
1Introduction

Sir Francis Galton (1822–1911) was a diverse researcher, who did pioneering
work in many disciplines. Among statisticians, he is especially known for the
Galton board which demonstrates the binomial distribution. At the end of the
nineteenth century, Galton was mainly interested in questions regarding heredity.
Galton collected extensive data illustrating body height of parents and their grown
children. He examined the relationship between body heights of the children and
the average body height of both parents. To adjust for the natural height differences
across gender, the body height of women was multiplied by a factor of 1.08. In
order to better examine this relationship, he listed all his data in a contingency
table (Table 1.1). With the help of this table, he was able to make the following
discoveries:
• Column-wise, i.e., for given average heights of the parents, the heights of the

adolescents approximately follow a normal distribution.
• The normal distributions in each column have a common variance.
• When examining the relationship between the height of the children and the

average height of the parents, an approximate linear trend was found with a slope
of 2/3. A slope with value less than one led Galton to the conclusion that children
of extremely tall (short) parents are usually shorter (taller) than their parents.
In either case there is a tendency towards the population average, and Galton
referred to this as regression towards the mean.

Later, Galton illustrated the data in the form of a scatter plot showing the heights
of the children and the average height of the parents (Fig. 1.1). He visually added
the trend or the regression line, which provides the average height of children as
(average) parent height is varied.

Galton is viewed as a pioneer of regression analysis, because of his regression
analytic study of heredity. However, Galton’s mathematical capabilities were
limited. His successors, especially Karl Pearson (1857–1936), Francis Ysidro
Edgeworth (1845–1926), and George Udny Yule (1871–1951) formalized his work.
Today, linear regression models are part of every introductory statistics book. In
modern terms, Galton studied the systematic influence of the explanatory variable
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Table 1.1 Galton heredity data: contingency table between the height of 928 adult children and
the average height of their 205 set of parents

Average height of parentsHeight of
children 64:0 64.5 65.5 66.5 67.5 68.5 69.5 70.5 71.5 72.5 73.0 Total

73.7 0 0 0 0 0 0 5 3 2 4 0 14

73.2 0 0 0 0 0 3 4 3 2 2 3 17

72.2 0 0 1 0 4 4 11 4 9 7 1 41

71.2 0 0 2 0 11 18 20 7 4 2 0 64

70.2 0 0 5 4 19 21 25 14 10 1 0 99

69.2 1 2 7 13 38 48 33 18 5 2 0 167

68.2 1 0 7 14 28 34 20 12 3 1 0 120

67.2 2 5 11 17 38 31 27 3 4 0 0 138

66.2 2 5 11 17 36 25 17 1 3 0 0 117

65.2 1 1 7 2 15 16 4 1 1 0 0 48

64.2 4 4 5 5 14 11 16 0 0 0 0 59

63.2 2 4 9 3 5 7 1 1 0 0 0 32

62.2 – 1 0 3 3 0 0 0 0 0 0 7

61.7 1 1 1 0 0 1 0 1 0 0 0 5

Total 14 23 66 78 211 219 183 68 43 19 4 928

The unit of measurement is inch which has already been used by Galton (1 inch corresponds to
2.54 cm)
Source: Galton (1889)
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Fig. 1.1 Galton heredity data: scatter plot including a regression line between the height of
children and the average height of their parents

x D “average size of the parents” on the response variable y D “height of grown-up
children.” Explanatory variables are also known as independent variables, regres-
sors, or covariates. Response variables are also known as dependent variables or
target variables. The fact that the linear relationship is not exact, but rather depends
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on random errors, is a main characteristic for regression problems. Galton assumed
the most simple regression model,

y D ˇ0 C ˇ1x C ";

where the systematic component ˇ0 C ˇ1x is linear and " constitutes the random
error. While Galton determined the parameters ˇ0 and ˇ1 of the regression line
in an ad hoc manner, nowadays these regression parameters are estimated via the
method of least squares. The parameters ˇ0 and ˇ1 are estimated using the data
pairs .yi ; xi /, i D 1; : : : ; n, so that the sum of the squared deviations

nX

iD1

.yi � ˇ0 � ˇ1xi /
2

of the observations yi from the regression line ˇ0 C ˇ1xi is minimized. If we apply
this principle to Galton’s data, the estimated slope of the regression line is 0.64, a
value that is fairly close to Galton’s visually determined slope of 2/3.

Interestingly, the method of least squares was already discovered prior to
Galton’s study of heredity. The first publication by the mathematician Adrien Marie
Legendre (1752–1833) appeared in 1805 making the method of least squares one of
the oldest general estimation concepts in statistics. In the eighteenth and nineteenth
century, the method was primarily used to predict the orbits of asteroids. Carl
Friedrich Gauß (1777–1855) became famous for the prediction of the orbit of the
asteroid Ceres, which was discovered in the year 1801 by the astronomer Giuseppe
Piazzi. After forty days of observation, the asteroid disappeared behind the sun.
Since an exact calculation of the asteroid’s orbit was very difficult at that time, it
was impossible to relocate the asteroid. By using the method of least squares, the
twenty-four-year-old Gauß was able to give a feasible prediction of the asteroid’s
orbit. In his book “Theoria Motus Corporum Coelestium in Sectionibus Conicis
Solem Ambientium” (1809), Gauß claimed the discovery of the method of least
squares. Sometime later, Gauß even stated to have used this method since 1795
(as an eighteen year old), which provoked a priority dispute between Legendre and
Gauß. Fact is that Gauß’s work is the basis of the modern linear regression model
with Gaussian errors.

Since the discovery of the method of least squares by Legendre and Gauß and
the first regression analysis by Francis Galton, the methodology of regression has
been improved and developed in many ways, and is nowadays applied in almost all
scientific disciplines. The aim of this book is to give a modern introduction of the
most important techniques and models of regression analysis and their application.
We will address the following models in detail:
• Regression models: In Chap. 2, we present the different model classes without

technical details; the subsequent chapters provide a thorough presentation of each
of these models.
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• Linear models: In Chaps. 3 and 4, we present a comprehensive introduction into
linear regression models, including recent developments.

• Generalized linear models: In Chaps. 5 and 6, we discuss generalized linear
models. These are especially suitable for problems where the response variables
do not follow a normal distribution, including categorical response variables or
count data.

• Mixed models: In Chap. 7, we present mixed models (models with random
effects) for clustered data. A main focus in this chapter will be the analysis of
panel and longitudinal data.

• Univariate, bivariate, and spatial smoothing: In Chap. 8, we introduce univariate
and bivariate smoothing (nonparametric regression). These semiparametric and
nonparametric methods are suitable to estimate complex nonlinear relationships
including an automatic determination of the required amount of nonlinearity.
Methods of spatial smoothing will also be discussed in detail.

• Structured additive regression: In Chap. 9, we present a unifying framework that
combines the methods presented in Chap. 8 into one all-encompassing model.
Structured additive regression models include a variety of special cases, for
example, nonparametric and semiparametric regression models, additive models,
geoadditive models, and varying-coefficient models. This chapter also illustrates
how these models can be put into practice using a detailed case study.

• Quantile regression: Chapter 10 presents an introduction to quantile regression.
While the methods of the previous chapters are more or less restricted to
estimating the (conditional) mean depending on covariates, quantile regression
allows to estimate the (conditional) quantiles of a response variable depending
on covariates.
For the first time, this book presents a comprehensive and practical presentation

of the most important models and methods of regression analysis. Chapter 2 is
especially innovative, since it illustrates all model classes in a unified setting without
focusing on the (often complicated) estimation techniques. The chapter gives the
reader an overview of modern methods of regression and, at the same time, serves
as a guide for choosing the appropriate model for each individual problem.

The following section illustrates the versatility of modern regression models to
examine scientific questions in a variety of disciplines.

1.1 Examples of Applications

This book illustrates models and techniques of regression analysis via several
applications taken from a variety of disciplines. The following list gives an
overview:
• Development economics: Analysis of socioeconomic determinants of childhood

malnutrition in developing countries
• Hedonic prices: Analysis of retail prices of the VW-Golf model
• Innovation research: Examination of the probability of opposition against patents

granted by the European patent office
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• Credit scoring: Analysis of the creditability of private bank customers
• Marketing research: Analysis of the relationship between the weekly unit sales

of a product and sales promotions, particularly price variations
• Rent index: Analysis of the dependence between the monthly rent and the type,

location, and condition of the rented apartment
• Calculation of risk premium: Analysis of claim frequency and claim size of motor

vehicle insurance in order to calculate the risk premium
• Ecology: Analysis of the health status of trees in forests
• Neuroscience: Determination of the active brain area when solving certain

cognitive tasks
• Epidemiologic studies and clinical trials:

– Impact of testosterone on the growth of rats
– Analysis of the probability of infection after Caesarean delivery
– Study of the impairment to pulmonary function
– Analysis of the life span of leukemia patients

• Social science: Analysis of speed dating data
Some of the listed examples will play a central role in this book and will now be

discussed in more detail.

Example 1.1 Munich Rent Index
Many cities and communities in Germany establish rent indices in order to provide the renter
and landlord with a market review for the “typical rent for the area.” The basis for this index
is a law in Germany that defines the “typical rent for the area” as the common remuneration
that has been stipulated or changed over the last few years for price-maintained living area
of comparable condition, size, and location within a specific community. This means that the
average rent results from the apartment’s characteristics, size, condition, etc. and therefore
constitutes a typical regression problem. We use the net rent—the monthly rental price,
which remains after having subtracted all running costs and incidentals—as the response
variable. Alternatively, we can use the net rent per square meter as the response.

Within the scope of this book and due to data confidentiality, we confine ourselves to
a fraction of the data and variables, which were used in the rent index for Munich in the
year 1999. We use the 1999 data since more recent data is either not publicly available
or less adequate for illustration purposes. The current rent index of Munich including
documentation can be found at www.mietspiegel.muenchen.de (in German only).

Table 1.2 includes names and descriptions of the variables used in the subsequent
analyses. The data of more than 3,000 apartments were collected by representative random
sampling.

The goal of a regression analysis is to model the impact of explanatory variables (living
area, year of construction, location, etc.) on the response variable of net rent or net rent per
square meter. In a final step, we aim at representing the estimated effect of each explanatory
variable in a simpler form by appropriate tables in a brochure or on the internet.

In this book, we use the Munich rent index data mainly to illustrate regression models
with continuous responses (see Chaps. 2–4, 9, and 10). In doing so, we use simplified
models for illustration purposes. This implies that the results do not always correspond
to the official rent index. 4

Example 1.2 Malnutrition in Zambia
The World Health Organization (WHO) has decided to conduct representative household
surveys (demographic and health surveys) in developing countries on a regular basis.
Among others, these surveys consist of information regarding malnutrition, mortality, and

www.mietspiegel.muenchen.de
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Table 1.2 Munich rent index: description of variables including summary statistics

Mean/ Std.-
Variable Description frequency in % dev. Min/max

rent Net rent per month
(in Euro)

459.43 195.66 40.51/1,843.38

rentsqm Net rent per month per
square meter (in Euro)

7.11 2.44 0.41/17.72

area Living area in square meters 67.37 23.72 20/160
yearc Year of construction 1,956.31 22.31 1918/1997
location Quality of location

according to an expert
assessment

1 D average location 58.21
2 D good location 39.26
3 D top location 2.53

bath Quality of bathroom
0 D standard 93.80
1 D premium 6.20

kitchen Quality of kitchen
0 D standard 95.75
1 D premium 4.25

cheating Central heating
0 D without central heating 10.42
1 D with central heating 89.58

district District in Munich

health risks for children. The American institute Macro International collects data from over
50 countries. This data is freely available at www.measuredhs.com for research purposes.
In this book, we look at an exemplary profile of a data set for Zambia taken in the year 1992
(4,421 observations in total). The Republic of Zambia is located in the south of Africa and
is one of the poorest and most underdeveloped countries of the world.

One of the most serious problems of developing countries is the poor and often
catastrophic nutritional condition of a high proportion of the population. Immediate
consequences of malnutrition are reduced productivity and high mortality. Within the scope
of this book, we will analyze the nutritional condition of children who are between 0 and
5 years old. The nutritional condition of children is usually determined by an anthropometric
measure called Z-score. A Z-score compares the anthropometric status of a child, for
example, a standardized age-specific body height, with comparable measures taken from
a reference population. Until the age of 24 months, this reference population is based on
white US-American children from wealthy families with a high socioeconomic status. After
24 months, the reference population changes and then consists of a representative sample
taken from all US-American children. Among several possible anthropometric indicators,
we use a measure for chronic malnutrition, which is based on body height as indication for
the long-term development of the nutritional condition. This measure is defined as

zscorei D hi � mh

�
;

for a child i , where hi represents the height of the child, mh represents the median height
of children belonging to the reference population of the same age group, and � refers to the
corresponding standard deviation for the reference population.

www.measuredhs.com
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Table 1.3 Malnutrition in Zambia: description of variables including summary statistics

Mean/ Std-
Variable Description frequency in % dev. Min/max

zscore Child’s Z-score �171.19 139.34 �600/503
c gender Gender

1 D male 49.02
0 D female 50.98

c breastf Duration of breast-feeding in months 11.11 9.42 0/46
c age Child’s age in months 27.61 17.08 0/59
m agebirth Mother’s age at birth in years 26.40 6.87 13.16/48.66
m height Mother’s height in centimeter 158.06 5.99 134/185
m bmi Mother’s body mass index 21.99 3.32 13.15/39.29
m education Mother’s level of education

1 D no education 18.59
2 D primary school 62.34
3 D secondary school 17.35
4 D higher education 1.72

m work Mother’s work status
1 D mother working 55.25
0 D mother not working 44.75

region Region of residence in Zambia
1 D Central 8.89
2 D Copperbelt 21.87
3 D Eastern 9.27
4 D Luapula 8.91
5 D Lusaka 13.78
6 D Northern 9.73
7 D North western 5.88
8 D Southern 14.91
9 D Western 6.76

district District of residence in Zambia (55 districts)

The primary goal of the statistical analysis is to determine the effect of certain
socioeconomic variables of the child, the mother, and the household on the child’s nutri-
tional condition. Examples for socioeconomic variables are the duration of breastfeeding
(c breastf ), the age of the child (c age), the mother’s nutritional condition as measured by
the body mass index (m bmi/, and the mother’s level of education as well as her work status
(m education and m work). The data record also includes geographic information such as
region or district where the mother’s place of residence is located. A description of all
available variables can be found in Table 1.3.

With the help of the regression models presented in this book, we will be able to pursue
the aforementioned goals. Geoadditive models (see Sect. 9.2) are employed in particular.
These also allow an adequate consideration of spatial information in the data. The data are
analyzed within a comprehensive case study (see Sect. 9.8), which illustrates in detail the
practical application of many techniques and methods presented in this book. 4
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Table 1.4 Patent opposition: description of variables including summary statistics

Mean/ Std-
Variable Description frequency in % dev. Min/max

opp Patent opposition
1 D yes 41.49
0 D no 58.51

biopharm Patent from biotech/pharma
sector

1 D yes 44.31
0 D no 55.69

ustwin US twin patent exists
1 D yes 60.85
0 D no 39.15

patus Patent holder from the USA
1 D yes 33.74
0 D no 66.26

patgsgr Patent holder from Germany,
Switzerland, or Great
Britain

1 D yes 23.49
0 D no 76.51

year Grant year
1980 0.18
:
:
:

:
:
:

1997 1.62
ncit Number of citations for the

patent
1.64 2.74 0/40

ncountry Number of designated states
for the patent

7.8 4.12 1/17

nclaims Number of claims 13.13 12.09 1/355

Example 1.3 Patent Opposition
The European Patent Office is able to protect a patent from competition for a certain period
of time. The Patent Office has the task to examine inventions and to declare patent if
certain prerequisites are fulfilled. The most important requirement is that the invention
is something truly new. Even though the office examines each patent carefully, in about
80 % of cases competitors raise an objection against already assigned patents. In the
economic literature the analysis of patent opposition plays an important role as it allows
to (indirectly) investigate a number of economic questions. For instance, the frequency of
patent opposition can be used as an indicator for the intensity of the competition in different
market segments.

In order to analyze objections against patents, a data set with 4,866 patents from the
sectors biotechnology/pharmaceutics and semiconductor/computer was collected. Table 1.4
lists the variables contained in this data set. The goal of the analysis is to model the
probability of patent opposition, while using a variety of explanatory variables for the binary
response variable “patent opposition” (yes/no). This corresponds to a regression problem
with a binary response.
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A possible explanatory variable is how often a patent has been cited in succeeding patents
(variable ncit). Citations of patents are somewhat comparable to citations of scientific
papers. Empirical experience and economic arguments indicate that the probability of an
objection against a patent increases the more often it is cited. Regression models for binary
response variables can formulate and examine this particular and other hypotheses. In this
book the data set on patent opposition is primarily used to illustrate regression models with
binary responses; see Chaps. 2 and 5. 4

Example 1.4 Forest Health Status
Knowledge about the health status of trees in a forest and its influencing factors is important
from an ecological and economical point of view. This is the reason why Germany (and
many other countries) conducts annual surveys regarding the condition of the forest. The
data in our example come from a specific project in the forest of Rothenbuch (Spessart),
which has been carried out by Axel Göttlein (Technical University, Munich) since 1982.
In comparison to the extensive official land surveys, the observations, i.e., the locations of
the examined trees, are much closer to each other. Figure 1.2 visualizes the 83 examined
locations in Rothenbuch forest. Five tree species are part of this survey: beech, oak, spruce,
larch, and pine. Here we will restrict ourselves to beech trees. Every year, the condition of
beech trees is categorized by the response variable “defoliation” (defol) into nine ordinal
categories 0 %, 12.5 %, 25 %, 37.5 %, 50 %, 62.5 %, 75 %, 87.5 %, and 100 %. Whereas the
category 0 % signifies that the beech tree is healthy, the category 100 % implies that the tree
is dead.

In addition to the (ordinal) response variable, explanatory variables are collected every
year as well. Table 1.5 includes a selection of these variables including summary statistics.
The mean values and frequencies (in percent) have been averaged over the years (1982–
2004) and the observation points.

The goal of the analysis is to determine the effect of explanatory variables on the degree
of defoliation. Moreover, we aim at quantifying the temporal trend and the spatial effect of
geographic location, while adjusting for the effects of the other regressors. Additionally to
the observed locations Fig. 1.2 presents the temporal trend of relative frequencies for the
degree of defoliation of three (aggregated) categories.
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Table 1.5 Forest health status: description of variables including summary statistics

Mean/ Std-
Variable Description frequency in % dev. Min/max

id Location identification
number

year Year of data collection 1,993.58 6.33 1983/2004
defol Degree of defoliation, in

nine ordinal categories
0 % 62.07
12.5 % 24.26
25 % 7.03
37.5 % 3.79
50 % 1.62
62.5 % 0.89
75 % 0.33
87.5 % 0.00
100 % 0.00

x x-coordinate of location
y y-coordinate of location
age Average age of trees at the

observation plot in years
106.17 51.38 7/234

canopyd Canopy density in percent 77.31 23.70 0/100
gradient Gradient of slope in percent 15.45 11.27 0/46
alt Altitude above see level in

meter
387.04 58.86 250/480

depth Soil depth in cm 24.63 9.93 9/51
ph pH-value in 0–2 cm depth 4.29 0.34 3.28/6.05
watermoisture Level of soil moisture in

three categories
1 D moderately dry 11.04
2 D moderately moist 55.16
3 D moist or temporarily

wet
33.80

alkali Fraction of alkali ions in
soil in four categories

1 D very low 19.63
2 D low 55.10
3 D moderate 17.18
4 D high 8.09

humus Thickness of humus layer in
five categories

0 D 0 cm 25.71
1 D 1 cm 28.56
2 D 2 cm 21.58
3 D 3 cm 14.84
4 D more than 3 cm 9.31

(continued)
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Table 1.5 (continued)

Mean/ Std-
Variable Description frequency in % dev. Min/max

type Type of forest
0 D deciduous forest 50.31
1 D mixed forest 49.69

fert Fertilization
0 D not fertilized 80.87
1 D fertilized 19.13

To analyze the data we apply regression models for multi-categorical response variables
that can simultaneously accommodate nonlinear effects of the continuous covariates, as well
as temporal and spatial trends. Such complex categorical regression models are illustrated
in Chaps. 6 and 9. 4
The next section shows the first exploratory steps of regression analysis, which

are illustrated using the data on the Munich rent index and the Zambia malnutri-
tion data.

1.2 First Steps

1.2.1 Univariate Distributions of the Variables

The first step when conducting a regression analysis (and any other statistical
evaluation) is to get an overview of the variables in the data set. We pursue the
following goals for the initial descriptive and graphical univariate analysis:
• Summary and exploration of the distribution of the variables
• Identification of extreme values and outliers
• Identification of incorrect variable coding
To achieve these goals, we can use descriptive statistics, as well as graphical visu-
alization techniques. The choice of appropriate methods depends on the individual
type of variable. In general, we can differentiate between continuous and categorical
variables.

We can get a first overview of continuous variables by determining some
descriptive summary statistics, in particular the arithmetic mean and the median as
typical measures of location, the standard deviation as a measure of variation, and
the minimum and maximum of variables. Furthermore, it is useful to visualize the
data. Histograms and box plots are most frequently used, but smooth nonparametric
density estimators such as kernel densities are useful alternatives to histograms.
Many introductory books, e.g., Veaux, Velleman, and Bock (2011) or Agresti and
Finlay (2008), give easily accessible introductions to descriptive and exploratory
statistics.
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Fig. 1.3 Munich rent index: histograms and kernel density estimators for the continuous variables
rent, rentsqm, area and yearc

Compared to continuous variables, it is easier to get an overview of the
distribution of categorical variables. Here, we can use simple frequency tables or
their graphical counterparts, particularly bar graphs.

Example 1.5 Munich Rent Index—Univariate Distributions
Summary statistics for the continuous variables rent, rentsqm, area, and yearc are already
listed in Table 1.2 (p. 6). Figure 1.3 displays histograms and kernel density estimators
for these variables. To give an example, we interpret summary statistics and graphical
representations for the two variables “net rent” and “year of construction”:

The monthly net rent roughly varies between 40 and 1,843 Euro with an average rent of
approximately 459 Euro. For the majority of apartments, the rent varies between 50 and
1,200 Euro. For only a few apartments the monthly rent is higher than 1,200 Euro. This
implies that any inference from a regression analysis regarding expensive apartments is
comparably uncertain, when compared to the smaller and more modest sized apartments.
Generally, the distribution of the monthly net rent is asymmetric and skewed towards the
right.

The distribution of the year of construction is highly irregular and multimodal, which
is in part due to historical reasons. Whereas the data basis for apartments for the years of
the economic crises during the Weimar Constitution and the Second World War is rather
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limited, there are much more observations for the later years of reconstruction (mode near
1960). Starting in the mid-1970s the construction boom stopped again. Altogether the data
range from 1918 until 1997. Obviously, the 1999 rent index does not allow us to draw
conclusions about new buildings after 1997 since there is a temporal gap of more than one
year between data collection and the publication of the rent index. Particularly striking is
the relative accumulation of apartments constructed in 1918. However, this is a data artifact
since all apartments that were built prior to 1918 are antedated to the year 1918.

We leave the interpretation of the distribution of the other continuous variables in the data
set to the reader.

Table 1.2 also shows frequency tables for the categorical variables. We observe, for
example, that most of the apartments (58 %) are located in an average location. Only about
3 % of the apartments are to be found in top locations. 4

Example 1.6 Malnutrition in Zambia—Univariate Distributions
In addition to Table 1.3 (p. 7), Fig. 1.4 provides a visual overview of the distribution of
the response variable and selected continuous explanatory variables using histograms and
kernel density estimators. We provide detailed interpretations in our case study in Sect. 9.8.
Note that for some variables (duration of breast-feeding and child’s age in months) the
kernel density estimate shows artifacts in the sense that the density is positive for values
lower than zero. However, for the purpose of getting an overview of the variables, this
somewhat unsatisfactory behavior is not problematic. 4

1.2.2 Graphical Association Analysis

In a second step, we can graphically investigate the relationship between the
response variable and the explanatory variables, at least for continuous responses.
By doing so, we get a first overview regarding the type (e.g., linear versus nonlinear)
and strength of the relationship between the response variable and the explanatory
variables. In most cases, we focus on bivariate analyses (between the response
and one explanatory variable). In the following we assume a continuous response
variable.

The appropriateness of graphical tools depends on whether the explanatory
variable is continuous or categorical.

Continuous Explanatory Variables
As already used by Galton at the end of the nineteenth century, simple scatter plots
can provide useful information about the relationship between the response variable
and the explanatory variables.

Example 1.7 Munich Rent Index—Scatter Plots
Figure 1.5 shows for the rent index data scatter plots between net rent or net rent per square
meter and the continuous explanatory variables living area and year of construction. A first
impression is that the scatter plots are not very informative which is a general problem with
large sample sizes (in our case more than 3,000 observations). We do find some evidence
of an approximately linear relationship between net rent and living area. We also notice
that the variability of the net rent increases with an increased living area. The relationship
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Fig. 1.4 Malnutrition in Zambia: histograms and kernel density estimators for the continuous
variables

between net rent per square meter and living area is more difficult to determine. Generally
the net rent per square meter for larger apartments seems to decrease. It is however difficult
to assess the type of relationship (linear or nonlinear). The relationship of either of the two
response variables and the year of construction is again hardly visible (if it exists at all), but
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Scatterplot: Net rent per sqm vs. area
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Scatterplot: Net rent vs. year of construction
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Scatterplot: net rent per sqm vs. year of construction

Fig. 1.5 Munich rent index: scatter plots between net rent (left) / net rent per sqm (right) and the
covariates area and year of construction

there is at least evidence for a monotonic increase of rents (and rents per square meter) for
flats built after 1948. 4
The preceding example shows that for large sample sizes simple scatter plots do

not necessarily contain much information. In this situation, it can be useful to cluster
the data. If the number of different values of the explanatory variable is relatively
small in comparison to the sample size, we can summarize the response with the
mean value and the corresponding standard deviation for each observed level of
the explanatory variable and then visualize these in a scatter plot. Alternatively we
could visualize the cluster medians together with the 25 % and 75 % quantiles (or
any other combination of quantiles). The resulting data reduction often makes it
easier to detect relationships. If the number of different levels of the explanatory
variables is large relative to the sample size, it can be useful to cluster or categorize
the data. More specifically, we divide the range of values of the explanatory variable
into small intervals and calculate mean and standard deviation of the aggregated
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Fig. 1.6 Munich rent index: average net rent (left) and net rent per sqm (right) plus/minus one
standard deviation versus area and year of construction

response for each interval separately. The cluster mean plus/minus one standard
deviation is next combined into a scatter plot.

Example 1.8 Munich Rent Index—Clustered Scatter Plots
Living area and year of construction are measured in square meters and years, respectively.
In both cases the units of measurement provide a natural basis for clustering. It is thus
possible to calculate and visualize the mean values and standard deviations for either of
the net rent responses clustered either by living area or year of construction (see Fig. 1.6).
Compared to Fig. 1.5 it is now easier to make statements regarding possible relationships
that may exist. If we take, e.g., the net rent per square meter as the response variable, a clear
nonlinear and monotonically decreasing relationship with the living area becomes apparent.
For large apartments (120 square meters or larger), we can also see a clear increase in the
variability of average rents.

It also appears that there exists a relationship between the year of construction and the
net rent per square meter, even though the relationship seems to be much weaker. Again the
relationship is nonlinear: for apartments that were constructed prior to 1940, the rent per
square meter is relatively constant (about 6 Euro). On average the rent appears somewhat
lower for the few apartments from the sample taken from the years of the war. After
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Fig. 1.7 Munich rent index: distribution of net rent per sqm clustered according to location
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Fig. 1.8 Malnutrition in Zambia: different visualizations of the relationship between Z-score and
child’s age

1945, the average rent per square meter shows a linearly increasing trend with year of
construction. 4

Categorical Explanatory Variables
Visualizing the relationship between a continuous response variable and categorical
explanatory variables can be obtained by summarizing the response variable at
each level of the categorical variable. Histograms, box plots, and (kernel) density
estimators are all adequate means of illustration. In many cases, box plots are best
suited as differences in mean values (measured through the median) can be well
detected.
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Fig. 1.9 Malnutrition in Zambia: visualization of the relationship between Z-score and selected
explanatory variables

Example 1.9 Munich Rent Index—Categorical Explanatory Variables
Figure 1.7 illustrates the distribution of the net rent per square meter as the location
(average, good, top) of the apartment is varied. The left panel uses box plots for illustration,
and the right panel uses kernel density estimators. The box plots clearly show how the
median rent (as well as the variation) increases as the location of the apartment improves.
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Even though the smooth density estimators offer similar information, the visualization of
these findings is not as obvious as for box plots. 4

Example 1.10 Malnutrition in Zambia—Graphical Association Analysis
Figures 1.8 and 1.9 offer a graphical illustration of the relationship between Z-scores
and various explanatory variables. Similar to the rent data, the relationship between the
Z-score and the age of the child is difficult to visualize (Fig. 1.8, left panel). A better
choice of illustration is obtained when clustering the Z-scores by monthly age of the
children (0 to 59 months). For each month, the mean plus/minus standard deviation of
Z-scores is computed and plotted (right panel), which provides a much clearer picture of
the relationship between Z-score and age. This type of illustration is also used for the other
continuous explanatory variables, see Fig. 1.9. We will provide detailed interpretations of
Figs. 1.8 and 1.9 in our case study on malnutrition in Zambia in Sect. 9.8. 4

1.3 Notational Remarks

Before we give an overview of regression models in the next chapter some remarks
on notation are in order.

In introductory textbooks on statistics authors usually distinguish notationally
between random variables and their realizations (the observations). Random vari-
ables are denoted by upper case letters, e.g., X , Y , while realizations are denoted
by lower case letters, e.g., x, y. However, in more advanced textbook, in particular
books on regression analysis, random variables and their realizations are usually not
distinguished and both denoted by lower case letters, i.e., x, y. It then depends on
the context whether y denotes the random variable or the realization. In this book we
will keep this convention with the exception of Appendix B which introduces some
concepts of probability and statistics. Here we will distinguish between random
variables and realizations notationally in the way described above, i.e., by denoting
random variables as capital letters and realizations as lower case letters.
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