ML and Bayes inference differ only slightly from each other
in this example provokes the following question: What is the advantage of the comparably
computer intensive Bayesian estimator based on MCMC methods? One advantage is that, in
addition to point estimates and confidence intervals, we are also able to estimate the entire
posterior density p .ˇ j y/ based on the sampled random numbers. Figure 5.4 shows kernel
density estimates for the posterior densities p

�
ˇj j y

	
of the covariate effects for ustwin,

patus, and patgsgr, as well as corresponding normal densities with adjusted expectations
and variances. The posterior densities are all close to normality, which should be expected
due to the comparably large sample size in this example. In general, Bayesian inference
with MCMC is especially important for more complex regression models, if asymptotic
normality approximations of likelihood inference are not reliable. 4

5.6.3 MCMC-Based Inference Using Data Augmentation

For a number of response distributions alternative sampling schemes, based on the
representation of the models as latent linear models, can be developed. For binary
response models, the connection to latent linear models has been pointed out in
Sect. 5.1 on p. 274.
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Table 5.14 Number of citations from patents: extended Bayesian Poisson model with nonlinear
effects

Variable Coefficient Standard deviation 2.5 % Quantile 97.5 % Quantile

intercept 0.17022 0.03225 0.10759 0.23645
yearc �0.09897 0.00556 �0.10975 �0.08807
yearc2 �0.00973 0.00131 �0.01242 �0.00723
yearc3 �0.00011 0.00017 �0.00046 0.00022
ncountryc 0.01581 0.00804 �0.00061 0.03318
ncountryc2 �0.00215 0.00124 �0.00456 0.00025
ncountryc3 �0.00158 0.00026 �0.00211 �0.00109
nclaimc 0.02609 0.00208 0.02205 0.03016
nclaimc2 �0.00047 0.00021 �0.00085 �0.00006
nclaimc3 0.00000 0.00000 �0.00000 �0.00001
biopharm 0.15549 0.03254 0.09443 0.21985
ustwin �0.00294 0.02458 �0.05460 0.04415
patus �0.09475 0.02757 �0.14652 �0.04188
patgsgr �0.20191 0.03207 �0.26613 �0.13890
opp 0.37127 0.02506 0.32115 0.42044

We illustrate the alternative sampling approach for binary probit models. Con-
ditional on the covariates and the parameters, yi follows a Bernoulli distribution
yi � B.1; �i / with conditional mean �i D ˚.�i / where ˚ is the cumulative
distribution function of a standard normal distribution. On p. 274, the probit model
was equivalently defined using latent variables

Qyi D x0
i ˇ C "i D �i C "i

with normally distributed errors "i � N.0; 1/. The connection between the binary
responses and the latent variables is yi D 1 if Qyi > 0, and yi D 0 if Qyi � 0.

The idea is to use the latent variable representation rather than the original
formulation for parameter estimation. This approach was first introduced in a paper
by Albert and Chib (1993). The main idea is to consider the latent variables
as additional parameters in the model, and to base posterior inference on the
extended parameter space. Correspondingly, additional sampling steps for updating
the Qyi ’s are required. Fortunately, sampling the Qyi ’s is relatively easy and fast
because the full conditionals are truncated normal distributions (see Definition B.5
in Appendix B.1). More specifically, Qyi j � � TN0;1.�i ; 1/ if yi D 1 and Qyi j � �
TN�1;0.�i ; 1/ if yi D 0. Efficient algorithms for drawing random numbers from
a truncated normal distribution can be found in Geweke (1991) or Robert (1995)
and are implemented in many major statistics packages. The advantage of defining
a probit model through the latent variables Qyi is that the full conditionals for the
regression coefficients ˇ are Gaussian with covariance matrix and mean given by

˙ ˇ D �
X 0X C M�1

	�1
; �ˇ D ˙ ˇ

�
X 0 Qy C M�1m

	
: (5.21)
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Fig. 5.4 Number of citations from patents: estimated posteriori densities for the effects of ustwin,
patus, and patgsgr (solid line) together with a normal approximation (dashed line)

Hence, we can avoid costly MH steps as is the case with IWLS proposals. Instead,
we can resort to the simple Gibbs sampler that was developed for Gaussian
responses with slight modifications. Updating of ˇ can be done exactly as described
in Sect. 4.4.1 (p. 234) using the current values Qyi of the latent variables as (pseudo)
responses. Another distinct advantage of the Gibbs step is that it works even for
high-dimensional parameter vectors, whereas the MH steps with IWLS proposals
may break down because acceptance rates typically go down as the parameter
dimension increases. The price we pay for the simplicity is the additional update
step to draw the latent variables which may be time-consuming in large samples.
Then the MH algorithm with IWLS proposals may be faster.

Summarizing, we obtain the following Gibbs sampler:
1. Define initial values Qy.0/ and ˇ.0/. Set t D 1.
2. Sample Qy.t/ by drawing Qy.t/

i , i D 1; : : : ; n, from TN0;1.�
.t�1/
i ; 1/ if yi D 1 and

Qyi j � � TN�1;0.�
.t�1/
i ; 1/ if yi D 0.
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3. Sample ˇ.t/ by drawing from the Gaussian full conditional with covariance
matrix and mean given in Eq. (5.21) thereby replacing Qy by the actual state Qy .t/.

4. Stop if t D T , otherwise set t D t C 1 and go to 2.
We finally note that the data augmentation trick is not limited to binary probit

models. Similar algorithms have been developed, e.g., for binary logit models,
multi-categorical logit or probit models as outlined in Chap. 6, and Poisson regres-
sion. References to the literature are given in Sect. 5.8.

5.7 Boosting Generalized Linear Models

In Sect. 4.3, we introduced a versatile method for obtaining regularized estimates
in linear regression with the particular advantage of implicit variable selection
(boosting). In fact, the approach can be immediately transferred to the context of
GLMs with rather minor modifications. When considering the generic algorithm in
Box 4.4 (p. 226), the basic ingredients of a boosting algorithm are:
• The specification of a lack-of-fit criterion via a loss function
• The specification of base learning procedures
A suitable loss function in GLMs is given by the negative log-likelihood such that


.�/ D �l.�/ D �
nX

iD1

yi �i � b.�i /

�
wi :

The negative gradients are then still given by

ui D � @

@�

.yi ; �/j

�DO�.t�1/
i

and are, for GLMs, computed as

ui D h0.�i /
.t�1/

.�2
i /.t�1/

�
yi � �

.t�1/
i

�
:

In contrast, no modifications are required for the base learning procedures, and
we can still rely on least squares fits applied to the working responses ui . In
summary, boosting can immediately be adapted to generalized response types by
providing a suitable loss function. While the negative log-likelihood is a natural
choice, different loss functions can in principle be considered. For example, in case
of binary regression, the exponential loss


.�/ D
nX

iD1

exp.�yi �i /

(with yi 2 f�1; 1g instead of yi 2 f0; 1g) is sometimes used as an alternative
popular in the classification literature; see Friedman, Hastie, and Tibshirani (2000)
for details.
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5.8 Bibliographic Notes and Proofs

5.8.1 Bibliographic Notes

Nelder and Wedderburn (1972) introduced GLMs as a general class of models for
response variables with densities belonging to the exponential family of distribu-
tions. Linear, logit, probit, and Poisson models could therefore be subsumed under
one conceptual umbrella, leading to important new stimulations for statistical model
building, methodological developments, and applications. The book McCullagh and
Nelder (1989) gives a detailed outline of GLMs; a more compact introduction can
be found in Fahrmeir and Tutz (2001, Chap. 2). Collett (1991) and Tutz (2011,
Chaps. 2–5) provide a detailed exposition of binary regression models. These books
also give a good overview of methods for model diagnosis that are based on
residuals, developed analogously to the linear model of Chap. 3. In the econometrics
literature GLMs are usually treated within the field of “microeconometrics.”
Standard textbooks on microeconometrics are Cameron and Trivedi (2005) and
Winkelmann (2010a). Kleiber and Zeileis (2008) discuss econometrics models
including GLMs in the software package R.

Several aspects motivated modifications and additions to basic GLMs. For exam-
ple, the response distribution may be difficult to model with univariate exponential
families (as assumed in Sect. 5.4) in some applications. This especially applies to
the following regression situation:
• Regression Models for Count Data: Although Poisson regression, as illustrated

in Sect. 5.2, is the standard model for count data regression, the Poisson
distribution is often too simplistic in applications. Cameron and Trivedi (1998)
and Winkelmann (2010b) describe enhanced regression modeling for count data.
An overview of available count data models in the software package R is given
in Zeileis, Kleiber, and Jackman (2008).

• Life Time (Survival) and Duration Time Models: Life times, duration times, and
waiting times up to a certain event appear in many areas of application. Statistical
analyses are then often complicated by incomplete data due to censoring, e.g.,
when life spans are not terminated until the end of a study period. The Cox model
is the most popular regression model for (censored) life times and is closely
related to Poisson regression. Standard textbooks on survival and duration time
models are Collett (2003), Klein and Moeschberger (2005), Hosmer, Lemeshow,
and May (2008), and Therneau and Grambsch (2000).

• GLMs for Location, Scale, and Shape: For continuous response variables, we
can model the effect of covariates not only on the mean but also on the variance,
skewness, or kurtosis; see Sect. 2.9.1 for a brief introduction and Rigby and
Stasinopoulos (2005) for more details.

• Multivariate Response Variables: If the response y D .y1; : : : ; yc/ consists of
several scalar responses y1; : : : ; yc , this yields multivariate regression. Anderson
(2003) gives an introduction to multivariate linear regression as an extension
of the linear regression model. Components y1; : : : ; yc that do not have a
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normal distribution face the difficulty of finding an appropriate joint distribution.
Copula concepts offer appropriate possibilities (Joe, 1997) especially for con-
tinuous components. Other approaches are quasi-likelihood or marginal models
(Fahrmeir and Tutz, 2001, Chap. 3), and models with latent variables (Skrondal
and Rabe-Hesketh, 2004).
One of the most important extensions of GLMs is the inclusion of nonparametric

and semiparametric approaches that allow for flexible modeling of nonlinear
covariate effects. The resulting model class, e.g., generalized additive models
(GAM), has already been introduced in Chap. 2 and will be discussed in more detail
in Chaps. 8 and 9.

In their original definition, GLMs are especially suited for the regression analysis
of cross-sectional data. Mixed models (Chap. 7) are a popular tool for the analysis
of clustered or longitudinal data. Depending on the goals of a longitudinal study,
autoregressive (or conditional) models including temporally lagged values of the
response variable as additional covariates, or marginal models based on quasi-
likelihood approaches, can be a reasonable alternative for the analysis; see Diggle,
Heagerty, Liang, and Zeger (2002), Fahrmeir and Tutz (2001, Chap. 6), and the
additional comments in Sect. 7.8.

In the early 1990s, Bayesian GLMs and corresponding extensions have seen a
fast development parallel to the spread of MCMC simulation techniques; see Dey
et al. (2000) and corresponding sections in the following chapters. IWLS proposals
for updating the regression coefficients are due to Gamerman (1997); see also Lenk
and DeSarbo (2000) for a slightly modified approach. Estimating Bayesian GLMs
using data augmentation similar as described for probit models works for a variety
of response distributions; see Holmes and Held (2006) and Frühwirth-Schnatter
and Frühwirth (2010) for logit models, Frühwirth-Schnatter and Wagner (2006)
and Frühwirth-Schnatter, Frühwirth, Held, and Rue (2009) for Poisson and gamma
regression.

GLMs with errors in variables have been developed for data situations where
covariates cannot be observed exactly, but only subject to measurement errors.
For details on models of this type, we refer to Carroll, Ruppert, Stefanski, and
Crainiceanu (2006).

5.8.2 Proofs

Derivation of the ML Estimator in GLMs (Sect. 5.4.2)
The ML estimator in GLMs is derived with the following steps:
1. Log-likelihood
The log-likelihood contribution of an observation .yi ; xi / (up to an additive
constant) is given by

li .ˇ/ D log.f .yi j ˇ// D yi �i � b.�i /

�
wi : (5.22)
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Thereby, the log-likelihood depends on the regression parameters ˇ through the
natural parameter �i of the exponential family via

�i D b0.�i / D h.x0
iˇ/:

Due to the (conditional) independence of yi ,

l.ˇ/ D
X

li .ˇ/

is the complete log-likelihood of the sample. To treat individual data (i D 1; : : : ; n)
and grouped data (i D 1; : : : ; G) simultaneously, we omit n or G from the upper
limit of the summation signs.

2. Score function
The score function s.ˇ/ D @l.ˇ/=@ˇ is obtained by applying the chain rule to the
individual score function contributions:

si .ˇ/ D @li .ˇ/=@ˇ D @�i

@ˇ

@�i

@�i

@�i

@�i

@.yi �i � b.�i //

@�i

wi

�
:

The first contribution is simply given by

@�i

@ˇ
D xi :

The second contribution
@�i

@�i

D @h.�i /

@�i

D h0.�i /

depends on the response function h and is therefore specific to a given model. In the
following we use the shortcut:

di D h0.�i /:

The third term is obtained by reversing the nominator and denominator, which yields

@�i

@�i

D @b0.�i /

@�i

D b00.�i / D wi Var.yi /

�
D wi �

2
i

�

and therefore
@�i

@�i

D �

wi �
2
i

:

Finally, we have

@.yi �i � b.�i //

@�i

D yi � b0.�i / D yi � �i :
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Putting these pieces together yields the score function as

s.ˇ/ D
X

xi di

�

wi �
2
i

.yi � �i /
wi

�
D
X

xi

di

�2
i

.yi � �i /

From E.yi / D �i , it follows that E.s.ˇ// D 0 holds.
To express the score function more compactly in matrix notation we define the

vectors
y D .y1; : : : ; yn/0; � D .�1; : : : ; �n/0;

and the diagonal matrices

D D diag.d1; : : : ; dn/; ˙ D diag.�2
1 ; : : : ; �2

n /:

Then we obtain
s.ˇ/ D X 0D˙ �1.y � �/

where D and ˙ are both dependent on ˇ.

3. Information matrix
To derive the Fisher matrix F .ˇ/ D E.s.ˇ/s0.ˇ//, we note that

F .ˇ/ D
X

E.si .ˇ/s0
i .ˇ//:

We obtain

E
�
si .ˇ/s0

i .ˇ/
	 D E

�
xi x

0
i

d 2
i

.�2
i /2 .yi � �i /

2

�

D xi x
0
i

d 2
i

.�2
i /2 E.yi � �i /

2

D xi x
0
i

d 2
i

.�2
i /2 Var.yi /

D xi x
0
i

d 2
i

�2
i

:

This yields
F .ˇ/ D

X
xi x

0
i Qwi ; (5.23)

with the “working weights”

Qwi D d 2
i

�2
i

D �
h0.�i /

	2 wi

b00.�i /�

also depending on ˇ. In matrix notation the Fisher matrix can be written as

F .ˇ/ D X 0W X
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with the diagonal matrix W D diag.: : : ; Qwi ; : : : / of working weights. Note that
W D D2˙ �1.

4. Numerical computation of the ML estimator
Computation of the ML estimator Ǒ is usually based on the Fisher scoring algorithm

Ǒ.tC1/ D Ǒ.t/ C F �1. Ǒ.t//s. Ǒ.t//; t D 0; 1; 2; : : : :

Inserting the formulae for s.ˇ/ and F .ˇ/ we obtain

Ǒ.tC1/ D Ǒ.t/ C .X 0W . Ǒ.t//X/�1X 0D. Ǒ.t//˙ . Ǒ.t//�1.y � �. Ǒ.t///

D .X 0W . Ǒ.t//X/�1X 0W . Ǒ.t//X Ǒ.t/

C.X 0W . Ǒ.t//X/�1XW . Ǒ.t//0D. Ǒ.t//�1.y � �. Ǒ.t///

D .X 0W . Ǒ.t//X/�1X 0W . Ǒ.t//
h
�. Ǒ.t// C D. Ǒ.t//�1.y � �. Ǒ.t///

i
:

Hence the iterations can be expressed as an iteratively weighted least squares
estimator

Ǒ.tC1/ D .X 0W .t/X/�1X 0W .t/ Qy .t/; t D 0; 1; 2; : : :

where Qy .t/ D .: : : ; Qyi . Ǒ.t//; : : : /0 is a “working response vector” with elements

Qyi . Ǒ.t// D x0
i

Ǒ.t/ C d �1
i . Ǒ.t//.yi � O�i . Ǒ.t///;

and W .t/ is the weight matrix, evaluated at ˇ D Ǒ.t/. Replacing in Qwi and Qyi the di

by h0.x0
i

Ǒ.t// and writing the expressions in terms of O�.t/
i D x0

i
Ǒ .t/

rather than Ǒ .t/

we obtain the formulae (5.17) and (5.16) as stated in Sect. 5.4.2.
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