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Abstract. Methods for dealing with the problem of the “reality gap”
in evolutionary robotics are described. The focus is on simulator tuning,
in which simulator parameters are adjusted in order to more accurately
model reality. We investigate sample selection, which is the method of
choosing the robot controllers, evaluated in reality, that guide simulator
tuning. Six strategies for sample selection are compared on a robot lo-
comotion task. It is found that strategies that select samples that show
high fitness in simulation greatly outperform those that do not. One such
strategy, which selects the sample that is the expected fittest as well as
the most informative (in the sense of producing the most disagreement
between potential simulators), results in the creation of a nearly optimal
simulator in the first iteration of the simulator tuning algorithm.

Keywords: the reality gap, evolutionary robotics, simulation.

1 Introduction

Evolutionary robotics (ER) [1,2], the application of evolutionary algorithms
(EAs) to robot design, has shown itself to be a powerful technique. The ability
of EAs to find novel solutions in a large or unfamiliar search space has been
demonstrated, e.g., with Sims’ swimming robots [3] and in antenna design [4].
Using ER, the designer is free to explore otherwise daunting domains like the
complex dynamics of tensegrity structures and soft materials [5,6,7] or the space
of robot morphologies [7,8,9]. A simple demonstration of the advantage of ER
over the hand-design of robots is given in [10].

While it is possible to do evolutionary robotics in the real world [11], this can
be a very time consuming task. The evaluation of a single candidate solution
can take on the order of tens of seconds, not including setup time, and an entire
run of an EA typically involves thousands of such evaluations. The benefit of
using a simulator, which, given sufficient computing power, can perform many
evaluations in the time it would take to perform one in reality, is palpable.

This speedup, however, comes with a cost. Because a simulator is only an
approximation of reality, it necessarily changes the problem being solved. An
individual that behaves a certain way in simulation may not behave the same
when transferred to reality. As a result, the fitness landscape will be different.
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Most importantly, optima of the approximated fitness function may not be op-
timal in reality. To deal with this problem of the “reality gap” (as it has been
called) several approaches have been made.

It was shown that, by simulating only those aspects of reality that are relevant
to the problem at hand (i.e., building “minimal” simulations) and by using
empirically determined amounts of noise to model noisy or poorly understood
aspects of a system, the transferability to reality of robot controllers evolved in
simulation can be improved [12,13,14]. For example, sensors and actuators do
not behave in an idealized fashion; there is always some noise, and it can have
a large effect on the functioning of a robot. Moreover, the nondeterminism of a
noisy simulator helps to produce robust controllers that are less likely to take
advantage of a simulator’s idiosyncrasies; i.e., it discourages “cheating”.

Rather than concerning oneself greatly with the quality of the simulator, it is
alternatively possible to sidestep the problem by simply accepting that a simu-
lator has inaccuracies. The transferability approach [15,16] uses multi-objective
optimization to explicitly consider the trade-off between fitness and transfer-
ability. Other methods involve designing adaptive controllers that can cope with
differences between simulation and reality. In [17], a mobile robot was able to
perform a non-trivial task in reality after being very rapidly evolved in a sim-
ulator, using Hebbian rules to develop a neural controller on the fly. In [18], a
control architecture was developed which enabled an evolved robot to adaptively
anticipate errors between its expected and actual motions, allowing it to recover
from perturbations not encountered in simulation.

Each of these methods is promising in its own way, but they are not the fo-
cus of this paper. Here, we deal with methods of improving the quality of simula-
tion. A simulator is typically configured by some set of parameters. For example, a
physics simulator has parameters related to friction and restitution that govern the
interactions of different materials, and parameters for the dimensions and mass
distributions of objects being simulated. Many values can be obtained by direct
measurement. However, given that a simulator is a simplification of the real world,
there may not be direct correspondences between real and simulated parameters –
for example, when nonlinearmechanisms like robot actuators aremodeled linearly
or when detailed objects are represented by coarse shapes, as is often done.

It is thus necessary to adjust simulation parameters such that the simulator
more accurately reflects the real world. Some improvement can be made by
simply hand-tuning [19] but clearly more sophisticated methods are required.
Even when suitable values can be determined by measurement, a method of
automatic discovery or inference could be useful, for example in an autonomous
adaptive robot that maintains internally a model of its environment.

The approaches taken in Back-to-Reality (BTR) [20,21], estimation-
exploration (EE) [22,23], and using sequential surrogate optimization (SSO) [24]
are largely similar to each other: Two coupled optimization algorithms are run
in an interleaved fashion, one to search for solutions to a primary task such as
simulated robot locomotion and another to improve the accuracy of the simula-
tor. The product of each run of the primary search (a controller for a simulated
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robot) is evaluated in reality and then used in subsequent simulator optimiza-
tions; and the product of each simulator optimization is used in the following
primary search. (A more detailed description is given later.) Ultimately, this
should result in the convergence toward accurate simulators and, as a result,
robot controllers that are fit in reality.

BTR actually interleaves three algorithms. In addition to the two just men-
tioned, it includes a learning-in-reality step after each simulator search, seeded
by the prior primary search, and the results of which are used to seed the next
primary search. The value of this extra step is a bit unclear. It is expensive to do
such fine tuning in the real world, and any information gained is then lost upon
return to simulation. Even if the real-world evaluations were used to inform the
simulator search, it would be a large price to pay for some tightly clustered, and
thus information poor, data points.

An interesting aspect of EE is its measure of simulator fitness. While the other
two methods search for a simulator that minimizes the difference between the
fitnesses of some individuals in simulation and reality, EE tries to minimize the
difference between the robots’ sensor readings in simulation and reality. It is a
more complicated calculation to perform but it also provides a great deal more
information.

Perhaps the most important difference between these methods is in their
specific strategies for selecting individuals for evaluation in reality. Individu-
als evaluated in reality provide the data points, or samples, used for tuning the
simulator. Because the goal is to do as few real-world evaluations as necessary,
it is important that sample selection be done wisely.

BTR and EE operate in the same manner, selecting for evaluation in reality
the individual that is fittest in the current simulator. EE is actually described
to work differently, but is only used that way in one of its four applications, and
not in evolutionary robotics; This other manner is to select the individual that
maximizes the disagreement between a number of candidate simulators, i.e., the
most informative individual. SSO uses a hybrid strategy, selecting the fittest
individual, or, if that individual is within a threshold distance of a previously
selected individual, the most informative individual (based on a fitness error
estimate that is maintained as part of the surrogate fitness function).

These different selection strategies seem promising but it isn’t clear which
would give the best results. The goal of this paper, then, is to compare them
(and others) on a common task. In the next section, we describe this task, the
general algorithm, and each of the specific strategies to be compared. Then, we
present and discuss the results. Finally, we conclude and consider avenues for
future work.

2 Implementation

The benchmark task in this investigation is a common one: to design a con-
troller for robot locomotion. Figure 1 depicts the robot, a quadruped with a
total 12 degrees of freedom in its limbs. To produce motion, each of its actuators
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is periodically extended and contracted based on a simple pulse shaped function
determined by two parameters; a total of 24 parameters thus define such a con-
troller. The task is then to use an EA to search for controller parameters that
cause the robot to walk at the highest speed. Details of the robot, its controller,
and the EA are given in [10].

Fig. 1. A rendering of the robot used in this investigation

The ultimate goal is to be able to reliably perform this task for a robot
situated in the real world, taking advantage of a simulator to perform most of
the expensive robot evaluations required by the EA. In order to determine the
expected relative performance of a number of different methods for achieving this
goal, however, experiments need to be repeated many times due to the stochastic
nature of EAs. This would require thousands of real-world robot evaluations. To
expedite this investigation, we have substituted a simulation for the real world.
That is, instead of doing evaluations in the real world, we do them in a simulator
whose configuration is unknown (i.e., hidden from the algorithm). As long as
the configuration of “reality” (simulated or otherwise) remains hidden from the
process that generates approximations of it, we can consider this to be a “reality
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gap” problem. It should therefore be sufficient for the purpose of comparing
selection strategies.

The PhysX software library was used to simulate robot movement, as in [10].
The simulated reality (henceforth just “reality”) was configured such that the
material constituting the robot and the ground plane had coefficients of static
and dynamic friction 1.0 and 0.8, respectively, and restitution (bounciness) 0.0.
The simulator (i.e., the approximating simulator, not “reality”) was parameter-
ized by these material properties, so that the process of simulator tuning was a
search for values of these three coefficients.

The basic algorithm, illustrated in Figure 2, is essentially the same as in BTR,
EE, and SSO. We iterate the following procedure: First, select a new sample
(defined in the next paragraph) using one of the selection strategies described
later; then, use all the samples collected thus far to optimize a new simulator.
Finally, after performing some number of these iterations, the latest simulator
is used to evolve a robot controller which, transferred to reality, is the final
product of the algorithm. The algorithm is iterative because selection strategies
typically use the tuned simulator for the subsequent sample selection; initial
sample selection uses a random simulator.

Start with a randomly
configured simulator and
an empty set of samples.

Informed by the current
simulator, choose a robot
controller using a sample

selection strategy.
Evaluate it in reality and

add it to the set of samples.

Run an EA to tune
the simulator so that
it accurately repro-
duces the fitnesses of
the samples in our set.

End after a fixed number
of iterations. Use the latest
simulator to evolve the
final robot controller.

Fig. 2. The flow of the basic simulator tuning algorithm

A sample, as mentioned earlier, is a robot controller whose fitness (here,
walking speed) we evaluate in reality. The real-world fitness values of the sam-
ples drive simulator tuning: We use an EA to find the simulator (specifically,
the three parameters named earlier) that accurately reproduces the fitness val-
ues of the samples collected thus far. The fitness of a simulator sim, to be
maximized, is

f(sim) =
1

∑
x∈samples(fsim(x)− freal(x))2

where fsim(x) and freal(x) are the fitnesses in the simulator and in reality,
respectively, of an individual x. We use the same EA parameters as in the robot
optimization, but only 2000 evaluations.
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Figure 3 illustrates the progression of the algorithm when it is run on a much
simpler function optimization task. In this example, we can visualize the fit-
ness landscape, sample selection, the successively more accurate simulators, and
transferral from simulation to reality.

Fig. 3. A visualization of the algorithm being run on a function optimization task
after 2, 4, 6, and 8 iterations. The dashed curve is the true function (reality) and
the solid curves are approximating functions (simulations). Dots indicate samples. The
arrow indicates the fittest in simulation and its transferral to reality. Notice that, as
more samples are added, the simulations become more accurate and the fitness of the
transferred individual increases until it is near the global maximum of the real function.

In the following paragraphs we describe the six sampling strategies that are
the objects of comparison in this paper. The first four strategies fit in the iterative
form of the algorithm described above and use the ideas from BTR, EE, and
SSO, while the last two are non-iterative and much simpler.

Simulated Fit. This is the strategy used in BTR and EE and partially in SSO.
The individual is selected for evaluation in reality that has the highest fitness in
the latest tuned simulator (or, in the first iteration, a simulator with randomly
chosen parameters). An EA is run to find this individual; this EA uses the same
parameters as the one used to produce the final result of the algorithm. This
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strategy is motivated by the idea that our simulator needs to accurately model
only individuals of high fitness; it thus tries to bias the samples towards what
are estimated to be fit individuals.

Simulated Fit and Unique. This is the same as the previous strategy, but with
a modification to the fitness function to maintain some distance between the
samples. The modified fitness function is

f∗
sim(x) = fsim(x)− 1

100N

∑

y∈samples

1

d(x, y)

where fsim(x) is the simulated fitness of x, N = |samples|, and d(x, y) is the
Euclidean distance between individuals x and y in terms of both genome and
fitness. This strategy is motivated by the fact that we might expect the pre-
vious strategy to pick, after several iterations, very similar individuals near a
local optimum. Several such tightly clustered samples would provide little more
information than a single one.

Informative. This strategy was suggested in EE and used partially in SSO. The
individual is selected that maximizes the disagreement between a number of
simulators. A modification to the basic algorithm is required: Instead of evolving
a single simulator, a diverse population of 20 simulators is evolved. To maintain
diversity, the EA’s method of replacement is changed: After a newly evaluated
simulator is added to the population, instead of dropping the least fit, the pair
of simulators whose genomes are most similar is found and the less fit of the two
is removed from the population.

To find the individual that maximizes the disagreement between the simula-
tors, an EA is used. Its fitness function is calculated as the weighted standard
deviation of the fitness values the simulators produce for a given individual.
The weights are the fitnesses of the simulators themselves, so that an inaccurate
simulator contributes less to this measure than an accurate simulator.

Simulated Fit and Informative. This is a mixture of two strategies. It works
the same as the Informative strategy, but in addition to the weighted standard
deviation, its fitness function includes the weighted average of the fitness values
produced by the diverse population of simulators.

Random. Individuals are picked with genomes drawn from a uniform distribu-
tion. As each selection is entirely independent of the previous ones, the algorithm
collapses to a non-iterative form where all the samples are selected at once before
a single simulator is finally tuned.

Known Fit. This strategy is like Random except the samples are generated as
mutated versions of an individual known to have middling fitness. In this case,
the hand-designed controller from [10] was used; it achieved a fitness of 0.73 in
“reality”. Values drawn randomly from a uniform distribution on [0, 0.25) were
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added to each element of this controller’s genome to produce each new sample.
This strategy is motivated by the observation that many of the purely randomly
generated samples had very low fitness. In SSO, a similar strategy was used to
generate a small set of initial samples.

3 Experiments and Results

The aim is to achieve the highest real-world fitness while doing the fewest real-
world evaluations. It is on this basis that we compare the performance of the
different selection strategies. The creation of a generally accurate simulator may
be an intermediate goal; however, a relatively poor simulator is perfectly accept-
able if it enables us to find robot controllers that are very fit in reality – which
may very well be the case for a simulator that captures only certain essential
aspects of reality. For this reason, we make no explicit judgments of simulator
accuracy.

For each of the strategies, the algorithm is iterated ten times; that is, ten real-
world evaluations are performed. After each iteration of the algorithm, the best
simulator is used to evolve a robot controller for walking speed. This controller is
then evaluated in reality and its fitness (or the maximum fitness of the samples, if
it is larger) is recorded. We do not count this real-world evaluation among those
that are the basis for comparison, as it is not used as a sample for simulator
tuning – it is only a view into the algorithm’s performance. Figure 4 shows the
recorded fitness values averaged over 40 repetitions of this process.

In addition to comparing the different strategies to each other, we should
also consider them with regard to the expected performance of evolving directly
in reality. Because we have substituted the real world with a simulator, it is a
simple task to compute the fitness expected from evolving directly in reality. Just
as in [10], robot controllers were evolved for 10000 evaluations in the simulator
configured as “reality”; with 100 repetitions, the best fitness at the end of the
evolutionary runs had an average of 1.33 (standard deviation 0.10).

All of the strategies showed real-world fitness increasing with the number of
real-world evaluations. Before any iterations, all strategies of course produced
roughly the same expected fitness, about 0.9, from evolving in a randomly con-
figured simulator. With more iterations, fitnesses improved (diminishingly) to
more or less 1.3.

Known fit performed only marginally better than Random. More improvement
could probably have been achieved by using a fitter individual as the seed for
generating the samples.

The three strategies that involve simulated fitness were significantly better
than the others in terms of both average and standard deviation of real-world
fitness. After only three real-world evaluations, these three strategies achieved
real-world fitness of at least 1.3, and after ten iterations they reached 1.4. Stan-
dard deviations were in the range 0.10-0.15, about three times smaller than in
the other strategies and comparable to that found when evolving directly in re-
ality. This indicates that the inclusion of simulated fitness as a factor in sample
selection is very effective, perhaps essential.
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Fig. 4. Fitness in reality versus number of real-world evaluations for the six sample
selection strategies. The statistical significance of the results (using Student’s t-test)
is as follows: With just one real-world evaluation, the Simulated fit and informative
strategy was significantly different from the other strategies (p < 0.01). Combining
the data for more than two real-world evaluations, each of the strategies involving
simulated fitness was significantly different from the others (p << 0.001) and Known
fit was significantly different from Random (p ≈ 0.017). Considering more than five
real-world evaluations, each of the three weakest strategies was significantly different
from the others (p < 0.05).

The additional criterion of uniqueness appears to give a small improvement
over plain Simulated fit after a couple of iterations, as expected. We might expect
the same sort of improvement from Informative, as informative implies unique-
ness (a repeated sample is totally uninformative), but we do not see it. This
is because the strategies involving simulated fitness produced nearly perfectly
tuned simulators after about 3 or 4 iterations, as they have attained the same
fitness as evolution in reality using the same number of simulated evaluations.
Beyond these 3 or 4 iterations, the algorithm is hardly tuning the simulator any-
more, instead just searching for fitter samples; the increasing fitness is similar
to what would be seen by simply extending the EAs beyond 10000 evaluations.
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That the different strategies show different rates of improvement in later iter-
ations is due to their specific construction: The strategy that promotes unique
samples introduces a weak exploratory force in the algorithm, leading it to search
locally and thus to improve more quickly, while the strategy biased towards in-
formative samples introduces a stronger exploratory force (informative samples
will typically be quite distant from each other) that may lead the algorithm away
from regions of high fitness.

Most striking is the performance of the Simulated fit and informative strategy.
While Informative alone was only slightly better than Random and Known fit,
in combination with Simulated fit it produced a nearly perfect result in just a
single iteration. The fact that the other two strategies outperform it in later
iterations is due to the phenomenon described it the previous paragraph, and
for this reason shouldn’t be considered a weakness of this strategy. This is the
most promising of the six selection strategies.

It is interesting to consider how poorly the Informative strategy performed,
especially when its combination with Simulated fit was so successful. It seems
likely that the diversity maintenance mechanism used in simulator evolution
was not as effective as desired – it plays no role in the first iteration (in which
randomly configured simulators are used), where Simulated fit and informative
really shines.

4 Conclusion and Future Work

Our investigation has demonstrated the important role that sample selection
strategies play in simulator tuning. Of the six strategies used here, the Simulated
fit and informative strategy proved to be the most successful at closing the
“reality gap” for this particular task of robot locomotion. In fact, seeing as the
algorithm was able to nearly perfectly tune the simulator in just a single iteration
using this strategy, it seems reasonable to say that this strategy has solved this
particular instance of the task.

It remains to be seen how well this algorithm scales up to more complex sce-
narios; this will be the main focus of our future work. This instance of simulator
tuning was rather simple, involving the estimation of only three parameters.
Other parameters to be considered include motor forces, noise sources, and di-
mensions and mass distribution of the robot body. Ultimately, testing must be
done on a physical robot outside simulation.

To succeed at more complex tasks, it may be necessary to improve upon the
Simulated fit and informative strategy. The current implementation involves a
simple sum of two factors (one from simulated fitness, the other informative)
whereas this probably ought to be a more general weighted sum so that it is
possible to adjust the influence of the two factors. It may also be beneficial
to more tightly interleave the evolution of diverse simulators with the evolu-
tion of informative samples, as their respective diversity and informativeness are
strongly coupled.

Finally, as sample selection strategies become more sophisticated, it could be
practical to consider a more nuanced basis for comparison than just the number
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of real-world evaluations. If some strategies take much longer to run than others
then the total running time would be a better measure. If a strategy takes a
very long time to run then one might consider instead to do more real-world
evaluations in that time; to capture this possibility, the time it takes to perform
real-world evaluations must be considered. In this situation it would probably
make sense to give greater weight to time spent doing real-world evaluations
than time spent computing, as it demands more constant human attention.
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de Robotique Université Pierre et Marie CURIE (2011)

17. Floreano, D., Urzelai, J.: Evolution of Plastic Control Networks. Autonomous
Robots 11(3), 311–317 (2001)

18. Hartland, C., Bredeche, N.: Evolutionary robotics, anticipation and the reality gap.
In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, pp.
1640–1645 (December 2006)

19. Glette, K., Klaus, G., Zagal, J.C., Tørresen, J.: Evolution of locomotion in a sim-
ulated quadruped robot and transferral to reality. In: Artificial Life and Robotics
(2012)

20. Zagal, J.C., Ruiz-del-Solar, J., Vallejos, P.: Back to reality: Crossing the reality gap
in evolutionary robotics. In: Proceedings of IAV 2004, the 5th IFAC Symposium
on Intelligent Autonomous Vehicles, Lisbon, Portugal (2004)

21. Zagal, J.C., Ruiz-Del-Solar, J.: Combining simulation and reality in evolutionary
robotics. J. Intell. Robotics Syst. 50, 19–39 (2007)

22. Bongard, J.C., Lipson, H.: Once more unto the breach: co-evolving a robot and its
simulator. In: Proceedings of the Ninth International Conference on the Simulation
and Synthesis of Living Systems (ALIFE9), pp. 57–62 (2004)

23. Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of mod-
els and tests. IEEE Transactions on Evolutionary Computation 9, 361–384 (2005)

24. Hemker, T., Sakamoto, H., Stelzer, M., Stryk, O.V.: Hardware-in-the-loop opti-
mization of the walking speed of a humanoid robot. In: CLAWAR 2006: 9th Inter-
national Conference on Climbing and Walking Robots, pp. 614–623 (2006)


	A Comparison of Sampling Strategies
for Parameter Estimation of a Robot Simulator
	Introduction
	Implementation
	Experiments and Results
	Conclusion and Future Work
	References




