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Abstract. Successful development of a robotic computer as a media-
tor in smart environments requires providing a certain level of behavior
autonomy to the robot and a capability to adapt its behavior in long-
term interaction with the users. We attempt to identify core autonomy-
related functionalities and describe the design and implementation of an
autonomous behavior control subsystem that provides them. The Moti-
vation Module is essential for providing a balance between the robot’s
autonomy and our ability to influence its behavior development in a long
term. We present the results of two test scenarios illustrating basic use
of the newly provided functionality.
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1 Introduction

The volume of available digital information and the variety of related services in
our everyday lives are increasing. Access to these services is not constrained to
the traditional computers anymore, as witnessed by the proliferation of such ap-
pliances as smart phones, tablets, smart TVs, etc., gradually bringing us toward
the realization of smart environments.

In our work on the Future Robotic Computer (FRC) project [1], we explore
the possibility of using a robotic computer as a mediator in smart environ-
ments. By building a robotic computer we aim at weaving relevant digital in-
formation in a flexible manner into the objects that surround us to support
multi-modal, context-aware interactions. As an extension to the FRC’s Software
Framework, which supports creating of applications on the platform, we devel-
oped an Autonomous Behavior control Subsystem (ABS). In this paper we de-
scribe the Motivation Module (MM) of ABS and its role for supporting behavior
autonomy.

2 Behavior Autonomy for FRC

The concept of autonomy has been analyzed in various contexts. Froese et al. [2]
considered different aspects of autonomy in biological and artificial systems in re-
lation to research on artificial life. They made a distinction between constitutive

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 16–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Motivation-Based Autonomous Behavior Control 17

and behavioral autonomy. The former, focuses on the internal organization and
the system’s capacity for self-production and self-sustaining of organizational
identity in respect to its environment. The latter is concerned with external
behavior and is related to the stability and flexibility of the system’s interac-
tions with the environment. Many factors that affect the robot’s autonomy are
summarized in the ALFUS project [3], which aimed to devise a comprehensive
approach for evaluation of the autonomy level of unmanned systems. In addition
to the independence from human intervention, it also takes into account such
factors as mission complexity and environment difficulty when comparing the
levels of autonomy observed in the performance of different systems.

The issue of balancing the autonomy of a system and our ability to control it
from outside to perform desired tasks has been discussed in [4]. On one hand,
exercising too much control, limits the system’s autonomy and shifts toward us
the burden of taking care of mundane details. On the other hand, too much
autonomy makes it more difficult to obtain specific, useful behavior from the
system. The author suggested guidelines for designing cognitive architecture that
is autonomous and inherently trainable, drawing on essential ideas from the field
of Developmental Robotics [5,6].

For our purposes, we are interested primarily in the role of robot’s autonomy in
supporting useful behaviors while relieving us from the need to specify all details
in advance. In respect to the works mentioned above, this means that we focus on
behavior autonomy with relative independence from human intervention, while
still retaining the ability to guide the behavior adaptation process. Therefore,
we consider the following aspects of behavior autonomy: autonomous behavior
execution; autonomous behavior selection; autonomous adaptation of existing
behaviors; and autonomous initiation of behaviors.

The autonomous behavior selection and execution form the core of behavior
autonomy. The abilities to adapt and generate new behaviors further increase the
behavior autonomy through modifying the set of available behaviors in response
to environmental changes. Finally, the ability to initiate behaviors not only in
direct response to external events (e.g., user’s command) but also based on
internal motivation allows for implementation of proactive services.

Thus, our aim with implementing ABS is to provide capabilities for selection
and execution of appropriate behaviors without explicit request from the user
and for adaptation of behaviors in the process of interaction with the users and
the environment.

3 Autonomous Behavior Subsystem Architecture

Cognition is necessary for behavior autonomy because it provides adaptive mech-
anisms for action selection based not only on past and present events but also on
possible future consequences of the selected actions [6]. In a survey of artificial
cognitive systems, Vernon et al. [7] distinguish three general groups: Cognitivist,
Emergent, and Hybrid, depending on the underlying approaches. Cognitivist ap-
proaches are based on symbolic information representation and processing sys-
tems, while Emergent approaches employ connectionist, dynamical, and enactive



18 B. Vladimirov, H. Kim, and N. Park

systems. The Hybrid approaches attempt to combine the strengths of the other
two groups so that we can retain the ability to supply the system with relatively
advanced initial knowledge and rely on the system’s capabilities for adaptation
and self-development in the process of interaction with the environment for fur-
ther tuning of the desired behavior.

In ABS, we follow the general ideas of Hybrid approaches [8], using a dual-level
architecture with both connectionist modules and symbolic rules. The interac-
tions among these two levels, including top-down learning and bottom-up rule
extraction, support the desired ability to specify some initial behaviors and later
to adapt or refine them through appropriate interaction with the robot.

Depending on their goals and underlying approaches, various cognitive archi-
tectures emphasize different cognitive functions: reasoning, planning, memory,
learning, etc. KnowRob [9] has a rich knowledge model supporting robot ac-
tivities in a realistic household environment. It can also learn/adapt the action
models and use them to plan the robot’s behavior. On the other hand, the iCub
Cognitive Architecture [6] emphasizes on starting with a core set of fundamen-
tal capabilities and developing the desired behaviors and functionality in the
long-term interaction with the environment.

Compared to KnowRob, the ABS favors the learning of appropriate behavior
selection instead of planning. Since with ABS, we aim more at a practical im-
plementation rather than at a comprehensive solution of autonomous behavior
control, unlike the iCub Cognitive Architecture [6], we adopt the hybrid, dual-
level behavior selection based on CLARION’s approach [8] that allows us to start
with more complex initial behaviors. Finally, while CLARION has been used to
model a diverse set of cognitive capabilities trying to approximate data from
human performance on standardized cognitive tasks, with ABS we concentrate
on issues specific to the robot’s autonomous behavior.

ABS includes the following modules: Behavior Selection Module (BSM), Task
Selection Module (TSM), Motivation Module, User Model (UM), Working Mem-
ory (WM), and Controller. BSM is at the core of ABS and its main purpose is
to select appropriate behaviors. The other subsystems help to improve this se-
lection process in various ways. The WM maintains task-relevant context which
includes relevant history of previous events. The UM learns user preferred ser-
vices. The MM contributes to the robot’s autonomy by modeling internal drives
so that the robot’s behavior can be modulated indirectly, based on internal state.

The ABS structure, the internal communication among its modules and the
external communication with DAS are shown in Fig. 1. In one behavior selec-
tion step, initially, ABS receives a sensory event from DAS. The sensory event
is augmented with information maintained in the WM to form the current in-
put context. The current input context is sent to the UM and if there is a user
preferred service in the current situation, it is added back to the input con-
text. Based on the input context, MM updates the internal drives’ and goals’
activations and returns the new values. Next, TSM selects a task that is appro-
priate for the input context. Finally, BSM selects the appropriate behavior for
execution. The action specified by the selected behavior is sent to DAS, while
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Fig. 1. ABS structure, internal communication among its modules and external com-
munication with the Device Abstraction Subsystem

simultaneously the WM is updated with information that is deemed necessary
for the system’s functionality in the future.

Starting with the core functionality, below we provide detailed description of
the ABS’s modules.

3.1 Behavior and Task Selection

The primary purpose of the BSM is to select an appropriate behavior in a given
context. In addition, BSM supports learning of behavior selection rules and
adaptation of rules specified in advance based on reward signal computed by
MM. Thus, the BSM partially implements the required ABS functionality to
provide capacity for behavior selection and behavior adaptation. After explaining
the common information representation used in ABS, we will describe rules
and behavior representations, and finally the behavior selection and adaptation
mechanisms.

A sensory event consisting of a set of features with their values is represented
by a chunk containing a set of dimensions. A dimension d is a named, ordered
set of tuples (vni , v

a
i ) that represents a given feature, where vni is the name and

vai is the activation of the ith value. For example, a chunk with one dimension
recognized object and tuples ((“book”, 0.8), (“magazine”, 0.2), (“pie box”, 0.0))
could represent an object recognition event with the values’ names denoting the
possible objects and the values’ activations showing the probabilities assigned
by the recognition algorithm.

We represent explicit symbolic rules as a combination of a condition chunk
and an output chunk. The condition chunk is used as a prototype against which
the context is matched [10], while the output chunk represents an action with
its parameters. The degree of activation AR of rule R, in a given input context
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represented by an input chunk I, is computed using a distance metric between
the dimensions specified by the rule’s condition chunk and the dimensions with
the same names that are present in the input context description, as shown
in (1).

AR =
∑

d∈DC
R

WC

( ∑

v∈V C
d

UC
dvW

C
d

(
1− ‖AC

dv −AI
dv‖

))
(1)

Here,DC
R is the set of dimensions of the condition chunk of rule R; Vd is the set of

values that belong to the current dimension d; AC
dv and AI

dv are the activations of
the current value v of the current dimension d of the condition and input-context
chunks correspondingly; the dimension weight WC is 1 if we have a disjunction
of dimensions in the condition chunk or 1

|DC
R | if we have a conjunction; similarly,

the value weights WC
d are 1 for disjunction or 1

|Vd| for conjunction of values in

the dimension d of the condition chunk; and finally, the parameters UC
dv are set

to 0 for the values v of dimension d that we want to ignore, and to 1 otherwise.
In ABS, we model robot’s behaviors (external or internal) with internal con-

trol structures representing situated actions, where actions are basic primitives
specified and implemented in DAS. Consequently, as shown in Fig. 2, behaviors
are represented by an output chunk that specifies the action with its parameters
and a dual-level structure specifying the conditions for executing that action.
The top level of that structure consists of an initial rule and an optional collec-
tion of candidate rules extracted from the bottom level (currently, all rules share
the behavior’s output chunk). The bottom level consists of a multi-layer neural
network trained with Q-Learning [11]. The structure of the neural network is
defined at initialization time. It has one unit in the output layer to represent the
estimated Q-Value. The neural network weights are updated according to (2).

Δwt = η
[
rt + γQt+1 −Qt

] t∑

k=0

(γλ)t−k∇wQk, (2)

where η is the learning rate, γ is the future reward discount factor, λ is the
eligibility traces decay parameter, rt is the reward, and Qt is the Q-value of the
selected behavior’s action in the given input context at time t.

For a given behavior and a given specific input context represented as an
input chunk, we compute the rules’ activations at the top level. We present the
same input context as an input pattern to the bottom-level neural network and
obtain the estimated Q-value from the output. Then, the behavior’s activation is
computed as a weighted, linear combination of the maximum rule activation from
the top-level and the estimated Q-value. The behavior selection is performed
by comparing the behaviors’ activations and selecting the maximum activated
behavior following an ε-Greedy policy.

Behavior adaptation functionality is provided by optional learning processes
in the top level, through maintaining performance statistics for each rule, and
in the bottom level, through Q-learning based on reward signals from the MM.
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Fig. 2. Dual-level Behavior representation in ABS

In addition, top-down learning can be performed by using only the top-level
rules to compute the behavior’s activation and at the next step using the ob-
tained reward to train the bottom-level network. In the current implementation,
the following simple approach is used for bottom-up rule extraction. When the
reward is above a pre-specified threshold, the input context used to compute the
behavior’s activation is transformed into a new candidate rule condition. This
new rule is added to the collection of candidate rules if no similar rule exists
already. In the consequent interaction, the rules’ performance statistics are used
to remove rules that fail to meet a pre-specified performance threshold.

The purpose of the TSM is to select an appropriate task for the current con-
text. In ABS, a task is related to a set of behaviors that are used in combination
to achieve some desired result. The TSM supplements BSM in implementing
the required ABS functionality to provide behavior selection and adaptation
capabilities.

The TSM has the same structure as the BSM. It consists of a set of task-control
behaviors. For each task there are task-control behaviors with fixed actions for
starting, suspending, resuming, and stopping the task, which modify the corre-
sponding task-activation state maintained in the WM. This task-activation state
is used in the behaviors’ conditions in BSM to distinguish, when necessary, the
behaviors that belong to the currently active task from the rest of the behav-
iors. Thus, the task selection functionality is provided by appropriate selection
of task-control behaviors.

3.2 Motivation Module

The MM plays a role in the implementation of autonomous behavior initiation
and in behavior adaptation functionality. The MM provides internal state that
can be used in the behavior conditions to trigger or to inhibit behaviors. It also
guides the behavior adaptation by computing reward signals used in the learning
process.

This is achieved by implementing internal drives’ models and a mechanism
for computing reward signals from drives’ activations and activation changes.
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The activation state of the internal drives and goals is included into the input
context used in TSM and BSM to compute the behaviors’ activations. The re-
ward signals are used in TSM and BSM to modify the network weights and the
rules performance statistics of the relevant behaviors’ conditions.

Currently, in ABS we have implemented two main internal drives: a Sociality
drive and a Curiosity drive. The aim with implementing a Sociality drive is
to balance behavior autonomy and external behavior control. It gives the users
a mechanism for influencing the behavior adaptation process effectively, while
providing for a certain level of autonomy. On the other hand, the Curiosity
drive makes exploration-based behavior adaptation possible even without user
intervention.

The model of the Sociality drive is shown in Fig. 3. The Sociality drive is
configured with a collection of conditions that specify the effect of certain sensory
events on the drive’s activation level. When an input context is presented to the
MM, the Sociality drive’s activation ds is computed as a linear combination
of its conditions’ activations ai and a time component b(t) as follows: ds =
wtb(t) +

∑n
i=1 wiai. The time component is included to allow increasing of the

Sociality drive’s activation in the absence of social interaction. A reward signal
is computed from the Sociality drive’s activation change, interpreting a decrease
in the activation as a positive reward.

Condition a1

Input
Context

c(t)
Sociality drive activation ds

Condition an

Time component 
b(t)

wn

w1 wt

Fig. 3. Sociality drive model in MM

The model of the Curiosity drive is shown in Fig. 4. Due to the chosen imple-
mentation model of the Curiosity drive, in the process of exploration the robot
develops a predictive model for the consequences of performing a given behavior.
This model can be used to support behavior planning in further development of
the ABS.

As shown in Fig. 4, the Curiosity drive model is based on the ability to predict
relevant subset of the next input context. Currently, we use a neural network,
trained on-line to learn the mapping from current context and currently selected
behavior to the input context at the next step. The prediction performance
is used to compute two components of the curiosity. The first component dcs
is related to the ’surprise’ or the unexpectedness of the obtained context and
is computed from the prediction error as shown in (3)

dcs(t) = gdcs(t− 1) + e(t), (3)

where e(t) is the normalized prediction error at the current time step and 0 ≤
g < 1.0 is a coefficient controlling the rate of decrease. The second component dck
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is related to the knowledge gain and is computed as a decrease of the prediction
error according to (4)

dck(t) =
1

n

n−1∑

i=0

e(t− i)− 1

m

m−1∑

j=0

e(t− l − j), (4)

where l is the span between the reference time points used in comparing the error,
while n and m are smoothing parameters. Separate error history traces are kept
for each behavior, thus the knowledge gain reflects the prediction performance
for the specific behavior that was selected for execution.

The Curiosity drive activation is set to the curiosity measure dc, which is a
linear combination of the two components dcs and dck. The reward signal from
the Curiosity drive is proportional to the current drive activation.

The MM uses the computed drives’ activations in predefined, linear combi-
nation dependencies to set the goals’ activations. Also, a common reward signal
r = csr

s + ccr
c is computed, where rs and rc are the reward signals from the

Sociality drive and the Curiosity drive correspondingly, and cs and cc are coef-
ficients balancing the contribution into the common reward signal.

3.3 User Model, Working Memory and Controller

The UM learns users’ preferences from interaction. When a user requests some
service (internally represented by a task), the UM associates the requested ser-
vice with the perceived current context using probability-based associative mem-
ory. With time, the salient associations are used to extract explicit rules. A
detailed description of the UM is given in [12].

The WM uses a collection of chunks to maintain relevant information neces-
sary for setting drives’ and goals’ activations, suggesting services, and selecting
tasks and behaviors.

The purpose of the Controller is to coordinate the interaction among the
ABS modules and the external interaction with DAS. Through the interaction
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with DAS, it provides the capabilities for collecting sensory information and for
behavior execution.

4 System Implementation

The current implementation of FRC includes an Agent Unit shown in Fig. 5
and a server. The main components of the Agent Unit are two projector/camera
pairs with five degrees of freedom, 3-channel microphone array, a stereo speaker
set, and an embedded PC with wireless networking.

Fig. 5. The FRC’s Agent Unit

DAS is a part of the FRC’s Software Framework implementation ICARS (in-
tegrated control architecture for robotic mediator in smart environments) is
described in [13]. ICARS consists of three layers that provide: a flexible com-
munication/device model; an adaptive service model for the integrated robot
control architecture; and a behavior-based high-level collaboration model. The
ABS is implemented in C++ and the Controller communicates with ICARS over
a TCP connection.

5 Test Scenarios

We present two test scenarios showing the role of the Curiosity drive in behavior
initiation and inhibition.

5.1 Curiosity Driven Behavior Task 1

In this task, the Agent Unit observes the room around itself trying to detect
user presence. The prediction module of the Curiosity drive has user presence
from the previous time step and the last two performed behaviors as input and
current user presence as target. If there is a user and if the Curiosity drive’s
activation is above certain level, then the Agent Unit approaches the user. In
this scenario we have one task and eleven behaviors shown in Fig. 6 a). The
Sociality drive and the UM are not used. The top plot in Fig. 6 b) shows
the Curiosity drive’s activation. The predictor starts from a random state and
the initial hundred steps it learns that there is nobody in the room. The arrival
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Fig. 6. Simplified task diagram a) and results for the curiosity test scenario b) and
c). The rounded rectangles represent behaviors. The abbreviation “F” stands for face-
detected sensory event. In b) the top plot shows the Curiosity drive activation while the
bottom plot shows the ’surprise’ (red) and knowledge-gain (green) components and the
prediction error (gray). The snapshots in c) correspond approximately to the following
time steps in b): 118, 145, 165, and 166 (not on the plot).

of the first user violates the expectation of no-user-presence and leads to an
increase of the curiosity but it is still below the threshold. The increase of the
curiosity from the arrival of the second user is sufficient to trigger the approach-
ing behavior GoToUser.

5.2 Curiosity Driven Behavior Task 2

In this task, the user puts objects in front of the Agent Unit, which reacts by
saying something related to the objects. Fig. 7 a) shows a simplified diagram of
the five behaviors and their conditions. The Curiosity drive is related to predict-
ing the appearance of unknown objects in result of WatchTableTop behavior.
The plot in Fig. 7 c) shows the Curiosity drive’s activation while known Pie box,
initially unknown Time magazine, known Wimpy Kid book and already seen
Time magazine are presented. Fig. 7 b) includes annotated snapshots from the
Agent Unit’s camera related to the events in c).

As can be seen from diagram a), the User Agent will ask a question if an
unknown object is presented and the Curiosity drive’s activation is above a
specified threshold. Fig. 7 d) is a plot of the Curiosity drive’s activation from
a simulated run where unknown objects are presented in a sequence to illustrate a
behavior inhibition effect. After a while, the predictor learns to expect unknown
objects, the curiosity drive’s activation falls below the threshold (0.1) and the
Agent Unit stops asking questions.



26 B. Vladimirov, H. Kim, and N. Park

a)

0

1 2

34

"o"

"o"

"o"

"r"

"N"

"W"

"W"

"U"

"U"
AND "T"

"T"

"B"

"B"SpeakWimpyKid

AskWhatIsThis

WatchTableTop

SpeakBigPie

SpeakTimeMagazine

CuriosityAct > thr

b)

c)

● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ●
●

● ●

●
● ● ● ● ● ●

●

● ●

●

● ● ● ●

210 220 230 240

0.
00

0.
10

0.
20

0.
30

step

C
ur

io
si

ty
 A

ct
.

s N N N N N N N N B B o U N N U U r T N N N WW o W N N T T o T T o N N N N

_ _ _ _ _ _ _ _ _ _ B _ _ _ _ _ ? _ _ _ _ _ _ W _ _ _ _ _ T _ _ T _ _ _ _ _

d)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●
●

●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
00

0.
10

0.
20

0.
30

step

C
ur

io
si

ty
 A

ct
.

< UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UUUUUUUUUUUUUUUUUUUUUUUU

_ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Fig. 7. Simplified task diagram a) and results for the curiosity test scenario b), c)
and d). The rounded rectangles represent behaviors with the labels on incoming arcs
showing the conditions for execution and the labels on the outgoing arcs show the
resulting sensory event. The abbreviations stand for “N” no object, “W” ’Wimpy
Kid’ book, “T” Time magazine, “B” ’Big Pie’ box, “U” unknown object, “o” task
finished, “r” response from the user. In c) and d) the top-row labels show sensory
input and the bottom-row ones show the behavior, where “-” is WatchTableTop, “?”
is AskWhatIsThis.

6 Conclusions

The development of ABS aims at augmenting the FRC’s Software Framework
by providing behavior control with autonomous behavior selection, initiation
and adaptation functionality. An important role in this process is played by
the MM which, in a certain sense, shifts the balance of control over the robot’s
behavior toward the robot itself. In future work on the FRC, we will develop more
application-oriented scenarios with long-term, user interactions and curiosity-
based behavior adaptation. A promising direction of development is to use FRC
to help the user to modify its own attitudes and habits as envisioned by Fogg [14].
One example could be to devise internal drives that guide the Agent Unit’s
behaviors to provide adaptive, timely, context-dependent opportunities and cues
to aid the user in acquiring healthier lifestyle habits.
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