
PRACSYS: An Extensible Architecture
for Composing Motion Controllers and Planners

Andrew Kimmel, Andrew Dobson, Zakary Littlefield,
Athanasios Krontiris, James Marble, and Kostas E. Bekris�

Computer Science Department, Rutgers University, Piscataway, NJ, 08554, USA
kostas.bekris@cs.rutgers.edu

Abstract. This paper describes a software infrastructure for developing con-
trollers and planners for robotic systems, referred here as PRACSYS. At the core
of the software is the abstraction of a dynamical system, which, given a control,
propagates its state forward in time. The platform simplifies the development of
new controllers and planners and provides an extensible framework that allows
complex interactions between one or many controllers, as well as motion plan-
ners. For instance, it is possible to compose many control layers over a physical
system, to define multi-agent controllers that operate over many systems, to eas-
ily switch between different underlying controllers, and plan over controllers to
achieve feedback-based planning. Such capabilities are especially useful for the
control of hybrid and cyber-physical systems, which are important in many ap-
plications. The software is complementary and builds on top of many existing
open-source contributions. It allows the use of different libraries as plugins for
various modules, such as collision checking, physics-based simulation, visual-
ization, and planning. This paper describes the overall architecture, explains im-
portant features and provides use-cases that evaluate aspects of the infrastructure.

1 Introduction

Developing and evaluating control or motion planning methods can be significantly
assisted by the presence of an appropriate software infrastructure that provides basic
functionality common among many solutions. At the same time, new algorithms should
be thoroughly tested before applied on a real system. Physics-based simulation can as-
sist in testing algorithms in a more realistic setup so as to reveal information about the
methods helpful for real world application. These realizations have led into the develop-
ment of various software packages for physics-based simulation, collision checking and
motion planning for robotic and other physical systems, such as Player/Stage/Gazebo
[1], OpenRAVE [2], OMPL [3], PQP [4], USARSim [5]. At the same time many re-
searchers interested in developing and evaluating controllers, especially for systems
with interesting dynamics, often utilize the extensive set of Matlab libraries.

There are numerous problems, however, which require the integration of multiple
controllers or the integration of higher-level planners with control-based methods. For
instance, controlling cyber-physical systems requires an integration of discrete and

� This work has been supported by NSF CNS 0932423. Any conclusions expressed here are of
the authors and do not reflect the views of the sponsor.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 137–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



138 A. Kimmel et al.

continuous reasoning, as well as reasoning over different time horizons. Similarly, a
problem that has attracted attention corresponds to the integration of task planners with
motion planners so as to solve challenges that are more complex than the traditional Pi-
ano Mover’s Problem. At the same time, interest is moving towards higher-dimensional
and more complex robotic platforms, including humanoid systems and robots with com-
plex dynamics.

This work builds on top of many existing contributions and provides an extensible
control and planning framework that allows for complex interactions between different
types of controllers and planners, while simplifying the development of new solutions.
The focus is not on providing implementations of planners and controllers but defining
an environment where new algorithms can be easily developed, integrated in an object-
oriented way and evaluated. In particular, the proposed software platform, PRACSYS1,
offers the following benefits:

• Composability: PRACSYS provides an extensible, composable, object-oriented ab-
straction for developing new controllers and simulating physical systems, as well as
achieving the integration of such solutions. The interface is kept to a minimum so as
to simplify the process of learning the infrastructure.

• Ease of Evaluation: The platform simplifies the comparison of alternative methods
with different characteristics on similar problems. For instance, it is possible to eval-
uate a reactive controller for collision avoidance against a replanning sampling-based
or search-based approach.

• Scalability: The software is built so as to support lightweight, multi-robot simula-
tion, where potentially thousands of systems are simulated simultaneously and where
each one of them may execute a different controller or planner.

• New Functionality: PRACSYS builds on top of existing motion planning software.
In particular, the OMPL [3] library focuses on single-shot planning but PRACSYS
allows the use of OMPL algorithms on problems involving replanning, dynamic ob-
stacles, as well as extending into feedback-based planning.

• ROS Compatibility: The proposed software architecture is integrated with the
Robotics Operating System (ROS) [6]. Using ROS allows the platform to meet a
standard that many developers in the robotic community already utilize. ROS also
allows for inter-process communication, through the use of message passing, service
calls, and topics, all of which PRACSYS takes advantage of.

• Pluggability: PRACSYS allows the replacement of many modules through a plugin
support system. The following modules can be replaced: collision checking (e.g.,
PQP [4]), physics-based simulation (e.g., Open Dynamics Engine [7]), visualization
(e.g., OpenSceneGraph [8]), as well as planners (e.g., through OMPL [3]) or con-
trollers (e.g., Matlab implementations of controllers).

After reviewing related contributions, this paper outlines the software architecture and
details the two main components of PRACSYS, simulation and planning. The paper
also provides a set of use-cases that illustrate some of the features of the software in-
frastructure and gives examples of various algorithms that have been implemented with
the assistance of PRACSYS.

1 SourceForge package: http://sourceforge.net/projects/pracsys/

http://sourceforge.net/projects/pracsys/


PRACSYS Software for Motion Control and Planning 139

2 Related Work

The Robot Operating System (ROS) [6] is an architecture that provides libraries and
tools to help software developers create robot applications. It provides hardware ab-
stractions, drivers, visualizers, message-passing and package management. PRACSYS
builds on top of ROS and utilizes its message-passing and package management. ROS
was inspired by the Player/Stage combination of a robot device interface and multi-
robot simulator [9]. Gazebo is focusing on 3D simulation of multiple systems with
dynamics [1]. PRACSYS shares objectives with Gazebo but focuses mostly on a control
and planning interface that is not provided by Gazebo.

There is a series of alternative simulators, such as USARSim [5], the Microsoft
Robotics Developers studio [10], UrbiForge [11], the Carmen Navigation Toolkit [12],
Delta3D [13] and the commercial package Webots [14]. Most of these systems focus
on modeling complex systems and robots and not on defining a software infrastructure
for composing and integrating controllers and planners for a variety of challenges.

Other software packages provide support for developing and testing planners. For in-
stance, Graspit! [15] is a library for grasping research, while OpenRAVE [2] is an open-
source plugin-based planning architecture that provides primitives for grasping and
motion planning for mobile manipulators or full-body humanoid robots. The current
project shares certain objectives with tools, such as OpenRAVE. Nevertheless, the def-
inition of an extensible, object-oriented infrastructure for the integration of controllers,
as well as the integration of planners with controllers to achieve feedback-based plan-
ning, are unique features of PRACSYS. Furthermore, multiple aspects of OpenRAVE,
such as the work on kinematics, are complementary to the objectives of PRACSYS and
could be integrated into the proposed architecture. The same is true for libraries fo-
cusing on providing prototypical implementations of sampling-based motion planners,
such as the Motion Strategy Library (MSL) [16] and the Open Motion Planning Library
(OMPL) [3]. In particular, OMPL has already been integrated with PRACSYS and is used
to provide concrete implementations of motion planners. The proposed infrastructure,
however, allows the definition of more complex problems than the typical single-shot
motion planning challenge, including problems like replanning.

Fig. 1. Package interactions. ROS nodes communicate via message passing: simulation, visual-
ization, and planning. The common and utilities packages are dependencies of the previous three.



140 A. Kimmel et al.

3 General Architecture of PRACSYS

The proposed architecture is composed of several modules, following the architecture
of the Robotic Operating System (ROS) [6]. ROS’s architecture has separate nodes
launched as executables which communicate via message passing and are organized
into packages and stacks. A package is a collection of files, while a stack is a collection
of such packages. PRACSYS is a stack and each node launched from PRACSYS is asso-
ciated with a single package. PRACSYS also allows developers to integrate additional
plugins into the architecture. There are three packages which run as nodes: the simula-
tion, planning, and visualization packages. See Figure 1 for a visual representation of
the interactions between different packages of PRACSYS. The advantage of having sep-
arate nodes is that it makes the jump to distributed computation such as on a computing
grid easier.

The common package contains some useful data structures, as well as mathematical
tools. The utilities package contains useful algorithms, such as graph search, as well
as abstractions for planning. Both the common and utilities packages use the Boost2

library to facilitate efficient implementations.
The higher-level packages include simulation, visualization, and planning. The sim-

ulation package has common and utilities as dependencies, while it is responsible for
simulating the physical world in which the agents reside and contains integrators and
collision checking. The same package also contains many controllers which operate
over short time horizons. Controllers are part of the main pipeline and are not in the
planning package because they only operate over a single simulation step. The planning
package is primarily concerned with controlling agents over a longer horizon, using the
simulation package internally. The visualization package provides an interface between
the user and the simulation, such as selecting agents and providing manual control.
The state of systems simulated in the planning package can be different than the state
in the ground truth simulator, which is useful for applications such as planning under
uncertainty.
PRACSYS makes use of a package for loading simulations from files YAML [17]

format. There is also a set of dependencies to external software packages, such as the
Approximate Nearest Neighbors library [18].

The following discussion details the capabilities of these packages, starting with the
most fundamental of the three: the simulation package.

4 Description of the Packages

This section discusses the different packages of PRACSYS in further detail.

4.1 Ground-truth Simulation and Controller Architecture

The simulation package is the primary location for the development and testing of new
controllers, and contains a set of features which are useful for developers. The follow-
ing sections will go over each of these features individually.

2 Boost is a set of libraries that extend the functionality of the C++ programming language.



PRACSYS Software for Motion Control and Planning 141

Fig. 2. A view of the class inheritance tree for the PRACSYS system. All classes are abstract, with
the exception of the switch controller and the three concrete simulator classes.

Fig. 3. The core interface of a system:
x and x′ are states, while u is a control

Composability. The simulator contains several
classes which are interfaces used for the develop-
ment of controllers. The fundamental abstraction
is the system class - all controllers and plants are
systems in PRACSYS, as shown in Figure 2. This
functionality allows for other nodes, such as plan-
ning, to reason over one or more systems without
knowing the specifics of the system. The interface
is the same whether planning happens over a phys-
ical plant or a controlled system, which simplifies
feedback-based planning.

The interaction between systems is governed by
the pipeline shown in Figure 3, which ensures that
every system properly updates its state and con-
trol. The functions in the pipeline are responsible
for the following:
copy state: receive a state from a higher-level sys-
tem, potentially manipulate this state, and pass it
down to lower-level systems.
copy control: receive a control from a higher-level system, potentially manipulate this
control, and pass it down to lower-level systems.
propagate: propagates a system according to its dynamics (if it is a plant), or sends a
propagate signal down to lower-level systems (if it is a controller).
get state: receives the state from a lower-level system. This allows higher-level systems
to query for the full state of the simulation.

The system class uses the space abstraction, which provides a way for users to define
abstract spaces in a general way, allowing for scopes beyond a Euclidean space. A space
is a box constrained region in n dimensions where each dimension can be Euclidean,
rotational, or one component of a quaternion. The abstraction automatically provides a
way to compute metrics between different points within the space. A space point stores



142 A. Kimmel et al.

the parameters of each dimension of the space, and can be used to represent states and
controls in the system class.

Note that a system does not need to get controls from lower-level systems. The system
class contains other functions, which primarily fall under the categories of initialization,
set functions, and get functions. Systems are broken into: physical plants, obstacles and
controllers. Physical plants are responsible for simulating the physical agents and how
they move through the environment. They store geometries and have functionality to
update their configurations based on states set through copy state. Furthermore, physical
plants are governed by state-update equations of the form ẋ = f (x,u) implemented by
the propagate function.

Controllers are classified into four major types: simple, stateful, composite, and
switch. These are classes that extend the abstract controller class. A simple controller
contains a single subsystem, which is most often the plant itself, but can also be another
controller. Simple controllers are useful for creating a chain of controllers, allowing
for straightforward compositions. A controller which computes a motion vector along
a potential field for a holonomic disk system is an example of a simple controller on
top of a physical plant. In more complex compositions, controllers will also have the
need to keep an internal state, separate from its subsystem. A stateful controller al-
lows for an internal state, and one such example of a stateful controller is the consumer
controller. The consumer controller simply supplies controls to its subsystem from a
pre-computed plan, where its state is the point in time along the plan to extract the con-
trol. Composite controllers, which can have many subsystems, provide the necessary
interface for controlling multiple subsystems. The simulator, for example, which is re-
sponsible for propagating systems, is a composite controller containing all controllers
and plants. The final major type of controller is the switch controller, which behaves
quite similar to a C/C++ switch statement. A switch controller operates over an internal
controller state, called a mode, which determines which of its subsystems is active. For
example, a switch controller could be used to change the dynamics being applied to a
plant depending if it was in a normal environment or an icy environment, in which case
an inactive slip-controller would be “switched” active. Developing controllers which
utilize these archetypes allows for an easy way to create more complex interactions.

High-Level simulation Abstractions. In addition to the system abstraction, there are
several high-level abstractions which give users additional control over the the simula-
tion. One such abstraction is the collision checking abstraction, which consists of an
actual collision checker and a collision list. The collision list simply describes which
pairs of geometries should be interacting in the simulation, while the collision checker
is actually responsible for performing the checks and reporting when geometries have
come into contact. The simulator is an extension of the composite controller, but it has
additional functionality and has the unique property of always being the highest-level
system in the simulation. The abstraction which users are most likely to change is the
application. The application class contains the simulator and is responsible for defining
the type of problem that the user wants to solve.



PRACSYS Software for Motion Control and Planning 143

Interaction. The simulation node can communicate with other nodes viaROSmessages
and service calls. For example, moving a robot on the visualization side involves a ROS
service call. Similar to how a propagate signal is sent between systems, an update sig-
nal is used to change geometry configurations. Once all systems have appended to this
update signal, a ROS message is constructed from it and sent to visualization in order
to actually move the physical geometry. For non-physical geometries, such as additional
information of a system (i.e., a robot could have a visualized vector indicating its direc-
tion), each system is responsible for making the appropriate ROS call. If a user needs
additional functionality and interaction between the nodes, they only need to implement
their function in the communication class and create the appropriate ROS files.

Plugin Support. Adding a new physics engine as a plugin simply involves extending
the simulator, plant, obstacle, and collision checker classes. If a user does not require the
use of physics-based simulation, they can simply disable this functionality by omitting
it from the input configuration file. For collision checking,PRACSYS currently provides
support for PQP, as well as the use of no-collision checking. Similarly, if a user would
like to add a new collision checker, they only need to extend the collision checking class.

4.2 Planning

The planning package is responsible for determining sequences of controls for one or
many agents over a longer horizon than a single simulation step. This excludes meth-
ods which use reactive control. Furthermore, planning also reasons over higher-level
planning processes, such as task coordination. The planning package is divided among
several modules in order to accomplish these tasks. The high-level task coordination is
provided by task planners, which contain motion planners for generating sequences of
controls given a world model. The world model is a system with a simulator as a sub-
system and is responsible for providing information to the planners about the state of
the simulator as well as providing additional functionality. The motion planners are the
individual motion planning algorithms which compute controls. The current version of
PRACSYS has certain sampling-based motion planners implemented, which use some
basic modules to accomplish their specified tasks, including local planners and validity
checkers. PRACSYS also integrates existing motion planning packages such as OMPL
by providing an appropriate interface. OMPL is a software package developed for plan-
ning purposes [3]. The current focus of the planning package has been sampling-based
methods; however, it is not limited to these types of planners and can easily support
search-based or combinatorial approaches.

High-Level Abstractions. All of the abstractions described in this section interact
according to Figure 4.

Task planners are responsible for coordinating the high-level planning efforts of the
node. Task planners contain at least one instance of a motion planner and use planners
to accomplish a given task. Ultimately, the goal of planning is to come up with valid



144 A. Kimmel et al.

trajectories for one or many systems, which bring them from some initial state to a goal
state, but the task planner may be attempting to accomplish a higher-level task such
as motion coordination. In this sense, the task planners are responsible for defining
the objective of the planning process, while the motion planners actually generate the
plan. One example is the single-shot task planner, which allows a planner to plan until
it has computed a path to a specified goal. Then the single-shot task planner forwards
the plan to the simulation node. Other tasks include single-shot planning, replanning,
multi-target planning and velocity tuning or trajectory coordination among multiple
agents.

Fig. 4. The general structure of the planning
modules. The task planner contains multiple
motion planners. The task planner also con-
tains a world model and communicates with
the simulation node.

A World Model represents the physical
world as observed or known to the plan-
ner, and also extends the system abstrac-
tion. A world model contains a simulator as
a subsystem, exposing the functionality of
the simulator to the motion planners. World
models can be used to hide dimensions of
the state space from the motion planners, in-
troduce and model the uncertainty an agent
has about its environment, or removing cer-
tain agents from collision checking. Having
the capability to remove dimensions from the
state space is useful for planning purposes
because the planning process has complexity
which depends on the dimensionality of the
space. This reduction will make the planning
process more efficient, and is related to being able to remove some systems from colli-
sion checking. These two functions together allow a full simulation to be loaded, while
allowing planning to plan for agents individually in a decoupled manner for greater
efficiency.

Motion planners are responsible for coming up with trajectories for individual or
groups of agents. The flexibility of PRACSYS allows for planners to easily be changed
from performing fully decoupled planning to any range of coupling, including fully
coupled problems. Motion planners employ a set of black-box modules, which may
have a wide variety of underlying implementations. Furthermore, because of the flexi-
bility of the system class, planners can plan over controllers as well. In this case, plan-
ners are essentially able to create trajectories through parameter space of controllers.
The sampling-based planners in PRACSYS make use of four modules: local planners,
samplers, distance metrics, and validity checkers. The distance metric module and the
sampler module are provided by the utilities package.

Sampling-Based Motion Modules Local planners propagate the agents according to
their dynamics. PRACSYS offers two basic types of local planners, an approach local
planner which uses a basic approach technique to extend trajectories toward desired
states, and a kinematic local planner which connects two states exactly, but only works
for agents which have a two-point boundary problem solver and kinematic agents.



PRACSYS Software for Motion Control and Planning 145

Validity checkers provide a way to determine if a given state is valid. The most basic
implementation of a validity checker, which is provided with PRACSYS simply takes
a state, translates it into its geometrical configuration, and checks if there is a collision
between the geometry of the agents and the environment.

Samplers are able to generate samples within the bounds of an abstract space. Dif-
ferent samplers will allow for different methods of sampling, such as uniform randomly,
or on a grid.

Distance metrics are responsible for determining the distance of points in a space.
These modules may use simple interpolating methods or may be extended to be more
complex and take into account invalid areas of the space.

Interaction. The planning package communicates primarily with simulation. A plan-
ning node can send messages to the simulation such as computed plans for the agents.
The planning package can further send trajectory and planning structure information to
visualization so users can see the results of an algorithm. The planning node also re-
ceives control signals from the simulation node, such as when to start planning. Because
of the plugin system of PRACSYS, a simple wrapper is provided around the existing
OMPL implementation in order to utilize the OMPL planners within PRACSYS.

4.3 Visualization

The visualization node is responsible for visualizing any aspect needed by the other
nodes. Users interact with the simulation environment through the visualization. This
includes, but is not limited to, camera interaction, screen shots and videos, and robot
tracking. The visualization provides an interface to develop alternative implementa-
tions, in case users do not want to use the provided implementation based on Open
Scene Graph (OSG) [8].

4.4 Other PRACSYS Packages

The remaining packages provide functionality useful across the infrastructure, such as
geometric calculations, configuration information, and interpolation. An important con-
cept is the idea of a space as provided by the utilities package, which was described
earlier in Section 4.1. The input package is an optional package which includes sample
input for use with PRACSYS. Configuration files are in YAML or ROS .launch format.
PRACSYS also comes with an external package for carrying along external software
packages, such as the Approximate Nearest Neighbors (ANN) package [18], which is
useful for motion planning.

5 Use-Cases

This section provides specific examples of the features offered by PRACSYS.



146 A. Kimmel et al.

(a) (b)

Fig. 5. Figure on the left shows a plot of simulation steps vs number of plants, figure on the right
shows 3000 plants running in the environment

5.1 Showing Scalability for Multiple Agents

Scalability is important for simulation environments in which multiple agents are to be
simulated at once. The PRACSYS system structure was designed with multi-agent sim-
ulation in mind. Given a very simple controller, multiple physical plants were simulated
and the time for a simulation step was tracked against number of agents, as shown in
Figure 5. The trend shows a linear increase in simulation step duration with the num-
ber of agents, even with simulations of thousands of agents. The Velocity Obstacle
(VO) Framework was introduced as a lightweight reactive obstacle avoidance technique
[19]. The basic VO framework as well as several extensions have been implemented in
PRACSYS and have also been used in large-scale experiments.

5.2 Planning Over Controllers Using LQR Trees

Through a C/C++ interface to Octave and its control package [20], PRACSYS can
utilize the optimal control guarantees of linear quadratic regulators (LQR). Octave is
an open-source Matlab clone. In this way, PRACSYS can run software developed in
Matlab with little effort for the conversion. An implementation of LQR-Tree has been
developed in PRACSYS [21]. This algorithm is a prototypical example of “planning
over controllers” so as to provide feedback-based solutions. The created LQR-Tree is
sent to the simulation node for execution. The process of incorporating the LQR code
into PRACSYS took a matter of minutes.

The LQR-Tree is built incrementally similarly to the Rapidly-exploring Random
Tree algorithm (RRT) and its variants. It computes an LQR that is based around the
goal region, and then using sampling trajectories until new basins can be created us-
ing time-varying LQR over trajectories which enter existing basins. The technique has
been shown to probabilistically cover the space, and stores a full description of the LQR
controller used to create the basin of attraction at each tree node.

The planning node can send the controller information to the simulation node. This
implementation illustrates the use of LQR controllers inside a planning structure. With
this kind of framework, many more complex applications can be implemented and stud-
ied. This also shows the integration of a high-level language, primarily intended for
numerical computations into PRACSYS.



PRACSYS Software for Motion Control and Planning 147

5.3 Controller Composition in Physics-Based Simulation

PRACSYS offers a unique capability of composing systems. This scheme gives users
flexibility by allowing the decomposition of individual steps into separate controllers,
so that they can be reused and re-combined to create new functionality.

Fig. 6. A visual representation of the controller com-
position for controlling a bipedal robot

For example, the framework given
in the SIMBICON project [22], in
which controllers are created for
controlling bipedal robots has been
implemented in PRACSYS. The hi-
erarchy of controllers for this imple-
mentation is shown in Figure 6. A
breakdown of this hierarchy is as fol-
lows: ODE Simulator: A simulator
built on top of the Open Dynam-
ics Engine. Finite State Machine
(FSM): Several FSMs, implemented
with switch controllers, sit below the
simulator. Each FSM corresponds to
a particular bipedal gait, such as run-
ning or skipping. Changes in the state
of the simulation eventually causes a
switch in the used gait. Bipedal PD
Controller: Several PD controllers
sit underneath each FSM, and repre-
sents a specific part of a gait, such as
being mid-stride or having both feet planted. Bipedal Plant: This is the physical repre-
sentation of the robot, and contains the geometry and joint information, as well as the
actual dynamics of the plant.

Because ODE focuses on quick simulation for real-time applications, interactive ap-
plications can be created while sacrificing as little realism as possible. This lightweight
implementation allows users to interact with this physically simulated world in inter-
esting ways, such as manually controlling a plant among many other plants being con-
trolled through various means. An example as shown in the submission’s video shows
a toy car controlled by a user interacting with the bipedal system, described previously.

5.4 Integration with Octave, OMPL, and MoCap Data

PRACSYS has been integrated with several other software packages in order to extend
its functionality, such as Octave, OMPL, and motion capture data from CMU. Motion
Capture (MoCap) data is used to animate characters in a realistic manner. A controller
which reads motion capture data has been utilized, and it reads and assigns the data
to a control space point, where it is passed to the plant with copy control. The plant
connected to this controller simulates a skeleton, which interpolates the configuration
of each of its bones.



148 A. Kimmel et al.

6 Discussion

PRACSYS is an extensible environment for developing and composing motion con-
trollers and planners. It supports multi-agent simulations, physics-based tools, and
incorporates Matlab code, the OMPL library [3] and MoCap data. There are multiple im-
portant future steps for PRACSYS. A current pursuit is the development of a communi-
cation node, which simulates communication protocol parameters and failures between
agents by employing a discrete event network simulator, such as ns-3 [23]. This will
allow the simulation of distributed planning involving communication on a computing
cluster. Furthermore, a sensing node is developed for simulating sensor data in place of
a physical sensor. This objective, as well as allowing algorithms coded on PRACSYS to
run on physical systems, will be assisted by a tighter integration with the latest versions
of Gazebo [1], OpenRAVE [2] and by utilizing existing ROS functionality [6].

References

[1] Koenig, N., Hsu, J., Dolha, M., Willow Garage, Gazebo, http://gazebosim.org/
[2] Diankov, R., Kuffner, J.J.: OpenRAVE: A Planning Architecture for Autonomous Robotics.

Technical report, CMU-RI-TR-08-34, The Robotics Institute, CMU (2008)
[3] Kavraki Lab Group: The Open Motion Planning Library (OMPL),

http://ompl.kavrakilab.org
[4] Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A Hierarchical Structure for Rapid In-

terference Detection. In: SIGGRAPH, pp. 171–180 (1996),
http://gamma.cs.unc.edu/SSV/

[5] Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A Robot Simulator
for Research and Education. In: IEEE ICRA, pp. 1400–1405 (2007)

[6] Willow Garage, Robot Operating System (ROS), http://www.ros.org/wiki/
[7] Smith, R.: The Open Dynamics Engine (ODE) (2007),

http://ode-wiki.org/wiki/
[8] OpenSceneGraph, http://www.openscenegraph.org/
[9] Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot

and Distributed Sensor and Systems. In: ICAR, pp. 317–323 (2003)
[10] Microsoft Robotics Developer Studio, http://www.microsoft.com/robotics/
[11] UrbiForge, http://www.urbiforge.org/
[12] Carmen Robot Navigation Toolk, http://carmen.sourceforge.net/home.html
[13] Delta3D (2006), http://www.delta3d.org/
[14] Michel, O.: Webots: Professional Mobile Robot Simulation. IJARS 1(1) (2004)
[15] Miller, A.: Graspit!: A Versatile Simulator for Robotic Grasping. PhD thesis, Columbia

University (2001), http://www.cs.columbia.edu/˜cmatei/graspit/
[16] LaValle, S.: Motion Strategy Library, http://msl.cs.uiuc.edu/msl/
[17] YAML Ain’t Markup Language (YAML), http://yaml.org/
[18] Arya, S., Mount, D.M.: Approximate nearest neighbor searching. In: Proc. 4th Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 271–280 (1993)
[19] Fiorini, P., Shiller, Z.: Motion Planning in Dynamic Environments Using Velocity Obsta-

cles. International Journal of Robotics Research (IJRR) 17(7), 760–772 (1998)
[20] Eaton, J.W.: GNU Octave Manual. Network Theory Limited (2002)
[21] Reist, P., Tedrake, R.: Simulation-based LQR-Trees with input and state constraints. In:

IEEE International Conference on Robotics and Automation (ICRA), pp. 5504–5510 (2010)
[22] Yin, K., Loken, K., van den Panne, M.: SIMBICON: Simple Biped Locomotion Control.

ACM Transactions on Graphics 26(3) (2007)
[23] NS3, http://www.nsnam.org/

http://gazebosim.org/
http://ompl.kavrakilab.org
http://gamma.cs.unc.edu/SSV/
 http://www.ros.org/wiki/ 
 http://ode-wiki.org/wiki/
 http://www.openscenegraph.org/
 http://www.microsoft.com/robotics/
http://www.urbiforge.org/
http://carmen.sourceforge.net/home.html
http://www.delta3d.org/
http://www.cs.columbia.edu/~cmatei/graspit/ 
 http://msl.cs.uiuc.edu/msl/
http://yaml.org/
 http://www.nsnam.org/

	PRACSYS: An Extensible Architecture
for Composing Motion Controllers and Planners
	Introduction
	Related Work
	General Architecture of PRACSYS
	Description of the Packages
	Ground-truth Simulation and Controller Architecture
	Planning
	Visualization
	Other PRACSYS Packages

	Use-Cases
	Showing Scalability for Multiple Agents
	Planning Over Controllers Using LQR Trees
	Controller Composition in Physics-Based Simulation
	Integration with Octave, OMPL, and MoCap Data

	Discussion
	References




