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Abstract. We describe a simulation framework aimed to develop and test 
robots before deploying them in a real environment crowded with pedestrians. 
In order to use mobile robots in the real world, it is necessary to test whether 
they are able to navigate well, i.e. without causing safety risks to humans. This 
task is particular difficult due to the complex behavior pedestrians have towards 
each other and also towards the robot, that can be perceived either as an 
obstacle to avoid or as an object of interest to approach for curiosity. To 
overcome this difficulty, our framework involves a pedestrian simulator, based 
on a collision avoidance model developed to describe low density conditions as 
those occurring in shopping malls, to test the robot's navigation capability 
among pedestrians. Furthermore, we analyzed the behavior of pedestrians 
towards a robot in a shopping mall to build a human-to-robot interaction model 
that was introduced in the simulator. Our simulator works as a tool to test the 
level of safety of robot navigation before deploying it in a real environment. We 
demonstrate our approach showing how we used the simulator, and how the 
robot finally navigated in a real environment. 

Keywords: Pedestrian simulation, Safe navigation, Mobile robot, Field trial. 

1 Introduction 

Deploying a robot in a real environment with ordinary people is one of the major 
targets and challenges in robotics. Due to the improvement of robots’ sensing abilities 
such as human tracking, robots can now assist people working in a real world 
environment, and lately research works have been performed to deploy robots in 
environments such as malls [1], science museums [2], or hospitals [3]. 

One of the most serious problems to face when using robots in a real environment 
is to ensure that they can be operated safely between humans. When operating our 
robots in the real world we have experienced difficulties in securing the robot’s safety 
due to unexpected behaviors of pedestrians who may, for example, be strongly 
interested in the robot and surround it or even explicitly obstruct its motion by 
continuously standing on its front (Fig. 1-(a)). Moreover, the density in a real 
environment may change strongly with time (for example, the density in a shopping 
mall at lunch time is higher than in usual situations (Fig. 1-(b)), making difficult to 
develop and test in the laboratory a navigation system that may be safe in any setting.  
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On the other hand, pedestrian behavior has been relatively well studied in human 
science. Helbing proposed a “social force” model to simulate people's motion in 
escape situations [13], which has been used by Pelechano et al. to simulate high-
density crowds [14]. These studies addressed pedestrian behavior in high-density 
situations, which is different from the one exhibited at lower densities of interest for 
normal social interactions. In our study, we use a pedestrian model specifically 
prepared for low-density settings as those occurring in shopping malls [8]. Also some 
previous works used pedestrian models to simulate robot navigation in a crowd [15, 
16], but their approach was limited to simulation and did not address real world 
situations. Thus, we consider that the novelty of our study resides in addressing a 
method to use a pedestrian simulator in the deployment process of a robot toward real 
world use. 

 

Fig. 2. The interaction of simulated and real 
environment enables testing robot capabilities 

 

Fig. 3. Overview of our framework 

3 System  

Our framework (Fig. 3) consists of three main components: a pedestrian model, a 
robot controller, and a simulator. In the pedestrian model, the social forces among 
people were computed using the model as described in [8] (HHI model), while the 
force toward the robot was computed using specific parameters (HRI model), [17]. 
The robot controller navigates the robot by using the HRI model. 

3.1 Robot and Sensors 

We used a 120-cm-high 60-cm-wide humanoid robot, Robovie-II. Its mobile base is a 
Pioneer 3-DX (Active Media). We used it at a maximum velocity of 750 mm/sec and 
preferred velocity of 700 mm/sec. Its maximum acceleration is 600 mm/sec2. It has 
bumpers and laser range finders (Hokuyo, UTM-30LX) for ensuring safety. 

The pedestrian model needs information about people's positions far from the 
robot, which is not easy to collect using only on-board sensors. We thus used 8 
environmental laser range sensors and a tracking system with shape matching  
at torso-level and a particle filter method [7], whose position error was in average 
0.06 m. 
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3.2 HHI Model 

Models of pedestrian collision-avoidance have been developed since the 50s to 
deepen understanding of crowd dynamics and design better facilities. The Social 
Force model (SFM) [13] is a popular pedestrian model that describes the behavior of 
pedestrians in a crowd through reaction forces inspired by physics.  

However, the original social force model is designed to describe well high-density 
settings such as panic and escape situations [13], and it is not suitable to reproduce 
low-density many-people environments such as shopping malls. To solve this 
problem, we use a SFM specification which can reproduce such low-density settings 
[8]. This work proposes a new SFM specification called “collision prediction” (CP-
SFM) in which relative velocity is used to compute the relative distance among 
pedestrians at the moment of maximum approach in future, a computation performed 
by assuming current velocities to remain constant. The acceleration of pedestrian i is 
given by  

, , / ,,′                          (1) 

where vi is the velocity of pedestrian i, ti is the time of maximum approach and d’ij  
is the (predicted) relative distance to pedestrian j at ti. The parameters of the model, 
A= 1.13, B=0.71, were calibrated on real pedestrian trajectories (see [8] for details).  

3.3 HRI Model 

We extended the pedestrian model to also include, besides collision avoidance, the 
behavior around the robot. While some people only interact with the robot to avoid 
collisions, others slow down or stop to observe it, while some of them approach it to 
initiate a conversation. Modeling these people is important; if we rely on a pure 
collision avoidance model the robot may collide with people who behave differently. 

3.3.1   Data Collection and Coding to Establish HRI-Behavior Categories 
We used a field trial in which a robot provided information about shops to people that 
approached it and stopped to talk [18]. In the field trial, in which the robot roamed a 
144 m2  wide area in a shopping mall corridor, we recorded (using tracking system 
[7]) 266 pedestrians’ trajectories during an hour of data collection. We have analyzed 
these trajectories based on how the pedestrians change their walking course in relation 
with the robot, and found four major patterns: 

Approach to Stop: People approached the robot and stopped to talk at social distance 
zone (approx. 1.2m) 

Stop to Observe: People stopped to observe the robot at a distance larger than the 
social zone one. 

Slow Down: People did not change their walking course toward the robot but slowed 
down to observe it and passed by without stopping. 
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Collision Avoidance Only: People avoided the robot but did not change their 
walking course toward it nor slowed down their walking speed. 

To confirm these patterns, we coded the data using a standard human science 
procedure. Two independent persons (coders) classified the trajectories using these 
four categories, and the coding process resulted in Cohen's kappa coefficient 0.709, 
showing a reasonable concordance between the coders. No trajectory was classified 
out of these four categories, while the number of trajectories in each category was: 70 
approach to stop, 69 stop to observe, 11 slow down, and 116 collision avoidance only. 

3.3.2   Development of the Models 
We developed equations to model people's walking behavior around the robot 
according to the four patterns (HRI type models): 

Approach to Stop: In the "approach to stop" category (Fig. 4), 90.1% of the people 
approached the robot from the front and their motion was straight toward the robot. We 
assumed that people in this category approach the robot only when it falls within their 
sight, and the following equation represents this idea. Note that it is used in combination 
with (1), so that the motion is also affected by the social force from other pedestrians. 0           ,                                                                                  ,   , 90                                                                                                                         (2)  

Here vi
0 is the preferred velocity of pedestrian i, vi

goal is the preferred velocity directed 
to the goal, vi

robot is the vector directed to the robot with the same scalar size as vi
goal 

(i.e. the pedestrian aims to move toward the robot with her own preferred velocity), 
di,r is the distance between the pedestrian and the robot, and θi,r is the angle between 
her frontal direction and the direction to the robot . We computed Dstop from observed 
trajectories (in average people in this category stopped at a distance of 0.893m, S.D. 
0.229 m from the robot), and set Dnotice to 10 m (the SFM visibility range). 

Stop to Observe: As people in the "approach to stop" category (Fig. 5), people in this 
category come close to the robot as soon as it falls within their sight, but they stop at a 
larger distance. Thus, we approximate their behavior as: 0           ,                                                                                  ,   , 90                                                                                                                           (3) 

where Dobserve is 2.38 m (average stopping distance from the robot, S.D. 1.19 m).  

Slow Down: People's motion direction did not change toward the robot, but their 
speed decreased as they were close to it. We analyzed the change of the speed and 
found that their speed around the robot was 62% of the average in other areas. Thus, 
we modeled slow down behavior using the following equation:            ,                                                                             (4) 

where α=0.62. We set Dslowdown =4 m on the basis of the observed pedestrian behavior.  
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Collision Avoidance Only: This behavior was modeled using eq. (1), as for inter-
pedestrian interactions. However, since we expected a difference in the amount of 
force perceived from the robot (e.g. keep a larger distance), we re-calibrated the social 
force toward the robot (see Section 3.3.3). 

 

Fig. 4. Illustration of “approach to stop” trajectories 

 

Fig. 5. Illustration of “stop to observe” trajectories 

3.3.3   Calibration of the Social Force toward the Robot  
We conducted a data collection to investigate how people behave when avoiding a 
robot. Fourteen Japanese people (six men and eight women whose average age was 
25.1 years, S.D. 8.7) participated in this experiment. Each subject repeated the trial 
nine times. In each trial the robot moved straight toward a participant at 700 mm/sec, 
and the participants moved toward the robot, starting at a distance of 18 m. Subjects 
were instructed to walk freely toward a goal located behind the robot, and informed 
that the robot would not change its course to avoid collision.  

For calibration we used a genetic algorithm to select the parameters maximizing 
similarity between simulated trajectories and real ones while minimizing collisions in 
simulation [8]. The algorithm provides parameters values for the interaction force 
(Ar=0.62, Br =1.07) that, from the point of view of collision-avoiding intensity, do 
not qualitatively differ from the inter-human values of [8] (Ah= 1.13, Bh =0.71). We 
expected the pedestrians to avoid the robot more strongly than they avoid other 
humans, but this behavior was not clearly observed in the experiment performed for 
data collection. We note that the parameters for the robot are eventually re-adjusted 
taking into account noise, delay, and robot motion capabilities (Section 4.1).  

3.4 Robot Controller (Position Controller and Safety System) 

We assume that while global path-planning providing the destination is conducted at 
an upper layer, this robot controller is responsible of local navigation, i.e. of safely 
avoiding collision with static and dynamic entities around the robot. 

We could use our framework to test various navigation strategies to reveal the most 
appropriate navigation mechanism; in fact, we explored the navigation strategy of the 
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4 Simulation  

4.1 Overview 

The simulation was conducted in a 10 x 20 m virtual corridor. The simulator sets 
people’s initial positions and goals to opposite sides of the corridor, along with their 
arrival time to the environment and preferred velocity (average and S.D are 1.4m/sec  
and 1.33, based on the data collection in Section 3.3.1). The ratio of HRI type 
behaviors is set as the same as the one observed in data collection (section 3.3.1). We 
also measured the delay of the system in the laboratory, which resulted to be 
350msec, and defined the noise of the sensing system as 0.06m, as reported in [7]. 
The initial position and goal of the robot are set as for the pedestrians. 

By using delay and noise information, we further calibrated the values of the 
pedestrian model parameters to obtain in the real robot system trajectories as similar 
as possible to the “ideal” ones (i.e. obtained using the HRI model with no noise or 
delay). As a result, the parameters for the real robot were increased to Ar= 0.93,  
Br =1.61, showing that the collision-avoiding interaction has to be strengthened to 
cope with the robot’s motion limitations. 

4.2 Measurement 

We propose two performance measures: 

Ratio of Collision: we defined a collision initiated by the robot as a situation in 
which the distance between a center of person and the center of robot gets smaller 
than 30cm, and the ratio of collision was computed as the number of collisions per the 
number of people who entered within a 5m distance from the robot. In this evaluation, 
we did not count collisions caused by a pedestrian, defined as either a) a pedestrian 
collided with the robot while it was stopped, or b) a pedestrian collided with the robot 
from behind. Note that in the real world collisions might not happen even if this 
distance is attained, as humans may rotate their body to avoid the collision; 
nevertheless this is a valid measure of the safety of the robot's behavior. 

Efficiency: defined as: "time to reach the goal" over "time to reach the goal going 
straight at preferred speed". Deviations due to collision avoiding reduce efficiency. 

4.3 Results 

To confirm the safety capability of robot navigation in various situations, we 
conducted simulations by increasing density from 0.01 to 0.05 people/m2 with 0.01 
intervals. In each density setting, we conducted 1000 simulations.  

Fig. 7 shows efficiency and ratio of collision in each density setting. We had ratio 
of collision 0% until density 0.03, while the robot caused 0.01% and 0.02% collisions 
at density 0.04 and 0.05, respectively. The efficiency at density 0.01 was 79%, and it 
decreases with increased density (65% at density 0.05). 
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   (a)              (b)                (c)                (d)  

Fig. 11. The robot safely avoids an approaching pedestrian 

6 Conclusion  

We report our framework to deploy robots in a real shopping mall environment. We 
used a pedestrian simulator in order to develop and estimate the safety of the robot 
navigation system among a human crowd. In the simulator we employed a particular 
specification of the Social Force pedestrian model that has been developed to describe 
the relatively low-density settings occurring in shopping malls and the like [8]. We 
further addressed the diverse behavior of pedestrians toward the robot, i.e. we 
gathered data from a real environment and built a “HRI behavior model” for people 
slowing down to look at the robot, or approaching and stopping for curiosity, and 
included such a model in our simulator. 

We first tested the developed robot, which is navigated using the same collision 
avoidance model used for simulated pedestrians, in a simulation to confirm its safety. 
The results showed that the robot safely navigated among people with reasonable 
efficiency. Given that the simulation yielded safe navigation for densities up to 0.03 
people/m2, we estimated that we could deploy it in a real world environment with a 
similar density. To confirm this estimation, we conducted a field trial in a real 
shopping mall, and the results of this trial demonstrated that the robot can navigate 
safely among people even when facing complex situations.  
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