

Lecture Notes in Artificial Intelligence 7628

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

Itsuki Noda Noriaki Ando
Davide Brugali James J. Kuffner (Eds.)

Simulation, Modeling,
and Programming
forAutonomous Robots
Third International Conference, SIMPAR 2012
Tsukuba, Japan, November 5-8, 2012
Proceedings

13

Series Editors

Randy Goebel, University of Alberta, Edmonton, Canada
Jörg Siekmann, University of Saarland, Saarbrücken, Germany
Wolfgang Wahlster, DFKI and University of Saarland, Saarbrücken, Germany

Volume Editors

Itsuki Noda
Noriaki Ando
National Institute of Advanced Industrial Science and Technology
AIST Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan
E-mail: {i.noda, n-ando}@aist.go.jp

Davide Brugali
University of Bergamo, School of Engineering
v.le Marconi 5, 24044 Dalmine, Italy
E-mail: brugali@unibg.it

James J. Kuffner
Google Inc., Google Research
1600 Amphitheatre Parkway, Mountain View, CA 94043, USA
E-mail: kuffner@google.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-34326-1 e-ISBN 978-3-642-34327-8
DOI 10.1007/978-3-642-34327-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012949408

CR Subject Classification (1998): I.2.9-11, I.2, I.6, H.3, F.1, D.2, C.2, H.4-5

LNCS Sublibrary: SL 7 – Artificial Intelligence

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The application fields of autonomous robots are considered to be getting wider
and wider. Living and office spaces will be the most promising domain for au-
tonomous robotics, in which robots should complete complicated and intelligent
tasks under uncertain environments including human behaviors. Disaster areas
and deep space are also important application domains, in which robots are
required to behave flexibly and (semi-)automatically against unexpected situa-
tions.

No-one doubts the importance of software for such robotics applications.
Simulation is required to design complex behaviors of robots and to confirm the
stability and safety of action plans. Modeling of robots and environments is a
necessary part of developing autonomous robotic systems. Programming tools
and libraries are the most active area in the development of robotics research.
Many projects of autonomous robots have recently started from preparing such
software platforms.

The series of International Conference on Simulation, Modeling and Program-
ming for Autonomous Robots (SIMPAR) is organized to foster research in the
above topics. Gathering the most recent works in this field enhances re-usability
of software for robotics and pushes research forward swiftly.

The third SIMPAR 2012 was held during November 5–8, at the National
Institute of Advanced Industrial Science and Technology in Tsukuba, Japan. It
followed the previous works of the first SIMPAR 2008 in Venice, Italy, and the
second SIMPAR 2010 in Darmstadt, Germany, and provided a forum for free
and concentrated discussions on the topics of interest.

This book collects 34 contributed papers, selected among a total 46 sub-
missions. Ten papers describe the design of complex behaviors of autonomous
robots, nine are on software layers, eight papers are related to modeling and
learning, and six are simulation-related works. Each submitted paper received
at least two reviews by the members of a carefully selected international Program
Committee.

We also had three impressive invited talks presented by Yoshiyuki Sankai,
Jean-Paul Laumond, and Michael Beetz, which discussed the subject field in
relation to clinical application, cognitive science, and artificial intelligence.

We want to gratefully thank the Program Committee members and all other
supporters, organizers, and volunteers who contributed for SIMPAR. Without
their effort, it would be impossible to hold this important conference.

November 2012 Noriaki Ando
Davide Brugali
James Kuffner

Itsuki Noda

Organization

Executive Committee

General Chair

Itsuki Noda AIST, Japan

International Program Co-chairs

America
James Kuffner Google Inc., USA

Asia
Noriaki Ando AIST, Japan

Europe
Davide Brugali University of Bergamo, Italy

Publicity Co-chairs

Tetsuo Kotoku AIST, Japan
Hyun Kim ETRI, Korea

Publication Co-chairs
Oskar von Stryk Technische Universität Darmstadt, Germany
Shuichi Nishio ATR, Japan

Workshop and Tutorial Co-chairs

Emanuele Menegatti University of Padua, Italy
Geoffrey Biggs AIST, Japan

Financial Chair

Yasushi Nakauchi University of Tsukuba, Japan

Exhibition Chair

Hiroyuki Okada Tamagawa University, Japan

Web Co-chairs
Yosuke Matsusaka MID Academic Promotions Inc., Japan
Kenji Suzuki University of Tsukuba, Japan

VIII Organization

Local Arrangements Co-chairs

Tetsuo Kotoku AIST, Japan
Kenichi Ohara Osaka University, Japan

Steering Committee

Tamio Arai University of Tokyo, Japan
Herman Bruyninckx Katholieke Universiteit Leuven, Belgium
Xiaoping Chen University of Science and Technology of China,

China
Maria Gini University of Minnesota, USA
Enrico Pagello

(Founding Chair) University of Padua, Italy
Lynne Parker University of Tennessee, USA
Oskar von Stryk University of Darmstadt, Germany

Program Committee

Asia
Sang Chul Ahn KIST, Korea
Joschka Boedecker Osaka University, Japan
Kosei Demura Kanazawa Institute of Technology, Japan
Toshio Hori AIST, Japan
Seung-Woog Jung ETRI, Korea
Takayuki Kanda ATR, Japan
Hyun Kim ETRI, Korea
Joo-Ho Lee Ritsumeikan University, Japan
Bruce MacDonald Auckland University, New Zealand
Takashi Minato ATR, Japan
Kazuyuki Morioka Meiji University, Japan
Mihoko Niitsuma Chuo University, Japan
Kei Okada University of Tokyo, Japan
Hiroyuki Okada Tamagawa University, Japan
Jun Ota University of Tokyo, Japan
HongSeong Park Kangwon National University, Korea
Masayuki Shimizu Shizuoka University, Japan
Kai-Tai Song National Chiao Tung University, Taiwan
Yuki Suga Waseda University, Japan
Masaki Takahashi Keio University, Japan
Sasaki Takeshi Shibaura Institute of Technology, Japan
Kazuyoshi Wada Tokyo Metropolitan University, Japan
Hongxing Wei Beyhang University, China
Mary-Anne Williams University of Technology, Sydney, Australia
Hiroaki Yaguchi University of Tokyo, Japan

Organization IX

Europe

Levent Akin Boǧaziçi University, Turkey
Rachid Alami LAAS/CNRS, France
Berthold Baeuml DLR/Institute of Robotics and Mechatronics,

Germany
Jan Bender Technische Universität Darmstadt, Germany
Mirko Bordignon University of Southern Denmark, Denmark
Andreu Corominas Murtra Beta Robotics, Spain
Alessandro Farinelli Università di Verona, Italy
Alexander Ferrein RWTH Aachen University, Germany
Holger Giese Hasso Plattner Institute, Germany
Giuseppina Gini Politecnico di Milano, Italy
Martin Huelse University of Wales, UK
Luca Iocchi University of Rome “La Sapienza”, Italy
Alberto Jardon University of Carlos III of Madrid, Spain
Daniel Kubus Technische Universität Braunschweig, Germany
Konrad Ku�lakowski Institute of Automatics, AGH UST, Poland
Reinhard Lafrenz Technische Universität München, Germany
Jacques Malenfant Université Pierre et Marie Curie, France
Luis Manso University of Extremadura, Spain
Pavel Petrovic Comenius University, Slovakia
Piotr Trojanek Warsaw University of Technology, Poland

America
Stephen Balakirsky NIST, USA
Stefano Carpin University of California Merced, USA
John Hsu Open Source Robotics Foundation and Willow

Garage, USA
Michael Quinlan Clover Network Inc., USA
Javier Ruiz del Solar Universidad de Chile, Chile
Mohan Sridharan Texas Tech University, USA

Table of Contents

Invited Talks

A Geometric Perspective of Anthropomorphic Embodied Actions 1
Jean-Paul Laumond

Cybernics: Fusion of Human, Machine and Information:
Robot Suit for the Future . 2

Yoshiyuki Sankai

If Abstraction Is the Answer, What Is the Question? —
Reasoning for Everyday Manipulation Tasks . 3

Michael Beetz

Learning and Behavior

Towards Partners Profiling in Human Robot Interaction Contexts 4
Salvatore M. Anzalone, Yuichiro Yoshikawa, Hiroshi Ishiguro,
Emanuele Menegatti, Enrico Pagello, and Rosario Sorbello

Motivation-Based Autonomous Behavior Control of Robotic
Computer . 16

Blagovest Vladimirov, Hyun Kim, and Namshik Park

An Evaluation Method for Smart Variable Space in Living Space 28
Kazuyoshi Wada, Keisuke Takayama, Yusuke Suganuma, and
Toshihiko Suzuki

Modeling Robot Behavior with CCL . 40
Konrad Ku�lakowski and Tomasz Szmuc

Visual-Trace Simulation of Concurrent Finite-State Machines for
Validation and Model-Checking of Complex Behaviour 52

Robert Coleman, Vladimir Estivill-Castro, René Hexel, and
Carl Lusty

Modeling of Robots

Fast Dynamic Simulation of Highly Articulated Robots with Contact
via Θ(n2) Time Dense Generalized Inertia Matrix Inversion 65

Evan Drumwright

A Differential-Algebraic Multistate Friction Model 77
Xiaogang Xiong, Ryo Kikuuwe, and Motoji Yamamoto

XII Table of Contents

Simulation of Flexible Objects in Robotics . 89
Andreas Rune Fugl, Henrik Gordon Petersen, and Morten Willatzen

Continuous Integration for Iterative Validation of Simulated Robot
Models . 101

Florian Lier, Simon Schulz, and Ingo Lütkebohle

Software Modeling and Architecture

Software Abstractions for Simulation and Control of a Continuum
Robot . 113

Arne Nordmann, Matthias Rolf, and Sebastian Wrede

A Visual Modeling Language for RDIS and ROS Nodes Using
AToM3 . 125

Paul Kilgo, Eugene Syriani, and Monica Anderson

PRACSYS: An Extensible Architecture for Composing Motion
Controllers and Planners . 137

Andrew Kimmel, Andrew Dobson, Zakary Littlefield,
Athanasios Krontiris, James Marble, and Kostas E. Bekris

RobotML, a Domain-Specific Language to Design, Simulate and Deploy
Robotic Applications . 149

Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, and
Mikal Ziane

A Java vs. C++ Performance Evaluation: A 3D Modeling
Benchmark . 161

Luca Gherardi, Davide Brugali, and Daniele Comotti

Simulation and Applications

A Comparison of Sampling Strategies for Parameter Estimation
of a Robot Simulator . 173

Gordon Klaus, Kyrre Glette, and Jim Tørresen

A Framework with a Pedestrian Simulator for Deploying Robots
into a Real Environment . 185

Masahiro Shiomi, Francesco Zanlungo, Kotaro Hayashi, and
Takayuki Kanda

Simulating Complex Robotic Scenarios with MORSE 197
Gilberto Echeverria, Séverin Lemaignan, Arnaud Degroote,
Simon Lacroix, Michael Karg, Pierrick Koch, Charles Lesire, and
Serge Stinckwich

Table of Contents XIII

Humanoid and Biped Robots

Masters’ Skill Explained by Visualization of Whole-Body Muscle
Activity . 209

Yosuke Ikegami, Ko Ayusawa, and Yoshihiko Nakamura

Studying the Effect of Different Optimization Criteria on Humanoid
Walking Motions . 221

Kai Henning Koch, Katja Daniela Mombaur, and Philipp Souères

Modeling and Simulating Compliant Movements in a Musculoskeletal
Bipedal Robot . 237

Roberto Bortoletto, Massimo Sartori, Fuben He, and Enrico Pagello

Simulation and Experimental Evaluation of the Contribution
of Biarticular Gastrocnemius Structure to Joint Synchronization
in Human-Inspired Three-Segmented Elastic Legs . 251

Dorian Scholz, Christophe Maufroy, Stefan Kurowski,
Katayon Radkhah, Oskar von Stryk, and André Seyfarth

Mobile Robots

Graph Optimization with Unstructured Covariance: Fast, Accurate,
Linear Approximation . 261

Luca Carlone, Jingchun Yin, Stefano Rosa, and Zehui Yuan

Mobile Robot SLAM Interacting with Networked Small Intelligent
Sensors Distributed in Indoor Environments . 275

Fumitaka Hashikawa, Kazuyuki Morioka, and Noriaki Ando

Manipulation

Computing 2D Robot Workspace in Parallel with CUDA 287
Paul Kilgo, Brandon Dixon, and Monica Anderson

Acquisition of Object Pose from Barcode for Robot Manipulation 299
Yuexing Han, Yasushi Sumi, Yoshio Matsumoto, and Noriaki Ando

WorkCellSimulator: A 3D Simulator for Intelligent Manufacturing 311
Stefano Tonello, Guido Piero Zanetti, Matteo Finotto,
Roberto Bortoletto, Elisa Tosello, and Emanuele Menegatti

Tools and Middleware

A Meta-model and Toolchain for Improved Interoperability of Robotic
Frameworks . 323

Johannes Wienke, Arne Nordmann, and Sebastian Wrede

XIV Table of Contents

Integrated Software Development for Embedded Robotic Systems 335
Sebastian Wätzoldt, Stefan Neumann, Falk Benke, and Holger Giese

Combining IEC 61499 Model-Based Design with Component-Based
Architecture for Robotics . 349

Li Hsien Yoong, Zeeshan E. Bhatti, and Partha S. Roop

A Reuse-Oriented Development Process for Component-Based Robotic
Systems . 361

Davide Brugali, Luca Gherardi, A. Biziak, Andrea Luzzana, and
Alexey Zakharov

UAV Simulation

SwarmSimX: Real-Time Simulation Environment for Multi-robot
Systems . 375

Johannes Lächele, Antonio Franchi, Heinrich H. Bülthoff, and
Paolo Robuffo Giordano

Evaluating the Effectiveness of Mixed Reality Simulations for
Developing UAV Systems . 388

Ian Yen-Hung Chen, Bruce MacDonald, and Burkhard Wünsche

Comprehensive Simulation of Quadrotor UAVs Using ROS and
Gazebo . 400

Johannes Meyer, Alexander Sendobry, Stefan Kohlbrecher,
Uwe Klingauf, and Oskar von Stryk

Author Index . 413

A Geometric Perspective of Anthropomorphic

Embodied Actions

Jean-Paul Laumond

LAAS-CNRS, Toulouse, France

Abstract. Starting from a mechanics point of view, the human (or hu-
manoid) body is both a redundant system and an underactuated one. It
is redundant because the number of degrees of freedom is much greater
than the dimension of the tasks to be performed: around 640 muscles for
humans and 30 motors for humanoid robots. It is underactuated because
there is no direct actuator allowing the body to move from one place to
another place: to do so human and humanoid robots should use their in-
ternal degrees of freedom and actuate all their limbs following a periodic
process (named bipedal locomotion!).

By considering first that motions are continuous functions from time
to space (i.e. trajectories), and second that actions are compositions of
motions, actions appear as sequences of trajectories. The images of the
trajectories in spaces are named paths. Paths represent geometric traces
left by the motions in spaces. The reasoning holds for the real space,
the configuration and the control space. Therefore actions appear as
continuous simple paths in high dimensional spaces.

A simple path embodies the entire action. It integrates into a single
data structure all the complexity of the action. The decomposition of
the action into sub-actions (e.g., walk to, grasp, give) appears as the
decomposition of the path into sub-paths. Each elementary sub-path
is selected among an infinite number of possibilities within some sub-
manifolds (e.g., grasp fast or slowly, grasp while bending the legs or
not).

All complex cognitive and motor control processes that give rise to
an action in the real world are reflected by the structure of paths in the
body control space. In this framework, symbols may be defined as sub-
manifolds that partition the control space. Such a partition decomposes
paths into sub-paths. From this perspective the questions are:
– Motion Segmentation: what are the invariant sub-manifolds that de-

fine the structure of a given action?
– Motion Generation: among all the solution paths within a given sub-

manifold (i.e. among all the possibilities to solve a given sub-task)
what is the underlying law that converges to the selection of a par-
ticular motion?

The talk overviews recent results obtained in this framework (includ-
ing whole body manipulation, locomotion trajectory generation, action
recognition) and illustrated from the HRP2-14 humanoid platform.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

I. Noda et al. (Eds.): SIMPAR 201
© Springer-Verlag Berlin Heidelb

Cybernics: Fusion
R

Center for Cyb
Dept. of System &
FIRST Program o

Abstract. Cybernics is
and informatics, and is
man-assistive technol
cal/cognitive functions
and robots (RT: roboti
(IT) in a functional,
science and technolog
science, medicine, beh
cognitive science and
HAL (Hybrid Assistive
supports, enhances and
raction between huma
through the body from
musculoskeletal system
mention about clinical
incurable disease such
remarkable works inclu
based on Cybernics tec

Keywords: Cybernics

12, LNAI 7628, p. 2, 2012.
erg 2012

n of Human, Machine and Informatio
Robot Suit for the Future

Yoshiyuki Sankai

bernics Research (CCR), Univ. of Tsukuba, Japan
& Information Engineering, Univ. of Tsukuba, Japan
on Cybernics Research, JSPS, Cabinet Office, Japan

CYBERDYNE Inc. Japan

s a frontier science centered on cybernetics, mechatronics
s a new domain of interdisciplinary academic field of hu-
ogy to support, enhance and expand human's physi-
s, which challenges to integrate and harmonize humans
ics technology) with the basis of information technology
organic, and social manner, based on several areas of

gy such as neuroscience, physiology, robotics, computer
havioral science, ethics, safety engineering, psychology,
social science. A pioneering achievement is Robot Suit

e Limbs), which is the world’s first cyborg type robot that
d strengthens the physical motion of human with the inte-
an and robot by detecting the weak bioelectrical signal

m the brain, which generates the nerve signal to control the
m. In this talk, I will deliver the outline of Cybernics and
l applications for stroke patients, SCI patients, and severe
h as Neuro-Muscular disease. And I will introduce some
uding new applications of HAL and Vital Sensing System
chnologies.

, Robot Suit, HAL, Interactive HAL, Medicare.

on

If Abstraction Is the Answer, What

Is the Question? — Reasoning for Everyday
Manipulation Tasks

Michael Beetz

Artificial Intelligence
Faculty of Computer Science and

Center for Computing and Communication Technologies (TZI)
University of Bremen, Germany

Abstract. In recent years we have seen tremendous advances in the
mechatronic, sensing and computational infrastructure of robots, en-
abling them to act faster, stronger and more accurately than humans
do. Yet, when it comes to accomplishing manipulation tasks in everyday
settings, robots are still far away from reaching the sophistication and
performance of humans. A key component of the “action intelligence”
needed for reaching such a level of sophistication and performance are
robot control systems that can take vague action descriptions and auto-
matically infer how they are appropriately executed in a given task and
environment context.

Artificial Intelligence (AI) is the research discipline that has studied
such reasoning problems for more than fifty years. Researchers in AI
have investigated naive physics reasoning, temporal projection, reason-
ing about action and change, action planning, spatial reasoning, to name
only a few. Unfortunately, the proposed methods have not yet achieved
their desired impact on autonomous robot control. We believe that one
of the reasons is that most AI researchers consider perception and ac-
tion to be the mere input and output of symbolic reasoning. In contrast,
some researchers in cognitive psychology suggest a “simulation model”
for reasoning through actions. In their view predicting the consequences
of actions is very similar to executing the actions without causing phys-
ical effects — perception and action get simulated at a very fine-grained
feedback loop.

In this talk I will present reasoning techniques of an autonomous robot
control system that are inspired by the “simulation model” for reason-
ing through actions. These techniques use perception and motor control
mechanisms and simulations thereof not only as input and output but
more importantly also as resources for symbolic reasoning. I will show,
using an autonomous robot making pancakes as an example, that such
techniques reason about actions more realistically and thereby enable
the robot to improve its performance.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, p. 3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Partners Profiling
in Human Robot Interaction Contexts

Salvatore M. Anzalone, Yuichiro Yoshikawa, Hiroshi Ishiguro1,
Emanuele Menegatti, Enrico Pagello2, and Rosario Sorbello3

1 Intelligent Robotics Laboratory, Dept. of Systems Innovation,
Graduate School of Engineering Science, Osaka University

2 Intelligent Autonomous Systems Laboratory, Dept. of Information Engineering,
Faculty of Engineering, University of Padua

3 Dept. of Chemical, Management, Computer and Mechanical Engineering,
Faculty of Engineering, University of Palermo

Abstract. Individuality is one of the most important qualities of humans. So-
cial robots should be able to model the individuality of the human partners and
to modify their behaviours accordingly.This paper proposes a profiling system
for social robots to be able to learn the individuality of human partners in so-
cial contexts. Profiles are expressed in terms of of identities and preferences
bound together. In particular, people’s identity is captured by the use of facial fea-
tures, while preferences are extracted from the discussion between the partners.
Both are bound using an Hebb network. Experiments show the feasibility and the
performances of the approach presented.

Keywords: profiling, personal robots, human robot interaction.

1 Introduction

Human beings are social animals. People are individuals but are also members of a
group. Our behaviours, our actions are not only highly influenced by our society, but
are also capable of influencing the society itself, creating a strictly, deep connection
between each single individual and the others. Moreover, social capabilities have an
extremely significant role in our evolution, in our development and education. Socia-
bility influences our deep human qualities, like identity, friendship, empathy and also
emotion. It is not possible to understand human nature without considering our social
capabilities. Classic robotics has been focused on making mobile robots completely
autonomous, capable of exploring, moving and accomplishing missions in a safe way,
inside real environments. According to this approach, robots are something like a tool
or a sort of ”intelligent instrument” employed to achieve missions that are too hazardous
for humans to carry out, dangerous tasks in a remote, unreachable environment. This
use of robots does not catch the sense of a real partnership between robots and humans
because they always identify a master-slave relationship between them [1]. Despite of
this, robots can collaborate in a strict way with humans as a social, cooperative and
capable partner: not only as systems able to perceiving and acting in order to extend hu-
man productivity, but also as interactive and communicative subjects, reliable working

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 4–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Partners Profiling in Human Robot Interaction Contexts 5

partners [2]. However, going social is not enough [3]. Humans consider themselves in-
dividuals with an unique personality, with personal preferences, and with a social role,
so they expect to be treated likewise. Robots should interact with people in a “personal”
way. To be perceived as active and effective partners, truly accepted by humans, so-
cial robots need to learn how to relate with the individuality of single persons: sociable
robots must be able to identify and represent human partners according to their physical
features, their preferences and their social relations to adapt their behaviours, vocabu-
lary, and social rules according to the individuals that are involved in the interaction.

2 System Overview

The system proposed in this paper tries to model the profiles of human partners. As
depicted in figure 1, a robot is involved in the interactions between two human users:
while people discuss, the robot is able to capture the information related to their identity
and the data about the current discussion. Profile of each partner is modelled by bound-
ing together this information. A person’s profile can be described as a conjugation of
several kinds of different features. A characterization of a face can be used to depict
the identity of a human partner, but this can be improved using other related descriptors
such as the voice. Using different kind of features is possible to obtain a more reliable
model of the appearance of the partners, according to their physical cues. Through this
characterization the robot is able to recognize the identity of its human partners. In the
work presented on this paper only facial cues are considered. Then, the profile is com-
pleted by joining to this physical characterization the preferences of the partners, by
analysing the conversations between them and by finding their topics: preferences can
be seen as the most recurrent topics discussed by each partner. Finally, the robot can be
enabled to adapt its behaviour according to this information perceived. Several software
modules have been built in order to accomplish the main task, as shown in figure 2. Data
from a camera is collected by a face recognition system and processed to extract faces,
if any, and, from them, facial features. Then, such kind of features are classified to-
gether in order to obtain identity claims of the partners that share the environment with

Fig. 1. A typical setup of the system

6 S.M. Anzalone et al.

Fig. 2. An overview of the system

the robot. On the other side, through a speech recognition system, sound is processed to
extract the utterances of the conversation [4]. Then, the topic recognition system tries
to deduce the topic of the current conversation through a statistical characterization of
these sentences. Finally, a profiling system will bound identities and topics together and
will store this information as a model of the profile of each person.

3 People Identification

Identification of partners in a human-robot interaction context can be achieved using
different ways, such as voice identification, face recognition, and so on [5]. While this
can be an easy task in controlled environments, it becomes a challenging problem in
daily life applications in unstructured environments. Focusing on vision based systems,
features retrieved by a camera are usually very noisy, can change if the person in front
of the camera changes pose, and accordingly to the light conditions of the environment.
Such circumstances will strongly affect the recognition results. Furthermore, recogni-
tion results are also affected by non verbal communication, such as showing emotional
states or social behaviours. But this is not enough; in long term interactions these prob-
lems become bigger because people can alter their appearance. tis possible to think
about a robot that should interact with the same woman with and without make up, or
with the same man with and without a beard. The approach here presented achieves
partner identification using visual information. As shown in figure 3, data from the en-
vironment is perceived through the camera of the robot. This raw information, is anal-
ysed to detect humans features that will be extracted and collected. Facial features are
retrieved through the use of Eigenfaces applied to the visual information. The features
collected represent a biological signature of each person, so they are opportunely clas-
sified in a supervised way to obtain the identification claims. n detail, the face features
extraction process is subdivided in two main steps: in a first phase the camera data is
processed to find faces. The Viola-Jones classifier is an efficient detection system that
tries to find features, called Haar-like features, that encode the existence of oriented
contrast in different regions of the image [6]. A set of this kind of features has been

Towards Partners Profiling in Human Robot Interaction Contexts 7

chosen using different pictures of faces taken under the same lighting conditions and
normalized to line up the eyes and mouths: these features encoded the contrasts and the
special relationships showed by human faces. The Haar classifier is trained to detect
and localize faces inside the images taken in the same conditions of the training set.
Faces found by the Viola-Jones detector are processed in order to find a model capable
of describing the identities of people, by extracting the most relevant information con-
tained in them. The Principal Component Analysis offers theory concepts to achieve
this, in particular using the technique of the Eigenfaces [7]. According to this approach,
a small set of pictures is used to calculate some vectors, called Eigenfaces, that define a
space that best encodes the variations of between faces. This space is called Eigenspace.
In this project, the eigenspace has been built using a standard database, YaleFaces, to
represent a generic space capable of describing the features of many kinds of faces [8].
The features of the faces seen are the eigenvalues calculated from this space by project-
ing on it the images found by the Viola-Jones detector. As a final step, vectors of faces
are classified by a SVM properly trained to classify the frontal images of human users
faces giving them a face claim identifier [9]. A statistical refinement of the output can
be performed in this stage, forcing the system to return as a result of the current face
identity the most recurrent one of the last 5 identities claimed.

Fig. 3. The faces recognition system

4 Topics Identification

The human speech is a natural and intuitive way of communication with a robot [10].
However, the usage of the auditory channel in a human robot interaction context be-
comes very difficult due to its huge and noisy informative content, and due to the in-
completeness and ambiguity of the natural languages. On one side, the auditive flow
can encode one or more overlapped speeches, with echoes and environmental noise; on
the other side, the natural language seems unable to describe them only in terms of syn-
tax, semantics or phonetics rules, making its deep understanding a very hard task [11].
In order to avoid such problems, the approach used in this work tries to overcome the
low recognition rate on the accuracy of the speech recognition system by grounding
conversation between people to their topic, using only some relevant words. According
to this approach, each word is weighed using a modified version of the classical “Term
Frequency - Inverse Document Frequency” ranking function, a statistical measure often
used in text mining and information retrieval [12]. Given a corpus of documents, the
TF-IDF evaluates the importance of a word in a document. In the work here presented
the same idea has been applied to evaluate the relevance of a word in a given topic,

8 S.M. Anzalone et al.

Fig. 4. The topics recognition system

performing a “Term Frequency - Inverse Topic Frequency” ranking function [13]. The
TF-ITF approach in particular gives more weight to the terms often used in few topics
and gives a low weight to the terms used in all the topics considered. In this way, it
is possible to discard by thresholding all the negligible terms of the vocabulary, such
as verbs, conjunctions, adjectives, by considering only the meaningful terms for each
topic. The algorithm relies only on words frequencies, then any syntactical and seman-
tical considerations are not taken in account: because of this, the system will not under-
stand the details of the sentences, and, in particular, it will not be able to distinguishing
affirmations and negations, likes and dislikes, and so on.

However, in order to approach free context conversations the system should be able
to deal with thousands of topics. It is not possible to directly apply TF-ITF to such
a huge amount of categories. A convenient way to approach this problem is by using
a hierarchical categorization of the topics. Wikipedia, one of the biggest existing en-
cyclopedias,can be seen as a huge repository of sentences categorized by thousand of
topics. Moreover, each Wikipedia topic is itself categorized according to one or more
parent topics [14]. From this point of view, Wikipedia offers an unique set of knowl-
edge base that can be used to process natural language, categorized in a hierarchical
graph, from the most abstract topics to the most detailed ones. Top level nodes, all chil-
dren of a main root node, are the most general nodes, such as “Science”, “Art”, “Social
Sciences”, “Technology” or “Society”; descending deeper to the bottom, topics start to
become more and more concrete, arriving to the leaf topic nodes that represents topics
related to very specific categories. In this hierarchy TF-ITF is calculated between nodes
with a common parent: it is possible to evaluate for each node which is the most relevant
topic between its children. Then, starting from the root of the hierarchy, it is possible
to categorize words and sentences by finding a branch of the tree inside the Wikipedia
based hierarchy that is coherent to its topic. In particular, Tf-Itf for each word of the
sentence is normalized among the children nodes, then words with a high level of en-
tropy are discarded. Using the remaining words, a probability of the sentence to belong
to each child node is calculated. The child node with the highest probability is chosen
and its topic is selected as being coherent with the sentence. A reference of the coher-
ence of the topic with the sentence has been also retrieved by calculating the entropy
of the sentence among the different childs. Through the recursive use of this algorithm,
it is possible to explore the whole topic tree in order to find a path of the most related
topics to a given sentence, from the abstract categories to the most detailed ones. This
recursive algorithm can stop in the case of the reaching of a leaf, or in several other

Towards Partners Profiling in Human Robot Interaction Contexts 9

Fig. 5. Some of the top level categories in the hierarchy used by the topic recognition system

situations, such as the complete discarding of all the words in the sentence, due to high
entropy. In the categorization of conversations for application in the real world, there
are several aspects to be considered. First of all, according to the applications, the clas-
sification of the topic should be executed in realtime, or in several seconds, or in several
minutes or, also, offline. A significant amount of data may involve a lot of calculations,
and this may decrease the performance of the system. Moreover, the quality of these
clusters should be settled in an accurate way. Given a specific number of clusters, a
high degree of separation between them implies the use of highly-reliable, abstract top-
ics, but which are not capable of informing about the details of the conversations. On
the opposite side, a low degree of separation implies the use of more detailed, but less-
reliables, topics. The choice of the amount of details for the topic classification should
be carefully chosen according to the application, taking in account their reliability per-
formances.

5 People Profile Grounding

Claims of faces coming from the SVM classifier are referred to clusters that better
encode the similarities between features. However, they do not inform in an explicit
way about the persons profile. The system should learn about the preferences by linking
in some way the information about the identity with the information about the topic.
This can be seen as a “symbol grounding” problem, in which features of the same
person extracted from different modalities will converge to the same high level mental
concept [15]. From this point of view, the symbol, or the model, of the human identity
will “emerge” by binding between them all with the information about each partner, that
is, his face, his preferences. An anchoring system, capable of linking in a correct way the
features from each modality to their high level symbols representing the model of each
human identity is needed. The solution here presented follows a statistical approach:
while humans interact in front of the robot, claims of identities and topics recognized
will be perceived at the same time. Then, the system will join them by learning this
binding. According to this approach, identities and topics are bound together to form
multi modal clusters that represent an unique complete model of each identity. This idea
has been implemented through a Hebb network capable of representing the connection
between the clusters from each modality [16]. In an Hebb network, if two connected

10 S.M. Anzalone et al.

neurons are repeatedly activated at the same time, they will strengthen their connection,
tending to become more and more associated. According to this, while users converse
in front of the robot, the system will learn and improve its bindings between the topics
recognized and identities perceived. The system updates the weights of the most active
links using the formula:

�wi∗ j∗ = η(ldi∗ j∗ai∗ · rdi∗ j∗ ·a j∗ −wi∗ j∗) (1)

in which: wi j are the weights; i∗ and j∗ are the indexes of the most active link; ai and
a j are the activation level of input and output; η is a coefficient about the speed of the
learning and ldi∗ j∗ and rdi∗ j∗ are coefficients calculated as:

ldi j = exp−
∑wik
k,k �= j

σ2 (2)

rdi j = exp−
∑wk j
k,k �=i
σ2 (3)

where σ is a variance weight. According to the mutual exclusivity, the other links are
inhibited:

wi j∗(t + 1) = wi j∗(t)−ηl · (1− ldi j∗�wi∗ j∗)wi j∗(t) (4)

wi∗ j(t + 1) = wi∗ j(t)−ηr · (1− rdi∗ j�wi∗ j∗)wi∗ j(t) (5)

where ηl and ηr are coefficients regarding the speed of the lateral inhibition. Follow-
ing this approach, the system learns the relationship between the most active couples
and it is also capable ofrecovering when something wrong has been learned. The lateral
inhibition grants the system the possibility of forgeting and learning the correct connec-
tion. The dimension of the η coefficients, η , ηl and ηr, are important parameters: if the
value of η is big the system will learn quickly, and if the value of ηl and ηr are low it
will forget slowly. During the development, a careful evaluation of these parameters is
needed. While people are discussing in front of the robot, face claims and topics from
the conversation are calculated. The activation level of each of the two sides of the Hebb
network will rely on this information. In particular, the probability of the current face to
belong to the set of trained identities, calculated by the faces recognition system, will be
used as activation level on one side of the network. The topics belonging to the branch
of the tree calculated using the current discussion data, by the topic recognition system,
are used for the second side of the network. In particular, the topics selected will be all
together active using an activation level that will be dependent to their respective degree
of detail, to their significance and to their entropy associated with the conversation con-
sidered. In this way, more abstract levels, with less informative content will give a small
contribute on the identity modelling, than the others that will bring more informative
content. According to the presented approach, as shown in figure 6, during different
conversations, the Hebb network will store the models of all the human partners of the
robot in terms of strong connections between its nodes. Favourite topics for each part-
ners will be the most discussed and detailed topics. In this case, the network will model
strong connections between the identity claims and their respective favourite topics and
will be able to store the models of all the human partners of the robot.

Towards Partners Profiling in Human Robot Interaction Contexts 11

Fig. 6. The Hebb network models the profiles of the human partners as connections between
identities and conversation topics

6 Experimental Results

The system has been tested in different scenarios in order to evaluate the performances
of each single component. Then, an evaluation of the profiling system is performed.

6.1 People Identification Evaluation

To evaluate the physical identification of humans, the system was tested 10 times using
a population of 5 people. In each experiment, a person reads, for about 15 seconds, a text
in front of the robot. As shown in figure 7, the system has been tested by incrementing
the number of the people in the training set. With a small number of identities in the
training sets, performances of the system are very good, but while incrementing them
discriminating identities in real environment, it becomes more and more difficult. To
preserver the performances of the partners recognition a biggest number of features
can be used, in order to rely on a more detailed description. The figure 7 shows also a
comparison of the results obtained using a different number of the features. There are
several reasons for the failures. The most relevant are the changes in the light conditions

Fig. 7. Performances of the people identification by varying the number of faces to be recognized,
and among different lengths of the features vector

12 S.M. Anzalone et al.

of the environment and the change of the gaze direction of the persons, that can also
bring a variation on the shadows on the faces. These conditions introduce important
differences in respect to the training set, so the system is not able to identify human
users in a correct way. Also, emotions can be the reason for a wrong identification:
a big smile can alter considerably not only the features of the face, but also the gaze
direction and, consequently, its shadows. Recognition problems will be overcome using
more adaptive techniques of clustering instead of SVM or by using a more reliable multi
modal approach, as using voices claims.

6.2 Topics Identification Evaluation

The Wikipedia based hierarchical topic recognition system has been evaluated using
a set of 45 sentences coherent to 15 common topics (3 sentences per topic) such as
“soccer”, “travel”, “recipes”, “manga”, “music” an other everyday topics of conversa-
tion. From the whole test set of conversations, the system was not able to recognize in
40% of the topics, because they were not included in the Wikipedia based training set.
Despite of this, the 78% of the remaining 60% of the conversations considered, was
successfully classified by the system into coherent topics. In order to judge the quality
of the topics recognized, more tests have been performed to understand to what extent
the results were acceptable for humans. We asked one volunteer cooperator to score
the acceptability of them using points from 1 (“very unrelated”) to 5 (“very coherent”),
comparing original sentences and recognition results. The collected data was normal-
ized among the deepness of the tree explored, depicting with this their detail degree,
and then statistically interpolated, in order to find a trend. As shown in Figure 8 by the
blue line that represents the trend extracted from the coherence results, the most abstract
topics are felt as less unrelated. Going through the most detailed nodes, the coherence
grows up until a maximum, then it decades. This can be explained by the difficulty that
the system finds on separating strongly tighten nodes, due to their low amount of in-
formation differences. It is interesting to explain something more about this curve: the
two maximum points are both located to high coherent topics with a different level of
detail, such as “sport” and “soccer”, according to the figure. This can be explained by
the search in the graph, that explores among different levels of abstraction of the topics.
Finally, the trend of the information entropy associated to the sentences, amongst the
detail level of the tree explored, was calculated. A statistical interpolation of this data
has been conduced in order to find the trend depicted in the Figure 8 by the red line. In
this case, the closer it is to zero the entropy, the higher is the informative content of the
detail level. As it is possible to see, the coherence results are highly correlated to the
entropy, showing that this can be used as a criteria to judge the quality of the solution
given. Despite of this important result achieved, several are the limitations of this sys-
tem. The use of a huge amount of data elaborated during the search in the hierarchy of
the topics is reflected on the long processing time. At this stage, the hierarchical topic
recognition system cannot perform in real-time. Furthermore, the lack of information of
the training set depicted in the results shows that, though the Japanese Wikipedia pro-
vides a vast and expansive set of topics, it is not able of including all the possible topics
that can be discussed during daily life conversations. Lastly, the system at this stage is

Towards Partners Profiling in Human Robot Interaction Contexts 13

Fig. 8. Coherence trend of proposed topics, in blue, among their detail level, and their entropy

not able of infering any kind of information, other than what is explicitly described by
the tree, but that can be obvious to an human listener.

6.3 Profiling Evaluation

Three couples of people were considered for the experiments. For each experiment, a
person in the couple is chosen randomly to watch a video related to some sport. Then,
as shown in figure 9, the couple is encouraged to discuss about it in front of a robot
able of nodding and pointing to the current speaker. The experiment is performed three
times for each couple, proposing three different videos related to two different cate-
gories. During each experiment, facial information and speech data is recorded and
used offline to extract people profiles, according to the algorithm described. In partic-
ular, according to the previously obtained results, a set of 16 features was used for the
face recognition system. Moreover, topics activation levels for the grounding system
have been weighed according to their detail level using the trend function previously
found. Analysis of the connections learnt by the profile grounding system revealed
connections between people and topics coherent to the conversation in question. In

Fig. 9. People conversates in front of the robot during the experiment

14 S.M. Anzalone et al.

particular, the strongest connections were found between people and the most coher-
ent topics of the conversations in which they where involved, in the 77% of experi-
ments. Moreover, the strongest connection between people and topics occurred with
the most frequent topics discussed, coherently with the topic proposed in the conversa-
tions achieved, in 66% of experiments. Errors come mainly from the topic recognition
system that is not always able to recognize coherent topics in all the different conversa-
tions in which human partners can be involved in. Moreover, despite the system being
able to find coherent topics, it is not able to classify within identical topic conversations,
that humans will easily recognize as belonging to the same topic, due to the ambiguity
hiden in the natural language itself.

7 Conclusions

A profiling system for robots involved in human conversations was presented. Identities
of human partners and topics discussed during the conversations were bound together
in order to model their own profiles. Identities are recognized in a closed set by the
classification of faces using eigenfaces technique, while topic recognition was achieved
using an hierarchical approach based on “Term Frequency - Inverse Topic Frequency”
ranking function. Profile modelling was exploited using a Hebb network. Experiments
performed show the potential and the deficiencies of the system. Despite these prob-
lems that showed how the system is very far from its use in real, long-term, daily life
contexts, the results obtained encourage us to pursuit its development and experimenta-
tion. In particular, more efforts should be focused on real time capabilities of the system
and on obtaining stronger recognition identities, by relying on more stable features of
the faces and by introducing a multi modal characterization, using other channels, such
as the voices. Moreover, topic recognition system should be improved to have a better
understanding of the conversation. In particular, ontologies [17] can be used in combi-
nation with the presented hierarchy of topics in order to improve the recognition itself,
as a way to infer other connections between conversation topics. Furthermore, the sys-
tem should be able to cope with dynamic situations by recognizing and incorporating in
its set of known acquaintances new, unknown, people. Lastly, future experiments will
focus on the effect of customized behaviours according to the profiling results during
human robot interactions. Many are the real world applications that can take advantage
from the idea of profiling. However, it is important to underline that here only a first ap-
proach using faces and conversation topics has been presented. It is possible to imagine
more complex profiles, able to rely on more features, that can be used in several appli-
cations such as robotic companions, elderly assistants, human-robot gaming systems,
and all the applications that need to rely in a strong characterization of the behaviours
related to the individuality of the human partners.

Acknowledgment. Authors would like to thank Prof. M. Chetouani, Dr. S. Livieri,
Dr. F. Dalla Libera, Prof. A. Chella, Prof. G. Vassallo for their support during the de-
velopment of this project. This work has been supported by a Grant-in-Aid for scientific

Towards Partners Profiling in Human Robot Interaction Contexts 15

research fellowships from Japan Society for the Promotion of Science (JSPS). This
project was partially founded by Regione Veneto Cod. progetto: 2105/201/5/2215/2009
approved with DGR n. 2215, 21/07/2009.

References

1. Breazeal, C.: Toward sociable robots. Robotics and Autonomous Systems 42(3-4) (2003)
2. Breazeal, C.L.: Designing sociable robots. The MIT Press (2004)
3. Anzalone, S., Nuzzo, A., Patti, N., Sorbello, R., Chella, A.: Emo-dramatic robotic stewards.

Social Robotics, 382–391 (2010)
4. Lee, A., Kawahara, T., Shikano, K.: Julius—an open source real-time large vocabulary recog-

nition engine. In: Seventh European Conference on Speech Communication and Technology
(2001)

5. Anzalone, S.M., Menegatti, E., Pagello, E., Yoshikawa, Y., Ishiguro, H., Chella, A.: Audio-
video people recognition system for an intelligent environment. In: 2011 4th International
Conference on Human System Interactions (HSI), pp. 237–244. IEEE (2011)

6. Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer
Vision 57(2), 137–154 (2002)

7. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proc. IEEE Conf. on Computer
Vision and Pattern Recognition, vol. 591, pp. 586–591 (1991)

8. Hurkens, C., Van Iersel, L., Keijsper, J., Kelk, S., Stougie, L., Tromp, J., Dolech, D.,
Eindhoven, A.: Face Image Database, publicly available for non-commercial use (2008),
http://cvc.yale.edu/projects/yalefaces/yalefaces.html

9. Steinwart, I., Christmann, A.: Support vector machines. Springer (2008)
10. Kraft, F., Kilgour, K., Saam, R., Stuker, S., Wolfel, M., Asfour, T., Waibel, A.: Towards social

integration of humanoid robots by conversational concept learning. In: 2010 10th IEEE-RAS
International Conference on Humanoid Robots (Humanoids), pp. 352–357. IEEE (2010)

11. Anzalone, S.M., Cinquegrani, F., Sorbello, R., Chella, A.: An emotional humanoid partner.
Linguistic and Cognitive Approaches To Dialog Agents (LaCATODA 2010) At AISB (2010)

12. Jackson, P., Moulinier, I.: Natural language processing for online applications: Text retrieval,
extraction and categorization, vol. 5. John Benjamins Pub. Co. (2007)

13. Anzalone, S.M., Yoshikawa, Y., Menegatti, E., Pagello, E., Sorbello, R., Ishiguro, H.: A
topic recognition system for real world human-robot conversations. In: IAS 2012, 12th In-
ternational Conference on Intelligent Autonomous Systems (2012)

14. Denoyer, L., Gallinari, P.: The Wikipedia XML Corpus. SIGIR Forum (2006)
15. Coradeschi, S., Saffiotti, A.: An introduction to the anchoring problem. Robotics and Au-

tonomous Systems 43(2-3), 85–96 (2003)
16. Yoshikawa, Y., Hosoda, K., Asada, M.: Unique association between self-occlusion and

double-touching towards binding vision and touch. Neurocomputing 70(13-15), 2234–2244
(2007)

17. Kobayashi, S., Tamagawa, S., Morita, T., Yamaguchi, T.: Intelligent humanoid robot with
japanese wikipedia ontology and robot action ontology. In: Proceedings of the 6th Interna-
tional Conference on Human-Robot Interaction, pp. 417–424. ACM (2011)

http://cvc.yale.edu/projects/yalefaces/yalefaces.html

Motivation-Based Autonomous Behavior

Control of Robotic Computer

Blagovest Vladimirov, Hyun Kim, and Namshik Park

Electronics and Telecommunications Research Institute,
138 Gajeongno, Yuseong-gu, 305-700 Daejeon, Korea

{vladimirov,hyunkim,nspark}@etri.re.kr

Abstract. Successful development of a robotic computer as a media-
tor in smart environments requires providing a certain level of behavior
autonomy to the robot and a capability to adapt its behavior in long-
term interaction with the users. We attempt to identify core autonomy-
related functionalities and describe the design and implementation of an
autonomous behavior control subsystem that provides them. The Moti-
vation Module is essential for providing a balance between the robot’s
autonomy and our ability to influence its behavior development in a long
term. We present the results of two test scenarios illustrating basic use
of the newly provided functionality.

Keywords: autonomous behavior, motivation, robotic mediator.

1 Introduction

The volume of available digital information and the variety of related services in
our everyday lives are increasing. Access to these services is not constrained to
the traditional computers anymore, as witnessed by the proliferation of such ap-
pliances as smart phones, tablets, smart TVs, etc., gradually bringing us toward
the realization of smart environments.

In our work on the Future Robotic Computer (FRC) project [1], we explore
the possibility of using a robotic computer as a mediator in smart environ-
ments. By building a robotic computer we aim at weaving relevant digital in-
formation in a flexible manner into the objects that surround us to support
multi-modal, context-aware interactions. As an extension to the FRC’s Software
Framework, which supports creating of applications on the platform, we devel-
oped an Autonomous Behavior control Subsystem (ABS). In this paper we de-
scribe the Motivation Module (MM) of ABS and its role for supporting behavior
autonomy.

2 Behavior Autonomy for FRC

The concept of autonomy has been analyzed in various contexts. Froese et al. [2]
considered different aspects of autonomy in biological and artificial systems in re-
lation to research on artificial life. They made a distinction between constitutive

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 16–27, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Motivation-Based Autonomous Behavior Control 17

and behavioral autonomy. The former, focuses on the internal organization and
the system’s capacity for self-production and self-sustaining of organizational
identity in respect to its environment. The latter is concerned with external
behavior and is related to the stability and flexibility of the system’s interac-
tions with the environment. Many factors that affect the robot’s autonomy are
summarized in the ALFUS project [3], which aimed to devise a comprehensive
approach for evaluation of the autonomy level of unmanned systems. In addition
to the independence from human intervention, it also takes into account such
factors as mission complexity and environment difficulty when comparing the
levels of autonomy observed in the performance of different systems.

The issue of balancing the autonomy of a system and our ability to control it
from outside to perform desired tasks has been discussed in [4]. On one hand,
exercising too much control, limits the system’s autonomy and shifts toward us
the burden of taking care of mundane details. On the other hand, too much
autonomy makes it more difficult to obtain specific, useful behavior from the
system. The author suggested guidelines for designing cognitive architecture that
is autonomous and inherently trainable, drawing on essential ideas from the field
of Developmental Robotics [5,6].

For our purposes, we are interested primarily in the role of robot’s autonomy in
supporting useful behaviors while relieving us from the need to specify all details
in advance. In respect to the works mentioned above, this means that we focus on
behavior autonomy with relative independence from human intervention, while
still retaining the ability to guide the behavior adaptation process. Therefore,
we consider the following aspects of behavior autonomy: autonomous behavior
execution; autonomous behavior selection; autonomous adaptation of existing
behaviors; and autonomous initiation of behaviors.

The autonomous behavior selection and execution form the core of behavior
autonomy. The abilities to adapt and generate new behaviors further increase the
behavior autonomy through modifying the set of available behaviors in response
to environmental changes. Finally, the ability to initiate behaviors not only in
direct response to external events (e.g., user’s command) but also based on
internal motivation allows for implementation of proactive services.

Thus, our aim with implementing ABS is to provide capabilities for selection
and execution of appropriate behaviors without explicit request from the user
and for adaptation of behaviors in the process of interaction with the users and
the environment.

3 Autonomous Behavior Subsystem Architecture

Cognition is necessary for behavior autonomy because it provides adaptive mech-
anisms for action selection based not only on past and present events but also on
possible future consequences of the selected actions [6]. In a survey of artificial
cognitive systems, Vernon et al. [7] distinguish three general groups: Cognitivist,
Emergent, and Hybrid, depending on the underlying approaches. Cognitivist ap-
proaches are based on symbolic information representation and processing sys-
tems, while Emergent approaches employ connectionist, dynamical, and enactive

18 B. Vladimirov, H. Kim, and N. Park

systems. The Hybrid approaches attempt to combine the strengths of the other
two groups so that we can retain the ability to supply the system with relatively
advanced initial knowledge and rely on the system’s capabilities for adaptation
and self-development in the process of interaction with the environment for fur-
ther tuning of the desired behavior.

In ABS, we follow the general ideas of Hybrid approaches [8], using a dual-level
architecture with both connectionist modules and symbolic rules. The interac-
tions among these two levels, including top-down learning and bottom-up rule
extraction, support the desired ability to specify some initial behaviors and later
to adapt or refine them through appropriate interaction with the robot.

Depending on their goals and underlying approaches, various cognitive archi-
tectures emphasize different cognitive functions: reasoning, planning, memory,
learning, etc. KnowRob [9] has a rich knowledge model supporting robot ac-
tivities in a realistic household environment. It can also learn/adapt the action
models and use them to plan the robot’s behavior. On the other hand, the iCub
Cognitive Architecture [6] emphasizes on starting with a core set of fundamen-
tal capabilities and developing the desired behaviors and functionality in the
long-term interaction with the environment.

Compared to KnowRob, the ABS favors the learning of appropriate behavior
selection instead of planning. Since with ABS, we aim more at a practical im-
plementation rather than at a comprehensive solution of autonomous behavior
control, unlike the iCub Cognitive Architecture [6], we adopt the hybrid, dual-
level behavior selection based on CLARION’s approach [8] that allows us to start
with more complex initial behaviors. Finally, while CLARION has been used to
model a diverse set of cognitive capabilities trying to approximate data from
human performance on standardized cognitive tasks, with ABS we concentrate
on issues specific to the robot’s autonomous behavior.

ABS includes the following modules: Behavior Selection Module (BSM), Task
Selection Module (TSM), Motivation Module, User Model (UM), Working Mem-
ory (WM), and Controller. BSM is at the core of ABS and its main purpose is
to select appropriate behaviors. The other subsystems help to improve this se-
lection process in various ways. The WM maintains task-relevant context which
includes relevant history of previous events. The UM learns user preferred ser-
vices. The MM contributes to the robot’s autonomy by modeling internal drives
so that the robot’s behavior can be modulated indirectly, based on internal state.

The ABS structure, the internal communication among its modules and the
external communication with DAS are shown in Fig. 1. In one behavior selec-
tion step, initially, ABS receives a sensory event from DAS. The sensory event
is augmented with information maintained in the WM to form the current in-
put context. The current input context is sent to the UM and if there is a user
preferred service in the current situation, it is added back to the input con-
text. Based on the input context, MM updates the internal drives’ and goals’
activations and returns the new values. Next, TSM selects a task that is appro-
priate for the input context. Finally, BSM selects the appropriate behavior for
execution. The action specified by the selected behavior is sent to DAS, while

Motivation-Based Autonomous Behavior Control 19

ABS

D
ev

ic
e

A
bs

tr
ac

ti
on

 S
ub

sy
st

em

Working Memory

Controller

N
et

w
or

k
In

te
rf

ac
e

Motivation Module

Task Selection Module

Behavior Selection Module

Sociality
Drive

Curiosity
Drive

Task1 Taskn

Behavior1 Behaviorm

Goals'
Activations

Tasks'
Activations

Previous
Behavior

User Model

Sensory
events

Actions

Query/
update

Context

Preferred
service

Context'

Context''

Context'''

Drive act./
Reward

Query/
update

Task ctrl.
Behavior

Behavior

Fig. 1. ABS structure, internal communication among its modules and external com-
munication with the Device Abstraction Subsystem

simultaneously the WM is updated with information that is deemed necessary
for the system’s functionality in the future.

Starting with the core functionality, below we provide detailed description of
the ABS’s modules.

3.1 Behavior and Task Selection

The primary purpose of the BSM is to select an appropriate behavior in a given
context. In addition, BSM supports learning of behavior selection rules and
adaptation of rules specified in advance based on reward signal computed by
MM. Thus, the BSM partially implements the required ABS functionality to
provide capacity for behavior selection and behavior adaptation. After explaining
the common information representation used in ABS, we will describe rules
and behavior representations, and finally the behavior selection and adaptation
mechanisms.

A sensory event consisting of a set of features with their values is represented
by a chunk containing a set of dimensions. A dimension d is a named, ordered
set of tuples (vni , v

a
i) that represents a given feature, where vni is the name and

vai is the activation of the ith value. For example, a chunk with one dimension
recognized object and tuples ((“book”, 0.8), (“magazine”, 0.2), (“pie box”, 0.0))
could represent an object recognition event with the values’ names denoting the
possible objects and the values’ activations showing the probabilities assigned
by the recognition algorithm.

We represent explicit symbolic rules as a combination of a condition chunk
and an output chunk. The condition chunk is used as a prototype against which
the context is matched [10], while the output chunk represents an action with
its parameters. The degree of activation AR of rule R, in a given input context

20 B. Vladimirov, H. Kim, and N. Park

represented by an input chunk I, is computed using a distance metric between
the dimensions specified by the rule’s condition chunk and the dimensions with
the same names that are present in the input context description, as shown
in (1).

AR =
∑

d∈DC
R

WC

(∑
v∈V C

d

UC
dvW

C
d

(
1− ‖AC

dv −AI
dv‖

))
(1)

Here,DC
R is the set of dimensions of the condition chunk of rule R; Vd is the set of

values that belong to the current dimension d; AC
dv and AI

dv are the activations of
the current value v of the current dimension d of the condition and input-context
chunks correspondingly; the dimension weight WC is 1 if we have a disjunction
of dimensions in the condition chunk or 1

|DC
R | if we have a conjunction; similarly,

the value weights WC
d are 1 for disjunction or 1

|Vd| for conjunction of values in

the dimension d of the condition chunk; and finally, the parameters UC
dv are set

to 0 for the values v of dimension d that we want to ignore, and to 1 otherwise.
In ABS, we model robot’s behaviors (external or internal) with internal con-

trol structures representing situated actions, where actions are basic primitives
specified and implemented in DAS. Consequently, as shown in Fig. 2, behaviors
are represented by an output chunk that specifies the action with its parameters
and a dual-level structure specifying the conditions for executing that action.
The top level of that structure consists of an initial rule and an optional collec-
tion of candidate rules extracted from the bottom level (currently, all rules share
the behavior’s output chunk). The bottom level consists of a multi-layer neural
network trained with Q-Learning [11]. The structure of the neural network is
defined at initialization time. It has one unit in the output layer to represent the
estimated Q-Value. The neural network weights are updated according to (2).

Δwt = η
[
rt + γQt+1 −Qt

] t∑
k=0

(γλ)t−k∇wQk, (2)

where η is the learning rate, γ is the future reward discount factor, λ is the
eligibility traces decay parameter, rt is the reward, and Qt is the Q-value of the
selected behavior’s action in the given input context at time t.

For a given behavior and a given specific input context represented as an
input chunk, we compute the rules’ activations at the top level. We present the
same input context as an input pattern to the bottom-level neural network and
obtain the estimated Q-value from the output. Then, the behavior’s activation is
computed as a weighted, linear combination of the maximum rule activation from
the top-level and the estimated Q-value. The behavior selection is performed
by comparing the behaviors’ activations and selecting the maximum activated
behavior following an ε-Greedy policy.

Behavior adaptation functionality is provided by optional learning processes
in the top level, through maintaining performance statistics for each rule, and
in the bottom level, through Q-learning based on reward signals from the MM.

Motivation-Based Autonomous Behavior Control 21

Behavior

Condition

Top level

Initial Rule

Extracted Rules

Bottom level

Q-Learning NN

Action

Input
Context

Behavior
Activation

Fig. 2. Dual-level Behavior representation in ABS

In addition, top-down learning can be performed by using only the top-level
rules to compute the behavior’s activation and at the next step using the ob-
tained reward to train the bottom-level network. In the current implementation,
the following simple approach is used for bottom-up rule extraction. When the
reward is above a pre-specified threshold, the input context used to compute the
behavior’s activation is transformed into a new candidate rule condition. This
new rule is added to the collection of candidate rules if no similar rule exists
already. In the consequent interaction, the rules’ performance statistics are used
to remove rules that fail to meet a pre-specified performance threshold.

The purpose of the TSM is to select an appropriate task for the current con-
text. In ABS, a task is related to a set of behaviors that are used in combination
to achieve some desired result. The TSM supplements BSM in implementing
the required ABS functionality to provide behavior selection and adaptation
capabilities.

The TSM has the same structure as the BSM. It consists of a set of task-control
behaviors. For each task there are task-control behaviors with fixed actions for
starting, suspending, resuming, and stopping the task, which modify the corre-
sponding task-activation state maintained in the WM. This task-activation state
is used in the behaviors’ conditions in BSM to distinguish, when necessary, the
behaviors that belong to the currently active task from the rest of the behav-
iors. Thus, the task selection functionality is provided by appropriate selection
of task-control behaviors.

3.2 Motivation Module

The MM plays a role in the implementation of autonomous behavior initiation
and in behavior adaptation functionality. The MM provides internal state that
can be used in the behavior conditions to trigger or to inhibit behaviors. It also
guides the behavior adaptation by computing reward signals used in the learning
process.

This is achieved by implementing internal drives’ models and a mechanism
for computing reward signals from drives’ activations and activation changes.

22 B. Vladimirov, H. Kim, and N. Park

The activation state of the internal drives and goals is included into the input
context used in TSM and BSM to compute the behaviors’ activations. The re-
ward signals are used in TSM and BSM to modify the network weights and the
rules performance statistics of the relevant behaviors’ conditions.

Currently, in ABS we have implemented two main internal drives: a Sociality
drive and a Curiosity drive. The aim with implementing a Sociality drive is
to balance behavior autonomy and external behavior control. It gives the users
a mechanism for influencing the behavior adaptation process effectively, while
providing for a certain level of autonomy. On the other hand, the Curiosity
drive makes exploration-based behavior adaptation possible even without user
intervention.

The model of the Sociality drive is shown in Fig. 3. The Sociality drive is
configured with a collection of conditions that specify the effect of certain sensory
events on the drive’s activation level. When an input context is presented to the
MM, the Sociality drive’s activation ds is computed as a linear combination
of its conditions’ activations ai and a time component b(t) as follows: ds =
wtb(t) +

∑n
i=1 wiai. The time component is included to allow increasing of the

Sociality drive’s activation in the absence of social interaction. A reward signal
is computed from the Sociality drive’s activation change, interpreting a decrease
in the activation as a positive reward.

Condition a1

Input
Context

c(t)
Sociality drive activation ds

Condition an

Time component
b(t)

wn

w1 wt

Fig. 3. Sociality drive model in MM

The model of the Curiosity drive is shown in Fig. 4. Due to the chosen imple-
mentation model of the Curiosity drive, in the process of exploration the robot
develops a predictive model for the consequences of performing a given behavior.
This model can be used to support behavior planning in further development of
the ABS.

As shown in Fig. 4, the Curiosity drive model is based on the ability to predict
relevant subset of the next input context. Currently, we use a neural network,
trained on-line to learn the mapping from current context and currently selected
behavior to the input context at the next step. The prediction performance
is used to compute two components of the curiosity. The first component dcs
is related to the ’surprise’ or the unexpectedness of the obtained context and
is computed from the prediction error as shown in (3)

dcs(t) = gdcs(t− 1) + e(t), (3)

where e(t) is the normalized prediction error at the current time step and 0 ≤
g < 1.0 is a coefficient controlling the rate of decrease. The second component dck

Motivation-Based Autonomous Behavior Control 23

Prediction
module

Input Context
c(t-1)

Prediction error
e(t)

Action
a(t-1)

Input Context
c(t)

Curiosity measure
dc

Surprise
component dc

s
Knowledge-gain
component dc

k

Prediction error history
e(t-l-m) ... e(t)

Fig. 4. Curiosity drive model in MM

is related to the knowledge gain and is computed as a decrease of the prediction
error according to (4)

dck(t) =
1

n

n−1∑
i=0

e(t− i)− 1

m

m−1∑
j=0

e(t− l − j), (4)

where l is the span between the reference time points used in comparing the error,
while n and m are smoothing parameters. Separate error history traces are kept
for each behavior, thus the knowledge gain reflects the prediction performance
for the specific behavior that was selected for execution.

The Curiosity drive activation is set to the curiosity measure dc, which is a
linear combination of the two components dcs and dck. The reward signal from
the Curiosity drive is proportional to the current drive activation.

The MM uses the computed drives’ activations in predefined, linear combi-
nation dependencies to set the goals’ activations. Also, a common reward signal
r = csr

s + ccr
c is computed, where rs and rc are the reward signals from the

Sociality drive and the Curiosity drive correspondingly, and cs and cc are coef-
ficients balancing the contribution into the common reward signal.

3.3 User Model, Working Memory and Controller

The UM learns users’ preferences from interaction. When a user requests some
service (internally represented by a task), the UM associates the requested ser-
vice with the perceived current context using probability-based associative mem-
ory. With time, the salient associations are used to extract explicit rules. A
detailed description of the UM is given in [12].

The WM uses a collection of chunks to maintain relevant information neces-
sary for setting drives’ and goals’ activations, suggesting services, and selecting
tasks and behaviors.

The purpose of the Controller is to coordinate the interaction among the
ABS modules and the external interaction with DAS. Through the interaction

24 B. Vladimirov, H. Kim, and N. Park

with DAS, it provides the capabilities for collecting sensory information and for
behavior execution.

4 System Implementation

The current implementation of FRC includes an Agent Unit shown in Fig. 5
and a server. The main components of the Agent Unit are two projector/camera
pairs with five degrees of freedom, 3-channel microphone array, a stereo speaker
set, and an embedded PC with wireless networking.

Fig. 5. The FRC’s Agent Unit

DAS is a part of the FRC’s Software Framework implementation ICARS (in-
tegrated control architecture for robotic mediator in smart environments) is
described in [13]. ICARS consists of three layers that provide: a flexible com-
munication/device model; an adaptive service model for the integrated robot
control architecture; and a behavior-based high-level collaboration model. The
ABS is implemented in C++ and the Controller communicates with ICARS over
a TCP connection.

5 Test Scenarios

We present two test scenarios showing the role of the Curiosity drive in behavior
initiation and inhibition.

5.1 Curiosity Driven Behavior Task 1

In this task, the Agent Unit observes the room around itself trying to detect
user presence. The prediction module of the Curiosity drive has user presence
from the previous time step and the last two performed behaviors as input and
current user presence as target. If there is a user and if the Curiosity drive’s
activation is above certain level, then the Agent Unit approaches the user. In
this scenario we have one task and eleven behaviors shown in Fig. 6 a). The
Sociality drive and the UM are not used. The top plot in Fig. 6 b) shows
the Curiosity drive’s activation. The predictor starts from a random state and
the initial hundred steps it learns that there is nobody in the room. The arrival

Motivation-Based Autonomous Behavior Control 25

a)

TurnHeadToPosUp

1
0

2

3

4

5

"F"
AND

DetectFaceUp

TurnHeadToPosRight

DetectFaceRight

TurnHeadToPosCenter

DetectFaceCenter

TurnHeadToPosDown

DetectFaceDown

TurnHeadToPosLeft

DetectFaceLeft

CuriosityAct > thr

GoToUser

b)

c)

Fig. 6. Simplified task diagram a) and results for the curiosity test scenario b) and
c). The rounded rectangles represent behaviors. The abbreviation “F” stands for face-
detected sensory event. In b) the top plot shows the Curiosity drive activation while the
bottom plot shows the ’surprise’ (red) and knowledge-gain (green) components and the
prediction error (gray). The snapshots in c) correspond approximately to the following
time steps in b): 118, 145, 165, and 166 (not on the plot).

of the first user violates the expectation of no-user-presence and leads to an
increase of the curiosity but it is still below the threshold. The increase of the
curiosity from the arrival of the second user is sufficient to trigger the approach-
ing behavior GoToUser.

5.2 Curiosity Driven Behavior Task 2

In this task, the user puts objects in front of the Agent Unit, which reacts by
saying something related to the objects. Fig. 7 a) shows a simplified diagram of
the five behaviors and their conditions. The Curiosity drive is related to predict-
ing the appearance of unknown objects in result of WatchTableTop behavior.
The plot in Fig. 7 c) shows the Curiosity drive’s activation while known Pie box,
initially unknown Time magazine, known Wimpy Kid book and already seen
Time magazine are presented. Fig. 7 b) includes annotated snapshots from the
Agent Unit’s camera related to the events in c).

As can be seen from diagram a), the User Agent will ask a question if an
unknown object is presented and the Curiosity drive’s activation is above a
specified threshold. Fig. 7 d) is a plot of the Curiosity drive’s activation from
a simulated run where unknown objects are presented in a sequence to illustrate a
behavior inhibition effect. After a while, the predictor learns to expect unknown
objects, the curiosity drive’s activation falls below the threshold (0.1) and the
Agent Unit stops asking questions.

26 B. Vladimirov, H. Kim, and N. Park

a)

0

1 2

34

"o"

"o"

"o"

"r"

"N"

"W"

"W"

"U"

"U"
AND "T"

"T"

"B"

"B"SpeakWimpyKid

AskWhatIsThis

WatchTableTop

SpeakBigPie

SpeakTimeMagazine

CuriosityAct > thr

b)

c)

● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

● ●
●

● ●

●
● ● ● ● ● ●

●

● ●

●

● ● ● ●

210 220 230 240

0.
00

0.
10

0.
20

0.
30

step

C
ur

io
si

ty
 A

ct
.

s N N N N N N N N B B o U N N U U r T N N N WW o W N N T T o T T o N N N N

_ _ _ _ _ _ _ _ _ _ B _ _ _ _ _ ? _ _ _ _ _ _ W _ _ _ _ _ T _ _ T _ _ _ _ _

d)

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●●
●

●
●

●
●

●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0.
00

0.
10

0.
20

0.
30

step

C
ur

io
si

ty
 A

ct
.

< UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UU r UUUUUUUUUUUUUUUUUUUUUUUU

_ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _ _ ? _

Fig. 7. Simplified task diagram a) and results for the curiosity test scenario b), c)
and d). The rounded rectangles represent behaviors with the labels on incoming arcs
showing the conditions for execution and the labels on the outgoing arcs show the
resulting sensory event. The abbreviations stand for “N” no object, “W” ’Wimpy
Kid’ book, “T” Time magazine, “B” ’Big Pie’ box, “U” unknown object, “o” task
finished, “r” response from the user. In c) and d) the top-row labels show sensory
input and the bottom-row ones show the behavior, where “-” is WatchTableTop, “?”
is AskWhatIsThis.

6 Conclusions

The development of ABS aims at augmenting the FRC’s Software Framework
by providing behavior control with autonomous behavior selection, initiation
and adaptation functionality. An important role in this process is played by
the MM which, in a certain sense, shifts the balance of control over the robot’s
behavior toward the robot itself. In future work on the FRC, we will develop more
application-oriented scenarios with long-term, user interactions and curiosity-
based behavior adaptation. A promising direction of development is to use FRC
to help the user to modify its own attitudes and habits as envisioned by Fogg [14].
One example could be to devise internal drives that guide the Agent Unit’s
behaviors to provide adaptive, timely, context-dependent opportunities and cues
to aid the user in acquiring healthier lifestyle habits.

Acknowledgment. This research has been supported by Korean Ministry of
Knowledge Economy and Korea Research Council for Industrial Science & Tech-
nology [Grant No. 2010-ZC1140, Development of Future Robotic Computer].

References

1. Kim, H., Suh, Y.-H., Lee, K., Vladimirov, B.: Introduction to system architecture
for a robotic computer. In: Int. Conf. Ubiquitous Robots and Ambient Intelligence
(URAI), pp. 607–611 (November 2011)

Motivation-Based Autonomous Behavior Control 27

2. Froese, T., Virgo, N., Izquierdo, E.: Autonomy: a review and a reappraisal. In:
Proc. of 9th European Conference on Artificial Life, Berlin, Germany (2007)

3. Huang, H., Pavek, K., Novak, B., Albus, J., Messin, E.: A framework for autonomy
levels for unmanned systems (ALFUS). In: Proc. of AUVSI’s Unmanned Systems
North America, Baltimore, Maryland (2005)

4. Vernon, D.: Reconciling autonomy with utility: A roadmap and architecture for
cognitive development. In: Proc. of Int. Conf. on Biologically-Inspired Cognitive
Architectures, pp. 412–418. IOS Press (2011)

5. Asada, M., Hosoda, K., Kuniyoshi, Y., Ishiguro, H., Inui, T., Yoshikawa, Y., Ogino,
M., Yoshida, C.: Cognitive developmental robotics: A survey. IEEE Trans. Au-
tonomous Mental Development 1(1), 12–34 (2009)

6. Vernon, D., von Hofsten, C., Fadiga, L.: A Roadmap for Cognitive Development in
Humanoid Robots. Cognitive Systems Monographs (COSMOS), vol. 11. Springer
(2011)

7. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: Impli-
cations for the autonomous development of mental capabilities in computational
agents. IEEE Trans. Evolutionary Computation 11(2), 151–180 (2007)

8. Sun, R.: The importance of cognitive architectures: An analysis based on CLAR-
ION. J. Experimental and Theoretical Artificial Intelligence 19(2), 159–193 (2007)

9. Tenorth, M., Beetz, M.: KnowRob – Knowledge Processing for Autonomous
Personal Robots. In: IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
pp. 4261–4266 (2009)

10. Duch, W., Setiono, R., Zurada, J.: Computational intelligence methods for rule-
based data understanding. Proc. IEEE 92, 771–805 (2004)

11. Rummery, G.A., Niranjan, M.: On-line Q-learning using connectionist systems.
Technical Report CUED/F-INFENG/TR 166, University of Cambridge, Cam-
bridge, England (1994)

12. Koo, S.-Y., Park, K., Kwon, D.-S.: A dual-layer user model based cognitive system
for user-adaptive service robots. In: 20th IEEE International Symposium on Robot
and Human Interactive Communication (Ro-Man 2011), pp. 59–64 (2011)

13. Suh, Y.-H., Lee, K.-W., Lee, M., Kin, H., Cho, E.-S.: ICARS: Integrated Control
Architecture for the Robotic mediator in Smart environments A Software Frame-
work for the Robotic Mediator collaborating with Smart Environments. In: 9th
IEEE International Conference on Embedded Software and Systems (ICESS 2012),
pp. 25–27 (2012)

14. Fogg, B.J.: Persuasive Technology: Using Computers to Change What We Think
and Do. Morgan Kaufmann, San Francisco (2003)

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 28–39, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Evaluation Method for Smart Variable Space
in Living Space

Kazuyoshi Wada1,*, Keisuke Takayama1, Yusuke Suganuma1, and Toshihiko Suzuki2

1 Graduate School of System Design, Tokyo Metropolitan University, Hino, Japan
{k_wada,takayama-keisuke,suganuma-yuusuke}@sd.tmu.ac.jp

2 Faculty of Engineering, Kogakuin University, Shinjuku, Japan
suzuki@atelier-opa.com

Abstract. The methods which improve space usage efficiency is important es-
pecially for city lives. Development of high-rise buildings and underground is
one of the methods. However, those developments just lay out the spaces which
are expanded in plane into vertical. Physical and monetary limitations are
the problem. Therefore, the spaces which can change its functions easi-
ly/automatically depending on the situations are necessary instead of stacking
of single function spaces. So far, we have proposed Smart Variable Space
which realizes various functional spaces by changing its Spatial Configuration
Modules dynamically. In this research, the simulated environment for Smart
Variable Space was developed by using Virtual Robot Experimentation Plat-
form. In order to clarify the efficacy of Smart Variable Space, a new evaluation
index was proposed, and then, the efficacy of Smart Variable Space in living
space was assessed by comparison with the conventional housing models.

Keywords: Smart Variable Space, Intelligent Space, Architectural Furniture,
Skelton Infill.

1 Introduction

Big cities, like Tokyo, have been attracting many people since olden days. The trend
is no changes, and population inflow into the big cities is continuing, even Japan is
going into depopulating society [1]. Cities, where various functions are concentrated
in limited area, have been suffering from chronic space shortage. Therefore, high-rise
buildings and underground have been developed to increase space usage efficiency.
However, those developments just lay out the spaces which are expanded in plane
into vertical. They require a lot of resources, high construction cost, long vertical
movement, and spoil a view. Therefore, instead of stacking of single function spaces,
another method is necessary to increase space usage efficiency.

We have proposed Smart Variable Space (SVS) which realizes various functional
spaces by changing its Spatial Configuration Modules dynamically [2, 3]. Each mod-
ule can automatically transform from wall/box into a functional space, such as,
bedroom, office, according to the user’s daily living cycle. So far, a bedroom type

* Corresponding author.

 An Evaluation Method for Smart Variable Space in Living Space 29

module (Figure.1) was developed as an example of the spatial configuration module.
However, the efficacy of daily changes of living space is not verified. Even in the
field of architecture, it remains in subjective evaluation by the users. In this paper, we
proposed new index to clarify the efficiency of SVS and evaluate its effectiveness in
living space by using the simulator. Section 2 explains related researches, section 3
explains evaluation index for SVS and section 4 describes housing and special confi-
guration modules model in the simulator. Section 5 explains experimental method and
results of the simulation. Finally, section 6 offers conclusions.

Fig. 1. Appearances of bedroom module for smart variable space

2 Related Research

2.1 Skeleton Infill

Recently, a concept of a method called skeleton-infill to extend building duration has
received attention. This is the method to enhance architectural sustainability by divid-
ing a building into two factors: the skeleton (an empty space without partitions and
equipment) and infill (changeable equipment and partitions). Building duration is
generally decided not on physical duration of structural skeleton but on when it can-
not respond to its residents' changes of family structure or life style. In fact, duration
of an architecture would be longer if it can be adaptable to such changes. The concept
of the skeleton-infill which enables equipment having shorter duration than a building
to be more renewable and inner room arrangement to be more changeable to respond
to changes in lives has been widely accepted from the above point of view. However,
infill which can change room arrangement is not easy to carry out and does not usual-
ly provide for enough changeability to respond to daily alternation of application
thereof. Upon such problem consciousness, some case examples trying to solve those
problems with "furniture combining architectural functions" which is like an interme-
diate between furniture and partitions or equipment have been carried out in order to
deliver interior design of higher changeability [4-7].

30 K. Wada et al.

2.2 Architectural Furniture

In the above-mentioned, Infill is not provided with quick-response changeability
against everyday application alteration, since it is supposed to be altered in a time-
span of around 15 to 30 years. Reflecting such situation, "furniture combining archi-
tectural functions" to play an intermediate role between infill and furniture have
appeared.

For example, Baumhaus, Nobuaki Furuya and Studio NASCA proposed a mechan-
ism, as a trial to enhance sustainability of rented apartments which are expected to
respond to various life styles, wherein architectural part is to be an empty space with-
out partition like a skeleton, and interior provides furniture functioning as partition
as well as closet which residents can arrange interior layout by deciding how the
furniture is placed [4].

Suzuki named such concept like an intermediate between infill and furniture as
"furniture combining architectural functions - Architectural Furniture". Further, Arc-
hitectural Furniture is defined as "what is able to segment space, provide functions in
place, and to be moved and altered easily" [6, 7].

Figure.2 shows the examples of architectural furniture, mobile kitchen, foldaway
guest room and foldaway office, designed by Suzuki. Each architectural furniture has
casters to realize easy operation by humans. When those are folded in, its appearances
look like suits case. When those are folded out, kitchen space, guest room, and study
room appears. However, one or two operators are required due to the size and weight.

Fig. 2. Folding in and out of three types of Architectural Furniture

2.3 Robotized Structurization of Living Environment

On the other hand, there are many researches which apply information and robot
technology into living environment to give intelligence and achieve various services.
For example, Sato developed robotic room which supports daily activities of bedrid-
den patients/student living alone in the room, using embedded sensors in furniture and
robot arm [8]. Hashimoto proposed intelligent space and developed DIND (distributed

 An Evaluation Method for Smart Variable Space in Living Space 31

intelligent network device) which had various sensors and communication device, and
then studied the navigation of robots, wheelchair and people with visually impairment
[9]. Ohara studied ubiquitous robot system which provides physical services by coop-
eration with distributed robot functions in environment [10]. Sugano developed
WABOT-HOUSE. Robotic partition and movable kitchen were installed in the house
to realize daily changes in a layout to meet various life styles of the residents. Auto-
matic change of the layout and cooperative movement with mobile robot were
achieved using sensors and RFID in the environment [11]. Tanikawa developed active
caster with a built-in motor to physically assist people with disabilities. The object
(table, chair, door, etc.) to be moved can be maneuvered easily and remotely by
the casters attached to it [12]. However, the research which focused on efficiency
improvement of the space is rare.

2.4 Smart Variable Space

Architectural furniture is suitable for the change in a layout that is more daily than
Skeleton Infill. Additionally, the character of architectural furniture is effective for the
efficiency improvement of the space. Even narrow space could have various functions
by preparing various architectural furniture modules. However, architectural furniture
requires one or two operators due to the size and weight. Against this problem, robot
technology can offer a solution; even more can add some intelligence and autonomy.
Smart Variable Space is the expanded concept of architectural furniture by combining
with robot technology. The space is composed with robotic architectural furniture,
such as bedroom, and office room, and can change its functions automatically accord-
ing to the users demand or lifestyles.

3 Evaluation Index for SVS

Present floor plan of house is divided into living, kitchen, study, bedroom, and etc.
according to the function. The resident moves the room according to the usage. At
this moment, the room not used is a useless space in the viewpoint of the space effi-
ciency improvement. Therefore, we introduce a concept of “available area; Aavail”.
Aavail is defined as the area excluding disused area from the evaluating area, Aeval.
Aavail changes according to the user’s daily living activities. The each activity is ex-
pected to continue some period of time. So, we defined “available area rate; Pi” as
follows;

 . (1)

Here, Aavail,i is Aavail in the ith time period. On the other hand, the time for changing
spatial functions, Ttrs.j, is much smaller than time for a user’s daily living activity. Ttrs.j
is jth time period for changing space function; means the time for transposing of spa-
tial configuration modules in SVS, and moving to other rooms in conventional hous-
ing. We defined “available area in transposing; Atrs.j”, and the rate; Ptrs.j as follows;

32 K. Wada et al.

Then, the total average avai

Here, α and β are weight
Aeval is defined as the area
area from total internal dim
range or not necessary to ch
the available area rates and

Fig. 3. Relatio

4 Simulator

In order to evaluate SVS in
ration module models by us
tor to visualize the space an

4.1 Housing models

SVS assumes big city, ther
model was made as a studio
The dimension came from
singles and couples in Japa
ucts/equipments, such as to
working space for spatial c
housing model was made f
ment which had been prov
arrangement of present apa
square meter which was ave

. .
ilable area; Pavg, was defined as follows;

∑ ∑ . ∑ . .∑ .
parameters. Finally, we explain “evaluating area; Aev

excluding plumbing equipments/product area and stor
mension of the housing; because, those are difficult to re
hange its function. Figure.3 shows the relationship betw
the time periods.

onship between available area rate and time period

n various situations, we made housing and spatial confi
sing the simulator, named V-REP [13]. We use this simu
nd to obtain the information on the movements.

refore, apartment is the target housing. The SVS hous
o apartment which internal dimension was 50 square me

m “compact mansion”, a new category of apartment,
an. Figure.4 shows its room arrangement. Plumbing pr

oilet and bathroom were arranged in one side to create la
configuration modules. On the other hand, a conventio
for comparison (Figure.5). The model was “nLDK” ap
vided by the public corporation, and became the comm
artment in Japan. The internal dimension was defined as
erage dimension in Tokyo area.

(2)

(3)

val”.
rage
ear-

ween

igu-
ula-

sing
eter.

for
rod-
arge
onal
part-
mon
s 70

 An Evaluation Method for Smart Variable Space in Living Space 33

Fig. 4. Room arrangement of SVS housing model

Fig. 5. Room arrangement of conventional housing model

4.2 Models of Spatial Configuration Module

From the view point of housing studies, we extracted the major spatial functions from
the relationship between activities of daily living and kind of rooms. As the results,
the functions were “bedroom”, ”study room”, “living room”, and “dining room”. We
made the spatial configuration module virtual models which had these functions in the
V-REP. These module models have autonomy.

Bedroom and study room module are single function type module. These modules
have two modes, fold out and fold in. Bedroom module model is designed based on
real bedroom module developed in previous research. Four omnidirectional wheel
models are installed as the moving mechanism. And imaginary torque is applied to
fold in/out at the each joint. The working speed of the module is also decided accord-
ing to the real bedroom module. This speed is commonly used in other two module
models because they are not realized in actual modules. Figure.6 and Table 1 show its
appearance and specifications.

34 K. Wada et al.

As for the study room module model, the appearance and dimensions are decided
based on office room type architectural furniture. The moving mechanism is same as
the bedroom module model. The study room module folds in/out like a large book.
Figure.7 and Table 2 show its appearance and specifications.

As for the living and dining room, the module model is designed to have those two
functions in one module because those are exclusively used in daily activities. The
module has three modes, living room, dining room and fold in. the module assumes to
have omnidirectional wheels as moving mechanism. Imaginary torque is applied at
each joint for transformation. The details of deformation mechanics will be presented
in the future. Figure.8 and Table 3 shows its appearance and specifications.

In this research, we didn’t consider weight of all module models in order to focus
on changing arrangement of the modules.

Fig. 6. Appearance of bedroom module model

Table 1. Specification of bedroom module model

Fig. 7. Appearance of study room module model

Fold out Fold in
Width 2040 [mm] 440 [mm]

Depth 1200 [mm]

Height 1770 [mm]

Occupation
Area

2.45 [m2] 0.53 [m2]

Moving speed ―
0.4 [km/h]

Swing speed ―
7.5 [deg/sec]

Fold out Fold in
Width 2040 [mm] 440 [mm]

Depth 1200 [mm]

Height 1770 [mm]

Occupation
Area

2.45 [m2] 0.53 [m2]

Moving speed ―
0.4 [km/h]

Swing speed ―
7.5 [deg/sec]

 An Evaluation Method for Smart Variable Space in Living Space 35

Table 2. Specification of study room module model

Fig. 8. Appearance of living-dining room module model

Table 3. Specification of living-dining room module model

4.3 Resident Model

In the conventional housing model, time for changing spatial functions corresponds to
the resident’s walking time from room to room. Moreover, how change the spatial
functions depends on the household composition and resident’s lifestyle. In this re-
search, we targeted couple household increasing the number recently [14]. A young
couple model was made based on the average physical data of Japanese male and
female (Table 4) [15]. Meanwhile, their day-to-day timetable was defined using the

Fold out Fold in
Width 1281 [mm] 520 [mm]

Depth 1261 [mm] 1000 [mm]

Height 1518 [mm]

Occupation
Area

1.62 [m2] 0.52 [m2]

Moving speed ―
0.4 [km/h]

Swing sped
―

7.5 [deg/sec]

Fold out Fold in
Width 1281 [mm] 520 [mm]

Depth 1261 [mm] 1000 [mm]

Height 1518 [mm]

Occupation
Area

1.62 [m2] 0.52 [m2]

Moving speed ―
0.4 [km/h]

Swing sped
―

7.5 [deg/sec]

Living Dining Fold in
Width 1960 [mm] 1960 [mm] 800 [mm]

Depth 1200 [mm] 1200 [mm] 1200 [mm]

Height 780 [mm] 580 [mm] 780 [mm]

Occupation
Area

2.35 [m2] 2.35 [m2] 0.96 [m2]

Moving speed ― ―
0.4 [km/h]

Swing speed ― ―
7.5 [deg/sec]

Living Dining Fold in
Width 1960 [mm] 1960 [mm] 800 [mm]

Depth 1200 [mm] 1200 [mm] 1200 [mm]

Height 780 [mm] 580 [mm] 780 [mm]

Occupation
Area

2.35 [m2] 2.35 [m2] 0.96 [m2]

Moving speed ― ―
0.4 [km/h]

Swing speed ― ―
7.5 [deg/sec]

36 K. Wada et al.

statistical data published by the Ministry of Internal Affairs and Communications,
Japan [16]. The timetable was divided into 48 time periods, and then, we extracted the
rooms as spatial functions which corresponded to their activities of daily living at
each time period (Table 5).

Table 4. Specification of residents model

Sex Male Female

Age 25 - 34 25 - 34

Average height [cm] 172.1 158.7

Walking speed [m/s] 1.5 1.21

Table 5. Day-to-day timetable of the residents

Time
Room

Scene
Male Female

0:00
Bedroom Bedroom Scene 1 |

6:00
6:30 Lavatory Kitchen

Scene 2

7:00 Dining room Dining room
7:30

Go to work

Kitchen
8:00

Go to work |
18:00
18:30

Kitchen
19:00
19:30 Dining room Dining room
20:00

Living room
Kitchen

Scene 3
20:30

Living room
21:00 Bath room
21:30

Living room
22:00
22:30

Study room
Study room

Scene 4 23:00 Bath room
23:30 Study room

5 Experiment

5.1 Methods

Switching points of spatial functions were extracted from the timetable. 4 scenes,
bedroom scene (Scene 1; 0:00-6:30), dining room scene (Scene 2; 6:30-20:00), living
room scene (Scene 3; 20:00-22:30), study room scene (Scene 4; 22:30-0:00) were

 An Evalu

defined. In order to have s
bedroom and study room m
housing model for SVS. T
Figure.9. We defined minim
the scenes, and then, simula
The paths of residents mode
male’s and female’s path, re

Fig.

Fig

(a) Sce

(c) Sce

(a) Sce

(c) Sce

uation Method for Smart Variable Space in Living Space

ame spatial functions in conventional housing model, t
modules, and one living-dining module were installed in
The layout of the modules in each scene are shown
mum path for each modules and residents models to cha
ated their movement at each switching points of the scen
els are described in Figure 10. The blue and red line me
espectively.

9. Layout of the modules in each scene

g. 10. Walking paths of resident model

ene 1 (b) Scene 2

ene 3 (d) Scene 4

ene 1 (b) Scene 2

ene 3 (d) Scene 4

37

two
the

n in
ange
nes.
eans

38 K. Wada et al.

5.2 Results

Aeval of each housing model were measured as 19.7 m2 in SVS housing, and 42.2 m2
in conventional housing. The results of required times for changing spatial functions
in each housing model are described in Table 6. SVS required longer time in every
switching point. The maximum required time was 70 sec. at the switching point from
the scene 4 to 1. Then, the total average available area, Pavg was calculated by
equation (3). In this research, weight parameters, α and β, were defined as follows:

∑ . (4)

∑ . (5)

As for the conventional housing model, all of the evaluating area is not used during
the residents walking from the room to room. Therefore, the value of equation 2 is
always zero. Besides, the time for changing spatial functions, Ttrs.j was defined to use
smaller one among the residents. Table 7 shows the results of both housing models.
SVS housing required longer time for changing spatial functions in comparison with
conventional housing. However, the time, 187 sec. is much smaller than 24 hours. On
the other hand, SVS housing’s Pavg is about 4 times higher than the value of
conventional housing.

Table 6. Required times for changing spatial functions

 SVS [sec] Male [sec] Female [sec]

Scene 1-2 62.00 4.10 7.65

Scene 2-3 6.00 1.65 1.80

Scene 3-4 49.00 1.85 5.75

Scene 4-1 70.00 6.20 4.45

Table 7. Results of total avarage available area

Conventional

housing
SVS housing

 0.24 0.96 T .M
 12 [sec] 187 [sec]

6 Conclusion

In this paper, we proposed an evaluation index for variable space which changes its
spatial functions in daily. The new concept, “available area rate: Pi” and “available

 An Evaluation Method for Smart Variable Space in Living Space 39

area rate in transposing: Ptrs.j” were introduced to evaluate the space use efficiency in
every time period. SVS and conventional housing model, and young couple
household model were made, and then the efficacy of SVS was evaluated using
simulator. The result showed SVS housing have high space use efficiency. In order to
investigate more suitable target and necessary modules for SVS, we will further
experiment to evaluate the efficacy in various housing, households, and lifestyle
model.

References

1. National Institute of Population and Social Security Research: Population Projections for
Japan: 2001-2050 (January 2002)

2. Wada, K., Suzuki, T., Takayama, K., Kubo, E.: Development of Bedroom Module for
Smart Variable Space. In: Proc. of the 5th Int. Conf. on the Advanced Mechatronics, pp.
540–544 (2010)

3. Wada, K., Kubo, E., Nakashio, N., Takayama, K., Suzuki, T.: Path Planning for Bedroom
type Robot Module. In: Proc. IEEE/SICE International Symposium on System Integration,
pp. 288–292 (2011)

4. STUDIO NASCA, http://www.studio-nasca.com/
5. Vegesack, A.V., Schwartz-Clauss, M., Allie, M., Haub, B.: Living in Motion. Vitra Design

Stiftung (2002)
6. Suzuki, T.: Architectural Furniture -furniture combining architectural functions. AIDIA

Journal 7 (2007)
7. Suzuki, T., Honma, K.: Development and Validation of “Architectural Furniture” Research

on Furniture Combining Architectural Functions (“Architectural Furniture”). AIDIA Jour-
nal 8 (2008)

8. Mori, T., Sato, T.: Human Support System: Robotic Room. Systems, Control and Informa-
tion 44(3), 151–156 (2000)

9. Lee, J.H., Hashimoto, H.: Intelligent Space - Its concept and contents. Advanced Robotics
Journal 16(4) (2002)

10. Ohara, K., Ohba, K., Kim, B.K., Tanikawa, T., Hirai, S.: Ubiquitous Robot with Ubiquit-
ous Function Activate Module. In: INSS 2005, San Diego, USA (2005)

11. WABOT-HOUSE LABORATORY, http://www.wabot-house.waseda.ac.jp/
12. Home Environment Models for Comfortable and Independent Living of People with Dis-

abilities,
http://www.aist.go.jp/aist_e/latest_research/2010/20100715/2
0100715.html

13. V-REP: Virtual Robot Experimentation Platform,
http://www.hibot.co.jp/vrep.php

14. Nishioka, H., Suzuki, T., Yamauchi, M., Suga, K.: Household Projections for Japan: 2005
– 2030 Outline of Results and Methods. The Japanese Journal of Population 9(1) (2011)

15. Yamasaki, M., Sato, H.: Human Walking: With Reference to Step Length, Cadence, Speed
and Energy Expenditure. Journal of the Anthropological Society of Nippon 98(4), 385–401
(1990)

16. Ministry of Internal Affairs and Communications: 2006 Survey on Time Use and Leisure
Activities (2007)

Modeling Robot Behavior with CCL

Konrad Kułakowski and Tomasz Szmuc

Department of Applied Computer Science,
AGH University of Science and Technology

Al. Mickiewicza 30,
30-059 Cracow, Poland

{konrad.kulakowski,tomasz.szmuc}@agh.edu.pl

Abstract. This paper presents the use of a Concurrent Communicating
Lists (CCL) library in robot behavior modeling. CCL provides several
software components, which allow the model to be built, simulated and
formally verified. Due to the integration with the Robust library the CCL
models can be deployed and executed on the actual hardware platforms.
Besides the modeling robot behavior, the work also addresses the prob-
lem of modeling a robots environment.

The CCL models can be verified either formally or by simulation. Since
the use of formal methods is always associated with the state explosion
problem, the work provides practical guidelines on how to deal with this
problem using CCL.

1 Introduction

In recent years, increased interest in the design and building of robots has been
visible. Robots have become accessible to a wide audience. The ease and avail-
ability of even sophisticated robotics platforms encourages researchers to seek
new, efficient methods of modeling of control software for such constructions. One
of them can be Concurrent Communicating List (CCL) - the Clojure language
library supporting executable modeling of concurrent and distributed systems.
It allows users to write a control program in a special lisp-like CCL notation,
run it step by step in a simulation mode, perform their formal verification or
execute them like a regular computer program.

The first two sections of this paper contain a brief outline of AI robotic ar-
chitectures and, on this basis, tries to draw a map of various approaches to the
modeling of AI robot software. Section 3 summarizes the CCL library. Section
4 presents a simple control algorithm allowing the robot to move and sense.
Section 5 discusses CCL in model simulation and formal analysis. Finally, Sec-
tion 6 includes a work summary and presents the plan for future research and
development.

2 Robotics Models and Architectures

The architecture design in mobile AI robotics tries to follow the three intelligent
control architectural styles [2]:

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 40–51, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling Robot Behavior with CCL 41

– Hierarchical Planning and Control Architecture
– Reactive/Behavior Based Control Architecture
– Hybrid Architecture

One of the most influential representatives of the first approach is “A Reference
Model Architecture of Intelligent Control” proposed by J. S. Albus and A. M.
Meystel later on implemented as 4D/RCS [1]. The Albus model provides several
levels of control nodes, where each of them is able to sense the environment,
judge the situation on a certain level of granularity and generate behavior. The
nodes higher in the hierarchy take strategic decisions and perform actions on
the higher level of abstraction, whilst the nodes lower in the hierarchy have the
shorter time perspective and perform simpler actions. All the nodes maintain
the data base (world model) storing important facts about the environment.

Another architectonic style is determined by the famous Subsumption Archi-
tecture proposed by Brooks [5]. Following the principle “The world is its own best
model” it focuses on immediate data sensing and behavior generation rather than
spending time on the possibly resource-consuming: sense, process the knowledge,
and execute the plan processing loop. Due to the relative simplicity and intuitive-
ness of model creation, the reactive approach resulted in a number of works on
the various frameworks and notations supporting behavior modeling and analysis
[19,21,18,8,17].

The third, the hybrid approach tries to take benefits from both hierarchical
planning and a reactive approach. Its supporters argue that the previous two
approaches in fact do not exclude each other but rather try to perceive the same
phenomenon from two different perspectives. They observe that sometimes in-
telligent constructions need to behave in a reactive manner, and at other times
to perform careful knowledge-based hierarchical planning. Example of this ap-
proach is AuRA [14].

Among the papers that focus on modeling system behavior, there is an im-
portant group of works that use formal methods. Using formalisms allows the
system behavior to be specified more clearly and efficiently, and opens the possi-
bility of using formal techniques for validation and verification of the model. An
example of such an approach is Behavior Language [6]. This is directly derived
from the widely recognized Subsumption Architecture [5]. Its syntax is based
on the AFSM (Augmented Finite State Machines) description language, which
allows the model to be compiled and deployed on different hardware platforms
such as Motorola 68000 or Hitachi 6301. Other robot behavior specification lan-
guages using the state machine concept are COLBERT [10] and XABSL [19].
The first of them, supporting the SAPHIRA platform, is designed for model-
ing behavior of individual robots, whilst XABSL tries to address the problem
of behavior specification for multi-robot systems. In addition, process algebras
[4] or behavior trees are represented as formalisms for modeling robots behavior
[9,20]. Petri Net Plans (PNP) [22] proposes Petri nets layer as an actual model
specification language, and then offers possibility of formal model verification.
Although formal methods are often used for modeling behavior, the reactive sys-
tems that use them also take benefits from hierarchical approach. An example of

42 K. Kułakowski and T. Szmuc

solution, which tries to use both reactive and hierarchical methods is RS (Robot
Schemas) [15].

CCL notation is derived from process algebras and primarily focuses on be-
havior modeling. It defines operators and actions (as with the process algebras)
which are used later to create more complex expressions forming a model speci-
fication. There are two types of communication, internal, between two different
processes within the model, and external, between the model and the rest of the
system (e.g. world model). Such a distinction provides modularization, since once
module can be completely external to the other module. CCL, due to its close
relationship with process algebras, gives the possibility to perform formal veri-
fication of the model. Some operations, such as deadlock finding or bisimulation
checking, are supported directly by the CCL library. Others, such as temporal
formula verification, are supported by exporting the model into the CADP tool
[7]. CCL is executable, which means that all the models can be freely simulated
and executed. For the purpose of simulation, the external environment can be
modeled using the CCL simulation environment CCL Sim [12].

3 CCL Library at a Glance

3.1 CCL Notation

The CCL syntax is modeled on the process algebras, such as CCS [16], and
the Clojure and Lisp language. For this reason all the CCL expressions are
in the form of lists, and they are built up from the operations, which are close in
meaning to what can be found in algebraic notations. The CCL model consists
of lists denoting processes, communication channels between them, and primi-
tives – Clojure functions, which are called by the processes during the execution
of a model. The basic notion introduced by the CCL notation is the nlist ex-
pression denoting the sequence of operations to execute. The nlist expressions
are executed within the CCL processes launched as the part of the concurrent
composition clause. Processes can be anonymous or named. A brief CCL syn-
tax summary can be found in Table 11. The CCL processes communicate via
blocking queues. The use of the synchronization queue mechanism is possible
through the set of queue access methods, such as: q-get, q-put, q-peek, q-try-put,
q-size and q-capacity. The q-get and q-put functions add and remove elements
from the queue. These functions can be blocking or non-blocking depending on
the adopted strategy and the number of elements in the queue. The next two
functions q-peek and q-try-put behave like q-get and q-put but they do not wait.
When they fail the nil value is returned. The last two functions do not change
the state of the queue. They return the number of actual elements in the queue
(method: q-size) and return the maximal possible size of the queue (method:
q-capacity). Depending on the adopted policy and the length of the queue, the
processes attempting to read from or write into the queue can be blocked for a
while or returns immediately.
1 The more comprehensive syntax reference with examples can be found at
www.kulakowski.org/ccl

www.kulakowski.org/ccl

Modeling Robot Behavior with CCL 43

Table 1. CCL - Syntax summary

Construction Description

(defn Foo [] body-expr)
(reg-as-prim Foo)

Defines the Clojure function Foo and registers it
as a CCL primitive.

def-nlist Boo
(exp1 exp2 . . . expN))

Defines the nlist Boo executing its nlist-body
i.e. the list of subsequent expressions: exp1,
exp2,. . . ,expN .

(def-nlist (Roo :y)
((exp1 :y) . . . (expk :y))

Defines the nlist named Roo with the initial pa-
rameter :y. The expressions in Roo’s nlist-body
can freely use the parameter :y.

((:x (Foo))
(Roo (+ :x :y)))

Defines the local nlist variable :x and initializes it
to the value returned by Foo, then starts execution
of Roo with the input value set to the sum of :x
and :y.

(? (cond1) (nlist1) . . .
(condN) (nlistN))

The conditional choice operator allows the defi-
nition of the nlist-expression to be executed next
depending on their condition expressions, i.e. if
condk is the first true expression on the left then
the nlistk expression is to be executed.

(?? X1 (nlist1)
X2 (nlist2) . . . XN (nlistN))

Within the random choice statement, nlists
are picked for further execution randomly. The
chance of being selected for nlistk is given as:
xk/Σ(x1,...,xk)

(| Moo :moo Goo :goo) As a result of execution of this expression two
CCL processes have been launched, where the first
process labeled :moo will execute the nlist Moo,
whilst the second process :goo will execute the
nlist Goo.

Due to the blocking property and the maximal number of elements in the
queue (it is assumed that a queue can be zero-length or non zero-length) there
are eight possible types of synchronization queue. All of them have been sum-
marized in Table 2. There are five columns, where type means the type id of a
synchronization queue, cap. comes from the maximal capacity of the queue, read
and write determines whether the operations read and write are blocking and
non-blocking. Since these parameters affect the meaning of queuing methods, the
fifth table column contains a brief function semantics summary. Synchronization
queues are used for modeling communication between different processes within
the model. Communication between the external environment and the model is
implemented by primitives call (Table 1). In such a case all the technicalities
of a communication channel are hidden and it is assumed that the function call
returns a correct result as soon as possible.

44 K. Kułakowski and T. Szmuc

Table 2. Synchronization queues - functions meaning
T

yp
e

C
ap

.

R
ea

d

W
ri

te

Functions meaning

1 0 n-b n-b The 0-length queue is always empty. Thus, all the operations
except q-size and q-capacity, are ineffective.

2 0 b n-b Since at the given point of time the queue is empty (there is
no space to store the element for any non-zero period of time)
the operations q-peek and q-try-put are ineffective. The func-
tion q-get always blocks and waits for the counterpart q-put.
The function q-put always adds the element to the queue.
If there is no waiting q-get on the other side the inserted
element is lost.

3 0 n-b b As for type 2 operations, q-peek and q-try-put are ineffective.
The function q-put always blocks and waits for the counter-
part q-get. The function q-get removes the element from the
queue. If there is no waiting q-put on the other side the re-
turned element is nil.

4 0 b b As for type 2 operations, q-peek and q-try-put are ineffective.
The function q-put always blocks and waits for the counter-
part q-get, and reversely the function q-get always blocks and
waits for the counterpart q-put. When both functions meet
each other q-get returns the element inserted by q-put.

5 k > 0 n-b n-b The functions q-peek and q-try-put are ineffective, since they
work as q-put and q-get. The function q-get is successful if
the queue is non-empty, q-put when the queue is not full.

6 k > 0 b n-b The function q-try-put is ineffective. The function q-get
blocks until the queue is empty. The function q-put fails im-
mediately when the queue is full.

7 k > 0 n-b b The function q-peek is ineffective. The function q-get fails
immediately when the queue is empty. The function q-put
blocks as long as the queue is full.

8 k > 0 b b The function q-get blocks as long as the queue is empty, and
similarly the function q-put blocks as long as the queue is
full.

CCL notation provides an externalization mechanism which allows the syn-
chronization queue to be wrapped within the primitives call, so that the explicit
communication link between two processes becomes external to the model. This
leads to a decrease in model complexity2 as regards the number of inter-process
synchronizations, and finally may result in splitting one model into several sub-
models. Thus, the externalization mechanism introduces modularity, so that one

2 Of course, at the expense of model accuracy.

Modeling Robot Behavior with CCL 45

model can be independently modeled and analyzed from the others. This prop-
erty seems to be especially useful when different parts of the model are loosely
coupled as, for example, a sub-model of a robot and the sub-model of its environ-
ment. The CCL library3 provides a few APIs allowing the model of a system to
be created, executed or simulated, and formal analysis of a model to be carried
out. In addition, the CCL software bundle contains CCL Sim [12], an interactive
model development environment facilitating step-by-step tracking of the model
and building various mockups helping simulation of an external environment
model.

3.2 CCL Software Setup

One of the key component of the CCL software setup is the Robust platform.
This was originally conceived as a simple Mindstorm NXT Java library moving
CPU intensive processing to a PC platform and providing a robust and effi-
cient PC-NXT communication link. With time, Robust gained new components
allowing the creation of control programs running on another robotic platform
Hexor II [13], and the cljRobust API [11] interfacing Robust with the Clojure
programming language. In this way cljRobust API functions can be declared as
CCL primitives, then the models written in CCL notation can actually control
the mobile robots supported by the Robust library. Such a tool-chain involves a
few additional, not explicitly mentioned yet, software components. In the case
of the NXT computer LeJOS - the embedded version of Java for Mindstorms
NXT is required. Hexor II comes with its own operating system and proprietary
control libraries. The Robust library as well as CCL are run under the control of
a Java Virtual Machine. The same applies to the Clojure language library which
binds the Robust platform and CCL APIs together. When working with CCL
models, choosing one of a few professional Clojure developer environments4 is
worth considering.

4 Modeling Robot Behavior - Study Case

One of the basic CCL constructions is primitive. From the system modeling per-
spective a primitive is like an indivisible action, which can take some parameters
from the model and return the computed value. Implementation details behind
the primitive call are not important except for the fact that primitives should be
interruptible, i.e. as functions executed within the JVM threads they should be
able to safely break ongoing operations when the interruption request is raised.
Since the primitive is able to transmit the values to and from the model, it
can be used for implementing communication between the robot model and the
robot model’s environment. Due to the externalization mechanism, there is no
3 The CCL library binaries, manual and examples are available at
www.kulakowski.org/ccl

4 There are, for instance: Eclipse with counterclockwise plugin and Net Beans with
enclojure plugin.

www.kulakowski.org/ccl

46 K. Kułakowski and T. Szmuc

need to fix the model boundaries at the very beginning, and the designer is
able to decide later on where the robot model stops and where the model of
the environment starts. Let us consider a simple reactive robot with one touch
sensor (bumper) sending a short stimulus when the robot hits the obstacle. Im-
plementing that with CCL and Robust requires definition of the synchronization
queue touch-event-source (Listing: 1, line: 1) and definition of the Clojure func-
tion touch-handler (Listing: 1, line: 2) being an event listener hooked up in Robust
API. When the bumper hits the obstacle, touch-handler puts an element into the
touch-event-source queue (Listing: 1, line: 4).

1 (def-queue touch-event-source :size 1 :rb)
2 (defn touch-handler [value]
3 (if (= value 1)
4 (agh.ccl.nlists/q-put :touch-event-source 1)))

Listing 1: Communication between the robot model and its environment -
executable version

In response to the appearance of an element in the queue the robot should
retreat a little bit the same way it came and then choose the other direction.
That simple behavior can be easily specified using standard CCL constructions.

5 (def-nlist ExplorationRobot
6 ((rb-system-startup)
7 (rb-touch-async-handler touch-handler)
8 (rb-move-forward (rnd 200 400) 200)
9 (| GoAhead :goAhead CollisionDetector :colDetector)))

10 (def-nlist GoAhead
11 ((! AvoidObstacle)
12 (rb-move-forward (rnd 200 400) 200)
13 (rb-move-wait-for-new-move)
14 GoAhead))
15 (def-nlist AvoidObstacle
16 ((rb-move-forward 200 -100) ; move backward
17 (rb-move-inplace-turn (rnd -120 120) 100)
18 (rb-move-forward (rnd 200 400) 200)
19 GoAhead))
20 (def-nlist CollisionDetector
21 ((q-get touch-event-source)
22 (rb-move-stop-now)
23 (-> :goAhead)
24 CollisionDetector))

Listing 2: Random exploration. CCL/Robust executable behavior specification

The first nlist expression ExplorationRobot (Listing: 2, line: 5) calls the manda-
tory Robust initialization function rb-system-startup (line: 6), registers the
touch-handler, puts on the execution queue the one move forward command, and
then launches two threads :goAhead and :colDetector. They start executing

Modeling Robot Behavior with CCL 47

correspondingly the GoAhead (line: 10) andCollisionDetector (line: 20) expressions.
The first action of the GoAhead expression is to register (operator !) an interruption
handler AvoidObstacle (Listing: 2, line: 11). Thus, when the interruption request
has been raised, the :goAhead thread immediately starts processing the AvoidOb-
stacle expression. Next GoAhead follows the processing loop: queues one straight-
forward move with a randomly chosen length between 200 and 400 millimeters and
speed 200 (line: 12), waits until the currently executed move ends (line: 13), and
starts execution from the beginning (line: 14). In the case of the robot’s bumper
hitting into an obstacle, the CCL process :goAhead is interrupted and the fallback
procedure is executed. In such a case, the AvoidObstacle nlist expression is exe-
cuted (Listing: 2, lines: 15 - 19), i.e. after withdrawal of the robot 100 units back
(line: 16), the new random direction is chosen (line: 17), and the construction con-
tinues moving ahead (line: 18). CollisionDetector(Listing: 2, lines: 20-24) is the
last expression in the Random Exploration example. It is designed as a collision lis-
tener, which in the case of collision immediately stops the whole construction (line:
22) and interrupts the :goAhead process execution (line: 23).

5 Model Simulation and Formal Verification

Although the model as presented on Listings 1 and 2 is fully executable5 its
simulation and formal analysis require the introduction of several additional en-
hancements. For the purpose of simulation, due to the lack of the Robust library,
all the functions referring to the external environment provided by Robust need
to be replaced by mockups or modeled in CCL as sub-models. The CCL library
supports simulation experiments by providing the additional GUI application
CCL Sim [12], together with a ccl-sim-utils API allowing for creation of prim-
itives controlled remotely from within the CCL Sim. Hence, every action made
by the model upon the external environment can be logged, and every sensor
reading request can be manually handled in CCL Sim. An example of mockup
implementation of (Listing: 3) first waits a random amount of time (no longer
than 200 milliseconds, and not shorter than 100 milliseconds), then inserts a log
entry, which shows up in the CCL Sim application’s dashboard.

25 (defn rb-move-inplace-turn [x y]
26 (do (wait 100 200)
27 (ccl-sim-model-log-writer "rb-move-inplace-turn" x y)))

Listing 3: An example cljRobust API mockup implementation

Although CCL Sim can capture all the I/O communication between the model
and its environment, it does not allow the external world to be modeled. Its func-
tionality is limited to receiving data from the model and sending the manually
chosen or automatically pre-specified values back to the model. Such a solution
5 The whole model code, together with a short movie showing the model execution

can be found at:
http://www.kulakowski.org/ccl/

http://www.kulakowski.org/ccl/

48 K. Kułakowski and T. Szmuc

works very well when the model need to be debugged, but it is less useful in
the case of the long-term simulation runs. In the second case, the external en-
vironment needs to be modeled as a separate sub-model TouchHandler. In the
considered example TouchHandler sends (Listing: 4) in a loop an interrupt re-
quest (Listing: 4, line: 29) then waits a random amount of time (line: 30) and
starts its execution once again (line: 31).

28 (def-nlist TouchHandler (
29 (q-put touch-event-source 1)
30 (wait 300 700)
31 TouchHandler))
32 (def-nlist TouchWorld (| TouchHandler ExplorationRobot))

Listing 4: An example cljRobust API "dummy" implementation

Now the model (expression TouchWorld) is self-contained in the sense that
there is no explicit synchronization queue leading outside the model. Thus, it
is possible to generate a graph where nodes represent states of the model and
arcs between them possible state transitions, and then perform their formal
analysis. For formal reasons it is convenient to call such a graph as a labeled
transition system (LTS) [3]. The LTS for such a simple model has 261 states and
707 transitions6 - in this approach the state in this formalization is represented
by the set of states of synchronization queues and the set of states of all the
processes. In the adopted approach the values of variables are not taken into
account during the LTS construction, thus the state of a synchronization queue
is reduced to its length, and the every deterministic choice ? is reduced to its
non-deterministic counterpart ?? (Table 1). The change of state is determined
both by the primitive call and the operator evaluation. Thus, the transitions can
take the labels of both primitives and operators (Fig. 1).

Using CCL shell its easy to check that the TouchWorld model is deadlock free,
compare the LTS with another LTS in terms of the weak and strong bisimulation
[4] or export it into CADP [7] and check other temporal properties like safety
[3]. Sometimes it is convenient to analyze only a part of the model. In such a case
all the synchronization queues leading outside the sub-model of interest need to
be wrapped into primitives. Thus, in the case of TouchWorld, to be able to to
separately analyze ExplorationRobot and TouchHandler, the queue touch-event-
source needs to be externalized. For this purpose the queue definition gets a new
flag :ext (Listing: 5, line: 33), and both queue ends need to be accessed through
the wrappers (lines: 34 - 35). After replacing the queue operations q-get and
q-put by their wrapper counterparts the model is ready to be analyzed locally
(Listing: 5).

The touch-event-source externalization reduces LTS almost ten times to 35
states and 62 transitions (Fig. 1). Of course, the reduced LTS loses the infor-
mation related to states of the sub-model mimicking the robots environment,
thus it is impossible to automatically prove that every state of the environment

6 Obtained by calling the CCL shell command (gen-lts WorldModel).

Modeling Robot Behavior with CCL 49

33 (def-queue touch-event-source :size 1 :rb :ext)
34 (defn-queue-wrapper bumper-stat-out touch-event-source :get)
35 (defn-queue-wrapper bumper-stat-in touch-event-source :put)
36 (reg-as-prim bumper-stat-in bumper-stat-out)
37 (def-nlist TouchHandler ((bumper-stat-in :touch-event-source 1)
38 (wait 300 700) TouchHandler))
39 (def-nlist CollisionDetector (
40 (bumper-status-out)
41 . . .

Listing 5: An example cljRobust API "dummy" implementation

Fig. 1. LTS Graph for ExplorationRobot after touch-event-source externalization

is covered by the appropriate behavior of a robot, but still some important and
sound model properties can be proved. That is because, when wrapping the
q-get function into the bumper-stat-out primitive, the implicit assumption was
made that the bumper-stat-out function behaves like any other function i.e. when
called it returns some value in a finite amount of time. Since the robot moving
straight forward all the time should sooner or later hit the obstacle, it seems to
accurately reflect the actual behavior of the robot under control of the Explo-
rationRobot algorithm. It is also consistent with the behavior modeled by the
TouchHandler expression. Thus, marking communication between TouchHandler
and ExplorationRobot as external (thus not considering it during ExplorationRobot
sub-model analysis) does not limit verifiability of other temporal model proper-
ties, such as deadlock freedom or liveness. Moreover, the reduced LTS is small
enough to be browsed and analyzed manually. Of course, there is no one golden
rule for deciding when the communication channel can be hidden by external-
ization. In general, it is assumed that the states of models on both ends of the
synchronization queue are loosely coupled, hence the omission of one sub-model

50 K. Kułakowski and T. Szmuc

will have little effect on other sub-models. Of course, by excluding the synchro-
nization queue out of the model a designer runs the risk of losing something
important, so eventually he has to decide whether this will affect the property
he wants to examine.

6 Summary and Future Work

In this paper the new CCL (Communicating Concurrent Lists) notation and
its application to robot behavior modeling has been presented. The proposed
notation is supported by the CCL library, which offers several software com-
ponents allowing for model building, model execution, model simulation and
debugging and formal analysis and verification of the model. The CCL library
integrates well with cljRobust and the Robust library, thus all the models created
and verified in the CCL notation can be easily executed on the actual hardware
platforms.

The article also tackles the hard problem of modeling the boundary between
the model of robot behavior and the external environment. The CCL library
addresses the problem by providing the CCL Sim simulation environment, which
can imitate the outer environment, and allowing users to write the model of the
external world directly in the CCL notation. In the latter case, sometimes it
makes sense to separately analyze the model of robot behavior and the model
of the surroundings. CCL facilitates such analysis by providing externalization
- an effective syntactic mechanism supporting sub-model separation.

Although the CCL library is ready to download and use, still a lot of problems
need to be addressed. Since, initially, the CCL was designed as a set of Clojure
macros rather than a regular modeling language, the syntax error information is
difficult to understand for end-users. Thankfully, work on the new CCL parser
is already underway. At the moment the CCL library supports only a limited
number of predefined formal methods itself. Thus, the project will also try to
provide methods which allow for easy construction of any temporal formula.

Acknowledgment. This research is partially supported by AGH University of
Science and Technology, contract no.: 11.11.120.859.

References

1. Albus, J.S., et al.: 4D/RCS: A Reference Model Architecture For Unmanned Ve-
hicle Systems Version 2.0. Technical report, NIST Interagency (2002)

2. Arkin, R.C.: Intelligent Control of Robot Mobility, ch. 16. Wiley (2007)
3. Baier, C., Katoen, J.: Principles of model checking. The MIT Press, Cambridge

(2008)
4. Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.): Handbook of Process Algebra.

North-Holland (2001)
5. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot.

and Auto. 2(3), 14–23 (1986)

Modeling Robot Behavior with CCL 51

6. Brooks, R.A.: The behavior language; user’s guide. Technical report, Massachusetts
Institute of Technology, Artificial Intelligence Laboratory (1990)

7. Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2010: A Toolbox for the
Construction and Analysis of Distributed Processes. In: Abdulla, P.A., Leino,
K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 372–387. Springer, Heidelberg
(2011)

8. Groves, W., Collins, J., Gini, M.: Visualization and analysis methods for comparing
agent behavior in TAC SCM. In: AAMAS 2009: The 8th International Conference
on Autonomous Agents and Multiagent Systems (May 2009)

9. Hardey, K., Mattis, M., Goadrich, M., Corapcioglu, E., Jadud, M.: Exploring and
Evolving Process-oriented Control for Real and Virtual Fire Fighting Robots. In:
Proceedings of Genetic and Evolutionary Computation Conference (2012)

10. Konolige, K.: COLBERT: A Language for Reactive Control in Sapphira. In:
Brewka, G., Habel, C., Nebel, B. (eds.) KI 1997. LNCS, vol. 1303, pp. 31–52.
Springer, Heidelberg (1997)

11. Kułakowski, K.: cljRobust - Clojure Programming API for Lego Mindstorms NXT.
In: Jędrzejowicz, P., Nguyen, N.T., Howlet, R.J., Jain, L.C. (eds.) KES-AMSTA
2010, Part II. LNCS, vol. 6071, pp. 52–61. Springer, Heidelberg (2010)

12. Kułakowski, K.: CCL Sim, the simulation environment for concurrent systems. In:
Proceedings of Dependability and Complex Systems, DepCoS (2012)

13. Kułakowski, K., Matyasik, P.: RobustHX - The Robust Middleware Library for
Hexor Robots. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk,
O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 241–250. Springer, Heidelberg (2010)

14. Long, L., Hanford, S., Janrathitikarn, O.: A review of intelligent systems software
for autonomous vehicles. In: IEEE Symposium on Computational Intelligence in
Security and Defense Applications, CISDA (2007)

15. Lyons, D.M., Arbib, M.A.: A formal model of computation for sensory-based
robotics. IEEE Transactions on Robotics and Automation 5(3), 280–293 (1989)

16. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
17. Nalepa, G.J., Biesiada, B.: Declarative Design of Control Logic for Mindstorms

NXT with XTT2 Method. In: Jędrzejowicz, P., Nguyen, N.T., Hoang, K. (eds.)
ICCCI 2011, Part II. LNCS, vol. 6923, pp. 150–159. Springer, Heidelberg (2011)

18. Rai, L., Kook, J., Hong, J.: Non-Deterministic Behavior Modeling Framework for
Embedded Real-Time Systems Operating in Uncertain Environments. Journal of
Information Science and Engineering 26(1), 83–96 (2010)

19. Risler, M., von Stryk, O.: Formal Behavior Specification of Multi-Robot Systems
Using Hierarchical State Machines in XABSL. In: Workshop on Formal Models
and Methods for Multi-Robot Systems, pp. 1–7 (August 2008)

20. Xiao, W., Liu, T., Baltes, J.: An intuitive and flexible architecture for intelligent
mobile robots. In: The Second International Conference on Autonomous Robots
and Agents (ICARA), Palmerston North, pp. 52–57 (2004)

21. Zhang, Q., Zhang, Y.-F., Qin, S.-Y.: Modeling and analysis for obstacle avoidance
of a behavior-based robot with objected oriented methods. Journal of Comput-
ers 4(4), 295–302 (2009)

22. Ziparo, V.A., Locchi, L., Nardi, D., Palamara, P.F., Costelha, H.: Petri net plans:
a formal model for representation and execution of multi-robot plans. In: AAMAS
2008: Proceedings of the 7th International Joint Conference on Autonomous Agents
and Multiagent Systems (May 2008)

Visual-Trace Simulation of Concurrent

Finite-State Machines for Validation
and Model-Checking of Complex Behaviour

Robert Coleman, Vladimir Estivill-Castro, René Hexel, and Carl Lusty

Griffith University, Nathan 4111, QLD, Australia
www.mipal.net.au

Abstract. Simulation of models that specify behaviour of software in
robots, embedded systems, and safety critical systems is crucial to ensure
correctness. This is particularly important in conjunction with model-
driven development, which is highly prevalent due to its numerous ben-
efits. We use vectors of finite-state machines (FSMs) as our modelling
tool. Our FSMs can have their transitions labeled by expressions of a
common sense logic, and they are more expressive than other modelling
approaches (such as Behavior Trees, Petri nets, or plain FSMs). We inter-
pret the models using the same round-robin scheduler which is integrated
into the simulator. Execution on a platform is exactly the same as in the
simulator (where sensors and actuators are masqueraded by proxies) and
coincides with the generator of the Kripke structure for formal model-
checking. In three ubiquitous case studies we show that our simulation
discovers issues where those models were incomplete, ambiguous, or in-
correct. This further illustrates that simulation and monitoring need to
complement formal verification.

Keywords: simulation, testing and validation of robot software, inter-
pretation of models, model-checking, modeling framework for robots,
software platform and middleware for robotics.

1 Introduction

While software development for autonomous robots commonly starts with a
modelling phase, enough confidence in the correctness of behaviour can only be
obtained through simulation in conjunction with formal model-checking.

Model-driven engineering minimises the programming phase as correct, and
validated models can directly run on different platforms. Model-driven develop-
ment (MDD) has been shown to be fast, as it provides higher level of abstraction
than traditional programming languages. Models are automatically transformed
into efficient, working software. In fact, models can more succinctly represent
functionality. MDD is more cost-effective, due to a shorter time to deployment,
but changes to models and traceability of functionality are more direct and trans-
parent. This also leads to increased quality. MDD is less error-prone if we can
perform testing, validation, and simulation of models. Therefore, MDD leads to
meaningful validation, as it is the high-level model that is validated, because au-
tomatic translation to lower levels has perfectly defined semantics. Compare this

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 52–64, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Visual Trace Simulation of Concurrent Finite-State Machines 53

with the translation process that human developers perform (where use-cases are
translated into implementation by programmers). For robotics, MDD offers far
more benefits. We certainly want to be sure the software is correct before we
deploy expensive hardware in some environment and risk the physical integrity
of the autonomous robot or others in the environment. We need software that is
less sensitive to changes in requirements, and model-driven development provides
this. We want to enable domain experts (environment experts) to participate
more closely in defining the behaviour of autonomous robots. MDD empowers
such domain experts as behavioral requirements can be captured in the mod-
els (in some cases, the models provide up-to-date documentation). Moreover,
MDD provides platform independence and focus on behaviour issues instead of
technological details. But then, simulation, validation, and formal verification of
the model become far more important than with traditional development (e.g.,
in a waterfall cycle, the next stage may correct the previous representation of
requirements of functionality as it is tested in the implementation).

Modelling the behaviour of a system using state machines has a long history
in software development [11]. State machines are central to modelling object-
oriented systems since OML [18], they are also used in system engineering lan-
guages such as OMG SysMLTM [17]. Executable models appeared in executable
UML [15]. We have advocated models that specify behaviour through several
finite-state machines (FSMs), whose transitions are labeled by predicates of a
common-sense logic [4]. We have shown that these models are more succinct that
plain FSMs, Petri nets and Behavior Trees [4]. They are easy to comprehend, as
the components of FSMs are used in many systems for formal validation or de-
scriptions of automatic devices and protocols. The reactive nature of finite-state
machines can be compensated by a reasoning component and domain-knowledge
in logic, when we label transitions by a query to an inference engine. Formal
verification of behaviour models (model-checking) has traditionally been com-
plicated when several components concurrently operate to define the behaviour
of a system. The vector of finite-state machines that constitute such a system
can be scheduled deterministically reducing the execution path search space [9].
With more succinct Kripke structures far more model-checking of classic software
engineering case studies has been achieved.

Despite this, formal-model checking is costly, and it may not be clear which
properties need to be verified. This is where simulation and validation come
into play. Simulation allows to identify behaviour that was not considered at the
time of requirement elicitation. Trough our simulation, we can discover scenarios
where a behaviour specification was incomplete. In this paper we discuss our so-
lution to construct a simulator (and monitor) of a vector of finite-state machines
that control autonomous robots (or embedded systems). State machines are core
elements in embedded systems and in popular commercial tools widely used in
the industry, including QPTM [19] StateWORKS [24]. While our simulator has
characteristics similar of the integration of MathWorksR StateFlow with Symlink
we avoid the complex translations that this requires for model-checking [1].

54 R. Coleman et al.

2 Modelling

Designers of robotic system and of autonomous systems naturally model using
states and transitions. Thus, a finite-state behaviour model is actually a table.
This transition table consists of 3 columns: (Source State, Boolean Expression

Target State). Here, the projection of the transition table on each state is a
list, i.e., transitions are considered in (deterministic) sequence. Also, each state
of the FSM has 3 sections: OnEntry, OnExit, and an Internal section. One
state is designated as the initial state. When a machine is running, it will execute
a ringlet. A ringlet is the loop that starts by taking a snapshot (a copy) of all
variables. Then the OnEntry section is executed (only for the first iteration in a
new state, otherwise OnEntry is omitted), proceeding to evaluating the Boolean
expressions in sequence. If the expression of a transition evaluates to true, the
transition fires, meaning, the OnExit activity is performed and then the state
is updated to the target state of the transition, concluding the ringlet in this
case. However, if the list of Boolean expression is exhausted and none evaluates
to true, then the Internal section is executed and the ringlet terminates.

Multiple FSMs are executed sequentially in round-robin fashion, in the or-
der they appear in. The interpreter performs one ringlet of one machine before
moving to the next one in sequence.

Our interpreter is extremely efficient, capable of performing several thousand
transitions per second on-board of an Aldebaran Nao. This particular aspect
makes it suitable for evaluating models that not only represent high level be-
haviours (e.g. the Game Controller of the SPL), but also fast control loops, e.g.
the head tracking a ball in robotic soccer.

Our FSMs use simple C statements1 for states, and expressions for transitions
(including function calls and evoking expert system evaluation of non-monotonic
logic). The communication medium between modules of the software is based on
a whiteboard architecture and details have been provided elsewhere [3].

It is important to emphasise that our modelling tool enables three types of
variables: local variables within one FSM and variables that are shared by the
FSMs in the sequence. The third type are external variables whose value can be
updated or modified outside the sequence of machines, but shared with FSMs
(e.g. to communicate with sensors or actuators).

3 Illustration

We now present three ubiquitous embedded systems case studies. These have
been widely discussed in the literature of software engineering and in particu-
lar formal methods. However, we show that simulation and validation discovers
emergent behaviour that was not anticipated or constitutes an ambiguity in the
specification of requirements. Simulation not only validates the models, but also
helps determine the set of properties for formal verification. The first case study
will be the Mine Pump. We show here that simulation enables to disambiguate

1 We use the grammar SimpleC.g from ANTLR (www.antlr.org).

http://www.antlr.org

Visual Trace Simulation of Concurrent Finite-State Machines 55

the need for 3-position switches, at least for the supervisor. The second case
is the Microwave, and again, we show that simulation resolves the meaning of
the requirement “opening the door stops the cooking.” The third case is the
Industrial Press. We show here that simulation is essential to ensure that the
behaviour would be as expected. For these cases, formal model-checking has been
performed in the literature, but not all properties were elicited, and thus, models
were, in fact, inaccurate (which we discovered through simulation). We focus on
model development and simulation (model-checking of these models is discussed
elsewhere [9].) Moreover, we highlight pointers to videos of these models running
directly on actual robotic platforms (in some cases the same model is being in-
terpreted in two distinct platforms) as promised by model-driven development.

3.1 The Mine Pump

The mining pump is a case widely discussed in the literature [21,22,10,27] where
software is controlling a safety-critical system. We follow Burns and Lister [6]
where significant formality is provided. Here, we skim over the development of the
model [9]. The requirements in natural language [6] are reproduced in Table 1.
This study is again illustrative of the power of using FSMs with transitions
labeled by a common-sense logic such as DPL. The pump is in one of two
states, running or not running, while simultaneously the alarm is in a ringing
or not ringing state. This is illustrated by the diagrams in Fig 1 (next page).

Table 1. Mine Shaft Pump Requirements

Req. Description

R1
The pump extracts water from a mine shaft. When the water volume has been reduced below the low-water
sensor, the pump is switched off. When the water raises above the high-water sensor it shall switch on.

R2 An human operator can switch the pump on and off provided the water level is between the high-water
sensor and the low-water sensor.

R3 Another button accessed by a supervisor can switch the pump on and off independently of the water level.

R4 The pump will not turn on if the methane sensor detects a high reading.

R5
There are two other sensors, a carbon monoxide sensor and an air-flow sensor, and if carbon monoxide is
high or air-flow is low, an alarm rings to indicate evacuation of the shaft.

Our techniques reveal several issues with the specification. First, one must
inspect the pre-conditions and post-conditions [6], to confirm that the condi-
tions that turn the pump on are not the negation of those that turn it off. In
particular, the pump goes on when the water level is high, but remains on when
the level drops (Requirement R1) until it is below the low sensor before stopping.
But it does not re-start as soon as the water level is above the below sensor.
Unfortunately, Requirement R3 is seriously more ambiguous and the language
used suggests that the operator’s interface as well as the supervisor’s interface
for controlling the pump are both switches “of the same class” [6] (an assump-
tion also shared by the Behavior Tree approach [10,27]). We argue this first
interpretation is inconsistent with the requirements and that simulation reveals
that switches that are either on or off, holding only two exclusive states, make no
sense. Under this first interpretation (2-state switches), it is possible to construct

56 R. Coleman et al.

2 NOT_RINGING

OnEntry {bell=0;}

OnExit {}

{}

1 RINGING

OnEntry {bell=1;}

OnExit {}

{}

alarmOn

~alarmOn

(a) States for the alarm

2 NOT_RUNNING

OnEntry { motor=0;}

OnExit {}

{}

1 RUNNING

OnEntry {motor=1;}

OnExit {}

{}

pumpShallGoOn

pumpShallGoOff

(b) States for the pump

Fig. 1. Two FSMs control the mine pump

name{MINEPUMP}. input{lowWaterSensorOn}. input{highWaterSensorOn}. input{operatorButtonOn}. input{supervisorButtonOn}.

input{methaneSensorHigh}.

N0: {} => ~pumpShallGoOff. N1: lowWaterSensorOn => pumpShallGoOff. N1>N0.

N2: {~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> pumpShallGoOff. N2>N0.

N3: ~supervisorButtonOn => pumpShallGoOff. N4: methaneSensorHigh => pumpShallGoOff. N3>N0. N4>N0.

P0: {} => ~pumpShallGoOn. P1: highWaterSensorOn => pumpShallGoOn. P1>P0.

P2: {~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=> pumpShallGoOn. P2>P0.

P3: supervisorButtonOn => pumpShallGoOn. P4: ~supervisorButtonOn => ~pumpShallGoOn. P3>P0. P4>P3.

P5: methaneSensorHigh => ~pumpShallGoOn. P5>P3. P5>P2. P5>P1.

output{b pumpShallGoOn,"pumpShallGoOn"}. output{b pumpShallGoOff,"pumpShallGoOff"}.

Fig. 2. DPL coding of the conditions for switching to the state RUNNING or to the
state of NOT RUNNING

a model and simulate it. We label the transition from NOT RUNNING to RUNNING

by the predicate pumpShallGoOn which we consider a request to an expert to
indicate to us whether the pump shall be running on or not. The expert makes
its judgment based on information about the low-water sensor, the high-water
sensor, the operator and supervisor buttons, and the methane sensor. In DPL,
having information on all of these inputs is not necessary (but desirable). We
state this with the input section of the DPL code in Fig. 2.

When shall the pump move from on to off? If we have no information, it shall
remain on and not move (Rule N0). But if the low-water sensor in on, the pump
switches off (this is Rule N1, which takes over Rule N0). Rule N2 says that at a
water level above low and below high, the operator can turn the pump off (N2
takes precedence over N0). And the supervisor can turn the pump off, by Rule
N3 > N0. A high methane reading turns the pump off as well (Rule N4).

How to answer pumpShallGoOn? By default, the pump shall not go on; if asked
this question when the pump is off, and in the absence of information, we should
not recommend a change of state (this is Rule P0). Rule P1 indicates that if the
high-water sensor is on, then the pump goes on and this takes precedence over
Rule P0. Rule P2 indicates that the operator can turn the pump on if the water is
between levels. Thus, P2 overwrites P0. However, with P3 and P4 the supervisor
can turn the pump on and off. Nevertheless, all these previous conditions are
ruled out if methane is high (Rule P5). The reader may have noticed that we
have stated Rule P3 in contradiction with Requirement R3. This is because if we
add the precedence P3>P0 and write P3:supervisorButtonOn=>pumpShallGoOn
enabling the switch of the supervisor to overrule the low-water sensor, compiling
these rules obtains pumpShallGoOff ≡ !supervisorButtonOn || methaneSensorHigh. That is,
the water-levels do not matter at all in deciding if the pump shall be off (and

Visual Trace Simulation of Concurrent Finite-State Machines 57

therefore the operator is redundant as well). All depends on the methane level
which, when high, overrules everything to switch the pump off (or on the super-
visor switch that overrules everything else). Similarly, if the supervisor button
overrules the operator button, the latter becomes redundant.

So here, one must accept that the low-water sensor takes precedence over the
supervisor’s switch, which makes sense if running the pump without water is
dangerous. The logic theory as written in Fig. 2 provides this functionality. A
fact that is verified with simulation in our methodology.

2 NOT_RINGING

OnEntry {bell=0;}

OnExit {}

{}

1 RINGING

OnEntry {bell=1;}

OnExit {}

{}

CO2SensorHigh || airFlowLow

!CO2SensorHigh && !airFlowLow

(a) Alarm state transitions

2 NOT_RUNNING

OnEntry { motor=0;}

OnExit {}

{}

1 RUNNING

OnEntry {motor=1;}

OnExit {}

{}

(highWaterSensorOn ||
(!lowWaterSensorOn && operatorButtonOn))

&& supervisorButtonOn
&& !methaneSensorHigh

lowWaterSensorOn ||
(!highWaterSensorOn && !operatorButtonOn)

|| !supervisorButtonOn
|| methaneSensorHigh

(b) Pump state transitions

Fig. 3. Two FSMs controlling the mine pump with two state-switches

supervisorButtonOff && !supervisorButtonOn

2 INACTIVE

OnEntry {extern supervisorButtonOn;
 extern supervisorButtonOff;
 extern supervisorButtonInactive;
 indecateOn=0; indicateOff=0;}

OnExit {}

{}

1 INDICTAE_ON

OnEntry { indecateOn=1; }

OnExit {indicateOn=0;}

{}

1 INDICTAE_OFF

OnEntry { indecateOff=1; }

OnExit {indicateOff=0;}

{}

supervisorButtonOff && !supervisorButtonOn

 !supervisorButtonOn && !supervisorButtonOff

!supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

supervisorButtonOn && !supervisorButtonOff

(a) 3-state supervisor control (3SSC)

2 NOT_RUNNING

OnEntry { motor=0;}

OnExit {}

{}

1 RUNNING

OnEntry {motor=1;}

OnExit {}

{}

(indicateOn ||
(!lowWaterSensorOn && (highWaterSensorOn ||operatorButtonOn)))

&& !indicateOff
&& !methaneSensorHigh

(!indicateOn && ||
(lowWaterSensorOn || (!highWaterSensorOn && !operatorButtonOn))

|| indicateOff
|| methaneSensorHigh

(b) Receiving signals from a 3SSC

Fig. 4. The model for the pump under 3-state supervisor control consists of these 2
FSMs and the FSM in Fig. 3a for the alarm

Compiling this DPL rule system using the +c option, we obtain equivalent C
expressions for when the pump shall be on and for when it shall go off. Namely,

pumpShallGoOff ≡ lowWaterSensorOn || !supervisorButtonOn

|| methaneSensorHigh || (!highWaterSensorOn && !operatorButtonOn)

and pumpShallGoOn ≡ !methaneSensorHigh && supervisorButtonOn

&& (highWaterSensorOn || {!lowWaterSensorOn && operatorButtonOn}).
Notice the asymmetry between the supervisor and operator conditions for pump
start! Combining this with the FSM for the alarm results in the model in Fig. 3.
Nevertheless, we suggest that there is a second interpretation, i.e. the supervisor’s
interface is a three state control, that has an inactive state. In the inactive state,
it does not overrule any of the other conditions that determine the running of
the pump. But the supervisor can activate the switch to on, or off, switching the
pump on and off regardless of water levels. That model for supervisor control is
presented in Fig. 4 and the new logic theory appears in Fig. 5. Compiling the
logic theory gives corresponding equivalent expressions:
pumpShallGoOn ≡ !methaneSensorHigh &&!indicateOff&& (indicateOn.|| {!lowWaterSensorOn&& [highWaterSensorOn|| operatorButtonOn]}) .

pumpShallGoOff ≡ methaneSensorHigh || indicateOff || (!indicateOn

&& {lowWaterSensorOn|| (!highWaterSensorOn && ! operatorButtonOn)} .

58 R. Coleman et al.

Replacing the transition labels in Fig. 1b, we obtain our model for the second
interpretation of this case study. The Behavior Tree approach fails both inter-
pretations of R3 and did not even verify any property regarding R3 [10,27].

Simulation uncovers these observations during development and helps define
the properties to use for model-checking. This contrasts the properties under the
two interpretations for the switches [9]. Finally, we can validate our models on
actual platforms. We have enabled our interpreter to control a Lego NXT and
built a model of the pump with touch-sensors and floating balls that, when the
water level rises high enough, will trigger the sensor. Unfortunately the NXT
only has 4 ports for sensors, thus we do not observe the behaviour of the alarm.
Also, the 3-state supervisor button is simulated by cycling trough indicating on,
off, and inactive for each momentary push of the corresponding touch sensor.
Although this is a rather improvised artefact with unreliable sensors, we have
a video that shows that the behaviour of the pump under the control of the
model in Fig. 4 is correct. We trust the correctness derived from model check-
ing as the utmost proof. A video of a pump executing the model appears on
youtu.be/y4muLP0jA8U. We believe claims in the literature regarding the cor-
rectness of the model were incomplete because there was no simulation of the
model that would have uncovered the above requirement issues.

name{MINEPUMP}.

input{lowWaterSensorOn}. input{highWaterSensorOn}. input{operatorButtonOn}. input{methaneSensorHigh}. input{indicateOn}.

input{indicateOff}.

P0: {} => ~pumpShallGoOn. P1: highWaterSensorOn => pumpShallGoOn. P1>P0.

P2: lowWaterSensorOn => ~pumpShallGoOn. P2>P1.

P3: {~lowWaterSensorOn,~highWaterSensorOn,operatorButtonOn}=> pumpShallGoOn. P3>P2. P3>P0.

P4: {~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> ~pumpShallGoOn. P4>P3.

P5: indicateOn => pumpShallGoOn. P6: indicateOff => ~pumpShallGoOn. P5>P2. P5>P4. P5>P0. P6>P5.

P7: methaneSensorHigh => ~pumpShallGoOn. P7>P5. P7>P3. P7>P1.

N0: {} => ~pumpShallGoOff. N1: {~indicateOn,lowWaterSensorOn} => pumpShallGoOff. N1>N0.

N2: {~indicateOn,~lowWaterSensorOn,~highWaterSensorOn,~operatorButtonOn}=> pumpShallGoOff. N2>N0.

N3: indicateOff => pumpShallGoOff. N4: methaneSensorHigh => pumpShallGoOff. N3>N0. N4>N0.

output{b pumpShallGoOn,"pumpShallGoOn"}. output{b pumpShallGoOff,"pumpShallGoOff"}.

Fig. 5. DPL coding of the conditions for switching to the state RUNNING using a 3-state
supervisor control

3.2 The Microwave

A microwave is an example in software engineering [23] to illustrate modelling
through states and transitions, but is also present in the context of model-
checking [7, Page 39] as the safety feature of disabling radiation when the door is
open is an analogous requirement to the case of faulty software on the Therac-
25 radiation machine that caused harm to patients [2, Page 2]. The embedded
software for the behaviour of a microwave oven is not only widely discussed in
software modelling [14,20,24] but also as part of behaviour engineering [25,8,16].

Details of this example have been discussed previously [5]. Suffice it to say
that one of the requirements is that opening the door shall stop the cooking.
But this says nothing about what happens with the timer, and through mod-
elling and simulation we discover that opening the door could pause the timer,
or could clear the timer, or could not affect the timer at all, which contin-
ues to count down. Modelling by FSMs, where the labels for transitions can

http://youtu.be/y4muLP0jA8U

Visual Trace Simulation of Concurrent Finite-State Machines 59

be statements in a logic that demand proof, has been contrasted with plain
FSMs, Petri nets, and Behavior Trees (relevant behaviour modelling techniques
in software engineering) using this very prominent example [4]. FSMs produce
smaller models, and clarify requirements. This is because the ambiguity of the
requirements is detected at the simulation of the model. The model-driven ap-
proach enables the automatic generation of implementations for diverse plat-
forms and programming languages, e.g., the same models can generate code in
Java for a Lego Mindstorm (youtu.be/iEkCHqSfMco) as well as C++ for a Nao
(youtu.be/Dm3SP3q9 VE). Note, we can use a robot to simulate the behaviour
of a microwave in the same way as our visual simulation tool.

3.3 The Industrial Press

The industrial metal press [13] has been studied in the literature of model check-
ing for failure analysis [10,12,26]. Table 2 reproduces the requirements [26]. Once

Table 2. Industrial Metal Press Requirements

Req. Description

R1 The plunger is initially resting at the bottom with the motor off.

R2 When power is supplied, the controller shall turn the motor on, causing the plunger to rise.

R3
When at the top, the plunger shall be held there until the operator pushes and holds down the button.
This shall cause the controller to turn the motor off and the plunger will begin to fall.

R4
If the operator releases the button while the plunger is falling slowly (above PONR), the controller
shall turn the motor on again, causing the plunger to start rising again, without reaching the bottom.

R5 If the plunger is falling fast (below PONR) then the controller shall leave the motor off until the plunger
reaches the bottom.

R6 When the plunger is at the bottom the controller shall turn the motor on: the plunger will rise again.

again, later papers [10,26] that cite the original source [13] capture requirements
differently, or incompletely. For example, the requirement that once the plunger
has come down, it shall stay down until the “human operator releases the button
and inserts and removes sheets” [12]. In the original source [13] there is even an
additional infrared-line sensor; once the plunger is down, the button must be
released by the operator and the line cut for the plunger to move up again.

Because the On/Off button is not modelled correctly, and the infrared-link
is not modelled at all, modelling as described in the Design Behavior Tree
(DBT) [26, Figure 4 and HighResolution gif] results in a pathological cycli-
cal behaviour of the system: while the human operator keeps the button pushed
(and the power is on), the plunger rises to the top (with the motor on), reaches
the top (the motor goes off) falls down, and rises up again.

First, we have constructed a model that reproduces the DBT [26, Fig. 4]
to focus on the model checking aspects. This model that mimics such a DBT
appears in Fig. 6. We will not elaborate here on the formal verification of the
model. We rather emphasise that the properties verified in the literature are
not sufficient to completely validate the model. However, our analysis with a
simulator does suggest a correction (shown in Fig. 7) that enables to remove
the anomaly. See youtu.be/FpVUSrvLI0c for a video of the simulator operat-
ing concurrently on all the FSMs of the model for the corrected version. The

http://youtu.be/iEkCHqSfMco
http://youtu.be/Dm3SP3q9_VE
http://youtu.be/FpVUSrvLI0c

60 R. Coleman et al.

video shows the progress of the FSMs, while sensor data is supplied trough the
monitoring tool. The host computer acts as a robot through our whiteboard
architecture and produces speech also from the FSMs. The plunger raises to the
top and return back when falling slowly when the operator releases the button.
However, once below the PONR, the release of the operator does not affect the
fall. This again shows that our approach compares favourably with Behavior
Trees. To further illustrate the effectiveness of modelling and simulation, we
have deployed these models for execution on two platforms, a Nao robot and a
NXT. A video (youtu.be/blUpMdH14pM) of the system emulating the behaviour
as formalised from the Behavior Tree approach and its corrections is available.
We emphasise that simulation is not a replacement for formal verification but it
does enable elicitation of properties for a later stage of formal verification. Such
model-checking is described elsewhere [9].

PressClosed OpeningPress

OnEntry {signalMotorOn=1;}

buttonPushed

PowerOn sensorAtTopActive

Open

Closing

OnEntry{signalMotorOn=0;}
!buttonPushed && !low

sensorAtBottomActive

(a) States for the Controller

PlungerAtBottom PlungerRisingBelowPONR

! low

motorOn && sensorAtBottomActive
! motorOn

PlungerFallingFast

PlungerRisingAbovePONR

! motorOn

PlungerFallingSlow

sensorAtTopActive PlungerAtTop
! motorOn

motorOn

low

sensorAtBottomActive

(b) States for the Plunger

IndicatingPressAwayFromBottom

OnEntry
{ sensorAtBottomActive=0;}

IndicatingPressAtBottom

OnEntry
{sensorAtBottomActive=1;}

!signalPlungerAtBottom

signalPlungerAtBottom

(c) Bottom Sensor

IndicatingPressHIGHerThanPONR

OnEntry {low=0;}

IndicatingPressLOWerThanPONR

OnEntry {low=1;}

signalPlungerBelowPONR

! signalPlungerBelowRONR

(d) PONR Sensor

PressAtTop

OnEntry
{ sensorAtTopActive=1;}

PressAwayFromTop

OnEntry
{sensorAtTopActive=0;}

signalPlungerAtTop

! signalPlungerAtTop

(e) Top Sensor

ButtonPressed

OnEntry
{ buttonPushed=1;}
.

ButtonIsReleased

OnEntry
{buttonPushed=0;}
.

operatorPushingButton

!operatorPusshingButton

(f) Button

ElectricMotorOn

OnEntry
{ motorOn=1;}

ElectricMotorOff

OnEntry
 {motorOn=0;}

signalMotorOn

! signalMotorOn

(g) Electric Motor

PushingTheButton

OnEntry
 {operatorPushingButton=1;}

ButtonFree

OnEntry
{operatorPushingButton=0;}

operatorPressesButton

! operatorPressesButton

(h) States of the Op-
erator

Fig. 6. Complete model of the industrial press that mimics the Design Behavior
Tree [26, Fig. 4 and high-res gif]

OpeningPress

OnEntry {signalMotorOn=1;}

buttonPushed

PowerOn sensorAtTopActive

Open

Closing

OnEntry{signalMotorOn=0;}
!buttonPushed && !low

sensorAtBottomActive

PressClosed

OnEntry{extern PowerOn;
low=1; PowerOn=0;
signalMotorOn=0}

Fig. 7. Corrected model from Fig. 6a (based on DBT modelling from the literature).
This model correctly pauses for a signal that restarts the system.

http://youtu.be/blUpMdH14pM

Visual Trace Simulation of Concurrent Finite-State Machines 61

4 Simulation and Monitoring Tools

The execution of the models is performed by an interpreter based on data struc-
tures that represent a vector of FSMs in standard C++. The data structures for
each FSM represent the states and the transitions, as well as the ANTLR ex-
pression tree for transition labelling. This is not only useful to obtain the Kripke
structure of a vector of FSMs and perform model-checking, but also as an in-
terpreter used for simulation. We have extended the publicly available qfsm

(qfsm.sf.net) source code to implement the semantics of our FSMs. First, the
states have the OnEntry, OnExit and Internal sections and the transitions
can be Boolean expressions. However, the most important direction is that, while
this tool was originally simply an editor of FSMs, we have converted it into a
visual simulator of finite state machines.

Our tool enables the visualisation of the execution of a vector of FSMs high-
lighting the running state while keeping the interface responsive (this required
additional Qt signals and slots). Since the model of a system is a vector of
FSMs, we created a tabbed interface to enable the rapid visualisation for each
FSM involved as a component of a larger model.

The simulator has a tightly coupled monitor that displays the values of the
variables used in the FSMs (locals, globals shared, and external ones on
the whiteboard. This enables the visualisation of the effects on the values on the
variables as the simulation progresses. The update of the variables is performed
asynchronously by calling code to update the variable table when the syntax
checker has finished parsing a state. The integration of the interpreter demanded
the sub-classing of some interpreter classes and since ANTLR generates C code,
a C++ wrapper was written. A video (youtu.be/rceNij4IkJE) demonstrates us-
age of the simulator and how a vector of FSMs is constructed, the syntax of the
simple C language are verified and the simulator operates.

Fig. 8. The interface of the simulator with the vector of FSMs for the an Ambulatory
Insulin Pump and with the tab for theVolume Sensor active

The complimentary aspect to the simulator is a remote monitor that enables
to visualise the execution of a vector of FSMs on an actual robot (Fig 9). This re-
quires a distributed whiteboard that we have implemented using a time-triggered

http://qfsm.sf.net
http://youtu.be/rceNij4IkJE

62 R. Coleman et al.

architecture and whose description will be presented elsewhere. With this idea,
simulation is possible while tracing or monitoring the state of the execution,
especially the values of the many variables involved in a complex model of sev-
eral FSMs running in real-time. This monitor inspects the state of simulation by
inspecting the message passing that happens with variables on our distributed
whiteboard architecture. With this distributed whiteboard technology, is also
possible to visualise in a model (a vector of FSMS) the switching states from
our extended qfsm, although the vector of FSMs is executing remotely on a
robotic platform. One important aspect of our monitor tool and our simulation
tool is that the monitoring and the execution of the behaviour (a vector of FSMs)
are the same, whether this is a simulation outside the robot or actual execution
on the intended platform. The closest analogue to our ideas is Aldebaran’s Core-
ographe. However, first, this is platform specific: the simulator is effective only
for specific Nao robot versions. Aldebaran has chosen SOAP incurring large penal-
ties to the relay of communication of its monitoring software. Because its wide
open semantics, formal verification would result in exponential state explosion
and is thus infeasible for formal model-checking approaches.

Fig. 9. Monitoring of variables with distributed whiteboard and monitoring behaviour
in the robot (remote monitoring of vision analysis inside a Nao robot that is looking
at other robots (ball and team colour analysis)

5 Conclusions

We have shown that simulation is a highly desirable tool to complement formal
verification for system behaviour validation. We believe that earlier work on
verification of correctness of models for the case studies discussed here has been
incomplete because a faithful simulator has not been used. As a result, some
properties are verified formally, but some emergent behaviour passes undetected
(possibly until deployment).

Visual Trace Simulation of Concurrent Finite-State Machines 63

References

1. Agrawal, A., Simon, G., Karsai, G.: Semantic translation of simulink/stateflow
models to hybrid automata using graph transformations. Electr. Notes Theor.
Comput. Sci. 109, 43–56 (2004)

2. Baier, C., Katoen, J.-P.: Principles of model checking. MIT Press (2008)

3. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Architecture for Hybrid
Robotic Behavior. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B.
(eds.) HAIS 2009. LNCS, vol. 5572, pp. 145–156. Springer, Heidelberg (2009)

4. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Non-monotonic reasoning
for requirements engineering. In: Proc. 5th Int. Conf. on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE), Athens, pp. 68–77. SciTePress (2010)

5. Billington, D., Estivill-Castro, V., Hexel, R., Rock, A.: Modelling Behaviour Re-
quirements for Automatic Interpretation, Simulation and Deployment. In: Ando,
N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010.
LNCS, vol. 6472, pp. 204–216. Springer, Heidelberg (2010)

6. Burns, A., Lister, A.M.: A framework for building dependable systems. The Com-
puter Journal 34(2), 173–181 (1991)

7. Clarke, E.M., Grumberg, O., Peled, D.: Model checking. MIT Press (2001)

8. Dromey, R.G., Powell, D.: Early requirements defect detection. TickIT Jour-
nal 4Q05, 3–13 (2005)

9. Estivill-Castro, V., Hexel, R., Rosenblueth, D.A.: Efficient model checking and
fmea analysis with deterministic scheduling of transition-labeled finite-state ma-
chines. In: 3rd World Congress Software Engineering, China (to appear, 2012)

10. Grunske, L., Winter, K., Yatapanage, N., Zafar, S., Lindsay, P.A.: Experience with
fault injection experiments for FMEA. Software, Practice and Experience 41(11),
1233–1258 (2011)

11. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The
STATEMATE Approach. McGraw-Hill (1998)

12. Mahmood, T., Kazmierczak, E.: A knowledge-based approach for safety analy-
sis using system interactions. In: 13th Asia Pacific Software Engineering Conf.,
APSEC 2006, pp. 445–452 (2006)

13. McDermid, J., Kelly, K.: Industrial press: Safety case. Technical report, High In-
tegrity Systems Engineering Group, University of York (1996)

14. Mellor, S.J.: Embedded systems in UML. OMG White paper (2007) label: We can
generate Systems Today, www.omg.org/news/whitepapers/

15. Mellor, S.J., Balcer, M.: Executable UML: A foundation for model-driven archi-
tecture. Addison-Wesley Publishing Co., Reading (2002)

16. Myers, T., Dromey, R.G.: From requirements to embedded software - formalising
the key steps. In: 20th Australian Software Engineering Conf. (ASWEC), Gold
Cost, Australia, pp. 23–33. IEEE Computer Society (2009)

17. OMG. OMG systems modeling language (OMG SysMLTM). Version 1.3 with
change bars (June 2012)

18. Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-
Oriented Modelling and Design. Prentice-Hall, Inc., Englewood Cliffs (1991)

19. Samek, M.: Practical UML Statecharts in C/C++, 2nd edn: Event-Driven Pro-
gramming for Embedded Systems, Newnes (2008)

20. Shlaer, S., Mellor, S.J.: Object lifecycles: modeling the world in states. Yourdon
Press, Englewood Cliffs (1992)

www.omg.org/news/whitepapers/

64 R. Coleman et al.

21. Shrivastava, S.K., Mancini, L.V., Randell, B.: The duality of fault-tolerant system
structures. Software — Practice and Experience 23(7), 773–798 (1993)

22. Sloman, M., Kramer, J.: Distributed systems and computer networks. Prentice
Hall, UK (1987)

23. Sommerville, I.: Software engineering, 9th edn. Addison-Wesley, Boston (2010)
24. Wagner, F., Schmuki, R., Wagner, T., Wolstenholme, P.: Modeling Software with

Finite State Machines: A Practical Approach. CRC Press, NY (2006)
25. Wen, L., Dromey, R.G.: From requirements change to design change: A formal

path. In: 2nd Int. Conf. on Software Engineering and Formal Methods (SEFM
2004), pp. 104–113. IEEE Computer Society, Beijing (2004)

26. Winter, K., Yatapanage, N.: The metal press case study. Technical report, Univer-
sity of Queensland. Supplement in www.itee.uq.edu.au/~docs/FMEA

27. Winter, K., Yatapanage, N.: The mine pump case study. Technical report, Univer-
sity of Queensland. Supplement in www.itee.uq.edu.au/~docs/FMEA

www.itee.uq.edu.au/~docs/FMEA
www.itee.uq.edu.au/~docs/FMEA

Fast Dynamic Simulation of Highly Articulated

Robots with Contact via Θ(n2) Time Dense
Generalized Inertia Matrix Inversion

Evan Drumwright

The George Washington University, Washington, D.C. USA
drum@gwu.edu

Abstract. The generalized inertia matrix and its inverse are used exten-
sively in robotics applications. While construction of the inertia matrix
requires Θ(n2) time, inverting it traditionally employs algorithms run-
ning in time O(n3). We describe an algorithm that reduces the asymp-
totic time complexity of this operation to the theoretical minimum:
Θ(n2). We also present simple modifications that reduce the number of
arithmetic operations (and thereby the running time). We compare our
approach against fast Cholesky factorization both theoretically (using
number of arithmetic operations) and empirically (using running times).
We demonstrate our method to dynamically simulate a highly articu-
lated robot undergoing contact, yielding an order of magnitude decrease
in running time over existing methods.

1 Introduction

The inverse of the generalized inertia matrix is used in numerous robotics ap-
plications such as computing the contact space inertia matrix and the kinetic
energy matrix [1]. When mechanism dynamics are computed in absolute coordi-
nates (i.e., mass matrices are of size 6m× 6m, where m is the number of links
in the mechanism), the inertia matrix is banded and can be trivially inverted in
time Θ(m) (though constraint forces must be computed, typically requiring op-
erations exhibiting cubic time complexity). For n degree of freedom mechanisms
without kinematic loops, the n × n generalized inertia matrix (formulated in
independent coordinates) is dense, symmetric, and positive definite (PD). This
matrix can be constructed in Θ(n2) time using the Composite Rigid Body Algo-
rithm [2,3] and is traditionally inverted using a combination of O(n3) Cholesky
factorization and Θ(n2) backsubstitution.

The key algorithms that make possible the results in this paper (the Recursive
Newton-Euler Algorithm [4] and the Articulated Body Algorithm [5]) were devel-
oped over three decades ago; however, the community of robotics researchers is
generally unaware of the straightforward implication of Θ(n2) generalized inertia
matrix inversion. This paper presents a modified version of the latter algorithm
optimized toward that new purpose (efficient Θ(n2) inversion of n × n gener-
alized inertia matrices). We compare both operation counts and running times
against existing methods for performing the factorization plus backsubstitution.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 65–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 E. Drumwright

Before proceeding, observe that we use the concepts of matrix inversion and
solving linear systems of equations interchangeably unless otherwise noted to
simplify presentation. In the context of our presented algorithms, asymptotic
time complexity for matrix inversion is Θ(n2) and complexity for solving a sys-
tem of linear equations with m right hand sides is Θ(mn).

2 Background

2.1 State of the Art in Robot Dynamics Computation

Robot dynamics equations are usually given in the form:

M(q)q̈ +C(q̇, q)q̇ +G(q) = τ (1)

where M(q) is the generalized inertia matrix, C(q̇, q)q̇ is the combined vector of
Coriolis and centrifugal forces acting on the robot, G(q) is the vector of gravity
forces acting on the robot, and τ is the vector of actuator forces. When the robot
base is “floating” (not affixed to the environment), the equation maintains the
same structure, but additional terms are added both for the base acceleration
and external forces applied to the base.

State of the art algorithms for computing the joint accelerations as a function
of actuator forces are compiled in works by Featherstone [3,6] and Featherstone
and Orin [7]. Featherstone groups these algorithms into two categories: O(n3)
algorithms that directly solve the system of linear equations described by Equa-
tion 1 directly and an Θ(n) algorithm (the Articulated Body Method) that treats
each link as a rigid body with a “handle”. This latter algorithm is the key to
achieving the Θ(n2) inversion operation.

The former category is epitomizedby theCompositeRigidBodyAlgorithm,which
was studied extensively byWalker andOrin [2]. They claimΘ(n2) running time for
one of their algorithms (method 4); however, their analysis describes densematrix-
vector multiplication as an O(n) operation (standard algorithms exhibit O(n2)
complexity), and O(n3) is the true asymptotic behavior.1 Featherstone [8] has re-
duced thisO(n3) complexity toO(n2d), where d is the maximumdepth of the kine-
matic “tree”, by exploiting branch induced sparsity: mechanisms with branches
(multiple child links emanating from a parent) induce sparsity in the generalized
inertiamatrix.Mechanisms composed of long chainswill yield running times closer
toO(n3) thanO(n2), and it is even likely that Featherstone’s specialized Choesky
factorization and LDLT algorithms [8] for exploiting branch induced sparsity are
slower than specialized dense libraries like LAPACK for most cases (experiments
described in Section 6 give credence to this hypothesis).

Finally, we note that Baraff also provides a linear time dynamics algorithm [9]
that could be employed toward our purpose instead of Featherstone’s algorithm.
However, the constant factor for Baraff’s algorithm (in absolute coordinates) is de-
pendent upon 6n − r, where n is the number of joints in the system and r is the

1 Walker and Orin’s algorithm is a minor adaptation of the iterative conjugate gradient
method for solving symmetric PD systems and is known to exhibit O(n3) complexity.

Fast Dynamic Simulation of Highly Articulated Robots 67

number of joint degrees-of-freedom, while the constant factor for Featherstone’s
algorithm (in independent coordinates) is dependent only upon r; thus, for typical
applications with single degree-of-freedom robot joints, Featherstone’s algorithm
should be significantly faster.

3 Overview of Spatial Algebra

This section presents an overview of Spatial Algebra, which permits dynamics
algorithms to be described clearly and succinctly. Extensive tutorials of this
subject are contained in [3,6]; this paper employs the system described in [3].

Spatial vectors are composed of two stacked three-dimensional vectors (a “line
vector” and a “free vector”). For example, the spatial velocity of a rigid body

is represented by the vector v̂ =
[
ω ẋ

]T
. All Spatial Algebra operations can be

performed using standard matrix and vector arithmetic except the spatial trans-
pose operation. The spatial transpose operation is denoted using the superscript
S and yields v̂S =

[
ẋT ωT

]
when applied to the vector above.

3.1 Spatial Transformations

Spatial transformations take the form:

jX̂i =

[
E 0

−r̃E E

]
(2)

where jX̂i is the spatial transform from frame i (defined by rotation matrix Ri

and offset xi) to frame j (defined by rotation matrix Rj and offset xj) and
E = RT

j Ri and r = RT
j (xj − xi). The skew-symmetric operator˜is defined on

vector r =
[
rx ry rz

]T
below:

r̃ =

⎡⎣ 0 −rz ry
rz 0 −rx
−ry rx 0

⎤⎦ .

A spatial vector v̂i can be transformed from frame i to frame j by:

v̂j = jX̂i v̂i. (3)

while a spatial inertia matrix (defined below) Îi can be transformed from frame
i to frame j via two matrix-matrix multiplications:

Îj = jX̂i Îi iX̂j . (4)

3.2 Spatial Rigid Body and Articulated Body Inertias

The spatial inertia of a rigid body (in its local frame) is:

Î′ =
[
0 m1
J 0

]
(5)

68 E. Drumwright

where the mass of the rigid body is m (1 is the identity matrix) and its 3 × 3
moment of inertia matrix is denoted J. The spatial rigid body inertia transformed
into the “global” reference frame (i.e., via the spatial transformation in Section

3.1) is denoted Î (rather than Î′). We call the sum of the spatial rigid body
inertia of link i and the composite inertias of all of link i’s children (successors

in the kinematic chain) Îci , the composite inertia:

Îci = Îi +
∑

j∈children(i)

Îcj . (6)

Featherstone’s Articulated Body Algorithm uses a special inertia matrix, ÎA—
known as the spatial articulated body inertia—and defined below:

ÎAi = Îi +
∑

j∈children(i)

[
ÎAj − ÎAj ŝj ŝ

S
j Î

A
j

ŝSj Î
A
j ŝj

]
(7)

3.3 Spatial Axes

The spatial axis for a link transforms its inner joint velocity to the change in
spatial velocity of that link. Thus, a collection of spatial axes are analogous to
the Jacobian that transforms joint velocities to end effector velocity. Spatial axes
for common single degree-of-freedom joints—for simplify of presentation and
without loss of generality, only single degree-of-freedom joints are considered in
this paper—are given below:

ŝ′i =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
ui

0

]
if i revolute,

[
0
ui

]
if i prismatic.

(8)

where ui is the unit three-dimensional vector pointing along the joint axis and
0 is the three-dimensional zero vector. Note that the spatial axes above are
computed in a frame with origin at the joint’s Cartesian position (denoted by
the “prime” applied to ŝi).

4 Notation and Conventions

We adopt the following conventions/notation from [3,6]:

– û indicates that u is a 6×m spatial vector or matrix (m ≤ 6)
– r̂S indicates the spatial transpose operation is applied to r̂
– jX̂k denotes the spatial transformation from frame k to frame j

– ĴA indicates that Ĵ is an articulated body vector or matrix (i.e., it is used
in the context of Featherstone’s Articulated Body Algorithm)

– λ : N → N maps the index of a link to the index of that link’s parent

Fast Dynamic Simulation of Highly Articulated Robots 69

The joints and links of an n joint, n link (excluding the base link) mechanism are
indexed in the following manner: (1) the base link (fixed or “floating”) assumes
index 0; (2) the inner joint for the link with index i assumes joint index i as well;
(3) every link and joint assumes a unique index; and (4) no “ancestor” to a link
can possess a link index greater than its descendant.

5 Θ(n2) Inverse Inertia Matrix Computation

Our simplified version of Featherstone’s Articulated Body Algorithm is based on
the classical mechanics equation relating change in linear momentum to applied
impulses (abstracted to generalized coordinates):

MΔv = j (9)

where M is a n × n generalized inertia matrix, v is an n-dimensional vector of
generalized velocities, and j is an n-dimensional vector of generalized impulses.
We wish to find the inverse of M:

Δv = M−1j. (10)

This equation indicates that M−1 is equal to the changes in velocity due to ap-
plying n unit-vector impulses (represented by the n× n identity matrix) to the
system. Using impulses and velocity changes in place of forces and accelerations
allows us to avoid determination of gravity, centrifugal, and Coriolis forces in-
herent in forward dynamics computation. Algorithm 1 implements this strategy
with focus on practical (i.e., numerically stable) implementation: the inverse is
not constructed explicitly.

Algorithm 1. mMultInv(.) multiplies the inverse of the generalized inertia ma-
trix for a fixed-base mechanism with n joints by an n×m matrix (R) in Θ(nm)
time

Require: articulated body inertia matrices in global frame (ÎA), spatial axes in global
frame (ŝ)

1: for k = 1 . . .m do
2: for i ← 1 . . . n do {Initialize articulated body impulses}
3: ŶA

i ← 0̂
4: for i = n . . . 1 do {Propagate impulses}
5: ŶA

λ(i) ← ŶA
λ(i) +

[ÎAi ŝi(Rik−ŝSi ŶA
i)

ŝSi ÎAi ŝi

]
6: Δv̂0 ← 0̂
7: for i = 1 . . . n do {Compute velocity updates}
8: Δq̇i ← δik−ŝSi

[
ÎAi Δv̂λ(i)+ŶA

i

]
ŝS ÎAi ŝi

9: Δv̂i ← Δv̂λ(i) + ŝiΔq̇i
10: Mik ← Δq̇i

70 E. Drumwright

All calculations are computed in the global frame rather than using link
frames: the former is more efficient for our approach due to the Θ(nm) spatial
transformations between link frames that would otherwise be required (Feath-
erstone [7] shows that computation is more efficient in the link frame than
the global frame for the unmodified Articulated Body Algorithm, in general).
We also present Algorithm 2, which contains necessary modifications to handle
mechanisms with floating bases.

Algorithm 2. mMultInvFB(.) multiplies the inverse of the generalized inertia
matrix for a floating-base mechanism with n joints by an n ×m matrix (R) in
Θ(nm) time

Require: articulated body inertia matrices in global frame (ÎA), spatial axes in global
frame (ŝ)

1: for k = 1 . . .m do
2: for i ← 0 . . . n do {Initialize articulated body impulses}
3: ŶA

i ← 0̂
4: for i = n . . . 1 do {Propagate impulses}
5: ŶA

λ(i) ← ŶA
λ(i) +

[ÎAi ŝi(Rik−ŝSi ŶA
i)

ŝS
i
ÎA
i
ŝi

]
6: if k ≤ 6 then {Compute floating base velocity change}
7: Δv̂0 ← −ÎA

−1

0 (Ŷ A
0 + Ik) {Ik is the kth column of the 6× 6 identity matrix}

8: else
9: Δv̂0 ← −ÎA

−1

0 (Ŷ A
0)

10: uk ← Δv̂0

11: for i = 1 . . . n do {Compute velocity updates}
12: Δq̇i ← δik−ŝSi

[
ÎAi Δv̂λ(i)+ŶA

i

]
ŝS ÎAi ŝi

13: Δv̂i ← Δv̂λ(i) + ŝiΔq̇i
14: Aik ← Δq̇i

15: return

[
u1 . . . un

A

]

5.1 Complexity Analysis

The operations on lines 5, 8, and 9 of Algorithm 1 each require constant time
(Ŷ A, ÎA, ŝ, and Δv̂ are of fixed size), so the nested for loops result in Θ(nm)
time complexity.

5.2 Arithmetic Analysis

We can utilize a few optimizations not shown in Algorithm 1 to decrease the
number of arithmetic operations. Vectors and quantities ÎAŝ and ŝSÎAŝ are
computed only once, rather than separately for each iteration (ŝ and ÎA are
dependent upon only the coordinates of the mechanism and not its velocity).
Additionally, the impulse propagation process (Lines 4–5 of Algorithm 1) needs

Fast Dynamic Simulation of Highly Articulated Robots 71

Fig. 1. Number of multiplication operations for generalized inertia inver-
sion/factorization as a function of multibody joints for four methods: Cholesky factor-
ization only (blue/solid), both formation and Cholesky factorization (green/dashed),
the Θ(n2) method presented in this paper (red/dash-dot), and the Θ(n2) parallel
method using n processors described in Section 5.2 (black/diamonds). Numbers of
arithmetic operations are computed as described in Section 5.2.

Table 1. Arithmetic operation counts for Θ(n2) inversion algorithm (Algorithm 1)

Operation Multiplications Additions

Computing spatial axes in global frame (ŝ) 24n 6n

Computing isolated spatial inertias (Î) 84n 57n

Computing articulated spatial inertias (ÎA) 108n 107n

Impulse propagation (Ŷ) 13n2 13n2

Link and joint velocity updates (Δv̂,Δq̇) 19n2/2 26n2/2

Total 45n2/2 + 216n 26n2 + 170n

to start only at the single joint at which δik is nonzero. Table 1 shows the
multiplication and addition counts for the inversion algorithm.

One exciting potential of this work is its utilization in massively parallel com-
putation. Although computing articulated spatial inertias must be done sequen-
tially, the spatial axes (ŝ) and the isolated spatial inertias (Î) can be computed in
parallel. Each column of R can be solved (or, equivalently, each column of M−1

can be determined) in parallel as well. Thus, if one employs an n multiprocessor

72 E. Drumwright

Table 2. Arithmetic operation counts for Composite Rigid Body Algorithm (n joint,
fixed base mechanism, global frame)

Operation Multiplications Additions

Computing spatial axes in global frame (ŝ) 24n 6n

Computing isolated spatial inertias (Î) 84n 57n
Computing composite inertia matrices (Ic) 0 13n − 13

Computing Îŝ vectors 36n 24n

Computing ŝS
i Îj ŝj (elements of M) 3n2 5n2/2

Cholesky factorization (naive) n3/2 + n2/2 + n n3/2

Total n3/2 + 7n2/2 + 145n n3/2 + 5n2/2 + 100n − 13

Table 3. Arithmetic operation counts per processor for Θ(n2) inversion algorithm (n
joint, fixed base mechanism) on n processors

Operation Multiplications Additions

Computing spatial axes in global frame (ŝ) 24 6

Computing isolated spatial inertias (Î) 84 57

Computing articulated spatial inertias (ÎA) 108n 107n

Impulse propagation (Ŷ) 13n 13n
Link and joint velocity updates (Δv̂,Δq̇) 19n/2 13n

Total 261n/2 + 108 133n + 63

system for solving, only 261n/2 + 108 multiplications and 133n + 63 additions
are required (specific operation counts are given in Table 3 for an n-processor
system). Cholesky factorization benefits little from massively parallel or SIMD
computation.

6 Experiments

Numerical experiments were conducted with the Moby robot dynamics library.
Vector arithmetic utilized tuned BLAS libraries (ATLAS). Cholesky factor-
ization was performed using LAPACK, our implementation of Featherstone’s
branch induced sparsity (BIS) factorization [8], or both. Experiments were con-
ducted on a dual core 2.8GHz Intel Xeon W3530 processor (four virtual cores
using HyperThreadingTM) running Ubuntu Linux. for Cholesky factorization
as well as our implementation of Featherstone’s branch induced sparsity (BIS)
Cholesky factorization.

6.1 Single-Threaded Inversion Experiments

The experiment described in this section uses a single-threaded version of the
Moby library. The articulated bodies used in these experiments are fully serial
(i.e., the kinematic tree is of depth n) to obtain the most conservative timings for
our method. However, we also wished to compare our solving algorithm against

Fast Dynamic Simulation of Highly Articulated Robots 73

Fig. 2. Times required to compute the inverse of the generalized inertia matrix using
the presented Θ(n2) method (red/dash-dot) and the construction and Cholesky fac-
torization of the generalized inertia matrix using (1) LAPACK (blue/solid) and the
branch induced sparsity method for (2) a serial body of depth n (green/dashed) and
for (3) a branched body of expected depth n/2 (black diamond).

BIS Cholesky factorization. As indicated by Figure 2, we tested branched bodies
of expected depth n/2 only for the BIS method: with uniform probability 0.5,
we added a link as a sibling to another rather than adding that link to the end
of the chain (no link was permitted more than two children).

6.2 Multi-threaded Inversion Experiment

This experiment used OpenMP and a multi-threaded version of Moby to com-
pute the inverse of the generalized inertia matrix; threads were limited to four
(the Intel Xeon presents four virtual cores via HyperThreadingTM). Unlike the
previous experiment, which timed only CPU operations, this experiment timed
all operations (including I/O and time waiting for the OS’s scheduler) in order
to assess efficiency gains via parallelism.

74 E. Drumwright

Fig. 3. Times required to compute the inverse of the generalized inertia matrix using
LAPACK’s Cholesky factorization (blue/solid) and the presented Θ(n2) method with
(1) one thread (red/dash-dot), (2) two threads (green/dashed), and (3) four threads
(black/diamond).

6.3 Simulation Experiments

We tested the effectiveness of our method on a “real world” problem: dynamic
simulation of a centipede walking on a planar surface. The centipede was sim-
ulated using increasing numbers of body segments (the maximum number of
body segments was 250). Each body segment was connected to two upper legs
via spherical joints; each upper leg was connected to a lower leg via a revo-
lute joint. The simulation used explicit Euler integration with a step size of
1e−5 for one thousand steps. The software setup used in the previous experi-
ment was employed in this experiment as well. Timings were conducted over all
operations: dynamics computation, collision detection, contact resolution, etc.;
however, only CPU timings were used (as in the first experiment). Contact reso-
lution used the method described in [10], which requires computing the contact
space inertia matrices NTM−1N, NTM−1D, and DTM−1D (N and D are con-
tact Jacobians for the normal and tangent directions, respectively); this was the
only code that required the inverse inertia matrix and is solely responsible for
the timing differences in Figure 4.

Fast Dynamic Simulation of Highly Articulated Robots 75

Fig. 4. Timings for dynamically simulating centipedes with varying numbers of
legs walking on a planar surface. The contact space inertia matrix—NTM−1N—is
computed using the presented Θ(n2) method (red/dash-dot), Cholesky factorization
and backsubstitution using LAPACK (blue/solid), and Cholesky factorization—using
branch induced sparsity—plus backsubstitution (green/dashed).

7 Discussion

Our Θ(n2) inversion method is amenable to both symbolic computation (which
could significantly reduce the number of arithmetic computations) and paral-
lelization (especially in the context of SIMD/GPU processing).

Figures 2, 3, and 4 from the experiments in the previous section show that
our algorithm is competitive with BLAS/LAPACK even for bodies with rela-
tively few degrees-of-freedom (fewer than 100); for bodies with greater degrees-
of-freedom, the asymptotic advantage of our approach becomes evident quickly.
The experiment using multi-threading in Section 6.2 illustrates the potential
gains in performance from multiprocessing: using two threads increases perfor-
mance over one thread by 34%, and using four threads increases performance
by 58% and 117%, respectively, over two threads and one thread. Larger scale
SIMD parallelism (via GPU processing, for example) should yield further large
increases in performance.

The experiments in the previous section illustrate the power of tuned BLAS
and LAPACK libraries for vector arithmetic and linear algebra: Cholesky

76 E. Drumwright

factorization yielded superior performance for n < 130 in the first experiment
(which used tuned libraries) and inferior performance in the third experiment.
The second experiment illustrates the potential gains in performance from mul-
tiprocessing: using two threads increases performance over one thread by 34%,
and using four threads increases performance by 58% and 117%, respectively,
over two threads and one thread.

All experiments clearly show that for applications that require inverting the
generalized inertia matrix of highly articulated robots, our method yields sig-
nificant performance increases. Further optimizations should yield additional
increases.

References

1. Khatib, O.: A unified approach to motion and force control of robot manipula-
tors: The operational space formulation. IEEE Journal on Robotics and Automa-
tion 3(1), 43–53 (1987)

2. Walker, M.W., Orin, D.E.: Efficient dynamic computer simulation of robotic mech-
anisms. ASME J. Dynamic Systems, Measurement, and Control 104, 205–211
(1982)

3. Featherstone, R.: Robot Dynamics Algorithms. Kluwer (1987)
4. Hollerbach, J.M.: A recursive lagrangian formulation of manipulator dynamics and

a comparative study of dynamics formulation complexity. IEEE Trans. Systems,
Man, and Cybernetics SMC-10(11), 730–736 (1980)

5. Featherstone, R.: The calculation of robot dynamics using articulated body iner-
tias. Intl. J. Robotics Research 2(1), 13–30 (1983)

6. Featherstone, R.: Rigid Body Dynamics Algorithms. Springer (2008)
7. Featherstone, R., Orin, D.: Robot dynamics: Equations and algorithms. In: Proc.

of IEEE Intl. Conf. on Robotics and Automation, San Francisco, CA (April 2000)
8. Featherstone, R.: Efficient factorization of the joint space inertia matrix for

branched kinematic trees. Intl. J. Robotics Research 24(6), 487–500 (2005)
9. Baraff, D.: Linear-time dynamics using lagrange multipliers. In: Proc. of Computer

Graphics, New Orleans, LA (August 1996)
10. Drumwright, E., Shell, D.A.: Modeling contact friction and joint friction in dy-

namic robotic simulation using the principle of maximum dissipation. In: Proc. of
Workshop on the Algorithmic Foundations of Robotics, WAFR (2010)

A Differential-Algebraic Multistate Friction

Model

Xiaogang Xiong�, Ryo Kikuuwe, and Motoji Yamamoto

Department of Mechanical Engineering
Kyushu University

Fukuoka, 819-0395, Japan
{xiong@ctrl.,kikuuwe@,yama@}mech.kyushu-u.ac.jp

Abstract. Fidelity with friction properties and easiness of implementa-
tion are both important aspects for friction modeling. Some empirically
motivated models can be implemented easily due to their simple expres-
sion and small number of parameters, but they cannot capture faithfully
the main properties of friction. Some physically motivated models give
close agreement with the friction properties, but they can be too com-
plex for some applications. This paper proposes a differential-algebraic
multistate friction model that possesses easiness of implementation and
adjustment, a relatively small number of parameters and a compact for-
mulation. Moreover, it captures all standard properties of well-established
friction models.

Keywords: Stick-slip behavior, Nondrifting property, Hysteresis with
nonlocal memory, Frictional lag, Rate-independent.

1 Introduction

Friction is a complex nonlinear phenomenon that arises from the interaction
among asperities in two contact surfaces moving relatively to each other. Friction
modeling is important to predict various frictional phenomena and behaviors for
simulation and control in a variety of areas ranging from mechanical engineering,
mechatronics, robotics, to geophysic [1]. For instance, precise simulation of the
bipedal locomotion of a waking robot requires a valid friction model to produce
friction force between the foot and ground.

The elaboration of friction model is improved gradually from Coulomb friction
model, Dahl model [2], LuGre model [3, 4], elastoplastic model [5], and Leuven
model [6], to some generic models at asperity level [7, 8]. Those generic models,
as pointed out in [9], can provide good approximation to experimental results,
but it can be too complex for some applications. Two basic criteria are proposed
in [1] to judge a friction model: (i) the fidelity in predicting realistic friction
phenomena, and (ii) the easiness of implementation. In [9], another criteria is

� Kyushu University, Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan Phone: (+81)
92-802-3179, Fax: (+81) 92-802-3177.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 77–88, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

78 X. Xiong, R. Kikuuwe, and M. Yamamoto

added: (iii) the easiness of adjusting the model such that the predicted results
fit to the realistic results. The third one is suitable for online adjustment.

The Dahl model, LuGre model and elastoplastic model have simple expres-
sions and they are easy to be implemented. However, the three models do not
satisfy the first criteria. Dahl model cannot capture Stribeck effect. LuGre model
captures that effect but it can cause positional drift and cannot produce hystere-
sis with nonlocal memory1. The elastoplastic model exhibits nondrifting prop-
erty, but it still cannot produce hysteresis with nonlocal memory. Leuven model
exhibits hysteresis with nonlocal memory while it is difficult for implementa-
tion. Modified Leuven model [11] improves the easiness of implementation, but
the frictional lag, nondrifting property and transition behavior exhibited by this
model are not so faithful to empirical results [1, 12]. The generalized Maxwell-slip
(GMS) model [1, 12] has a good fidelity, but it depends on ambiguous distinction
between the presliding and kinetic friction states. Moreover, the results of tran-
sition behavior and frictional lag produced by this model are not so easy to be
adjusted by varying its parameters. The generic model [7, 8], which is motivated
by the physics, are capable of giving close agreement to friction force dynamics,
satisfying the first criteria very well, but it is too complex for implementation in
control systems involving friction [9].

This paper proposes a new multistate friction model, which has a similar
structure to those of the GMS model and others [13–15], specifically, being com-
posed of parallel connection of single-state elastoplastic elements. In the new
model, each elastoplastic element is modeled as a modified version of the au-
thors’ previous model based on differential-algebraic inclusions [16]. Comparing
to the GMS model, the presented model has clear conditions to distinguish the
presliding and kinetic friction states and more compact formulation. In addition,
one parameter of the new model permits the easiness of adjusting the behaviors
of friction, especially the frictional lag and transition behavior. Those make the
new friction model to satisfy the aforementioned three criteria better.

2 Mathematical Preliminaries

For the discussion throughout this paper, this section defines three functions and
describes their properties. In the rest of this paper, R denotes the set of all real
numbers and 0 is the zero vector with an appropriate dimension.

Let us define the signum function sgn : Rn → R
n, extended signum function

Sgn : Rn → R
n and the saturation function sat : R+ × R

n → R
n as follows:

sgn(x)
Δ
=

{
x/‖x‖ if ‖x‖ �= 0

0 if ‖x‖ = 0
(1)

1 Hysteresis with nonlocal memory is defined as an input-output map, of which the
output at any time instant is dependent on the output at some time instant in the
past, the input since then and the past extremum values of the input or the output
[6, 10]. This is in contrast to the hysteresis with local memory, of which the output
is only dependent on the output at some time instant in the past [6].

A Differential-Algebraic Multistate Friction Model 79

Sgn(x)
Δ
=

{
x/‖x‖ if ‖x‖ �= 0

{z ∈ R
n | ‖z‖ ≤ 1} if ‖x‖ = 0

(2)

sat(Z, x)
Δ
=

{
Zx/‖x‖ if ‖x‖ > Z

x if ‖x‖ ≤ Z
(3)

where x ∈ R
n, Z ∈ R+ and ‖ · ‖ denotes the vector two-norm. If n = 1, the

Sgn(x) and sat(Z, x) can be depicted as Fig. 1(a) and Fig. 1(b), respectively.

Theorem 1. For x, y ∈ R
n and Z ∈ R+, the following relation holds true

[16, 17]:

y ∈ ZSgn(x− y) ⇔ y = sat(Z, x). (4)

Proof. : A proof can be given as follows:

y ∈ ZSgn(x− y) ⇔ (y = Z(x− y)/‖x− y‖ ∧ x �= y) ∨ (y = x ∧ ‖y‖ ≤ Z)

⇔ (y = Zx/(Z + ‖x− y‖) ∧ x �= y ∧ ‖y‖ = Z) ∨ (y = x ∧ ‖x‖ ≤ Z)

⇔ (y = Zx/(Z + ‖x− y‖) ∧ ‖x‖ = Z + ‖x− y‖ > Z) ∨ (y = x ∧ ‖x‖ ≤ Z)

⇔ (y = Zx/‖x‖ ∧ ‖x‖ > Z) ∨ (y = x ∧ ‖x‖ ≤ Z) ⇔ y = sat(Z, x). ��

It must be noted that Theorem 1 is a special case of the following relation, which
has been used in, e.g., [18, eq.(2.19)], [19, eq.(5)]:

x− y ∈ NS(y) ⇔ y = prox(S, x). (5)

Here, x ∈ R
n, y ∈ S ⊂ R

n, S is a closed convex set, NS(y) is the normal cone to
the set S at y, and prox(S, x) is the “proximal point” function defined as follows:

prox(S, x)
Δ
= argmin

z∈S
‖z − x‖2. (6)

Theorem1 can be obtained by using the relation (5) with S = {z ∈ R
n | ‖z‖ ≤ Z}.

x

Sgn(x)

0

1

¡1

sat(Z, x)

0
Z

¡Z

(a) (b)

Z

¡Z

Fig. 1. The graphs of Sgn(x) and sat(Z, x)

80 X. Xiong, R. Kikuuwe, and M. Yamamoto

3 Related Work

3.1 LuGre Model, Elastoplastic Model and Leuven Model

LuGre model can be described as follows [3, 4]:

ȧ = v

(
1− sgn(v)

κa

g(v)

)
(7a)

f = κa+ σȧ+ b(v) (7b)

where a ∈ R is a variable interpreted as the average deflection of asperities,
κ, σ,∈ R+ are the stiffness and micro-damping coefficient, respectively, f is the

friction force, v
Δ
= dp/dt where p ∈ R is the relative displacement between two

surfaces in contact, b(v) is a general term for modeling the memoryless velocity-
dependent effect, g(v) is a function that approximates the Stribeck effect and
usually it is chosen as follows:

g(v)
Δ
= Fc + (Fs − Fc)e

−‖v/vs‖α

(8)

where Fc and Fs are the magnitude of Coulomb friction force and static friction
force, respectively, α ∈ R+ is a constant, vs is the Stribeck velocity. This model
produces positional drift behavior and it lacks of nonlocal memory.

The elastoplastic model [5] partially resolves the positional drift problem.
However, as pointed out in [1, 12], this model shares another problem with the
LuGre model, i.e., lack of nonlocal memory. The Leuven model [6, 11] allows
accurate modeling of frictional hysteresis behavior with nonlocal memory in the
presliding state. As pointed out in [1, 12], the nondrifting property, frictional lag
and transition behavior exhibited by this model is not so faithful to experimental
results.

3.2 Generalized Maxwell-Slip Friction Model

The generalizedMaxwell-slip (GMS) model [1] incorporates the LuGre-like model
into each element of this model to replace the Coulomb law in the kinetic friction
state. This model is expressed as follows:

f =

N∑
i=1

(κiai + σiȧi) + b(v) (9)

where κi, σi ∈ R+ is the stiffness and micro-damping of the ith element, respec-
tively. The dynamic of each element is determined as follows:

(i) If the ith element is in the presliding state, the state equation is as follows:

ȧi = v (10)

A Differential-Algebraic Multistate Friction Model 81

(ii) If the ith element is in the kinetic friction state, the state equation is as
follows:

ȧi = sgn(v)Ci

(
1− sgn(v)

ai
λig(v)

)
(11)

where
∑N

i=1 λi = 1 and Ci is the attraction parameter determining how fast
ai converges to λig(v).

This model is consisted of N parallel elements, as illustrated in Fig. 2, and each
element is governed by (10)(11). This GMS model is consistent with experimen-
tal results in many frictional phenomena, such as hysteresis with nonlocal mem-
ory, frictional lag, stick-slip motion, nondrifting property [1, 12]. This model,
however, provides ambiguous conditions to distinguish the presliding state and
kinetic friction state. This makes implementation difficult and this model less
attractive.

3.3 Differential-Algebraic Single-State Friction Model

In [16], the authors proposed a differential-algebraic friction model based on
Kikuuwe et al.’s work [20] for the case where Fs = Fc in (8). This model is
derived from the following differential algebraic inclusion (DAI):

0 ∈ κa+ σȧ− FcSgn(v − ȧ) (12a)

f = κa+ σȧ (12b)

The right hand side of (12a) relaxes Sgn(v − ȧ) from Sgn(v). This means that
the presliding state condition is v = ȧ instead of v = 0. This relaxation is
acceptable because in presliding state, the contact surfaces stick to each other
macroscopically, but microscopically, due to shear loading of the external force,
the asperities on the surfaces have relative displacement a and velocity ȧ [18]. A
physical interpretation of the approximation (12) can be illustrated as Fig. 3. A
friction force described by FcSgn(v− ȧ) acts on a massless object whose velocity
is v − ȧ, and a viscoelastic element with the stiffness κ and the viscosity σ
produces the force f in (12b), which exactly balances the friction force.

By the direct application of Theorem 1, (12) can be equivalently rewritten as
follows:

ȧ =
sat(Fc, κa+ σv)− κa

σ
(13a)

f = sat(Fc, κa+ σv). (13b)

As pointed out in [16], this model overcomes the drawback of positional drift
exhibited by the LuGre model. One obvious limitation of (13) is that this model
cannot capture the Strebick effect and this limitation will be removed in the
next section.

82 X. Xiong, R. Kikuuwe, and M. Yamamoto

vai

aN

·i

·1

·N

a1
¸1g(v)

¸Ng(v)

¸ig(v)

...
...

...
...

Fig. 2. Schematic representation of (9)

..

.

Massless object

p¡af

p·

¾

Fig. 3. Schematic explanation of (12)

4 Proposed Differential-Algebraic Multistate Friction
Model

4.1 Modification of Previous Differential-Algebraic Single-State
Friction Model

The motivation of modifying the previous friction model (13) to capture the
Stribeck effect comes from the approximation function (8). The advantage of
the previous friction model (13) can be inherited and the limitation can be
remedied by modifying (12) as follows:

0 ∈ κa+ σȧ− g(v)Sgn(v − ȧ) (14a)

f = κa+ σȧ (14b)

By the direct application of Theorem 1, (14) can be equivalently rewritten as
follows:

ȧ =
sat(g(v), κa+ σv) − κa

σ
(15a)

f = sat(g(v), κa+ σv). (15b)

When the friction force ‖κa+σv‖ < g(v), the new model (15) is in the presliding
state. According to the definition of saturation function (3), sat(g(v), κa + σv)
in (15) reduces to κa+ σv and then (15) reduces to the following expression:

ȧ = v (16a)

f = κa+ σv. (16b)

One can observe that (16a) is equal to the state equation (10) that governs a
single element of the GMS model and (16b) is equivalent to the friction force
produced by a single element of the GMS model (9). The equivalence implies
that the modified model (15) possesses the same properties as a single element
of the GMS model (9) in the presliding state.

A Differential-Algebraic Multistate Friction Model 83

When ‖κa+ σv‖ ≥ g(v), the new model (15) is in the kinetic friction state.
The function f = sat(g(v), κa+σv) saturates the friction force, i.e., f = sgn(κa+
σv)g(v). Then, equation (15) reduces to the following equation:

ȧ =
sgn(κa+ σv)g(v) − κa

σ
(17a)

f = sgn(κa+ σv)g(v). (17b)

Equation (17a) can be equivalently rewritten as follows:

ȧ =
sgn(κa+ σv)g(v)

σ

(
1− sgn(κa+ σv)

κa

g(v)

)
(18)

One can see that the similar expressions among (18), (11) and (7a). For constant
velocity v �= 0 and in steady state i.e., ȧ = 0, one can derive κa = sgn(κa +
σv)g(v) from (18), ai = λig(v) from (11) and κa = sgn(v)g(v) from (7a). The
corresponding friction force is f = κa = sgn(κa + σv)g(v) for the new model
(15), sgn(v)kiλig(v) for the ith element of the GMS model (9) and sgn(v)g(v) for
the LuGre model (7). This means that in the kinetic friction state, the friction
force is described by functions describing Stribeck effect for the three models. In
this sense, the three models are equivalent in the kinetic friction state.

4.2 Extension to Differential-Algebraic Multistate Friction Model

The modified model (15) is a single-state friction model. Motivated by the GMS
model (9), it is natural to extend the model (15) to a new multistate friction
model of which each single element is governed by (15). The result of extension
of (15) is as follows:

ż =
g(v)− z

τd
(19a)

ȧi =
sat(λiz, kiai + σiv)− kiai

σi
, i = 1, · · · , N (19b)

f =

N∑
i=1

sat(λiz, kiai + σiv) + b(v) (19c)

where z is a new state variable and τd is a new parameter that can be interpreted
as the dwell time. The role of τd is similar to that of Ci in (11), which deter-

mines how fast z converges to g(v). Again, here,
∑N

i=1 λi = 1. Equation (19a)
is motivated by Gonthier et al.’s method [21]. In the same way with (11), here,
the method to approximately describe the Stribeck effect for the ith element is
given by a simple function λiz. The difference is that here z is used to replace
g(v) in (11).

Comparing to the GMS model (9), the new friction model (19) has a more com-
pact expression that describes both the presliding and kinetic friction states into

84 X. Xiong, R. Kikuuwe, and M. Yamamoto

one equation (19b). It is not necessary to separately distinguish the two states dur-
ing implementing the new friction model. The parameter Ci in (11) is eliminated
in (19) and the new parameter τd can be used to adjust the transition behavior and
frictional lag easily. Those make the model (19) easier than the GMS model to be
implemented. Moreover, the model (19) can capture all the frictional phenomena
that the model (9) does capture. This can be illustrated by simulation.

4.3 Properties and Simulations

In simulations throughout this section, (19) is applied with N = 10 and the
timestep size is 0.001s. Fig. 4(a) shows the input triangle-like positional signal
chosen so that the hysteresis with nonlocal memory becomes visible. The gray
curve in Fig. 4(a) is 10 times the frequency of the black one. Fig. 4(b) clearly
shows that the resulting friction force has closed internal loops whose top tips
overlap the trajectory of outer loop. It also shows that the model (19) is rate-
independent since the resulting friction force is independent from the frequency
of position input. Fig. 5(a) shows two sinusoidal input velocity signals with the
same magnitude but different frequencies. Fig. 5(b) shows that the extremum of
friction force during the transition from the presliding state to kinetic friction
state is influenced by both the frequency and the parameter τd. This means that
the parameter τd can be used to adjust the extremum of friction force. This is
an important difference from the GMS model. Fig. 6 shows the frictional lag in
the case where an unidirectional velocity signal is applied. This velocity signal
is obtained by offsetting a sinusoidal signal. Fig. 6(b) shows a higher frictional
force for increasing velocity than that for decreasing velocity and g(v) locating
in the middle of them. In the same way as in Fig. 5(b), both the frequency and
the parameter τd have effects on the shape of friction force-velocity curve in
Fig. 6(b). Fig. 7(a) is the applied force proposed by Dupont et al. [5] to check

Fr
ic

tio
n

fo
rc

e
f

(N
)

Position p (10¡4 m)
(b)

0 2 4 6 8
¡2

¡1

0

1

2

Time t (s)
(a)

Po
si

tio
n
p
 (1

0¡
4
m

)

¡2 ¡1 0 1 2
¡2

¡1

0

1

2

Fig. 4. Simulation result of hysteresis with nonlocal memory with the new model (19)
in the presliding state: (a) the input position signal p as a function of time t (frequency
changes by factor 10 between the black and gray curves). (b) the friction force f as a
function of position p with the two different frequencies. The parameters are chosen
as; α = 2, vs = 9.8 × 10−5m/s, Fc = 2N, Fs = 3N, κi = (1 + 0.8(i − 1)) × 103N/m,
σi = 5kg/s, λi = 0.0955 + (i− 1) × 10−3, i ∈ {1, 2, · · · , 10}, τd = 0.02s, b(v) = 0.

A Differential-Algebraic Multistate Friction Model 85

0.0 0.5 1.0 1.5 2.0
¡6
¡4
¡2

0
2
4
6

Time t (s)
(a)

V
el

oc
ity

 v
 (1

0¡
4
m

/s
)

Velocity v (10¡4 m/s)
(b)

¡4 ¡2 0 2 4
¡6
¡4

¡2

0

2

4
6

1Hz, ¿d =0.02s
1Hz, ¿d=0.04s
5Hz, ¿d=0.02s
5Hz, ¿d=0.04sFr

ic
tio

n
fo

rc
e
f

((
10

¡1
N

)

Fig. 5. Simulation result of transition behavior with the new model (19): (a) the input
velocity signal v as a function of time t. (b) the friction force f as a function of
position v. The parameters are chosen as; α = 2, vs = 9.8 × 10−5m/s, Fc = 0.2N,
Fs = 1N, κi = (1 + 0.8(i− 1)) × 104N/m, σi = 102kg/s, λi = 0.0955 + (i− 1) × 10−3,
i ∈ {1, 2, · · · , 10}, b(v) = 0.

0.0 0.5 1.0 1.5 2.0

1

2

3

4

5

1 2 3 4 5

2

3

4

5

6

Velocity v (10¡4 m/s)
(b)

Fr
ic

tio
n

fo
rc

e
f

((
10

¡1
N

)

Time t (s)
(a)

V
el

oc
ity

 v
 (1

0¡
4
m

/s
) 1Hz, ¿d =0.02s

1Hz, ¿d=0.04s
5Hz, ¿d=0.02s
5Hz, ¿d=0.04s
g(v)

acceleration

decceleration

Fig. 6. Simulation result of frictional lag with the new model (19): (a) the input velocity
signal v as a function of time t. (b) the friction force f as a function of position v. The
parameters are chosen as; α = 2, vs = 9.8 × 10−5m/s, Fc = 0.2N, Fs = 1N, κi =
(1+0.8(i−1))×103N/m, σi = 102kg/s, λi = 0.0955+(i−1)×10−3 , i ∈ {1, 2, · · · , 10},
b(v) = 0.

the nondrifting property of their friction model. Fig. 7(b) shows that the position
oscillates without shift.

Another set of simulations are performed with the scenario illustrated as Fig. 8
to investigate the stick-slip motion. A mass M , subjected to friction force f , is
connected to a spring with stiffness κ. The free end of the spring is driven
with constant velocity vc. As pointed out in [1], although the LuGre model,
elastoplastic model and Leuven model all can simulate stick-slip phenomenon,
their simulation results are qualitatively different from the experimental results
in [10] and from the simulation results of the generic friction models in [7, 8].
Fig. 9 illustrates the simulation result of the new model (19). Fig. 9(a) shows the
step position and pulse velocity with oscillation. The dashing circles in Fig. 9(b)
denote the spike-like force followed by high frequency oscillation after each stick

86 X. Xiong, R. Kikuuwe, and M. Yamamoto

0 2 4 6 8
¡0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

0 5 10 15 20 25
¡0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Time t (s)
(a)

Position p (10¡6 m)
(b)

Ex
te

rn
al

 fo
rc

e
((

N
)

Fr
ic

tio
n

fo
rc

e
f

(N
)

Fig. 7. Simulation result of nondrifting property with the new model (19): (a) the
input external force as a function of time t. (b) the friction force f as a function of
position p. The parameters are chosen as; α = 2, vs = 9.8 × 10−5m/s, Fc = 0.2N,
Fs = 1.1N, κi = (1+0.8(i− 1))× 104N/m, σi = 102kg/s, λi = 0.0955 + (i− 1)× 10−3,
i ∈ {1, 2, · · · , 10}, τd = 0.2s, b(v) = 0.

M
f

· vc

Fig. 8. The simulation scenario for investigating stick-slip phenomenon

0 1 2 3 4
¡0.5

0.0

0.5

1.0

Time t (s)
(a)

Time t (s)
(b)

Po
si

tio
n
p

 (1
0¡

3
m

)

V
el

oc
ity

 v
 (1

0¡
2
m

/s
)position velocity friction force applied force

 F
or

ce
 (

N
)

0 1 2 3 4

0

1

2

3

4

5

0

1

2

3

4

5

Fig. 9. Simulation result of stick-slip behavior with the new model (19): (a) the position
and velocity of the mass M as a function of time t. (b) the applied force and friction
force as a function of time t.. The parameters are chosen as; M = 1kg, κ = 103N/m,
vc = 10−3m/s, α = 2, vs = 4 × 10−3m/s, Fc = 0.5N, Fs = 1N, κi = (1 + 0.8(i −
1)) × 103N/m, σi = (0.01 + 0.005(i − 1)) × 102kg/s, λi = 0.0955 + (i − 1) × 10−3,
i ∈ {1, 2, · · · , 10}, τd = 0.01s, b(v) = 0.

period. Those phenomena are consistent with the GMS model (9), the generic
model in [7, 8] and the empirical validation in [10] while the LuGre model,
elastoplastic model and Leuven model cannot produce spike-like and oscillation
force after each stick period.

A Differential-Algebraic Multistate Friction Model 87

5 Conclusion

The paper has introduced a new multistate friction model by extending the au-
thors’ differential-algebraic single-state friction model. This multistate friction
model consists of multiple parallel elements. Each element is described by the
differential-algebraic single-state friction model, which incorporates the preslid-
ing state and kinetic friction state into one equation (19b). For each element of
this model, only three parameters κi, σi and λi are needed. For gross formulation
of this model, the function g(v) approximates the Stribeck effect and the param-
eter τd is used to effectively adjust the frictional lag and transition behavior. The
effectiveness of this new model is illustrated by simulation results of hysteresis
with nonlocal memory, frictional lag, transition behavior, nondrifting property
and stick-slip behavior. Those simulation results are consistent with the results
in the literature from experiments and simulations based on physical motivated
models at asperity level.

Future work should investigate various properties of the new model such as
effects of parameters and applications such as friction identification and compen-
sation in various mechanical systems for precise control purposes. In addition,
a further extension of the model to asperity level may be thought as a future
topic of study. In this topic, maybe a model, which consists of multiple asper-
ities governed by the single-state friction model, combined with material and
geometrical information of the surfaces, can reveal more complex phenomena of
friction observed from experimental study.

References

1. Al-Bender, F., Lampaert, V., Swevers, J.: The generalized maxwell-slip model: a
novel model for friction simulation and compensation. IEEE Trans. on Automatic
Control 50(11), 1883–1887 (2005)

2. Dahl, P.: A solid friction model. Tech. rep., Aerospace Corporation, El Segundo,
CA (1968)

3. Canudas de Wit, C., Olsson, H., Åström, K.J., Lischinsky, P.: A new model for
control of sytem with friction. IEEE Trans. on Automatic Control 40(3), 419–425
(1995)

4. Åström, K.J., Canudas-de-Wit, C.: Revisting the LuGre friction model. IEEE Con-
trol Systems Magazine 28(6), 101–114 (2008)

5. Dupont, P., Hayward, V., Armstrong, B., Altpeter, F.: Single state elastoplastic
friction models. IEEE Trans. on Automatic Control 47(5), 787–792 (2002)

6. Swevers, J., Al-Bender, F., Ganseman, C.G., Prajogo, T.: An integrated friction
model structure with improved presliding behavior for accurate friction compen-
sation. IEEE Trans. on Automatic Control 45(4), 675–686 (2000)

7. Al-Bender, F., Lampaert, V., Swevers, J.: A novel generic model at asperity level
for dry friction force dynamics. Tribology Letters 16(1-2), 81–93 (2004)

8. Moerlooze, K.D., Al-Bender, F., Brussel, H.V.: A generalized asperity-based fric-
tion model. Tribology Letters 40(1), 113–130 (2010)

9. Al-Bender, F., Swevers, J.: Characterization of friction force dynamics. IEEE Con-
trol Systems Magazine 28(6), 64–81 (2008)

88 X. Xiong, R. Kikuuwe, and M. Yamamoto

10. Lampaert, V., Al-Bender, F., Swevers, J.: Experimental characterization of dry
friction at low velocities on a developed tribometer setup for macrosopic measure-
ments. Tribology Letters 16(1-2), 95–105 (2004)

11. Lampaert, V., Swevers, J., Al-Bender, F.: Modification of the leuven integrated
friction model structure. IEEE Trans. on Automatic Control 47(4), 683–687 (2002)

12. Lampaert, V., Al-Bender, F., Swevers, J.: A generalized maxwell-slip friction model
appropriate for control purposes. In: Proc. of IEEE International Conference on
Physics and Control, St. Petersburg, Russia, pp. 1170–1177 (2003)

13. Iwan, W.D.: A distributed-element model for hysteresis and its steady-state dy-
namic response. Trans. ASME: J. of Applied Mechanics 33(4), 893–900 (1966)

14. Goldfarb, M., Celanovic, N.: A lumped parameter electromechnical model for de-
scribing the nonlinear behavior of piezoelectric actuators. Trans. ASME: J. of Dy-
namic Systems, Measurement, and Control 119, 478–485 (1997)

15. Lazan, B.J.: Damping of Materials and Members in Structural Mechanics. Perga-
mon Press, London (1968)

16. Xiong, X., Kikuuwe, R., Yamamoto, M.: A differential-algebraic method to approx-
imate nonsmooth mechanical systems by ordinary differential equations. Submitted
to Multibody System Dynamics

17. Kikuuwe, R., Yasukouchi, S., Fujimoto, H., Yamamoto, M.: Proxy-based slid-
ing mode control: a safer extension of PID position control. IEEE Trans. on
Robotics 26(4), 670–683 (2010)

18. Leine, R.I., Nijmeijer, H.: Dynamics and Bifurcations of Non-smooth Mechanical
Systems. LNACM, vol. 18. Springer, Berlin (2004)

19. Brogliato, B., Daniilidis, A., Lemarechal, C., Acary, V.: On the equivalence between
complementarity systems, projected systems and differential inclusions. Systems &
Control Letters 55(1), 45–51 (2006)

20. Kikuuwe, R., Takesue, N., Sano, A., Mochiyama, H., Fujimoto, H.: Admittance and
impedance representations of friction based on implicit Euler integration. IEEE
Trans. on Robotics 22(6), 1176–1188 (2006)

21. Gonthier, Y., Mcphee, J., Lange, C., Piedbœuf, J.C.: A regularized contact model
with asymmetric damping and dwell-time dependent friction. Multibody System
Dynamics 11(3), 209–233 (2004)

Simulation of Flexible Objects in Robotics

Andreas Rune Fugl1,2, Henrik Gordon Petersen1, and Morten Willatzen2

1 The Maersk Mc-Kinney Moller Institute, University of Southern Denmark
2 The Mads Clausen Institute, University of Southern Denmark

Abstract. In this paper, we present what appears to be the first simula-
tion model for grasping of flexible bodies based on the three-dimensional
elastic constitutive relations and Newton’s Second Law for solids known
as the Navier-Cauchy equations. We give an overview of the most impor-
tant equations for strain, stress, and elasticity tensors based on which
we outline the format of the Navier-Cauchy equations of motion in the
general anisotropic case. We then specifically study the equations for ho-
mogeneous isotropic bodies. We formulate a numerical scheme based on
finite differences for solving the equations. Finally, we present prelimi-
nary experimental work and outline future directions.

Keywords: robotics, grasping, elasticity, finite difference.

1 Introduction

Realistic simulation of robotic grasping of objects has recently received substan-
tial attention and there are now a variety of grasp simulators available. Each
of the simulators uses a simulation core, that numerically implements a math-
ematical model of the physical processes affecting the grasping device and in
particular the object to be grasped.

In addition, each of the simulators has various interfaces such as robot kinematic
descriptions, libraries for collision checking etc. helping the user in applying the
simulation tool to a practical application. It should be made clear, however, that it
is the choice of simulation core that decides how close to reality the grasping is.

The most widely used dextrous grasp simulator is GraspIt [1] developed by
Andrew Miller. The simulation core was based on implementing the grasping-
object contact model as a linear complementary problem [2] and to solve it using
Lemkes algorithm. Other grasp simulators have since then become available. The
grasp simulators [3] and [4] rely on the simulation core Open Dynamics Engine
whereas the recent grasp simulator dVC3d [5] uses the path solver in a modified
version of the Bullet simulator. However, the simulation cores for these grasp
simulators are only applicable for handling grasping of rigid bodies. There is thus
a need to extend the simulation cores with the physical models and numerical
methods necessary to simulate deformable objects.

Simulating grasping of deformable objects is a difficult task since several ap-
proximations have to be made. First, a mathematical model of the deformations
as a function of external forces has to be established. This is done in the frame-
work of the Navier-Cauchy equations, i.e., Newton’s Second Law for an elastic

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 89–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

90 A.R. Fugl, H.G. Petersen, and M. Willatzen

solid. Hitherto, in the literature, a detailed description of elasticity in robotic
applications is not available. We present here a formalism for handling elas-
tic bodies under action of external surfaces (robotic grasping as an example)
and body forces. The model presented accommodates, in principle, any under-
lying crystal structure but for the present purpose, to keep things simple, we
assume the deformed body is isotropic, i.e., two independent stiffness constants
suffice to describe local stress-strain relations. This is a good approximation in
many engineering applications involving macroscopic solid deformations, similar
to those described here. There exist numerous applications of the Navier-Cauchy
equations in classical and nanoscale applications [6,7,8].

The second approximation is to transfer the mathematical model to a feasible
numerical implementation. Here, two issues are important: It must be possible
to compute the solution within a reasonable time and it must be possible to
estimate the error in the numerical solution as compared to the theoretically
correct solution for the given mathematical model. There are two widely used
and popular approaches, namely Finite Element Methods and Finite Difference
Methods. The advantage of Finite Element Methods is that it is somewhat easier
to implement boundary conditions and that various well-proven packages are
available, such as [9,10,11]. The disadvantage is that no reliable estimate of the
error can be provided. The advantage of Finite Difference Methods introduced by
[12] is that the error can be accurately estimated by Richardson extrapolation.

In [13] a simulator was developed for real-time simulation and visualization
of cardiac surgery. The mass-spring topology, used in the real-time simulation
was trained by a neural network using a Finite Element Method of linear elas-
ticity as the evaluation function. However, the modeling and numerical errors
were not evaluated as thoroughly as could be desired. Simulations were instead
subjectively evaluated and tweaked requiring feedback from end-users.

In [14] two specific categories of flexible objects were explored: Cloth and
string. Robot setups were constructed to perform various manipulation tasks.
Although successful in their manipulation tasks, a method for simulating diverse
objects was not developed.

To our knowledge no rigorous study has been reported within robot grasp
simulation, taking the above proper physical and mathematical approaches to
modelling and the numerical solving of object deformations into account. Robotic
grasping involves mixed boundary conditions, since the surface of the object
will be subject to Dirichlet boundary conditions (prescribed deformations) at
the grasp points, and other exterior contacts and free boundary conditions (no
stress) at all non-contact locations on the surface.

In this paper we provide a rigorous derivation of the algorithms for a simula-
tion core for deformable objects. Starting with the constitutive laws and the field
equations we will derive the partial differential equation governing the interior
of the flexible object, and subsequently derive the equations for the necessary
boundary conditions for the grasping of flexible objects. We do this for the sim-
ple useful case of isotropic homogeneous linear elastic objects, but our results
can be straightforwardly modified to cases with varying degrees of anisotropy.

Simulation of Flexible Objects in Robotics 91

The paper is organized as follows: First we present the theory of elasticity,
ending up with the equations of motions for an elastic material. We then derive
the necessary boundary conditions for handling various grasping scenarios. Next
we present a numerical method for solving the equations of motion, and last we
show early experimental results comparing our method to real world grasping of
deformable objects.

2 Linear Elasticity

In this section we summarize the notation and constitutive relations used in
general linear elasticity as presented by [15] and [16].

We formulate the problem of determining the mechanical response, as the
solution to the system of partial differential equations (PDEs) known as the
Navier-Cauchy (NC) equations. We then derive the set of necessary boundary
conditions needed for robot grasping scenarios.

2.1 Deformation Description

Let x be an arbitrary point in the material in the absence of deformation, and let
x′ be the position of the point when deformations are added. The displacement
vector for a point is thus u = x′ − x, or in component form

ui = x′
i − xi

where i = 1, 2, 3 refers to the generalized coordinates.
Obviously, if the displacement vector ui is known for every point inside the

body, the deformations or strains are also known.

2.2 Strain Tensor

We use the following expression for the infinitesimal strain tensor uij :

uij =
1

2

(
∂uj

∂xi
+

∂ui

∂xj

)
(1)

The general expression for strain includes second-order terms in ∂ui

∂xj
but these

are usually neglected as the strains are assumed to be small.
Notice that strains by definition are relative length changes. Small strains in

a long thin object may therefore yield large deformations.

2.3 Stress Tensor

The motivation for having a stress tensor is to account for body and surface
forces and relate them to strains in a compact and mathematically well-defined
way. We define the stress tensor as σij , where the first index i is the direction
of the force component and the second index j is the direction of the surface
normal of the area upon which the force acts.

92 A.R. Fugl, H.G. Petersen, and M. Willatzen

2.4 The Tensor of Elasticity

The most basic assumption in relating stress to strain is Hooke’s Law, i.e. local
stresses are proportional to the local strains. Hooke’s law can be formulated as

σij =
∑
k,l

Cijklukl (2)

where i, j, k, l all take the values 1, 2, 3. Cijkl is thus a tensor of fourth rank
known as the tensor of elasticity or stiffness tensor. This stiffness tensor is thus
a multi-component analogue to the well known spring constant in Hooke’s Law.

The stiffness parameters Cijkl only depend on the elastic material. Thus, if the
material is homogeneous, each of the stiffness coefficients is constant throughout
the material volume. Even if the material is homogeneous, it seems that we have
34 = 81 coefficients describing the elastic properties of a solid. However, it can
be proven from free-energy considerations [15] that the tensor is symmetric in
interchanging i with j, k with l and i, j with k, l. This leaves us with ”only”
21 independent Cijkl components in the general case. Typically, the solid has
some symmetries that further reduces the set of independent Cijkl components.
A thorough analysis is given in [15]. Here, we only state the result for the most
symmetric case, namely an isotropic solid which is described by only 2 inde-
pendent stiffness coefficients. In the isotropic case, these parameters are often
given as either the Lamé elastic constants λ, μ or as Young’s modulus E and
the Poisson ratio ν. The relations between the various choices of parameters are

C1111 = 2μ+ λ =
E

1 + ν
(1 +

ν

1− 2ν
)

C1122 = λ =
E

1 + ν
(

ν

1 − 2ν
) (3)

2C1212 = 2μ =
E

1 + ν

Hence, for an isotropic solid, it follows that C1212 satisfies: C1212 = C1111−C1122

2 .
We have chosen to formulate our method using the Lamé elastic constants.

Equation (2) then reduces to

σij = 2μuij + λ(u11 + u22 + u33)δij (4)

where δij is the unit tensor (δij is one if i = j and zero if i �= j).

2.5 Navier-Cauchy Equations of Motion

The Navier-Cauchy equations of motion for a general elastic material are quite
complicated partly due to the many non-zero stiffness tensor components. The
equations of motion in the general case and each of the symmetry cases are all
presented in [15]. In general, they can be written in the form

Simulation of Flexible Objects in Robotics 93

ρ
∂2u

∂t2
= A(C)∂2u (5)

where ρ is the mass density of the material and

∂2u = {∂
2u

∂x2
,
∂2u

∂x∂y
, . . . ,

∂2u

∂z2
} (6)

containing the 6 second order partial derivatives and A(C) is a 3× 6 coefficient
matrix that only depends on the stiffness tensor.

For an isotropic material, the Navier Cauchy equations of motion are

ρ
∂2u

∂t2
= (λ+ μ)∇(∇ · u) + μ∇2u+ q(x) (7)

where the source term for the external forces q(x) has been added. In the present
work this consists of body force due to gravity gρ(x) where g is the gravitational
acceleration and ρ(x) is the mass density.

2.6 Boundary Conditions

For the case of robotics simulations involving the grasping of flexible objects, we
need to consider two types of boundary conditions, both shown in Fig. 1.

The first situation is when material points on the boundary are forcibly moved
to a set displacement, e.g. by a robot gripper. This also applies to points on the
boundary that are resting on a surface. These points will be described below
by ”Dirichlet boundary conditions”. The second situation applies to boundary
locations, where the object boundary is not in contact with anything. These will
be described below by ”free boundary conditions”. Both boundary conditions
support polyhedron surfaces, such as shown on Fig. 2.

For Dirichlet boundary conditions, the value of the displacements are specified
on the boundary. We can thus write these boundary conditions as

u(x, t) = f (x, t) for all x on the Dirichlet boundary

A free boundary condition corresponds to zero normal and shear stress compo-
nents along the boundary normal. These boundary conditions are slightly more
involved:

3∑
j=1

σijnj = 0 i = 1, 2, 3 (8)

where σij is again the stress tensor, and nj is jth component of the boundary
surface normal at the given location.

94 A.R. Fugl, H.G. Petersen, and M. Willatzen

1

2

3

4

5

6

Fig. 1. A simplified view of a parallel gripper holding a flexible object. Surface regions
1 through 4 are modelled by free boundary conditions. Regions 5 and 6 are in direct
contact with the gripper and are modelled by Dirichlet boundary conditions.

By the constitutive law for an isotropic, elastic solid (4) we can transform the
BC (8) to an expression in terms of strains.

In the general case, these boundary conditions can be written in the form

B(C)∂u = 0 (9)

where

∂u = {∂u
∂x

,
∂u

∂y
,
∂u

∂z
} (10)

and B(C) is a 3 × 3 coefficient matrix that again only depends on the stiffness
tensor.

Using Eq. (1) together with Eq. (7), we may obtain these boundary conditions
for the isotropic case directly as

3∑
j=1

μnj

(
∂uj

∂xi
+

∂ui

∂xj

)
(11)

+λni

3∑
k=1

∂uk

∂xk
= 0 i = 1, 2, 3

3 Numerical Method by Finite Differences

Using the Finite Difference Method, the continuum representation of the Navier-
Cauchy equations is approximated with a discrete set of algebraic equations. The
equations are formed by approximating the partial derivatives of the Navier-
Cauchy equations with finite differences on a rectangular spaced discrete set
of points distributed over the original continuous domain. More specifically, we
choose a coordinate system in which we place the undeformed object. We then

Simulation of Flexible Objects in Robotics 95

define gridsizes Hx, Hy, Hz . The object is now represented by all the points
(Xi, Yj , Zk) ≡ (iHx, jHy, kHz) residing inside or on the boundary of the object.
Our discretization is then augmented with one complete layer of ’imaginary
points’ around the object (see Fig. 2). Each non-imaginary point thus has a
neighbourhood of 18 nearest and next nearest points shown in Fig. 3. With
these points it is easy to establish centered second order finite difference approx-
imations for all first and second order derivatives.

◦ ◦ ◦ ◦ ◦ ◦ ◦
× × × × × ◦◦◦◦
× × × × × × × ◦◦◦◦

× × × × × × × × × ◦◦
× × × × × × × × × ◦◦
× × × × × × × × × ◦◦

× × × × × × × × ◦◦◦
× × × × × × × ◦◦◦

× × × × × × ◦◦◦
× × × × × ◦◦◦

× × ◦◦◦◦◦
◦ ◦ ◦ ◦

Fig. 2. Two-dimensional illustration of the discretization procedure for a continuum
representation. The interior and boundary are discretized and subsequently augmented
by imaginary points, marked with circles.

An example of a finite difference is

∂u(Xi, Yj , Zk)

∂x
� u(Xi+1, Yj , Zk)− u(Xi−1, Yj , Zk)

2Hx

where the approximation error is second order in Hx. Another example is

∂2u(Xi, Yj , Zk)

∂x∂y
� 1

4HxHy
×

[u(Xi+1, Yj+1, Zk)− u(Xi−1, Yj+1, Zk)

−u(Xi+1, Yj−1, Zk) + u(Xi−1, Yj−1, Zk)]

where the approximation error is proportional to HxHy.
Similarly second order finite differences can be found for all the other first

and second order derivatives.

Discretization of the Navier-Cauchy Equations

To illustrate how the Navier-Cauchy equations can be discretized, we consider
the fx component in the isotropic case given in Eq. (7). We get

96 A.R. Fugl, H.G. Petersen, and M. Willatzen

ρ
∂2ux

∂t2
= (λ+ μ)

∂

∂x

(
∂ux

∂x
+

∂uy

∂y
+

∂uz

∂z

)
+ μ

(
∂2ux

∂x2
+

∂2ux

∂y2
+

∂2ux

∂z2

)
(12)

The derivatives on the right hand side is now approximated by second order
accurate finite differences as discussed above. We thus obtain a set of second
order linear ordinary differential equations. The grid points used in the finite
difference approximations of the derivatives are illustrated in Fig. 3.

Fig. 3. Visualization of the NC PDE system, approximated by finite differences to
second-order. Red points are grid points used in the computation.

Discretization of the Boundary Conditions

Grid points on the boundary of the object are subject to the boundary conditions
described in section 2.6. In the discretization, a boundary point is a point inside
the object that has at least one imaginary point as a nearest neighbour. The
simplest case is to discretize the Dirichlet boundary conditions, defining a known
displacement on the boundary point:

u(Xi, Yj , Zk) = f(Xi, Yj , Zk, t) (13)

At points where the Dirichlet boundary condition apply, the Navier-Cauchy
equation is omitted.

Consider now points on a free boundary. At such a point, both the Navier
Cauchy equations and the boundary condition is applied. In order to implement
the discretization, we first need to specify the direction of the normal vector. For
boundary points having only one imaginary point as nearest neighbour (surface
points), we choose the normal as the direction towards that point. If two or
three imaginary points are nearest neighbours, we choose the average direction
towards these as the surface normal direction. We then obtain surface normals
as illustrated in Fig. 4.

Simulation of Flexible Objects in Robotics 97

The free boundary conditions are then again straightforward to discretize.
Both for Dirichlet and free boundary conditions, the discretization thus yields a
set of linear algebraic equations.

System of Equations

For each discretization point (Xi, Yj , Zk) including the imaginary points, we
now define 3 equations for the three unknowns u1(Xi, Yj , Zk), u2(Xi, Yj , Zk),
u3(Xi, Yj , Zk). For all non-imaginary points that are not subject to a Dirichlet
boundary, we apply the discretized Navier-Cauchy equations. For all points that
are subject to that boundary condition, we apply the given Dirichlet condition.
Actually, these points could thus be removed from the system of equations. By
this procedure, all points except the imaginary points have associated equations.

Consider now the imaginary points. For each imaginary point towards which
a normal vector of a free boundary point is directed (see Fig. 4), the associated
free boundary conditions are applied. All imaginary points that are not used in
any equation are then removed, leaving a number of imaginary points which are
used in one or several equations but have not yet received associated equations.
An example are those with a filled circle in Fig. 4. For these points, we define
the associated equations by second order interpolations. We thus obtain a set of
coupled second order linear differential equations and linear algebraic equations
for the displacements.

Having formed the linear system, we wish to solve for the unknown displace-
ments. In the present work we do not exploit the sparse nature and structure of
the system matrix, as we solve it by standard LU decomposition. It is obvious
however, that iterative methods will be much faster and as such this is something
we wish to exploit in the future.

4 Experiments and Results

Our derivations of the model and the corresponding finite difference discretiza-
tion were finalized only recently. Hence, only preliminary experimental studies of
the elastic model will be presented. We consider the situation illustrated in Fig.
5. A parallel gripper mounted on a robot grasps a flexible object of silicone rub-
ber, and holds it horizontally. The silicone rubber deforms under its own weight
and arrives at a resting position. The distribution of boundary conditions is close
to the previously described situation, shown in Fig. 1.

In our setup the gripper closes to hold the object firmly, but not enough to
cause any considerable deformation. Points on the boundary in contact with the
gripper are assumed to be fixed but not deformed, i.e., we set their deformation
value to zero through Dirichlet boundary conditions in order to clamp them in
place. The rest of the points on the object surface interface to air, corresponding
to no-stress boundary conditions.

Young’s modulus for the silicone rubber used was measured experimentally by
previous tensile tests to E � 1MPa. The Poisson ratio is tabulated to ν = 0.49

98 A.R. Fugl, H.G. Petersen, and M. Willatzen

×

×

×

×

×

×

×

×

×

◦ ◦ • ◦

•

◦

◦

nn n

n

n

Fig. 4. Region of the computational grid for no-stress boundary conditions. Open cir-
cles are imaginary points, with corresponding equations calculated by the no-stress
BC applied to the interior point. Filled circles are imaginary points, calculated by
interpolation. The dashed lines show the boundary of the original continuum domain.

Fig. 5. The experimental setup. A flexible piece of silicone rubber grasped by a parallel
gripper deforms under it’s own weight.

Fig. 6. The deformation of the setup, as calculated by our method

and the mass density is ρ = 755 kg/m3. The piece is cut as a cuboid with
dimensions 11x55x140 mm. The contact surface of the gripper fingers measures
50x30 mm.

Simulation of Flexible Objects in Robotics 99

We use the above material parameters with our method. As the object is at
rest, the left hand side in Navier-Cauchy’s equations containing the accelerations
is zero. The resulting object mesh is shown in Fig. 6.

5 Conclusion and Future Work

We have presented a model for elastic deformations of flexible objects grasped by
a robot, based on the established three-dimensional linear elasticity equations.
We have presented a Finite Difference scheme for a numerical implementation
of the model and shown very preliminary experimental tests. In the near fu-
ture, we will take two directions: a) We plan to perform a variety of tests with
homogeneous objects of different shape and material in order to quantitatively
study the accuracy of our method. b) In some applications, the linear model is
insufficient and we will therefore also study simplified uni-directional non-linear
models based on the work by [17].

Each of the models will be incorporated into the grasp simulator RobWorkSim
[4] developed at our institute. We will then be able to make realistic simulations
of object deformations under grasping, dynamic motion and manipulation.

Acknowledgment. This work was co-financed by the INTERREG 4 pro-
gramme Syddanmark-Schleswig-K.E.R.N. by EU funds from the European
Regional Development Fund.

References

1. Miller, A.T.: Graspit!: A versatile simulator for robotic grasping. PhD thesis, Cite-
seer (2001)

2. Program, A., Anitescu, M., Potra, F.A.: Formulating dynamic multi-rigid-body
contact problems with friction as solvable linear complementarity problems. Non-
linear Dynamics, 231–247 (1997)

3. León, B., Ulbrich, S., Diankov, R., Puche, G., Przybylski, M., Morales, A., Asfour,
T., Moisio, S., Bohg, J., Kuffner, J., Dillmann, R.: OpenGRASP: A Toolkit for
Robot Grasping Simulation. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani,
M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 109–120. Springer,
Heidelberg (2010)

4. Jørgensen, J., Ellekilde, L., Petersen, H.: RobWorkSim - an Open Simulator for
Sensor based Grasping. In: ISR/ROBOTIK 2010 (2010)

5. Nguyen, B., Trinkle, J.: dvc3D: a three dimensional physical simulation tool for
rigid bodies with contacts and Coulomb friction. In: The 1st Joint International
Conference on Multibody System Dynamics (2010)

6. Johns, J.: Rayleigh waves in a poroelastic half-space. Journal of Acoustical Society
of America, 952–962 (1961)

7. Willatzen, M.: Exact power series solutions to axisymmetric vibrations of circular
and annular membranes with continuously varying density in the general case.
Journal of Sound and Vibration, 981–986 (2002)

100 A.R. Fugl, H.G. Petersen, and M. Willatzen

8. Schliwa, A., Winkelnkemper, M., Bimberg, D.: Impact of size, shape, and compo-
sition on piezoelectric effects and electronic properties of In(Ga)AsGaAs quantum
dots. Phys. Rev. B (2007)

9. COMSOL: COMSOL Multiphysics, Burlington, MA (2011)
10. Binder, J.B.: Algor finite element modeling tools aid aerospace. Aerospace America

(1995)
11. ANSYS: ANSYS Structural, Canonsburg, PA (2011)
12. Richardson, L.F.: The approximate arithmetical solution by finite differences of

physical problems involving differential equations, with an application to the
stresses in a masonry dam. Philosophical Transactions of the Royal Society of
London, 307–357 (1911)

13. Mosegaard, J.: Cardiac Surgery Simulation - Graphics Hardware meets Congenital
Heart Disease. PhD thesis, Department of Computer Science, University of Aarhus,
Denmark (October 2006)

14. Bell, M.: Flexible object manipulation. PhD thesis, Dartmouth College Hanover,
New Hampshire (2010)

15. Landau, L.D., Pitaevskii, L.P., Lifshitz, E.M., Kosevich, A.M.: Theory of Elasticity,
3rd edn. Butterworth-Heinemann (1986)

16. Feynman, R.: The Feynman Lectures on Physics, vol. 2. Addison-Wesley, Boston
(1963)

17. Russell, D.L., White, L.: An elementary nonlinear beam theory with finite buckling
deformation properties. SIAM Journal of Applied Mathematics, 1394–1413 (2002)

Continuous Integration for Iterative Validation

of Simulated Robot Models

Florian Lier1, Simon Schulz1, and Ingo Lütkebohle2

1 Center of Excellence Cognitive Interaction Technology (CITEC),
Universitätsstraße 21-23, 33615 Bielefeld, Germany

2 CoR-Lab Research Institute for Cognition and Robotics, Universitätsstraße 25,
33615 Bielefeld, Germany

Abstract. Simulated environments often provide the first, and are usu-
ally the most frequent, test environment for robotic systems, primarily
due to their cost and safety advantages. Unfortunately, changing aspects
of both, the simulation and the real robot, as well as actuator control
algorithms are often not taken into account when relying on simulation
results. In this paper we present a continuous integration approach to
verify simulated robot models in an integrated and frequent manner,
comprising a simulated and a real robot for comparison. The central as-
pect of our concept is to iteratively assess the fidelity of simulated robot
models. In an exemplary case study we distilled a first set of requirements
and metrics, which can be used by developers to verify their algorithms
and to automatically detect further system changes.

1 Introduction

Simulated environments often provide the first, and are usually the most fre-
quent, test environment for robotic systems, primarily due to their cost and
safety advantages. To be useful, such environments must be sufficiently close
to the real world, which remains a challenging problem and requires detailed
checking to confirm a reasonably close match, i.e., validation.

So far, research in validation has largely focused on the accuracy of the phys-
ical simulation. This is a natural choice, as it is the defining difference, but
covers only a part of typical simulation engines. In contrast, we focus on the
robot model, that is, that the actuation of the simulated robot matches that
of the real robot. This requires that the simulator reflects not just the physical
model accurately, but also the control algorithm. Depending on robot hardware,
this can be challenging, e.g., when firmware source code is unavailable, or when
the real robot uses control loops realized in dedicated hardware.

Furthermore, this match must be established not just once, but must be main-
tained over the course of development on the robot. Many rapidly changing
aspects of the robot’s actual configuration can affect this match, such as cali-
bration, model updates, manufacturing variations, firmware updates, and so on.
Last, but not least, on many research robots, control algorithms are in frequent
development, which may obviously cause mismatches.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 101–112, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

102 F. Lier, S. Schulz, and I. Lütkebohle

Thus, it is not surprising that several current simulator engines, particularly
general-purpose ones, exhibit significant differences between the simulated and
the real actuators (cf. Sec 2). These differences concern not just physical fidelity,
but also certain control modes not being fully implemented and the like. Fur-
thermore, in some areas such as human-robot-interaction, the full dynamics of a
movement are relevant, where there may also be differences that are not visible
just by comparing end-points, as is often done.

Therefore, in this contribution, we propose a continuous integration (CI) ap-
proach towards validating the simulation model, comprised of both a simulated
and a real robot. In continuous integration, the differences between the model
and the real robot are tested on every change of control software or configura-
tion, both through dedicated tests, and through testing of dependent software.
As a result, the consequences of upstream changes can be detected immediately,
and are available to all affected developers. For this, a standard CI server has
been connected to a physical robot and provided with comprehensive internal
and external data capture to support the necessary analysis and testing.

Furthermore, we define a purposefully limited experimental setup that makes
validation efficient enough for constant and automated repetition, yet sufficiently
insightful to detect relevant changes. As simulation is never exact, we report
results from a case study to determine what level of fidelity can reasonably
be expected, and which parameters influence it. This information is essential for
developers to create appropriate tests for their platform. Some of the conclusions
are likely general, but we also expect that some concrete values depend on the
robot used, and thus also report on requirements for such testing which should
facilitate repetition for other platforms.

2 Related Work

Simulator validation has not been widely studied in robotics so far, but one
prominent exception is the ”Unified System for Automation and Robot Simu-
lation” (USARSim), a game engine based simulator [1,7]. In order to validate
simulation results Pepper et al. define standardized tests which are manually
performed (by domain experts) in the real world, e.g., ”robot is climbing stairs”,
and are then compared to simulation results iteratively. This validation method
also reveals differences between the actual robot and simulation, but requires
a huge amount of manual testing and analysis. Because it only approximates
the actual control algorithm and robot model, validation is an obvious concern,
and significant differences have been found despite several iterations (e.g., [9,10]
and [6]). In contrast to their work, we propose using the same control algorithm
as on the real robot, to make configuration changes possible without having
to repeat the iterative model optimization step. Furthermore, these validation
methods are performed by a few experienced users, and are not intended to
be executed frequently, changes to the robot or simulation engine remain un-
detected until the next test. While the practice of Continuous Integration [4]
has been attempted also for robotics software development, the integration and

Continuous Integration for Iterative Validation of Simulated Robot Models 103

frequent validation of a simulation environment in such an environment has, to
the best of our knowledge, not been done so far. Regarding our goals for accu-
racy, it must be said that we are not only interested in the end state, but also in
intermediate movements, so as to be able to validate the workings of the control
algorithm. This can be a problem for general models, e.g., in [10, section 3.2,
fig. 15], a large initial overshoot resulting from the interaction between control
algorithm and the robot’s inertia, is not replicated by the game engine-based
model. Moreover, as [6] finds for other robot models on the same engine, there
can be timing differences of several seconds between simulation and reality, and
also small but significant differences in end state.

3 Concept Setup for Iterative Model Validation

”Continuous Integration is a software development practice where members of
a team integrate their work frequently, usually each person integrates at least
daily - leading to multiple integrations per day. Each integration is verified by
an automated build (including test) to detect integration errors as quickly as
possible.”— Martin Fowler1

While the concept of CI [2] is well established in common software devel-
opment processes, e.g., in agile programming, CI practices have only received
little attention in robotics so far. Mostly, a CI-enabled software integration cycle
involves the following steps: A developer commits her/his recent changes to a
source code repository. Shortly after the check-in a CI server registers the change
and automatically performs a build of the new revision. Therefore, a CI server, or
master, launches builds on multiple build slaves (not necessarily), e.g., on differ-
ent Linux distributions including downstream builds. In each build, several tests
are performed, based on test specific metrics. If the build has been successful,
test results and artifacts such as, executable binaries, log files or documentation
are transferred to the master and can be reviewed by the developer. If a build
or test has not been successful, the server instantly notifies specified developers,
at least the committer (e.g., via email), thus integration errors are quickly dis-
covered and can be resolved. With respect to this paradigm we introduce to our
concept setup, depicted in Fig. 1, for iterative testing and validation of simulated
robot models including a real robot for comparison.

A CI server2 provides a web front-end to create build jobs and inspect build
results. A build job describes how a software build is performed, e.g, by executing
CMake or shell scripts, and also tests if an application can be launched. In our
setup, hierarchically structured build jobs (see Fig.2) are executed on a dedicated
build slave. The build slave is connected to the master, as well as to the real robot.
The simulation and a control server are steadily running on the slave. Moreover,
three logging applications are installed on the build slave: a simulation logger,
a control server logger and a video logger which can be triggered via build jobs.
Last but not least, if started, a motion generation component sends movement

1 http://martinfowler.com/articles/continuousIntegration.html
2 http://jenkins-ci.org

http://martinfowler.com/articles/continuousIntegration.html
http://jenkins-ci.org

104 F. Lier, S. Schulz, and I. Lütkebohle

Fig. 1. Concept setup

commands to the control server which actuates the physical and virtual robot.
Build jobs are created for each component running on the build slave as depicted
in Fig. 2. In the following we will describe the build job hierarchy, and the
function of each job.

3.1 Build Job Sequence

At the beginning of the build job sequence a series of checks are performed, such
as are the simulation and control server still running. In case all checks finished
successfully, four jobs are launched in parallel. The Start Video Logger job starts
a recording software, therefore the simulation and the actual robot are recorded
from an external point of view via web cam. If successfully finished the build
artifact, a video file, is copied to the master node. Meanwhile, the Start Motion
Generation job starts a motion replay application, thus movement commands
are sent to the control server. Accordingly, the virtual and physical robot start
moving. Both, the Start Server Logger and Start Simulation Logger job trigger
logging applications. As soon as each logger receives a start event, they begin
logging timestamped axis angle values for all actuated joints of the robot. The
log files are also copied to the master and are archived. While build artifacts are
only archived if a build has been successful, extensive build logs are saved for
each job and run.

Fig. 2. Build job sequence

Continuous Integration for Iterative Validation of Simulated Robot Models 105

4 Concept Realization

In this section we will introduce our robot Flobi (Sec. 4.1), the implementation
of its simulated correspondent, the applied simulation engine (Sec.4.2), and we
will describe our shared control model (Sec. 4.3) for both, the actual, and the
virtual robot. Our focus will be on the main requirements and design choices,
e.g., accurate 3D modelling, a close software model, and data logging.

4.1 The Robot - Flobi

Flobi has been designed to provide an extensible head platform, which combines
state-of-the-art sensing functionality with an exterior that elicits a sympathetic
emotional response (see Fig.3). It features interchangeable external shells for the
skin, eyelids and lips in order to study the influence of the outer appearance[5].
A total of 18 actuators allow individual, fine grained control of the neck, the
eyes, eye-lids & -brows and the lips. The combination and simultaneous interac-
tion of these actuators allow the expression of primary and secondary emotions
which can facilitate and support communication situations in a human-robot
interaction scenario.

Fig. 3. The Bielefeld Anthropomorphic Robot Head ”Flobi”

4.2 The Virtual Flobi - Modelling and Simulation Engine

Often, accurate modelling and rigging of a robot for 3D simulation, especially
when its visual appearance is crucial (see Sec.4.1), is time consuming and requires
experience in such techniques. Moreover, false or inconsistent dimensioning of
robot parts lead to subsequent errors, e.g., when simulating collision avoidance.
Hence, to provide an exact model of the robot, in terms of shape and proportions,
it is beneficial to re-use existing technical drawings or ideally CAD files [8]. Since
MORSE [3] is based on Blender3, and therefore natively supports for import
and also editing of diverse geometry definition file formats, we considered it
as the most promising candidate (besides Webots

TM

and USARSim). For this
reason we were able to re-use original Flobi CAD construction files to model an
accurate virtual Flobi. Furthermore, we consider it particularly convenient that
MORSE on the one hand, features a state-of-the-art simulation engine, and on
the other hand also allows for the import, editing and creation of 3D objects

3 http://www.blender.org/

http://www.blender.org/

106 F. Lier, S. Schulz, and I. Lütkebohle

Fig. 4. Modelling pipeline of the virtual Flobi (without lips)

(and environments) in the same place, thus providing an efficient and consistent
work flow (see Fig. 4). However, by this means we can provide an exact 3D
model of our robot for the simulation environment, serving as a basis for further
actuator and sensor implementations as introduced in the next section.

4.3 The Virtual Flobi - Control Model

In order to run and make use of a simulation, sensors and actuators have to be
implemented for a virtual robot as, e.g., presented by Echeverria et al. [3]. We al-
ready mentioned false dimensioning as a possible risk in Sec. 4.2. We also perceive
the implementation of virtual sensors and actuators as critical, such as wrong
maximum speed/acceleration could work well in the simulation, but would dam-
age the hardware, if applied on a physical robot. Additionally, as a basis for the
integration into existing software systems and to expose sensor/actuator data to
applications running outside the simulation (e.g., [8]), a simulation engine must
provide middleware support. Since MORSE features abstract classes for both
sensors and actuators, and also a middleware independent interface to expose
this data, we were able to integrate the simulator into our existing software tool
chain — in consideration of the issues mentioned above (see Fig. 5).

The virtual and physical Flobi can be controlled by using the same API im-
plementing, e.g., flobilib and flobixsc2 types. Thus, from a developers point of
view it is completely transparent whether the simulation or the real hardware is
to be controlled.

To accomplish this functionality we have implemented a Flobi control server
(XSC2) which acts as a gateway to physical or virtual Flobi motor control
boards. The physical connection is established using a custom serial bus pro-
tocol, whereas for the virtual part, we wrap and execute the motor controller
C code in a task based structure. For virtualization, the lower level PID speed
control loop is assumed to be perfect and that any calculated target value is
reached within one control cycle. There is no specific motor model taking motor
power or friction into account. However, higher level control loops such as accel-
eration ramps and maximum velocities are taken into account as on the actual
hardware.

The control server can be run in plain physical, pure virtual and even in a
mixture of both modes (in contrast to, e.g., [11]). The latter is extensively being

Continuous Integration for Iterative Validation of Simulated Robot Models 107

Fig. 5. Flobi control model

used during developing and testing of single parts by loading a configuration with
only a new neck construction being physically connected to the server, while the
residual motors are virtualized. Firstly, with this approach the simulation can
be driven by either the real hardware, the virtualized hardware, or in mixed-
mode, thus allowing for a flexible setup. Secondly, the virtual actuators/sensors
are completely decoupled from any lower level communication by subscribing
to sensor values such as angular position data in read only mode. Thirdly, we
believe that this approach provides a close model of the simulation and target
platform software, and therefore enables straight forward model validation as
presented in Sec. 5.

4.4 Motion Generation and Data Logging

To detect differences between the model and the real robot, based on a realistic
scenario, the nature of provided test data, and subsequently the precision of test
results being logged are essential. Therefore, we have chosen a fixed, pre-recorded
sequence of real human facial expressions4 as a data provider for the motion
generation component as depicted in Fig. 1. In our human-robot-interaction
research, we are often interested not just in start and end-point precision, but
also in the dynamics of the intermediate motion. Thus, the applied axis angles of
i) the simulation and ii) the real robot are constantly logged over the complete
duration of a test run. Axis angles in the simulation are logged with a frequency
of 60Hz (native simulation cycle time), the robot axis angles are logged with 30Hz
(due to current software limitations). Besides quantitative assessment, facilitated
through the evaluation of log files archived in each build job (see Fig. 2), we are
additionally recoding a video sequence of each test run for qualitative purposes.

4 http://www.youtube.com/watch?v=PBs0c2LzMVM

http://www.youtube.com/watch?v=PBs0c2LzMVM

108 F. Lier, S. Schulz, and I. Lütkebohle

5 Test Design and Case Study

For continuous comparison of simulated and real data, a repeatable real-world
test setup is necessary. This test-setup must be sufficiently safe to be allowed to
run unobserved, which rules out novel environments. Thus, a continuous inte-
gration test, even with real-world components, can not be a replacement for a
full real trial. However, it should be sufficient to indicate that a real-world trial
can be attempted given the current state of the software.

For safety, we propose to use a pre-generated safe movement which covers the
relevant motion requirements in terms of positions and accelerations. In our case,
we use motion-captured head movement data from real human head movements.

For indicativeness, we suggest that a test should exercise the same faculties
of the robot, using the same control principles and the same configuration. For
example, if the real scenario uses PID-based position control with some PID
parameters, the test should use the same control mode and parameters. Some
simulation setups may not be able to do this, but should attempt as close a match
as possible. Nevertheless, test runs will never be completely the same. Therefore,
we need to determine what can be considered a normal difference, and how to
measure it. The procedure we used, and the differences we measured, will be
described in the following case study.

5.1 Case Study Procedure

We assessed our robot model by i) measuring the overall joint angle drift of the
actual and virtual robot, and ii) by deriving the offset between the actual and
virtual robot within a set of test runs. To achieve this goal we ran the build job
pipeline introduced in Section 3 (see Fig. 2) repeatedly for 12 hours. A complete
run was automatically triggered every 15 minutes. In the following we will discuss
the test results based on the archived log files in each run.

5.2 Results - Overall Axis Angle Drift

As a first assessment, we measured the overall axis angle drift in 49 test runs
over 12 hours, as exemplarily depicted for the joint ”Left Eye” in Fig. 6. There
are two main results emphasize: firstly, the mean axis angle coordinates of the
virtual and actual robot are closely aligned during the whole motion sequence
(see Fig. 6, Virtual Mean, Physical Mean). Also, the standard deviation for both
robot representations is almost similar (see Fig. 6, Virtual SD, Physical SD), but
surprisingly high for ”Left Eye” (3.73◦) in contrast to, e.g, ”Neck Roll’ (0.45◦, see
Table 2). Apparently the standard deviation increases at high accelerations, e.g.,
in second 5,5 and 11, and reaches its maximum if the acceleration is abruptly
changed as in second 15. To verify these assumptions we investigated the correla-
tion between acceleration and standard deviation as exemplarily depicted in Fig.
7(a) for the ”Left Eye” joint. Evidently, the standard deviation increases with
the acceleration. While the majority of the plotted standard deviation values re-
side between 0◦ and 0.3◦, as confirmed in Table 1, with an acceleration between

Continuous Integration for Iterative Validation of Simulated Robot Models 109

±1◦/15ms. most of the outliers occur at high accelerations, e.g., at 4◦/15 ms.
However, the global maximum of 3.73◦ occurs at a relatively low acceleration
of 0.95◦/15m. As depicted in Fig. 6 (Max SD Virtual), the global maximum re-
sides at an inflection point, hence the acceleration abruptly changed, causing the
global maximum deviation. Overall, the measured standard deviation (mean) is
conveniently low with a maximum of 0.31◦ and a minimum of 0.03◦. Moreover,
the virtual model and actual robot demonstrate almost the same behavior re-
lated to the axis angle drift as depicted in Table 2. The maximum difference
between the virtual and actual robot amounts to 0.39◦ (”Left Eye”), which is
within an acceptable range. Based on these results we obtained a first set of
metrics, which can be used for further integration tests (see Table 2). As an ex-
ample, a developer can utilze the setup presented in this study to verify her/his
control code for each iteration, respectively for each commit, of his software by
writing unit tests for instance. The unit tests may assert joint angle values at
a given time, based on the standard deviation values presented in this section.
It is up to the developer how strictly she/he tests the control code. In case of a
pedantic test she/he may assert the target value of ”Neck Roll” with an allowed
deviation of 0.01◦.

-24

-21

-18

-15

-12

-9

-6

-3

0

3

6

9

12

15

18

3 6 9 12 15 18

A
n
g
le

 (
d
e
g
re

e
)

Time (seconds)

Virtual Mean

Physical Mean

Virtual SD

Physical SD

Max SD Virtual

Max SD Physical

Fig. 6. Axis angle drift for joint ”Left Eye”, direction ”left to right”

5.3 Results - Offset between the Virtual and Physical Robot

In the previous section we have shown that the simulated robot model and the
actual robot behave the same way in terms of axis angle deviations. We also
mentioned that the mean axis angle coordinates are closely aligned during the

110 F. Lier, S. Schulz, and I. Lütkebohle

Table 1. Physical and virtual (v) robot: max/min/mean joint angle standard deviation
(σ) over 12 hours

Joints Max. σ (v) Min. σ (v) Mean σ (v) Max. σ Min. σ Mean σ

Neck Roll 0.45◦ 0.01◦ 0.05◦ 0.45◦ 0.01◦ 0.03◦

Neck Tilt 0.48◦ 0.01◦ 0.05◦ 0.43◦ 0.01◦ 0.04◦

Neck Pan 1.71◦ 0.01◦ 0.11◦ 1.80◦ 0.01◦ 0.10◦

Left Eye LR 3.73◦ 0.01◦ 0.25◦ 3.34◦ 0.01◦ 0.18◦

Right Eye LR 2.15◦ 0.01◦ 0.17◦ 2.02◦ 0.01◦ 0.12◦

Left Eyelid Upper 3.41◦ 0.01◦ 0.30◦ 3.03◦ 0.01◦ 0.27◦

Right Eyelid Upper 3.57◦ 0.08◦ 0.31◦ 3.79◦ 0.09◦ 0.30◦

Both Eyes UD 1.80◦ 0.01◦ 0.12◦ 1.79◦ 0.01◦ 0.09◦

whole motion sequence (see. Fig. 6, Virtual Mean, Physical Mean). If a developer
needs to test his software in the simulation, because she/he doesn’t have access
to the physical robot for instance, it is also important to assure that the actual
angle offset between the simulation and the actual robot is sufficiently small
to obtain realistic test results. Therefore, we have measured the overall offset
between both representations as shown in Table 2.

First of all, it is noticeable that the absolute mean offset between the virtual
and the actual robot is acceptably small with a maximum of 0.99◦. Secondly,
similar to the standard deviation as presented in Table 1, the highest total
offset was measured at joint ”Left Eye”. Subsequently, we investigated the offset
distribution as shown in Fig.7(b). Not surprisingly, maximum offsets also reside
at high accelerations. Nevertheless, the findings of this section can be used as
additional metrics when testing algorithms in the simulation. As an example, a
developer can be assured that a scenario, that he as tested in the simulation, will
perform nearly the same way on the actual robot by implying the given offsets.

-4

-3

-2

-0.5

0.5

2

3

4.5

0 0.5 1 1.5 2 2.5 3 3.5 4
Standard Deviation (degree)

(a) SD Distribution

-3

-2

-1

0

1

2

3

12 13 14 15 16

A
n

g
le

 O
ff

se
t

(d
e
g

re
e
)

Time (seconds)

Virtual Offset

Physical Mean

(b) Axis Offset

Fig. 7. Distribution of the standard deviation and axis angle offset

Continuous Integration for Iterative Validation of Simulated Robot Models 111

Table 2. Axis angle offset between virtual and physical robot

Joints (virtual) Max. Positive Offset Max Negative Offset Abs. Mean Offset

Neck Roll 0.37 -0.44 0.04
Neck Tilt 0.45 -0.34 0.05
Neck Pan 2.40 -1.91 0.99
Left Eye LR 2.51 -1.16 0.13
Right Eye LR 0.87 -1.02 0.12
Left Eyelid Upper 1.73 -2.39 0.94
Right Eyelid Upper 1.48 -1.43 0.55
Both Eyes UD 1.31 -1.78 0.08

5.4 Results - Visual Comparison

With each test run we have recorded a video file showing the behavior of the
simulation and the real robot. As presented in the last section, the axis angle
differences are acceptably small. Therefore, we could not determine any differ-
ence based on the qualitative evaluation of all video logs. Nevertheless, such an
evaluation mechanisms could be used by developers when assessing experimen-
tal control code, as the interpretation of a video file is more intuitive than the
interpretation of ”raw” axis angle data.

6 Conclusion

We have investigated continuous validation of robot models, to verify a sufficient
match between the simulation and reality. To tackle this issue, we presented a
continuous integration approach supporting iterative model validation (Section
3). In an experimental case study we have shown that the fidelity, in terms of
end-positions and also the dynamics of intermediate motion, can be validated
by measuring deviation and offset between axis angles of the real and the simu-
lated model. The results indicate that a close software model leads to acceptable
differences (see Sec. 5.2, Sec. 5.3). Based on the results of the case study, we
could confirm that our simulated model basically matches the reality. Further
changes to the simulation, or the actual robot can be automatically detected
based on these findings. Our approach to continous robot model validation is
based on a middle ground between testing isolated parts (which is usually safe
but cannot detect interaction effects) and evaluating full scenarios (which would
be too costly). For static robots, as in our current study, this has been fairly
easy to define. An interesting target for future work would be to extend this to
mobile robots, for which a suitable test setup would have to be defined, which
exercises the mobility, without requiring a full test course. However, the metrics
applied in the case study could be used by developers to verify their control code
in an integrated and frequent manner, utilizing our system setup. Nevertheless,
the measured divergence is higher than desired. We believe that this effect is

112 F. Lier, S. Schulz, and I. Lütkebohle

caused by the applied logging frequency, therefore we will conduct yet another
study with higher logging frequencies such as 100Hz.

Acknowledgments. This work has been partially supported by the German
Aerospace Center (DLR) with funds from the Federal Ministry of Economics and
Technology (BMBF) due to resolution 50RA1023 of the German Bundestag.

References

1. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: Proceedings 2007 IEEE International
Conference on Robotics and Automation, pp. 1400–1405. IEEE (April 2007)

2. Duvall, P., Steve, M., Glover, A.: Continuous integration: improving software qual-
ity and reducing risk, 1st edn. Addison-Wesley Professional (2007)

3. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular openrobots
simulation engine: Morse. In: Proceedings of the IEEE ICRA (2011)

4. Holck, J., Jørgensen, N.: Continuous integration and quality assurance: a case study
of two open source projects. Australasian Journal of Information Systems 11(1)
(2007)

5. Lütkebohle, I., Hegel, F., Schulz, S., Hackel, M., Wrede, B., Wachsmuth, S.,
Sagerer, G.: The bielefeld anthropomorphic robot head flobi. In: 2010 IEEE In-
ternational Conference on Robotics and Automation (ICRA), pp. 3384–3391 (May
2010)

6. Okamoto, S., Kurose, K., Saga, S., Ohno, K., Tadokoro, S.: Validation of Simulated
Robots with Realistically Modeled Dimensions and Mass in USARSim. In: 2008
IEEE International Workshop on Safety, Security and Rescue Robotics, pp. 77–82.
IEEE (October 2008)

7. Pepper, C., Balakirsky, S., Scrapper, C.: Robot simulation physics validation. In:
Proceedings of the 2007 Workshop on Performance Metrics for Intelligent Systems
- PerMIS 2007, pp. 97–104. ACM Press, New York (2007)

8. Roalter, L., Möller, A., Diewald, S., Kranz, M.: Developing intelligent environ-
ments. In: Seventh International Conference on Intelligent Environments (2011)

9. Taylor, B.K., Balakirsky, S., Messina, E., Quinn, R.D.: Design and validation of a
Whegs robot in USARSim. In: 2007 Workshop on Performance Metrics for Intelli-
gent Systems - PerMIS 2007, pp. 105–112. ACM Press, New York (2007)

10. Taylor, B.K., Balakirsky, S., Messina, E., Quinn, R.D.: Modeling, validation and
analysis of a Whegs robot in the USARSim environment. In: Proceedings of SPIE,
vol. 6962, pp. 69621B–69621B–12 (2008)

11. Tikhanoff, V., Cangelosi, A., Fitzpatrick, P., Metta, G., Natale, L., Nori, F.: An
open-source simulator for cognitive robotics research: the prototype of the icub
humanoid robot simulator. In: Proceedings of the 8th Workshop on Performance
Metrics for Intelligent Systems, PerMIS 2008, pp. 57–61. ACM (2008)

Software Abstractions for Simulation
and Control of a Continuum Robot

Arne Nordmann, Matthias Rolf, and Sebastian Wrede

Research Institute for Cognition and Robotics, Bielefeld University, Germany

Abstract. The Bionic Handling Assistant is a new continuum robot which is
manufactured in a rapid-prototyping procedure out of elastic polyamide. Its me-
chanical flexibility and low weight provide an enormous potential for physical hu-
man robot interaction. Yet, the elasticity and parallel continuum actuation design
challenge standard approaches to deal with a robot from a control, simulation, and
software modeling perspective. We investigate how the software abstractions of
the existing Robot Control Interface (RCI) and the Compliant Control Architec-
ture (CCA) can deal with this platform from a software modeling and software
architectural perspective. We focus on three different challenges: the first chal-
lenge is to enable reasonable and hierarchical semantic abstractions of the robot.
The second challenge is to develop hardware I/O abstractions for the prototypi-
cal and heterogeneous technical setup. The third challenge is to realize this in a
flexible and reusable manner. We evaluate our approaches to the above challenges
in a practical scenario in which the robot is controlled either in simulation or on
the real robot.

1 Introduction

Continuum robotic systems inspired by biological actuators like elephant trunks [1],
octopus arms [2], or even squid tentacles [3] have gathered increasing interest in the
last decade of robotics research. These systems move without traditional revolute or
prismatic joints, but are based on continuous deformations in shape, and are typically
driven by parallel hydraulic or pneumatic actuators. The focus of this paper is the Bionic
Handling Assistant (BHA) [4] which is a new continuum platform inspired by elephant
trunks and manufactured by Festo (see Fig. 1). The robot is pneumatically actuated and
made almost completely out of polyamide which makes it very flexible and lightweight.
The robot comprises three main segments, each with three parallel, pneumatic bellow
actuators, a ball-joint as wrist, also actuated by three actuators, and a three finger gripper
actuated by one bellow actuator. When the bellow actuators are supplied with pressure,
they extend their length and can cause arc-like deformations as well as elongations.

The continuous arc-like deformations are not only challenging from a simulation
and control point of view. On a semantic level, the multi-segment parallel actuation de-
mands for software modeling approaches that allow an intrinsically hierarchical view
on a robot. This is not the case for standard revolute joint robots which are appropriately
modeled by a series of single-actuator abstractions. On a hardware level, the prototyp-
ical robot setup provides very heterogeneous I/O channels, including pressure sensing
and control via a CAN bus, length sensing via an analog-digital converter PCI card, as

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 113–124, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

114 A. Nordmann, M. Rolf, and S. Wrede

Fig. 1. The kinematic structure of the BHA comprises three main segments, each consisting of
three parallel pneumatic bellow actuators. The length of these actuators can be determined with
cable-potentiometers.

well as position sensing with Vicon [5] motion tracking system that communicates with
a proprietary network protocol.

This paper investigates the use of the software concepts and abstractions of the ex-
isting software frameworks Robot Control Interface (RCI) and the Compliant Control
Architecture (CCA) to master these challenges in a flexible and reusable manner. Our
contribution is extracting software requirements imposed by the above challenges of
continuum robots, elaborated in Section 2. We then discuss these requirements along
implementation of a length control use-case with RCI and CCA. Section 3 introduces
RCI and shows how we mapped the BHA to its semantic abstractions. In Section 4
we highlight certain design decisions of the technology mapping and Section 5 shows a
practical use-case, introducing our open-source BHA simulator as well as length control
on the real robot. In Section 6 we conclude and point out the key aspects we identified
to cope with the challenges of continuum robots like Festo‘s Bionic Handling Assistant.

2 Challenges

With all its advantages and properties desirable for physical Human-Robot Interaction
(pHRI), the continuum kinematics of the BHA impose a number of challenges both on
a semantical and a technological level. On the lowest level, the robot is driven by 13
bellow actuators. Each of them allows to control and sense pressure. Although there are
physical interactions between these actuators they can be seen as independent and con-
ceptually identical from a software point of view – similar to different revolute joints
on standard robots. The situation changes when postural sensing and control is con-
sidered. The pressure in the actuators is not a reliable means to define a robot posture,
i.e. a geometric shape of the robot, since it only describes a force. The BHA comprises
length sensors for all actuators except the gripper to circumvent this problem and pro-
vide geometric information. On the main segments these sensors are on the outside of

Software Abstractions for Simulation and Control of a Continuum Robot 115

each actuator. The length sensors of the wrist do not provide a “one to one” relation
to the actuators since they are mounted in between two actuators. Although the main
segments do have a “one to one” relation, the length of a single actuator is essentially
meaningless: the parallel actuation design of three actuators in one segment only defines
a shape when all three lengths come together. Hence, our approach is to use an entire
segment as the elementary semantic abstraction that must be considered to describe the
geometric configuration of the robot, which contradicts common ways of semantic and
technical modeling of robotics platforms that focus on single actuator abstractions [6].
A software model must allow to work on top of this semantic abstraction as well as
inside the segment abstraction in a hierarchical fashion: controlling the length is not
done with standard PID control concepts and, in fact, the robot comes without a length
controller. Solving the length control is active research and requires a software model
that allows to plug-in control functionality into a segment abstraction that already pro-
vides sensing capabilities. Also the cartesian control of the end-effector is not available
as standard method or component, although sensing is directly available.

A second challenge arises from the interfacing of the actual hardware I/O capabil-
ities of the robot setup. The very heterogeneous hardware setup involves a number of
different communication patterns, protocols and transports necessary in order to access
and integrate all technical components of the robot. The different hardware interfaces
use different data representations, have different timing and timing constraints, as well
as completely different data volumes to process. The pressure control and sensing is
interfaced with a custom binary protocol over a CAN-bus which is accessed with a
Linux SocketCAN driver. This interface needs to be operated in (soft) real-time since it
represents the instantaneous actuation of robot. The current measurements, commands,
and possible error- or status messages need to be updated with a request-reply pattern
at a rate of 50Hz. Thereby the 13 actuators are controlled by two valve-units, which
are connected to the CAN-bus as separate devices. Each valve-unit has eight valves,
whereas the actuators of the lowest segment are each connected to two separate valves,
both of which need to be actively controlled. The length measurement is interfaced with
a proprietary driver accessing an analog-digital converter PCI card. The device allows
for an almost instantaneous reading of the current lengths. Finally, the cartesian position
of the end-effector can be sensed, but not controlled with a Vicon [5] motion tracking
system. This system communicates with 200Hz via a proprietary network protocol.
These heterogeneous channels need to be synchronized and leveraged in a coherent
software framework which demands for hardware I/O abstractions that can capture the
diversity of these devices.

The development of flexible and reusable abstractions for such components is a
natural requirement for a robotics framework, although in particular the hierarchical
modeling on a semantic level is not trivially achieved. The third challenge in our setup,
however, goes beyond the reuse of segment- or whole-robot-abstractions: Current re-
search on this very prototypical robot setup is mostly concerned with the development
of controllers that mediate between high-level semantic abstractions and low-level hard-
ware abstractions. This demands a high degree of flexibility and extendability even be-
tween reusable abstractions on several levels. Abstractions that only allow sensing in
the first place must be extendable by control-semantics.

116 A. Nordmann, M. Rolf, and S. Wrede

The use case investigated in this paper is the control of actuator lengths. Length
control is fundamental to any other application with the robot, but requires a solution to
all of the above challenges: It has to

1. rely on hierarchical abstractions of robot segments instead of single actuators.
2. incorporate heterogeneous sensor information and feed commands back in realtime.
3. integrate in a flexible, additive manner into other reusable abstractions.

Thereby the BHA particularly challenges the classical conceptualizations of control in-
terfaces, often used in robotics frameworks. Length control on the BHA for example can
not be expressed in the classical length control interface, providing length measurement
and its control at the same place. Whereas length is measured in the nine chambers, con-
trolling of the length only makes sense in the context of an entire segment due to the
strong coupling inside a segment.

3 Software Abstractions and Programming Model

In order to access to the platform-specific features of a robot platform in a generic and
coherent way, we developed a framework of software abstractions for compliant robots,
called Robot Control Interface (RCI) [7]. RCI provides a set of domain-specific abstrac-
tions to represent common features of compliant robotics systems. The domain-specific
abstractions of RCI are imposed through the domain of motion learning on soft and
compliant robots, whereas a domain is a “set of current and future applications which
share a set of common capabilities and data” [8]. The representations are available as
part of the Robot Control Interface and comprise software solutions as well as inter-
faces, features and domain objects identified in a domain analysis process. To be able to
describe the domain in a condensed manner, we performed an extensive feature-oriented
domain analysis (FODA [8]), including currently existing applications, robot-features,
and software frameworks in the domain. Examples of applications and frameworks in-
cluded in the domain analysis are: The KUKA Fast Research Interface [9], the Orocos-
RSI extensions of the Orocos Framework [10], the RobotCub software [11], especially
the recently developed iDyn library, as well as the two ROS stacks force-torque by the
Healthcare Robotics Lab at Georgia Tech [12] and COB force-torque for the the Care-
O-bot platform [13]. In addition to analyzing features of frameworks and interfaces, we
analyzed interfaces of compliant robot platforms like COMAN, the compliant successor
of iCub and the compliant quadruped robot Oncilla.

The unifying Robot Control Interface (RCI) follows a model-driven approach and
abstracts from a concrete hardware platform while allowing to integrate or generate
the necessary platform-specific code. The description of the logical architecture and
API views yields a first definition of the interfaces between the robot platform (sim-
ulated or hardware) and the user application. RCI focuses on the software interface
for proprioceptive sensors and actuators, which includes velocities, accelerations and
forces applied to a robot as well as sensorics for equilibrium or balance (accelerome-
ter, gyroscope). This API defines a low-level robot programming interface specifically
considering the requirements of compliant actuator control and proprioceptive sensing.

A first observation as result of the domain analysis is that in this domain a clear
distinction of physical robot parts between either sensor or actuator is often infeasible

Software Abstractions for Simulation and Control of a Continuum Robot 117

and sometimes even cannot be made. Instead, actuator and sensor parts share a com-
prehensive set of controlling and sensing features (i.e. sensing of position, force). This
is valid for example for almost every actuator with position control, being able to sense
at least the current encoder value, often also the motor current et cetera. In the domain
of compliant robots, e.g. including active compliant actuators, a single actuator often
provides a rich subset of features from actuators and sensors, including measurement
and control of force, torque and joint position.

Based on this observation RCI defines a set of possible features of physical robot
parts, both controlling and sensing features. We then define the ResourceNode as a
logical abstraction for sensors and actuators, which can have an arbitrary set of these
features. A ResourceNode with just sensing features represents a pure sensing robot
part, a ResourceNode with controlling and optionally sensing features represents an
actuated robot parts. RCI defines a number of fine-grained interfaces of semantic data
abstraction (e.g. joint angles, torques, forces, et cetera) and a separate control and sens-
ing interface for each. A core aspect of this fine-grained assignment of features to robot
parts is, that the control and sensing aspect of the same variable (e.g. joint angle) can
even be split to several robot parts.

A second essential concept in RCI is the concept of a Synchronizer that solves
the connection of the robot‘s software abstractions (ResourceNodes) with the actual
robot – in simulation or hardware. The synchronizer reads commands sent to the Re-
sourceNodes and passes them as commands to the robot. It also reads sensor values
from the robot and passes them to the Resource Nodes.

The Robot Control Interface provides platform-specific software abstractions for
modeling of the robot platform, in the form of the ResourceNode abstraction for sen-
sors and actuators as well as a set of fine-grained controlling and sensing features. It
also provides the implementation-specific abstraction of hardware I/O interfaces in the
form of Synchronizers. This set of abstractions provides the Programming Model for
implementations of a robot interface with RCI.

3.1 Modeling of the Bionic Handling Assistant

In order to check whether the Programming Model provided by the Robot Control In-
terface is capable of meeting the challenges depicted in Section 2, we modeled the
BHA with RCI abstractions. We evaluate whether the concept of RCI ResourceNodes
can provide reasonable semantic abstractions of the continuum kinematics and there-
fore provide a solution to the semantic challenges. Furthermore we evaluate whether
the RCI concept of a Synchronizer is able to cope with the heterogeneous hardware
interface setup of the BHA and provides meaningful hardware I/O abstractions.

Note, that for the sake of clarity in this example we focus on the first nine, main
bellow actuators without wrist and gripper actuation.

Modeling of the platform-specific parts of the robot system, the semantic abstrac-
tions, is done in three kinds of different resource nodes: i) chambers, ii) segments and
iii) the end-effector.

– A chamber node represents a bellow actuation unit of the robot, equipped with
length sensing. Interfaces of this node are therefore PressureSensing, Pres-
sureControlled and LengthSensing.

118 A. Nordmann, M. Rolf, and S. Wrede

Fig. 2. RCI ResourceNodes for the BHA’s three main segments, its chambers and the end-effector

– A segment node does not add any functionality at this point, but repeats the length
sensed values and the pressures of its three chambers. The segments provide the
three chamber length values in a semantically coherent way in order to provide a
basis for later-on extensions with control capabilities.

– The end-effector node is the gripper, which cartesian position is sensed. Although
the position is sensed by an external component, we model it as part of the robot
system, since in our context (cf. use-case in Section 5) this is a relevant part of
making the robot system usable.

The implementation-specific part of the robot system is modeled as set of synchronizers
that have to deal with the diverse hardware interfaces for pressure control and sensing,
length sensing and the Vicon system.

1. The PressureSynchronizer connects over the CAN bus to receive pressure values,
writes them to the chamber nodes. It reads pressure commands from the chamber
resource nodes and sends them via CAN to the responsible valves-unit.

2. The LengthSynchronizer accesses the driver of the analog-digital converter PCI
card for reading values of the cable potentiometers at the outside of the bellow
actuators, and writes them to the chamber resource nodes.

3. The ViconSynchronizer runs on a different workstation. It connects to the Vicon
motion tracking server and reads the current end-effector position which are set as
current sensor value in the end-effector node.

4 Technology Mapping

The following section highlights our design decisions for the technology mapping that
we use in order to prove the above abstractions are suitable for applications on the BHA.
The technology mapping includes the implementation of the abstractions in the Robot
Control Interface, a component framework for extending the interface, applications run-
ning on the robot, as well as the middleware for integration and access to the hardware
interfaces.

Software Abstractions for Simulation and Control of a Continuum Robot 119

Fig. 3. Organization of BHA Resource Node instances (blue) and Synchronizer instances (gray).
Note that there are two pressure synchronizers, one for each of the valve units. The first eight
chambers connect to the first valve unit, the ninth chamber is connected to the second valve unit.

4.1 Robot Control Interface

Robot Control Interface is available as C++ library librci, providing interfaces and
base implementations for the abstractions introduced in Section 3. The library includes
a set of domain-specific base interfaces (various...Controlled and ...Sensing
interfaces, as well as generic implementations of its setters and getters. Features that al-
low to apply commands to a node, are expressed in the ...Controlled interfaces,
allowing to set a reference for a certain controller (position, length, pressure, etc.). The
set of Controlled interfaces implemented collectively by all nodes of a robot de-
fines a set of tasks that can be executed by the robot. Features that allow getting status
information from a node, are expressed in the ...Sensing interfaces. The set of
Sensing interfaces implemented by nodes of a robot defines a set of status data that
can be reported by the robot.

Additionally the RCI library provides a collection of domain-types serving as data-
holders with domain-specific manipulation methods, setters and getters. The library will
soon be open-source as part of the European AMARSi project.

4.2 Component Architecture

For implementation of functional components and integrating RCI entities into the ap-
plications, we leverage the Compliant Control Architecture (CCA). CCA is an event-
based, middleware-agnostic component architecture for robotics research, focusing on
(real-time) control of compliant hardware and enabling machine learning. The C++ li-
brary libcca serves as a technology mapping for platforms modeled in RCI and as
component architecture for implementing user applications and the adaption of hard-
ware and simulation interface as later-on described in Section 5.2. An application im-
plemented using CCA is a graph of loosely coupled components which extend the CCA
base component. CCA components possess ports to exchange data between each other
via data-flow. Data in this data-flow graph is represented by domain-types, which spec-
ify the representation of data and provide domain-specific access methods. Data-flow
in CCA can express acyclic as well as cyclic messaging graphs.

For management and coordinated processing of rich component graphs, CCA pro-
vides the concept of ProcessingStrategies. These strategies allow for a loose, input-
driven coupling of nodes, but also for control-loops with tight timing constraints. CCA

120 A. Nordmann, M. Rolf, and S. Wrede

comes with an extendable set of basic strategies, like TimedProcessing, which processes
a component based on a fixed timing, and PortTriggered, which processes a component
triggered by incoming data at a specific input port. Components using timing-based
processing strategies can also be executed in a real-time context, based on the Xeno-
mai Real-Time API. By combining collections of real-time-based components, entire
subgraphs can be executed in real-time context. To ease the construction of subgraphs,
CCA provides a set of static connectivity skeletons (often called algorithmic skele-
tons in parallel computing literature), like pipelines, splitters and collectors. A pipeline
is a set of components with input-driven processing, which processes the entire data
as fast as possible through the sequence of connected components. A splitter takes a
multi-dimensional data-items on its input port and splits it into sub-elements. A col-
lector is collecting and merging incoming low-dimensional data-items to an outgoing
multi-dimensional data item.

4.3 Middleware and Integration

In order to realize the data-flow between CCA components we facilitate the open-source
robotics middleware Robotics Service Bus (RSB [14]). RSB is a lightweight, event-
based, and highly customizable robotics middleware with native implementations in
C++, Java, Python and Common Lisp.

Robotics applications often involve computationally complex modules, especially
applications involving machine learning or complex kinematics modules (e.g. inverse
kinematics for multiple limbs, continuum kinematics). RSB offers local and remote
transports, that can transparently be switched during runtime, allowing CCA compo-
nents to be distributed at runtime over several machines, for example the robot itself,
workstations, as well as computation clusters. CCA components on the same machine
communicate in a fast local inprocess transport, and only communicate with a network
stack if they are distributed over different other workstations. Since type of communica-
tion (remote, local) is configured at runtime, a CCA component graph can be deployed
in an arbitrary configuration across different computing devices.

In this sense RSB also provides an answer to the technical challenges. All involved
hardware interfaces are connected to the system and therefore available for all software
components through the middleware. End-effector positions are streamed from the VI-
CON control PC to the functional components, pressure and length values are bridged
to the CAN bus and IO card respectively.

5 Use Case

In this section we validate the above concepts, that were already proved working on
robot platforms like iCub, Oncilla and KUKA LWR IV, on the continuum robot plat-
form BHA. This provides a first measurement of the conformance of our suggested
API and architecture to compliant robotics and successfully integrated our concepts on
state-of-the-art hardware and simulated robots from the rigid body domain.

A first use-case for working with the BHA is length control. For a reliable posi-
tioning, it is not sufficient to control the pressure alone: Friction, hysteresis and non-
stationarities can cause largely different postures on the BHA when supplying the same

Software Abstractions for Simulation and Control of a Continuum Robot 121

pressure several times. In particular during dynamic movements the pressure is not suf-
ficient to determine the posture or position of the robot, since it only expresses a force
on the actuators. Length control is therefore a central skill for any other task to be
achieved on the robot.

5.1 Length Control on the Real Platform

A naive approach to the control of the actuator lengths would be to consider each actu-
ator in isolation, and adjust the pressure with a standard PID feedback controller until
the desired length is achieved. From a pure control perspective, this approach has two
severe disadvantages:

1. Feedback control can only be done with very low gains on a pneumatic robot due
to long temporal delays in the actuation chain, which corresponds to slow motion.

2. It does not consider the strong mechanical interplay of actuators in the same seg-
ment, which largely influences the pressure necessary to achieve a certain length.

In order to deal with both problems at the same time we use machine learning methods
and estimate models that allow a feedforward control of an entire segment. A length
command, generated by some application, is smoothed by a generic filtering mecha-
nism. This three-dimensional length command is fed both to the learned model and a
generic PID controller, which receives Kalman-filtered feedback about the current ac-
tual lengths. Both controllers output a pressure signal. These signals are added, filtered,
and supplied to the segments as new target pressure.

This length control scenario is realized with a set of – generic as well as rather
platform- and application-specific – CCA components as illustrated in Figure 4.
The chamber nodes are domain-specific implementations for the BHA, while PID-
controllers and various filters are generic components that are reused from other do-
mains. Pressure and length data passed between the components are the domain-types
defined by the Robot Control Interface. The inverse model is a clear platform- and
application-specific component. The integration of this length control scheme uses the
two essential properties of our modeling approach:

Fig. 4. Length control of the Bionic Handling Assistant. For the sake of clarity illustrated for
the first of the three segments only. Resource nodes (segment, chambers) in blue, filters (length,
pressure) in grey, and control components in red.

122 A. Nordmann, M. Rolf, and S. Wrede

1. It uses the hierarchical modeling of segments and chambers and thereby utilizes the
semantical grouping of sensory and command values in a segment abstraction.

2. It adds a LengthControlled interface to the segment, which was previously
only a LengthSensing abstraction and an aggregator for the chamber values.
This interface allows to set three-dimensional target values for the lengths.

Thereby the very fine-grained architectural design facilitates the reuse on component
level which we extensively exploit by using filtering and feedback-control implementa-
tions that were developed in other scenarios.

5.2 Common Interface for Simulation and Hardware

The hierarchical aggregation of lengths into a segment abstraction is even more impor-
tant when pure simulation is considered as alternative to the real robot scenario. We use
an open source implementation [15] of a continuum kinematics model in order to model
the kinematic structure of the BHA. This model assumes that bending and stretching
movements of each robot segment behave like a torus section (see Fig. 5) which allows
to infer the coordinate transformations for the forward kinematics. The model allows
to predict the end-effector position of the BHA based on the actuator lengths with an
accuracy of 1% relative to the robot size [16].

The control of lengths in this scenario is trivial, because they can directly be
“set”. A substantial difference to the real-robot scenario is that single actuators do not
exist. From a mathematical modeling point of view a single actuator is not a valid con-
cept since it does not allow to determine any component of the six-dimensional pose-
transformation involved in one segment. The entire simulation operates on aggregates
of three lengths.

This simulation scenario can directly be described with the existing Robot Control
Interface infrastructure and the abstractions developed for the real-robot as presented in
the previous sections. The segment abstractions are entirely reused from the real-robot
implementation, chambers and controllers are simply left out. The only difference in
implementation is that a new Synchronizer is needed in order to connect segments

Fig. 5. Torus model to simulate BHA‘s kinematic structure (left) and on the basis the 3D visual-
ization of the BHA (right)

Software Abstractions for Simulation and Control of a Continuum Robot 123

and simulation software. Since the segment abstractions entirely decouple the backend-
implementation (Synchronizers) from the application code, it is directly possible
for an application to switch between real-robot and simulation, which is even possible
during runtime.

6 Conclusion

In this paper we discussed the software challenges imposed by continuum robots, based
on our exemplary platform, Festo‘s Bionic Handling Assistant. An analytical approach
to find fine-grained software abstractions based on a feature-oriented domain analysis
and a resulting programming model for robot interfaces were introduced. In the course
of the paper we discussed these software abstractions and our technology mapping, the
Robot Control Interface and the Compliant Control Architecture, along the practical
use-case of length control on the real robot platform and simulation of the Bionic Han-
dling Assistant. The contribution of this paper, the software abstractions, especially the
clear separation of control and sensing aspects, and the hierarchical modeling of seg-
ments and chambers, showed to be helpful and necessary to master these challenges in
a flexible and reusable manner.

The length-control use-case presented in this paper is fundamental to any application
on the robot and has already served as basis for learning of reaching skills [17]. Similar
to length-control, this learning adds a Controllable concept to a previously only
sensible effector position, and has already been exploited in several applications.

Acknowledgements. The research leading to these results has received funding from
the European Community’s Seventh Framework Programme FP7/2007-2013 – Chal-
lenge 2 – Cognitive Systems, Interaction, Robotics – under grant agreement No 248311
- AMARSi.

References

1. Hannan, M.W., Walker, I.D.: Kinematics and the Implementation of an Elephant’s Trunk
Manipulator and Other Continuum Style Robots. Journal of Robotic Systems 20(2), 45–63
(2003)

2. Laschi, C., Mazzolai, B., Mattoli, V., Cianchetti, M., Dario, P.: Design of a Biomimetic
Robotic Octopus Arm. Bioinspiration & Biomimetics 4(1) (2009)

3. Wilson, J.F., Li, D., Chen, Z., George, R.T.: Flexible Robot Manipulators and Grippers: Rel-
atives of Elephant Trunks and Squid Tentacles. In: Robots and Biological Systems: Towards
a New Bionics. NATO ASI, vol. 102, pp. 475–494 (1993)

4. Grzesiak, A., Becker, R., Verl, A.: The Bionic Handling Assistant: A Success Story of Addi-
tive Manufacturing. Assembly Automation 31(4), 329–333 (2011)

5. VICON. Motion Tracking Systems, http://www.vicon.com
6. Branson, D., Kang, R., Guglielmino, E., Caldwell, D.G.: Control Architecture for Robots

with Continuum Arms Inspired by Octopus vulgaris Neurophysiology. In: International Con-
ference on Robotics and Automation, pp. 5283–5288 (2012)

http://www.vicon.com

124 A. Nordmann, M. Rolf, and S. Wrede

7. Nordmann, A., Wrede, S., Tsagarakis, N., Tuleu, A.: Software Interface for Proprioceptive
Sensors and Actuators. Technical report, AMARSi (2010),
http://www.amarsi-project.eu/system/files/AMARSI-D.7.1.pdf

8. Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.: FODA: Feature-Oriented Domain
Analysis (1990)

9. KUKA. Fast Research Interface - Preliminary Documentation. Technical report (2010)
10. The Orocos Project. Open Robot Control Software, http://www.orocos.org/
11. Fitzpatrick, P., Metta, G., Natale, L.: Towards Long-lived Robot Genes. Robotics and Au-

tonomous Systems 56(1), 29–45 (2008)
12. Healthcare Robotics Lab Georgia Tech. force-torque Package,

http://www.ros.org/wiki/force_torque
13. Bubeck, A.: Care-O-bot force-torque Package,

http://www.ros.org/wiki/cob_forcetorque
14. Wienke, J., Wrede, S.: A Middleware for Collaborative Research in Experimental Robotics.

In: International Symposium on System Integration, Kyoto, pp. 1183–1190 (2011)
15. Research Institute for Cognition and Robotics. Software: Continuum Kinematics Simulation,

https://www.cor-lab.org/
software-continuum-kinematics-simulation

16. Rolf, M., Steil, J.J.: Constant Curvature Continuum Kinematics as Fast Approximate Model
for the Bionic Handling Assistant. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (2012)

17. Rolf, M., Steil, J.J.: Efficient Exploratory Learning of Inverse Kinematics on a Bionic Elephant
Trunk. IEEE Transactions on Neural Networks and Learning Systems (submitted, 2012)

http://www.amarsi-project.eu/system/files/AMARSI-D.7.1.pdf
http://www.orocos.org/
http://www.ros.org/wiki/force_torque
http://www.ros.org/wiki/cob_forcetorque
https://www.cor-lab.org/software-continuum-kinematics-simulation
https://www.cor-lab.org/software-continuum-kinematics-simulation

A Visual Modeling Language for RDIS and ROS

Nodes Using AToM3

Paul Kilgo, Eugene Syriani, and Monica Anderson

Computer Science Department, The University of Alabama, Tuscaloosa, AL 35487

Abstract. In robotics we are often faced with the problem of repeatedly
writing robot drivers for the same devices, but different robot frame-
works. In an effort to counter this, a domain specific language for gen-
erating robot drivers was developed. However, descriptions tend to get
verbose fast and the adopted syntax was difficult for programmers. This
paper outlines an attempt to shift away from a textual syntax and toward
a visual syntax, instead relying on the textual syntax to communicate
the model to other tools. In addition, a formalism for defining ROS nodes
is presented and a model transformation for mapping RDIS messages to
ROS messages and vice-versa is created.

1 Introduction

A common workflow for robotic software development is to write robot applica-
tions for specific robot frameworks, which handle the conversion of the messages
used by the framework to the device-specific messages. This is a useful way to
develop software, as it is possible to use an applications written for a specific
framework and re-use them for many types of devices. The framework will man-
age the connection to the robot and may naming services or abstracted access
to the hardware of the robot. Examples of such robot frameworks are Player [5]
and Robot Operating System (ROS) [10]. As a prerequisite, such frameworks
will need some sort of adapter to map the framework-specific messages to the
device-specific messages, or a driver. Such drivers are specific to the particular
permutation of framework and device.

For new frameworks or new robots, this means that one has to create drivers
for popular existing robots or frameworks before many will consider the use of
the platform or device as a possible target for their application. For those wishing
to target a particular device and platform, they are reliant on there existing a
driver already for that device-framework pair. As the number of devices and
frameworks increase, then the work will increase quadratically as there must
exist a driver for each possible pairing of device and framework.

The Robot Device Interface Specification (RDIS) is an effort to solve this
problem. The general goal is to discover the shared abstract concepts which
allow the framework and device to communicate. This goal lends itself to a
large scope as robot software development encompasses a large set of tools,
techniques, and ideas and it is the framework’s goal to cover all of these areas

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 125–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

126 P. Kilgo, E. Syriani, and M. Anderson

and offer a rich API to the application developer. However, there is no one
framework than roboticists decisively use, nor is there a standardized protocol
for communicating with robots. Therefore something must be done to bridge
this gap between framework and device.

Originally, RDIS was implemented as a domain specific language (DSL) us-
ing the parser generator ANTLR and its companion tool for code generation,
StringTemplates [2]. This implementation generated code to support a few dif-
ferent robot-framework pairs. Later, the model was refined with the aim of
supporting a wide variety of robots [1]. The syntax has taken a few different
forms, initially taking form as a properties-like syntax and later converted into
a JavaScript Object Notation (JSON) compatible syntax [4].

While achieving promising results, there are a couple of flaws associated with
this approach. The first is the JSON syntax itself. The general goal in crafting a
DSL is to accelerate the speed of development for the end user. However, one can
quickly find that a JSON-compatible syntax is not the most intuitive language
to craft by hand. However, there is merit in using JSON because of the ease of
use in data exchange, particularly via the network, and the wealth of parsers
which exist for it in a variety of languages.

The operational semantics of the internal RDIS model were also directly
written into the templates, parameterized by the declarative description. While
functional, it was generally thought that loading a description into memory in-
terpreting the description at run-time was a more desirable solution. This is a
better style for modularity and results in more maintainable components.

Finally, there was a huge amount of work involved in maintaining the validator
itself. Extending the validator meant a modification to the grammar and possibly
the feasibly many underlying templates. JSON was also a format ill-suited for
supporting keywords as to maintain JSON-compatible syntax means to make
the keywords indistinguishable from string type data.

RDIS has no notion of how a framework works. Instead, it demands that the
framework itself pass standardized message types into the model and promises to
return messages of a particular type via its output channels. In order to achieve
the goal of interpreting RDIS descriptions in the framework, at some point an
RDIS adapter must be produced for each existing framework. If a generalized
formalism for describing frameworks existed, RDIS could be empowered to gen-
erate its own framework adapters.

However, frameworks vary wildly in their internal messaging systems and
building a generalized formalism for modeling them is a large undertaking. Given
this is not a well-understood task it is acceptable to limit the scope for the
purpose of discovery.

This paper outlines how RDIS has been refined and implemented using model-
driven techniques to create a domain-specific visual modeling language. The
motivation is to remove barriers created by the adopted textual syntax, ground
RDIS in a formal meta-model, and to explore options for code generation of both
RDIS textual descriptions and framework adapters. The tool of choice for this

article is A Tool for Multi-formalism Meta-Modeling (AToM3).

A Visual Modeling Language for RDIS and ROS Nodes Using AToM3 127

The rest of the paper is laid out as follows. Section 2 presents a solution to
the above outlined problems. Section 3 presents an evaluation of the solution.
Section 4 presents some related work. Finally, Section 5 gives some conclusions
for this project and future work.

2 Implementation

A solution to the above problems was implemented using the AToM3 modeling
tool [6] and Python. The implementation provides:

– A modeling formalism for RDIS
– A modeling formalism for ROS
– A model transformation for assigning the mappings between ROS and RDIS
– Code generators for both RDIS textual descriptions and an RDIS-ROS

adapter
– An interpreter for RDIS descriptions

Fig. 1. Flowchart outlining the implementation

Figure 1 shows a flow chart for a general picture of the solution. There are
two meta-models at work: a ROS meta-model and an RDIS meta-model. Valid
instances of each of these meta-models may be fed as inputs into a model trans-
formation which produces a composite ROS-RDIS model which contains the
mappings between each of their message styles. The model produced from this
transformation may then be compiled into a ROS node. Any abstract syntax
graph containing a valid RDIS model may be serialized into an RDIS textual
description.

The rest of this section is divided into subsections which explain how each
component of the solution works in detail.

2.1 The RDIS Formalism

The RDIS formalism seeks to provide an easier way for developers to create
robot descriptions conforming to the RDIS model. Each of the components of
the RDIS model is assigned a visual concrete syntax. Valid model instances can
then be serialized to their equivalent JSON form.

Many of the original model elements outlined in are present in the explained
implementation. However, some of the model was changed during this imple-
mentation. This section gives a higher-level overview of generally how the RDIS

128 P. Kilgo, E. Syriani, and M. Anderson

model works and presents the modeling environment created for RDIS. Inter-
ested readers are referred to a previous paper [1] for more detailed discussion of
the model itself.

The general goal of RDIS is to bridge the gap between framework and de-
vice in a way that is standardized and general for a large number of devices
and frameworks. A specific subgoal of this is the specifically bridge the com-
munication between the framework and device. At a high level, the solution
is to standardize the framework-RDIS interface and the RDIS-device interface,
and connect the two using intra-model message passing. Figure 2 illustrates this
concept.

Given the complex network that can form inside the RDIS layer, this can
be a difficult model to visualize in a text-only environment. A visual modeling
environment can alleviate the work of creating the robot description by allowing
the modeller to visually organize the description, and can offer more helpful
feedback in the event of an error.

Fig. 2. An overview of the RDIS architecture

A formalism for AToM3 was created. An example of the resulting concrete
syntax is demonstrated in Figure 3. The modeling environment offers a wealth
of incremental and compile-time constraints guiding the modeler to create valid
model instances.

The significant advantage of a modeling approach is the ability to visualize the
web of relations between the model components. Previously, in a textual syntax
all of these relations would need to be specified by name. On top of placing the
strain of remembering the names of the model elements on the modeler, this
also introduces the potential for misspellings. A validator would need to check
for broken name references to check if the model is well-formed. However, as the
model will almost always contain circular references, this sort of name validation
must be completed in multiple passes over the input which can be difficult to
implement.

With a modeling approach broken name references are an impossibility be-
cause the correct name of the model element can always be drawn by following

A Visual Modeling Language for RDIS and ROS Nodes Using AToM3 129

Fig. 3. RDIS modeling environment with concrete syntax for an iRobot Create

an edge in the ASG. If no edge exists, a constraint violation may be raised or
that attribute may not be serialized during code generation. Small, incremental
changes may be made quicker because a modeler may locate the component that
needs to be changed based on human heuristics.

2.2 The ROS Formalism

With the robot description formalism created, the next step is to examine how
one might create the adapters which become the framework-RDIS bridge. The
problem becomes simpler when targeting just a specific framework. For the pur-
pose of discovery, this paper focuses on ROS. The reason for the choice of ROS
is because of its recent rise to popularity, growing community, and a communi-
cation model which is easy to grasp.

ROS at its core is a publish/subscribe communication broker. In the follow-
ing sections basic terminology necessary for this solution is presented. A more
complete overview of ROS is available in [10].

ROS Nodes. Nodes are the basic execution unit of ROS. For each instance
of a node in the modeling environment, a node will be generated, sharing a
filename with the model element name as well. A node publishes or subscribes
to different topics. A subscription to a topic means the node will listen to that
topic and react to messages which are inputted via that topic. Publishing to a
topic generally happens periodically (e.g., reading a sensor), or in response to a
message which travels in via one of the subscribed topics.

ROS Topics. Topics are a named data channel. Topics are strongly typed, and
a valid ROS type must be specified for each topic. Topic types may be one of

130 P. Kilgo, E. Syriani, and M. Anderson

the common types shipped with ROS, or it may be a nonstandard, custom type
which only exists for one particular package.

ROS Types. As mentioned previously, topics must have a type. ROS types are
defined via a mini-language so that the ROS types may be generated for many
different languages. A good approach to modeling types should reverse engineer
this model so that any general ROS type could be constructed. This might be
counter-productive as the goal of RDIS is to use standard types on either side of
the framework-RDIS interface. Instead of fully modeling the ROS type system
two particular types were selected. This presents a very constrained modeling
environment. While it is expected that the chosen set is not complete, it is hoped
that a finite set of types on the framework side (and on the RDIS side) as well
such that an adequate number of devices and applications may be supported.

We should take a moment to become familiar with the types used in this
project. Pose is a 6-dimensional data type which describes both position and
orientation in space. Twist is the time derivative of Pose, and it is how ROS
represents a change in position and orientation over time. The second ROS type
modeled in this project is a Boolean, which is a wrapper type for booleans in
the host language.

ROS Modeling Environment. Each of these model elements was assigned

a concrete syntax for use in AToM3. The result is a modeling formalism for
generating skeletons of ROS nodes in that enough information is present to
define the subscriptions and publications for a given node, but the actions that
must be taken in response cannot be generated. The modeling environment is
shown in Figure 4.

The formalism is not helpful until its relationship to the RDIS model is de-
fined. This may be done using a model transformation.

2.3 ROS-RDIS Model Transformation

A model transformation which defines the bindings for RDIS domain interfaces
and domain outputs to ROS publishers and subscribers has been created. It
takes as input a ROS skeleton node model and a full, valid RDIS model and
maps subscribed topics of the ROS type Twist and creates a mapping to domain
interfaces which accept a Differential Speed. Differential Speed is just a special
case of Twist where one linear component and one angular component are needed
to describe motion.

Similarly, we can define a mapping between Range and Boolean. Range offers
a one-dimensional (later in higher dimensions) view of how far ahead an obstacle
is. For bumper type sensors this is a boolean type view, but for more advanced
laser systems one can measure an actual distance to the object. We define when
an object is colliding with the robot, the range on the operative sensor should
be zero. If an application only needs to know if the robot has bumped into
something, and it is subscribing to a Boolean-type topic with the expectation

A Visual Modeling Language for RDIS and ROS Nodes Using AToM3 131

Fig. 4. ROS modeling formalism with an example skeleton node

that the message will be provided, we can map a Range on a domain output to
that topic by a logical comparison of the Range value to zero.

The output model of this transformation then has enough information to fully
generate a ROS node.

2.4 Code Generators

Code generation is the ultimate goal of the project. There are two artifacts to
generate: a textual RDIS description and a ROS node. Two different strategies
are adopted for each due to the nature of the artifact generated.

RDIS Code Generator. An RDIS description is a declarative description for
a robot’s communication model. Given that it is declarative, it can have a very
natural correspondence to a data structure in computer memory. Because of this,
the context object pattern of code generation is adopted.

Python has a built-in JSON serializer (the jsonmodule) which natively knows
how to serialize dictionaries and lists to their equivalent JSON types. The strat-
egy used for code generation in the solution is to make a pass over the input

AToM3 abstract syntax graph and build a context object using simple Python
types. At the end of the pass, the context object is then serialized to an output
file.

Listing 1.1 shows an example of the generated textual syntax for a Primitive
from the iRobot Create robot. A couple of the differences between the abstract
syntax and the textual syntax may be seen. The primitive-connection relation
for instance is not represented by the containment of a connection by a primitive,
but rather a by-name reference to the connection.

132 P. Kilgo, E. Syriani, and M. Anderson

1 {

2 "postActions ": [

3 "bumperStates = __out__ [0]"

4],

5 "name": "bumpers",

6 "formatArgs ": [

7 " <142>",

8 "<7>"

9],

10 "connection ": "btserial",

11 "unpack": "B",

12 "pack": "BB"

13 }

Listing 1.1. An example of a generated primitive

2.5 ROS Code Generator

A ROS node is also generated. A ROS node may currently be in C++ or Python;
this solution generates ROS nodes in Python. A context object approach would
then not be appropriate. A template-based code generation scheme works quite
well. The benefit for this is that the templates can be easily changed without
modification to the code generation module itself. However one then must main-
tain templates for many types of frameworks.

Listing 1.2 demonstrates a callback generated for a subscribed topic which
receives a Twist object. The goal is to map the Twist object into its equivalent
Differential Speed message. The RDIS interpreter accepts dictionaries containing
the name-value pairs it expects to see in a Differential Speed as its argument.
The code generator will pull the expressions from the Differential Speed adapter
in the abstract syntax, overwrite the key in the dictionary which shares the name
of each attribute with the result of the expression that attribute is tied to, and
call the relevant domain interface.

1 def setSpeed_callback (data):

2 global gModel

3
4 angular =(data.angular.x, data.angular.y, data.angular.z)

5 linear=(data.linear.x, data.linear.y, data.linear.z)

6
7 env = dict ()

8 env["angular"] = angular

9 env["linear"] = linear

10
11 env["angular"] = rdis .safeEval("<angular [0]>", env)

12 env["linear"] = rdis.safeEval("<linear[0]>", env)

13
14 gModel.callDomainInterface ("set_velocity ", env)

Listing 1.2. Example of a generated callback for a subscribed topic

A Visual Modeling Language for RDIS and ROS Nodes Using AToM3 133

2.6 RDIS Interpreter

For this solution, an interpreter was written in Python. The interpreter is derived
heavily from the meta-model in the design of the modeling environment with
each major entity having a Python class describing its operational semantics
with respect to its instance variables.

The interpreter was written because previously there were no existing tools
for RDIS besides a parser and several accompanying templates. However, the
syntax and model had changed greatly over the scope of the project, so this
solution opted not to use the original parser. Instead, a custom parser was written
specifically for constructing the model in Python.

Since model has been serialized to JSON, stock parsers may be used to load the
model from its abstract syntax. Validation is not implemented in the interpreter.
This is because the focus of the solution is to generate valid inputs for the
interpreter rather then the interpreter verifying the input. The focus is more on
the model than it is the textual syntax. As a sanity check, the interpreter can
execute the model and the result may be observed for validity.

Interpretation is simply a series of intra-model message passing. On the side
of the framework one has the option of which domain interface to call. The
model will decide which primitives to call as a result. Similarly, after executing
a local interface, the model will decide if it needs to invoke a domain output
which eventually invokes a framework-side callback with an RDIS message on
its payload.

Eventually, the model will need its own internal threads, but this is not im-
plemented at present. The reason for this need is calling periodic interfaces and
the keepalive interface.

3 Evaluation

This section presents an evaluation of the performance of the model-driven
means of creating robot drivers as opposed to the traditional method. Modeling
speedup, maintainability, and limitations will be addressed.

3.1 Modeling Speedup

The speed of modeling is the most significant gain in this method. A developer
who is familiar with the model, modeling tool, and the device can generate an
initial description in well less than an hour. If the generation target filename is
set up correctly, incremental changes can be made quickly, redeployed, and tested
at greater efficiency. The developer will spend most of his or her time refining the
mappings between framework messages and RDIS messages, which is the desired
outcome. Where the alternative is manually creating an RDIS description in a
text editor with no feedback, the model editor is the clear winner.

Some drawbacks to this method is that the model used is not one which is uni-
versally understood by robot software developers. As well, most robot software

134 P. Kilgo, E. Syriani, and M. Anderson

developers will be more accustomed to hand-crafted code rather than code gen-
eration. Finally, communication models are not normally described declaratively,
but rather in a general-purpose programming language. So, any model-based ap-
proach would seem very foreign to a robot software developer, and would take
some time to be adopted by the community as a whole.

For generating ROS nodes the speedup may not be so noticeable. This may
be due to the way that the transformation is defined. There is a very clear
constructive mapping from an RDIS description to an equivalent ROS node.
The current solution requires an explicit design of a ROS node. A better solution
might generate the subscriptions by discovery at runtime of domain interfaces
or domain outputs, and a static mapping of ROS types to RDIS types and vice-
versa. Another possible solution is designing a transformation which creates ROS
instance models from an RDIS description.

3.2 Maintenance and Refactoring

Assuming a static meta-model, long term maintenance should be achievable.
If changes within the device specifications occur, then those changes should
not often propagate beyond just one model component. As an example, if the
Create’s “read bumpers” primitive changed from returning one byte to two, then
only that primitive’s unpack string and post-actions would need to be modified.

Trouble might arise from changes in the meta-model. The addition of types of
model elements could be supported without much trouble. A large-scale refac-
toring would invalidate all current model instances and a transformation would
need to be defined to recover them. The main problem would be with the inter-
preter. The operational semantics of RDIS are currently not modeled, so keeping
the interpreter synchronized would be an issue. As well the code generators are
not modeled, so they would have to be changed by hand.

3.3 Limitations and Assumptions

RDIS is currently limited to describing disconnected devices which are controlled
via some transport. Only robots which use fixed width messages can be modeled.
Robot systems which are in part heterogeneous (e.g., an having an attachment)
may work in its current state but remain untested. Threading is still an unsolved
issue.

Some assumptions are made which make RDIS possible in concept. The first
of which is that a finite set of framework-RDIS messages exists such that a good
portion of robot applications can be supported. There is still research to be done
in the categorization of messages which may travel between the robot and the
framework.

4 Related Work

There is a small community within the modeling world who work specifically
with modeling robots. It is first worth mentioning that the Object Management

A Visual Modeling Language for RDIS and ROS Nodes Using AToM3 135

Group has some standards [7–9] which their Robotics Domain Task Force has
highlighted as relevant to the robotics domain. These standards are not in wide
use to the author’s knowledge.

The Eclipse Modeling Framework (EMF) has been used to generate code for
several robotic frameworks [11]. Members of the same group have also created
a meta-model for the analysis of robot systems [13]. In the former project, the
primary difference in the approach that this solution takes is that the model is
not interpreted; it is compiled.

Another researcher modeled a subsumption architecture and was able to gen-
erate code for robots as well [14]. Subsumption is an architecture type for robots
dealing with the behavior of robots. RDIS does not deal at all with behavior,
and assumes that the behavior unit is wholly separate of the communication
model.

Outside of pure modeling, there are several domain-specific languages which
are tailored for robot control [3, 12]. These languages offer an enriched syntax
for defining robot behavior as well. They do not solve the problem defined in
this paper as they depend on an external module to actually handle the message
passing.

5 Conclusion

The problem of creating drivers for pairs of robots and frameworks is significant
and if left unchecked will leave the robotics community littered with incompat-
ible combinations of devices and frameworks. RDIS models the communication
between framework and device and vice-versa. When formalized it can generate
code for a variety of platform-device pairs. Previously, RDIS was thought of as a
domain specific language and adopted a JSON syntax. However, the tools were
difficult to maintain, and there was no editor for the DSL; and the constrained
syntax made it difficult to write descriptions for. This solution puts more empha-
sis on the model and treats the textual syntax as a compiled form of the model.
The result is improved creation of RDIS textual description. The solution also
demonstrates the possibility of compiling ROS nodes from an RDIS model.

There are still many flaws in the current implementation. Threading is largely
ignored. Fixed-width messages can only be modeled. ASCII-encoded messages
have not been tested. Periodic interfaces are not considered in the interpreters,
and as well scheduling is not handled in the interpreter. Also, more attention
should be given to the compile-time constraints so that no invalid RDIS textual
descriptions may be generated.

Future work lies defining the set of domain interfaces and domain outputs.
This is an essential assumption of RDIS so it is important these are defined and
standardized. More work will be done in the coming months in the specification
of the physical construction and kinematics of robots. Even then RDIS is not
complete. More work needs to be done in the enhancement of robot state, ex-
ception handling, sensor and actuator error modeling, and improved modeling
of threading in addition to that outlined above.

136 P. Kilgo, E. Syriani, and M. Anderson

References

1. Anderson, M., Kilgo, P., Bowman, J.: RDIS: Generalizing domain concepts to
specify device to framework mappings. In: International Conference on Robotics
and Automation (May 2012)

2. Anderson, M., Kilgo, P., Crawford, C., Stanforth, M.: Work in progress: En-
abling robot device discovery through robot device descriptions. In: 2nd Interna-
tional Workshop on Domain-Specific Languages and Models for ROBotic Systems
(September 2011)

3. Baillie, J.C.: URBI: towards a universal robotic low-level programming language.
In: IEEE International Conference on Robotics and Automation (2007)

4. Crockford, D.: The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627 (Informational) (July 2006),
http://www.ietf.org/rfc/rfc4627.txt

5. Gerkey, B.P., Vaughan, R.T., Howard, A.: The player/stage project: Tools for
multi-robot and distributed sensor systems. In: Proceedings of the 11th Interna-
tional Conference on Advanced Robotics, pp. 317–323 (2003)

6. de Lara, J., Vangheluwe, H.: AToM3: A Tool for Multi-formalism and Meta-
modelling. In: Kutsche, R.-D., Weber, H. (eds.) FASE 2002. LNCS, vol. 2306,
pp. 174–188. Springer, Heidelberg (2002),
http://dx.doi.org/10.1007/3-540-45923-5_12

7. OMG: Robotic Technology Component (RTC) 1.0. Tech. rep., Object Management
Group (April 2008)

8. OMG: Super Distributed Object (SDO) 1.1. Tech. rep., Object Management Group
(October 2008)

9. OMG: Robot Localization Service (RLS) 1.0. Tech. rep., Object Management
Group (February 2010)

10. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A.: ROS: an open-source robot operating system. In: Proc. Open-
Source Software workshop of the International Conference on Robotics and Au-
tomation, ICRA (2009)

11. Schlegel, C., Hassler, T., Lotz, A., Steck, A.: Robotic software systems: From
code-driven to model-driven designs. In: International Conference on Advanced
Robotics, ICAR 2009, pp. 1–8 (June 2009)

12. Schultz, U., Christensen, D., Stoy, K.: Automatic program generation for embedded
systems. In: Proceedings International Conference on Advanced Robotics, ICAR
2009, pp. 28–36 (October 2007)

13. Steck, A., Schlegel, C.: Towards quality of service and resource aware robotic sys-
tems through model-driven software development. CoRR abs/1009.4877 (2010)

14. Trojanek, P.: Model-driven engineering approach to design and implementation
of robot control system. In: 2nd International Workshop on Domain-Specific Lan-
guages and Models for ROBotic Systems (2011)

http://www.ietf.org/rfc/rfc4627.txt
http://dx.doi.org/10.1007/3-540-45923-5_12

PRACSYS: An Extensible Architecture
for Composing Motion Controllers and Planners

Andrew Kimmel, Andrew Dobson, Zakary Littlefield,
Athanasios Krontiris, James Marble, and Kostas E. Bekris�

Computer Science Department, Rutgers University, Piscataway, NJ, 08554, USA
kostas.bekris@cs.rutgers.edu

Abstract. This paper describes a software infrastructure for developing con-
trollers and planners for robotic systems, referred here as PRACSYS. At the core
of the software is the abstraction of a dynamical system, which, given a control,
propagates its state forward in time. The platform simplifies the development of
new controllers and planners and provides an extensible framework that allows
complex interactions between one or many controllers, as well as motion plan-
ners. For instance, it is possible to compose many control layers over a physical
system, to define multi-agent controllers that operate over many systems, to eas-
ily switch between different underlying controllers, and plan over controllers to
achieve feedback-based planning. Such capabilities are especially useful for the
control of hybrid and cyber-physical systems, which are important in many ap-
plications. The software is complementary and builds on top of many existing
open-source contributions. It allows the use of different libraries as plugins for
various modules, such as collision checking, physics-based simulation, visual-
ization, and planning. This paper describes the overall architecture, explains im-
portant features and provides use-cases that evaluate aspects of the infrastructure.

1 Introduction

Developing and evaluating control or motion planning methods can be significantly
assisted by the presence of an appropriate software infrastructure that provides basic
functionality common among many solutions. At the same time, new algorithms should
be thoroughly tested before applied on a real system. Physics-based simulation can as-
sist in testing algorithms in a more realistic setup so as to reveal information about the
methods helpful for real world application. These realizations have led into the develop-
ment of various software packages for physics-based simulation, collision checking and
motion planning for robotic and other physical systems, such as Player/Stage/Gazebo
[1], OpenRAVE [2], OMPL [3], PQP [4], USARSim [5]. At the same time many re-
searchers interested in developing and evaluating controllers, especially for systems
with interesting dynamics, often utilize the extensive set of Matlab libraries.

There are numerous problems, however, which require the integration of multiple
controllers or the integration of higher-level planners with control-based methods. For
instance, controlling cyber-physical systems requires an integration of discrete and

� This work has been supported by NSF CNS 0932423. Any conclusions expressed here are of
the authors and do not reflect the views of the sponsor.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 137–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

138 A. Kimmel et al.

continuous reasoning, as well as reasoning over different time horizons. Similarly, a
problem that has attracted attention corresponds to the integration of task planners with
motion planners so as to solve challenges that are more complex than the traditional Pi-
ano Mover’s Problem. At the same time, interest is moving towards higher-dimensional
and more complex robotic platforms, including humanoid systems and robots with com-
plex dynamics.

This work builds on top of many existing contributions and provides an extensible
control and planning framework that allows for complex interactions between different
types of controllers and planners, while simplifying the development of new solutions.
The focus is not on providing implementations of planners and controllers but defining
an environment where new algorithms can be easily developed, integrated in an object-
oriented way and evaluated. In particular, the proposed software platform, PRACSYS1,
offers the following benefits:

• Composability: PRACSYS provides an extensible, composable, object-oriented ab-
straction for developing new controllers and simulating physical systems, as well as
achieving the integration of such solutions. The interface is kept to a minimum so as
to simplify the process of learning the infrastructure.

• Ease of Evaluation: The platform simplifies the comparison of alternative methods
with different characteristics on similar problems. For instance, it is possible to eval-
uate a reactive controller for collision avoidance against a replanning sampling-based
or search-based approach.

• Scalability: The software is built so as to support lightweight, multi-robot simula-
tion, where potentially thousands of systems are simulated simultaneously and where
each one of them may execute a different controller or planner.

• New Functionality: PRACSYS builds on top of existing motion planning software.
In particular, the OMPL [3] library focuses on single-shot planning but PRACSYS
allows the use of OMPL algorithms on problems involving replanning, dynamic ob-
stacles, as well as extending into feedback-based planning.

• ROS Compatibility: The proposed software architecture is integrated with the
Robotics Operating System (ROS) [6]. Using ROS allows the platform to meet a
standard that many developers in the robotic community already utilize. ROS also
allows for inter-process communication, through the use of message passing, service
calls, and topics, all of which PRACSYS takes advantage of.

• Pluggability: PRACSYS allows the replacement of many modules through a plugin
support system. The following modules can be replaced: collision checking (e.g.,
PQP [4]), physics-based simulation (e.g., Open Dynamics Engine [7]), visualization
(e.g., OpenSceneGraph [8]), as well as planners (e.g., through OMPL [3]) or con-
trollers (e.g., Matlab implementations of controllers).

After reviewing related contributions, this paper outlines the software architecture and
details the two main components of PRACSYS, simulation and planning. The paper
also provides a set of use-cases that illustrate some of the features of the software in-
frastructure and gives examples of various algorithms that have been implemented with
the assistance of PRACSYS.

1 SourceForge package: http://sourceforge.net/projects/pracsys/

http://sourceforge.net/projects/pracsys/

PRACSYS Software for Motion Control and Planning 139

2 Related Work

The Robot Operating System (ROS) [6] is an architecture that provides libraries and
tools to help software developers create robot applications. It provides hardware ab-
stractions, drivers, visualizers, message-passing and package management. PRACSYS
builds on top of ROS and utilizes its message-passing and package management. ROS
was inspired by the Player/Stage combination of a robot device interface and multi-
robot simulator [9]. Gazebo is focusing on 3D simulation of multiple systems with
dynamics [1]. PRACSYS shares objectives with Gazebo but focuses mostly on a control
and planning interface that is not provided by Gazebo.

There is a series of alternative simulators, such as USARSim [5], the Microsoft
Robotics Developers studio [10], UrbiForge [11], the Carmen Navigation Toolkit [12],
Delta3D [13] and the commercial package Webots [14]. Most of these systems focus
on modeling complex systems and robots and not on defining a software infrastructure
for composing and integrating controllers and planners for a variety of challenges.

Other software packages provide support for developing and testing planners. For in-
stance, Graspit! [15] is a library for grasping research, while OpenRAVE [2] is an open-
source plugin-based planning architecture that provides primitives for grasping and
motion planning for mobile manipulators or full-body humanoid robots. The current
project shares certain objectives with tools, such as OpenRAVE. Nevertheless, the def-
inition of an extensible, object-oriented infrastructure for the integration of controllers,
as well as the integration of planners with controllers to achieve feedback-based plan-
ning, are unique features of PRACSYS. Furthermore, multiple aspects of OpenRAVE,
such as the work on kinematics, are complementary to the objectives of PRACSYS and
could be integrated into the proposed architecture. The same is true for libraries fo-
cusing on providing prototypical implementations of sampling-based motion planners,
such as the Motion Strategy Library (MSL) [16] and the Open Motion Planning Library
(OMPL) [3]. In particular, OMPL has already been integrated with PRACSYS and is used
to provide concrete implementations of motion planners. The proposed infrastructure,
however, allows the definition of more complex problems than the typical single-shot
motion planning challenge, including problems like replanning.

Fig. 1. Package interactions. ROS nodes communicate via message passing: simulation, visual-
ization, and planning. The common and utilities packages are dependencies of the previous three.

140 A. Kimmel et al.

3 General Architecture of PRACSYS

The proposed architecture is composed of several modules, following the architecture
of the Robotic Operating System (ROS) [6]. ROS’s architecture has separate nodes
launched as executables which communicate via message passing and are organized
into packages and stacks. A package is a collection of files, while a stack is a collection
of such packages. PRACSYS is a stack and each node launched from PRACSYS is asso-
ciated with a single package. PRACSYS also allows developers to integrate additional
plugins into the architecture. There are three packages which run as nodes: the simula-
tion, planning, and visualization packages. See Figure 1 for a visual representation of
the interactions between different packages of PRACSYS. The advantage of having sep-
arate nodes is that it makes the jump to distributed computation such as on a computing
grid easier.

The common package contains some useful data structures, as well as mathematical
tools. The utilities package contains useful algorithms, such as graph search, as well
as abstractions for planning. Both the common and utilities packages use the Boost2

library to facilitate efficient implementations.
The higher-level packages include simulation, visualization, and planning. The sim-

ulation package has common and utilities as dependencies, while it is responsible for
simulating the physical world in which the agents reside and contains integrators and
collision checking. The same package also contains many controllers which operate
over short time horizons. Controllers are part of the main pipeline and are not in the
planning package because they only operate over a single simulation step. The planning
package is primarily concerned with controlling agents over a longer horizon, using the
simulation package internally. The visualization package provides an interface between
the user and the simulation, such as selecting agents and providing manual control.
The state of systems simulated in the planning package can be different than the state
in the ground truth simulator, which is useful for applications such as planning under
uncertainty.
PRACSYS makes use of a package for loading simulations from files YAML [17]

format. There is also a set of dependencies to external software packages, such as the
Approximate Nearest Neighbors library [18].

The following discussion details the capabilities of these packages, starting with the
most fundamental of the three: the simulation package.

4 Description of the Packages

This section discusses the different packages of PRACSYS in further detail.

4.1 Ground-truth Simulation and Controller Architecture

The simulation package is the primary location for the development and testing of new
controllers, and contains a set of features which are useful for developers. The follow-
ing sections will go over each of these features individually.

2 Boost is a set of libraries that extend the functionality of the C++ programming language.

PRACSYS Software for Motion Control and Planning 141

Fig. 2. A view of the class inheritance tree for the PRACSYS system. All classes are abstract, with
the exception of the switch controller and the three concrete simulator classes.

Fig. 3. The core interface of a system:
x and x′ are states, while u is a control

Composability. The simulator contains several
classes which are interfaces used for the develop-
ment of controllers. The fundamental abstraction
is the system class - all controllers and plants are
systems in PRACSYS, as shown in Figure 2. This
functionality allows for other nodes, such as plan-
ning, to reason over one or more systems without
knowing the specifics of the system. The interface
is the same whether planning happens over a phys-
ical plant or a controlled system, which simplifies
feedback-based planning.

The interaction between systems is governed by
the pipeline shown in Figure 3, which ensures that
every system properly updates its state and con-
trol. The functions in the pipeline are responsible
for the following:
copy state: receive a state from a higher-level sys-
tem, potentially manipulate this state, and pass it
down to lower-level systems.
copy control: receive a control from a higher-level system, potentially manipulate this
control, and pass it down to lower-level systems.
propagate: propagates a system according to its dynamics (if it is a plant), or sends a
propagate signal down to lower-level systems (if it is a controller).
get state: receives the state from a lower-level system. This allows higher-level systems
to query for the full state of the simulation.

The system class uses the space abstraction, which provides a way for users to define
abstract spaces in a general way, allowing for scopes beyond a Euclidean space. A space
is a box constrained region in n dimensions where each dimension can be Euclidean,
rotational, or one component of a quaternion. The abstraction automatically provides a
way to compute metrics between different points within the space. A space point stores

142 A. Kimmel et al.

the parameters of each dimension of the space, and can be used to represent states and
controls in the system class.

Note that a system does not need to get controls from lower-level systems. The system
class contains other functions, which primarily fall under the categories of initialization,
set functions, and get functions. Systems are broken into: physical plants, obstacles and
controllers. Physical plants are responsible for simulating the physical agents and how
they move through the environment. They store geometries and have functionality to
update their configurations based on states set through copy state. Furthermore, physical
plants are governed by state-update equations of the form ẋ = f (x,u) implemented by
the propagate function.

Controllers are classified into four major types: simple, stateful, composite, and
switch. These are classes that extend the abstract controller class. A simple controller
contains a single subsystem, which is most often the plant itself, but can also be another
controller. Simple controllers are useful for creating a chain of controllers, allowing
for straightforward compositions. A controller which computes a motion vector along
a potential field for a holonomic disk system is an example of a simple controller on
top of a physical plant. In more complex compositions, controllers will also have the
need to keep an internal state, separate from its subsystem. A stateful controller al-
lows for an internal state, and one such example of a stateful controller is the consumer
controller. The consumer controller simply supplies controls to its subsystem from a
pre-computed plan, where its state is the point in time along the plan to extract the con-
trol. Composite controllers, which can have many subsystems, provide the necessary
interface for controlling multiple subsystems. The simulator, for example, which is re-
sponsible for propagating systems, is a composite controller containing all controllers
and plants. The final major type of controller is the switch controller, which behaves
quite similar to a C/C++ switch statement. A switch controller operates over an internal
controller state, called a mode, which determines which of its subsystems is active. For
example, a switch controller could be used to change the dynamics being applied to a
plant depending if it was in a normal environment or an icy environment, in which case
an inactive slip-controller would be “switched” active. Developing controllers which
utilize these archetypes allows for an easy way to create more complex interactions.

High-Level simulation Abstractions. In addition to the system abstraction, there are
several high-level abstractions which give users additional control over the the simula-
tion. One such abstraction is the collision checking abstraction, which consists of an
actual collision checker and a collision list. The collision list simply describes which
pairs of geometries should be interacting in the simulation, while the collision checker
is actually responsible for performing the checks and reporting when geometries have
come into contact. The simulator is an extension of the composite controller, but it has
additional functionality and has the unique property of always being the highest-level
system in the simulation. The abstraction which users are most likely to change is the
application. The application class contains the simulator and is responsible for defining
the type of problem that the user wants to solve.

PRACSYS Software for Motion Control and Planning 143

Interaction. The simulation node can communicate with other nodes viaROSmessages
and service calls. For example, moving a robot on the visualization side involves a ROS
service call. Similar to how a propagate signal is sent between systems, an update sig-
nal is used to change geometry configurations. Once all systems have appended to this
update signal, a ROS message is constructed from it and sent to visualization in order
to actually move the physical geometry. For non-physical geometries, such as additional
information of a system (i.e., a robot could have a visualized vector indicating its direc-
tion), each system is responsible for making the appropriate ROS call. If a user needs
additional functionality and interaction between the nodes, they only need to implement
their function in the communication class and create the appropriate ROS files.

Plugin Support. Adding a new physics engine as a plugin simply involves extending
the simulator, plant, obstacle, and collision checker classes. If a user does not require the
use of physics-based simulation, they can simply disable this functionality by omitting
it from the input configuration file. For collision checking,PRACSYS currently provides
support for PQP, as well as the use of no-collision checking. Similarly, if a user would
like to add a new collision checker, they only need to extend the collision checking class.

4.2 Planning

The planning package is responsible for determining sequences of controls for one or
many agents over a longer horizon than a single simulation step. This excludes meth-
ods which use reactive control. Furthermore, planning also reasons over higher-level
planning processes, such as task coordination. The planning package is divided among
several modules in order to accomplish these tasks. The high-level task coordination is
provided by task planners, which contain motion planners for generating sequences of
controls given a world model. The world model is a system with a simulator as a sub-
system and is responsible for providing information to the planners about the state of
the simulator as well as providing additional functionality. The motion planners are the
individual motion planning algorithms which compute controls. The current version of
PRACSYS has certain sampling-based motion planners implemented, which use some
basic modules to accomplish their specified tasks, including local planners and validity
checkers. PRACSYS also integrates existing motion planning packages such as OMPL
by providing an appropriate interface. OMPL is a software package developed for plan-
ning purposes [3]. The current focus of the planning package has been sampling-based
methods; however, it is not limited to these types of planners and can easily support
search-based or combinatorial approaches.

High-Level Abstractions. All of the abstractions described in this section interact
according to Figure 4.

Task planners are responsible for coordinating the high-level planning efforts of the
node. Task planners contain at least one instance of a motion planner and use planners
to accomplish a given task. Ultimately, the goal of planning is to come up with valid

144 A. Kimmel et al.

trajectories for one or many systems, which bring them from some initial state to a goal
state, but the task planner may be attempting to accomplish a higher-level task such
as motion coordination. In this sense, the task planners are responsible for defining
the objective of the planning process, while the motion planners actually generate the
plan. One example is the single-shot task planner, which allows a planner to plan until
it has computed a path to a specified goal. Then the single-shot task planner forwards
the plan to the simulation node. Other tasks include single-shot planning, replanning,
multi-target planning and velocity tuning or trajectory coordination among multiple
agents.

Fig. 4. The general structure of the planning
modules. The task planner contains multiple
motion planners. The task planner also con-
tains a world model and communicates with
the simulation node.

A World Model represents the physical
world as observed or known to the plan-
ner, and also extends the system abstrac-
tion. A world model contains a simulator as
a subsystem, exposing the functionality of
the simulator to the motion planners. World
models can be used to hide dimensions of
the state space from the motion planners, in-
troduce and model the uncertainty an agent
has about its environment, or removing cer-
tain agents from collision checking. Having
the capability to remove dimensions from the
state space is useful for planning purposes
because the planning process has complexity
which depends on the dimensionality of the
space. This reduction will make the planning
process more efficient, and is related to being able to remove some systems from colli-
sion checking. These two functions together allow a full simulation to be loaded, while
allowing planning to plan for agents individually in a decoupled manner for greater
efficiency.

Motion planners are responsible for coming up with trajectories for individual or
groups of agents. The flexibility of PRACSYS allows for planners to easily be changed
from performing fully decoupled planning to any range of coupling, including fully
coupled problems. Motion planners employ a set of black-box modules, which may
have a wide variety of underlying implementations. Furthermore, because of the flexi-
bility of the system class, planners can plan over controllers as well. In this case, plan-
ners are essentially able to create trajectories through parameter space of controllers.
The sampling-based planners in PRACSYS make use of four modules: local planners,
samplers, distance metrics, and validity checkers. The distance metric module and the
sampler module are provided by the utilities package.

Sampling-Based Motion Modules Local planners propagate the agents according to
their dynamics. PRACSYS offers two basic types of local planners, an approach local
planner which uses a basic approach technique to extend trajectories toward desired
states, and a kinematic local planner which connects two states exactly, but only works
for agents which have a two-point boundary problem solver and kinematic agents.

PRACSYS Software for Motion Control and Planning 145

Validity checkers provide a way to determine if a given state is valid. The most basic
implementation of a validity checker, which is provided with PRACSYS simply takes
a state, translates it into its geometrical configuration, and checks if there is a collision
between the geometry of the agents and the environment.

Samplers are able to generate samples within the bounds of an abstract space. Dif-
ferent samplers will allow for different methods of sampling, such as uniform randomly,
or on a grid.

Distance metrics are responsible for determining the distance of points in a space.
These modules may use simple interpolating methods or may be extended to be more
complex and take into account invalid areas of the space.

Interaction. The planning package communicates primarily with simulation. A plan-
ning node can send messages to the simulation such as computed plans for the agents.
The planning package can further send trajectory and planning structure information to
visualization so users can see the results of an algorithm. The planning node also re-
ceives control signals from the simulation node, such as when to start planning. Because
of the plugin system of PRACSYS, a simple wrapper is provided around the existing
OMPL implementation in order to utilize the OMPL planners within PRACSYS.

4.3 Visualization

The visualization node is responsible for visualizing any aspect needed by the other
nodes. Users interact with the simulation environment through the visualization. This
includes, but is not limited to, camera interaction, screen shots and videos, and robot
tracking. The visualization provides an interface to develop alternative implementa-
tions, in case users do not want to use the provided implementation based on Open
Scene Graph (OSG) [8].

4.4 Other PRACSYS Packages

The remaining packages provide functionality useful across the infrastructure, such as
geometric calculations, configuration information, and interpolation. An important con-
cept is the idea of a space as provided by the utilities package, which was described
earlier in Section 4.1. The input package is an optional package which includes sample
input for use with PRACSYS. Configuration files are in YAML or ROS .launch format.
PRACSYS also comes with an external package for carrying along external software
packages, such as the Approximate Nearest Neighbors (ANN) package [18], which is
useful for motion planning.

5 Use-Cases

This section provides specific examples of the features offered by PRACSYS.

146 A. Kimmel et al.

(a) (b)

Fig. 5. Figure on the left shows a plot of simulation steps vs number of plants, figure on the right
shows 3000 plants running in the environment

5.1 Showing Scalability for Multiple Agents

Scalability is important for simulation environments in which multiple agents are to be
simulated at once. The PRACSYS system structure was designed with multi-agent sim-
ulation in mind. Given a very simple controller, multiple physical plants were simulated
and the time for a simulation step was tracked against number of agents, as shown in
Figure 5. The trend shows a linear increase in simulation step duration with the num-
ber of agents, even with simulations of thousands of agents. The Velocity Obstacle
(VO) Framework was introduced as a lightweight reactive obstacle avoidance technique
[19]. The basic VO framework as well as several extensions have been implemented in
PRACSYS and have also been used in large-scale experiments.

5.2 Planning Over Controllers Using LQR Trees

Through a C/C++ interface to Octave and its control package [20], PRACSYS can
utilize the optimal control guarantees of linear quadratic regulators (LQR). Octave is
an open-source Matlab clone. In this way, PRACSYS can run software developed in
Matlab with little effort for the conversion. An implementation of LQR-Tree has been
developed in PRACSYS [21]. This algorithm is a prototypical example of “planning
over controllers” so as to provide feedback-based solutions. The created LQR-Tree is
sent to the simulation node for execution. The process of incorporating the LQR code
into PRACSYS took a matter of minutes.

The LQR-Tree is built incrementally similarly to the Rapidly-exploring Random
Tree algorithm (RRT) and its variants. It computes an LQR that is based around the
goal region, and then using sampling trajectories until new basins can be created us-
ing time-varying LQR over trajectories which enter existing basins. The technique has
been shown to probabilistically cover the space, and stores a full description of the LQR
controller used to create the basin of attraction at each tree node.

The planning node can send the controller information to the simulation node. This
implementation illustrates the use of LQR controllers inside a planning structure. With
this kind of framework, many more complex applications can be implemented and stud-
ied. This also shows the integration of a high-level language, primarily intended for
numerical computations into PRACSYS.

PRACSYS Software for Motion Control and Planning 147

5.3 Controller Composition in Physics-Based Simulation

PRACSYS offers a unique capability of composing systems. This scheme gives users
flexibility by allowing the decomposition of individual steps into separate controllers,
so that they can be reused and re-combined to create new functionality.

Fig. 6. A visual representation of the controller com-
position for controlling a bipedal robot

For example, the framework given
in the SIMBICON project [22], in
which controllers are created for
controlling bipedal robots has been
implemented in PRACSYS. The hi-
erarchy of controllers for this imple-
mentation is shown in Figure 6. A
breakdown of this hierarchy is as fol-
lows: ODE Simulator: A simulator
built on top of the Open Dynam-
ics Engine. Finite State Machine
(FSM): Several FSMs, implemented
with switch controllers, sit below the
simulator. Each FSM corresponds to
a particular bipedal gait, such as run-
ning or skipping. Changes in the state
of the simulation eventually causes a
switch in the used gait. Bipedal PD
Controller: Several PD controllers
sit underneath each FSM, and repre-
sents a specific part of a gait, such as
being mid-stride or having both feet planted. Bipedal Plant: This is the physical repre-
sentation of the robot, and contains the geometry and joint information, as well as the
actual dynamics of the plant.

Because ODE focuses on quick simulation for real-time applications, interactive ap-
plications can be created while sacrificing as little realism as possible. This lightweight
implementation allows users to interact with this physically simulated world in inter-
esting ways, such as manually controlling a plant among many other plants being con-
trolled through various means. An example as shown in the submission’s video shows
a toy car controlled by a user interacting with the bipedal system, described previously.

5.4 Integration with Octave, OMPL, and MoCap Data

PRACSYS has been integrated with several other software packages in order to extend
its functionality, such as Octave, OMPL, and motion capture data from CMU. Motion
Capture (MoCap) data is used to animate characters in a realistic manner. A controller
which reads motion capture data has been utilized, and it reads and assigns the data
to a control space point, where it is passed to the plant with copy control. The plant
connected to this controller simulates a skeleton, which interpolates the configuration
of each of its bones.

148 A. Kimmel et al.

6 Discussion

PRACSYS is an extensible environment for developing and composing motion con-
trollers and planners. It supports multi-agent simulations, physics-based tools, and
incorporates Matlab code, the OMPL library [3] and MoCap data. There are multiple im-
portant future steps for PRACSYS. A current pursuit is the development of a communi-
cation node, which simulates communication protocol parameters and failures between
agents by employing a discrete event network simulator, such as ns-3 [23]. This will
allow the simulation of distributed planning involving communication on a computing
cluster. Furthermore, a sensing node is developed for simulating sensor data in place of
a physical sensor. This objective, as well as allowing algorithms coded on PRACSYS to
run on physical systems, will be assisted by a tighter integration with the latest versions
of Gazebo [1], OpenRAVE [2] and by utilizing existing ROS functionality [6].

References

[1] Koenig, N., Hsu, J., Dolha, M., Willow Garage, Gazebo, http://gazebosim.org/
[2] Diankov, R., Kuffner, J.J.: OpenRAVE: A Planning Architecture for Autonomous Robotics.

Technical report, CMU-RI-TR-08-34, The Robotics Institute, CMU (2008)
[3] Kavraki Lab Group: The Open Motion Planning Library (OMPL),

http://ompl.kavrakilab.org
[4] Gottschalk, S., Lin, M.C., Manocha, D.: OBBTree: A Hierarchical Structure for Rapid In-

terference Detection. In: SIGGRAPH, pp. 171–180 (1996),
http://gamma.cs.unc.edu/SSV/

[5] Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: A Robot Simulator
for Research and Education. In: IEEE ICRA, pp. 1400–1405 (2007)

[6] Willow Garage, Robot Operating System (ROS), http://www.ros.org/wiki/
[7] Smith, R.: The Open Dynamics Engine (ODE) (2007),

http://ode-wiki.org/wiki/
[8] OpenSceneGraph, http://www.openscenegraph.org/
[9] Gerkey, B., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for Multi-Robot

and Distributed Sensor and Systems. In: ICAR, pp. 317–323 (2003)
[10] Microsoft Robotics Developer Studio, http://www.microsoft.com/robotics/
[11] UrbiForge, http://www.urbiforge.org/
[12] Carmen Robot Navigation Toolk, http://carmen.sourceforge.net/home.html
[13] Delta3D (2006), http://www.delta3d.org/
[14] Michel, O.: Webots: Professional Mobile Robot Simulation. IJARS 1(1) (2004)
[15] Miller, A.: Graspit!: A Versatile Simulator for Robotic Grasping. PhD thesis, Columbia

University (2001), http://www.cs.columbia.edu/˜cmatei/graspit/
[16] LaValle, S.: Motion Strategy Library, http://msl.cs.uiuc.edu/msl/
[17] YAML Ain’t Markup Language (YAML), http://yaml.org/
[18] Arya, S., Mount, D.M.: Approximate nearest neighbor searching. In: Proc. 4th Annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 271–280 (1993)
[19] Fiorini, P., Shiller, Z.: Motion Planning in Dynamic Environments Using Velocity Obsta-

cles. International Journal of Robotics Research (IJRR) 17(7), 760–772 (1998)
[20] Eaton, J.W.: GNU Octave Manual. Network Theory Limited (2002)
[21] Reist, P., Tedrake, R.: Simulation-based LQR-Trees with input and state constraints. In:

IEEE International Conference on Robotics and Automation (ICRA), pp. 5504–5510 (2010)
[22] Yin, K., Loken, K., van den Panne, M.: SIMBICON: Simple Biped Locomotion Control.

ACM Transactions on Graphics 26(3) (2007)
[23] NS3, http://www.nsnam.org/

http://gazebosim.org/
http://ompl.kavrakilab.org
http://gamma.cs.unc.edu/SSV/
 http://www.ros.org/wiki/
 http://ode-wiki.org/wiki/
 http://www.openscenegraph.org/
 http://www.microsoft.com/robotics/
http://www.urbiforge.org/
http://carmen.sourceforge.net/home.html
http://www.delta3d.org/
http://www.cs.columbia.edu/~cmatei/graspit/
 http://msl.cs.uiuc.edu/msl/
http://yaml.org/
 http://www.nsnam.org/

RobotML, a Domain-Specific Language
to Design, Simulate and Deploy Robotic

Applications

Saadia Dhouib1, Selma Kchir2, Serge Stinckwich3,4, Tewfik Ziadi2,
and Mikal Ziane2

1 CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems
Point Courrier 94, Gif-sur-Yvette, F-91191 France

2 UMR CNRS 7606 LIP6-MoVe, Université Pierre et Marie Curie, Paris, France
3 UMR CNRS 6072 GREYC, Université de Caen-Basse Normandie/ENSICAEN,

Caen, France
4 UMI IRD 209 UMMISCO

IFI/Vietnam National University, Hanoi, Vietnam
saadia.dhouib@cea.fr, serge.stinckwich@ird.fr, mikal.ziane@lip6.fr

Abstract. A large number of robotic software have been developed but
cannot or can hardly interoperate with each other because of their depen-
dencies on specific hardware or software platform is hard-wired into the
code. Consequently, robotic software is hard and expensive to develop
because there is little opportunity of reuse and because low-level details
must be taken into account in early phases. Moreover, robotic experts
can hardly develop their application without programming knowledge
or the help of programming experts and robotic software is difficult to
adapt to hardware or target-platform changes. In this paper we report on
the development of RobotML, a Robotic Modeling Language that eases
the design of robotic applications, their simulation and their deployment
to multiple target execution platforms.

Keywords: Domain-Specific Languages, Generative Programming, MDE,
robotic application.

1 Introduction

Large amounts of robotic software have been developed but cannot or can hardly
interoperate with each other because their dependencies on specific hardware or
software platform is hard-wired into the code. Thus, changing one or several of
the used hardware components in the application implies several time consuming
changes in the code. In addition, robotic software is difficult to adapt to target
platform changes. Consequently, robotic software is hard and expensive to de-
velop because there is little opportunity of reuse. Moreover, robotic experts can
hardly develop their application without programming knowledge or the help of
programming experts. This knowledge is not only related to algorithm program-
ming but to the arcanes of the chosen simulation platform and the details of
drivers of sensors and actuators.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 149–160, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 S. Dhouib et al.

Defining robotic applications using appropriate notations and abstractions
and automatically generating executable code could be a solution to deal with
variability problems and to hide the lower level programming details to robotics
experts. Domain-specific languages (DSLs) have been introduced, based on thor-
ough understanding of the application domain, to express solutions at the level of
abstraction of the problem domain.This assumes that along with the DSL itself
a whole toolchain is provided to automate as much as possible the lower-level
task and especially code generation [4,10].

In this paper we propose the RobotML DSL and a toolchain to address
these issues. In section 2, we outline the requirements for RobotML that is
then presented in section 3. Afterwards, we describe the RobotML toolchain,
from modeling to code generation in section 4. Then, a case study is outlined
in section 5, validating the proposed DSL on a real robotic use case. Section 6
discusses how the proposed RobotML DSL fulfills the requirements presented
in Section2. In Section 7, we outline previous work related to our approach and
section 8 concludes the paper.

2 Requirements

In this section we specify the requirements of the ideal autonomous robotics
DSL. Some of the requirements deal with the DSL itself while some are more
related to its implementation and especially to how it will be compiled and run.
In this paper we will report on which requirements were achieved and which ones
were left for further study:

1. Ease of use. Using the DSL should be in the reach not only of programming
experts but of robotics experts and ideally of mere robotics users.

2. Specification of component-based robotic architectures. Assuming
that most robotics software is nowadays component-based, the DSL must al-
low the specification of component-based architectures of autonomous robotic
systems.

3. Neutrality regarding architectural styles. The DSL must not impose
a specific robotic architectural style (deliberative, reactive, hybrid, ...).

4. Multiple, heterogeneous target platforms. As long as the expected
components are provided and conform to the architecture, the latter must
be executable on robots or on a simulator. In addition, it must be possible
to run some components of a given architecture on one platform and other
components on another.

5. Target-platform independence. Even though target-platform indepen-
dence is difficult to achieve, the DSL should be as independent as possible
of the specificities of the execution platforms.

6. Smooth evolution of the supported platforms. Code generation should
be as agile as possible so that supporting a new platform can reuse common
transformations. Similarly, supporting a new version of a target platform
should capitalize as much as possible on the previous implementation.

RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 151

7. Smooth evolution of the DSL. Ideally it should be possible to change
at least some superficial aspects of the DSL without having to build a com-
pletely new implementation.

8. Reasoning. It should be possible to reason on the architecture especially
to check non-functional properties such as real-time constraints or energy
consumption.

3 RobotML Domain Specific Language

This work aims at providing a domain specific language (and related tools like
editors, model validation, code generators) suitable to specify missions, environ-
ments and robot behaviours that will be specified by robotics designers. Indepen-
dently from the target platform, the DSL will help the robotic system designers
to define:

– The system’s architecture (i.e. its internal structure). In fact, the DSL will
ease the definition of specific robotic architecture (reactive, deliberative, hy-
brid) and specific components that form the architecture (sensors, actuators,
planners, mapping, etc.).

– The communication mechanisms between components (sending/receiving of
event notifications and data).

– The behaviour of robotic components that form the system’s architecture.
The main design entries of the DSL are the robotic ontology [3] developed in the
frame of the French research project Proteus1 and a state of the art study on
languages and tools for robotic systems. The latter has helped to identify the
requirements presented in the previous section. The former has helped to build
the domain model. Once the domain model is built, we implemented the DSL
as a UML profile (i.e. extension of the UML meta-model). Then we developed
the graphical modeling tool as an extension of the Papyrus modeling tool2. In
the following, we justify the choice of using a robotic ontology to build the
domain model of the RobotML DSL, and then we present the domain model
(i.e. meta-model) of the DSL.

3.1 Rationale of Using an Ontology during the Design of RobotML

Ontologies are mainly used in Artificial Intelligence and Semantic Web com-
munities to represent knowledge, as a set of concepts and relationships of a
domain. Several works have already used ontologies for their semantic or struc-
tural synergy with DSLs [7,11]. In our case, the main benefit from using the
ontology in the design process of the DSL is reusing a robotics experts knowledge
base to enrich the DSL domain model [6]. From our experience, using an on-
tology has benefits as well as drawbacks. In fact, reusing an ontology facilitates
the DSL designers task by providing a set of concepts that are specific to the
1 http://www.anr-proteus.fr/?q=node/111
2 http://www.eclipse.org/modeling/mdt/?project=papyrus

http://www.anr-proteus.fr/?q=node/111
http://www.eclipse.org/modeling/mdt/?project=papyrus

152 S. Dhouib et al.

robotic domain and that can be directly reused to define the DSL meta model.
Examples of those concepts include Robot, SensorSystem, ActuatorSystem,
LocalizationSystem. On the other hand, a lot of concepts are not useful for
defining the DSL domain model. For example the concept of Interaction is not
useful in the DSL, we have instead used the concepts of Port and Connector to
capture the concept of an interaction. So having an ontology as a design entry
implies that the DSL designer will filter the ontology concepts that are useful
for the DSL domain model. This filtering task is not straightforward, specially
when the DSL designer does not master the ontology language and editing tools.

3.2 Domain Model

The domain model of a given DSL defines the concepts of a language and their
relationships. In this section, we present the domain model of the RobotML
DSL based on the requirements defined in the previous section and the knowledge
base provided by the ontology. We have used UML class diagrams to represent
the domain model. The packages structuring the RobotML domain model and
relationships between them are presented in Fig. 1.

Fig. 1. RobotML Domain Model Fig. 2. RoboticArchitecture Package

Architecture. Fig. 2 shows a general view of the RobotML architecture do-
main model package. This package contains five sub-packages:

1. The robotic system package describes the concepts that help define and com-
pose a robotic system. The System concept corresponds to the Component
concept (as found in the component-based approach). The term system is
more appropriate to describe a robotic component, this is due to the fact that
System is more meaningful for a robotician than Component. Fig. 3 some of
the concepts defined in this package. A System is composed of properties,
ports and connectors. Properties could be either the system’s subsystems or
attributes (for storing configuration values for example). Ports and connec-
tors allow systems to interact. This package includes also the robotic specific
concepts such as sensors and actuators.

RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 153

2. The system environment package defines the concepts composing the envi-
ronment where robots evolve, since we not only model the robotic system
but also its environment (for example for simulation purpose).

3. The data types package defines the types of data that will be exchanged
between robotic components, between algorithms, etc.

4. The robotic mission package describes the concepts that are needed to define
an operational mission and which are used by components of the architecture
performing it.

5. The platform package defines the concept of platform which represents the
execution environments for the robotic system (i.e. robotic middleware,
robotic simulator).

Communications. Communications between robotic systems formalize data
exchange and service calls between them. Communications are refined through
the aspect of ports and connectors. A port formalizes an interaction point of
a system. Port is an abstract concept that is refined through two concepts.
On the one hand, we define the concept of DataFlowPort which is related to
the publish/subscribe model of communication. DataFlowPort enables dataflow-
oriented communication between systems, where messages that flow across ports
represent data items. On the other hand, we define the concept of ServicePort
that supports a request/reply communication paradigm, where messages that
flow across ports represent operation calls.

Fig. 3. RoboticSystem Package Fig. 4. Details of the FSM Package

Behaviour. The concept of EvolutionModel is used to describe the be-
haviour of the robotic system. An evolution model can be defined using al-
gorithms or finite state machines. Fig. 4 shows the FSM concept inheriting from
EvolutionModel and composed of states and transitions. States are composed
of FSMActivities, meaning that activities can be executed during a State.
Transitions are also composed of FSMActivities, meaning that if a transition
is fired, an activity can be executed as an effect. An activity is a behaviour that
is specified using an algorithm.

154 S. Dhouib et al.

Deployment. This package specifies a set of constructs that can be used to
define the assignement of a robotic system to a target robotic platform (a mid-
dleware or a simulator). The deployment is important because it feeds code
generators with the information on which platform the system will be executed.

4 The RobotML Toolchain

RobotML provide a toolchain for robotic development from modeling to soft-
ware simulation and deployment on real robots. This toolchain, illustrated in
Fig. 5, is based on the Eclipse Modeling Project3 that supports model-driven
engineering approach. We have used Papyrus and Acceleo4 plugins integrated to
Eclipse for modeling and code generation.

Fig. 5. The RobotML toolchain

The RobotML user starts by designing a model (PIM, Platform Independent
Model) of a specific scenario where sensors, actuators and the control system of
the robots are represented. The next step is a definition of a deployment platform
model (DPM), which consist of a set of robotic middlewares and/or simulators
connected with each other to form an execution platform for the PIM. Then,
3 http://www.eclipse.org/modeling/
4 http://www.acceleo.org/

http://www.eclipse.org/modeling/
http://www.acceleo.org/

RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 155

after the validation of the model, the user defines a deployment plan where
he/she chooses to which robotic middleware (OROCOS-RTT5, RTMaps6, Urbi7
or Arrocam8) and to which simulation engine (MORSE9 or CycabTK10) code
will be generated. The deployment plan is built in two steps:

– First, the designer allocates the components of the PIM to the modeled
execution platform parts. For example, the control system of the robot can
be allocated to a robotic middleware and sensors/actuators can be allocated
to a robotic simulator. The designer can also specialize the robotic system
components by setting some of their properties to match the specificities of
runtime platforms.

– Second, the designer has the possibility of reusing existing components al-
ready deployed in the component library of the target robotic platform. In
fact, a mapping to target platforms component libraries can be established
by the user.

Finally, from the deployment plan information, the code is automatically gen-
erated. Code generators from the DSL to the aforementioned middlewares and
simulators have been developed in the frame of the Proteus project.
Overall, the RobotML DSL provides a common ground for designing and imple-
menting component-based robotic systems. We illustrate this in the next section
with a case study.

5 Case Study: Urban Challenge

In order to validate the proposed DSL on industrial examples, several case studies
(called challenges) have been designed by the Proteus project partners. In this
section, we will focus on the Urban Open-Access Robotic Platform11 challenge
that deals with the problem of intelligent transportation systems (autonomous
cabs). In the following, we present the urban challenge model in accordance
with the four main parts of the proposed DSL: architecture, communication,
behaviour and deployment then code generation.

5.1 Modeling

Using the RobotML DSL, we have represented the modules of the challenge in
a component-based model.

5 http://www.orocos.org/
6 http://intempora.com/
7 http://www.urbiforge.org/
8 http://effistore.effidence.com/
9 http://www.openrobots.org/wiki/morse/

10 http://cycabtk.gforge.inria.fr/
11 http://www.anr-proteus.fr/?q=node/64

http://www.orocos.org/
http://intempora.com/
http://www.urbiforge.org/
http://effistore.effidence.com/
http://www.openrobots.org/wiki/morse/
http://cycabtk.gforge.inria.fr/
http://www.anr-proteus.fr/?q=node/64

156 S. Dhouib et al.

Architecture. Fig. 6 illustrates the global architecture of the urban challenge
model. The control system consists of controller, trajectory planning, localiza-
tion and obstacle detection components. It defines the behaviour of the robot
during its mission. The control system of the robot takes inputs from sensors
(LIDAR3D, Odometery, RTK_GPS_IMU and Front Camera) and sends com-
mands to actuators (Brake, Steering and Motor) through data flow communi-
cations. The Localization component calculates the position of the robot and
returns the deviation of the robot with respect to the trajectory it must fol-
low. Trajectory Planning computes the trajectory to follow from the current
position of the robot in comparison with its goal (the goal position is initially
specified by the user). Obstacle Detection is defined to deal with dynamic
changes in the environment. It sends information to Control whether a new
obstacle is detected. The Control component aims at transforming the received
data from the components Localization, Trajectory Planning and Obstacle
Detection into commands to Actuators components, which represent the ac-
tuators of the robot. A snapshot of the Papyrus-based modeling environment is
shown in Fig. 7. At the right side of the component definition diagram, we can
see the customized palette that contains RobotML concepts used for defining
the aforementioned robotic components.

Fig. 6. Simplified urban challenge architecture diagram

Communications. In Fig. 6, components are connected through Data
Flow ports. Let us take for example the components Localization and
RTK_GPS_IMU. The synchronization policy for data exchange (syn-
chronous/asynchronous mode) between these components is specified in addition
to the buffer size for data storage. Those information are specified by setting
ports attributes in the properties view of the modeling environment (Fig. 7).

Bevahiour. Components (except sensors and actuators) have a behaviour spec-
ified by a state machine or an algorithm (see section 3.2). At the right side of
the modeling environment (Fig. 7), the state machine diagram of the component
Localization is shown. The first state is the Kalman filter which handles data
sent by sensors and returns an estimation of the pose of the robot. If the position

RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 157

of the robot changes (guard:positionChanged), the state ComputePathDeviation
is activated and the computed deviation is returned to the controller component.

Deployment. In the case of the urban challenge, we have modeled an execution
platform that contains a robotic middleware, namely OROCOS, communicating
with a robotic simulator, namely Morse. The deployment plan contains allo-
cations of sensors (yellow components in Fig 6), actuators (red components in
Fig 6) to MORSE and allocations of the control system (green components in
Fig 6) to OROCOS.

Fig. 7. The RobotML modeling environment

5.2 Code Generation

The RobotML toolchain integrates several code generators defined by Proteus
partners to several robotics middlewares and simulators engines (cf. section 4).
The process of translating a model to code is to perform Model to Text (M2T)
transformations from the DSL to text artifacts (source files, configuration files,
etc.) needed to create an executable application. Starting from the model of
the urban challenge and the deployment plan defined in the model, users can
generate code for several platforms.

6 Discussion

RobotML The main objective of the RobotML DSL was to propose to the
robotics community a domain specific language which facilitates the development
of robotics applications. In this context a set of requirements was identified in
Section 2. In this paper, the RobotML DSL presented an answer to achieve
these requirements. In this section we report on which of these requirements
were achieved by the RobotML DSL and which ones were left for further work.

158 S. Dhouib et al.

1. Ease of use Thanks to RobotML, DSL users can model the components
of their missions without mastering programming languages of robotics plat-
forms. In fact, platforms details are hidden to the DSL users and concepts
used in RobotML are based on robotics ontology.

2. Specification of component-based robotic architectures As presented
in Section 3, the RobotML DSL includes the architecture part which gath-
ers the concepts of System, Port, Connector. The latters allow the specifica-
tion of component-based robotic architectures. For instance, Fig. (6) shows
an example of such architecture.

3. Neutrality regarding architectural styles Most robotic systems soft-
ware architectures are based on components, the only architecture taken
into account in RobotML is component-based. Consequently, any robotic
architecture (hybrid, deliberative, etc) can be specified using an approri-
ate combination of components. For example, the used architecture in the
scenario of Fig. 6 is hybrid.

4. Multiple, heterogenous target platforms Thanks to the use of ROS,
components deployed into robotics platforms can easily communicate with
components deployed into simulators or directly with real robots. Thus, the
code generated from RobotML can be executable on both real and simu-
lated robots.

5. Target-platform independence Using RobotML and thanks to the ab-
stract concepts of the DSL, the architecture model of the robotic application
is independent from the target platform (PIM).

6. Reasoning RobotMLenable roboticist to model some non-functional prop-
erties of the system notably timing properties for software components
(period, deadline, WCET, priority). Such timing properties will feed schedu-
labilaty analysis tools e.g. Cheddar [9]. Another types of reasoning could be
considered for robotic systems specified with RobotML given the extension
of the language to integrate the adequate non functional properties modeling.

The requirements smooth evolution of the supported platforms and smooth evo-
lution of the DSL were left for future work.

7 Related Work

At the moment, there are not that many proposals to use MDE (Model Driven
Engineering) in the context of robotic systems. One of the first initiatives to
promote this approach was Blanc et al. [2] who applied MDE to develop control
ssoftware for an AIBO robot.

SmartSoft [8] combines a service-oriented component-based with a Model-
Driven Software Development approaches. The SmartSoft12 component model
relies on a small and fixed set of communication patterns, e.g., request/response
and publish/subscribe, that define the semantics of the interface (externally visible
ports) of components. The componentmodel is represented by a meta-model called
12 http://smart-robotics.sf.net/

http://smart-robotics.sf.net/

RobotML, a DSL to Design, Simulate and Deploy Robotic Applications 159

SmartMARS (Modeling and Analysis of Robotic Systems). Like RobotML, a
concrete implementation of this meta-model has been done as a UML profile and
the proposed Eclipse-based SmartMDSD model-driven software development
toolchain is based on Papyrus as well. But unlike RobotML, the SmartSoft ap-
proach does not provide the possibility to describe components behaviour at the
same abstraction level than components specification level.

BRICS (Best Practice in Robotics) is an ongoing FP7 EU funded project13 that
also promotes the model-driven engineering (MDE) approaches in order to solve
robotic software engineering issues. Among all the activities done in the project,
a features-based model toolchain was proposed in order to reflect variabilities in
robotic systems [5] and ameta-model calledBCMwas defined for describing amin-
imal component model14 suitable for code generation for multiple targets (ROS,
OROCOS-RTT). Unlike RobotML, BRICS meta-model does not enable specifi-
cation of composability, component’s behaviour and robotic specific components.

The 3-View Component Meta-Model (V3CMM) [1] relies on the use of the
OMG Meta-Object Facility (MOF) instead of using UML. It aims to provide de-
signers with an expressive yet simple platform-independent modeling language
for component-based application design. V3CMM is aimed at allowing designers
(1) to model high-level reusable components, including both their structural
and behavioural facets (modeling for reuse); (2) to build complex platform-
independent designs up from the previous components (modeling by reuse); and
(3) to automatically translate these high-level designs into lower level models
or into different implementations, isolating functionality from platform details.
Compare to RobotML, it is worth noting that although V3CMM has been used
mainly in robotics, it does not contain any specificities about this domain.

8 Conclusion

In this paper we have reported on the RobotML domain-specific language and
toolchain. RobotML is easier to use than the targeted robotic execution or
simulation platforms because low level details have been hidden behind eas-
ier to manage abstractions. Not all of these abstractions are directly related
to robotics and some do relate to defining component-based architecture but
a sizeable amount of low-level programming knowledge has been put into the
code-generation transformations. Early usage reports suggest that even though
the overall development time of a robotic application using RobotML has not
significantly decreased, using RobotML induces the following advantages:

– more time is spent on design than on dealing with low level details,
– the architecture is made explicit,
– switching to a new target platform is much easier.

13 http://www.best-of-robotics.org/
14 http://www.best-of-robotics.org/pages/publications/

BRICS_Deliverable_D4.1appendix.pdf

http://www.best-of-robotics.org/
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D4.1appendix.pdf
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D4.1appendix.pdf

160 S. Dhouib et al.

The RobotML DSL and toolchain have been designed in the context of the ANR
Proteus projet. This project funded by the French research agency, gather 14
academic and industrial partners. The RobotML toolchain will be available
with an open-source licence in the future.

References

1. Alonso, D., Vicente-Chicote, C., Ortiz, F., Pastor, J., Alvarez, B.: V3CMM: a 3-
View Component Meta-Model for Model-Driven Robotic Software Development.
Journal of Software Engineering for Robotics 1(1), 3–17 (2010)

2. Blanc, X., Delatour, J., Ziadi, T.: Benefits of the MDE approach for the devel-
opment of embedded and robotic systems. In: Proceedings of the 2nd National
Workshop on “Control Architectures of Robots: from Models to Execution on Dis-
tributed Control Architectures", CAR 2007 (2007)

3. Dhouib, S., Du Lac, N., Farges, J.L., Gerard, S., Hemaissia-Jeannin, M., Lahera-
Perez, J., Millet, S., Patin, B., Stinckwich, S.: Control architecture concepts and
properties of an ontology devoted to exchanges in mobile robotics. In: 6th National
Conference on Control Architectures of Robots (2011)

4. Gerard, S., Babau, J.P., Champeau, J.: Model Driven Engineering for Distributed
Real-Time Embedded Systems. Wiley-IEEE Press (2005)

5. Gherardi, L., Brugali, D.: An Eclipse-based Feature Models Toolchain. In: Proc.
of the 6th Workshop of the Italian Eclipse Community (Eclipse-IT 2011) (2011)

6. Lortal, G., Dhouib, S., Gérard, S.: Integrating Ontological Domain Knowledge into
a Robotic DSL. In: Dingel, J., Solberg, A. (eds.) MODELS 2010. LNCS, vol. 6627,
pp. 401–414. Springer, Heidelberg (2011)

7. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-
M.: Weaving Variability into Domain Metamodels. In: Schürr, A., Selic, B. (eds.)
MODELS 2009. LNCS, vol. 5795, pp. 690–705. Springer, Heidelberg (2009)

8. Schlegel, C., Steck, A., Lotz, A.: Model-driven software development in robotics:
Communication patterns as key for a robotics component model. Introduction to
Modern Robotics (2012)

9. Singhoff, F., Legrand, J., Nana, L., Marcé, L.: Cheddar: a flexible real time schedul-
ing framework. In: Proceedings of the 2004 Annual ACM SIGAda International
Conference on Ada, SIGAda 2004, pp. 1–8. ACM, New York (2004)

10. Steck, A., Lotz, A., Schlegel, C.: Model-driven engineering and run-time model-
usage in service robotics. In: Proceedings of the 10th ACM International Conference
on Generative Programming and Component Engineering, GPCE 2011, pp. 73–82.
ACM, New York (2011)

11. Walter, T., Ebert, J.: Combining DSLs and Ontologies Using Metamodel Integra-
tion. In: Taha, W.M. (ed.) DSL 2009. LNCS, vol. 5658, pp. 148–169. Springer,
Heidelberg (2009)

A Java vs. C++ Performance Evaluation:

A 3D Modeling Benchmark

Luca Gherardi, Davide Brugali, and Daniele Comotti

University of Bergamo, DIIMM, Italy
{luca.gherardi,brugali,daniele.comotti}@unibg.it

Abstract. Along the years robotics software and applications have been
typically implemented in compiled languages, such as C and C++, rather
than interpreted languages, like Java. This choice has been due to their
well-known faster behaviors, which meet the high performance require-
ments of robotics. Nevertheless, several projects that implement robotics
functionality in Java can be found in literature and different experiments
conduced by computer scientists have proved that the difference between
Java and C++ is not so evident.

In this paper we report our work on quantifying the difference of
performance between Java and C++ and we offer a set of data in order
to better understand whether the performance of Java allows to consider
it a valid alternative for robotics applications or not. We report about
the execution time of a Java implementation of an algorithm originally
written in C++ and we compare this data with the performance of the
original version. Results show that, using the appropriate optimizations,
Java is from 1.09 to 1.51 times slower than C++ under Windows and
from 1.21 to 1.91 times under Linux.

1 Introduction

Robot software systems are concurrent, distributed, embedded, real time, and
data intensive. Computational performance is a major requirement, especially
for autonomous robots, which process large volumes of sensory information and
have to react to events occurring in the robotics operational environment.

In order to meet performance requirements, robotics algorithms have been
typically implemented in C and C++. Robotics developers in fact have always
considered C++ significantly faster than Java. Despite that, the idea of using it
in robotics is not really new: it has been followed in several projects (see section
2) and recently Willow Garage and Google have started a project for developing
a Java-based porting of ROS [4].

In this paper we report our work on the comparison of performance between
Java and C++. Our goal is to quantify this difference and to offer a set of
data in order to better understand whether the performance of Java allows to
consider it a valid alternative to C++ or not. For this purpose we implemented
in Java a well known algorithm originally written in C++ and we executed a
comparison study. The chosen algorithm is the Delaunay triangulation and its

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 161–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

162 L. Gherardi, D. Brugali, and D. Comotti

implementation comes from the OSG library[2]. It was developed in the computer
vision field but it is typically used also in robotics for reconstructing environment
surfaces from a set of 3D points. The algorithm is well suited for the purpose of
our study because it stresses several critical points of the programming languages
performance such as: (a) the frequent access to the memory for operating on
dynamic size array (massive use of the garbage collector) and (b) the frequent
evaluation of logical conditions.

Although in the computer science domain many comparison studies has been
proposed, we considered our test interesting because we implemented and exe-
cuted the algorithm with a newer and improved version of the Java JDK. Indeed
the current Java Virtual Machine (JVM) offers a new compiler, which greatly
improves the performance of Java with respect to the older versions.

The paper is structured as follows. Section 2 reports about the Java related
projects in robotics and presents a survey on the differences of performance of
the two languages. Section 3 illustrates a performance comparison case study. We
present a Java-based implementation of a mesh generation algorithm originally
written in C++ and report several information about the execution time of both
the Java and the C++ versions. Finally section 4 draws the relevant conclusion.

2 Java for Robotics

Java is an object oriented programming language and it was intended to serve
as a new way to manage software complexity. It offers to its users a set of
software libraries and specifications, which allow the designing and the deploying
of cross-platform applications. Java is used in different application domains such
as enterprise resource planning (ERP) and web servers (e.g. JSP). It is widely
spread also on mobile phones and embedded devices. This section presents a set
of robotics project developed with Java and a survey on several performance
comparisons between Java and C++.

2.1 Robotics Java Projects

During the 2011 Google I/O the researcher of Willow Garage and Google pre-
sented a new project that aims to develop a pure Java implementation of ROS
[4]. By means of this project Google and Willow Garage aim to boost the devel-
opment of advanced Android applications for robotics and easiness the access to
the cloud computing for reducing the cost of the robotics hardware.

In [11] the integration of Matlab in a distributed behavioral robotics architec-
ture is presented. The architecture is completely implemented in Java and lever-
ages on the Jini platform for distributed object registration, lookup and remote
method invocation. The Matlab integration is realized by means of JMatLink and
allows the invocation of Matlab scripts and the access to the Matlab workspace
as a distributed object. The authors present as case study a multi-robot mines
detection. In [17] a team from Lund University demonstrated that it is feasible
to develop a motion control system entirely in Java. They designed an appli-
cation that takes a picture of a person and controls a pick and place robot in

A Java vs. C++ Performance Evaluation: A 3D Modeling Benchmark 163

order to draw on a paper the result of the shooting. The software and the motion
controller guarantee the respect of the real time constraints by means of Java
RTS. In [16] a real-time control for a remote manipulator over a local area net-
work or over internet is presented. The developers implemented both the control
system and the teleoperation of the robot in Java. In [9] an autonomous motion
planning system completely developed in Java is developed. The application al-
lows the user to set up the working environment though a graphical interface
and offers the functionalities of collision detection, obstacle avoidance, free-paths
generation and selection of the shortest path. Finally in [14] an application for
controlling robots through the World Wide Web is implemented. The software
is designed for dealing with low bandwidth and high latency and allows the
operator to control the robot from any computer connected to the web.

2.2 Java versus C++

One of the main differences between Java and C++ is that the first was born
as an interpreted language while the second as a compiled language. Compiled
languages are translated into machine code trough a compiler. This process gen-
erates a file that can be directly executed by the CPU. Interpreted languages
are compiled in a platform independent language (bytecode), which can be ex-
ecuted only by means of an interpreter (e.g. JVM). Hence, programs written
in C++ (compiled language) are platform dependent and must be compiled for
every computing platform before the first execution. Java programs instead are
translated into bytecode only once and can be used on different platforms but
have to be interpreted at every execution (the JVM is platform dependent). For
this reason interpreted languages are in general more flexible and portable than
compiled languages but at the same time slower.

In order to improve the performance, in 1998 Java 1.2 was released with a
new feature called Just-In-Time compiler (JIT)[1]. JIT is integrated into the
JVM and it is in charge of translating the Java byte code into binary code. Each
method is translated only when it is called for the first time. Thanks to this
improvement the execution time decreases and the code is again portable.

Many comparisons between C, C++ and Java were documented in literature.
From this point we call “Java” the version optimized with JIT and “interpreted
Java” the original version. In [19] the execution times of C++ and Java are
compared. The authors tested the execution of four sorting algorithms, two of
O(n2) complexity (bubble sort and insertion sort) and two of O (n · log (n))
(recursive quick sort and heap sort), on four integer data sets of different sizes.
The results demonstrated that C++ was much faster than pure interpreted Java
(from 11 to 20 times) and only from 1.45 to 2.91 times faster than Java (version
1.3). In [6] a set of polynomial multiplications was computed and executed using
the three languages. The results showed that Java completed the operations
faster than standard C (mean of 21%) but in average 2.61 times slower than
C++. In [7] the executions of the Linkpack benchmark were compared for Java
and standard C. This benchmark was introduced by Jack Dongara and measures
how fast a computer solves a dense N-by-N system of linear equations. The

164 L. Gherardi, D. Brugali, and D. Comotti

Table 1. Results summary (OS: W=Windows, L=Linux, S=Solaris, M=MacOs)

Paper Test OS Java vs. C Java vs. C++ JDK C/C++ compiler

[19] Sorting alg. W — 1.45 - 2.91 Sun 1.3 Borland v. 5.5
[6] Polynomial mult. S 0.79 2.61 Sun 1.2b5 Sun Workshop C 4.2
[7] Linkpack bench. W-S 2.25 — Sun 1.2b4 —
[18] Method call W-S-L-M — 1 clock slower Please refer to the paper
[12] Int and float div. W — ∼ 1 Sun 1.1.5 Visual C++ 5.0

results showed that for a 1000 x 1000 system Java was 2.25 times slower than
C. In [18] Ruolo evaluated the Java method call performance. Different tests
with a different numbers of parameters showed that Java was only one clock
cycle slower than C++. The same tests also highlighted that the time needed
for allocating user defined objects on the heap was roughly equivalent. However
C++ also uses the stack for allocating temporary object and in this case it
was from 10 to 12 times faster than Java, which uses only the heap. Interesting
conclusions were reported by Mangione [12]. He tested the repetitive execution
of simple operations like integers and float divisions and showed that Java was
as fast as C++. As summarized in table 1 all the papers report that, since the
introduction of the Just-In-Time compiler, Java is only 1.45-2.91 times slower
than C++ (Column OS: operating system, columns 4-5 execution time ratios).

Since these studies demonstrated how the execution of simple operations in
Java is more or less as fast as in C++, one factor that could influence the total
execution time of a Java program is the Garbage Collector (GC). However [10]
showed that Java GC is as fast as a malloc/free operation in C++. In fact when
a program executes a malloc operation, the allocator looks for an empty slot of
the right size and returns a pointer to a random place in the memory. In Java
instead the allocator use the bits of memory adjacent to the last bit it used.
Hence it doesn’t need to spend time looking for memory. So the amount of time
used for the garbage collector is comparable to the amount of time that the
allocator uses in C++ for finding free memory slots.

Finally other interesting results are documented in [15]. The same program
was implemented by 40 different programmers in different languages (24 in Java,
11 in C++ and 5 in C). The experiment compared not only the performance of
the languages but also the differences between the implementations in the same
language (interpersonal differences). The results demonstrated that Java was 2
times slower than C++ and that the interpersonal differences were much larger
than the average difference between Java and C++. That means a well written
Java program could be as efficient as an average C++ program.

3 A Performance Comparison Case Study: The Delaunay
Triangulation

Visual sensors such as laser scanners acquire information on the environment
geometry in form of a point cloud: a set of vertices in a 3D coordinate system.
Each one of these vertices corresponds to a point on the surface of one of the

A Java vs. C++ Performance Evaluation: A 3D Modeling Benchmark 165

objects present in the environment. In order to reconstruct the surface of these
objects the vertices have to be connected. This problem is called mesh generation
and one of the possible solutions consists of the Delaunay triangulation [8].

Delaunay’s algorithm connects the set of points in such a way to build a se-
ries of triangles which respect the following property: for all the set of points
there is no point which lies inside the circumcircle of any triangle. The trian-
gulation result is unique except if more than three vertices stand on the same
circumference. In this case more than one solution exist.

In this section a comparison between a C++ and a Java version of the Delau-
nay triangulation will be reported. We refactored in Java a C++ implementation
coming from the OSG libraries[2]. The implementation of this triangulation al-
gorithm is based on the Bowyer-Watson method, which works in the plane space.
It iterates all the points of the cloud and for each one executes two main steps:
identifying the triangles whose circumcircle contain the current analyzed point
and then building a new set of triangles, which respect the Delaunay condition.
This algorithm allows to process point clouds in 3D space but realizes only a
triangulation in the plain space therefore the Z coordinate is ignored. It should
be noted that the implemented algorithm does not provide a constrained Delau-
nay triangulation. For this reason, during the timing and the comparison of the
computation time, we have excluded the constraints also in the OSG version.

Both the OSG and our implementations receive as input the point cloud in
form of a collection of vertices. The OSG implementation defines a custom class,
Vec3Array, which is a specialization of the class MixinVector (MixinVector al-
lows inheritance to be used in order to easily emulate derivation from std::vector
but without introducing undefined behaviour through violation of virtual de-
structor rules [3]). Hence, Vec3Array defines a vector of Vec3 instances, which
are triplets of float data types. Our implementation instead uses the Java Ar-
rayList. We chose this collection because it is the fastest of all the collections
provided by the Java framework for what regards the operations of inserting,
iterating and sorting [20], and because its performance are comparable with the
one of Java Vector. On the other side ArrayList, like C++ std::vector, is not
as well efficient when it has to perform the operation of removing elements in
random position. In order to better understand how much the overhead between
Java and C++ is due to these data structures, we compared the performance
of the Vec3Array and ArrayList collections. We executed a set of tests on the
most used operations during the triangulation algorithm:

– Insertion. We executed 10000 and 100000 insertions of objects (instances of
class that represent the 3D points) at the end of the 2 collections. We chose
the values of 10000 and 100000 because they are the maximum orders of
magnitude of the collection sizes used in the tests of the Delaunay algorithm.

– Removal. We executed the complete clearing of collections of 10000 and
100000 objects. We removed one element at time. In order to evaluate the
performance in the worst case, the object at the head of the collection was
chosen to be deleted during each iteration.

166 L. Gherardi, D. Brugali, and D. Comotti

– Sorting. We invoked the sorting function on collections of 100 and 1000 points
generated randomly. We chose these size values, which are lower with respect
to the tests of the other operations, because in the Delaunay algorithm the
sorting is always executed on little collections (see more details below).

Each test was executed 50 times and then the mean time was computed. We ex-
ecuted them on a 3.2 GHz Intel Pentium 4 processor with 1GB of RAM under
Ubuntu 10.4 (OpenJDKRuntime Environment v. 1.6.0 20 and GCC v. 4.3.3). Re-
sults are reported in table 2 where times are expressed in milliseconds and regard
the execution of all then operations.ArrayList is faster thanVec3Array during the
insert and the remove operations, whereas it takes much time to compute the sort-
ing because of the used algorithm. Indeed the method for sorting Java collections
uses a modified merge-sort algorithm [5], which offers guaranteed O (n · log (n))
performance.The sorting algorithmprovidedby theC++STL library insteaduses
the introsort algorithm whose worst case complexity is O (n · log (n)).

Table 2. Times report - Collection comparison

Insert Remove Sort

N. of elements 10000 100000 10000 100000 100 1000

Java 1.30 6.33 46.67 5168.21 0.13 0.42

C++ 1.51 11.27 275.82 27799 0.02 0.40

Java vs C++ 0.86 0.56 0.17 0.19 6.5 1.05

We have also analyzed time required for the evaluation of logical conditions.
Four tests were executed, taking into account the following logical conditions:

– Simple logical proposition (var==true)
– Disequation (a < b). (Most evaluated condition in the case study, see eq. 1)
– Logical disjunction of two disequations ((a < b)||(a > c))
– Logical conjunction of two disequations ((a > b)&&(a < c))

Each evaluation was executed 10000 times and each test was repeated 50 times.
Table 3 reports average times of the tests in milliseconds. We used a boolean
variable (initialized false and its value was changed each execution (var = !var))
in the first test and float variables (initialized with a constant values) in the
others. As can be seen, Java is always faster than C++, except for what regards
the evaluation of simple logical proposition.

3.1 The Implementation Details

The two implementations compute the triangulation according to the same steps,
which are described in the following list.

1. Initialization. The Initialization step consists of the setting up and the sort-
ing of the input point cloud according to their coordinates. Then four new
points are inserted in order to surround the plain point cloud. These four

A Java vs. C++ Performance Evaluation: A 3D Modeling Benchmark 167

Table 3. Times report - Logical conditions evaluation comparison

Prop. Diseq. Disj. Conj.

N. of elements 10000 10000 10000 10000

Java 0.187 0.084 0.103 0.093

C++ 0.039 0.262 0.452 0.290

Java vs C++ 4.79 0.32 0.23 0.32

points are used to build two main triangles (super-triangles), such that the
plain point cloud lies inside their area. These triangles are stored in a collec-
tion, that we’ll call trianglesList. The collection data structure was chosen
accordingly to the operations that occur more often, indeed the trianglesList
is subject to several iterations, insertions and removal. As shown in [20], Ar-
rayList is the list of all the available lists in the Java framework that perform
insertion, iteration and random access in the fastest way. Although removing
objects from ArrayList requires a long time, insertions and iterations occur
more often than remove operations; hence we decided to use ArrayList for
implementing the trianglesList.

2. Iteration. During the iteration, each point is considered and is compared to
the triangles contained in the trianglesList. First the condition 1 is checked
(“point” stays for the current point and “tri.circ for the circumcircle of the
current triangle).

point.X − tri.circ.X > tri.circ.radius (1)

– If it is true, the current triangle is removed from the triangleList and will
not be more considered because the current point and also the following
ones surely don’t lie in the circumcircle of the current triangle (i.e. the
triangle respects the Delaunay condition for all the points and it is part
of the final mesh). This is guaranteed by the initial ordering of the points.

– Otherwise, we must further investigate if the current point effectively
lies in the circumcircle of the current triangle. In case it is true the
Delaunay condition is not respected. Therefore the edges of the triangle
are added to a specific ArrayList (called edgeSet) and the current triangle
is deleted. Whereas, if the Delaunay condition is respected, the next
triangle is considered. It has to be noted that the edgeSet collection
has been implemented as an ArrayList because it is sorted many times
during the triangulation algorithm. Hence, the usage of Collections.sort
method and ArrayList is the Java solution that allows us to save time
and increase performance in the best way. In our tests the maximum size
of the edgeSet collection was never greater than 100.

When the whole trianglesList has been scanned, new triangles are con-
structed from the edgeSet collection and added to the triangleList (in our
tests the maximum order of magnitude of this collection size is 10000). Note
that if an edge is shared between two triangles that contain a point, then
the edge is not considered. The iteration proceeds until all points have been
analyzed, except for the four points created during the initialization.

168 L. Gherardi, D. Brugali, and D. Comotti

3. Completion. The four points introduced during the initialization step and tri-
angles having vertices in common with these four points are deleted. If there
are degenerate triangles (circumcircle radius equals to 0) they are eliminated
too. Finally a return result is built in form of a Mesh.

Since the order of magnitude of the size of the list on which we perform more
insertion is 10000 whereas the one of the collection on which we perform the
sorting is 100 the time gained in Java for populating the first collection is lost
for sorting the second one (see table 2). This suggests that the time spent for
managing collections will be more or less the same for both the Java and C++
implementations. The evaluation of logical conditions instead seems to be not
important from a performance point of view. In fact the time spent for evaluating
conditions on 10000 iterations is much lower than the time spent for populating
collections in more or less 100 iterations.

3.2 The Java HotSpot Compilers

The current JVM offer a technology called HotSpot Compiler [13], which works
better and faster than the pure JIT compiler. Rather than compiling each
method at the first execution, the HotSpot runs the program using an inter-
preter for a while. During this time, in order to detect the most used and critical
methods, the execution is analyzed. The collected information is then used to
perform more intelligent optimizations and only the critical methods are actu-
ally compiled. This technique is called “Adaptive Optimization”. It doesn’t only
produce better performance but it also reduces the overall compilation time.
The adaptive optimization is continuously performed so that it adapts the per-
formance to the users’ needs.

The Java Platform Standard Edition offers a JVM that comes with two com-
pilers: the Client and the Server versions1. The Client compiler is the default
one and it has been specially tuned to reduce the start-up time. It is designed
for client environment, in particular for applications where there is not the need
of continuous computation, for example a GUI. The Server compiler instead is
designed for long-running server applications, where the operating speed is more
important than the start-up time. This compiler offers an advanced adaptive op-
timizer and supports many of the optimizations offered by the C++ compilers.

Subsections 3.3 and 3.4 report the tests executed using the client compiler
whereas the server compiler is used in the experiments of subsection 3.5.

3.3 Performance Analysis

We executed the algorithm on five point clouds of different sizes: a semi-sphere,
a floor, the Oxford Bunny and 2 terrains. Each point cloud was processed 50
times and the execution time was measured; then the average, the standard

1 Users can specify the compiler by means of the options “-client” and “-server”. The
tests on the collections and logical conditions were executed with the client compiler.

A Java vs. C++ Performance Evaluation: A 3D Modeling Benchmark 169

deviation and the confidence intervals (1−α = 0.95) were computed. In the first
experiment each triangulation corresponds to a single program invocation, so we
executed the program 50 times per point cloud.

Table 4 reports the results of our test on the same PC presented before run-
ning Windows XP (Sun Java 6 v. 1.6.0 23 and C++ programs compiled with
MinGw v. 3.82 and GCC v. 4.5.0). Mean time, standard deviation and confi-
dence intervals (c1 and c2) are expressed in milliseconds. Java vs. C++ is the
ratio between the average execution time.

Table 4. Times report - Multiple invocation - Windows - Java Client

Sphere Floor Bunny Terrain 1 Terrain 2

Number of vertices 642 10000 35947 66049 263169

Java

Mean 70.62 1458.8 3102.2 20344 132926

Std Dev. 7.89 12.90 52.96 403.44 986.18

c1 68.38 1455.1 3087.1 20229 132646

c2 72.86 1462.5 3117.3 20459 133206

C++

Mean 7.50 298.13 886.25 3305.9 22908

Std Dev 7.89 25.61 63.77 144.83 227.06

c1 5.26 290.85 868.13 3264.8 22844

c2 9.74 305.40 904.37 3347.1 22973

Java vs. C++ 9.42 4.89 3.50 6.15 5.80

Referring to the table 4, the triangulation execution time obtained with the
first point cloud (sphere) is not very truthful. Indeed Java version is 9.42 times
slower than C++ and this value doesn’t fit the ratios obtained with the other
point clouds. In this case the execution time is very small and so the time
required for compiling the code greatly influences the result. Note that the costs
required by the compiler have a fixed part, which is the same for each point
clouds. Hence the smaller is the point cloud, the greater is the influence of the
compilation overhead on the execution time.

3.4 Single Program Invocation

In order to avoid the compilation overhead we decided to change our measuring
strategy. We set up a second experiment, where 51 triangulations were measured
in a single program invocation. This kind of experiment corresponds to a long
run execution, where only the first invocation of the algorithm pays the compiler
costs. We discarded the execution time of the first invocation and computed
our statistics on the other 50 samples. Table 5 reports the results obtained
under Windows and Ubuntu Lucid (both with the same Java and C++ versions
presented before). As expected, the average execution times decrease for Java
and remain more or less the same for C++.

Under Windows, without the compiler overhead, Java performance are always
better than the results reported in table 4, but remain worse than the results

170 L. Gherardi, D. Brugali, and D. Comotti

Table 5. Times report - Single invocation - Java Client

Windows Linux
Sphere Floor Bunny Terr. 1 Terr. 2 Sphere Floor Bunny Terr. 1 Terr. 2

Num. of vertices 642 10000 35947 66049 263169 642 10000 35947 66049 263169

Java

Mean 15.58 1157.2 2487.2 18108 115977 6.66 869.20 2111.3 13478 92301

Std Dev. 0.50 18.82 20.57 80.53 399.65 1.48 40.83 80.94 106.06 383.57

c1 15.44 1151.9 2481.3 18085 115863 6.24 857.60 2088.3 13448 92191

c2 15.72 1162.6 2493.0 18130 116091 7.08 880.80 2134.3 13508 92410

C++

Mean 6.56 288.75 914.06 3226 23168 3.23 224.01 750.09 3333.4 24277

Std Dev 7.79 7.89 11.92 110.36 605.89 0.84 2.35 7.41 62.90 437.73

c1 4.35 286.51 910.68 3195 22996 2.99 223.35 747.99 3315.5 24152

c2 8.78 290.99 917.45 3257 23340 3.47 224.68 752.20 3351.2 24401

Java vs. C++ 2.37 4.01 2.72 5.61 5.01 2.06 3.88 2.81 4.04 3.80

discussed in section 2. Indeed in our tests the execution time ratio between Java
and C++ goes from 2.37 to 5.61 against the range 1.45-2.91 reported in table 1.
One possible reason is that the triangulation process requires an intensive use
of the memory and probably the C++ version leverages the possibility of store
temporary objects on the stacks, which is much faster [18].

The table shows that under Ubuntu Java is more efficient than under Win-
dows. Indeed the ratio range goes from 2.06 to 4.04. It should be noted that we
executed the tests with both the OpenJDK and the Sun JDK. However in the
paper we consider only the first one because the results are almost the same.

Another consideration can be done on the relation between the point clouds
sizes and the execution time ratios. The value of the performance ratio doesn’t
show a linear trending, hence we can assert that for this algorithm there is no
correlation between the performance ratio and the input size.

3.5 JVM Server Option

Table 6 report the results obtained using the Server compiler. We executed the
tests on the same machine used previously with the same configurations. Of
course, only the Java version was tested and the C++ rows report the results
of the previous experiments. Despite we are aware of the existence of the opti-
mizations provided by GCC, we didn’t work on them. Indeed the default release
configuration of the OSG libraries is tuned in order to offer the best performance.

The results shows that under Windows the server compiler considerably re-
duces the average execution time of complex operations. In particular the ex-
ecution times decrease 3-4 times with respect to the client compiler. The first
cloud represents the unique exception. Indeed, in that case the execution is too
short and so most of the iterations are executed without optimization. This is
the typical case in which the larger start-up time required by the server compiler
is not compensated. Regarding the other point clouds, the ratio range goes from
1.09 to 1.51 and so Java is nearly equivalent to C++.

A Java vs. C++ Performance Evaluation: A 3D Modeling Benchmark 171

Table 6. Times report - Single invocation - Java Server

Windows Linux
Sphere Floor Bunny Terr. 1 Terr. 2 Sphere Floor Bunny Terr. 1 Terr. 2

Number of vertices 642 10000 35947 66049 263169 642 10000 35947 66049 263169

Java

Mean 24.96 356.26 999.02 4873.1 30320 20.40 428.5 1253.1 4778.9 29368

Std Dev. 15.45 20.16 20.40 42.80 230.28 19.58 20.66 56.64 172.29 250.81

c1 20.57 350.53 993.22 4861.0 30255 14.84 422.63 1237.0 4729.9 29297

c2 29.35 361.99 1004.8 4885.3 30385 25.96 434.37 1269.2 4827.8 29440

C++ Mean 6.56 288.75 914.06 3225.9 23168 3.23 224.01 750.09 3333.4 24277

Java vs. C++ 3.80 1.23 1.09 1.51 1.31 6.32 1.91 1.67 1.43 1.21

The results demonstrates that also under Ubuntu the server compiler signifi-
cantly improves the performance. The same considerations reported above could
be applied to the results obtained with the first cloud. Referring to the other
clouds the ratio range goes from 1.21 to 1.91 and the average execution times
are from 2 to 3 times better than the results obtained with the client compiler.

4 Conclusions and Future Works

In this paper we have described our work on the evaluation of the performance
of Java with respect to C++ in robotics applications. The results obtained with
the Client compiler, which works better for short-running applications, have
shown that Java is from 2.72 to 5.61 times slower than C++. Using the Server
compiler, which is best tuned for long-running applications, have instead demon-
strated that Java is from 1.09 to 1.91 times slower. These results show that the
performance of Java are now better with respect to the tests previously docu-
mented in literature and demonstrate that the use of the Server compiler for
long run application greatly reduces the execution time.

In addition to the fact that now the performance are not so different with
respect to C++, we also have to consider that Java offers a set of interesting
features. Portability: Java is designed to be platform independent and so Java
software is very portable. The low level data types such as integer and float are
fully defined in Java specification and aren’t platform dependent. Reusability:
Java comes by default with a lot of common libraries for several purposes. It is
also easy to deploy and reuse the developed libraries without sharing source or
header files or requiring a specific compiler. Maintainability: Java is designed to
forbid common bugs such dangling pointers, casting errors, out-of-bounds array,
stack overflows, segmentation faults and uninitialized variables.

In conclusion, the results obtained with the server compiler and these impor-
tant features suggest that Java can be considered a valid alternative to C++.
We plan to executes new experiments in order to further confirm this thesis. The
tests will regards the communication with external devices (USB, RS-232, . . .)
and the execution of multi-thread programs.

172 L. Gherardi, D. Brugali, and D. Comotti

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. FP7-ICT-231940-BRICS (Best Practice in
Robotics). The authors would like to thank all the partners of the project for
their valuable comments.

References

1. Just in time compiler, http://en.wikipedia.org/wiki/JIT_compiler
2. Open Scene Graph, http://www.openscenegraph.org
3. Open Scene Graph API reference,

http://www.openscenegraph.org/ documentation/OpenSceneGraphReferenceDocs
4. Rosjava - An implementation of ROS in pure Java with Android support,

http://code.google.com/p/rosjava/
5. Specifications of java.util.collections,

http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
6. Bernardin, L., Char, B., Kaltofen, E.: Symbolic computation in Java: an appraise-

ment. In: Proceedings of the 1999 Int. Symposium on Symbolic and Algebraic
Computation, pp. 237–244. ACM (1999)

7. Bull, J., Smith, L., Westhead, M., Henty, D., Davey, R.: A methodology for bench-
marking Java Grande applications. In: Proceedings of the ACM 1999 Conference
on Java Grande, pp. 81–88. ACM (1999)

8. Delaunay, B.: Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii
i Estestvennyka Nauk 7, 793–800 (1934)

9. Elnagar, A., Lulu, L.: A global path planning Java-based system for autonomous
mobile robots. Science of Computer Programming 53(1), 107–122 (2004)

10. Lewis, J., Neumann, U.: Performance of Java versus C++. Computer Graphics
and Immersive Technology Lab, University of Southern California (January 2003)

11. Long, M., Gage, A., Murphy, R., Valavanis, K.: Application of the distributed field
robot architecture to a simulated demining task. In: Proceedings of the 2005 IEEE
Int. Conference on Robotics and Automation, ICRA 2005. IEEE (2005)

12. Mangione, C.: Performance tests show java as fast as c++. JavaWorld (1998)
13. Meloan, S.: The Java HotSpot (tm) Perfomance Engine: An In-Depth Look. Article

on Suns Java Developer Connection site (1999)
14. Monteiro, F., Rocha, P., Menezes, P., Silva, A., Dias, J.: Teleoperating a mobile

robot. A solution based on JAVA language. In: Proceedings of the IEEE Int. Sym-
posium on Industrial Electronics, ISIE 1997, vol. 1. IEEE (2002)

15. Prechelt, L., et al.: Comparing Java vs. C/C++ efficiency differences to interper-
sonal differences. Communications of the ACM 42(10), 109–112 (1999)

16. Raimondi, F., Ciancimino, L., Melluso, M.: Real-time remote control of a robot
manipulator using java and client-server architecture. In: Proceedings of the 7th
Int. Conference on Automatic Control, Modeling and Simulation (2005)

17. Robertz, S., Henriksson, R., Nilsson, K., Blomdell, A., Tarasov, I.: Using real-time
Java for industrial robot control. In: Proceedings of the 5th Int. Workshop on Java
Technologies for Real-Time and Embedded Systems, pp. 104–110. ACM (2007)

18. Roulo, M.: Accelerate your Java apps. Java World (1998)
19. Spw, S., Wentworth, S., Langan, D.: Performance evaluation: Java vs. c++. In:

39th Annual ACM Southeast Regional Conference, March 16-17. Citeseer (2001)
20. Wilson, S., Kesselman, J.: JavaTM Platform Performance - ch. 8. Sun Microsys-

tems (2001), http://java.sun.com/docs/books/performance/1st edition/

html/JPAlgorithms.fm.html

http://en.wikipedia.org/wiki/JIT_compiler
http://www.openscenegraph.org
http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs
http://www.openscenegraph.org/documentation/OpenSceneGraphReferenceDocs
http://code.google.com/p/rosjava/
http://docs.oracle.com/javase/6/docs/api/java/util/Collections.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPAlgorithms.fm.html
http://java.sun.com/docs/books/performance/1st_edition/html/JPAlgorithms.fm.html

A Comparison of Sampling Strategies

for Parameter Estimation of a Robot Simulator

Gordon Klaus, Kyrre Glette, and Jim Tørresen

University of Oslo, Norway
Department of Informatics

{gordonk,kyrrehg,jimtoer}@ifi.uio.no

Abstract. Methods for dealing with the problem of the “reality gap”
in evolutionary robotics are described. The focus is on simulator tuning,
in which simulator parameters are adjusted in order to more accurately
model reality. We investigate sample selection, which is the method of
choosing the robot controllers, evaluated in reality, that guide simulator
tuning. Six strategies for sample selection are compared on a robot lo-
comotion task. It is found that strategies that select samples that show
high fitness in simulation greatly outperform those that do not. One such
strategy, which selects the sample that is the expected fittest as well as
the most informative (in the sense of producing the most disagreement
between potential simulators), results in the creation of a nearly optimal
simulator in the first iteration of the simulator tuning algorithm.

Keywords: the reality gap, evolutionary robotics, simulation.

1 Introduction

Evolutionary robotics (ER) [1,2], the application of evolutionary algorithms
(EAs) to robot design, has shown itself to be a powerful technique. The ability
of EAs to find novel solutions in a large or unfamiliar search space has been
demonstrated, e.g., with Sims’ swimming robots [3] and in antenna design [4].
Using ER, the designer is free to explore otherwise daunting domains like the
complex dynamics of tensegrity structures and soft materials [5,6,7] or the space
of robot morphologies [7,8,9]. A simple demonstration of the advantage of ER
over the hand-design of robots is given in [10].

While it is possible to do evolutionary robotics in the real world [11], this can
be a very time consuming task. The evaluation of a single candidate solution
can take on the order of tens of seconds, not including setup time, and an entire
run of an EA typically involves thousands of such evaluations. The benefit of
using a simulator, which, given sufficient computing power, can perform many
evaluations in the time it would take to perform one in reality, is palpable.

This speedup, however, comes with a cost. Because a simulator is only an
approximation of reality, it necessarily changes the problem being solved. An
individual that behaves a certain way in simulation may not behave the same
when transferred to reality. As a result, the fitness landscape will be different.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 173–184, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

174 G. Klaus, K. Glette, and J. Tørresen

Most importantly, optima of the approximated fitness function may not be op-
timal in reality. To deal with this problem of the “reality gap” (as it has been
called) several approaches have been made.

It was shown that, by simulating only those aspects of reality that are relevant
to the problem at hand (i.e., building “minimal” simulations) and by using
empirically determined amounts of noise to model noisy or poorly understood
aspects of a system, the transferability to reality of robot controllers evolved in
simulation can be improved [12,13,14]. For example, sensors and actuators do
not behave in an idealized fashion; there is always some noise, and it can have
a large effect on the functioning of a robot. Moreover, the nondeterminism of a
noisy simulator helps to produce robust controllers that are less likely to take
advantage of a simulator’s idiosyncrasies; i.e., it discourages “cheating”.

Rather than concerning oneself greatly with the quality of the simulator, it is
alternatively possible to sidestep the problem by simply accepting that a simu-
lator has inaccuracies. The transferability approach [15,16] uses multi-objective
optimization to explicitly consider the trade-off between fitness and transfer-
ability. Other methods involve designing adaptive controllers that can cope with
differences between simulation and reality. In [17], a mobile robot was able to
perform a non-trivial task in reality after being very rapidly evolved in a sim-
ulator, using Hebbian rules to develop a neural controller on the fly. In [18], a
control architecture was developed which enabled an evolved robot to adaptively
anticipate errors between its expected and actual motions, allowing it to recover
from perturbations not encountered in simulation.

Each of these methods is promising in its own way, but they are not the fo-
cus of this paper. Here, we deal with methods of improving the quality of simula-
tion. A simulator is typically configured by some set of parameters. For example, a
physics simulator has parameters related to friction and restitution that govern the
interactions of different materials, and parameters for the dimensions and mass
distributions of objects being simulated. Many values can be obtained by direct
measurement. However, given that a simulator is a simplification of the real world,
there may not be direct correspondences between real and simulated parameters –
for example, when nonlinearmechanisms like robot actuators aremodeled linearly
or when detailed objects are represented by coarse shapes, as is often done.

It is thus necessary to adjust simulation parameters such that the simulator
more accurately reflects the real world. Some improvement can be made by
simply hand-tuning [19] but clearly more sophisticated methods are required.
Even when suitable values can be determined by measurement, a method of
automatic discovery or inference could be useful, for example in an autonomous
adaptive robot that maintains internally a model of its environment.

The approaches taken in Back-to-Reality (BTR) [20,21], estimation-
exploration (EE) [22,23], and using sequential surrogate optimization (SSO) [24]
are largely similar to each other: Two coupled optimization algorithms are run
in an interleaved fashion, one to search for solutions to a primary task such as
simulated robot locomotion and another to improve the accuracy of the simula-
tor. The product of each run of the primary search (a controller for a simulated

A Comparison of Sampling Strategies 175

robot) is evaluated in reality and then used in subsequent simulator optimiza-
tions; and the product of each simulator optimization is used in the following
primary search. (A more detailed description is given later.) Ultimately, this
should result in the convergence toward accurate simulators and, as a result,
robot controllers that are fit in reality.

BTR actually interleaves three algorithms. In addition to the two just men-
tioned, it includes a learning-in-reality step after each simulator search, seeded
by the prior primary search, and the results of which are used to seed the next
primary search. The value of this extra step is a bit unclear. It is expensive to do
such fine tuning in the real world, and any information gained is then lost upon
return to simulation. Even if the real-world evaluations were used to inform the
simulator search, it would be a large price to pay for some tightly clustered, and
thus information poor, data points.

An interesting aspect of EE is its measure of simulator fitness. While the other
two methods search for a simulator that minimizes the difference between the
fitnesses of some individuals in simulation and reality, EE tries to minimize the
difference between the robots’ sensor readings in simulation and reality. It is a
more complicated calculation to perform but it also provides a great deal more
information.

Perhaps the most important difference between these methods is in their
specific strategies for selecting individuals for evaluation in reality. Individu-
als evaluated in reality provide the data points, or samples, used for tuning the
simulator. Because the goal is to do as few real-world evaluations as necessary,
it is important that sample selection be done wisely.

BTR and EE operate in the same manner, selecting for evaluation in reality
the individual that is fittest in the current simulator. EE is actually described
to work differently, but is only used that way in one of its four applications, and
not in evolutionary robotics; This other manner is to select the individual that
maximizes the disagreement between a number of candidate simulators, i.e., the
most informative individual. SSO uses a hybrid strategy, selecting the fittest
individual, or, if that individual is within a threshold distance of a previously
selected individual, the most informative individual (based on a fitness error
estimate that is maintained as part of the surrogate fitness function).

These different selection strategies seem promising but it isn’t clear which
would give the best results. The goal of this paper, then, is to compare them
(and others) on a common task. In the next section, we describe this task, the
general algorithm, and each of the specific strategies to be compared. Then, we
present and discuss the results. Finally, we conclude and consider avenues for
future work.

2 Implementation

The benchmark task in this investigation is a common one: to design a con-
troller for robot locomotion. Figure 1 depicts the robot, a quadruped with a
total 12 degrees of freedom in its limbs. To produce motion, each of its actuators

176 G. Klaus, K. Glette, and J. Tørresen

is periodically extended and contracted based on a simple pulse shaped function
determined by two parameters; a total of 24 parameters thus define such a con-
troller. The task is then to use an EA to search for controller parameters that
cause the robot to walk at the highest speed. Details of the robot, its controller,
and the EA are given in [10].

Fig. 1. A rendering of the robot used in this investigation

The ultimate goal is to be able to reliably perform this task for a robot
situated in the real world, taking advantage of a simulator to perform most of
the expensive robot evaluations required by the EA. In order to determine the
expected relative performance of a number of different methods for achieving this
goal, however, experiments need to be repeated many times due to the stochastic
nature of EAs. This would require thousands of real-world robot evaluations. To
expedite this investigation, we have substituted a simulation for the real world.
That is, instead of doing evaluations in the real world, we do them in a simulator
whose configuration is unknown (i.e., hidden from the algorithm). As long as
the configuration of “reality” (simulated or otherwise) remains hidden from the
process that generates approximations of it, we can consider this to be a “reality

A Comparison of Sampling Strategies 177

gap” problem. It should therefore be sufficient for the purpose of comparing
selection strategies.

The PhysX software library was used to simulate robot movement, as in [10].
The simulated reality (henceforth just “reality”) was configured such that the
material constituting the robot and the ground plane had coefficients of static
and dynamic friction 1.0 and 0.8, respectively, and restitution (bounciness) 0.0.
The simulator (i.e., the approximating simulator, not “reality”) was parameter-
ized by these material properties, so that the process of simulator tuning was a
search for values of these three coefficients.

The basic algorithm, illustrated in Figure 2, is essentially the same as in BTR,
EE, and SSO. We iterate the following procedure: First, select a new sample
(defined in the next paragraph) using one of the selection strategies described
later; then, use all the samples collected thus far to optimize a new simulator.
Finally, after performing some number of these iterations, the latest simulator
is used to evolve a robot controller which, transferred to reality, is the final
product of the algorithm. The algorithm is iterative because selection strategies
typically use the tuned simulator for the subsequent sample selection; initial
sample selection uses a random simulator.

Start with a randomly
configured simulator and
an empty set of samples.

Informed by the current
simulator, choose a robot
controller using a sample

selection strategy.
Evaluate it in reality and

add it to the set of samples.

Run an EA to tune
the simulator so that
it accurately repro-
duces the fitnesses of
the samples in our set.

End after a fixed number
of iterations. Use the latest
simulator to evolve the
final robot controller.

Fig. 2. The flow of the basic simulator tuning algorithm

A sample, as mentioned earlier, is a robot controller whose fitness (here,
walking speed) we evaluate in reality. The real-world fitness values of the sam-
ples drive simulator tuning: We use an EA to find the simulator (specifically,
the three parameters named earlier) that accurately reproduces the fitness val-
ues of the samples collected thus far. The fitness of a simulator sim, to be
maximized, is

f(sim) =
1∑

x∈samples(fsim(x)− freal(x))2

where fsim(x) and freal(x) are the fitnesses in the simulator and in reality,
respectively, of an individual x. We use the same EA parameters as in the robot
optimization, but only 2000 evaluations.

178 G. Klaus, K. Glette, and J. Tørresen

Figure 3 illustrates the progression of the algorithm when it is run on a much
simpler function optimization task. In this example, we can visualize the fit-
ness landscape, sample selection, the successively more accurate simulators, and
transferral from simulation to reality.

Fig. 3. A visualization of the algorithm being run on a function optimization task
after 2, 4, 6, and 8 iterations. The dashed curve is the true function (reality) and
the solid curves are approximating functions (simulations). Dots indicate samples. The
arrow indicates the fittest in simulation and its transferral to reality. Notice that, as
more samples are added, the simulations become more accurate and the fitness of the
transferred individual increases until it is near the global maximum of the real function.

In the following paragraphs we describe the six sampling strategies that are
the objects of comparison in this paper. The first four strategies fit in the iterative
form of the algorithm described above and use the ideas from BTR, EE, and
SSO, while the last two are non-iterative and much simpler.

Simulated Fit. This is the strategy used in BTR and EE and partially in SSO.
The individual is selected for evaluation in reality that has the highest fitness in
the latest tuned simulator (or, in the first iteration, a simulator with randomly
chosen parameters). An EA is run to find this individual; this EA uses the same
parameters as the one used to produce the final result of the algorithm. This

A Comparison of Sampling Strategies 179

strategy is motivated by the idea that our simulator needs to accurately model
only individuals of high fitness; it thus tries to bias the samples towards what
are estimated to be fit individuals.

Simulated Fit and Unique. This is the same as the previous strategy, but with
a modification to the fitness function to maintain some distance between the
samples. The modified fitness function is

f∗
sim(x) = fsim(x)− 1

100N

∑
y∈samples

1

d(x, y)

where fsim(x) is the simulated fitness of x, N = |samples|, and d(x, y) is the
Euclidean distance between individuals x and y in terms of both genome and
fitness. This strategy is motivated by the fact that we might expect the pre-
vious strategy to pick, after several iterations, very similar individuals near a
local optimum. Several such tightly clustered samples would provide little more
information than a single one.

Informative. This strategy was suggested in EE and used partially in SSO. The
individual is selected that maximizes the disagreement between a number of
simulators. A modification to the basic algorithm is required: Instead of evolving
a single simulator, a diverse population of 20 simulators is evolved. To maintain
diversity, the EA’s method of replacement is changed: After a newly evaluated
simulator is added to the population, instead of dropping the least fit, the pair
of simulators whose genomes are most similar is found and the less fit of the two
is removed from the population.

To find the individual that maximizes the disagreement between the simula-
tors, an EA is used. Its fitness function is calculated as the weighted standard
deviation of the fitness values the simulators produce for a given individual.
The weights are the fitnesses of the simulators themselves, so that an inaccurate
simulator contributes less to this measure than an accurate simulator.

Simulated Fit and Informative. This is a mixture of two strategies. It works
the same as the Informative strategy, but in addition to the weighted standard
deviation, its fitness function includes the weighted average of the fitness values
produced by the diverse population of simulators.

Random. Individuals are picked with genomes drawn from a uniform distribu-
tion. As each selection is entirely independent of the previous ones, the algorithm
collapses to a non-iterative form where all the samples are selected at once before
a single simulator is finally tuned.

Known Fit. This strategy is like Random except the samples are generated as
mutated versions of an individual known to have middling fitness. In this case,
the hand-designed controller from [10] was used; it achieved a fitness of 0.73 in
“reality”. Values drawn randomly from a uniform distribution on [0, 0.25) were

180 G. Klaus, K. Glette, and J. Tørresen

added to each element of this controller’s genome to produce each new sample.
This strategy is motivated by the observation that many of the purely randomly
generated samples had very low fitness. In SSO, a similar strategy was used to
generate a small set of initial samples.

3 Experiments and Results

The aim is to achieve the highest real-world fitness while doing the fewest real-
world evaluations. It is on this basis that we compare the performance of the
different selection strategies. The creation of a generally accurate simulator may
be an intermediate goal; however, a relatively poor simulator is perfectly accept-
able if it enables us to find robot controllers that are very fit in reality – which
may very well be the case for a simulator that captures only certain essential
aspects of reality. For this reason, we make no explicit judgments of simulator
accuracy.

For each of the strategies, the algorithm is iterated ten times; that is, ten real-
world evaluations are performed. After each iteration of the algorithm, the best
simulator is used to evolve a robot controller for walking speed. This controller is
then evaluated in reality and its fitness (or the maximum fitness of the samples, if
it is larger) is recorded. We do not count this real-world evaluation among those
that are the basis for comparison, as it is not used as a sample for simulator
tuning – it is only a view into the algorithm’s performance. Figure 4 shows the
recorded fitness values averaged over 40 repetitions of this process.

In addition to comparing the different strategies to each other, we should
also consider them with regard to the expected performance of evolving directly
in reality. Because we have substituted the real world with a simulator, it is a
simple task to compute the fitness expected from evolving directly in reality. Just
as in [10], robot controllers were evolved for 10000 evaluations in the simulator
configured as “reality”; with 100 repetitions, the best fitness at the end of the
evolutionary runs had an average of 1.33 (standard deviation 0.10).

All of the strategies showed real-world fitness increasing with the number of
real-world evaluations. Before any iterations, all strategies of course produced
roughly the same expected fitness, about 0.9, from evolving in a randomly con-
figured simulator. With more iterations, fitnesses improved (diminishingly) to
more or less 1.3.

Known fit performed only marginally better than Random. More improvement
could probably have been achieved by using a fitter individual as the seed for
generating the samples.

The three strategies that involve simulated fitness were significantly better
than the others in terms of both average and standard deviation of real-world
fitness. After only three real-world evaluations, these three strategies achieved
real-world fitness of at least 1.3, and after ten iterations they reached 1.4. Stan-
dard deviations were in the range 0.10-0.15, about three times smaller than in
the other strategies and comparable to that found when evolving directly in re-
ality. This indicates that the inclusion of simulated fitness as a factor in sample
selection is very effective, perhaps essential.

A Comparison of Sampling Strategies 181

Fig. 4. Fitness in reality versus number of real-world evaluations for the six sample
selection strategies. The statistical significance of the results (using Student’s t-test)
is as follows: With just one real-world evaluation, the Simulated fit and informative
strategy was significantly different from the other strategies (p < 0.01). Combining
the data for more than two real-world evaluations, each of the strategies involving
simulated fitness was significantly different from the others (p << 0.001) and Known
fit was significantly different from Random (p ≈ 0.017). Considering more than five
real-world evaluations, each of the three weakest strategies was significantly different
from the others (p < 0.05).

The additional criterion of uniqueness appears to give a small improvement
over plain Simulated fit after a couple of iterations, as expected. We might expect
the same sort of improvement from Informative, as informative implies unique-
ness (a repeated sample is totally uninformative), but we do not see it. This
is because the strategies involving simulated fitness produced nearly perfectly
tuned simulators after about 3 or 4 iterations, as they have attained the same
fitness as evolution in reality using the same number of simulated evaluations.
Beyond these 3 or 4 iterations, the algorithm is hardly tuning the simulator any-
more, instead just searching for fitter samples; the increasing fitness is similar
to what would be seen by simply extending the EAs beyond 10000 evaluations.

182 G. Klaus, K. Glette, and J. Tørresen

That the different strategies show different rates of improvement in later iter-
ations is due to their specific construction: The strategy that promotes unique
samples introduces a weak exploratory force in the algorithm, leading it to search
locally and thus to improve more quickly, while the strategy biased towards in-
formative samples introduces a stronger exploratory force (informative samples
will typically be quite distant from each other) that may lead the algorithm away
from regions of high fitness.

Most striking is the performance of the Simulated fit and informative strategy.
While Informative alone was only slightly better than Random and Known fit,
in combination with Simulated fit it produced a nearly perfect result in just a
single iteration. The fact that the other two strategies outperform it in later
iterations is due to the phenomenon described it the previous paragraph, and
for this reason shouldn’t be considered a weakness of this strategy. This is the
most promising of the six selection strategies.

It is interesting to consider how poorly the Informative strategy performed,
especially when its combination with Simulated fit was so successful. It seems
likely that the diversity maintenance mechanism used in simulator evolution
was not as effective as desired – it plays no role in the first iteration (in which
randomly configured simulators are used), where Simulated fit and informative
really shines.

4 Conclusion and Future Work

Our investigation has demonstrated the important role that sample selection
strategies play in simulator tuning. Of the six strategies used here, the Simulated
fit and informative strategy proved to be the most successful at closing the
“reality gap” for this particular task of robot locomotion. In fact, seeing as the
algorithm was able to nearly perfectly tune the simulator in just a single iteration
using this strategy, it seems reasonable to say that this strategy has solved this
particular instance of the task.

It remains to be seen how well this algorithm scales up to more complex sce-
narios; this will be the main focus of our future work. This instance of simulator
tuning was rather simple, involving the estimation of only three parameters.
Other parameters to be considered include motor forces, noise sources, and di-
mensions and mass distribution of the robot body. Ultimately, testing must be
done on a physical robot outside simulation.

To succeed at more complex tasks, it may be necessary to improve upon the
Simulated fit and informative strategy. The current implementation involves a
simple sum of two factors (one from simulated fitness, the other informative)
whereas this probably ought to be a more general weighted sum so that it is
possible to adjust the influence of the two factors. It may also be beneficial
to more tightly interleave the evolution of diverse simulators with the evolu-
tion of informative samples, as their respective diversity and informativeness are
strongly coupled.

Finally, as sample selection strategies become more sophisticated, it could be
practical to consider a more nuanced basis for comparison than just the number

A Comparison of Sampling Strategies 183

of real-world evaluations. If some strategies take much longer to run than others
then the total running time would be a better measure. If a strategy takes a
very long time to run then one might consider instead to do more real-world
evaluations in that time; to capture this possibility, the time it takes to perform
real-world evaluations must be considered. In this situation it would probably
make sense to give greater weight to time spent doing real-world evaluations
than time spent computing, as it demands more constant human attention.

References

1. Doncieux, S., Bredeche, N., Mouret, J.-B.: Exploring new horizons in evolutionary
design of robots. In: Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE Press (2009)

2. Harvey, I., Husbands, P., Cliff, D., Thompson, A., Jakobi, N.: Evolutionary
robotics: the sussex approach. Robotics and Autonomous Systems 20, 205–224
(1997)

3. Sims, K.: Evolving virtual creatures. In: SIGGRAPH 1994: Proceedings of the 21st
Annual Conference on Computer Graphics and Interactive Techniques, pp. 15–22.
ACM, New York (1994)

4. Linden, D., Hornby, G., Lohn, J., Globus, A., Krishunkumor, K.: Automated an-
tenna design with evolutionary algorithms. American Institute of Aeronautics and
Astronautics 5, 1–8 (2006)

5. Rieffel, J., Trimmer, B., Lipson, H.: Mechanism as mind: What tensegrities and
caterpillars can teach us about soft robotics. In: Artificial Life XI: Proceedings of
the Eleventh International Conference on the Simulation and Synthesis of Living
Systems (2008)

6. Glette, K., Hovin, M.: Evolution of Artificial Muscle-Based Robotic Locomotion in
PhysX. In: IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS (2010)

7. Rieffel, J., Saunders, F., Nadimpalli, S., Zhou, H., Hassoun, S., Rife, J., Trimmer,
B.: Evolving soft robotic locomotion in PhysX. In: GECCO 2009: Proceedings of
the 11th Annual Conference Companion on Genetic and Evolutionary Computa-
tion Conference, pp. 2499–2504. ACM, New York (2009)

8. Bongard, J.C.: Incremental Approaches to the Combined Evolution of a Robot’s
Body and Brain. PhD thesis, University of Zurich (2003)

9. Macinnes, I., Di Paolo, E.: Crawling out of the simulation: Evolving real robot
morphologies using cheap reusable modules. In: Pollack, J., Bedau, M., Hus-
bands, P., Ikegami, T., Watson, R. (eds.) Artificial Life IX: Proceedings of the
Ninth Interational Conference on the Simulation and Synthesis of Life, pp. 94–99.
MIT Press, Cambridge (2004)

10. Klaus, G., Glette, K., Høvin, M.: Evolving Locomotion for a Simulated 12-DOF
Quadruped Robot. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker,
J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 90–98. Springer,
Heidelberg (2012)

11. Zykov, V., Bongard, J.C., Lipson, H.: Evolving dynamic gaits on a physical robot.
In: Proceedings of Genetic and Evolutionary Computation Conference, Late Break-
ing Paper, GECCO (2004)

12. Jakobi, N.: Minimal Simulations for Evolutionary Robotics. PhD thesis, University
of Sussex (1998)

184 G. Klaus, K. Glette, and J. Tørresen

13. Jakobi, N., Husbands, P., Harvey, I.: Noise and the Reality Gap: The Use of Simu-
lation in Evolutionary Robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon,
P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995)

14. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artificial Life 2, 417–434 (1996)

15. Koos, S., Mouret, J.-B., Doncieux, S.: The transferability approach: Crossing the
reality gap in evolutionary robotics. IEEE Transactions on Evolutionary Compu-
tation (2012)

16. Koos: The transferability approach- an answer to the problems of reality gap,
generalization, and adaptation. PhD thesis, Institut des Systémes Intelligents et
de Robotique Université Pierre et Marie CURIE (2011)

17. Floreano, D., Urzelai, J.: Evolution of Plastic Control Networks. Autonomous
Robots 11(3), 311–317 (2001)

18. Hartland, C., Bredeche, N.: Evolutionary robotics, anticipation and the reality gap.
In: IEEE International Conference on Robotics and Biomimetics, ROBIO 2006, pp.
1640–1645 (December 2006)

19. Glette, K., Klaus, G., Zagal, J.C., Tørresen, J.: Evolution of locomotion in a sim-
ulated quadruped robot and transferral to reality. In: Artificial Life and Robotics
(2012)

20. Zagal, J.C., Ruiz-del-Solar, J., Vallejos, P.: Back to reality: Crossing the reality gap
in evolutionary robotics. In: Proceedings of IAV 2004, the 5th IFAC Symposium
on Intelligent Autonomous Vehicles, Lisbon, Portugal (2004)

21. Zagal, J.C., Ruiz-Del-Solar, J.: Combining simulation and reality in evolutionary
robotics. J. Intell. Robotics Syst. 50, 19–39 (2007)

22. Bongard, J.C., Lipson, H.: Once more unto the breach: co-evolving a robot and its
simulator. In: Proceedings of the Ninth International Conference on the Simulation
and Synthesis of Living Systems (ALIFE9), pp. 57–62 (2004)

23. Bongard, J., Lipson, H.: Nonlinear system identification using coevolution of mod-
els and tests. IEEE Transactions on Evolutionary Computation 9, 361–384 (2005)

24. Hemker, T., Sakamoto, H., Stelzer, M., Stryk, O.V.: Hardware-in-the-loop opti-
mization of the walking speed of a humanoid robot. In: CLAWAR 2006: 9th Inter-
national Conference on Climbing and Walking Robots, pp. 614–623 (2006)

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 185–196, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Framework with a Pedestrian Simulator
for Deploying Robots into a Real Environment

Masahiro Shiomi1,2, Francesco Zanlungo1,2, Kotaro Hayashi1,2, and Takayuki Kanda1,2

1 ATR Intelligent Robotics and Communications Labs
2 Japan Science and Technology Agency, CREST

m-shiomi@atr.jp

Abstract. We describe a simulation framework aimed to develop and test
robots before deploying them in a real environment crowded with pedestrians.
In order to use mobile robots in the real world, it is necessary to test whether
they are able to navigate well, i.e. without causing safety risks to humans. This
task is particular difficult due to the complex behavior pedestrians have towards
each other and also towards the robot, that can be perceived either as an
obstacle to avoid or as an object of interest to approach for curiosity. To
overcome this difficulty, our framework involves a pedestrian simulator, based
on a collision avoidance model developed to describe low density conditions as
those occurring in shopping malls, to test the robot's navigation capability
among pedestrians. Furthermore, we analyzed the behavior of pedestrians
towards a robot in a shopping mall to build a human-to-robot interaction model
that was introduced in the simulator. Our simulator works as a tool to test the
level of safety of robot navigation before deploying it in a real environment. We
demonstrate our approach showing how we used the simulator, and how the
robot finally navigated in a real environment.

Keywords: Pedestrian simulation, Safe navigation, Mobile robot, Field trial.

1 Introduction

Deploying a robot in a real environment with ordinary people is one of the major
targets and challenges in robotics. Due to the improvement of robots’ sensing abilities
such as human tracking, robots can now assist people working in a real world
environment, and lately research works have been performed to deploy robots in
environments such as malls [1], science museums [2], or hospitals [3].

One of the most serious problems to face when using robots in a real environment
is to ensure that they can be operated safely between humans. When operating our
robots in the real world we have experienced difficulties in securing the robot’s safety
due to unexpected behaviors of pedestrians who may, for example, be strongly
interested in the robot and surround it or even explicitly obstruct its motion by
continuously standing on its front (Fig. 1-(a)). Moreover, the density in a real
environment may change strongly with time (for example, the density in a shopping
mall at lunch time is higher than in usual situations (Fig. 1-(b)), making difficult to
develop and test in the laboratory a navigation system that may be safe in any setting.

186 M. Shiomi et al.

Simulations have been
environments [4, 5], but t
needed only to simulate th
behaviors and reactions. W
operate in a human crow
behavior of humans makes
the real world [6].

In this paper, we repor
realistic pedestrian simulat
end, we first gathered pos
human tracking system [7]
used a pedestrian model e
situations occurring in sho
pedestrians and control rob
simulated environment, we

(a) An adul

(b) R

Fig. 1. Example of difficul

2 Related Works

It is quite common to use
phenomena. For example,
behavior [4], while Tsai et
planning in a dual arm rob
walking behavior of a tw
consider also the behavior o
used a simulator to invest
[12]. However, none of th
and reactive human behavio

already used to test robots before using them in r
these works dealt with a “static” environment, i.e. t
he robot behavior and not to cope with complex hum
When the robot has to interact with humans, and e

wd, the necessity to model the complex and diversif
s more difficult to close the gap between simulations

rt the effectiveness of our approach (Fig. 2) that use
tor in order to test the safety of robot navigation. To
sition data of pedestrians in a shopping mall by usin
, to analyze their behavior in that environment. Then,

explicitly developed to describe the relatively low-den
opping malls [8], to simulate the walking behavior

bot locomotion. Finally, after testing the robot safety in
conducted a real world field trial.

lt approaches and explicitly obstructs the robot

Relatively high density situation in a mall

t situations for the deployment of a robot in real environments

simulators in robotics, in particular to reproduce phys
León et al. developed a simulator to reproduce grasp
t al. used a simulator to investigate the safety of mot
bot [9], and Boedecker et al. used a simulator to test

wo-legged humanoid robot [10]. A few research wo
of robots around people [11,12]. For instance, Sisbot et
tigate socially appropriate path planning around hum
ese studies addresses the influence of diverse, dynam
or, focusing on static posture or fixed motion patterns.

real
they
man
even
fied
and

es a
this

ng a
we

nsity
r of

the

s

ical
ping
tion
the

orks
t al.

mans
mical

A Framework with a Pedestrian Simulator for Deploying Robots into a Real Environment 187

On the other hand, pedestrian behavior has been relatively well studied in human
science. Helbing proposed a “social force” model to simulate people's motion in
escape situations [13], which has been used by Pelechano et al. to simulate high-
density crowds [14]. These studies addressed pedestrian behavior in high-density
situations, which is different from the one exhibited at lower densities of interest for
normal social interactions. In our study, we use a pedestrian model specifically
prepared for low-density settings as those occurring in shopping malls [8]. Also some
previous works used pedestrian models to simulate robot navigation in a crowd [15,
16], but their approach was limited to simulation and did not address real world
situations. Thus, we consider that the novelty of our study resides in addressing a
method to use a pedestrian simulator in the deployment process of a robot toward real
world use.

Fig. 2. The interaction of simulated and real
environment enables testing robot capabilities

Fig. 3. Overview of our framework

3 System

Our framework (Fig. 3) consists of three main components: a pedestrian model, a
robot controller, and a simulator. In the pedestrian model, the social forces among
people were computed using the model as described in [8] (HHI model), while the
force toward the robot was computed using specific parameters (HRI model), [17].
The robot controller navigates the robot by using the HRI model.

3.1 Robot and Sensors

We used a 120-cm-high 60-cm-wide humanoid robot, Robovie-II. Its mobile base is a
Pioneer 3-DX (Active Media). We used it at a maximum velocity of 750 mm/sec and
preferred velocity of 700 mm/sec. Its maximum acceleration is 600 mm/sec2. It has
bumpers and laser range finders (Hokuyo, UTM-30LX) for ensuring safety.

The pedestrian model needs information about people's positions far from the
robot, which is not easy to collect using only on-board sensors. We thus used 8
environmental laser range sensors and a tracking system with shape matching
at torso-level and a particle filter method [7], whose position error was in average
0.06 m.

Simulated
environment

Real
robot

Real
environment

Data collection

Test capability
(e.g., safety)

Install

188 M. Shiomi et al.

3.2 HHI Model

Models of pedestrian collision-avoidance have been developed since the 50s to
deepen understanding of crowd dynamics and design better facilities. The Social
Force model (SFM) [13] is a popular pedestrian model that describes the behavior of
pedestrians in a crowd through reaction forces inspired by physics.

However, the original social force model is designed to describe well high-density
settings such as panic and escape situations [13], and it is not suitable to reproduce
low-density many-people environments such as shopping malls. To solve this
problem, we use a SFM specification which can reproduce such low-density settings
[8]. This work proposes a new SFM specification called “collision prediction” (CP-
SFM) in which relative velocity is used to compute the relative distance among
pedestrians at the moment of maximum approach in future, a computation performed
by assuming current velocities to remain constant. The acceleration of pedestrian i is
given by

, , / ,,′ (1)

where vi is the velocity of pedestrian i, ti is the time of maximum approach and d’ij
is the (predicted) relative distance to pedestrian j at ti. The parameters of the model,
A= 1.13, B=0.71, were calibrated on real pedestrian trajectories (see [8] for details).

3.3 HRI Model

We extended the pedestrian model to also include, besides collision avoidance, the
behavior around the robot. While some people only interact with the robot to avoid
collisions, others slow down or stop to observe it, while some of them approach it to
initiate a conversation. Modeling these people is important; if we rely on a pure
collision avoidance model the robot may collide with people who behave differently.

3.3.1 Data Collection and Coding to Establish HRI-Behavior Categories
We used a field trial in which a robot provided information about shops to people that
approached it and stopped to talk [18]. In the field trial, in which the robot roamed a
144 m2 wide area in a shopping mall corridor, we recorded (using tracking system
[7]) 266 pedestrians’ trajectories during an hour of data collection. We have analyzed
these trajectories based on how the pedestrians change their walking course in relation
with the robot, and found four major patterns:

Approach to Stop: People approached the robot and stopped to talk at social distance
zone (approx. 1.2m)

Stop to Observe: People stopped to observe the robot at a distance larger than the
social zone one.

Slow Down: People did not change their walking course toward the robot but slowed
down to observe it and passed by without stopping.

A Framework with a Pedestrian Simulator for Deploying Robots into a Real Environment 189

Collision Avoidance Only: People avoided the robot but did not change their
walking course toward it nor slowed down their walking speed.

To confirm these patterns, we coded the data using a standard human science
procedure. Two independent persons (coders) classified the trajectories using these
four categories, and the coding process resulted in Cohen's kappa coefficient 0.709,
showing a reasonable concordance between the coders. No trajectory was classified
out of these four categories, while the number of trajectories in each category was: 70
approach to stop, 69 stop to observe, 11 slow down, and 116 collision avoidance only.

3.3.2 Development of the Models
We developed equations to model people's walking behavior around the robot
according to the four patterns (HRI type models):

Approach to Stop: In the "approach to stop" category (Fig. 4), 90.1% of the people
approached the robot from the front and their motion was straight toward the robot. We
assumed that people in this category approach the robot only when it falls within their
sight, and the following equation represents this idea. Note that it is used in combination
with (1), so that the motion is also affected by the social force from other pedestrians. 0 , , , 90 (2)

Here vi
0 is the preferred velocity of pedestrian i, vi

goal is the preferred velocity directed
to the goal, vi

robot is the vector directed to the robot with the same scalar size as vi
goal

(i.e. the pedestrian aims to move toward the robot with her own preferred velocity),
di,r is the distance between the pedestrian and the robot, and θi,r is the angle between
her frontal direction and the direction to the robot . We computed Dstop from observed
trajectories (in average people in this category stopped at a distance of 0.893m, S.D.
0.229 m from the robot), and set Dnotice to 10 m (the SFM visibility range).

Stop to Observe: As people in the "approach to stop" category (Fig. 5), people in this
category come close to the robot as soon as it falls within their sight, but they stop at a
larger distance. Thus, we approximate their behavior as: 0 , , , 90 (3)

where Dobserve is 2.38 m (average stopping distance from the robot, S.D. 1.19 m).

Slow Down: People's motion direction did not change toward the robot, but their
speed decreased as they were close to it. We analyzed the change of the speed and
found that their speed around the robot was 62% of the average in other areas. Thus,
we modeled slow down behavior using the following equation: , (4)

where α=0.62. We set Dslowdown =4 m on the basis of the observed pedestrian behavior.

190 M. Shiomi et al.

Collision Avoidance Only: This behavior was modeled using eq. (1), as for inter-
pedestrian interactions. However, since we expected a difference in the amount of
force perceived from the robot (e.g. keep a larger distance), we re-calibrated the social
force toward the robot (see Section 3.3.3).

Fig. 4. Illustration of “approach to stop” trajectories

Fig. 5. Illustration of “stop to observe” trajectories

3.3.3 Calibration of the Social Force toward the Robot
We conducted a data collection to investigate how people behave when avoiding a
robot. Fourteen Japanese people (six men and eight women whose average age was
25.1 years, S.D. 8.7) participated in this experiment. Each subject repeated the trial
nine times. In each trial the robot moved straight toward a participant at 700 mm/sec,
and the participants moved toward the robot, starting at a distance of 18 m. Subjects
were instructed to walk freely toward a goal located behind the robot, and informed
that the robot would not change its course to avoid collision.

For calibration we used a genetic algorithm to select the parameters maximizing
similarity between simulated trajectories and real ones while minimizing collisions in
simulation [8]. The algorithm provides parameters values for the interaction force
(Ar=0.62, Br =1.07) that, from the point of view of collision-avoiding intensity, do
not qualitatively differ from the inter-human values of [8] (Ah= 1.13, Bh =0.71). We
expected the pedestrians to avoid the robot more strongly than they avoid other
humans, but this behavior was not clearly observed in the experiment performed for
data collection. We note that the parameters for the robot are eventually re-adjusted
taking into account noise, delay, and robot motion capabilities (Section 4.1).

3.4 Robot Controller (Position Controller and Safety System)

We assume that while global path-planning providing the destination is conducted at
an upper layer, this robot controller is responsible of local navigation, i.e. of safely
avoiding collision with static and dynamic entities around the robot.

We could use our framework to test various navigation strategies to reveal the most
appropriate navigation mechanism; in fact, we explored the navigation strategy of the

A Framework with a Pedestria

robot using this same sim
elsewhere [17]. In this pape

The idea underlying the
used by pedestrians, to obta
we used the social force
concrete, given the local
computes the robot's desir
prediction” (CP-SFM) soci
coordinates velocity comm
discrepancies between the
slow acceleration, the inabi
in the human tracking syst
the robot’s trajectory to d
compensate this difference,
fit the real world behavior
command is finally exami
dynamic window method [
speed and acceleration of ou

3.5 Simulator

The simulator is used to
behavior around the robot. T
noise/delay simulator, and t

The pedestrian simulato
basis of the pedestrian mo
sensing, modeled as a Gaus
parameters of the noise si
the target environment (se
movements of the robot b
dynamics of its two-wheele

Fig. 6 shows the traject
ellipse) that got closer and
the pedestrian approached
avoid him, even if the pede

an Simulator for Deploying Robots into a Real Environment

mulator, and the results of our analysis will be repor
er we report only the most suitable strategy we found.
 navigation mechanism is to use a strategy similar to t

ain human-like collision avoidance in the robot. To this
model [8] with the human-robot parameter values.

destination to obtain the preferred velocity, the syst
red next position on x-y coordinates using the “collis
ial force model of eq. (1), and converts it into a po
mand (vp, ωp). However, we needed to consider
"ideal" simulation world and the real one as, for examp
ility of our differential drive robot to move aside, the no
tem and the computation delays; discrepancies that ca
diverge from that determined by the “ideal” model.
, we further calibrated the pedestrian model parameter
(see section 4.1). The polar coordinates (vp, ωp) veloc

ined through a safety-check mechanism, a time vary
19] using a 1.5 sec window time by considering maxim
ur robot, which is long enough to stop the robot.

test the robot navigation, reproducing people's walk
The simulator has three sub-modules: pedestrian simula
the robot's motion simulator.
or computes pedestrians’ positions every 100ms, on
odel [8]. The noise/delay simulator simulates the noise
ssian noise, and delay in observation and computation. T
imulator were decided on the basis of data collected
ection 4.1). The robot's motion simulator simulates
by using the robot controller taking also in account
ed mobile base.
ories of the robot (red ellipse) and of a pedestrian (bl
stopped around the robot before directing to his goal.
the robot, the latter deviated to the right and was able
strian approached and stopped around the robot.

Fig. 6. Trajectories in simulation

191

rted

that
end
. In
tem
sion
olar
the

mple,
oise
ause

To
s to
city

ying
mum

king
ator,

the
e in
The
d in

the
the

lack
 As
e to

192 M. Shiomi et al.

4 Simulation

4.1 Overview

The simulation was conducted in a 10 x 20 m virtual corridor. The simulator sets
people’s initial positions and goals to opposite sides of the corridor, along with their
arrival time to the environment and preferred velocity (average and S.D are 1.4m/sec
and 1.33, based on the data collection in Section 3.3.1). The ratio of HRI type
behaviors is set as the same as the one observed in data collection (section 3.3.1). We
also measured the delay of the system in the laboratory, which resulted to be
350msec, and defined the noise of the sensing system as 0.06m, as reported in [7].
The initial position and goal of the robot are set as for the pedestrians.

By using delay and noise information, we further calibrated the values of the
pedestrian model parameters to obtain in the real robot system trajectories as similar
as possible to the “ideal” ones (i.e. obtained using the HRI model with no noise or
delay). As a result, the parameters for the real robot were increased to Ar= 0.93,
Br =1.61, showing that the collision-avoiding interaction has to be strengthened to
cope with the robot’s motion limitations.

4.2 Measurement

We propose two performance measures:

Ratio of Collision: we defined a collision initiated by the robot as a situation in
which the distance between a center of person and the center of robot gets smaller
than 30cm, and the ratio of collision was computed as the number of collisions per the
number of people who entered within a 5m distance from the robot. In this evaluation,
we did not count collisions caused by a pedestrian, defined as either a) a pedestrian
collided with the robot while it was stopped, or b) a pedestrian collided with the robot
from behind. Note that in the real world collisions might not happen even if this
distance is attained, as humans may rotate their body to avoid the collision;
nevertheless this is a valid measure of the safety of the robot's behavior.

Efficiency: defined as: "time to reach the goal" over "time to reach the goal going
straight at preferred speed". Deviations due to collision avoiding reduce efficiency.

4.3 Results

To confirm the safety capability of robot navigation in various situations, we
conducted simulations by increasing density from 0.01 to 0.05 people/m2 with 0.01
intervals. In each density setting, we conducted 1000 simulations.

Fig. 7 shows efficiency and ratio of collision in each density setting. We had ratio
of collision 0% until density 0.03, while the robot caused 0.01% and 0.02% collisions
at density 0.04 and 0.05, respectively. The efficiency at density 0.01 was 79%, and it
decreases with increased density (65% at density 0.05).

A Framework with a Pedestria

Fig. 7. Efficienc

5 Field Trial

5.1 Overview

According to the results of
environments provided tha
prediction, we conducted a
to the simulated one. Fig.
performed the field trial, a
average speed of 1.32m/sec
of the field trial is to test
simulations, and (b) whethe

The robot was fully auto
operator to trigger it to mov
A/B to B/A (we defined a s

Fig.

5.2 Measurements

To confirm whether the r
measured efficiency and co
terms of safety, i.e., for eac
coders to determine whethe

Unsafe: due to the presen
quick change in his/her mov

Otherwise, the person's s

5.3 Results

In the field trial, we condu
classified the interactions
within a 5 m distance from

an Simulator for Deploying Robots into a Real Environment

cy (left) and ratio of collision (right) in simulations

f simulations, our robot has enough safe capability in r
at the density is not higher than 0.03. To confirm
field trial in a real environment with characteristics sim
 8 shows the corridor of a shopping mall in which

an area of size 10 x 20 m, in which people walk with
c (s.d. 1.33) at a density up to 0.03 people/ m2. The purp
t (a) whether the robot safely navigates as predicted
er the efficiency trend is reproduced as predicted.
onomously operated, except for the start signal sent by
ve. After receiving the signal, the robot moved from po
ingle movement between these points as one trial).

. 8. Map and image of the field trial site

robot could navigate safely in a real environment,
oded whether the robot’s behavior caused any problem
ch person who walked within 5 m from the robot, we as
er the situation was safe, using the following criteria:

nce or motion of the robot, the pedestrian had to mak
ving direction to avoid colliding with the robot.
situation was coded as safe.

ucted a two-hour test consisting of 27 trials. Two cod
between the robot and the 160 pedestrians that wal

m it as safe or unsafe by observing the recorded vide

A

B

193

real
this

milar
we

h an
pose
d by

y an
ints

we
s in
ked

ke a

ders
ked
eos.

194 M. Shiomi et al.

Cohen’s kappa coefficient
consistent analysis, the cod
situations.

Fig. 9 shows efficiency
figure, no unsafe situation w
robot in both simulated an
51 % for density 0.01, 0.0
simulated ones, possibly du
models reproduce only av
pedestrian decisions could
world). However, the result
in density caused a decreas
system reproduces properly

Fig. 10 shows a scene in
setting. The robot initially c
just to meet another incomi
to slip through the groups (
to reach its goal, but anothe
c). Therefore, the robot dev
toward its goal (Fig. 10-d).

The robot was equally a
predicted by our HRI type
While heading to its goal,
opposite side (Fig. 11-a). A
approach it, and the robot c
b). The pedestrian continu
(Fig. 11-c), but the robot c
These examples illustrate
environment as well as in th

Fig. 9. Efficienc

 (a)

Fig. 10. The rob

t was 0.89, indicating high consistence. Moreover,
ders discussed and reached a consensus on all the obser

and unsafe situation in the field trial. As shown in
was found, confirming that our system safely navigates
nd real environments. The efficiency was 59%, 58%
2 and 0.03, respectively. These values are lower than

ue to the more complex behavior of actual pedestrians (
verage pedestrian behaviors; introducing stochasticity
d thus reduce the gap between simulations and the r
ts showed a trend similar to the simulated one (an incre
se of efficiency). These results suggest that our simulat
y the interaction between the robot and a pedestrian crow
n which the robot successfully navigated in a many-peo
changed its moving direction to avoid a group of peop
ng group (Fig. 10-a). As a result the robot slightly devia
(Fig. 10-b). After avoiding the two groups, the robot tr
er pedestrian was coming from the goal direction (Fig.
viated again to avoid the pedestrian and eventually hea

able to deal with pedestrians that tried to approach it
behaviors. In Fig. 11 we analyze one of these situatio

, the robot met a group of pedestrians coming from
After noticing the robot, a pedestrian deviated suddenly
hanged its moving direction in order to avoid him (Fig.
ed to approach the robot despite this avoiding maneu
ould safely cope with the pedestrian’s motion (Fig. 11
that the robot is able to navigate safely in the r

he simulated environment.

y (left) and unsafe situations (right) in the field trial

 (b) (c) (d)

bot safely navigates through pedestrians in the mall

for
rved

the
 the
and
the

(the
y in
real
ease
tion

wd.
ople
ple,
ated
ried
10-

aded

t, as
ons.
the

y to
11-

uver
-d).
real

A Framework with a Pedestrian Simulator for Deploying Robots into a Real Environment 195

 (a) (b) (c) (d)

Fig. 11. The robot safely avoids an approaching pedestrian

6 Conclusion

We report our framework to deploy robots in a real shopping mall environment. We
used a pedestrian simulator in order to develop and estimate the safety of the robot
navigation system among a human crowd. In the simulator we employed a particular
specification of the Social Force pedestrian model that has been developed to describe
the relatively low-density settings occurring in shopping malls and the like [8]. We
further addressed the diverse behavior of pedestrians toward the robot, i.e. we
gathered data from a real environment and built a “HRI behavior model” for people
slowing down to look at the robot, or approaching and stopping for curiosity, and
included such a model in our simulator.

We first tested the developed robot, which is navigated using the same collision
avoidance model used for simulated pedestrians, in a simulation to confirm its safety.
The results showed that the robot safely navigated among people with reasonable
efficiency. Given that the simulation yielded safe navigation for densities up to 0.03
people/m2, we estimated that we could deploy it in a real world environment with a
similar density. To confirm this estimation, we conducted a field trial in a real
shopping mall, and the results of this trial demonstrated that the robot can navigate
safely among people even when facing complex situations.

Acknowledgements. This work was supported by JST, CREST. We thank the staff of
the Asia & Pacific Trade Center for their cooperation and ATR’s Yoshifumi
Nakagawa for his help.

References

1. Gross, H.-M., et al.: TOOMAS: interactive shopping guide robots in everyday use - final
implementation and experiences from long-term field trials. In: Proc. of IEEE/RSJ Int.
Conf. on Intelligent Robots and Systems, pp. 2005–2012 (2009)

2. Burgard, W., et al.: The Interactive Museum Tour-Guide Robot. In: Proc. National
Conference on Artificial Intelligence, pp. 11–18 (1998)

3. Mutlu, B., Forlizzi, J.: Robots in Organizations: Workflow, Social, and Environmental
Factors in Human-Robot Interaction. In: Proc. of the 3rd ACM/IEEE Conference on
Human-Robot Interaction, pp. 287–294 (2008)

196 M. Shiomi et al.

4. León, B., et al.: OpenGRASP: A Toolkit for Robot Grasping Simulation. Springer,
Heidelberg (2010)

5. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a
RobotSimulator for Research and Education. In: International Conference on Roboticsand
Automation, pp. 1400–1405 (2007)

6. Xu, Y., Mellmann, H., Burkhard, H.-D.: An Approach to Close the Gap between
Simulation and Real Robots. In: Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von
Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 533–544. Springer, Heidelberg
(2010)

7. Glas, D.F., Miyashita, T., Ishiguro, H., Hagita, N.: Laser-based tracking of human position
and orientation using parametric shape modeling. Advanced Robotics 23(4), 405–428
(2009)

8. Zanlungo, F., Ikeda, T., Kanda, T.: Social force model with explicit collision prediction.
Europhysics Letters 93, 68005 (2011)

9. Tsai, Y.-C., Huang, H.-P.: Motion Planning of a Dual-Arm Mobile Robot in
theConfiguration-Time Space. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 2458–2463 (2009)

10. Boedecker, J., Asada, M.: SimSpark - Concepts and Application in the RoboCup 3D
Soccer Simulation League. In: Proceedings of the SIMPAR 2008 (2008)

11. Sisbot, E.A., Marin-Urias, L.F., Alami, R., Simeon, T.: A Human Aware Mobile Robot
Motion Planner. IEEE Transactions on Robotics 23(5), 874–883 (2007)

12. Mainprice, J., Sisbot, E.A., Simeon, T., Alami, R.: Planning Safe and Legible Hand-over
Motions for Human-Robot Interaction. In: 2010 IARP Workshop on Technical Challenges
for Dependable Robots in Human Environments, Toulouse, France (2010)

13. Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic.
Nature 407, 487–490 (2000)

14. Pelechano, N., Allbeck, J., Badler, N.: Controlling Individual Agents in High-Density
Crowd Simulation. In: Proc. of ACM SIGGRAPH/Eurographics Symposium on Computer
Animation (2007)

15. Garrell, A., Sanfeliu, A., Moreno-Noguer, F.: Discrete Time Motion Model for Guiding
People in Urban Areas using Multiple Robots. In: Proc. of IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pp. 486–491 (2009)

16. Henry, P., Vollmer, C., Ferris, B., Fox, D.: Learning to navigate through crowded
environments. In: Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 981–986
(2010)

17. Shiomi, M., Zanlungo, F., Hayashi, K., Kanda, T.: Navigating Robots among Pedestrians
Using a Pedestrian Model. Under Review

18. Kanda, T., Glas, D.F., Shiomi, M., Hagita, N.: Abstracting people’s trajectories for social
robots to proactively approach customers. IEEE Transactions on Robotics 25, 1382–1396
(2009)

19. Seder, M., Petrovic, I.: Dynamic window based approach to mobile robot motion control
in the presence of moving obstacles. In: Proc. of IEEE Int. Conf. on Robotics and
Automation, pp. 1986–1992 (2007)

Simulating Complex Robotic Scenarios

with MORSE

Gilberto Echeverria1, Séverin Lemaignan1,2, Arnaud Degroote1,
Simon Lacroix1, Michael Karg2, Pierrick Koch3,

Charles Lesire4, and Serge Stinckwich3,5

1 CNRS, LAAS, 7 Avenue du Colonel Roche, F-31077 Toulouse, France / Université
de Toulouse, UPS, INSA, INP, ISAE, LAAS, F-31077 Toulouse, France

2 Institute for Advanced Studies, Technische Universität München, D-85748
Garching, Germany

3 UMR 6072 GREYC Université de Caen-Basse Normandie/CNRS/ENSICAEN,
France

4 ONERA – The French Aerospace Lab, F-31055, Toulouse, France
5 UMI 209 UMMISCO

IRD/IFI/Vietnam National University, Vietnam
{gechever,slemaign,adegroot,slacroix}@laas.fr, kargm@in.tum.de,

pierrick.koch@unicaen.fr, charles.lesire@onera.fr,

serge.stinckwich@ird.fr

Abstract. MORSE is a robotic simulation software developed by
roboticists from several research laboratories. It is a framework to eval-
uate robotic algorithms and their integration in complex environments,
modeled with the Blender 3D real-time engine which brings realistic
rendering and physics simulation. The simulations can be specified at
various levels of abstraction. This enables researchers to focus on their
field of interest, that can range from processing low-level sensor data to
the integration of a complete team of robots. After nearly three years of
development, MORSE is a mature tool with a large collection of com-
ponents, that provides many innovative features: software-in-the-loop
connectivity, multiple middleware support, configurable components,
varying levels of simulation abstraction, distributed implementation for
large scale multi-robot simulations and a human avatar that can inter-
act with robots in virtual environments. This paper presents the current
state of MORSE, highlighting its unique features in use cases.

1 Introduction

Simulations are an essential component in robotics research, allowing the eval-
uation and validation of many sorts of developments before their integration
on-board real robots. For such validations to be useful, the simulation must pro-
vide enough fidelity with respect to the real world, within the requirements of
the considered robotics application. Creating a fully realistic simulation in every
aspect remains nearly impossible and sometimes can also be seen as an incon-
venience. Therefore numerous simulators are focused on a given specific aspect

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 197–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

198 G. Echeverria et al.

(e.g. terramechanics to study locomotion, contact forces to study manipulation,
realistic photo-rendering to study vision algorithms, ...).

The MORSE simulator presented here is not targeted to the study of a spe-
cific domain of robotics, but is rather meant as a tool that can be used to test
and evaluate integrated robot software, i.e. the suite of processes required to au-
tonomously achieve complex missions. Using Blender to simulate photo-realistic
3D worlds and the associated physics engine, it brings enough realism to eval-
uate complete sets of software components within a wide range of application
contexts.

The simulator is designed to be useful under varied environments, and pro-
vides features to adapt itself to existing robotic architectures, without imposing
any changes on them to connect with MORSE. It has modular components that
are versatile and configurable, to permit software-in-the-loop testing of robotics
software. Input from several researchers has guided the evolution of this tool to
satisfy the requirements of different labs, while keeping to its design principles.
MORSE works on all major software platforms: win32, Linux and OS X. It is
developed as an open–source project with a BSD 3-clause license.1

The outline of this paper is as follows: Section 2 reviews other compara-
ble robotics simulators, and Section 3 introduces the main design principles of
MORSE. Section 4 is the heart part of the article: it depicts the main features of
MORSE, each being exemplified with the projects for which they were developed.
Finally Section 5 gives the conclusion and future plans for the simulator.

2 Related Work

The Player/Stage/Gazebo[1] is a well known robotics suite. It is a full set of
tools that include the Player communication layer and two integrated simula-
tors: Stage [2] is basically a 2D simulator optimized for navigation on flat and
closed environments. One of its advantages is the capability to handle very large
numbers of simplified robots [3]. However, it is not ideal for more complex sce-
narios, specially in 3D space. The more recent Gazebo [4] was developed to cover
these shortcomings. It has received an important boost in its development with
its integration into the ROS platform, and has thus become the most commonly
used robotics simulator. It integrates very well with ROS and Player, but con-
nectivity with other middlewares requires additional programming.

The Unified System for Automation and Robot Simulation (USARSim)[5]
shares many design concepts with MORSE. It was initially developed as a simu-
lator for search and rescue operations, uses the Unreal Engine gaming platform
and is built with the concept of modular components. It is widely used as an
evaluation tool for the well known RoboCup competitions. However, it uses an
adhoc interface to communicate with external software and does not support

1 User documentation and additional information are available at
http://morse.openrobots.org, and the source code can be downloaded from
http://github.com/laas/morse.git.

http://morse.openrobots.org
http://github.com/laas/morse.git

Simulating Complex Robotic Scenarios with MORSE 199

some of the most common robotics middlewares. The Unreal Development Kit
(UDK) used is a closed-source library and is not available on every platform.

Webots [6] is a popular commercial simulator. It provides a full programming
environment to create customized robots and environments, but the interface
to construct new components and robots is unintuitive and complex, requiring
searching trough data trees to adjust physical and geometrical parameters. It
also has an integrated code editor, but the control programs created in it must
later be converted and transferred to the final robot platform.

Another commercial simulator is V-REP [7], with a large variety of com-
ponents and sensors available. It allows scripting of the components using the
LUA language. Being modular, it allows for copy-and-paste functionality of the
components. However, it provides no native method for communication with
middlewares; such functionality must be provided by the user in the form of
add-ons.

3 MORSE Architecture Overview

The Modular Open Robots Simulation Engine (MORSE) is a library of Python
scripts that run on the Blender Game Engine (BGE) to interface a 3D virtual
environment with external robotics software. Its main design principles have
been described in [8], they are quickly recalled here.

The BGE is used as the base platform for the graphical display of the sim-
ulated world and the physics simulation, using the Bullet physics library. The
simulation is organized as a main core of control functionality that initializes and
coordinates the events in the BGE, and a collection of components that can be
used to assemble a robot with sensors and actuators. A variety of communication
tools allow each of the MORSE components to connect with external robotics
software through middlewares. MORSE has support for some of the most com-
monly used robotics middlewares nowadays, including ROS [9], Pocolibs [10] and
YARP [11]. Other middlewares are regularly being added, mainly driven by the
needs of new users. This process is simple, as existing middleware bindings can
be used as templates for the new ones.

MORSE sensors and actuators are minimalistic in their functionality and com-
pletely middleware agnostic. They can provide similar data as their real world
counterparts, but some of them have multiple variants that can work at differ-
ent levels of realism and abstraction. The data employed by the components can
be altered through the use of components called modifiers. These add noise or
change the data as required to better match the data with real sensors/actuators
(for instance, transforming the coordinate frame used by Blender into the Univer-
sal Transverse Mercator coordinate system, or adding noise to images captured
by Blender cameras). When a simulation scene is created, the components are
linked to middlewares as specified in a configuration script, and the necessary
functionality is added to the components to be able to transmit/receive data
through the middleware as data streams or synchronous/asynchronous requests.
The whole data flow in MORSE can be seen in the diagram of Fig. 1.

200 G. Echeverria et al.

Fig. 1. Overview of the data flow in MORSE, between the simulated world in Blender
and the external robotics software

MORSE can be easily extended by adding new components that inherit from
the existing base classes. All components are programmed in Python, since this is
the language that Blender uses for its scripts. However, when coding components
that require a faster processing time, they can be implemented in C/C++ and
interfaced with Python using Swig.

4 Morse Main Features

4.1 Blender Integration

Being based on the Blender 3D [12] modeling software, any object, robot or en-
vironment can be created and immediately be made ready to use in MORSE.
Many file formats for 3D models can be imported directly into Blender, further
increasing the range of elements that can be used. The high level of graphical
detail is specially useful for realistic looking simulations, and very important
when doing image processing from simulated video cameras. It is convenient to

Fig. 2. Left: Modeling of an R-Max robotic helicopter. Right: Robots on a terrain im-
ported from a Digital Elevation Map; the view from a camera mounted on a helicopter
robot is shown in the top right frame.

Simulating Complex Robotic Scenarios with MORSE 201

have simulation environments recreating the terrain and buildings of real ex-
perimentation sites. Transforming the 2D map of a building into a 3D model is
straightforward in Blender. However, outdoor terrains for experiments in field
robotics are more difficult to create by hand. We have developed additional
plug-ins for Blender that read Digital Elevation Map (DEM) files and create the
appropriate 3D meshes. Adding normal maps and aerial photography for tex-
tures creates very realistic simulated environments. Figure 2 shows the modeling
capabilities of Blender exploited in MORSE to create robots and environments
from DEM data.

4.2 Component Library and Scene Construction

MORSE provides a collection of components that can be used to construct robots
with various configurations. Sensors recover data from the simulated world and
store it. This is done using the Blender predefined interfaces for the BGE and
Python scripts. For example, GPS read the absolute coordinates of the sensor
in the Blender world, laser scanners use ray tracing operations of z-buffers to
generate range images and cameras use renders from the perspective of the
Blender camera to produce images. Parameters that determine how the sensors
gather data can be adjusted, such as range, resolution, image sizes, etc.

Actuators carry out actions within the simulated world. They provide mo-
tion to the robots through several methods and algorithms, or control moving
parts such as robotic arms or pan-tilt units. In most cases, the motions are im-
plemented using the functions in Blender to add a certain linear and angular
speed to an object. Robotic arms consist of a series of articulated segments, and
use the Blender armature system to determine the degrees of freedom at each
joint. They can be operated either by direct control of the angles at each joint
or by control of the end effector with Inverse Kinematics (using iTaSC [13], a
constraints-based IK solver available for the BGE).

Robots are the platform upon which all sensors and actuators must be
mounted in order to function. They currently have no behavior of their own,
but define the physical shape and properties like mass, friction and collision
bounds used by the Bullet physics library to compute the interactions with the
environment.

The component library also includes other objects that can be used in the
simulation, from large outdoor environments, to furniture and small items. All
of these can be imported from individual Blender files into a simulation scenario.

Building and configuration of scenarios are done with a set of Python classes
provided by MORSE, known as the Builder API. The Builder API provides
an internal domain-specific language (DSL) that completely hides the some-
what complex interface of Blender from the user, so that those unfamiliar with
Blender can directly configure MORSE using Python scripts. Scripts can then
be tracked on a version control system to follow changes and apply patches. The
API offers classes to add robots, sensors and actuators, to position, rename and
configure any of the parameters used by these components, to include additional

202 G. Echeverria et al.

objects (furniture, obstacles, etc.) and to add middleware bindings, modifiers
and services for each component.

4.3 Adjustable Levels of Realism

Many components come in several versions, which produce more or less realistic
behavior, and can be chosen depending on the objective of the simulation and
processing that will be applied to the data.

Ground robots can consist of rigid bodies for chassis and wheels using phys-
ical constraints to give realistic movement based on the speeds of the wheels.
Alternatively, some robots are handled as a single rigid box sliding over the
ground when the details of the motion of the robot are not important. For aerial
and submarine robots the physics are limited to collision detection, but they
are not affected by gravity, and there is no simulation of air or wind currents –
but external dynamic models can be linked to MORSE for such purposes. The
associated actuators offer the choice between controlling the speeds of wheels in-
dependently, controlling the motion of a robot as a whole with linear and angular
velocities, giving direct waypoint coordinates for destination or “teleporting” a
robot to a desired location.

Some sensors provide almost identical raw data as their real counterparts,
which can then be processed to extract relevant information, and later used to
make decisions. When the processing of data is not of interest to the experiment,
alternative sensors can be used that provide higher level data, extracted directly
from the BGE scenario, and avoid costly processing. The clearest example of this
are the cameras: the regular video camera generates renders of the Blender scene,
and outputs images to be processed by software. This generates much data, and
can slow down the simulation when rendering for several cameras at once. A
new sensor called the semantic camera uses Blender functions to determine the
names and global 3D position of the objects within the view frustum of the
camera. It directly outputs this data, making the simulation of object detection
faster and avoiding the use of image processing algorithms.

As a practical example, researchers from ONERA use MORSE to evaluate on-
line probabilistic decision-making on an autonomous UAV. In a first scenario [14],
MDP-based policy optimization allows the UAV to find a suitable zone for an
emergency landing. MORSE video camera sensors are used to feed the raw im-
age data into the land mapping algorithm. On a second scenario [15], a POMDP
model is used to optimize the probability to track and intercept an identified
target among others. As the objective is to evaluate the optimized strategy, pro-
cessing simulated images is not necessary. Hence, instead of using a video camera
sensor, the semantic camera is used to identify the location of the target, adding
some errors with modifiers to simulate both the sensor and the detection and
identification processes.

Simulating Complex Robotic Scenarios with MORSE 203

4.4 Middleware Configurations

Research laboratories use different middlewares to connect the processes within
their robots. In order to be usable with any architecture, MORSE enforces a
clear separation between components and middlewares. When a simulation is
started, the bindings between sensors/actuators and middlewares are read from
the configuration script, and it is only then that components acquire the func-
tions necessary to communicate with the outside world. This separation means
that any middleware can be integrated with MORSE, by simply providing the
scripts to marshal MORSE data in the expected format. Middlewares currently
supported include ROS, MOOS, Pocolibs, YARP and raw TCP/IP sockets. In-
formation exchange between the simulator and the robotics software can be done
by a constant data stream, or via request/reply interfaces.

MORSE permits using different middlewares within a single simulation sce-
nario with heterogeneous systems. This is exemplified in the Action project [16]
developed by the LAAS and ONERA labs. It consists in the cooperation of
ground and air robots to patrol a zone, locate and follow moving targets. Each
lab provides an existing robotics platform with two different architectures: LAAS
employs Segway RMP 400 land robots, using the GenoM [17] architecture, while
ONERA works with Yamaha R-Max helicopters based on OROCOS [18]. The
simulation uses Pocolibs to communicate with GenoM , and YARP to talk with
OROCOS.

MORSE has been chosen as the simulator platform for a French research
robotic project called ANR-PROTEUS, thanks to its middlewares versatility and
the facility to integrate it with existing architectures. The PROTEUS project
supports a model-driven engineering approach based on a domain-specific lan-
guage and a robotic ontology [19] and aims at providing a toolchain for robotic
development from modeling to software simulation and deployment on real
robots. PROTEUS is based on open-source softwares like the Eclipse Modeling
Project, the ROS middleware and MORSE simulator. Several robot models are
currently under construction (Wifibot, ECA Camelon, and Thales R-Trooper).

4.5 Component Overlays for Specific Software Architectures

Besides the components and middlewares available, it is further possible to adapt
these elements to better fit an existing architecture and allow true software-in-
the-loop functionality. MORSE components provide dedicated I/O interfaces. In
many cases, the interface methods will not be the same as those used in an
actual device, although the component has the same functionality. For instance,
an actuator may have two separate functions to modify its linear and angular
velocities, while the corresponding MORSE component uses only one function
with the two parameters.

To avoid creating additional components, MORSE implements the notion of
component overlays. Following the well-known adapter pattern, they are imple-
mented as special components that override (or wrap) the default behavior to
make it match a different architecture. In the case of middlewares, it is pos-
sible to either use the default serialization methods provided by MORSE, or

204 G. Echeverria et al.

write additional serialization functions as extra scripts, specific for single com-
ponents. Overlays are implemented as Python scripts that provide an interface
between the real component being simulated and the equivalent sensor available
in MORSE. These features have been used to connect MORSE with an existing
Unmanned Aerial Vehicle (AUV) control architecture [20] without modifying the
code in either the original architecture or MORSE.

4.6 Multi-node and Hybrid Simulation

The simulation of multiple robots in the complex environments permitted by
MORSE is very demanding on computational and graphics resources. A scenario
with several robots equipped with video cameras and other sensors, plus the
robotics software all running on the same computer will slow down the system
considerably. MORSE offers the possibility of running multiple instances of the
same simulation scenario in separate computers, coordinated by a central server
program, called the multi-node manager. This manager has been implemented
using TCP/IP socket communication, and also using High Level Architecture
(HLA) [21] for more strict time management. While every node shows all of the
robots, each node will only be in charge of controlling a limited number of them.
The movements of robots and specific objects in one node are sent to the multi-
node manager, which in turn collects the updated positions across all nodes
and redistributes the information, so that all nodes can immediately reflect the
changes. The multi-node server also synchronizes the time and events across all
nodes. This can be used to slow down the simulation in all nodes, by making
them wait for the synchronization message. However, at the current time it is
not possible to accelerate the simulation speed from the multi-node server.

This functionality was developed for applications that require a large amount
of robots. Our use case is the rescue robotics project Rosace [22]. Its main objec-
tive is the coordination of robotic agents in search and rescue operations in the
case of a disaster. In this scenario, terrestrial robots must be able to locate human
victims, provide support for the victims and avoid dangerous areas. The robots
in the team are to be equipped with different payloads, and take autonomous
decisions on which of them should perform different tasks in the mission, such as
searching, providing a communications relay, and helping victims directly. For
this project, two or three robots can be handled by a single simulation node,
and synchronized with those in other nodes. Special sensors in MORSE are used
to determine the distance and visibility between robots, and this information is
used to simulate loss of connectivity between them. The victims to be saved are
internally considered as robots with scripted behavior, so that their status and
position is also synchronized by the multi-node manager.

Additionally, the multi-node system permits the deployment of hybrid simula-
tions. A 3D environment that closely represents the real experimentation site is
used. Real robots report their updated positions to the multi-node server, which
reflects the changes on a dummy robot in the simulation, so that other simulated
robots can see it and interact with it. In the Action project, a real ground robot
moves around while the simulated helicopter can follow it using video cameras.

Simulating Complex Robotic Scenarios with MORSE 205

The robots communicate in the same way in full simulation or in real life. The
use of HLA makes it possible to synchronize the heterogeneous systems in both
the simulated and the real world. Note however that the real robots are not able
to “see” the simulated ones with their cameras – but this could be achieved using
an augmented reality scheme that would modify the data gathered by the real
robots.

4.7 The Human Avatar

For human-robot-interaction scenarios, we require a way to combine the reac-
tive and sometimes unpredictable behavior of a human interacting with its en-
vironment with a simulated robot. Therefore the human avatar of the MORSE
simulator has been equipped with an intuitive control that enables users to act
upon the simulated environment. Inspired by modern 3D-computer games, the
user takes a third-person perspective behind the human avatar to move around
as shown in Fig. 3 (left). While moving around, the camera tries to avoid the
objects and walls placed between the camera and the human avatar to prevent
occlusions. All objects that can be interacted with can be displayed by pressing
a key on the keyboard (also illustrated in Fig. 3). When the user decides to
interact with an object, the camera switches to a first-person perspective and
offers an interface showing possible actions the user can take when pointing to
specific objects, as shown in Fig. 3 (right). Those actions at the moment include
picking up and releasing objects, opening and closing drawers and cupboards and
switching on and off specific objects like a light or an oven.

The motions of the avatar are animated using Blender armatures, inverse
kinematics, and predefined movement loops. The avatar can be controlled much
like a character in a videogame, using either the mouse and keyboard or a com-
bination of the Microsoft Kinect and the Nintendo Wiimote. This enables users

Fig. 3. Left: third-person view of the human component that is used to navigate in the
environment, displaying the names of objects that the human can interact with. Right:
first-person perspective of the human avatar that indicates a possible “pick-up-action”
with the bread.

206 G. Echeverria et al.

to perform pick and place actions in simulated worlds while at the same time the
simulated robot(s) can be controlled through the supported robotic middlewares.

The human avatar is meant to be used in personal robotics scenarios. In these,
complex robots are expected to collaborate with humans to carry out ordinary
household tasks, such as cleaning, serving food or aiding humans to navigate an
environment. Robots used in these experiments are equipped with one or two
arms, and are capable of grasping objects. They are also expected to react to
the actions of their human collaborator, using video cameras, motion detectors
or telemetry to determine the location, pose and attitude of the human. This
can be done at two different levels of abstraction. Using the video cameras to
recognize the human and its pose can be done realistically, with the associated
computational cost and uncertainties. Alternatively, the avatar can directly ex-
port the position of all of its joints, and feed them back to the robot, simulating
a full motion capture system and avoiding the processing costs.

An example use case in this scenario is the testing and validation of human-
aware navigation planners of service robots in human-centered environments at
TU Munich. In this case, a simulated human tracking system provides the human
pose to the robot while the robot navigates in the environment in a way that is
safe and legible for the human [23]. In this project, MORSE has not only been
used as a powerful tool for testing human-aware navigation strategies before
carrying out experiments with real humans: it has also been used to evaluate
them as Lichtenthäler et al. show in [24] by video-based user studies. After
successful testing and evaluation, the human-aware navigation was applied using
real robots and humans resulting in a safe and reliable behavior of the robot.

5 Summary and Future Work

We have presented the main features developed within the MORSE simulator,
following the requirements of a variety of projects in robotics research. The de-
sign and architecture of MORSE has proved to be flexible and powerful enough to
allow researchers to use it under various circumstances to test their robotics algo-
rithms. Users can customize the existing components according to their needs,
or develop new ones when necessary, by describing their behavior in Python
scripts. All new developments done on top of MORSE are made available to the
whole community, thanks to the open source license of the simulator.

MORSE allows for quick integration with an existing architecture (multi-
ple middlewares, modular components and component overlays), heterogeneous
robots (mixing components and middlewares), multiple robot simulation (multi-
node synchronization) and human-robot interaction (high abstraction level
sensors and human avatar).

Further work is planned to increase the usefulness of MORSE: for human-
robot-interaction experiments, it is ideal to have a deeper immersion when using
the human avatar. A planned feature is to provide stereo images of the simula-
tion to the user wearing special goggles. This can trivially be done from Blender,
with some separation of the images produced for the two eyes. Increased inte-
gration with motion reading devices, such as Microsoft Kinect can also make

Simulating Complex Robotic Scenarios with MORSE 207

the experience more natural, by allowing a finer control over the human avatar.
Another planned work is to be able to couple MORSE simulations with other
physical simulation engines thanks to the HLA support. Further development is
also necessary to give users more control over the speed of the simulation, by
adjusting the base execution frequency of the BGE.

Acknowledgments. This work has been partially supported by the DGA
funded Action project (http://action.onera.fr), the STAE foundation
Rosace project (http://www.fondation-stae.net) and the ANR-PROTEUS
project (http://anr-proteus.fr/).

References

1. Rusu, R.B., Maldonado, A., Beetz, M., Gerkey, B.P.: Extending Play-
er/Stage/Gazebo towards cognitive robots acting in ubiquitous sensor-equipped
environments. In: Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA)Workshop for Network Robot Systems, Rome, Italy (2007)

2. Gerkey, B.P., Vaughan, R.T., Howard, A.: The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems. In: Proceedings of the 11th Interna-
tional Conference on Advanced Robotics, pp. 317–323 (2003)

3. Vaughan, R.: Massively Multi-robot Simulation in Stage. Swarm Intelligence 2,
189–208 (2008)

4. Koenig, N., Howard, A.: Design and Use Paradigms for Gazebo, An Open-Source
Multi-Robot Simulator. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2149–2154 (2004)

5. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a robot
simulator for research and education. In: Proceedings of the 2007 IEEE Conference
on Robotics and Automation, pp. 1400–1405 (April 2007)

6. Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced
Robotics Systems 1(1), 39–42 (2004)

7. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimentation
Platform V-REP: A Versatile 3D Robot Simulator. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 51–62. Springer, Heidelberg (2010)

8. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular open robots
simulation engine: Morse. In: 2011 IEEE International Conference on Robotics
and Automation (ICRA), pp. 46–51 (May 2011)

9. Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

10. Pocolibs: Posix communication library, http://pocolibs.openrobots.org
11. Metta, G., Fitzpatrick, P., Natale, L.: YARP: yet another robot platform. Interna-

tional Journal of Advanced Robotic Systems 3(1), 43–48 (2006)
12. Blender 3D, http://www.blender.org/
13. Smits, R., De Laet, T., Claes, K., Bruyninckx, H., De Schutter, J.: iTASC: a tool for

multi-sensor integration in robot manipulation. In: IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems, pp. 426–433 (August
2008)

http://action.onera.fr
http://www.fondation-stae.net
http://anr-proteus.fr/
http://pocolibs.openrobots.org
http://www.blender.org/

208 G. Echeverria et al.

14. Teichteil-Königsbuch, F., Lesire, C., Infantes, G.: A Generic Framework for Any-
time Execution-driven Planning in Robotics. In: Proceedings of the 2010 IEEE
International Conference on Robotics and Automation (ICRA), Shanghai, China,
pp. 299–304 (2011)

15. Carvalho Chanel, C.P., Teichteil-Königsbuch, F., Lesire, C.: POMDP-based online
target detection and recognition for autonomous UAVs. In: Proceedings of the 7th
Conference on Prestigious Applications of Intelligent Systems (PAIS), Montpellier,
France (2012)

16. Boumghar, R., Lacroix, S., Lefebvre, O.: An information-driven navigation strat-
egy for autonomous navigation in unknown environments. In: 2011 IEEE Interna-
tional Symposium on Safety, Security, and Rescue Robotics (SSRR), pp. 172–177
(November 2011)

17. Mallet, A., Herrb, M.: Recent developments of the GenoM robotic component gen-
erator. In: 6th National Conference on Control Architectures of Robots, Grenoble,
France. INRIA Grenoble Rhône-Alpes (May 2011)

18. Bruyninckx, H., Soetens, P., Koninckx, B.: The Real-Time Motion Control Core
of the Orocos Project. In: Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 2766–2771 (September 2003)

19. Dhouib, S., du Lac, N., Farges, J.-L., Gerard, S., Hemaissia-Jeannin, M., Lahera-
Perez, J., Millet, S., Patin, B., Stinckwich, S.: Control architecture concepts and
properties of an ontology devoted to exchanges in mobile robotics. In: Proceedings
of the 6th National Conference on ”Control Architecture for Robots” (2011)

20. Barbier, M., Gabard, J.-F., Bertholom, A., Dupas, Y.: An Onboard Software Deci-
sional Architecture for Rapid Environmental Assessment Missions. In: Proceedings
of the 18th IFAC World Congress, Milano, Italy, pp. 11797–11802 (2011)

21. Kuhl, F., Weatherly, R., Dahmann, J.: Creating computer simulation systems: an
introduction to the high level architecture. Prentice Hall PTR, Upper Saddle River
(1999)

22. Lacouture, J., Gascueña, J., Gleizes, M.-P., Glize, P., Garijo, F., Fernández-
Caballero, A.: Rosace: Agent-based Systems for Dynamic Task Allocation in Crisis
Management. In: Demazeau, Y., Müller, J.P., Rodŕıguez, J.M.C., Pérez, J.B. (eds.)
Advances on PAAMS. AISC, vol. 155, pp. 255–259. Springer, Heidelberg (2012)

23. Kruse, T., Kirsch, A., Sisbot, E.A., Alami, R.: Exploiting human cooperation in
human-centered robot navigation. In: IEEE International Symposium in Robot
and Human Interactive Communication, Ro-Man (2010)

24. Lichtenthaeler, C., Lorenz, T., Karg, M., Kirsch, A.: Increasing Perceived Value
Between Human and Robots - Measuring Legibility in Human Aware Navigation.
In: IEEE Workshop on Advanced Robotics and its Social Impacts (2012)

Masters’ Skill Explained by Visualization

of Whole-Body Muscle Activity

Yosuke Ikegami, Ko Ayusawa, and Yoshihiko Nakamura

The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
ikegami@ynl.t.u-tokyo.ac.jp

Abstract. In this paper, we discuss the computation of human motion
dynamics and its analysis of experts’ motion skills. The computation
framework of the wire-driven multi-body dynamics previously developed
by the authors is applied to the whole body human musculoskeletal
model. While capturing time-series of motion data, somatosensory in-
formation measured by force plate and EMG sensors simultaneously is
used for the dynamics computation. For the dynamics computation, we
reduced the computation cost drastically by resolving to the non-linear
optimization problem using decomposed gradient computation developed
recently. As examples of analysis, we measured and analyzed experts’ mo-
tion patterns, such as Tai Chi motion, tap dance and drum playing. In
particular, we analyzed the characteristic behavior by the motion of the
center of gravity (COG), condition of the ground contact, and muscle
activity of the whole body.

Keywords: Musculoskeletal Model, Muscle Tension Estimation, Mo-
tion Visualization, Tai Chi, Tap Dance, Drum.

1 Introduction

Since ancient times, physical skills acquired after a long period of time were
transmitted to the next generation through trial and error. This is due to a
problem that it is difficult to quantify the movement. In recent years, on the
basis of development of large scale of the dynamics computation[1] and technique
of the somatosensory measurement, quantification and visualization of motor
skills are becoming available[2,3,4]. Muscle tension estimation and visualization
system for physical activity during exercise has been developed using optical
motion capture system, force plate and EMG sensors[5]. These techniques are
applicable for the analysis of the mammal motion data and considered that its
applicability is high [6].

There exists the technique that gives subject the real time visualization feed-
back of the muscle tension estimation using simplified human musculoskeletal
model[7,8]. However, in the case of the detailed analysis for the complex model,
computation cost was quite high due to the large degrees of freedom (DOF).
The method for high speed inverse kinematics and inverse dynamics calculation
reduce the calculation time[9][10], more motion data can be analyzed in recent

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 209–220, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

210 Y. Ikegami, K. Ayusawa, and Y. Nakamura

days. Using these techniques, we analyzed the motion of expert that has been
difficult to quantify and visualize so far. In this paper, we present an overview of
the technology of motion analysis as a summary of previous technology. Three
motions which are (1) Tai Chi, (2) Tap dance and (3) Drum playing are analyzed
based on above technique and obtained findings are described respectively.

2 Musculoskeletal Model and Experimental Environment

2.1 Musculoskeletal Model

Figure 1(a) shows whole body musculoskeletal model developed by Nakamura
et al[5]. Skeleton consists of a set of bones grouped into a suitable number of
the body parts. Bones are treated as a set of rigid bodies with mass and inertia.
Each Joint is approximated using spherical or rotational ones. Muscles, tendons,
and ligaments are defined as wires without any mass placed on the skeletal. Wire
is defined to vary only in the contractive direction in a general rule. The muscle
elements are modeled as active constrictive wire actuators, and the others are
modeled passive constrictive wires. The system can be treated as a virtual open
tree-structure kinematic chain, assuming that the system is cut open if it has
closed loops consist of multiple bones such as knee or ankle joints. The passive
spring with zero nominal length is placed on the cut part, corresponding to
cartilages that connect multiple bones and constrain their relative movement.
The spring forces both contractive and expansive directions. If muscles, tendons,
and ligaments have furcation, we place virtual links on the furcation. A virtual
link is modeled as a small link without mass. With virtual links, each element
can be separated into the several wires which have only one pair of origin and end

(a) Human Musculoskeletal Model

PC for System Control

Force Plate (KISTLER)

Wireless EMG
(Delsys / NihonKoden)

Capture Cameras (Motion Analysis)

(b) Overview of the motion capture system

Fig. 1. (a) Human Musculoskeletal Model: Skeletal consists of 200 bones, 53 group of
bones, 72 virtual links. 323 DOF in total(155 skeletal DOF).997 muscles, 50 tendons
and 125 ligaments, and 34 cartilages. 1206 wires in total. (b)Overview of the motion
capture system consist of 10 cameras (200fps), 16ch wireless EMG, and 3 (10 for drum
playing motion capture) force plates.

Masters’ Skill Explained by Visualization of Whole-Body Muscle Activity 211

points. The under actuated 6 DOF joint (or free joint) is located on each virtual
link so that the sum of forces and moments acting on the virtual link are equal to
zeros. For motion analysis, it is necessary to create a suitable individual model for
each subject. The calculation of the individual kinematic parameters is proposed
by authors using time series of motion data[11]. In this study, musculoskeletal
model is scaled based on the comparison between measured marker length and
modeled marker length for each grouped bone.

2.2 Experimental Environment

Figure 1(b) shows the overview of the motion capture system. By optical motion
capture system (motion analysis), time series data of body marker trajectories
(34 trajectories) are measured. Floor reactive force and surface EMG are mea-
sured simultaneously with motion capture system using faceplate (Japan Kistler)
and wireless surface EMG sensors (Delsys, Nihon Kohden). For the considera-
tion of external force onto the rigid body, the timing of the contact with external
environment has to be known. In this study, the contact timing and joint are
recorded by high speed cameras (300-600 fps) synchronized with motion capture
system at the same time.

3 Optimization Problem for Muscle Tension Estimation

3.1 Overview of the Calculation

To estimate whole body muscle tension, the following three types of optimization
problem is solved in order.

1. Inverse kinematics: Optimization calculation determines the generalized co-
ordinates of the joint to reproduce the trajectory of the marker measurement
while satisfying the wire (muscle and tendon) constraints.

2. Contact force estimation: Optimization calculation to determine the external
forces on each contact joint to reproduce all external force calculated from the
generalized coordinates and the known inertial parameters, and to reproduce
the measured value of the total floor reaction force simultaneously.

3. Inverse dynamics: Optimization calculation determine the tensile strength
(muscle, tendon, etc) of each wire to reproduce the joint torque calculated
with the generalized coordinate, contact forces and known inertial parame-
ters, and to reproduce the measured values from the EMG data.

The evaluation function and constraints of these optimization problems are for-
mulated in the following subsection. Solution of the optimization problem itself
are omitted here, however they can be solved applying general nonlinear pro-
gramming method[9,10]. Solution of nonlinear programming can be significantly
faster using fast kinematics and dynamics calculation for multi-body system
developed in robotics field. See the reference for concrete method of the fast
calculation[9,10].

212 Y. Ikegami, K. Ayusawa, and Y. Nakamura

3.2 Inverse Kinematics

The following optimization problem is calculated in each sample frame.

min
q

1

2

NM∑
i=1

||p̂i − pi(q)||2 (1)

subject to lj(q) < l̂j (0 < j < NT) (2)

Where,

– NJ is total DOF of all joints,
– NM is total number of markers,
– NT is total number of wires(tendons etc) except muscles,
– q ∈ R

NJ is generalized coordinate,
– pi(q) ∈ R

3 is position of each marker referred from generalized coordinate
q,

– p̂i ∈ R
3 is each measured marker position,

– li(q) ∈ R is each wire length referred from generalized coordinate q,

– l̂i ∈ R is each wire natural length.

q̇, q̈ is calculated by numerical differentiation.

3.3 Contact Force Estimation

The following optimization problem is calculated in each sample frame using
q, q̇, q̈ obtained in inverse kinematics.

min
Fc

kc1
2

||F0(q, q̇, q̈)−KC(q)Fc||2

+
kc2
2

||Ffp −Kfp(q)Fc||2 + kc3
2

||Fc||2 (3)

subject to CzFc ≥ 0 (4)

– NC is the number of the grounded links at the frame,
– NF is the number of the force plate,
– Fc ∈ R

6NC is vector representing the contact forces and moments applied to
all grounded links,

– F0 ∈ R
6 is the total external force and moment calculated from the inertial

model and generalized coordinates (referred from the base link coordinate),
– KC ∈ R

6×6NC is a projection matrix to all external force and moment
from contact force and moment of each link (referred from the base link
coordinate),

– Ffp ∈ R
6NF is the measured force and moment acting on the force plate,

– Kfp ∈ R
6×6NC is projection matrix from contact force and moment of each

link to contact force and moment referred from the grounded force plate
coordinate,

Masters’ Skill Explained by Visualization of Whole-Body Muscle Activity 213

– Cz ∈ R
NC×6NC is the matrix to extract normal force component at the

contact surface from Fc,
– kc1, kc2, kc3 ∈ R is the weight coefficient for optimization.

The first term in the formula describes cost term of all external forces and mo-
ment estimated from human inertial parameters and time-series of joint motion
data, the second term describes evaluation value with force plate data, the third
term describes evaluation value to determine the indefinite component omitting
the influence of the friction force except contact direction, inequality constraint
describes the contact force should not be negative along the normal direction
on the contact surface. Calculating above quadratic programing problem, Fc is
obtained.

3.4 Inverse Dynamics

The following optimization problem is calculated in each sample frame using
obtained q, q̇, q̈, Fc.

min
f

kf1
2

||τ (q, q̇, q̈,FC)−Kf(q)f ||2

+
kf2
2

||femg −Cemgfc||2 + kf3
2

||f ||2 (5)

subject to f ≤ 0 (6)

– NW is total number of wires(muscles or tendons, and etc),
– Nemg is total number of EMG sensors,
– f ∈ R

NW is vector representing tensions of all wires,
– τ ∈ R

6 is joint torque obtained from inertial parameters and generalized
coordinate and contact forces,

– Kf ∈ R
NJ×NW is projection matrix from wire tension to joint torque.

– femg ∈ R
Nemg is physiological muscle tension measured with EMG sensors,

– Cemg ∈ R
Nemg×NW is the matrix extracting the muscle tension measured in

EMG sensors from force vector f ,
– kf1, kf2, kf3 ∈ R is weight coefficient for optimization.

The first term in the formula describes evaluation term with input joint torque
estimated from human inertial model, joint trajectory, and contact forces, the
second term describes evaluation term with muscle tension forces obtained from
EMG measurement and physiological model. Hill-Strove model[12,13] is used
to calculate femg from EMG signals as a physiological model. The third term
describes evaluation term to determine indefinite force component while all mus-
cle relaxing as possible. The constraint is the condition of the force contractive
direction.

After the computation of whole muscle tensions, the muscle activity of each
muscle that EMG is not attached can also be estimated from the obtained tension
and the physiological model.

214 Y. Ikegami, K. Ayusawa, and Y. Nakamura

4 Experts’ Motion Skills

4.1 Tai Chi Motion

Tai Chi motion is characterized by a slow and flowing movement. It is said that to
focus on muscle on the lower limbs and to keep a lower center of gravity (COG)
is important. 40 seconds dance performance was analyzed. Orientation of the
trunk is reversed before and after each 20 seconds and 35 seconds (right foot
forward to left foot forward). Figure 2(a) shows the snapshots of the calculation
result of muscle tension analysis. Figure 3(a) shows changes in the position of the
COG and major muscle activities during movement. Graph shows (a) anterior
deltoid (b) posterior deltoid (c) the long head of biceps (d) triceps lateral head
(e) rectus femoris muscle (f) the long head of biceps femoris muscle (g) tibialis
anterior muscle (h) lateral head of gastrocnemius muscle respectively.

The following considerations are described based on the analysis results.

– Height of the COG is low and movement is stable. Height of the COG is
low compared with standing posture, shown in figure 2(a). As we can see in
figure 3(a), the maximum position of the Z-axis direction is 50mm at most
during 0-30[s] that is substantially parallel to the XY plane. Considering the
state of the lowering the height of COG, the movement is to be said very
stable.

– Displacement in the axial direction Y of the COG is periodic. In each period,
COG is moved from vertical position on the right foot to left foot that is
similar to walking behavior in the steady state. In addition to this, periodical
movement of the COG along with X-axis direction can be seen. That is
because the subject orientation has been reversed after 20 seconds. Eight
periodic cycle can be confirmed during 40 seconds motion. One period time
is about 5 seconds, which is rather slow@compared to other movement.

– Muscles of the lower limbs are working actively. There is a relationship be-
tween the periodicity of the motion in the axial direction Y of the COG
and the periodicity of the motion of the rectus femoris, tibialis anterior, and
gastrocnemius. The movement of Y-axis positive direction corresponds to
muscles of the right side of the body, negative movement corresponds to left
side of the body. Biceps femoris works only around 20 and 35 seconds to
turn the body.

– Muscles in upper body works less compare to the muscles in lower limb.
Especially, triceps does not work well. Motion under the weakness condition
is presumed. However deltoid and biceps works periodically, both arms are
used to move COG. That is, the subject moves forward with both hands
spread, move back with close. That Can be interpreted which forward move-
ment represents attack movement, and back movement represents defense
movement.

Masters’ Skill Explained by Visualization of Whole-Body Muscle Activity 215

t = 1.0[s] t = 2.0[s] t = 3.0[s]

t = 4.0[s] t = 5.0[s] t = 6.0[s]

t = 7.0[s] t = 8.0[s] t = 9.0[s]

XZ
Y

(a) Tai Chi motion

t = 1.0[s] t = 1.1[s] t = 1.2[s]

t = 1.3[s] t = 1.4[s] t = 1.5[s]

t = 1.6[s] t = 1.7[s] t = 1.8[s]

t = 1.9[s] t = 2.0[s] t = 2.1[s]

t = 2.2[s] t = 2.3[s] t = 2.4[s]

XZ
Y

(b) Tap dance

t = 11.67[s] t = 12.17[s] t = 12.67[s]

t = 13.17[s] t = 13.67[s] t = 14.17[s]

t = 14.67[s] t = 1517[s] t = 15.67[s]

t = 16.17[s] t = 16.67[s] t = 14717[s]

X

Z
Y

(c) Drum play

Fig. 2. Snapshots of experts’ motion

216 Y. Ikegami, K. Ayusawa, and Y. Nakamura

0 5 10 15 20 25 30 35 40
−0.5

0
0.5

Position of Center Of Grabity:X[m]
X

[m
]

0 5 10 15 20 25 30 35 40
0

0.5
1

Position of Center Of Grabity:Y[m]

Y
[m

]

0 5 10 15 20 25 30 35 40
0.5

1
1.5

Position of Center Of Grabity:Z[m]

Z[
m

]

0 5 10 15 20 25 30 35 40
0

0.5
1

(a) Activity: DeltoideusParsClavicularis

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(b) Activity: DeltoideusParsSpinalis

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(c) Activity: BicepsBrachiiCaputLongum

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(d) Activity: TricepsBrachiiCaputLaterale

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(e) Activity: RectusFemoris

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(f) Activity: BicepsFemorisCaputLongum

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(g) Activity: TibialisAnterior

ac
tiv

ity

0 5 10 15 20 25 30 35 40
0

0.5
1

(h) Activity: Gastrocnemius

ac
tiv

ity

time[s]

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

(a) TaiChi motion

0 2 4 6 8 10 12 14 16 18

RightFoot

RightToe

Contact State: Right Leg

0 2 4 6 8 10 12 14 16 18

LeftFoot

LeftToe

Contact State: Left Leg

0 2 4 6 8 10 12 14 16 18
−0.1

0

0.1
Position of Center Of Grabity:X[m]

X
[m

]

0 2 4 6 8 10 12 14 16 18
0.35

0.4
0.45

0.5
0.55

Position of Center Of Grabity:Y[m]

Y
[m

]

0 2 4 6 8 10 12 14 16 18

0.8

0.9

Position of Center Of Grabity:Z[m]

Z
[m

]

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(a) Activity: DeltoideusParsClavicularis

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(b) Activity: DeltoideusParsSpinalis

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(i) Activity: Trapezius

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(j) Activity: GluteusMaximus

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(e) Activity: RectusFemoris

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(f) Activity: BicepsFemorisCaputLongum

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(g) Activity: TibialisAnterior

ac
ti

vi
ty

0 2 4 6 8 10 12 14 16 18
0

0.5

1
(h) Activity: Gastrocnemius

ac
ti

vi
ty

time[s]

(b) Tap Dance motion

Fig. 3. (a) TaiChi motion: Position of the COG and activation of major muscles (Blue
line shows right side of the body, red dot shows left side of the body (b) Tap Dance
motion:Contact state (dots mean touch or leave events and line shows the ”touch”
state), position of COG and activation of major 16 muscles (Blue line shows right side
of the body, red dot shows left side of the body)

4.2 Tap Dance

Tap dance is characterized by playing sound by contact with floor and special
shoes which has metal on the toe and heel. The playing sound was produced by
vertical motion. 20 seconds motion was analyzed. Figure 2(b) shows snapshots of
the tap dancing with visualizing muscle activity. Figure 3(b) shows the contact
state with foot and floor, the height of the COG, and 16 major muscle activities.
In the contact state graph, each line represents touching state with foot and floor.
Small different from Tai Chi motion, (i) trapezius muscle (j) gluteus maximus
muscles are measured. The following considerations are described based on the
analysis results.

– The COG has oscillatory motion to the vertical direction. The height of COG
is lower than standing posture in average. Average value to the COG of the
Z-axis direction was 0.883[m] during initial state in 0-0.8[s] and 0.861[m]

Masters’ Skill Explained by Visualization of Whole-Body Muscle Activity 217

(variance is 0.0011 [m 2]) during 0.8-18[s] movement. This data implies that
the subject does not try to hit the ground with jumping motion but also
with his COG lower than initial state.

– Muscles of the whole body actively involved, in particularly upper limb mus-
cles. It seemed to control the COG of Z-axis direction using inertial forces
by swinging of the hands.

– Hip and knee joint does not move so hard from upright position in tap
dancing. Activity of the biceps femoris and the gluteus maximus muscle are
approximately 0.5 even in an instantaneous maximum value, it is not high
compared to other muscle activity.

– Motion of the ankle joint has an important role to play for tap dance. This
can be inferred by remarkable activity of Tibialis anterior and gastrocnemius.

4.3 Drum Playing

Based on the skilled drummer, the ideal motion during playing is stable condition
of the trunk. There is no awareness that player is using muscles, and it is hard to
feel the fatigue during long play. 20 seconds play was analyzed with three drums
(snare drum, high tom and low tom). Contact force to snare head and timing
of attack was calculated from the acceleration of the stick and the timing of the
sound. Figure 2(c) shows the snapshots of the drum play. Figure 4(a) shows the
score, height of the COG and major 16 muscle activities. As for the convenience,
motion was separated into 4 phases.

– Phase 1: (12 - 17.5sec) Hi-Hat, snare drum, bass drum
– Phase 2: (17.5 - 21sec) Ride cymbal, snare drum, bass drum
– Phase 3: (21 - 27sec) Crush cymbal, ride cymbal, snare drum and bass drum
– Phase 4: (27 - 29sec) Snare drum, Hi-tom and Low-tom

Crush cymbal, ride cymbal, and hi-hat is played by right hand, bass drum is by
right foot, snare drum is by left hand basically, and hi and low tom was played
by both hands. Measured muscle was partially changed to (k) brachioradialis
(l) external oblique muscle. The following describes considerations based on the
analysis results.

– The COG does not change much. 10-12 [s] average height of COG in the
Z direction (initial static posture) is 0.4458 [m], average height in 12-30 [s]
(during exercise) is 0.4453 [m] (variance is 7× 10−6 [m 2]).

Figure 4(a) shows the change of the COG in XY plane (10-30[s]). The
position of the COG is different from each phase respectively. The reason
why COG swing large during 30 [seconds] was to try to mute the cymbal,
not because of the play. Except that duration, COG moves 40mm (X-axis)
and 15mm (Y-axis) at most, this amount is small.

– Muscle activity is dependent on the musical instruments. Radial arm muscle
activity is particularly noticeable. Hi-hat: Right radial muscle, Bass drum:
Right gastrocnemius, Ride cymbal: Right radial muscle and right anterior
deltoid, Crush cymbal: Right radial muscle, anterior deltoid, and biceps,

218 Y. Ikegami, K. Ayusawa, and Y. Nakamura

−0.006 −0.004 −0.002 0 0.002 0.004 0.006 0.008
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

0.01
Position of Center Of Grabity

X[m]

Y[
m

]

(a) Position of COG in XY

plane

10 12 14 16 18 20 22 24 26 28 30

Kick

LowTom

HighTom

Snare

HighHat

RideSymbal

CrashSymbal

Drum Score

10 12 14 16 18 20 22 24 26 28 30
0.435

0.44

0.445

0.45

0.455
Position of Center Of Grabity:X[m]

X[
m]

10 12 14 16 18 20 22 24 26 28 30
0.605

0.61

0.615

0.62

0.625
Position of Center Of Grabity:Y[m]

Y[
m]

10 12 14 16 18 20 22 24 26 28 30
0.765

0.77

0.775

0.78

0.785
Position of Center Of Grabity:Z[m]

Z[
m]

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(a) Activity: DeltoideusParsClavicularis

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(b) Activity: DeltoideusParsSpinalis

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(c) Activity: BicepsBrachiiCaputLongum

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(d) Activity: TricepsBrachiiCaputLaterale

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(k) Activity: Brachioradialis

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(l) Activity: ObliquusExternusAbdominis

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(g) Activity: TibialisAnterior

ac
tiv

ity

10 12 14 16 18 20 22 24 26 28 30
0

0.5
(h) Activity: Gastrocnemius

ac
tiv

ity

time[s]

(b) Tap dance

Fig. 4. (a) Position of COG in XY plane, Origin position was set at 12[s]. Blue x dots
shows Phase(1) 12-17.5[s], red + dots shows Phase (2) 17.5-21[s], green o dots shows
Phase (3) 21-27[s] and black * dots shows Phase (4) 27-29[s] (b) Drum playing:Contact
state, position of COG and Activation of major 16 muscles. The motion is divided into
4 motion phase, Phase(1) 12-17.5[s], Phase (2) 17.5-21[s], Phase (3) 21-27[s] and Phase
(4) 27-29[s].Score: * shows the timing of right hand contact, + shows left hand contact,
o shows right foot contact. Muscle activation: Blue line shows right side of the body,
Red dot shows left side of the body

Masters’ Skill Explained by Visualization of Whole-Body Muscle Activity 219

Snare drum: Right and left radial muscle, right rear deltoid, and left biceps.
Tom-tom drums: Right and left radial muscle, left biceps, and right rear
deltoid.
In particular, significant activity changes of the right deltoid muscle are
observed in each phase. This is attributed to changes of the movement which
is from the Z-axis direction to the X-axis direction during the changes from
Phase 1 to Phase 2. In addition, triceps and biceps has worked remarkably
well with respect from Phase 3 to 4. Because of the arm position that is close
to body trunk at the phase 4, rear deltoid muscle works well.

– Z-axis direction movement of COG, it is correlated with the performance of
the bass drum on the right foot and the snare drum in the left hand. Since
the motion of the two above-mentioned behavior is striking in the vertical
direction, and due to its effects. On the other hand, when playing cymbals
in the right hand, which has influenced the motion of COG to the X and Y
directions.

5 Conclusion

We discuss the computation of human motion dynamics and its analysis of the
experts’ motion skills. For the dynamic computation, to estimate whole body
muscle tension, the following three types of optimization problem is solved in
order. A) In inverse kinematics, generalized coordinates is obtained to reproduce
the trajectory of the marker measurement while satisfying the wire constraints.
B) In contact force estimation external forces to reproduce all external force
calculated from the generalized coordinates and the known inertial model, and
to reproduce the measured value of the total floor reaction force simultaneously.
C) In inverse dynamics, the tensile strength of each wire to reproduce the joint
torque calculated with the generalized coordinates, contact forces and known
inertial model, and to reproduce the measured values from the EMG data. As
examples of analysis, we measured and analyzed expertsf motion patterns, and
obtained following considerations.

1. In Tai Chi dance performance, height of the COG is relatively low and move-
ment is stable. Regardless of the orientation of the trunk during movement,
the COG has periodicity of the Y-axis direction. Muscles of the lower limbs
are working actively, and muscles in upper body works less compare to the
muscles in lower limb.

2. For the tap dancing, the COG has oscillatory motion to the vertical direction.
The height of COG is lower than standing posture in average. Muscles of
the whole body actively involved, in particularly upper limb muscles. Hip
and knee joint does not move so hard from upright position in tap dancing.
Motion of the ankle joint has an important role to play for tap dance.

3. As for the drum playing, the COG does not change much. Muscle activity is
dependent on the musical instruments. Z-axis direction movement of COG,
it is correlated with the performance of the bass drum on the right foot and
the snare drum in the left hand.

220 Y. Ikegami, K. Ayusawa, and Y. Nakamura

Acknowledgment. This research was supported by Japan Society for the Pro-
motion of Science under Category (S) of Grant-in-Aid for Scientic Research
(20220001), ”Establishing Human-Machine Communication Through Kinesiol-
ogy and Linguistics Integration” (PI: Y. Nakamura). Special thanks to the
production staff in ”Einstein’s eye” in NHK BS premium. Drum playing was
captured in a gymnasium in Tokyo Institute of Technology with the coopera-
tion of Dr. Takeo Maruyama. The authors would like to thank Mr. Susumu Yo,
Mr. HIDEBOH, and Mr. Akira Jimbo who kindly accepted to be the subject of
these measurements. Special thanks to the laboratory members, Kanade Kub-
ota, Akihiro Yoshimatsu, Shun-Chieh Hung, and Kensho Hirasawa who helped
measurement and visualization.

References

1. Nakamura, Y., Yamane, K.: Dynamics computation of structure-varying kinematic
chains and its application on human figures. IEEE Transaction on Robotics and
Automation (2000)

2. Delp, S., Loan, J.: A computational framework for simulating and analyzing human
and animal movement. IEEE Computing in Science and Engineering 2(5), 46–55
(2000)

3. Rasmussen, J., Damsgaard,M., Voigt,M.:Muscle recruitment by themin/max crite-
rion - a comparative numerical study. Journal of Biomechanics 34(3), 409–415 (2001)

4. Forster, E., Simon, U., Augat, P., Claes, L.: Extension of a state-of-art optimization
criterion to predict co-contraction. Journal of Biomechanics 37(4), 577–581 (2004)

5. Nakamura, Y., Yamane, K., Suzuki, I., Fujita, Y.: Somatosensory computation
for man-machine interface from motion capture data and musculoskeletal human
model. IEEE Transactions on Robotics (2005)

6. Nakamura, Y., Ikegami, Y., Yoshimatsu, A., Ayusawa, K., Imagawa, H., Oota,
S.: Musculoskeletal morphing from human to mouse. In: IUTAM Symposium on
Human Body Dynamics: From Multibody Systems to Biomechanics (2011)

7. Murai, A., Kurosaki, K., Yamane, K., Nakamura, Y.: Musculoskeletal-see-through
mirror: Computational modeling and algorithm for whole-body muscle activity
visualization in real time. Biophysics and Molecular Biology 3(103), 310–317 (2010)

8. Chadwick, E.K., Blana, D., van den Bogert, A.J., Kirsch, R.F.: A real-time, 3d
musculoskeletal model for dynamic simulation of arm movements. IEEE Transac-
tions on Biomedical Engineering 56(4), 941–948 (2009)

9. Ayusawa, K., Nakamura, Y.: Fast inverse kinematics algorithm for large dof system
with decomposed computation of gradient and its application to musculoskeletal
model. In: 17th Robotics Symposia (2B4) (2011) (in Japanese)

10. Ayusawa, K., Nakamura, Y.: Fast inverse dynamics algorithm with decomposed
computation of gradient for wire-driven multi-body systems and its application to
estimation of human muscle tensions. In: 2nd IFToMM International Symposium
on Robotics and Mechatronics (11) (2011)

11. Ayusawa, K., Ikegami, Y., Nakamura, Y.: Simultaneous geometric parameters iden-
tification and inverse kinematics of time series motion by fast optimization using
decomposed gradient computation. In: JSME Robotics and Mechatronics Confer-
ence 2012 (2P1-O10) (2012) (in Japanese)

12. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proceedings
of the Royal Society of London 126, 136–195 (1938)

13. Stroeve, S.: Impedance characteristic of a neuromusculoskeletal model of the human
arm I. Posture control. Biological Cybernetics 81(5-6), 475–494 (1999)

Studying the Effect of Different Optimization

Criteria on Humanoid Walking Motions

Kai Henning Koch1, Katja Daniela Mombaur1, and Philipp Souères2

1 IWR - University of Heidelberg - Im Neuenheimer Feld 368
69120 Heidelberg - Germany

Henning.Koch@iwr.uni-heidelberg.de, kmombaur@uni-hd.de
2 LAAS-CRNS - 7, av du Colonel Roche - 31077 Toulouse Cedex 04 - France

philippe.soueres@laas.fr

Abstract. The generation of stable, efficient and versatile walking mo-
tions for humanoid robots is still an open field of research. Several ap-
proaches have been implemented on humanoids in the past years, but so
far none has led to a walking performance that is anywhere close to hu-
mans. This may be caused by limitations of the robotic hardware, but we
claim that it is also due to themethods chosen for motion generation which
do not fully exploit the capabilities of the hardware. Often, several char-
acteristics of the gait, such as foot placement or step time, are fixed in
advance in a suboptimal way for the robot. In this paper we discuss the
potential of our optimal control techniques based on dynamical models of
the humanoid robot for the generation of improved walking motions. We
apply the method to a 3D dynamic model of the humanoid robot HRP-2
with 36 DOF and 30 actuators. Robot specific stability constraints (such
as ZMP constraints) can be taken into account in the optimization. We
present results for five different objective functions, and evaluate the in-
fluence of free foot placement and a relaxation of ZMP constraints.

Keywords: optimal control, humanoid robot, HRP-2, simulation, walk-
ing motion.

1 Introduction

Humanoid robots are highly redundant and underactuated multibody systems
with many degrees of freedom. Generating walking motions for them which are at
the same time efficient, stable and versatile, is a challenging task, and the motion
capabilities of today’s humanoids are still far behind those of humans. We claim
that this problem is not only pertaining to the present robotic hardware, but that
more effort should be put into choosing and developing appropriate software and
control methods that can exploit all motion capabilities of the given hardware.
In this paper, we explore the use of optimal control methods for the generation
of walking motions for the humanoid robot HRP-2 [11]. The use of optimization
approaches can be justified in two different ways:

– Optimization is used to mimic biology: It is a common assumption that
movements of humans and animals are optimal due to evolution, individual

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 221–236, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

222 K.H. Koch, K.D. Mombaur, and P. Souères

development and training [15]. Optimization criteria depend on the partic-
ular situation. With optimal control techniques we can generate optimal
motions for robot models, optimizing important gait characteristics such as
stability, efficiency, effort or speed.

– Optimization is helpful for technical reasons: it serves on the one hand to
find walking solutions that are feasible (among an infinite number of infea-
sible solutions), and on the other hand to select from the remaining motion
abundance (i.e. the still large number of feasible gaits).

The efficient optimal control approach that we are presenting in this paper al-
lows to determine position and velocity trajectories as well as actuator inputs
simultaneously in an optimal way, and does not require to prescribe any of these
quantities a priori. We compare the effect of five different objective functions
(minimization of torque and of joint velocities, and a maximization of walking
speed, of postural stability and of efficiency). In addition, we evaluate the effect
of different constraints on the motion. First optimization results for HRP-2 have
been presented in [12], but the present paper provides more detailed results for
all objective functions and constraints as well as a more extensive discussion of
the applicability of the different numerical results to the robot. We would like to
emphasize that this paper treats the problem of offline motion generation and
not the online control of walking. The fact that the computations described in
this paper can not be performed in real time is therefore not an issue. Online
control techniques such as real time optimization or NMPC (nonlinear model
predictive control) methods later have to be applied to implement the computed
trajectories on the real humanoid robot.

In many humanoid robots, walking is initially planned constraining the ZMP
(zero moment point) [25] to lie within a desired region. To generate feasible ref-
erence walking trajectories many authors considered the linear inverse pendulum
model [10]. The mass of the pendulum is usually set at the center of mass (CoM)
of the robot and restricted to move horizontally. The method was extended in [8]
to generate 3D walking. Model-based reference trajectory generation is the key
point in the control of many humanoid robots such as ASIMO [23], WABIAN [6],
or HRP-2. A well established approach is the technique of the pattern generators
[19,24]. These methods may usually perform in real-time and are convenient to
parametrize but do not choose gait characteristics in an optimal way. An al-
ternative approach is the stack of task [14,20] to compute cascaded quadratic
programs to minimize slacks with respect to a growing pile of constraint sets
to represent descending priority-layers. Optimization approaches have also been
used to generate walking motions. Investigations of cyclic walking motions for
planar bipeds based on forward and inverse dynamic models have been pub-
lished by [21,5,3,1] based on direct (e.g. collocation) and indirect optimization
(Pontryagin Maximum Principle) methods with minimum energy consumption
criteria. Based on stability optimization Mombaur et al. ([17,18,16]) published
open-loop stable walking and somersault motions of bipedal walking mecha-
nisms. In [22] optimization has been used to generate realistic running motions
of 2D and 3D anthropomorphic models.

Studying the Effect of Different Optimization Criteria 223

The remainder of this paper is organized as follows: In Section 2, we briefly
present the dynamic models of walking motions of the humanoid robot HRP-2. In
Section 3, we describe the formulation and solution of optimal control problems
to generate walking motions. Section 4 presents extensive optimization results
and compares different optimization criteria. We end the paper with a short
summary and and outlook on the extensions of the presented research.

2 Mathematical Models of Walking Motions of the
Humanoid Robot HRP-2

This section describes the 3D mathematical model of the humanoid robot
HRP-2 in a form that is suitable for the use in optimal control problems. HRP-2
has 36 DOF and 30 torque actuators. We use the following assumptions for our
robot model: the robot has rigid links and transmission units, the transmission
ratios are sufficiently high that dynamic coupling effects of the motor inertias to
the whole body structure are negligible and joint friction is not considered. The
robot has flat, rubber coated feet and and an elastic 3 DOF ankle joint, but both
elasticities are neglected for the present computations. HRP-2 is equipped with
a stabilizer ([9]) that serves to prevent the robot from falling by compensating
small modeling errors and small external perturbations. The stabilizer aims at
keeping the ZMP in a stability region that is smaller than the actual support
polygon. The base reference frame is fixed to the pelvis. As model coordinates
we use the six coordinates of this base frame as well as the 30 internal joint
angles, which would be minimal coordinates for a free-floating robot. In single
and double support, the robot looses DOF, but we keep the same set of coor-
dinates during all phases and describe their redundancy by additional algebraic
constraints.

Walking motions are described as a series of alternating single and double
support phases. In this study, we are only interested in symmetric and periodic
gaits, and therefore we can reduce the mathematical problem formulation to
one step of the gait and a subsequent mirroring of sides after which periodicity
constraints are applied (see [22] for more details). The equations of motion of this
multibody system result in nonlinear systems of differential algebraic equations
for redundant coordinates:

q̇ = v (1)

v̇ = a (2)(
M GT

G 0

)(
a
λ

)
=

(−N + F
γ

)
, (3)

also satisfying the constraints on position and velocity level g(q) = 0 and
dg(q(t))

dt = Gq̇ = 0.
In these equations, M is the symmetric positive definite mass matrix and N

is the term of nonlinear effects (combining Coriolis, centrifugal and gyroscopic

224 K.H. Koch, K.D. Mombaur, and P. Souères

forces): Matrix M and vector N for the humanoid robot HRP-2 have been com-
puted with the automatic model generator HuMAnS [26]. In equation (3), F
denotes the sum of all external forces acting on the multibody system, such as
gravity force, joint torques, etc. The constraint Jacobian and constraint Hes-
sian are G = (∂g/∂q) and γ = − ((∂G/∂q) q̇) q̇, and λ the vector of Lagrange
multipliers.

Switches from one motion phase to the next do not take place at given times
but depend on the position variables which can be expressed by so-called switch-
ing functions

s(q, v, p) = 0. (4)

Touchdown takes place, when a foot reaches zero height, and lift-off occurs,
when the vertical contact force becomes zero. The contact forces are equivalent
to the negative Lagrange multipliers in eqn. (3). There can be a discontinuity
of velocities at touchdown of the swing foot to he ground. The velocity after
impact v+ is then computed using the same matrices M and G as above, and
the velocity before impact v−:(

M GT

G 0

)(
v+
Λ

)
=

(
Mv−
0

)
. (5)

It can be generally assumed that lift-off of the foot is smooth, i.e. there are no
discontinuities. Models of the type described above - combining continuous mo-
tion phases as well as discrete “jump phases” - are often called hybrid dynamical
systems.

3 Formulation and Solution of Optimal Control Problems
for the Generation of Robot Walking Motions

The problem if generating optimal walking motions for HRP-2 can be formulated
as a multiphase optimal control problem of the following form:

min
x(·),u(·)p,t̄i∈M

r∑
i=1

∫ t̄i

t̄i−1

Φi (x(t), u(t), p) dt+ Ψi (t̄i, x (t̄i) , p) (6)

subject to ẋ(t)− fi (t, x(t), u(t), p) = 0 i ∈ M (7)

x
(
t̄+i

)− hi

(
x
(
t̄−i

))
= 0 i ∈ M (8)

req
(
x
(
t̂0
)
, ..., x

(
t̂s
)
, p
)
= 0 (9)

rineq
(
x
(
t̂0
)
, ..., x

(
t̂s
)
, p
) ≥ 0 (10)

gi (x(t), u(t), p) ≥ 0 i ∈ M (11)

In these equations, x denote the state variables of the system, u the control
variables - in this case the joint torques, p the model parameters, t the physical
time. M = {1, ..., r} denotes the phase indices, with r = 2 for one step of a
walking motion. t̄i−1 and t̄i are the start and end times of phase i, respectively.

Studying the Effect of Different Optimization Criteria 225

Without loss of generality it is assumed that t̄0 = 0 holds. With x(t̄−i) and x(t̄+i)
we express a state x evaluated at time t̄i just before or after a discontinuity.

The system dynamics during each phase is described by the corresponding
set of DAEs (1) - (3) . The optimal control problem only ”sees” the differential
part of the variables and the equations which are considered as constraint of the
optimal control problem , and the algebraic part is solved implicitly to deter-
mine a in the right hand side of (2). The objective function (6) can consist of
continuous integral Lagrange-type functions Φi as well as end-value dependent
Mayer-type functions Ψi. The purpose of this paper is to compare the effect of
different objectives on the gait which will be further detailed below in section 4.1.
Eqn. (8) describes state discontinuities between continuous motion phases: these
include potential velocity discontinuities at impact, but also the discontinuity
coming from the shift of sides after the end of the step. Eqn. (9) summarizes
all pointwise coupled and decoupled equality constraints of the problem such as
periodicity constraints, phase switching conditions, and the invariants resulting
from index reduction of the DAE. (10) and (11) are pointwise as well as con-
tinuous inequality constraints, e.g. bounds on all optimization variables or foot
clearance constraints or ZMP stability constraints, see below.

The multi-phase optimal control problem is solved with the powerful optimal
control software MUSCOD II developed in Heidelberg. It is based on early works
of [2] and was implemented by [13]. The approach applies the direct multiple
shooting method to transform the infinite dimensional optimal control problem
to a finite dimensional optimization problem. Controls are discretized by means
of functions with local support (all computations in this paper are based on
piecewise linear support functions). Multiple shooting is then used to parame-
terize the state variables of the system. Multiple shooting essentially transforms
a boundary value problem into a set of initial value problems with continuity
conditions. For structural reasons, multiple shooting and control grid are cho-
sen identically. This finally results in a large but highly structured nonlinear
programming problem that may efficiently be solved by a tailored sequential
quadratic programming method. The integration of the system dynamics and
the computation of the derivatives of the trajectories is performed by powerful
integrators with sensitivity generation capabilities. As all optimization methods,
also the direct multiple shooting approach needs initial values for all optimization
variables (in this case for discretized controls, phase times and state variables at
the multiple shooting nodes). The higher the quality of these values the better
is generally the convergence of the algorithm. For the computations presented in
this paper we have taken initial values from physically feasible and stable gaits
from a preview control pattern generator (see [7]) since this motion was available
to us. Note however that this motion is quite different from the motions that are
finally produced by the optimization (see the next section). It is not necessary
that the initial values are all feasible; also simpler ways of initialization (like an
interpolation of state variables between initial and final point) might in principle
be used.

226 K.H. Koch, K.D. Mombaur, and P. Souères

4 Optimization Results

4.1 Overview of Computations

In this section, we compare optimization results for walking for the following
objective functions:

– a minimization of joint torques squared (which penalizes actuator torques
which are the control inputs for the optimal control problem - no matter
if they are used for dynamic or static purpose. This objective generally
produces smooth controls with little oscillations):

minΦtorques =

∫ T

0

N∑
j=1

(ωjuj)
2
dt (12)

– a maximization of average forward velocity (since humanoid robots still move
very slowly compared to humans, we want to investigate the potential limits
of HRP-2):

maxΨforw Vel. =
lStep
T

(13)

– a maximization of postural stability (penalizing the deviation of the local
center of pressure pCOPe from a reference point under the sole of the foot
pCentre , see [3] for further discussion):

minΦpost stab =

∫ T

0

∑
e={Lf,Rf}

(pCOPe − pCentre)
2
dt (14)

– a maximization of efficiency of the gait which can also be expressed as a
minimization of the cost of transport [4] or the mechanical power output
over a step [3]:

minΦeff =

∫ T

0

N∑
j=1

|q̇juj|
lstep

dt (15)

– a minimization of joint velocities (angular rates) squared which aims at re-
ducing the angular motions as much as possible while still maintaining some
form of gait):

minΦjoint vel =

∫ T

0

N∑
j=1

(ωj q̇j)
2 dt (16)

For all five objective functions above, we have investigated the following varia-
tions of the constraints set:

– with and without constraint on the ZMP, restricting it to stay within a
small circle below the center of the foot during single support and in a tube
connecting the two foot centers during double support.

– for the ZMP constrained case: leaving the foot placement free, or constraining
the step length and step width to the values of the initial walking solution

Overall, this results in 15 different objective function - constraint combinations.

Studying the Effect of Different Optimization Criteria 227

4.2 Comparison of All Objectives and Constraint Combinations

Figure 1 shows bar plots of different gait characteristics for all optimization
criteria and constraint combinations. The top left plot shows the optimal step
length and step width for the different criteria. Trivially these quantities remain
unchanged with respect to the initial value for the optimization runs with fixed
foot position. However, they change - in some cases significantly - for the other
five computations. Step width is in all cases chosen smaller than the original
0.144m, for the maximization of efficiency it is even reduced to 0.016m. Step
length increases in three cases and is reduced in two. Compared to the original
step length of 0.152m, the longest step length occurred for a maximization of

Fig. 1. Different gait characteristics compared for all optimization criteria and con-
straint combinations. Left column: step length/ width, average forward velocity and
linear as well as angular impact momentum at touchdown. Right column shows different
cost measures for these different solutions: sum of torques squared, cost of transport,
and absolute mechanical energy (sum of torques along angles).

228 K.H. Koch, K.D. Mombaur, and P. Souères

efficiency with 0.185m and the shortest for the minimization of joint velocities
with 0.098m. The middle left plot in figure 1 shows the average walking speed
resulting from the different optimization criteria. The gait used for initialization
had a walking speed of 0.178m/s1 As one could expect, the highest walking
speeds result when precisely this quantity is maximized, i.e. when optimizing
the second criterion listed in section 4.1. For this objective and free foot place-
ment but constrained ZMP, the walking speed can be increased to 0.363m/s,
i.e. 1.31km/h which represents an increase by a factor of 2.03, even further than
for an unconstrained ZMP but a fixed foot position (0.352m/s). With both con-
straints, the same criterion only leads to 0.228m/s. For all objective functions,
except for the minimum joint velocity criterion, the relaxation of any of the
constraints leads to an increased average walking speed. The bottom left plot
shows the linear and angular impact momentum for all 15 cases. A high impact
momentum is undesirable since it results in a loss of energy and, in particular in
the case of a humanoid robot, produces a high risk a destabilization. Both linear
and angular impact momentum were particularly high for the maximum average
velocity criterion, no matter if ZMP or foot position are constrained or relaxed.
This makes the maximum velocity solution less interesting than it seemed above,
and this criterion might only be useful for the real robot if additional constraints
on the size of the impact are taken into account. The smallest impact momenta
occur for the minimum joint velocity criterion and a relaxed ZMP, followed by
the same criterion with relaxed foot position. Minimum torque, maximum ef-
ficiency and maximum postural stability result in medium size impacts which
however also might have to be reduced for an implementation on the real robot.
The right column of figure 1 presents different measures for the cost of the dif-
ferent walking motions, namely the sum of torques squared (which corresponds
to the electric power consumed by the motors), the cost of transport as defined
above, as well as the absolute mechanical energy (sum of absolute values of
torques integrated over joint angles). Even though they have quantitatively dif-
ferent results, all three measures show the same tendencies: maximum velocity
and maximum postural stability lead to quite costly solutions while minimum
joint torques and maximization of efficiency lead to rather cheap solutions in
terms of all three measures.

4.3 Further Analysis of Optimization Results for Constrained ZMP
and Free Foot Placement

In the following, we will discuss the optimization results for free foot placement
and constrained ZMP in more detail, since this combination of constraints seems
to be the most interesting for HRP-2. Figure 2 shows snapshot sequences of the
optimal walking cycles for all five criteria.

Figure 3 shows the trajectories of position (top row) and orientation (bot-
tom row) variables of the pelvis for all five objective functions (see color code
explained in the first plot) over a walking cycle of two steps. In all plots the

1 For comparison purposes: the regular walking speed of humans is about 1.3−1.4m/s.

Studying the Effect of Different Optimization Criteria 229

(a) minimum torques

(b) maximum forward velocity

(c) maximum postural stability

(d) maximum efficiency

(e) minimum joint velocity

Fig. 2. Walking sequences for HRP-2 with free foot placement and constrained ZMP
for different objective functions (center of circle on the floor represents ZMP, center of
circle near pelvis shows CoM)

230 K.H. Koch, K.D. Mombaur, and P. Souères

Fig. 3. Pelvis trajectories over a full gait cycle (two steps) for the five different ob-
jective functions with constrained ZMP and free foot placement. Top: pelvis position
trajectories in forward, vertical and sideward direction. Bottom: pelvis roll, pitch and
yaw angles. The gait cycle starts with the single support on the left leg, followed by
double support, single support with the right leg and then double support phase (circles
denote ends of phase, squares the end of the cycle).

Fig. 4. Sagittal plane hip and knee angle trajectories of one leg over a full gait cycle
(two steps) for the five different objective functions with constrained ZMP and free
foot placement. The gait cycle for this leg starts with the swing phase, followed by
double support, single support and then double support phase (circles denote ends of
phase, squares the end of the cycle).

Studying the Effect of Different Optimization Criteria 231

different step durations resulting from the different objectives become obvious.
The top left plot describes the forward motion of the pelvis which differs signif-
icantly for the different objectives (also compare discussion about step lengths
and average velocities above). The second plot in the top row shows the vertical
motion of the pelvis, clearly depicting in all cases the two vertical oscillations
over the two steps. The height variations of the pelvis are quite small (smaller
than 1 cm) for all objective functions except for the minimum joint velocity cri-
terion, where the variation is around 3 cm despite the small steps. This is due
to the very small range of motion of the hip and the knee angles caused by this
criterion which induces a high stiffness in the joints. The third plot shows the
sideward motion of the pelvis. Note that this time there is only one oscillation
since the periodic cycle for orthogonal gait oscillations is two steps and not one,
as for the vertical motion. The variations in sideward directions lie between 4
cm - for the maximum speed criterion - and 10 cm - for the maximum postural
stability criterion. The lower row in figure 3 presents the roll, pitch and yaw an-
gles of the pelvis. Especially noteworthy is the high amplitude of the roll angle
for the minimum joint velocity criterion which again is caused by the fact that
the criterion stiffens the legs. This criterion also leads to a significantly reduced
pitch angle, i.e. the pelvis is turned backwards. In all other cases, the pelvis
is bent slightly forward. For the yaw angle, in particular the maximum speed
velocity stands out with much larger amplitudes than the other criteria, which
is caused by the large steps performed in this mode of motion.

Figure 4 shows the trajectories of the hip and knee angles in the sagittal plane
for all five objective functions. The plot shows a whole walking cycle for one leg
starting with the swing phase, followed by double support, then single support
and again double support phase. Both angles are bent much more than in human
walking motions and lead to the characteristic half-sitting position of humanoid
robots. As we have shown in [12], this position is caused by the ZMP constraint,
and a relaxation of this constraint results in a straightening of the legs and an
increase of the pelvis height. As mentioned above, the oscillations linked to the
minimum joint velocity criterion are very small for both knee and hip angle such
that the leg angles are nearly constant over the full cycle. The shapes of the hip an-
gle trajectories are very similar for the other four criteria, the only difference is the
total duration of the cycle which results in more or less stretched angle trajecto-
ries. The same is true for the knee angle with slightly more pronounced differences
in the amplitudes: the maximum postural stability criterion leads to the largest
knee angle amplitude and the maximum efficiency criterion leads to the smallest
one (but still much bigger than the minimum joint velocity knee amplitude).

We also found it interesting to analyze the different motions of the swing foot
that are induced by the different optimization criteria. Figure 5 shows the sole cen-
ter position trajectories as well as roll, pitch and yaw angles of the swing foot over
one step. In addition to the foot step locations, the foot motion during swing is pre-
scribed by some pattern generators, but in the optimal control approach, the foot
trajectories can be freely determined alongwith the whole bodymotion. Appropri-
ate constraints in the optimal control problem formulation avoid any penetration

232 K.H. Koch, K.D. Mombaur, and P. Souères

Fig. 5. Swing foot trajectories over one step (swing phase and double support phase)
for the five different objective functions with constrained ZMP and free foot placement.
Top: foot sole center position trajectories in forward, vertical and sideward direction.
Bottom: foot roll, pitch and yaw angles (circles denote ends of phase, squares the end
of the cycle. Same color code as in previous figures is used for the objective functions).

Fig. 6. ZMP paths over a full gait cycle (two steps) for the five different objective
functions with constrained ZMP and free foot placement. Grey areas show the ZMP
constraints.

Studying the Effect of Different Optimization Criteria 233

of the foot into the ground and even prevent sliding contact before touchdown by
guaranteeing a sufficient ground clearance. The maximum postural stability cri-
terion leads to the swing foot trajectory with the highest lift (8cm), and the mini-
mum joint velocity with the largest sideward variation of the foot (5cm). Changes
of foot angles are generally not big over the swing phase with the highest roll
and yaw angle variations again for the minimum joint velocity criterion, and the
highest pitch angle variation for the maximum efficiency criterion.

Finally, we present the ZMP paths in the horizontal plane for all five criteria
over a cycle of two steps. Grey tubes indicate the areas in which the ZMP is
allowed to move for stable motions. In all five cases, suitable constraints force the
ZMP to remain inside these areas during the optimal control problem solution.
In four cases the ZMP moves to or along the boundaries of these stable areas.
The constraints are quite expensive to satisfy, and the ZMP would move outside
as soon as this constraint would be relaxed. The only exception is the postural
stability criterion. This criterion punishes the ZMP moving away from the cen-
ters of these areas, and if this punishment is hard enough, it is not necessary to
additionally formulate the corresponding constraint. The minimum torque cri-
terion and the maximum postural stability criterion produce quite smooth ZMP
paths while they are more ”cracked” for the other criteria.

5 Conclusion and Perspectives

In this paper, we have presented solutions of optimal control problems for the
generation of walking motions for the humanoid robot HRP-2. Five different
objective functions have been evaluated as well as the effect of ZMP and foot
placement constraints.

A free foot placement appears to be desirable in all cases investigated. Defining
the foot placement a priori in some heuristic way reduces the gait variety con-
siderably and decreases the optimization potential. The only reason to constrain
foot positioning is an environment where only limited footholds are available
such as walking on step stone bridges, but on even terrain with obstacles the
foot positions should be chosen freely in an optimal way according to the chosen
optimization criterion. Relaxing ZMP constraints has demonstrated some inter-
esting perspectives - such as the possibility to walk in a more upright way than
current humanoids do, but it is certainly not an option when generating motions
for the real HRP-2 robot. It might become interesting again when applying this
approach to a new robot generation or another humanoid model.

Theminimizationof jointvelocities doesnot appear tobeauseful criterion.Even
though it may intuitively seem stabilizing to avoid unnecessary joint motions, the
objective leads to very stiff, non-smooth and unnatural motions with high oscil-
lations in the pelvis height and roll angle and the foot sidewards motion as well a
backward inclination of the pelvis. We also do not consider the maximization of
postural stability to be suitable for the generation of better humanoidwalkingmo-
tions. Postural stability in terms of the ZMP criterion is already considered in the
constraints which could be made stricter if ever necessary. Maximizing postural
stability results in extremely costly solutions - in particular compared to the slow

234 K.H. Koch, K.D. Mombaur, and P. Souères

walking velocities it exhibits, and we do not see the immediate advantage to be so
far off the stability boundarieswhen shifting closer to the alreadyvery conservative
boundaries would result in faster of more efficient motions.

The maximization of average walking velocity is certainly interesting if the lim-
itations of a robot are to be evaluated. Coming closer to the role model of human
walking also implies that humanoids have to become considerably faster that they
are at the moment. The computed increase of walking speed by a factor of a little
more than 2 with respect to the reference solution may not be reachable in reality
since the associated impacts are too big for HRP-2. We therefore propose to add
constraints reducing the impact to below the accepted threshold for all optimiza-
tion runs maximizing walking velocity. This should then still lead to an increase
of speed, but less significant than the one reported here.

The minimization of joint actuator torques and the maximization of walking
efficiency also seem to be promising objective functions which are associated
with low ”energetic” costs (in all measures investigated). The minimization of
torques leads to smoother motions while the maximization of efficiency leads to
faster motions with higher speeds. These motions are characterized by smaller
impacts than the maximum velocity solution, but it might still be too much for
the real robot and appropriate constraints should be added.

Humans typically apply not a single optimization criterion but weighted com-
binations of several - in many cases contradicting - criteria which we would also
recommend for robots. Interesting combinations that we will investigate in the
near future are minimization of joint torques & maximization of efficiency, min-
imization of joint torques & minimization of time to target (i.e. maximization of
walking speed), maximization of velocity & minimization of impacts, minimiza-
tion of joint torques & minimization of impact for a given velocity, all combined
with ZMP and impact constraints and with free foot placement.

We also would like to mention that one obvious difficulty of computed pe-
riodic motion is to reproduce the desired starting values of the periodic cycle
for all position and velocity variables on the real robot. In order to tackle this
difficulty we have developed a procedure that can generate - for every optimal
periodic cycle that is of interest for the robot - a starting step (or more precisely
1.5 starting steps) that bring the robot from its regular half-sitting rest position
onto the periodic cycle. In the same way, stopping motions are computed that
take the robot out of the periodic cycle and bring it to its rest position.

Financial support by the Heidelberg Graduate School of Mathematical and Com-
putational Methods for the Sciences and by the European FP7 project ECHORD
(GOP) is gratefully acknowledged.

References

1. Bessonnet, G., Chessé, S., Sardain, P.: Optimal gait synthesis of a seven-link planar
biped. The International Journal of Robotics Research 23, 1059–1073 (2004)

2. Bock, H., Plitt, K.: A multiple shooting algorithm for direct solution of optimal
control problems. In: Proceedings of the 9th IFAC World Congress, Budapest,
pp. 243–247. Pergamon Press (1984)

Studying the Effect of Different Optimization Criteria 235

3. Buss, M., Hardt, M., Kiener, J., Sobotka, M., Stelzer, M., von Stryk, O., Wollherr,
D.: Towards an autonomous, humanoid, and dynamically walking robot: Modeling,
optimal trajectory plannung, hardware architecture and experiments. In: Proceed-
ings of the 3rd International Conference on Humanoid Robots (2003)

4. Garcia, M., Chatterjee, A., Ruina, A.: Efficiency, speed, and scaling of 2d passive
dynamic walking. Dynamics and Stability of Systems (1998)

5. Hardt, M., Kreutz-Delgado, K., Helton, J.W.: Optimal biped walking with a com-
plete dynamical model. In: Proceedings of the 38th Conference on Decision &
Control (1999)

6. Yamaguchi, J., Soga, E., Inoue, S., Takanishi, A.: Developement of a bipedal hu-
manoid robot - control method of whole body cooperative dynamic biped walking.
In: Proceedings of the 1999 IEEE International Conference on Robotics & Au-
tomation (1999)

7. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K.,
Hirukawa, H.: Biped walking pattern generation by using preview control of zero-
moment point. In: Proceedings of the 2003 IEEE International Conference on
Robotics & Automation (2003)

8. Kajita, S., Kanehiro, F., Kaneko, K., Yokoi, K., Hirukawa, H.: The 3D linear
inverted pendulummode: a simple modeling for a biped walking pattern generation.
In: Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent
Robots and Systems (2001)

9. Kajita, S., Nagasaki, T., Kaneko, K., Hirukawa, H.: ZMP-based biped running
control. IEEE Robotics and Automation Magazine 07, 63–73 (2007)

10. Kajita, S., Tani, K.: Study of dynamic biped locomotion on rugged terrain-theory
and basic experiment. In: ‘Robots in Unstructured Environments’, 1991 ICAR,
Fifth International Conference on Advanced Robotics, vol. 1, pp. 741–746 (1991)

11. Kaneko, K., Kanehiro, F., Kajita, S., Hirukawaa, H., Kawasaki, T., Hirata, M.,
Akachi, K., Isozumi, T.: Humanoid robot HRP-2. In: Proceedings of the IEEE
International Conference on Robotics & Automation (2004)

12. Koch, K.H., Mombaur, K., Soueres, P.: Optimization-based walking generation for
humanoid robot. Accepted for SYROCO, Dubrovnic, Croatia (2012)

13. Leineweber, D., Bauer, I., Bock, H., Schlöder, J.: An efficient multiple shooting
based reduced SQP strategy for large-scale dynamic process optimization - Part I:
theoretical aspects, pp. 157–166 (2003)

14. Saab, L., Ramos, O., Mansard, N., Souères, P., Fourquet, J.Y.: Generic dynamic
motion generation with multiple unilateral constraints. In: IEEE International Con-
ference on Intelligent Robots and Systems (2011)

15. McNeill, A.R.: Principles of Animal Locomotion. Princeton University Press (2006)
16. Mombaur, K.: Using optimization to create self-stable human-like running. Robot-

ica 27, 321–330 (2009); published online June 2008
17. Mombaur, K.D., Bock, H.G., Schlöder, J.P., Longman, R.W.: Human-like actuated

walking that is asymptotically stable without feedback. In: Proceedings of IEEE In-
ternational Conference on Robotics and Automation, Seoul, Korea, pp. 4128–4133
(May 2001)

18. Mombaur, K.D., Bock, H.G., Schlöder, J.P., Longman, R.W.: Self-stabilizing som-
ersaults. IEEE Transactions on Robotics 21(6) (December 2005)

19. Morisawa, M., Kajita, S., Kaneko, K., Harada, K., Kanehiro, F., Fujiwara, K.,
Hirukawa, H.: Pattern generation of biped walking constrained on parametric sur-
face. In: Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, Barcelona, Spain (2005)

236 K.H. Koch, K.D. Mombaur, and P. Souères

20. Ramos, O., Saab, L., Hak, S., Mansard, N.: Dynamic motion capture and edition
using a stack of tasks. In: IEEE Humanoids Proceedings, Bled, Slovenia (October
2011)

21. Roussel, L., de Wit, C.C., Goswami, A.: Generation of energy optimal complete
gait cycles for biped robots. In: Proceedings IEEE International Conference on
Robotics and Automation (1998)

22. Schultz, G., Mombaur, K.D.: Modeling and optimal control of human-like running.
IEEE/ASME Transactions on Mechatronics 15, 783–792 (2010)

23. Takenaka, T.: The control system for the honda humanoid robot. Age and Age-
ing 35-S2, 24–26 (2006)

24. Takenaka, T., Matsumoto, T., Yoshiike, T.: Real time motion generation and con-
trol for biped robot - 1st report: Walking gait pattern generation. In: Proceedings
of IEEE/RSJ International Conference on Intelligent Robots and Systems (2009)

25. Vukobratovic, M., Stephanenko, J.: On the stability of anthromomorphic systems.
Mathematical Biosciences 15, 1–37 (1972)

26. Wieber, P.B., Billet, F., Boissieux, L., Pissard-Gibollet, R.: The HuMAnS toolbox,
a homogenous framework for motion capture, analysis and simulation. In: Internal
Symposium on the 3D Analysis of Human Movement (2006)

Modeling and Simulating Compliant Movements

in a Musculoskeletal Bipedal Robot

Roberto Bortoletto1, Massimo Sartori2, Fuben He3, and Enrico Pagello1

1 Intelligent Autonomous Systems Laboratory
Department of Information Engineering (DEI)

University of Padua, Italy
{bortolet,epv}@dei.unipd.it

2 Department of Neurorehabilitation Engineering
Bernstein Focus Neurotechnology Goettingen

Georg-August University
Von-Siebold-Str. 4, 37075 Goettingen, Germany
massimo.sartori@bccn.uni-goettingen.de

3 School of Mechanical Engineering
Dalian University of Technology, Dalian, China

hefuben@mail.dlut.edu.cn

Abstract. This paper describes the modeling and the simulation of a
novel Elastic Bipedal Robot based on Human Musculoskeletal modeling.
The geometrical organization of the robot artificial muscles is based on
the organization of human muscles. In this paper we study how the robot
active and passive elastic actuation structures develop force during se-
lected motor tasks, and how we can model the contact between feet and
ground. We then compare the robot dynamics to that of the human dur-
ing the same motor tasks. The motivation behind this study is to reduce
the development time by using a simulation environment for the purpose
of developing a bipedal robot that takes advantage of the mechanisms
underlying the human musculoskeletal dynamics for the generation of
natural movement.

Keywords: Flexible Robotic, Musculoskeletal Model, OpenSim Simu-
lation, Compliant Movement, Bipedal Robot.

1 Introduction

Human body representations have been used for centuries to help in understand-
ing and documenting the shape and function of its compounding parts [1]. The
synthesis of human motion is a complex procedure that involves accurate re-
construction of movement sequences, modeling of musculoskeletal kinematics,
dynamics and actuation, and characterization of reliable performance criteria.
Many of these processes have much in common with the problems found in
robotics research, with the advent of complex humanoid systems. In the past
years studies about elastic bipedal robot (i.e. robot actuated by elastic actua-
tors) produced many humanoid robot models based on compliant legs that utilize

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 237–250, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

238 R. Bortoletto et al.

mono-articular and bi-articular arrangement of tension springs. The needs to de-
velop robot devices that can move on uneven and rough terrain, but also the
understanding of human and animal locomotion mechanics [2] have encouraged
more studies on this field of robotics. Several experiments based on the use of
simulation platform and also of real robots showed that these models can provide
features that could not be explained by the previously developed simpler models
such as the generally known as passive dynamic walking. In [3] it was shown that
the compliant elements in the proposed robot leg structure made it possible to
generate both walking and running gaits. In [4] a motion simulation model in the
two-dimensional sagittal plane was based on the extended series actuation prin-
ciple demonstrating a reduction in the energy requirements. In [5] a biologically
inspired robot was presented showing to be capable of both energy-efficient and
human-like walking and jogging gaits. Understanding the basis of human move-
ment and reproducing it in robotic environments is a compelling challenge that
has engaged a multidisciplinary audience. The understanding of how muscles are
activated to actuate the human body will directly allow designing motion and
balance controller to move humanoids in a more sophisticated way. To achieve
this goal, a theoretical framework is needed, and in the last decade several re-
searchers have turned their attention to the realization of simulation platforms
that give a such framework.

This paper describes the design principles and the simulation of a three- di-
mensional novel bipedal robot based on the organization of the human
musculoskeletal system. The description of the real robot prototype platform,
illustrated in Fig. 8, that has been built at Dalian University of Technology, will
be described in detail in a future paper. We want to make a robot that has pas-
sive structures which allow to reproduce the dynamics of force that characterize
the passive structures of human muscle. This is because the human muscles are
efficient structures. For this purpose we will compare the forces produced by the
springs with the forces generated by passive components in human muscle. Since
it is not possible to measure forces directly from human muscle, a simulation ap-
proach is needed. To evaluate the design concepts of this novel bipedal robot,
based on musculoskeletal principles, we have made several simulations with the
aim of evaluating its behaviors, by comparing the results obtained from our robot
with those obtained in the simulation of a human being engaged in doing the
same movements. Both robot and human were simulated using the open-source
musculoskeletal simulation software OpenSim1 [6]. The dynamics of the robot
torque actuators and artificial muscles, represented by springs, was then com-
pared to the muscle and joint dynamics of the human body. The aim of this work
is a study with the final goal of providing a novel methodology to replicate the
mechanisms underlying the human musculoskeletal dynamics into artificial an-
thropomorphic systems. This was motivated by the recent achievements obtained
in the state of the art bipedal robots in which biologically inspired designed led
to obtain better compliant movements. In Section 2, a brief description of mus-
culoskeletal human model used and the structure of our robot is provided with

1 Freely available from: https://simtk.org/home/opensim

Simulating Compliant Movements in a Bipedal Robot 239

a detailed description of methods and tools adopted during the modeling and
simulation phases. In Section 3, the evaluation approach to validate our work is
described. Section 4 provides the results obtained with the comparison between
human and humanoid. Section 5 concludes the paper with discussion and plan
for future work.

2 Methods

The proposed biologically inspired four-segment robot [7, 8] is characterized by
a mass of about 2Kg and an height of about 40cm. It is a small humanoid robot,
according to the dimensions suggested for participating into the kidsize class of
the RoboCup Humanoid League. Every joint into the model connects a parent
body to a child body. A joint defines the kinematic relationship between two
frames each affixed to a rigid-body parameterized by joint coordinates. Every
body has a moving reference frame in which its Center-Of-Mass (COM) and in-
ertia are defined. Its elastic actuation structure is based on the musculoskeletal
human model. In fact, we started our work from a computer model of the human
musculoskeletal system that represents the kinematics of joints [9], the geometry
of bones, the three-dimensional organization and force-generating properties of
lower limb muscles [10–12]. Each leg in the model had seven Degrees Of Free-
doms (DOF) including: hip internal-external rotation (HRO), hip adduction-
abduction (HAA), hip flexion-extension (HFE), knee flexion-extension (KFE),
ankle subtalar flexion-extension (ASA), and ankle plantar-dorsi flexion (AFE).
Line segments approximated the muscle-tendon path from the origin to insertion
of the 86 muscles of the lower limb included into the model.

On the other hand, the architecture of the actuator used into the robot has
been inspired by the elastic characteristics of springs and by the antagonism
in the muscle-tendon structure. Thanks to its suitable properties, this type of

Fig. 1. (a) The schematic of elastic mono-articular joint; (b) The schematic of bi-
articular joint

240 R. Bortoletto et al.

actuator can efficiently decrease the overload and backlash in the equilibrium
position of the joints. Differently from the usual use of DC motors in classical
robot joints, we apply servos to substitute the traditional actuation, because
positioning sensors and feedback control modules are included in servos. Thus,
the accuracy of actuators rotation angles can be guaranteed and it is easier to
adjust and control the stiffness in the articular movements.

Fig. 2. Elastic Bipedal Robot Modeling. (a) Kinematic model of human lower limb;
(b) Kinematic model of the robot lower limb; (c) The main muscle-tendon groups
compartments considered in our modeling; green lines stand for passive springs, while
the red ones are active springs.

The strong relationship existing between human musculoskeletal system and
this robot is confirmed by the fact that the elastic actuation structure can be sub-
divided into: active and passive components which are represent in turn from uni-
directional joint and bi-directional joint. In the first case, the joint is described
as a single rotational servo motor of one DOF which produces the rotational mo-
tion in one direction only. A bi-directional joint is modeled as a servo motor that
can rotate in two opposite directions. Both types of articulation are connected
in series to active springs that are stretched or compressed as the servo motor
rotates and produce passive resistive force to the rotational movement. Springs
in the model can cross one (i.e. mono-articular) or two joints (i.e. bi-articular).
Furthermore, the main human muscle groups are in direct correspondence with
the robot elastic cables and springs as depicted in Fig. 2. The iliopsoas (ILIO)
and gluteus (GL) drive the hip. The rectus femoris (RF) and the biceps femoris
(BF) are to keep the equilibrium position of the thigh. The vastus (VAS) is ac-
tive at the knee only while the gastrocnemius (GAS) also operates at the ankle.
The tibialis anterior (TA) and the soleus (SOL) are antagonistic muscles act-
ing at the ankle only. Among these muscles, VAS and SOL are mono-articular;
the others act as bi-articular. This mapping between human and humanoid is
principally based on the movement in which each muscle is involved.

Simulating Compliant Movements in a Bipedal Robot 241

2.1 Modeling of Contact between Feet and Ground

When aiming for realistic multibody simulations, an important aspect is mod-
eling how a mechanical system interacts with the surrounding environment and
how contact forces develop at its joints. Several types of surface contact models
exist in literature, and each contact load may have various components, such as
elastic (Hertz stiffness), viscous damping (Hunt and Crossley dissipation) and
friction (Stribeck friction) [13].

Fig. 3. Contact between feet and ground modeling

In this work, a foot-ground contact model allow modeling contact between ob-
jects that are defined by 3D polygonal meshes by utilizing an elastic foundation
model [14]. It places a spring at the center of each face of each contact mesh it
acts on. These springs interact with all objects the mesh comes in contact with.
It is then possible to assign different physical properties to each contact mesh
including: stiffness, dissipation and static, dynamic and viscous frictions.

Four triangular meshes were placed on the OpenSim model in the correspon-
dence of heel and toe of each foot of the robot, and a fifth half-space was placed
to model the floor contact, as illustrated in Fig. 3. This was done using the 3D
position of the corresponding body parts, they were placed on the same plane and
the floor contact mesh was consequently aligned. Finally, the dynamic contact
parameters were assigned a meaningful physical value to define appropriate con-
tact. In this work both floor location and contact parameter values were defined
manually. In future implementations an optimization algorithm will be used to
find optimal position of the floor and optimal contact parameters. Furthermore,
more sophisticated meshes will be used. The contact model presented in this
section was not used in the evaluation reported within this paper, expectant of
a more precise future validation.

2.2 Modeling of Elastic Actuators

Based on the generalized coordinate system and according to Newton-Euler
Equations, we can formulate the dynamics of the system as:

M(q)q̈ + C(q, q̇)q̇ +G(q) = τ (1)

242 R. Bortoletto et al.

where q represents the angular positions of joints, q̇ is the vector of angular
velocities and q̈ is the vector of angular accelerations, M(q) is the mass matrix,
C(q, q̇) stands for the Coriolis and centripetal forces, G(q) is the gravity force,
and τ is the torque of motor.

According to the spring characteristics and elasticity theory, the elasticity
effects, E(q, q̇), of springs can be represented as follow:

E(q, q̇) = D(q̇) +K(q) (2)

where D(q̇) is the coefficient matrix of damping, K(q) is the coefficient matrix
of stiffness. The elasticity effect of passive spring can be determined as follow:

Mp(qp)q̈p + Ep(qp, q̇p)qp = 0 (3)

Similarly, the elasticity effect of active spring can be determined as follow:

MA(qA)q̈A + EA(qA, q̇A)qA = τA (4)

Then, the status of the elastic actuator can be described by combining (1), (3)
and (4):

M(q)q̈ + C(q, q̇)q̇ + E(q, q̇)q +G(q) = τ (5)

This dynamic equation is practical and integrated considering the influences
of frictions and inertia items in robot locomotion. By varying values of stiff-
ness and damping the dynamic situations can be modified and consequently the
performances of the elastic actuators which have the effects of storing and re-
leasing energy. Based on the principles of feed-forward controller we build up
the expected control structure in which inputting the reference trajectory to the
robot system, the joint positions, velocities and accelerations can be obtained
by differential equations. To compensate the desired motions, a PID controller is
introduced to deal with the values integrated with measurement data of sensors.
Furthermore, a feed-forward controller is also used to reduce the errors produced
by the characteristics of springs. Through the process of control, the robot can
perform adjustable and compliant locomotion.

At this stage of work the control approach described above has been mod-
eled through the implementation of a spring model in which we can control its
force magnitude by varying only the value of stiffness as a function of a control
value given in input to the system. With a typical linear actuator (i.e. a piston
actuator) the magnitude of its force is calculated as the product:

F = f(control) = optimalForce× control (6)

and uses the convention that a positive force magnitude acts to increase the
distance between the points where it is connected. Just like a linear actuator
a spring acts between two points fixed on two different bodies, but its force
magnitude can be calculated as:

F = k ∗ (restLength− currentLength) (7)

Simulating Compliant Movements in a Bipedal Robot 243

Fig. 4. Mesh representing a spring

where the spring stiffness is k = (optimalForce×control), restLength is defined
as the length at which the spring produces no force, and currentLength is the
actual length of the spring.

Each spring starts creating resistive force when the length exceeds the resting
lengths: 3.2cm (ILIO), 3.5cm (GL), 13.8cm (RF), 14.6cm (BF), 6.4cm (VAS),
20cm (GAS), 8.6cm (SOL), and 7cm (TA). The control values were experimen-
tally set in order to obtain stiffness coefficients between the range of 15-27 New-
ton x meters (Nm), based on the mechanical development of the robot [7, 8].
For accuracy, in the other pictures of robot the springs appear stylized through
wires but have the same physical properties as defined by the model showed in
Fig.4

2.3 Scaling

After the modeling phase, the first step of this study was to scale the human
model to the anthropometry of a subject based on marker locations. Marker
trajectories were collected during static trials from one healthy, male subject
volunteered for this investigation (age: 28years, height: 183cm, mass: 67kg). Data
were collected at the Gait Laboratory of the School of Sport Science Exercise and
Health of the University of Western Australia. The subject was taken through
the testing protocols and informed consent was obtained prior to data collection.
To record the human body kinematics was used a 12 camera motion capture
system (Vicon, Oxford, UK) with sampling frequency at 250Hz. Body kinematics
was low-pass filtered with cut-off frequencies ranging from 2 to 8Hz depending
on the trial. Starting from the original unscaled model (Weight 75Kg, Height
175cm) we obtained the new one referred to the real subject by placing a set of
virtual markers on the model to match the locations of the experimental markers.
Optimal fiber length and tendon slack length were scaled with the total muscle-
tendon length so that they maintain the same ratio. The scaling process is an
OpenSim built-in tool. In the case of robot, the scaling was performed in order
to obtain a model of the robot in real size (Weight: 2.272 Kg; Height: 40 cm),
starting from a generic model and preserving the distribution of mass across
bodies.

244 R. Bortoletto et al.

Fig. 5. Scaling procedure: from a generic model of robot, to the real-dimension biped

2.4 Computed Muscle Control

The Computed Muscle Control (CMC) [6] is a built-in tool of OpenSim. It was
used, after scaling phase, to produce a dynamic simulation of muscle-tendon
dynamics during walking and was applied both to the robot and human models.
With regard to human model, we used the Thelen Muscle Model that is a slight
modification of the Hill-type muscle model. A detailed description of the force-
length, force-velocity and tendon force-strain relationships implementation can
be found at [15]. We prescribed muscle-activation patterns and joint kinematics,
and calculated the muscle forces and fiber lengths that satisfy these constraints.

On the other hand, in the robot we used elastic cables and extension springs
instead of muscle contraction to generate the elastic forces. Servo motors are
defined by parameters including: minimum and maximum allowed control values,
an associated coordinate frame, and an optimal force value. In this case we
prescribed the servo-motors and springs control values, and calculated the servo-
motors and springs generated forces, respectively.

3 Evaluation

Experiments were performed using the real-size robot. The robot movement
was first simulated using servo motors only. Then, we added the passive elas-
tic springs. We developed some simulations in order to estimate our proposed
robotic system capacities. We used the experimentally recorded human kinemat-
ics during one walking trial to directly drive our robot joints2. Three different
type of analysis were conducted. In the first one we analyzed the kinematics of
bodies that make up the models in order to obtain positions (center of mass po-
sition and orientation), velocities (linear and angular) and accelerations (linear
and angular) of the COM of each segment. In the second analysis we compared
the actuation force and power in joint and muscles between robot and human.
The actuation power in Watt (W) was intended as the rate at which an actuator

2 Video Available at: http://youtu.be/-w4sEkckWY0

Simulating Compliant Movements in a Bipedal Robot 245

produces work. Positive work means that the actuator is delivering energy to
the model; negative work means that the actuator is absorbing energy from the
model. In the third analysis, we performed a validation on the passive forces
developed by the springs with respect to the passive forces generated by the
human muscles during the same movements.

To summarize these analysis we report here the actuation torque, the actuation
speed and the joint position error obtained for the right knee and ankle joints. In
Fig. 6a-6d the robot develops a less torque than the human at knee and ankle joints
in the same range. In the subsequent part of the cycle, from 12% to about 50% the
actuation torque are very similar in all three joint: hip, knee and ankle. The main
differences are observed during the swing phase of the cycle, from 62% to the next
heel strike of the right foot. It shows a poor correlation between the actuation
torques developed by the robot with those produced by the human. Discrepancies
in the joint dynamics are mainly due to the different distribution of mass that
characterizes the robot with respect to human. In Fig. 6b-6e is depicted the actu-
ation speed obtained in each configuration, which shows an high similarity in both
the knee and also the ankle joint. Small discrepancies is showed from 62% to 100%
of the swing phase, for the ankle joint. Finally, Fig. 6c-6f show an estimation of
the joint position error during the walking gait through one cycle, beginning and
ending at heel strike of right foot. Fig.7 shows results on muscles and springs force
dynamics during a walking gait through one cycle. The operating principle that
governs a human muscle, characterized by active and passive forces, is not repli-
cable in the springs which in the robot provide only passive forces. On the other
hand, the active component in the actuation of the robot is represented by the
engines. This justifies the comparison between passive forces developed by the hu-
man muscles and forces developed by the springs. We took as reference the values
obtained from the human, depicted as a dotted line in the graphs, and compare
them with those obtained with robot, simulated by using two different configura-
tion also in this case: in the first one we moved the robot in which we introduced
springs that reach a stiffness coefficient of 15Nm, meanwhile in the second one
we took into account springs that reach a stiffness coefficient of 27Nm. Fig. 7a
shows the force produced by the tibialis anterior muscle, Fig. 7b shows the force
produced by the gastrocnemius, and Fig.7c is about the vastus muscle, Fig.7d de-
pict the forces about soleus, in Fig.7e is referred to the passive forces developed
by bicep femoris muscle group, and finally the Fig.7f in which there is the rectus
femoris passive forces, both in the robot and in the human. A Pearson Correlation
Coefficient (PCC) analysis shows values varying into the range 0.64 - 0.85. Forces
and torques were scaled by the weight of the subject and the robot respectively
in order to account for the different arrangements of the reference systems of the
lower limb parts, together with the different position and orientation of the COM,
and the resulting different distribution of mass and anthropometric characteris-
tics of the human subject and robot. The activation timing and the shape of the
curves are extremely similar despite the different dynamics observed at the joint
level and the different operating principles between human muscle and spring.

246 R. Bortoletto et al.

Fig. 6. (a) Actuation Torque of Knee joint; (b) Actuation Speed of the Knee joint;
(c) Position Error of the Knee joint; (d) Actuation Torque of the Ankle joint; (e)
Actuation Speed of the Ankle joint; (f) Position Error of the Ankle joint. In each graph
two configuration of robot (without springs: KB R, ADF R; with springs characterized
by a stiffness coefficient of 27Nm: KB R27, ADF R27) are plotted with the reference
values of human model (KB H, ADF H).

Simulating Compliant Movements in a Bipedal Robot 247

Fig. 7. Passive Force of Springs and Muscles [N/Kg]. (a)Tiabiali Anterior (TA);
(b)Gastrocnemius (GAS); (c)Vastus Medialis (VM); (d)Soleus (SLS); (e)Bicep Femoris
(BF); (f)Rectus Femoris (RF). For each muscle/spring two configuration of robot
(with springs characterized by a stiffness coefficient of 15Nm: TA R15, GAS FY R15,
VM FY R15, SLS FX R15- FY R15, BF FY R15, RF FX R15- FY R15; with springs
characterized by a stiffness coefficient of 27Nm: TA R27, GAS FY R27, VM FY R27,
SLS FX R27- FY R27, BF FY R27, RF FX R27- FY R27) are plotted with the refer-
ence values of human model (TA H, GAS LAT H, GAS MED H, VI H, VL H, VM H,
SLS H, BF lh H - BF sh H, RF H).

248 R. Bortoletto et al.

Fig. 8. Two pictures of the first prototype developed

4 Conclusion and Future Work

Starting from the studies developed in the biomechanical and biomimetic fields,
this paper introduces the modeling and simulation of a novel bipedal robot
equipped with a musculoskeletal-like mechanism. The description of the real
robot prototype platform, illustrated in Fig. 8, that has been built at Dalian
University of Technology, will be described in detail in a future paper.

We want to make a robot that has passive structures which allow to reproduce
the dynamics of force that characterize the passive structures of human muscle.
This is because the human muscles are efficient structures. For this purpose
we will compare the forces produced by the springs with the forces generated
by passive components in human muscle. Since it is not possible to measure
forces directly from human muscle, a simulation approach is needed. The fo-
cus of this paper was motivated by the potential of making the motion of the
humanoid robots more compliant and energy efficient. Furthermore, the bio-
inspired arrangement of the artificial muscles allowed reproducing in the robot
the mechanisms underlying the passive elasticity of human muscles (Fig. 7). We
want now to further improve our study by defining other type of contact model
between foot and ground in order to fully appreciate the compliant effects due

Simulating Compliant Movements in a Bipedal Robot 249

to springs, but we want also to introduce a trunk in order to take into account
that man is a vertebrate and its locomotion is clocked and driven by his trunk.
The development of our proposed methodology will also provide insights into the
design of robotics prosthetics and powered orthoses [16, 17]. This work is the
starting point of a wide range of other possible future works: from the control
structure completion and whole-body control application, from motion test on
flat ground to motion test on rough ground with stable and compliant behaviors
of walking, and obviously the transition from simulation to practice with the
real novel elastic bipedal robot biologically-inspired.

References

1. Universite de Geneve, Project: 3D anatomical functional models for the humanmus-
culoskeletal system. Start:2006-10-01; End:2010-09-30, http://www.miralab.ch/

2. Geyer, H., Herr, H.: A Muscle-Reflex Model that Encodes Principles of Legged Me-
chanics Produces Human Walking Dynamics and Muscle Activities. IEEE Trans.
on Neural Systems and Rehabilitation Engineering 18(3), 263–273 (2010)

3. Iida, F., Rummel, J., Seyfarth, A.: Bipedal walking and running with spring-like
biarticular muscles. Journal of Biomechanics 41 (2008)

4. Radkhah, K., Lens, T., Seyfarth, A., von Stryk, O.: On the influence of elastic
actuation and monoarticular structures in biologically inspired bipedal robots. In:
Proc. of the 2010 IEEE Int. Conf. on Biomedical Robotics and Biomechatronics
(2010)

5. Radkhah, K., Maus, M., Scholz, D., Seyfarth, A., von Stryk, O.: Toward Human-
Like Bipedal Locomotion with Three-Segmented Elastic Legs. In: 41st Int. Symp.
on Robotics/6th German Conf. on Robotics, pp. 696–703 (June 2010)

6. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guen-
delman, E., Thelen, D.G.: OpenSim: Open-Source Software to Create and Analyze
Dynamic Simulations of Movement. IEEE Trans. on Biomedical Engineering 54(11)
(November 2007)

7. Bortoletto, R.: Simulating a Flexible Robotic System based on Musculoskeletal
Model. M.Sc Thesis - Department of Information Engineering, University of Padua
(December 2011)

8. He, F., Liang, Y., Zhang, H., Pagello, E.: Modeling, Dynamics and Control of an
Extended Elastic Actuator in Musculoskeletal Robot System. To appear in the
Proc. of IAS 2012, Jeju (Korea), June 26-29 (2012)

9. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An inter-
active graphics-based model of the lower extremity to study orthopaedic surgical
procedures. IEEE Trans. on Biomedical Engineering (1990)

10. Anderson, F.C., Pandy, M.G.: A dynamic optimization solution for vertical jump-
ing in three dimensions. Computer Methods in Biomechanics and Biomedical En-
gineering 2, 20131 (1999)

11. Anderson, F.C., Pandy, M.G.: Dynamic optimization of human walking. Journal
of Biomechanical Engineering 123, 381–390 (2001)

12. Yamaguchi, G.T., Zajac, F.E.: A planar model of the knee joint to characterize the
knee extensor mechanism. Journal of Biomechanics 22(1), 10 pages (1989)

13. Adams, G.G., Nosonovsky, M.: Contact modeling - forces. Tribology Interna-
tional 33, 431–442 (2000), www.elsevier.com/locate/triboint

http://www.miralab.ch/
www.elsevier.com/locate/triboint

250 R. Bortoletto et al.

14. Kalker, J.: Three-dimensional elastic bodies in rolling contact. In: Solid Mechanics
and Its Application. K. A. Publishers (1990)

15. John, C.T.: Complete Description of the Thelen2003Muscle Model,
http://simtk-confluence.stanford.edu:8080

16. Sartori, M., Reggiani, M., Lloyd, D.G., Pagello, E.: A neuromusculoskeletal model
of the human lower extremity: Towards EMG-driven actuation of multiple joints in
powered orthoses. In: Proceedings of IEEE Int. Conf. on Rehabilitation Robotics
(ICORR 2011), Switzerland (June 2011)

17. Sartori, M., Lloyd, D.G., Reggiani, M., Pagello, E.: Fast Runtime Operation of
Anatomical and Stiff Tendon Neuromuscular Models in EMG-driven Modeling. In:
Proc. of IEEE Int. Conf. on Robotics and Automation (ICRA 2010), USA (May
2010)

http://simtk-confluence.stanford.edu:8080

Simulation and Experimental Evaluation of the

Contribution of Biarticular Gastrocnemius
Structure to Joint Synchronization in

Human-Inspired Three-Segmented Elastic Legs

Dorian Scholz1, Christophe Maufroy2, Stefan Kurowski1, Katayon Radkhah1,
Oskar von Stryk1, and André Seyfarth2

1 Fachgebiet Simulation, Systemoptimierung und Robotik
Technische Universität Darmstadt, Department of Computer Science

Hochschulstr. 10, D-64289 Darmstadt, Germany
{scholz,kurowski,radkhah,stryk}@sim.tu-darmstadt.de

http://www.sim.tu-darmstadt.de
2 Lauflabor Locomotion Laboratory

Technische Universität Darmstadt, Institut für Sportwissenschaft
Magdalenenstr. 27, D-64289 Darmstadt, Germany
{cmaufroy,seyfarth}@sport.tu-darmstadt.de

http://www.lauflabor.de

Abstract. The humanoid robot BioBiped2 is powered by series elastic
actuators (SEA) at the leg joints. As motivated by the human muscle ar-
chitecture comprising monoarticular and biarticular muscles, the SEA at
joint level are supported by elastic elements spanning two joints. In this
study we demonstrate in simulation and in robot experiments, to what
extend synchronous joint operation can be enhanced by introducing elas-
tic biarticular structures in the leg, reducing the risk of over-extending
individual joints.

1 Introduction

During bouncing gaits such as hopping and fore-foot running, the three-
segmented human leg is loaded and unloaded during contact time while
pivoting around the ball of the foot [1]. This observation contrasts with the
current state-of-the-art running biped robots, which either run with their feet
flat on the ground (such as ASIMO [2]) or have no foot at all and are equipped
with pogo-stick [3] or two-segmented [4] legs. While this latter strategy is rea-
sonable for running, it may be problematic for other gaits, such as walking and
standing, where the role of the ankle-foot complex becomes important for pos-
ture control and energy injection (during the late stance push-off). This explains
why many walking robots (such as [2][5]) have feet. Hence, the previous argu-
ment suggests that humanoid robots aiming at multimodal locomotion should
be equipped with three-segmented legs. A better understanding of the dynamic
operation of this type of leg structure, especially during bouncing gaits, would
help in exploiting the benefits of this leg design.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 251–260, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.sim.tu-darmstadt.de
http://www.lauflabor.de

252 D. Scholz et al.

In addition to segmentation, compliance is another key aspect of human leg
operation. Elastic leg operation is widely observed in human locomotion [6] and
biomechanical models suggest that this property may provide the mechanical
basis of hopping, running and walking [7][8][9]. The elasticity of the leg as a
whole is supported by elastic operation at the level of the individual joints, pri-
marily ankle and knee [1][6]. These observations have fuelled the development
of compliant actuators, including the series elastic actuators [10], and the pro-
gressive shift of compliance from the leg level (as in Raibert’s hoppers [3]) to
the joint level (as in M2V2 [11] or BioBiped1 [12]) in legged robots. However,
the implementation of compliance at the joint level comes with the challenge
of maintaining the leg’s configurational stability. Using stability analysis in the
static case, Seyfarth et al. [13] pointed out the risk of bifurcations from usual
zigzag leg configuration to bow leg configuration, in which either the knee or
ankle joints is overextended.

In the dynamic case, similar concerns related to the over-extension of one of
the joints exist during the loading and unloading phases of the three-segmented
leg in bouncing gaits. This risk could be mitigated by finding the properties of
the elastic structures acting at the knee and ankle that can guarantee robust syn-
chronous operation of these joints such as observed in human hopping [14]. This is
precisely the goal of this paper. In addition to monoarticular structures, a biartic-
ular elastic structure, mimicking the human gastrocnemius muscle, is considered.
Our hypothesis, motivated by the known role of biarticular muscles in inter-joint
coordination in humans [15][16], is that the use of biarticular structures like the
gastrocnemius can increase the robustness of the behavior with respect to initial
leg configurations and the spring stiffness ratio of the monoarticular structures.
This is particularly important when it comes to real world application of the robot,
where precise adjustments of these quantities are difficult to achieve, due to sensor
and modeling inaccuracies as well as environmental factors, such as not perfectly
flat ground, leading to variable foothold position.

2 Simulation and Experimental Setup

2.1 Experimental Framework

In this paper, passive rebound experiments were used as a simplified experi-
mental framework to investigate the influence of the passive elastic structures in
the segmented leg during hopping. The robot was dropped from a given height,
landed with its foot tips vertically aligned with the hip joint and the subsequent
rebound, resulting only from the action of the passive elastic leg structures,
was observed. These experiments were performed on the BioBiped2 robot (see
Fig. 1c) and in simulation using an approximate model of robot. The BioBiped2
is a revised version of BioBiped1 described in [12], which was improved com-
pared to its predecessor in many electronic and mechanical design details. For
the experiments presented here, the main improvement is the usage of ball
bearings in the joints, drastically reducing the friction and allowing for an easier
investigation of the elastic mechanism.

Simulation and Experimental Evaluation of the Contribution 253

VAS

GAS

SOL TA

M

M

PL

(a) (b) (c)

Fig. 1. (a) Elastic structures used during the passive rebound experiment (b) Snapshot
of the BioBiped simulation model (c) BioBiped2 in the experimental setup for the robot
experiments

For simplicity, the trunk motion of the robot was constrained to vertical mo-
tions and only elastic structures at the knee and ankle joint were considered (see
Fig. 1a). At knee and ankle joints, the motor positions of the series elastic actua-
tors, playing the role of the extensor muscles (V AS and SOL), were set to balance
the joint torques generated by the passive flexor structures (PL and TA) in the
initial leg configuration. Their position was subsequently held constant so that the
generated torques at the knee and ankle were only the result of the passive elas-
tic structures. To gain insight in the effect of the gastrocnemius structure (GAS),
every experiment was performed twice: with and without a simplified GAS, imple-
mented as a linear spring (see Table 1) connecting heel and thigh. It was mounted
to be at its rest length in the initial leg configuration at touch-down.

The model of the robot, implemented and simulated using the framework pre-
sented in [17], is represented in Fig. 1b. The simulationmodel parameters are sum-
marized in the Appendix, in Table 2. For simplicity, we consider that the joints are
frictionless and that no energy dissipation occurs in the elastic structures.

The setup for the robot experiments is depicted in Fig. 1c. The constraint
on the trunk motion is achieved using a frame that prevents all but the ver-
tical motion, while rollers attached to the robot insure low friction along that
direction.

2.2 Joint Synchronization Index

The synchronization of the knee and ankle movements was quantified using the
phase difference Δφ between the flexion-extension motions of these two joints,
as given by the following equation:

Δφ = | tK − tA
T

| = |Δt

T
|

254 D. Scholz et al.

Fig. 2. Visualization of the joint trajectories during one of the robot experiments.
Besides the actual measurement data, the graph shows the surrogate functions, the total
time T between leaving the ε-neighborhood and reentering it and the time difference
Δt between the trajectories’ maxima (tA, tK).

where tK and tA are respectively the instants when the knee and the ankle are
maximally flexed during contact, while T is the time, measured from landing,
until either joint angle reaches its original landing value (see Fig. 2). For the
estimation of tK and tA in the robot experiments, the data around the maximal
flexion peak was approximated by a surrogate function (6th order, generated by
regression using 40 data points) to reduce the influence of measurement noise.
The measurement data together with the surrogate function for an example
trajectory are displayed in Fig. 2. To enhance the robustness of phase-length
detection, an ε-neighborhood was introduced around the value of the landing
angle and T was defined for all experiments as the time from leaving this ε-
neighborhood until the first trajectory reenters it. The value of ε was set to 5%
of the difference between the landing angle and maximum flexion angle.

2.3 Parameter Space

The influence of the following two parameters on knee and ankle joint synchro-
nization was investigated:

– the spring stiffness ratio R = kSOL/kVAS

– the joint angle difference at landing Δθ = θK,0 − θA,0

where k stands for the linear stiffness of the elastic structures and the indices K
and A refer to the knee and ankle joints, respectively.

The other parameters were kept constant during all experiments. Although
the initial leg configuration was variable and dependent on Δθ, the joint angles
were chosen to maintain the total initial leg length L0 (distance from hip joint
to foot tip) at a constant fraction of the maximum leg length Lmax (sum of all
leg segment lengths). The value of the initial leg length L0 was set to the aver-
age value found in humans at preferred hopping frequency as described in [18].

Simulation and Experimental Evaluation of the Contribution 255

Similarly, kSOL was set constant, while kSOL was computed based on the spring
stiffness ratio R. The value of kVAS was chosen to results in similar maximal leg
compression as during human hopping (i.e. about 10% of Lmax).

The values of the constant parameters are given in the upper part of Table 1.
The lower part of Table 1 shows the values of the stiffness ratio R and the angle
difference Δθ used in the robot experiments. Every combination of these config-
urations was tested on the robot with and without the gastrocnemius structure
GAS. In simulation, many more configuration within the same parameter range
were tested to produce more fine grained results.

Table 1. Constant and variable parameters used during the experiments: leg lengths
Lmax and L0, spring stiffnesses k and pretensions F0, spring stiffness ratios R and joint
angles θ

Constant parameters

Lmax [m] 0.727 kVAS [N/mm] 15.5 F0VAS [N] 36.8

L0 [m] 0.94 Lmax kGAS [N/mm] 7.9 F0GAS [N] 27.6

kPL/TA [N/mm] 4.1 F0PL/TA
[N] 13.8

Stiffness ratio R in robot experiments

Experiment A B C D E

R [-] 0.265 0.432 0.510 0.839 1.155

kSOL [N/mm] 4.1 6.7 7.9 13.0 17.9

F0
SOL

[N] 13.8 22.6 27.6 27.6 58.9

Angle difference Δθ in robot experiments

Experiment 1 2 3 4 5

Δθ [deg] -7 -0.5 6.6 14.8 24.7

knee θK,0 [deg] 138 139.5 141.6 144.8 149.7

ankle θA,0 [deg] 145 140 135 130 125

3 Results and Discussion

In this study the effect of GAS on synchronous joint operation in a three-
segmented leg is studied in simulation and compared to robot experiments with
BioBiped2.

The phase difference Δφ, represented in Fig. 3 as a function of the stiffness
ratioR and the initial leg configuration, is characterized by the angle difference at
landing Δθ. The results are shown without and with the GAS structure attached
for simulation (Fig. 3a and 3b) and robot experiments (Fig. 3c and 3d).

256 D. Scholz et al.

5 0 5 10 15 20
angle difference Δθ[deg]

0.4

0.6

0.8

1.0

s
p
ri

n
g
 s

ti
ff

n
e
s
s
 r

a
ti

o
 R

0.09

0.0
9

0.1
8

0
.1

8

0.
27

0.2
7

0.36

0.
36

without gastrocnemius

(a)

5 0 5 10 15 20
angle difference Δθ[deg]

0.4

0.6

0.8

1.0

s
p
ri

n
g
 s

ti
ff

n
e
s
s
 r

a
ti

o
 R

0 09

0.0
9

0
.1

8

0.2
7

0.
36

with gastrocnemius

(b)

5 0 5 10 15 20 25
angle difference Δθ[deg]

0.4

0.6

0.8

1.0

1.2

s
p
ri

n
g
 s

ti
ff

n
e
s
s
 r

a
ti

o
 R

0.09

0.09 0
.0

9

0.180.27

without gastrocnemius

(c)

5 0 5 10 15 20 25
angle difference Δθ[deg]

0.4

0.6

0.8

1.0

1.2

s
p
ri

n
g
 s

ti
ff

n
e
s
s
 r

a
ti

o
 R

0.09
0.1

8
0.2

7

with gastrocnemius

(d)

0.0 0.1 0.2 0.3 0.4 0.5

Δφ

Fig. 3. Phase differences of knee and ankle joints in the simulation (3a, 3b) and in the
robot experiments (3c, 3d) each without and with GAS. The trials where heel contact
occurred during the stance phase are located in the lower right corner in both simulation
and experiments and are marked in magenta. The configurations used for the 25 robot
experiments (black circles) are shown in Table 1 and the angles’ definitions in Fig. 4
(Appendix). As these configurations are not equidistant in the graph the Δφ values
in-between the experiments have been linearly interpolated for easier comparison with
the simulation results.

Simulation and Experimental Evaluation of the Contribution 257

The simulation results show that, even without the GAS structure, syn-
chronous operation of the knee and ankle joints is possible in most of the range
considered for the angle difference Δθ. However, this requires a fine adjustment
of the stiffness ratio R to fall in the thin white region of Fig. 3a. This is partic-
ularly true for small values of Δθ (i.e. the landing configuration with congruent
knee and ankle angles) where the sensitivity with respect to R appear to be the
largest. On the other hand, the synchronous operation becomes less sensitive to
variation of R as the angle difference Δθ increases. This situation corresponds
to a landing configuration with extended knee and flexed ankle, which is favored
by humans [18].

Adding the GAS structure has a considerable influence on the results (Fig. 3b).
The parameter region where synchronous joint operation occurs with Δφ < 0.05
is considerably enlarged. Hence, the sensitivity of the behavior with respect to
the stiffness ratio R is greatly reduced, especially for large angle differences Δθ.
This allows the system to potentially operate with various overall leg stiffness,
by varying the stiffness ratio R, while preserving the joint synchronization. In
addition, the risk of heel strike leading to energy dissipation due to the impact
with the ground is reduced (see magenta area in Fig. 3).

Some of the tendencies observed in simulations are found in the results of
the robot experiments. Generally, synchronous operation is improved when the
angle differences Δθ is positive. Additionally, good joint synchronization is pos-
sible (with phase differences Δφ < 0.10), even without GAS structure (see
Fig. 3c), but the synchronization is notably improved by the addition of the GAS
structure. It also reduces the risk of heel strike.

Besides these common tendencies, the results for the robot experiments present
specific features worth to discuss. First, the region of parameters resulting in low
phase differences (Δφ < 0.20) without the GAS structure is much more extended
than in the simulations. As a result, the effect of the addition of GAS is not as
pronounced as for the simulation results.

Another discrepancy between the robot experiments and the simulations is the
spring model. In simulation a linear extension springs without pretension in used.
In reality, the extension springs are not perfectly linear and have a significant
pretension (see values for F0 in Table 1). Hence, the apparent stiffness of the
spring is altered and the ratio computed using the nominal spring stiffnesses may
not reflect this change. This could potentially explain why low phase differences
are observed in the robot experiments for much lower values of R than in the
simulations.

4 Conclusions and Future Work

The results in Fig. 3 show that it is possible to achieve synchronized joint move-
ments without gastrocnemius. But the corresponding parameter region is quite
limited, in the simulation (Fig. 3a) as well as on the real robot (Fig. 3c). The
in-phase operation of knee and ankle joints can be supported by an elastic biar-
ticular structure (GAS) mimicking the function of the human gastrocnemius

258 D. Scholz et al.

muscle. This was demonstrated in simulation and for the BioBiped2 robot as can
be seen in Fig. 3b and Fig. 3d. More specifically the phase difference was reduced
for every leg configuration tested on the robot, thus making it possible to get
synchronized joint movements even without perfect touchdown conditions. Inter-
estingly, the range of in-phase joint operation was even larger in the robot than
predicted by the simulation model. This indicates, that other effects (e.g. joint
damping) may further facilitate synchronous joint function. When looking at
robots in real world scenarios variations in leg configurations are inevitable. The
additional robustness gained through the biarticular structure against changes
in leg configuration could help in solving the challenges of bipedal walking on
rough terrain and unstructured environment.

Furthermore this additional robustness opens the possibility to reduce the
effort in terms of sensory feedback and energy input on joint level while still
achieving equally good overall leg performance. Another way of looking at this
is the shift of parts of the control to the distribution of elastic structures and
actuators in the segmented body.

In future work, the influence of the springs pretension on the results could
be investigated by using overextended springs. Additionally, the evaluation, fo-
cused so far to the knee and ankle joints, will be extended to the hip joints.
For that purpose, the constraints on the trunk will be relaxed and the elastic
structures spanning this joint will be added. Yet another avenue of research will
be to investigate how the benefits of the biarticular structures shown here in the
passive case translate to an actively controlled motion. One interesting aspect
would be the possibility to reduce the control effort and the energy consumption
necessary for synchronous joint operation, i.e. in continuous hopping.

Acknowledgment. This research has been supported by the German Research
Foundation (DFG) under grants no. SE 1042/6-1 and STR 533/7-1 and within
the Research Training Group 1362 “Cooperative, adaptive and responsive mon-
itoring in mixed mode environments”.

References

1. Guenther, M., Blickhan, R.: Joint stiffness of the ankle and the knee in running.
J. Biomech. 35, 1459–1474 (2002)

2. Asimo webpage, http://world.honda.com/asimo/

3. Raibert, M.H.: Legged Robots that Balance. MIT Press, Cambridge (1986)

4. Hurst, J.W.: The Role and Implementation of Compliance in Legged Locomotion.
PhD thesis, The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA
(2008)

5. Petman webpage, http://www.bostondynamics.com/robot_petman.html

6. Lipfert, S.W.: Kinematic and Dynamic Similarities between Walking and Running.
Verlag Dr. Kovac, Hamburg (2010)

7. Blickhan, R.: The spring-mass model for running and hopping. Journal of Biome-
chanics 22, 1217–1227 (1989)

http://world.honda.com/asimo/
http://www.bostondynamics.com/robot_petman.html

Simulation and Experimental Evaluation of the Contribution 259

8. Seyfarth, A., Geyer, H., Guenther, M., Blickhan, R.: A movement criterion for
running. J. Biomech.

9. Geyer, H., Seyfarth, A., Blickhan, R.: Compliant leg behaviour explains basic dy-
namics of walking and running. Proc. Royal Society B: Biological Sciences 273,
2861–2867 (2006)

10. Pratt, G.A., Williamson, M.M.: Series elastic actuators. In: Proc. IEEE Interna-
tional Workshop on Intelligent Robots and Systems, pp. 399–406 (1995)

11. Pratt, J., Krupp, B.: Design of a bipedal walking robot. In: Proceedings of the
2008 SPIE, vol. 6962 (2008)

12. Radkhah, K., Maufroy, C., Maus, M., Scholz, D., Seyfarth, A., von Stryk, O.:
Concept and design of the biobiped1 robot for human-like walking and running.
International Journal of Humanoid Robotics 8(3), 439–458 (2011)

13. Seyfarth, A., Guenther, M., Blickhan, R.: Stable operation of an elastic three-
segmented leg. Biol. Cybern. 84, 365–382 (2001)

14. Rapoport, S., Mizrahi, J., Kimmel, E., Verbitsky, O., Isakov, E.: Constant and
variable stiffness and damping of the leg joints in human hopping. J. Biomech.
Eng. 125(4), 507–514 (2003)

15. Zajac, F.E.: Muscle coordination of movement: a perspective. J. Biomech. 26, 109–
124 (1993)

16. van Ingen Schenau, G.J., Pratt, C.A., Macpherson, J.M.: Differential use and con-
trol of mono- and biarticular muscles. Human Movement Science 13(3-4), 495–517
(1994)

17. Lens, T., Radkhah, K., von Stryk, O.: Realistic contact forces for manipulators and
legged robots with high joint elasticity. In: Proc. 15th International Conference on
Advanced Robotics (ICAR), pp. 34–41 (2011)

18. Farley, C.T., Morgenroth, D.C.: Leg stiffness primarily depends on ankle stiffness
during human hopping. J. Biomech. 32, 267–273 (1999)

260 D. Scholz et al.

5 Appendix

M

M

PQ

R
S

T

θK2

θK1

θA1

θA2

θA3

θK3

M

M

H

J
L

GE
A

C

B

D
F

I

K

θA

θK

M

M

X1
X 2

X3

Y3

1

2

3

Fig. 4. Dimensions of the BioBiped2 leg. Corresponding values are listed in Table 2.

Measurement Value Unit Measurement Value Unit

A 0.080 [m] K 0.058 [m]
B 0.018 [m] L 0.330 [m]
C 0.226 [m] P 0.068 [m]
D 0.070 [m] Q 0.038 [m]
E 0.226 [m] R 0.023 [m]
F 0.070 [m] S 0.053 [m]
G 0.330 [m] T 0.061 [m]
H 0.076 [m] θK2 155 [deg]
I 0.022 [m] θA1 + θA2 + θA3 213 [deg]
J 0.210 [m]

Table 2. Values of the dimensions represented in Fig. 4. These values are also used in
the simulation model.

Graph Optimization with Unstructured

Covariance: Fast, Accurate, Linear
Approximation

Luca Carlone1, Jingchun Yin1, Stefano Rosa2, and Zehui Yuan1

1 Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy
{luca.carlone,jingchun.yin,zehui.yuan}@polito.it

2 Italian Institute of Technology (IIT), Torino, Italy
stefano.rosa@iit.it

Abstract. This manuscript addresses the problem of optimization-
based Simultaneous Localization and Mapping (SLAM), which is of con-
cern when a robot, traveling in an unknown environment, has to build
a world model, exploiting sensor measurements. Although the optimiza-
tion problem underlying SLAM is nonlinear and nonconvex, related work
showed that it is possible to compute an accurate linear approximation
of the optimal solution for the case in which measurement covariance
matrices have a block diagonal structure. In this paper we relax this hy-
pothesis on the structure of measurement covariance and we propose a
linear approximation that can deal with the general unstructured case.
After presenting our theoretical derivation, we report an experimental
evaluation of the proposed technique. The outcome confirms that the
technique has remarkable advantages over state-of-the-art approaches
and it is a promising solution for large-scale mapping.

Keywords: Pose graph optimization, Simultaneous Localization and
Mapping, Mobile robotics.

1 Introduction

In several application scenarios (e.g., search and rescue, planetary exploration,
disaster response) mobile robots are deployed in an unknown environment and
are required to build a model (map) of the surroundings. The map is often used
for planning human intervention or for enhancing situational awareness. There-
fore, the mapping process is guided by three main requirements: (i) accuracy,
since a misleading representation of the environment can seriously compromise
the operation of human (or robotic) operators within the scenario, (ii) efficiency,
since it is crucial to have time-sensitive information on the environment, (iii)
scalability, since the robot may be in charge of mapping large areas.

Pose graph optimization has recently emerged as an effective problem for-
mulation for SLAM. In a pose graph, each node represents a pose assumed by a
mobile robot at a certain time, whereas an edge exists between two nodes if a rela-
tive measurement (inter-nodal constraint) is available between the corresponding

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 261–274, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

262 L. Carlone et al.

poses. Inter-nodal constraints are usually obtained by means of proprioceptive
sensors (odometry) or exteroceptive sensor-based techniques (vector registration,
scan matching, etc.) [2]. Then, the objective of pose graph optimization is to es-
timate the nodes’ poses (pose graph configuration) that maximize the likelihood
of inter-nodal measurements. The utility of estimating the configuration of the
pose graph stems from the fact that, from the estimated poses and from sen-
sor measurements, it is then easy to construct a map of the environment. After
the seminal paper [12], several authors put their efforts in devising sustainable
and accurate solutions to pose graph optimization. Thrun and Montemerlo [17]
enabled the estimation of large maps using a conjugate gradient-based scheme.
Konolige [9] investigated a reduction scheme for reducing the number of nodes
involved in the optimization. Frese et al. proposed a multilevel relaxation ap-
proach for full SLAM [7]. Olson et al. [14] proposed the use of incremental
pose parametrization for improving efficiency and convergence. Grisetti et al. [8]
extended such framework, taking advantage of the use of stochastic gradient
descent in planar and three-dimensional scenarios. In [11] the authors presented
a general framework for the optimization of graph-based nonlinear error func-
tions. More recently, Sünderhauf et al. [16] stressed the topic of outliers rejection
in pose graph optimization, proposing a strategy for discarding erroneous loop
closure constraints. All the aforementioned techniques are iterative, in the sense
that, at each iteration, they solve a local convex approximation of the origi-
nal problem, and use such local solution to update the configuration [6]. This
process is then repeated until the optimization variable converges to a local min-
imum of the cost function. As a consequence, all mentioned techniques require
the availability of an initial guess for nonlinear optimization, which needs to
be sufficiently accurate for the technique to converge to a global solution of the
problem. A partial answer to these two problems (computational complexity and
need of an accurate initial guess) came from the work [3]. In [3] the authors pro-
posed a linear approximation for the pose graph configuration, assuming that the
measurement covariance matrices have a block diagonal structure. The approach
requires no initial guess and was shown to be accurate in practice.

In this article we extend and complement the previous work [3], proposing two
contributions: (i) we relax the hypothesis of structured measurement covariances
and we propose an approach that is able to deal with the full covariance case;
(ii) we present an extensive evaluation of the performance of the proposed ap-
proach, compared with the approach of [3] and with other state-of-the-art tech-
niques. The first contribution (Section 3) is more theoretical: we describe an
algorithm for estimating the pose graph configuration and we then prove that
it corresponds to a Gauss-Newton steps around a suitable suboptimal solution.
The algorithm is an extended version of the approach proposed in [3]; also the
proof proceeds on the same line, although it encompasses the more general case
of full covariances. The second contribution (Section 4) is experimental. We test
several state-of-the-art techniques on real and simulated datasets and we propose
a performance evaluation in terms of accuracy, efficiency, and scalability.

A Linear Approximation for Pose Graph Optimization 263

2 Problem Formulation

The objective of pose graph optimization is to provide an estimate of the poses
assumed by a mobile robot, namelyX = {x0, . . . , xn}.X is called a configuration
of poses; the n + 1 poses are in the form xi = [p
i θi]

 ∈ SE(2), where pi ∈ R
2

is the Cartesian position of the i-th pose, and θi is its orientation. The input for
the estimation problem are m measurements of the relative pose between pairs
of nodes. For instance a measurement ξ̄i,j between nodes i and j is in the form

ξ̄i,j = ξi,j + εi,j =

[
R

i (pj − pi)
〈θj − θi〉2π

]
+

[
εΔi,j
εδi,j

]
, (1)

where ξi,j is the true (unknown) relative pose between node i and node j, εi,j ∈
R

3 is the measurement noise, Ri ∈ R
2×2 is a planar rotation matrix of an

angle θi, 〈·〉2π is a modulo-(2π) operator that forces angular measurements in
the manifold SO(2), and εΔi,j and εδi,j are the (possibly correlated) Cartesian and
orientation noise. According to related literature, we assume εi,j to be zero mean

Gaussian noise, i.e., εji ∼ N (03, Pi,j), being Pi,j a 3 by 3 covariance matrix. ξi,j
describes the relative transformation that leads pose i to overlap with pose j.
We can rewrite each measurement as ξ̄ij = [(Δ̄l

i,j)

 δ̌i,j]

, where Δ̄l
i,j ∈ R

2

denotes the relative position measurement, and δ̌i,j ∈ SO(2) denotes the relative
orientation measurement. The superscript l in Δ̄l

i,j remarks that the relative
position vector is expressed in a local frame. By convention, the pose of the first
node is assumed to be the reference frame in which we want to estimate all the
other poses, i.e., x0 = [0 0 0]
.

In [3] the authors showed that the relative orientation measurements can be
made linear by adding a suitable multiple of 2π, i.e, 〈θj−θi〉2π = θj−θi+2ki,jπ,
with θi, θj ∈ R, and ki,j ∈ Z (ki,j is called regularization term). In this paper we
assume that the regularization terms have been correctly computed, according
to [3], and we call δ̄i,j the regularized measurements, i.e., we define δ̄i,j = δ̌i,j −
2ki,jπ. Then the measurement model becomes:

[
Δ̄l

i,j

δ̄i,j

]
=

[
R�

i (pj − pi)
θj − θi

]
+

[
εΔi,j
εδi,j

]
. (2)

Therefore, the maximum likelihood estimate of nodes configuration X attains
the minimum of the following cost function (see [3] and the references therein):

f(X) =
∑

(i,j)∈E

[
R�

i (pj−pi)−Δ̄l
i,j

θj−θi−δ̄i,j

]�
Ωi,j

[
R�

i (pj−pi)−Δ̄l
i,j

θj−θi−δ̄i,j

]
(3)

where Ωi,j = P−1
i,j is the information matrix of measurement (i, j). Pose graph

optimization reduces to find a global minimum of the weighted sum of the resid-
ual errors, i.e., X∗ = argmin f(X). In the following we use In, 0n, and ⊗ to
denote an identity matrix, a vector of all zeros, and the Kronecker product.

264 L. Carlone et al.

3 A Linear Approximation

In this section we present the first contribution of this manuscript: a linear
approximation for problem (3) that relaxes the assumption of previous work [3].
In [3] it was assumed that Pi,j (and then Ωi,j) has the following structure:

Pi,j =

[
PΔ
i,j 02

0

2 P δ

i,j

]
. (4)

Roughly speaking, this essentially requires that the relative position and relative
orientation measurements (that together give the relative pose measurement) are
uncorrelated. In order to present the subsequent derivation we need to rewrite
the cost function (3) in a more compact form. For this purpose we define the
unknown nodes’ position p = [p
1 . . . p
n]

 and the unknown nodes’ orientation
θ = [θ1 . . . θn]

; therefore the to-be-computed network configuration may be
written as x = [p
 θ
]
 (note that we have excluded from x the pose x0

that was assumed to be known). Then, we number the available measurements
from 1 to m and we stack the relative position measurements in the vector
Δ̄l = [(Δ̄l

1)

 (Δ̄l

2)

 . . . (Δ̄l

m)
]
, and the relative orientation measurements
in the vector δ̄ = [δ̄1 δ̄2 . . . δ̄m]
. Accordingly, we reorganize the measurement
information matrices Ωi,j , (i, j) ∈ E , into a large matrix

Ω
.
=

[
ΩΔ ΩΔδ

ΩδΔ Ωδ

]
, (5)

such thatΩ is the information matrix of the vector of measurements [(Δ̄l)
 δ̄
]
.
Then, the cost (3) can be written as:

f(x)=

[
A�

2 p−RΔ̄l

A�θ−δ̄

]�[
RΩΔR� RΩΔδ

ΩδΔR� Ωδ

][
A�

2 p−RΔ̄l

A�θ−δ̄

]
(6)

where:

– A is the reduced incidence matrix of graph G, see [3];
– A2 = A⊗ I2 is an expanded version of A, see [1, 3];
– R = R(θ) ∈ R

2m,2m is a block diagonal matrix, whose nonzero entries are
in positions (2k− 1, 2k− 1), (2k− 1, 2k), (2k, 2k− 1), (2k, 2k), k = 1, . . . ,m,
such that, if the k-th measurement correspond to the relative pose between
i and j, then the k-th diagonal block of R is a planar rotation matrix of an
angle θi.

The residual errors in the cost function (6) are described by the following vec-
tor, whose entries represent the mismatch between the relative poses of a given
configuration x and the actual relative measurements.

r(x)
.
=

[
A�

2 p−RΔ̄l

A�θ−δ̄

]
(7)

Before presenting the proposed approach we anticipate the main intuition behind
the algorithm. The cost function (6) is quite close to a quadratic function, since

A Linear Approximation for Pose Graph Optimization 265

the last part of the residual errors in (7) is linear, and the overall cost function (6)
becomes quadratic as soon as the rotation matrix R is known. Therefore, the
basic idea is (i) to obtain an estimate of nodes orientations θ exploiting the linear
part of the residual errors in (7), (ii) to use the estimated orientation to compute
an estimate of R, and (iii) to solve the overall problem in the optimization
variable x. This basic intuition is the same motivating [3], although here the
derivation is made more complex by the presence of the correlation between
position measurements Δ̄l and orientation measurements δ̄.

We are now ready to present the proposed linear approximation for pose graph
optimization, whose properties will be analyzed in Theorem 1.

Algorithm 1. A linear approximation for the maximum likelihood pose graph
configuration can be computed in three phases, given the relative measurements
Δ̄l and δ̄, the corresponding information matrix Ω, and the graph incidence
matrices A and A2:

1. Solve the following linear system in the unknown z
.
= [(Δl)
 θ]
:

Ωz z = bz (8)

with:

Z =

[
I2m 02m,n

0m,2m A�

]
, and,

bz = Z�Ω
[
(Δ̄l)� δ̄�

]�
Ωz = Z�ΩZ

(9)

Call the solution of the linear system ẑ
.
= [(Δ̂l)
 θ̂]
.

2. Compute an estimate of the quantity RΔ̄l in (7) from ẑ, preserving the

correlation with the estimate θ̂:

ŷ = T (ẑ)
.
=

[
R̂ 02m×n

0�
2m×n In

] [
Δ̂l

θ̂

]
=

[
τ1(z)
τ2(z)

]
z=ẑ

(10)

with R̂ = R(θ̂); compute the corresponding information matrix:

Ωy = (T̂Ω−1
z T̂�)−1 = (T̂−1)�Ωz(T̂

−1), (11)

where T̂ is the Jacobian of the transformation T (·):

T̂
.
=

[
∂τ1
∂Δl

∂τ1
∂θ

∂τ2
∂Δl

∂τ2
∂θ

]
=

[
R̂ J

0n×2m In

]
. (12)

3. Solve the following linear system in the unknown x = [p
 θ
]
, given ŷ, see
(10), and Ωy, see (11):

Ωx x = bx (13)

with:
B =

[
A�

2 02m×n

0n×2n In

]
, and,

bx = B�Ωy ŷ

Ωx = B�ΩyB
(14)

The solution of the linear system (13) is the proposed linear approximation of
the pose graph configuration: x∗ = [(p∗)
 (θ∗)
]
. ��

266 L. Carlone et al.

The effectiveness of the linear approximation computed using Algorithm 1 is
assessed by the following result.

Theorem 1. Given the inputs {Δ̄l, δ̄, Ω,A,A2}, and assuming the information
matrix Ω to be positive-definite, the following statements hold for the quantities
computed in Algorithm 1:

1. Ωz, Ωy, Ωx are full rank;
2. The combination of the three phases is equivalent to applying a Gauss-

Newton step to the cost function (6), starting from the initial guess x̂ =

[p̂
 θ̂
]
, with θ̂ =
[
AΩδA

−AΩδΔΩ
−1
Δ ΩΔδA

]−1
A
(
Ωδ−ΩδΔΩ

−1
Δ ΩΔδ

)
δ̄

and p̂ = (A2R̂ΩΔR̂
A

2)

−1A2R̂ΩΔΔ̄
l.

Proof. See Appendix. ��
The first claim assures the uniqueness of the outcome of the proposed algo-
rithm (no indetermination in the solution of the linear systems). The second
claim assures that the proposed approximation improves over an initial guess x̂,
applying a Gauss-Newton step. It is worth noticing that θ̂ can be rewritten as:

θ̂ =
[
AP−1

δ A
]−1
AP−1

δ δ̄, where P−1
δ =

(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
is the marginal in-

formation matrix of the orientation measurements δ̄. Therefore, the initial guess
θ̂ is the BLUE (Best Linear Unbiased Estimator) for θ, given the sole orientation
measurements, see [3]; moreover, p̂ is the optimal estimate of nodes’ positions,
under the assumption that the actual orientations of the robot coincide with
θ̂ [3]. The practical advantage of the algorithm is that x̂ is already quite close
to the optimal solution in practice, then the approximation is accurate in com-
mon problem instances. Moreover, the vector p̂ is not computed explicitly by the
approach, saving computation time.

4 Experimental Analysis

In this section we present the results of an extensive numerical evaluation on
optimization-based SLAM. We compare the methodology proposed in this paper
(Algorithm 1) with several state-of-the-art optimization approaches, namely a
Gauss-Newton method [12], TORO [8], g2o [11], and the linear approximation
proposed in [3]. The Gauss-Newton approach is a standard implementation of
the Gauss-Newton method for solving nonlinear least squares problems [13]. The
halting condition for this approach is based on the norm of the local correction.
Roughly speaking, if in two consecutive iterations the change in the configuration
is smaller than a threshold the algorithm stops. In our tests the threshold on the
norm of the local correction was set to 0.1. The results from TORO and g2o are
obtained using the C++ code available online [15]. For the tests we used default
settings for both approaches. Our implementations of the linear approximation
[3] and of Algorithm 1 are available online [4]. Also the implementation of the
Gauss-Newton approach we used in the test campaign was released online [4].

A Linear Approximation for Pose Graph Optimization 267

The compared approaches are tested on publicly available datasets: Freiburg
Indoor Building 079 (FR079), MIT CSAIL Building (CSAIL), Intel Research
Lab (INTEL), Manhattan World M3500 (M3500), Manhattan World M10000
(M10000). The relative pose measurements of the datasets {FR079, CSAIL,
M3500, M10000} are available online [10], while the measurements of the dataset
INTEL were obtained through a scan matching procedure, from the raw sensor
data, available at [10]. The INTEL dataset is the same studied in [3]. The re-
lations available online [10] only describe the relative pose measurements, while
we are interested to test the behavior of the approaches for different measure-
ment covariance matrices. In particular, for each dataset we consider three vari-
ants, each one corresponding to a different choice of the covariance matrix. The
first variant (e.g., FR079-I) uses identity matrices as measurement covariances,
i.e., the noise of the relative pose measurement between node i and node j is
εji ∼ N (03, I3). The second variant (e.g., FR079-Ps) uses a structured covariance
matrix, as in eq. (4). The third variant (e.g., FR079-Pf) uses full covariance ma-
trices obtained as follows. According to the standard odometry model [18], we
parametrize the relative pose between node i and j as a rotation γ1

r , followed by
a translation γ1

t , and by a second rotation γ2
r , see Section 5.4 in [18]. Then, fixing

the uncertainty in the parameters, we can define the corresponding covariance
matrix for the relative pose measurement. For our numerical experiments we set
the standard deviations of γ1

r , γ
1
t , γ

2
r , to 0.05 rad, 0.05 m, and 0.01 rad, respec-

tively. For the sake of repeatability and for stimulating further comparisons with
related approaches the datasets considered in this paper were released online [4].

Fig. 1. Estimated trajectory for each of the considered datasets: (a) FR079, (b) CSAIL,
(c) INTEL, (d) M3500, (e) M10000

Accuracy. In Figure 1 we show some qualitative results for the proposed ap-
proach on the considered datasets (for simplicity we only show the variant with
the identity matrix as measurement covariance). For a quantitative evaluation
of the accuracy of the approaches, we recorded the optimal value of the cost
function (6), attained by each of the compared techniques. Since each approach
is required to minimize the cost (6), the best solution is the one attaining the
smallest value of the objective function. The results for the compared approaches

268 L. Carlone et al.

and for each dataset are reported in Table 1. The Gauss-Newton method and
g2o attain the same solution (which is also the smallest observed cost function)
in most cases. This comes at no surprise since they both solve the original op-
timization problem without any approximation involved. Only in two scenarios
g2o performs worse than the Gauss-Newton method: in the INTEL dataset (in
which the initial guess is particularly bad), and in the M10000 dataset (which
contains a large number of nodes). The difference is explained as follows: g2o
applies a fixed number of iterations, then in the two mentioned cases, the it-
erations are not sufficient to reach the optimal value. TORO shows the worst
performance in all tests, due to the involved approximations, see [8]. The lin-
ear approximations of [3] (structured covariance) and the one proposed in this
paper (unstructured covariance) produce intermediate results. They are practi-
cally optimal in the first variants (I) of each scenario (using identity matrices
as covariances), and they are close to the Gauss-Newton solution in the second
variants (Ps). Only in the scenario INTEL the cost function was remarkably
larger than the Gauss-Newton approach, although being lower than TORO. It
is worth noticing that in the first and in the second variants of each dataset,
the linear approximation of [3] and the approach proposed in this paper attain
the same objective. This is due to the fact that the approach proposed in this
paper reduces to the linear approximation of [3] when the measurements covari-
ance matrices of the input data are structured (as it happens in the variants I
and Ps). The two approaches, instead, differ when measurement covariance is
unstructured, as in the Pf variant reported in Table 1. In this case the linear
approximation [3] simply neglects the correlation terms while the proposed ap-
proach can deal with the full covariance case. The numerical results show that
in the third variant (Pf) of the datasets {INTEL, M10000} the proposed ap-
proximation remarkably improves the attained objective value. In the remaining
datasets, the difference between the linear approximations is small. We conclude
this paragraph by noticing that the proposed approximation and the approach
in [3] are more accurate than g2o on the large-scale dataset M10000.

Efficiency.The efficiency of the compared approaches is connected with the com-
putational effort that each method requires for producing the estimate of node
configuration. The average CPU time required by the compared approaches for
each of the dataset is reported in Table 1. The reported statistics are averaged
over 10 runs. The tests are conducted on a standard laptop, with an Intel Core i7
3.4 GHZ and 8 GB of RAM. The CPU times required by TORO and g2o are the
ones returned by the code available online. The Gauss-Newton method, the linear
approximation [3], and the approach proposed in this paper are implemented in
C++and use theCSparse library [5].Moreover, for the two linear approximations,
the CPU time includes the computation of the regularization terms [3].

From the table it is possible to see that the Gauss-Newton method, although
being very accurate, quickly becomes unsustainable for large datasets. TORO is
slightly faster, but still remains not competitive w.r.t. the other techniques. g2o
is highly optimized and allows a remarkable speed-up w.r.t. the Gauss-Newton
method. Table 1 highlights that the linear approximation [3] and the linear

A Linear Approximation for Pose Graph Optimization 269

Table 1. Objective function values and average computation time (in seconds) for the
compared approaches

Linear Linear

Gauss-Newton TORO g2o
Approximation Approximation

(structured (unstructured

covariance) covariance)

I Objective 7.20E-02 7.20E-02 7.20E-02 8.60E-02 7.19E-02

Time (s) 5.80E-03 8.15E-03 1.99E-01 3.19E-01 1.05E-02

F
R
0
7
9 Ps Objective 3.94E+01 3.94E+01 3.88E+01 4.74E+02 3.89E+01

Time (s) 5.76E-03 7.87E-03 2.00E-01 3.39E-01 1.07E-02

Pf Objective 2.76E+02 2.90E+02 1.47E+02 8.99E+03 1.47E+02

Time (s) 5.81E-03 8.16E-03 2.00E-01 3.04E-01 1.06E-02

I Objective 1.07E-01 1.07E-01 1.07E-01 1.18E-01 1.07E-01

Time (s) 5.72E-03 7.55E-03 2.65E-01 2.89E-01 1.01E-02

C
S
A
IL Ps Objective 4.06E+01 4.06E+01 4.06E+01 2.41E+03 4.06E+01

Time (s) 5.53E-03 7.46E-03 2.01E-01 2.90E-01 1.01E-02

Pf Objective 2.45E+02 2.33E+02 1.57E+02 4.57E+04 1.57E+02

Time (s) 5.59E-03 7.50E-03 2.66E-01 2.88E-01 1.03E-02

I Objective 8.07E-01 8.07E-01 7.89E-01 1.17 7.89E-01

Time (s) 7.10E-03 9.49E-03 5.87E-01 4.15E-01 1.32E-02

IN
T
E
L Ps Objective 1.45E+04 1.45E+04 2.15E+02 1.03E+05 2.15E+02

Time (s) 7.01E-03 9.49E-03 4.90E-01 3.89E-01 1.31E-02

Pf Objective 1.51E+06 1.07E+05 3.95E+02 2.53E+07 1.08E+03

Time (s) 6.98E-03 9.47E-03 5.91E-01 4.01E-01 1.31E-02

I Objective 3.03 3.03 3.02 5.42 3.02

Time (s) 3.26E-02 4.04E-02 5.81 1.57 7.07E-02

M
3
5
0
0 Ps Objective 3.73E+03 3.73E+03 3.55E+03 2.18E+06 3.55E+03

Time (s) 3.25E-02 4.03E-02 4.84 1.61 7.06E-02

Pf Objective 1.15E+04 6.81E+03 2.09E+03 5.78E+08 2.09E+03

Time (s) 3.26E-02 4.05E-02 5.82 1.61 7.14E-02

I Objective 3.03E+02 3.03E+02 3.03E+02 3.29E+02 3.03E+02

Time (s) 3.55E-01 4.86E-01 2.21E+02 1.73E+01 6.93E-01

M
1
0
0
0
0

Ps Objective 1.99E+05 1.99E+05 1.98E+05 7.65E+06 2.28E+05

Time (s) 3.57E-01 4.89E-01 2.21E+02 1.83E+01 6.96E-01

Pf Objective 9.00E+05 9.61E+05 6.79E+05 2.07E+08 1.90E+07

Time (s) 3.55E-01 4.86E-01 4.11E+02 1.77E+01 6.91E-01

approximation proposed in this paper outperform all state-of-the-art techniques
in terms of computational time. In particular, they assure a reduction of the
computational time of 30−50%w.r.t. to g2o and improve the computational time
of orders of magnitude w.r.t. the other state-of-the-art techniques. We conclude
this section observing that the proposed approach is able to compute an estimate
of the configuration of a pose graph with 10000 nodes and 64311 edges in less
than 0.5 seconds.

270 L. Carlone et al.

Finally a video showing an experimental test in which the edges of the graph
are obtained online using a scan matching algorithm is available online [4].

5 Conclusion

The contribution of this article is twofold: a linear approximation for optimization-
based SLAM and an extensive evaluation of the performance of state-of-the-art
approaches on benchmarking datasets. The first contribution includes the pre-
sentation of an algorithm for estimating an approximation of pose graph config-
uration. The algorithm is an extended version of the approach proposed in [3]
and can deal with the case of generic unstructured measurement covariance. The
second contribution includes an experimental analysis of pose graph optimiza-
tion approaches in terms of accuracy, efficiency, and scalability. As a results we
demonstrate that the accuracy of the proposed linear approximation is compa-
rable with the one of state-of-the-art techniques, although it requires a fraction
of their computational effort.

Appendix

In this appendix we report the proof of Theorem 1. We omit for brevity the
proof of the first claim, which is a straightforward extension of the results re-
ported in [3]. We instead prove the second claim by direct calculation. We need
to demonstrate that the outcome of the proposed algorithm is equivalent to
a Gauss-Newton step from the initial guess x̂ = [p̂
 θ̂
]
. The structure of
the proof is the following: (i) we compute by direct calculation the solution of
the proposed approach x∗, (ii) we compute the estimate xGN , obtained from a
Gauss-Newton step with initial guess x̂, (iii) we show that x∗ = xGN . We start
by computing Ωz = Z
ΩZ:

Ωz =

[
ΩΔ ΩΔδA

AΩδΔ AΩδA

]
We can use blockwise inversion rule to compute the inverse of Ωz. Notice that
the explicit inverse needs not be computed in practice, since computationally
effective methods can be used to solve the sparse linear system (8). For the sake
of the proof, we instead evaluate:

Pz
.
= Ω−1

z =

[
Pz11 Pz12

Pz21 Pz22

]
with:

Pz22 =
[
AΩδA

 −AΩδΔΩ−1
Δ ΩΔδA

]−1
,

Pz11 = Ω−1
Δ +Ω−1

Δ ΩΔδA

Pz22AΩδΔΩ−1

Δ , Pz12 = P

z21 = −Ω−1

Δ ΩΔδA

Pz22 .

Then we can compute ẑ = Ω−1
z bz:

ẑ =

[
Δ̄l + Ω−1

Δ ΩΔδ

[
δ̄ −A
Pz22A

(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄
]

Pz22A
(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄

]

A Linear Approximation for Pose Graph Optimization 271

If we call θ̂ = Pz22A
(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄, the vector ẑ can be written in com-

pact form as:

ẑ =

[
Δ̄l +Ω−1

Δ ΩΔδ

(
δ̄ −A
θ̂

)
θ̂

]
(15)

We can then compute ŷ and Ωy according to (10) and (11):

ŷ =

[
R̂Δ̄l + R̂Ω−1

Δ ΩΔδ

(
δ̄ −A
θ̂

)
θ̂

]
, Ωy = (T̂−1)
Ωz(T̂

−1)
.
=

[
Ωy11 Ωy12

Ωy12 Ωy22

]

with:

T̂−1 =

[
R̂ J

0n×2m In

]−1

=

[
R̂
 −R̂
J

0n×2m In

]
, Ωy11 = R̂ΩΔR̂

Ωy12 = Ω

y12

= −R̂ΩΔR̂
J + R̂ΩΔδA

Ωy22 = AΩδA

+J
R̂ΩΔR̂

J −AΩδΔR̂

J−J
R̂ΩΔδA

.

Now we compute Ωx, its inverse Ω
−1
x , and bx, from which it is easy to derive x∗.

According to (3), Ωx can be written explicitly as:

Ωx
.
= B
ΩyB =

[
Ωx11 Ωx12

Ωx21 Ωx22

]
with:

Ωx11 = A2R̂ΩΔR̂
A

2

Ωx12 = Ω

x21

= −A2R̂ΩΔR̂
J +A2R̂ΩΔδA

Ωx22 = AΩδA

+J
R̂ΩΔR̂

J−AΩδΔR̂

J−J
R̂ΩΔδA

.

After long and tedious calculations we obtain Ω−1
x using standard blockwise-

inversion rules:

Px
.
= Ω−1

x =

[
Px11 Px12

Px21 Px22

]
with:

Px22 =
[
AΩδA

� + J�R̂ΩΔR̂�J − J�R̂ΩΔδA
� −AΩδΔR̂�J+

−(AΩδΔR̂�A�
2 − J�R̂ΩΔR̂�A�

2)(A2R̂ΩΔR̂�A�
2)

−1(A2R̂ΩΔδA
� − A2R̂ΩΔR̂�J)

]−1

Px12 = P�
x21

= −(A2R̂ΩΔR̂�A�
2)

−1(A2R̂ΩΔδA
� −A2R̂ΩΔR̂�J)Px22

Px11 = (A2R̂ΩΔR̂�A�
2)

−1 + (A2R̂ΩΔR̂�A�
2)

−1(A2R̂ΩΔδA
� − A2R̂ΩΔR̂�J)×

Px22(AΩδΔR̂�A�
2 − J�R̂ΩΔR̂�A�

2)(A2R̂ΩΔR̂�A�
2)

−1.
(16)

From matrix-vector multiplication we also compute bx
.
= B
Ωy ŷ = [b
x1

b
x2
]
,

with:

bx1 = A2R̂
(
ΩΔΔ̄l −ΩΔR̂�Jθ̂ +ΩΔδ δ̄

)
bx2 = AΩδA

�θ̂ + J�R̂ΩΔR̂�Jθ̂ −AΩδΔR̂�Jθ̂ + AΩδΔΩ−1
Δ ΩΔδ δ̂+

−J�R̂ΩΔδ δ̄ − AΩδΔΩ−1
Δ ΩΔδA

�θ̂ + AΩδΔΔ̄l − J�R̂ΩΔΔ̄l.

272 L. Carlone et al.

Finally we can calculate x∗ = Pxbx
.
= [(p∗)
 (θ∗)
]
, with:

θ∗ = θ̂ + Px22

[
(J�R̂ΩΔR̂�A�

2)(A2R̂ΩΔR̂�A�
2)

−1A2R̂ − (AΩδΔR̂�A�
2)×

(A2R̂ΩΔR̂�A�
2)

−1A2R̂− J�R̂+ AΩδΔΩ−1
Δ

][
ΩΔΔ̄l +ΩΔδ(δ̄ − A�θ̂)

]
,

p∗ = p̂+ (A2R̂ΩΔR̂�A�
2)

−1A2R̂
[
ΩΔδ(δ̄ − A�θ∗) +ΩΔR̂�J(θ∗ − θ̂)

]
,

where θ̂ = Pz22A
(
Ωδ −ΩδΔΩ−1

Δ ΩΔδ

)
δ̄ and p̂ = (A2R̂ΩΔR̂
A

2)
−1A2R̂ΩΔΔ̄l.

After obtaining x∗ we have to compute the outcome of the Gauss-Newton step
from x̂

.
= [p̂
 θ̂
]
, since we claim that the result is the same. According to the

standard Gauss-Newton approach, a single step from the guess x̂ produces the
estimate xGN = x̂ + x̃, where x̃

.
= [p̃
 θ̃
]
 is the minimum of the quadratic

cost obtained by linearizing the residual errors in (6) around x̂. Let us start by
linearizing the residual errors in the cost function around x̂:

r(x̂+ x̃) ≈
[
A�

2 p̂+A�
2 p̃− R̂Δ̄l − Jθ̃

A�θ̂ + A�θ̃−δ̄

]
.
= r̃(x̃) (17)

Considering the linearized residue and evaluating the covariance matrix in θ = θ̂
the cost function (6) becomes quadratic:

f(x̃) ≈ r̃(x̃)�
[
R̂ΩΔR̂� R̂ΩΔδ

ΩδΔR̂� Ωδ

]
r̃(x̃)

.
= f̃(x̃) (18)

The global minimum of the previous cost function can be computed by taking
the gradient of the f̃ with respect to x̃ = [p̃
 θ̃
]
 and imposing it to be zero.
Let us compute the gradient with respect to the variable p̃ and θ̃:

∇p̃(f̃) = 2A2R̂ΩΔR̂�(A�
2 p̂− R̂Δ̄l + A�

2 p̃− Jθ̃) + 2A2R̂ΩΔδ(A
�θ̂ + A�θ̃ − δ̄)

∇θ̃(f̃) = −2J�R̂ΩΔR̂�(A�
2 p̂− R̂Δ̄l + A�

2 p̃− Jθ̃)− 2J�R̂ΩΔδ(A
�θ̂ + A�θ̃ − δ̄)+

+2AΩδΔR̂�(A�
2 p̂− R̂Δ̄l + A�

2 p̃− Jθ̃) + 2AΩδ(A
�θ̂ + A�θ̃ − δ̄)

The global minimum has to satisfy the following linear system of equations:

{∇p̃(f̃) = 02n

∇θ̃(f̃) = 0n
(19)

It is possible to explicit the unknown p̃ from the first equation in (19), writing
it in function of θ̃:

p̃ = (A2R̂ΩΔR̂�A�
2)

−1A2R̂
[
ΩΔδ(δ̄ − A�θ̂ − A�θ̃) +ΩΔR̂�Jθ̃

]
.

Now we can substitute p̃ in the second equation of (19), obtaining a linear
equation containing only θ̃. Solving such equation we obtain:

θ̃ = Px22

[
(J�R̂ΩΔR̂�A�

2)(A2R̂ΩΔR̂�A�
2)

−1A2R̂+

−(AΩδΔR̂�A�
2)(A2R̂ΩΔR̂�A�

2)
−1A2R̂+

−J�R̂ + AΩδΔΩ−1
Δ

][
ΩΔΔ̄l +ΩΔδ(δ̄ − A�θ̂)

]
,

where Px22 is defined as in (16). We can finally compute xGN:

xGN = x̂+ x̃ =

[
p̂+ p̃

θ̂ + θ̃

]
=

[
pGN

θGN

]

A Linear Approximation for Pose Graph Optimization 273

with:

θGN = θ̂ + Px22

[
(J�R̂ΩΔR̂�A�

2)(A2R̂ΩΔR̂�A�
2)

−1A2R̂ − (AΩδΔR̂�A�
2)×

(A2R̂ΩΔR̂�A�
2)

−1A2R̂ − J�R̂ + AΩδΔΩ−1
Δ

][
ΩΔΔ̄l +ΩΔδ(δ̄ − A�θ̂)

]
,

pGN = p̂+ (A2R̂ΩΔR̂�A�
2)

−1A2R̂
[
ΩΔδ(δ̄ − A�θ∗) +ΩΔR̂�J(θ∗ − θ̂)

]
.

By inspection, it is easy to verify that pGN = p∗ and θGN = θ∗, hence proving
the second claim of Theorem 1.

References

[1] Barooah, P., Hespanha, J.P.: Estimation on graphs from relative measurements.
IEEE Control Systems Magazine 27(4), 57–74 (2007)

[2] Carlone, L., Aragues, R., Castellanos, J.A., Bona, B.: A first-order solution to
simultaneous localization and mapping with graphical models. In: Proc. of the
IEEE lnternational Conf. on Robotics and Automation (2011)

[3] Carlone, L., Aragues, R., Castellanos, J.A., Bona, B.: A linear approximation for
graph-based simultaneous localization and mapping. In: Proc. of Robotics: Science
and Systems (2011)

[4] Carlone, L., Rosa, S., Yin, J.: Robotics research group: Resources – graph opti-
mization with unstructured covariance (2012), www.polito.it/LabRob

[5] Davis, T.A.: Direct Methods for Sparse Linear Systems. Fundamentals of Al-
gorithms, vol. 2. Society for Industrial and Applied Mathematics, Philadelphia
(2006) ISBN 0898716136

[6] Dellaert, F., Carlson, J., Ila, V., Ni, K., Thorpe, C.: Subgraph-preconditioned
conjugate gradients for large scale SLAM. In: Proc. of the IEEE-RSJ Int. Conf.
on Intelligent Robots and Systems (2010)

[7] Frese, U., Larsson, P., Duckett, T.: A multilevel relaxation algorithm for simulta-
neous localization and mapping. IEEE Trans. on Robotics 21(2), 196–207 (2005)

[8] Grisetti, G., Stachniss, C., Burgard, W.: Non-linear constraint network optimiza-
tion for efficient map learning. IEEE Trans. on Intelligent Transportation Sys-
tems 10(3), 428–439 (2009)

[9] Konolige, K.: Large-scale map-making. In: Proc. of the AAAI National Conf. on
Artificial Intelligence (2004)

[10] Kümmerle, R., Steder, B., Dornhege, C., Ruhnke, M., Grisetti, G., Stachniss, C.,
Kleiner, A.: Slam benchmarking webpage (2009),
http://ais.informatik.uni-freiburg.de/slamevaluation

[11] Kummerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: G2o: A
general framework for graph optimization. In: 2011 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 3607–3613 (May 2011),
doi:10.1109/ICRA.2011.5979949

[12] Lu, F., Milios, E.: Globally consistent range scan alignment for environment map-
ping. Autonomous Robots 4, 333–349 (1997)

[13] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer (2006)
[14] Olson, E., Leonard, J.J., Teller, S.: Fast iterative optimization of pose graphs

with poor initial estimates. In: Proc. of the IEEE Int. Conf. on Robotics and
Automation, pp. 2262–2269 (2006)

www.polito.it/LabRob
http://ais.informatik.uni-freiburg.de/slamevaluation

274 L. Carlone et al.

[15] Stachniss, C., Frese, U., Grisetti, G.: Open SLAM webpage (2007),
http://openslam.org/

[16] Sunderhauf, N., Protzel, N.: Towards a robust back-end for pose graph slam.
In: Proc. of IEEE International Conference on Robotics and Automation, ICRA
(2012)

[17] Thrun, S., Montemerlo, M.: The GraphSLAM algorithm with applications to
large-scale mapping of urban structures. Int. J. Robot. Res. 25, 403–429 (2006)

[18] Thrun, S., Burgard, W., Fox, D.: Probabilistic robotics. MIT Press (2005)

http://openslam.org/

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 275–286, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Mobile Robot SLAM Interacting with Networked Small
Intelligent Sensors Distributed in Indoor Environments

Fumitaka Hashikawa1,*, Kazuyuki Morioka1, and Noriaki Ando2

1 Meiji University, Kanagawa, Japan
hashikawa@mork.mind.meiji.ac.jp

2 AIST, Ibaraki, Japan
n-ando@aist.go.jp

Abstract. SLAM is a method of map building and self-position estimation for
robot navigation. However, map building error is especially appeared in loop
closing points when the mobile robot moves around loop trajectories. In this
study, more accurate mobile robot SLAM is considered in intelligent space [1]
where many sensors are distributed.

An intelligent space is constructed with various types of distributed sensors
including networked laser range sensors. Laser sensor on a mobile robot and
environment sensors share sensor information each other in intelligent space.
Maps and self-positions of the mobile robot are estimated using geometrical re-
lationships between the mobile robot and sensors in intelligent space. However,
geometrical calibration of distributed sensors under the unified world coordinates
is required for construction of the intelligent space. When many sensors are dis-
tributed in wide area, it generally becomes complicated tasks to calibrate all
sensors. In order to solve these problems, we consider extend SLAM algorithm.
In this study, a new method of SLAM, which uses distributed sensors fixed in the
intelligent space, is introduced. This method aims to achieve precision SLAM
and position estimation of networked laser range sensors in the intelligent space.

Keywords: Mobile Robot, SLAM, Intelligent Space.

1 Introduction

Moving functions are indispensable in order for a mobile robot to coexist with people in
human living environments. And exact motion control is required. A wheel type mobile
robot can estimate self-position by rotation of a wheel. However, position estimation
errors are accumulated according to friction with a road surface, etc. In addition to this
odometry, a laser range sensor carried in the mobile robot should be used in order to
solve this estimation error problem by scanning the external object position. Position of
the mobile robot is estimated by matching between the maps and the scan data. This
method is called SLAM [2]. SLAM is one of the methods for building maps from
sensor data observed mobile robot. In SLAM algorithm, the maps generated in the past
are compared with a current scan data and an exact current position is estimated.
However, map building errors are especially appeared around loop closing points when

* Corresponding author.

276 F. Hashikawa, K. Morioka, and N. Ando

the mobile robot moves along loop trajectories [2]. In this study, more accurate mobile
robot SLAM is considered in intelligent space where many sensors are distributed.

Recently the intelligent spaces have been developed as one of the environments where
people and robots live together [1][3]. The intelligent spaces including networked laser
range sensors, cameras and the other sensing device. In this study, the mobile robot shares
sensor information with the intelligent space. Maps and the mobile robot’s position are
estimated using geometrical relationships between the mobile robot and distributed
sensors in intelligent space. In order to build such intelligent spaces, it is required to know
positions of distributed sensors in unified world coordinate system of intelligent space
[4]. Then, calibration of distributed sensors must be achieved for development of intel-
ligent spaces. However, it is generally complicated works. Especially, many distributed
laser range sensors are widely used in intelligent spaces, geometrical calibration of many
laser range sensors in unified world coordinate system is complicated. Easy calibration
method is required for the intelligent space. This study also focuses on easy calibration of
networked laser range sensors not only SLAM of mobile robots.

In order to solve above-mentioned two problems: accurate SLAM and calibration of
distributed intelligent sensors, we consider extend FastSLAM [5]. The new method of
SLAM, which uses distributed laser range sensors fixed in an environment as intelligent
space is introduced as interactive SLAM. This method shares environment data between
intelligent sensors and SLAM of a mobile robot. When mobile robot in a monitoring area
of a distributed sensor, maps generated by distributed intelligent sensors and scanned data
acquired by a mobile robot are shared for interactive map matching. Geometrical rela-
tionships between the mobile robot and the intelligent space are estimated based on the
matching results. Then, positions of the distributed laser range sensors are estimated
according to the matching results. Also, the map built by the mobile robot is improved
accurately according to position estimation results of the distributed laser range sensors.
This study aims to improve accuracy of SLAM and estimate the distributed sensor’s
position of intelligent space based on interactively communicating each other.

2 Interactive SLAM between Mobile Robot and Intelligent Space

2.1 Outline

In this study, SLAM process of mobile robot and distributed intelligent sensors (Intel-
ligent Space) communicate each other.

In SLAM process of mobile robot, FastSLAM algorithm is mainly used[2].
FastSLAM based on particle filter can achieve SLAM with high speed and high accuracy.
Especially, grid-based Fast SLAM is more promising. This method includes building a
probabilistic grid map[2] based on environment data obtained by a laser range sensor on
the mobile robot. Fig.1 shows the outline of this normal SLAM. Then, the grid map and
new scanned results are compared every sampling time, and the grid map is updated.
Mobile robot's self-position is also estimated based on this map [6][7].

In distributed intelligent sensors (Intelligent Space) process, grid map are con-
structed by the same map building method with the mobile robot process. In addition,
estimation method of each distributed intelligent sensor’s position is also similar with
position estimation of the mobile robot based on the particle filter. In other words, that
means position calibration of the distributed intelligent sensors is added in SLAM

Mobile Robot SLAM Interacting with Networked Small Intelligent Sensors Distributed 277

process of the mobile robot. We call this SLAM “interactive SLAM”. Fig.2 shows
outline of this interactive SLAM.

In the initial state of this interactive SLAM, a mobile robot's initial position is set at
the origin of world coordinate. And the initial position of each distributed intelligent
sensor is unknown. That means all the state variables are set as zero. There is no map
information on an initial state of the robot and sensors.This study considers extending
FastSLAM of mobile robot to an interactive SLAM with the intelligent space. The
interactive SLAM uses grid maps built by the distributed laser range sensors of the
intelligent space in addition to grid maps built by mobile robot. When the mobile
robot is in the distributed sensor’s monitoring area, grid maps built by the distributed

Fig. 1. SLAM process outline

Acquire a Scanned Data (Environment Data)

SLAM of Mobile Robot

Generate a Grid Map

Calculation of Particle Weight based on the Matching Points

Count Matching Points of Scanned Data and Grid Map

Position Estimation of the Mobile Robot based on the Particle Weight

A Laser Range Sensor carried in the

Mobile Robot acquires Scanned Data.

Mobile Robot

Generate a Grid Map from Scanned

Data and past Grid Maps Data.

Count Matching Points as a Particle

Weight.

An environment

Scanned Data

Grid Map

278 F. Hashikawa, K. Morioka, and N. Ando

Fig. 2. Outline of Interactive SLAM

sensors are shared with the mobile robot and used as the constraints of the mobile
robot's SLAM. In that case, grid map by distributed sensor and sensing results of the
mobile robot are compared in each particle in addition to matching with grid maps in
SLAM process by mobile robot with laser sensing results. Particles that match both
maps will be preserved as good particles in the FastSLAM. This is effective for im-
proving accuracy of grid maps, because maps built by distributed sensors fixed in the
environments are integrated to map built by mobile robot.

2.2 System Configuration

System configuration of interactive SLAM with networked intelligent sensors is shown
in Fig.2. This system is configured with two processes: SLAM process of mobile robot
and distributed intelligent sensors process.

In the SLAM process, a mobile robot acquires mobile robot’s translation and
angular displacement from odometry and scan data from laser range sensor on the
mobile robot. Grid map is generated from above acquired data and maps generated
before. Since this SLAM process adopts FastSLAM based on particle filter, a grid map
per each particle is generated. After map generation, grid maps of all particles are
compared with scan data of mobile robot. Number of matching points between each
grid map and scan data is counted. This number of matching points is used as weight of
each particle. A position of mobile robot is estimated by weighted mean of particle
positions. This SLAM process is performed every 500 mm.

In the distributed sensor process in intelligent space, distributed sensor acquires scan
data and generates grid map. This distributed sensor process also adopts particle filter for
estimating distributed sensor’s position. A grid map for each distributed sensor is gener-

Mobile Robot SLAM Interacting with Networked Small Intelligent Sensors Distributed 279

ated in sensor coordinate system. The map is transformed to the map in world coordinate
system according to each particle position of the distributed sensor. After map generation,
grid maps of all particles are compared with scan data of mobile robot based on the
highest likelihood particle position in SLAM process. A different comparison between
maps and scan data is applied in the distributed sensor process.

In the SLAM process, map matching is performed in sequential robot movements.
Then, many matching points are relatively obtained in several particles. As against to
evaluation of matching points in the SLAM process, enough matching points can’t be
obtained because estimation of mobile robot and distributed sensors include slight
angular differences in many cases. In the distributed sensor process, orientation dif-
ference between each grid map and scan data is calculated for weight of particles, not
only matching points. A position of distributed sensor is estimated by weighted mean of
particle positions. And new weights are updated in SLAM process according to the
estimated position of the distributed sensor. Orientation difference, between scan data
at each particle position of mobile robot and grid map based on the particle with the
highest likelihood in the distributed sensor process, is calculated and considered as new
weight of particles. The weight based on orientation difference is adjusted in order to
balance to weight based on matching point. And the adjusted weight is added to the
already calculated weight based on matching points. Maps, which match both of
FastSLAM and intelligent space, can be generated by this interactive SLAM. Position
and orientation estimation, which be suitable for both of robot and intelligent space, is
also achieved. This interactive SLAM is performed when a mobile robot moves in a
monitoring area of a distributed intelligent sensor.

2.3 Generation of Grid Map

In this study, grid map generated by a laser range sensor on a mobile robot is called
local map. And grid map generated by a laser range sensor in an intelligent space is
called area map. Detailed generation method of grid map, such as local map and area
map, is shown in the literature [2]. Laser range sensors acquire scanned data every
sampling time. Scanned data is accumulated and occupancy probability of each grid is
calculated. Area maps generated from distributed sensors are based on sensor coordi-
nate system because distributed sensors do not move. Local maps of mobile robot are
generated from scan data and corresponding positions on robot coordinate system.
These maps can be transformed on world coordinate system, using current position and
orientation estimation. Current scan data by the laser range sensor on the robot and a
local map generated in the past is compared in map estimation of usual Grid Based
Fast-SLAM. Likelihood is calculated based on the number of scan points, which
matched with the grids with high occupancy probabilities in the local map. This like-
lihood is calculated in each particle of particle filter. Robot position is estimated by the
weighted mean based on likelihood of each particle. Fig.3 shows an example of expe-
riment environment. Fig.4 shows an example of scan data by the laser sensor on a
mobile robot in the environment. In the environment, moving humans and the other
static objects exists. In this example, installation height of a laser range sensor on the
mobile robot is about 340 mm from floor of Fig.3. Fig.5 shows a grid map generated by
accumulating scan data like Fig.4. In Fig.5, red points represent grids that the local map
and the scanned points are corresponding. This number of matching point is used as
likelihood of each particle.

280 F. Hashikawa, K. Morioka, and N. Ando

Fig. 3. An experiment environment

2.4 Matching with Maps by Distributed Laser Range Sensors

In the interactive FastSLAM using intelligent space, when a mobile robot moves into a
monitoring area of a distributed laser range sensors, weight of each particle in distri-
buted sensors is also computed from matching results between scanned data of a mobile
robot and grid maps which the distributed sensors generated. These particle weights are
calculated as a particle weight of FastSLAM in Fig.2. That is, when the mobile robot
runs in the measuring range of a distributed sensor, it is aimed that accuracies of posi-
tion and map estimations in SLAM process are improved by evaluating the matching
point with the grid map from the distributed sensors. Fig.6 is an example situation of
matching with the map from the sensor fixed in intelligent space. In this figure, red
points are current scanned points by the mobile robot. Blue points show the grids,

Elevator’s doors

Elevator’s
doors

Human’s legs

Removed
human’s

Laser range sensor

Fig. 5. Local map Fig. 4. Scanned data

Mobile Robot SLAM Interacting with Networked Small Intelligent Sensors Distributed 281

which the map by distributed sensor and the sensing points are corresponded. It is
enough when many correspondent points are measured as shown in Fig.6. However, as
shown in left figure of Fig.8, there are many cases that correspondent points between
the map by the distributed sensor and scanned data are small because of orientation
differences between maps and sensing data especially. It means that the number of
correspondent points is not enough to evaluate matching with the maps of distributed
sensors. So, in this study, orientation differences between maps of distributed sensors
and scanned data are used for evaluation of matching. At first, two grids with the
highest occupancy probability in the map of distributed sensor are selected as repre-
sentative points. Next, the points nearest to selected two points are searched in the
scanned data observed by laser sensor on the mobile robot. Finally, inclinations of
straight lines between two points on world coordinate system are calculated by the 2
sets of two points. Differences of the inclinations are reflected to likelihood of each
particle in the distributed sensor process. And this difference of the inclinations is
adjusted into the similar value with the size of matching points in order to balance with
particle weight calculated already in SLAM process. In this study, this weight based on
the inclination is increased 10 times because it is smaller than the weight based on
matching points. The adjusted inclination weight is added to weight based on the
matching points, and the sum total is used as a final weight in SLAM process. Fig.7
shows an example of comparison of orientation. The maps of distributed sensors and
the scanned data of mobile robot are evaluated by performing this process for every
cycle of the SLAM process. Matching result is corrected on running of the mobile robot
as shown in Fig.8. The number of matching points is shown by blue points increase in
this figure. In the monitoring area of distributed sensors, the particles which match both
of the past local map by SLAM and the maps by distributed sensors will be selected as
this matching. And positions and orientations of distributed sensors are estimated
suitably.

Fig. 6. Sensing data corresponding to map by a distributed sensor

Fig. 7. Comparison of orientation

Scanned data Area map

282 F. Hashikawa, K. Morioka, and N. Ando

Fig. 8. Match correction

3 Experiment

Experiments for evaluating the proposed method are performed on the conditions
which rough positions and orientations of distributed laser range sensors are given as
initial values. The system of interactive Fast-SLAM is implemented and the experiment
of self-position estimation and map generation was conducted. As experiment envi-
ronment is showed in Fig.9, the mobile robot moved a squared course in one floor of
building of our university. A length of the course is about 100 m. Four distributed
sensors were installed at “x” marks in Fig.9. Each distributed sensor’s monitoring area
is a circle with radius 2500 mm. Mobile robot performs FastSLAM every 500 mm
moving. Interactive SLAM with distributed sensors was performed at 5 areas, since the
mobile robot can be monitored by a same distributed sensor around start and goal
positions. In this experiment, the number of particles in a particle filter of SLAM is 50,
and a grid size of maps is set to 50 mm x 50 mm. Pioneer3-DX was used as the mobile
robot. Laser range sensor UTM30-LX was installed in the robot and URG04-LXs were
distributed in the intelligent space. Although accurate initial positions and orientations
of distributed sensors were unknown, rough initial positions and orientations of dis-
tributed sensors were given in this experiment. Fig.10 shows the map generated by
usual FastSLAM only. On the other hand, Fig.11 is a map built by information sharing
with four distributed sensors with the interactive SLAM. A part of a dotted square in
Fig.10 has matching errors when the mobile robot revisited this area. However, an
accurate map is obtained in a part of a dotted square in Fig.11,

Mobile Robot SLAM Interacting with Networked Small Intelligent Sensors Distributed 283

Fig. 9. An experiment looping course

Fig. 10. FastSLAM

Fig. 11. Interactive SLAM

because the robot position and map are estimated by particles, which also matched with
the maps from the intelligent space. Fig.12-15 is results of map matching in the mea-
surement areas of four distributed sensors in the interactive SLAM. Left image in each
figure is scan data obtained in the mobile robot. Middle image is a local map generated
by mobile robot. Red points in middle image show matched points between scan data
and local map. Right image is an area map generated by the distributed sensor in each
“x” area. Blue points in right image show matched points between scan data of mobile
robot and area map.

LRF LRF LRF

LRF

284 F. Hashikawa, K. Morioka, and N. Ando

Fig. 12. Sensors matching in “LRF No.0” of Fig.11

Fig. 13. Sensors matching in “LRF No.1” of Fig.11

Fig. 14. Sensors matching in “LRF No.2” of Fig.11

Scanned data Local map Area map

Scanned data Local map Area map

Scanned data Local map Area map

Mobile Robot SLAM Interacting with Networked Small Intelligent Sensors Distributed 285

Fig. 15. Sensors matching in “LRF No.3” of Fig.11

Table 1. Each position parameter of distributed sensors

Fig.12-15 shows maps and matching result of interactive SLAM. Table.1 shows
position estimation results of distributed sensors in interactive SLAM. Measured Value
is the position of distributed sensor measured manually on world coordinates as ref-
erence positions for evaluation of estimation results. Measured values are not neces-
sarily accurate positions because it is not easy to measure sensor positions distributed
widely on unified world coordinate system. Initial Value is the given rough initial value
for each distributed sensor in interactive SLAM. Estimated Value is the final estimated
value of each distributed sensor by interactive SLAM. In Fig.12 and Fig.14, many
matching points between scan data and area map are obtained.

LRF No.0 x [mm] y [mm] θ [deg]

Measured Value -210 -3490 0

Initial Value 0 -4000 0

Estimated Value 268.47 -3479.47 -0.61

LRF No.1 x [mm] y [mm] θ [deg]

Measured Value 16290 10 0

Initial Value 15000 0 0

Estimated Value 16408.86 -224.21 -2.05

LRF No.2 x [mm] y [mm] θ [deg]

Measured Value 32865 -4990 0

Initial Value 35000 -5000 0

Estimated Value 33279.47 -5109.58 0.51

LRF No.3 x [mm] y [mm] θ [deg]

Measured Value 16290 -9990 0

Initial Value 15000 -10000 0

Estimated Value 13813.53 -9487.64 0.96

Scanned data Local map Area map

286 F. Hashikawa, K. Morioka, and N. Ando

On the other hand, in Fig.13 and Fig.15, matching points are obtained slightly.
Considering Fig.12-15 and Table1, this reason is that there are a few landmarks in the
monitoring area of distributed sensor in Fig.13. In Fig15, the reason is that estimation
of distributed sensor’s orientation differed from scan data of mobile robot. Quantitative
accuracy of Estimated Values cannot be explained enough in only Table.1. However,
the generated map in Fig.11 show good loop closure in revisiting area. This accurate
map generation means that Estimated Values are appropriate values on world coordi-
nate system. These experimental results show that positions and orientations of the
distributed sensors are updated to actual values according to robot movement simul-
taneously with accurate map building.

4 Conclusion

In this paper, it was shown that it is effective in improving the accuracy of SLAM by
using information of distributed laser range sensors in intelligent space in the SLAM
problem. This paper also described a possibility that the proposed SLAM is utilizable to
estimating positions and orientations of distributed sensors in intelligent space.

When initial positions of distributed sensors are set out of their monitoring ranges,
accurate positions of distributed sensors cannot be estimated by the current version of
the proposed interactive SLAM algorithm. That means there are restrictions for initial
position setting. As future works, the proposed algorithm should be improved for
accepting flexible initial positions.

References

[1] Lee, J.-H., Hashimoto, H.: Intelligent Space - concept and contents. Advanced Robot-
ics 16(3), 265–280 (2002)

[2] Thrun, S., et al.: Probabilistic Robotics, pp. 1–483. MIT Press (2007)
[3] Morioka, K., et al.: Human-following mobile robot in a distributed intelligent sensor net-

work. IEEE Trans. on Industrial Electronics 51(1), 229–237 (2004)
[4] Kuroiwa, S., Morioka, K.: Development of Easy Camera Calibration Tool under Unified

World Coordinate System Using Online Three-dimensional Reconstruction. In: Proc. of the
17th International Symposium on Artificial Life and Robotics, pp. 1179–1182 (2012)

[5] Haehnel, D., et al.: A highly efficient FastSLAM algorithm for generating cyclic maps of
large-scale environments from raw laser range measurements. In: Proc. of IROS, pp. 1–6
(2003)

[6] Stachniss, C., Hähnel, D., Burgard, W.: Exploration with Active Loop-Closing for
FastSLAM, pp. 1–6 (2004)

[7] Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by matching 2D Range
Scans. Journal of Intelligent and Robotic Systems 18, 249–275 (1997)

Computing 2D Robot Workspace

in Parallel with CUDA

Paul Kilgo, Brandon Dixon, and Monica Anderson

Department of Computer Science, The University of Alabama, Tuscaloosa, AL 35487

Abstract. Workspace analysis is one of the most essential problems in
robotics, but also has the possibility of being very tricky in complex
cases. As the number of degrees of freedom increases, the complexity
of the problem grows exponentially in some solutions. One possibility is
to develop solutions which approximate the workspace for speedup, but
this paper explores the possibility of using graphical processing units to
parallelize and speed up a forward kinematics-based solution. Particular
real-time applications are discussed. It presents a formal analysis of a
simple 2D problem, a solution, and the results of an experiment using
the solution.

1 Introduction

A common type of robot in industry is a manipulator robot, or more colloquially
a robotic arm. This type of robot is secured to a base of some sort and has one or
more segments, and eventually attaches to a tool. They are used in all kinds of
applications, such as applying paint to a car, welding, and are a popular starting
point for teaching robotics.

Manipulator robots are affixed to some base. The tool, gripper, or manipu-
lator located at the end of the arm is referred to generally as an end effector.
Therefore, the workspace of a robot is the set of all points the end effector
may reach for a given base. Computing the workspace for a given robotic arm,
abstractly referred to as a kinematic chain, is called workspace analysis. An
example workspace is shown in Fig. 1. A more complete review of manipulator
kinematics is available in most robotics textbooks, or the textbook by Craig [5].

Normally workspace analysis is a static type of analysis that needs to be com-
puted once and remembered, therefore timing is not really an issue. However,
there are some cases in which the kinematic chain is not static. For instance, the
workspace will change anytime an characteristic of the kinematic chain changes.
So in cases where the robot is being designed, it could be useful to the de-
signer to quickly compute the workspace to verify incremental changes. As well,
self-reconfigurable robots are robots whose kinematic chain is not static, either
modifiable during run-time or in between run-times. In this case, the workspace
would need to be computed at run-time (given that the robot can know or de-
tect its kinematic chain). This could also present an interesting application in
the case where the robot link is damaged. If a particular link of the robot is

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 287–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 P. Kilgo, B. Dixon, and M. Anderson

Fig. 1. Illustration of a simple workspace

damage, the damaged could be modeled by an adjustment to the link parame-
ters and the workspace recomputed. This would complicated collision detection
algorithms, and sensors for detecting and measuring such damages would need
to exist.

1.1 Applications

There are many reasons to perform a workspace analysis. It can be used as an
aid to place the robots in a factory floor to avoid collision. It is used in path
planning to avoid any sensed obstacles. As well, it can be used to know if a
provided target is reachable at all.

A first thought for specific application could be a robot CAD program. Such
software is likely to have a workspace analysis feature present. If a designer makes
a change to the robot’s design, there is a good possibility such a change will
alter the workspace. At that, changes in such applications are incremental and
next future additions rely on some sort of feedback from the design application,
such as the updated workspace. Therefore, the designer’s productivity may be
bottlenecked by the speed of the workspace analysis algorithm. Software for
design work are typically deployed on systems with high end graphics cards which
are more likely to be CUDA-enabled. Workspace analysis algorithms present in
these CAD programs may benefit from parallelization at the payoff of increased
user satisfaction for quicker results in incremental changes applied to a robot’s
design.

The researchers in [7] use workspace analysis as a step in their self-righting
algorithm. This particular application is interesting since if a robot is not in
a state which it can drive it could be due to some sort of damage from the
environment. In this case, the workspace can not be assumed to be static may

Computing 2D Robot Workspace in Parallel with CUDA 289

need to be recomputed. As well, this task could be time-sensitive either due to
mission parameters or environmental danger. Therefore, this application might
benefit from a speedup of workspace analysis.

2 Related Work

Workspace analysis is a fairly well-studied problem within the realm of robotics
and particularly the literature focuses on new methods and algorithms. The
researchers in [4] employ a probabilistic method to choose elements of the joint
space and apply forward kinematics to compute the position of the end effector.
They then employ methods of generating a boundary curve from the resulting
point cloud. This is done for both 2D and 3D workspaces.

The method used in [3] instead relies on inverse kinematics. The algorithm
described iterates over various test points and solves the inverse kinematics equa-
tions and ensures no constraints were violated. This method ensures that one
will not waste time on computing the same point inside the workspace twice.

An analytical method of solving for the workspace boundary is presented in
[6]. In particular, it deals with solving for the singularities associated with a par-
ticular robot, determining which of these singularities is a boundary singularity
and incorporating them into the solution.

The researchers in [2] present a novel bottom-up method of solving the
workspace problem which facilitates reuse of previous solutions. Reuse of so-
lutions while helpful in serial implementations tends to be offsetting for parallel
solutions. This particular solution may benefit from parallel solution for large
values of ψ as parts of the algorithm could be done in a single parallel step rather
than iteratively.

The particular method employed in solving for the robot workspace is not
important, as one may be preferable over another for a given application. All
may benefit from parallelization with similar speedup if possible.

Interestingly, there is little in the literature relating to CUDA kinematics
solutions or even parallel solutions in general. The work in [1] presents a parallel,
CUDA-based, genetic algorithm for solving the inverse kinematics problem with
promising results. However workspace analysis remains particularly unstudied.
Such an inverse kinematics implementation may aid in the speedup of workspace
analysis.

3 Approach

The segments which make up the robotic arm are called links. Any two links may
be connected together by a joint, which is some sort of topological constraint we
impose between them. For 2D workspace analysis we define � to be the length
of the link and θ to be the angular deviation between a child and parent link.
This is illustrated in Fig. 2.

A joint simply constrains one or more degrees of freedom. There are many
theoretical possibilities for a joint, but the two most basic joints are hinge

290 P. Kilgo, B. Dixon, and M. Anderson

Fig. 2. Illustration of robotic arm parameters

joints, which allow θ to vary but hold � fixed. Conversely, prismatic joints
allow � to vary but hold θ fixed. Each of these parameters is constrained by an
upper and lower bound.

The base link is normally assumed to be the origin of the workspace. Therefore
to compute the position of the end effector it is just a matter of computing a
linear combination of trigonometric functions. A recurrence equation for the
position of the tip of the nth link is given by Eq. 1:

(xn, yn) =(xn−1 + �n cos θn,

yn−1 + �n sin θn) for n ≥ 1

(x0, y0) =(0, 0)

(1)

A point should not be considered a part of the workspace if no safe solution
exists, where by safe it is meant there is no collision with any obstacles. We
therefore need to check solutions for collisions with obstacles. Figure 3.

Fig. 3. Illustration of a safe and unsafe solution

Obstacles will be modeled as circles at some center (H,K) with radius R. For
a geometric analogy, links may be thought of as a line segment. The circle-line
intersection problem is well-known [9,11].

4 Solution

The problem is now formally defined, so a formal method to solve it may be
given. The input to the solution is L links each with five parameters: type, static

Computing 2D Robot Workspace in Parallel with CUDA 291

length (�), static angular deviation (θ), upper bound, and lower bound. A second
input is O objects with three parameters: center (H , K) and radius (R).

We then must define �n as a function of the upper bound (un), the lower
bound (ln), and the state identifier 0 < i < N − 1, which we do by a simple
linear interpolation. This is given in Eq. 2:

�n =

{
ln + (un − ln)

i
N−1 if joint n is prismatic,

� otherwise
(2)

We have a similar definition for θn:

θn =

{
ln + (un − ln)

i
N−1 if joint n is a hinge,

θ otherwise
(3)

The general approach for calculating the workspace is as follows:

1. Start with L links and their parameters, O obstacles, and the number of
discrete states to evaluate at each joint, N .

2. For each possible 0 < i < N at each possible joint 0 < j < L, compute �j
and θj .

3. Compute the location of the end effector for all possible combinations of
joint states.

4. For each state, mark the position (xL−1, yL−1) as unsafe if there exists a
0 < k <= L such that the line segments defined by (xk, yk) and (xk−1, yk−1)
intersect any of the O obstacles.

The complexity of the problem is θ(OLNL).
The presented problem is highly parallelizable. The end effector’s position at

each possible state is wholly independent of all other computations. Therefore,
it seems tractable to exhaustively compute each position by way of brute force.
The above was implemented in CUDA C, with an output being a heat map.

A good standard benchmark for this problem is the three-link, three prismatic
joint robot arm. It is an appropriate 2D analog to a common configuration in 3D
robots, as well the workspace is well-known. An example of the solution output
is shown in Fig. 4 as a heat map..

4.1 Optimizations

The array that contains the obstacle and link parameters are read multiple
times between all the threads. Therefore, it is an obvious optimization that
those parameters could be placed into shared memory. The array will be read
sequentially by each thread in operation in the same order, so threads of the same
warp will benefit in that the GPU can broadcast the memory at that location
simultaneously to all of them. This optimization is implemented.

Another possible optimization is to stray away from operations which are
computationally expensive. In particular, the code which detects collisions with
obstacles involves solving the quadratic equation and therefore computing a

292 P. Kilgo, B. Dixon, and M. Anderson

Fig. 4. Example solution output

square root. Unfortunately, there does not seem to be a way to avoid computing
this square root as it carries in one form or another when rewriting the equation.
Thus, it might be best to switch to a different algorithm for detecting collisions,
or to approximate or assume something which allows us to avoid it. For instance,
it might be better to iteratively check some N points along the line segment and
see if they are contained in a circle as this can be done without computing square
roots. This optimization is not implemented, and may not be worth pursuing as
it only saves 50ms of compute time in the most longest-running test case.

Similarly, we may wish to avoid calls to cos and sin for the same reason
(though a GPU ought to be well-optimized for these operations). Nonetheless, it
is very safe to use approximations in workspace analysis because when there is
no closed-form way of determining the solution it must be computed iteratively.
A possible way to avoid the use of sin and cos might be to precompute for
several values between 0 and π and store these in shared memory. We could
then interpolate to an approximation with hopefully tolerable error. This could
end up to be too much work for little or no payoff.

More work could be done in parallel. Between each segment on the kinematic
chain, detecting a collision between a segment and an obstacle is independent
from the results of any other segment in the chain. Therefore, this could be done
in a parallel step.

Finally, the heat map itself could be computed in shared memory. This is
similar to the histogram problem. Each thread needs to add some information
to the heat map once. Currently, this is done in global memory. It may be possible
to speed this up by computing the heat map in shared memory. However the
speedup may not be worth it as it is rather unpredictable where the thread will
need to write and will almost certainly lead to bank conflicts. This optimization
was not implemented.

Computing 2D Robot Workspace in Parallel with CUDA 293

5 Experiment

To test the efficacy of the parallel solution against the single-threaded solution,
an experiment was designed. Five different robotic configurations were created
and the parallel and single-threaded solutions were timed using the CUDA timer
library. Two separate parallel solutions were analyzed: one using shared memory
and another which does not. The specifications of the hardware may be seen in
Table 1. The data obtained is shown in Table 2. Each of the shown times is aver-
aged over 30 trials. The shown speedup is the ratio of CPU time to GPU+SHM
time.

Table 1. Specs of hardware involved in experiment

Property GPU CPU

Name Quadro FX 570 Core 2 Duo E6550

Core clock MHz 460 MHz 2.33 GHz

Memory clock 400 MHz 667MHz

Memory size 256 MiB 2 GiB

Memory speed 12.8 GiB/s N/A

Cores used 16 1

Table 2. Data obtained from the experiment

No. Pr Hi L N O NL GPU (ms) GPU+SHM (ms) CPU (ms) Speedup

1 0 10 10 5 3 9765625 5807.39 1780.75 34196.00 19.20

2 1 1 2 2000 2 4000000 424.76 182.286 2519.52 13.82

3 1 1 2 1000 2 1000000 108.52 43.4624 632.89 14.56

4 0 3 3 100 3 1000000 220.56 75.6715 1143.11 15.10

5 1 0 1 1000 2 1000 0.09 0.0518283 1.04 20.06

Also of interest is how well the problem scales with respect to problem size.
The CUDA solution will assign a thread to each possible entry in the discretized
joint space. Therefore, the number of obstacles O should not have an effect on
the number of threads launched. Therefore,N and L should be varied to examine
the effect on average computation time. A similar experiment was designed as
before. In one case (Fig. 5) L is varied with the constraint held that N = 5. In
the other case (Fig. 6) N is varied with the constraint L = 3.

6 Analysis

The high parallelizability of the problem manifests in small and large test cases.
The large speedup was unexpected with the addition of a shared memory. The
20X speedup could be due to some sort of memory bandwidth bottleneck in the

294 P. Kilgo, B. Dixon, and M. Anderson

Fig. 5. The plotted relationship between average computation time and number of
links (L)

Fig. 6. The plotted relationship between average computation time and discretized
joint space fidelity (N)

CPU solution, perhaps due to throttling from the operating system. Though
it is more interesting that tests 2 and 3 fell below the normal 16X speedup.
This could be due to a syncthreads() call taking a more significant hit to

Computing 2D Robot Workspace in Parallel with CUDA 295

the performance for shorter-running trials. It is clear that a parallel solution
outperforms a single-threaded solution. This confirms the high paralellizability
of the problem.

Putting aside the performance data, we should evaluate the quality of the
solution given. For discussion we shall explore in particular Fig. 4. With a closer
inspection of the heat map one can easily see there are irregularities in perceived
contiguous regions. For instance, black pixels litter the interior of the workspace
as well as other colors in the green regions. This sort of problem is inherent to
the approach: discretizing the joint space leads to such impurities in the result.
This solution does not employ any smoothing techniques or border calculation
in attempt to counteract this problem.

More errantly there are some red pixels within regions occupied by an obstacle.
For clarity, the color red is reserved for unsafe regions which are not occupied
by an obstacle. While still technically correct, it does raise into question the
accuracy of the solution, though it is likely attributed to a small coding error.

However, the challenge in this problem lies in the scalability of the solution.
Workspace computation increases in complexity fastest as the number of degrees
of freedom, or in this particular case the number of links, increases. Therefore,
complex kinematic chains are still a problem for a naive solution such as this.
The exponential portion of the complexity, LN , easily inflates the number of
joint configurations to check. Future methods for dealing with the exponential
scaling of the problem are discussed in the conclusion.

7 Conclusion

As evident in Fig. 5, computation time takes a sharp turn as the number of links
increases past even a modest number. This is still due to the limited number of
cores available on the GPU. As only 16 cores were present in this experiment,
only 16 threads may be scheduled at a time thereby limiting our speedup to
about a constant factor of 16.

In typical systems, the number of cores available is likely to stay at this
number. A cheaper solution would be to use a rougher approximation of the
workspace in a tradeoff to lower the computation time. This will have the most
impact when lowering either L or N . However, a modification to L corresponds
to a fundamental change in the robot configuration and is therefore not useful.
We are then forced to approximate the workspace by choosing smaller values
of N .

Disappointingly, Fig. 6 does not show quite as sharp of a reclamation of com-
putation time as N decreases. As well, decreasing the fidelity of the generated
workspace can have unwanted consequences as the N uniformly divides the joint
space into even sections. The unlucky division of these sections could lead to a
missed unsafe configuration as Fig. 7 illustrates.

One possible solution is to generate a fixed number C of joint states to select
at random. This allows the problem to scale to larger values of L and arbitrary
values of N and the complexity changes to θ(OLC). This can lead to similar

296 P. Kilgo, B. Dixon, and M. Anderson

Fig. 7. Illustration of how an improper choice of N could lead to missed unsafe config-
urations. N = 2 is not granular enough to detect the obstruction, however N = 4 is.

situations as addressed before, but C can be finely adjusted to suit the particu-
lar application or repeated iteratively as necessary, making this a more flexible
option.

However, random number generation in parallel algorithms has its own set
of problems. As pseudo-random number generators (PRNG’s) are inherently
iterative, they can pose a threat to the performance of the application as all
the threads must read and update the seed. Thus, specialized PRNG’s must be
developed for parallel applications. The interested reader may refer to [10] for
information about how this problem was solved for Mersenne Twisters.

Implementations for the uniform distribution in CUDA do exist [8,10] however
it may not be the best choice for selecting points. The particular kinematics of
a robot may cause test points to cluster in a small part of the actual workspace,
giving a warped description of the workspace. The researchers in [4] present
a study on this and suggest the adoption of the Beta distribution for their
particular goal of calculating the border of the robot workspace. Their approach
is reliant on a sufficient number of border points being chosen and they had good
results parameterizing the Beta distribution as a function of the joint limits.
Since approximations must be made, it could be a more worthy goal to calculate
the exterior of the workspace instead.

The possibility of implementing an on-line PRNG for the Beta distribution is
therefore interesting. However, the since uniform distribution well-studied and
has fast implementations for CUDA it is of most interest. One can use inverse
transform sampling to transform a uniformly distributed value into arbitrary
distributions by inverting the cumulative density function (CDF) of interest.
However, the inverse of the Beta function’s CDF does not have an analytical

Computing 2D Robot Workspace in Parallel with CUDA 297

form, so an iterative method must be employed. This could end up having a
worse performance improvement than desired in an approximation, but there is
a converging Taylor series [12] for the inverse regularized beta function which
may yield promising results.

Workspace analysis lends itself very well to computation on the GPU. This is
due to the independent nature of the solutions obtained and perhaps due to some
floating point operation optimizations present on the GPU itself. Some possible
applications which could benefit from on-line workspace analysis are presented.

A formal analysis of a simple 2D forward kinematics-based workspace analysis
approach is presented and a solution is described. A solution for the problem of
workspace analysis has been implemented in CUDA C and in some cases was
able to exceed the normal 16X speedup typical of highly parallelizable CUDA
solutions. Some other optimizations may be possible and a few ideas are given.

There are some limitations with this solution. The solution does not check for
self-interference in the links. Implementing this would have a noticeable effect on
the running time, though it could be implemented in parallel if the link endpoints
are cached. Also, links are modeled as simple line segments as opposed to rigid
bodies. The geometry of the links is essential for collision detection, though
robotic simulators will often use geometric approximations so that the collision
detection may be performed analytically.

Future work for this project might be to see how the speedup benefits from
randomly selecting a subset of joints states from the set of all possible joint
states. This would likely result in an arbitrary speedup at the cost of a rougher
approximation of the workspace. Additionally, rather than calculating the points
in the workspace, the parallelization of calculating the workspace border could
be explored. Methods for this are outlined in [4]. However, to take benefit from
this method, approximating the Beta distribution in parallel must be explored
to find the appropriate method for maximized performance.

As well, it would be interesting to apply parallelization to other types of
workspace analysis methods to measure how parallelization affects different types
of analysis algorithms, or whether or not such algorithms are parallelizable.

The orientation of the end effector could be useful in workspace analysis as
well. The described solution could be modified to support this by providing a
extra set of bounds for the kinematic boundaries of the end effector.

Finding singularities may also be an interesting problem to solve on the GPU,
as there could be interior singularities in the workspace. An effective solution
which computes boundary singularities could draw the boundaries of the robot
workspace and potentially solve the problem faster.

References

1. Aguilar, O.A., Huegel, J.C.: Inverse Kinematics Solution for Robotic Manipula-
tors Using a CUDA-Based Parallel Genetic Algorithm. In: Batyrshin, I., Sidorov,
G. (eds.) MICAI 2011, Part I. LNCS, vol. 7094, pp. 490–503. Springer, Heidelberg
(2011)

298 P. Kilgo, B. Dixon, and M. Anderson

2. Anderson-Sprecher, P., Simmons, R.: Voxel-based motion bouunding and
workspace estimation for robot manipulators. In: 2012 IEEE International Con-
ference on Robotics and Automation (ICRA), pp. 2141–2146 (May 2012)

3. Bonev, I.A., Ryu, J.: A new approach to orientation workspace analysis of 6-dof
parallel manipulators. Mechanism and Machine Theory 36(1), 15–28 (2001)

4. Cao, Y., Lu, K., Li, X., Zang, Y.: Accurate numerical methods for computing 2d
and 3d robot workspace. International Journal of Advanced Robotic Systems 8(6)
(2011)

5. Craig, J.J.: Manipulator kinematics. In: Introduction to Robotics: Mechanics and
Control, 2nd edn., pp. 69–112. Addison Wesley Longman (1955)

6. Goyal, K., Sethi, D.: An analytical method to find workspace of a robotic manip-
ulator. Journal of Mechanical Engineering 41(1) (2010)

7. Kessens, C., Smith, D., Osteen, P.: Autonomous self-righting of a generic robot on
sloped planar surfaces. In: 2012 IEEE International Conference on Robotics and
Automation (ICRA), pp. 4724–4729 (May 2012)

8. Langdon, W.B.: A fast high quality pseudo random number generator for nvidia
cuda. In: Proceedings of the 11th Annual Conference Companion on Genetic and
Evolutionary Computation Conference: Late Breaking Papers, GECCO 2009, pp.
2511–2514. ACM, New York (2009)

9. Middleditch, A.E., Stacey, T.W., Tor, S.B.: Intersection algorithms for lines and
circles. ACM Trans. Graph. 8(1), 25–40 (1988)

10. Podlozhnyuk, V.: Parallel mersenne twister. Technical report, nVidia (June 2007)
11. Weisstein, E.: Circle-line intersection. From MathWorld–A Wolfram Web

Resource, http://mathworld.wolfram.com/circle-lineintersection.html (ac-
cessed April 27, 2012)

12. Wise, M.E.: The incomplete beta function as a contour integral and a quickly
converging series for its inverse. Biometrika 37(3/4), 208–218 (1950)

http://mathworld.wolfram.com/circle-lineintersection.html

Acquisition of Object Pose from Barcode

for Robot Manipulation

Yuexing Han, Yasushi Sumi, Yoshio Matsumoto, and Noriaki Ando

Intelligent Systems Research Institute,
National Institute of Advanced Industrial Science and Technology (AIST),

AIST Tsukuba Central 2, 305-8568, Japan
{yuexing.kan,y.sumi,yoshio.matsumoto,n-ando}@aist.go.jp

http://www.aist.go.jp/

Abstract. General, robots obtain poses of target objects by matching
the images of the observed objects with data in database. However, the
process of matching images costs so long time that robot’s action be-
come slow. In order to shorten response time for robots searching target
objects, we propose a method for robots to obtain information of poses
of observed objects by calculating corner points of barcodes on the ob-
jects. Since information in a barcode is less than the one in an image, the
method can help robot rapidly obtain the information of its target ob-
jects. Furthermore, in order to reuse the method in other robot systems,
we create a RT-Component(RTC) to realize the method.

Keywords: Object pose, Barcode, RT-Middleware, RT-Component.

1 Introduction

In daily life and manufacturers, there are a lot kinds of employed robots to assist
persons and produce products automatically. Based on the environments of using
robots, robots are divided into two kinds [1]: one is used in industry which is
a well structured environment, and the kind of robots can continuously repeat
same tasks with a predesigned system including limited reactions; the other is
used in human life environments which can happen many undefined things, so the
kind of robots need a more complicated system to response various surroundings.

For robots in human life environments to understand their surroundings, many
technologies and sensors have been developed, such as using ultrasonic, infrared,
GPS, cameras, accelerometers, encoders and a lot more based on tasks of robots.
In these sensors, cameras as eyes of robots are often used. After taking images
and dealing with the images, generally matching images, robots can do many
predefined tasks. In fact, matching images or recognizing objects is one of the
most important works in robotics technologies. For example, a robust visual per-
ception system which includes cameras to obtain images from surroundings was
proposed for service robotics applications [2]. Lang et al. developed an atten-
tion system including cameras for noticing currently speaking person as interest
one [3]. In [4], developers described a technique of object recognition for a mobile

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 299–310, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.aist.go.jp/

300 Y. Han et al.

robot to deploy in a multistory building. In order to move from a floor to another
floor, a mobile robot needs to recognize various observed objects related to an
elevator.

Most methods for object recognition can be used in robotics systems. For
instance, Ozen et.al described shapes of objects with the turning angle repre-
sentation and robots can match two sets of landmarks by calculating their least
square distance, which is based on shapes of objects [7]. Belongie et al. described
an approach of matching shapes and recognizing objects with shape contexts [8].
L. He et al. proposed a robust skeleton-based graph matching method to recog-
nize objects [9], and the methods can be also used in robot technology. The scale
invariant feature transform (SIFT) [5,6] is one of famous methods to match two
images and is often applied in robotics technique for robots to find their targets.

Though these methods can be used to match two images, they may cost long
time because of complicated images, and robots have to extend work time to
achieve their tasks. For instance, vending robot searches products and matches
every product with the needed one which is commanded from customer. Before
the robot hands on the objects to guests, it needs to know the objects’ infor-
mation including positions, poses, species and shapes. If the above mentioned
methods of matching two images are used to find target product, it will cost so
long time for robots to wait until the matching of images is finished.

In order to shorten response time of robots searching target objects, we pro-
pose a method for robots to obtain information of poses of observed objects by
calculating corner points of markers on the objects. There are a lot of kinds
of markers can be selected, such as ARToolKit markers. Since our method can
help robots to control objects, especially commodities, and most commodities
are attached by barcodes which are one-dimensional code, we choice the kind of
codes in the work. With a barcode on the observed object, robot can easily to
obtain information of the object including its type and position, furthermore, its
pose with our method (see Fig. 1). The method can help robots rapidly achieve
their works in human living environments. We will firstly present the method
that obtain pose of a barcode in Sec. 2.

The proposed method is developed on OpenRTM-aist. Thus, the method can
easily be reused into many robot systems. Furthermore, the component of the
method might combine other components of image processing to help robot re-
alize more complicated works. For example, if robot searches objects without
barcodes, other components, such as SIFT or SURF component can be used to
find the objects; even, component for barcode provides the basic information
of objects, such as type, position, pose of the observed object to other compo-
nents, then the components can achieve matching objects in short time, since
the component of barcode has reduced searching range (see Fig. 2). Combining
these components of object recognition, a more perfect system might be built to
recognize objects and obtain information from the in complicated surroundings.
The RT-Component about the method will be described in Sec. 3.

Then, some examples of the method will be shown in Sec. 4. Finally, we will
give a conclusion for the paper in Sec. 5.

Acquisition of Object Pose from Barcode for Robot Manipulation 301

Fig. 1. Through observing barcodes, robot can obtain a lot of information including
object’s type, position and pose

Fig. 2. Combining many components of object recognition, a more perfect system
might be built to recognize objects and obtain information from the objects in compli-
cated surroundings

2 Obtain Object Poses from a Barcode

A barcode is an representation of data which can be read by special optical
scanners, i.e., barcode readers. It includes two sorts, i.e. 1-dimensional barcodes
which are composed of parallel lines and 2-dimensional barcodes which include
rectangles, dots, hexagons and other geometric shapes. In the paper, we mainly
discuss 1-dimensional barcodes. Barcodes were firstly used to label railroad cars.

302 Y. Han et al.

Since the beginning of the 1970s, barcodes have extensively used in supermarket
checkout systems and postal systems.

We use an open source software of barcode reader, i.e. ZBar [10], to develop
our technique. ZBar can scan many popular types of barcodes, such as, EAN-
13/UPC-A, UPC-E, EAN-8, Code 128, Code 39, Interleaved 2 of 5 and QR Code.
The library of ZBar has many programming interfaces for C++, Perl, Python.

Through these functions in the library and objects’ database, we can obtain
basic information including types, species and shapes of the observed objects.
Simultaneously, positions of object can be calculated by measuring the positions
of barcode. Then, poses of object will be obtained by calculating corner points
of the barcode for robot to control the object.

First, a barcode is taken by a camera and then is input into a robot system,
see (a) in Fig. 3. If there are many barcodes in an image simultaneously, the
barcode reader can only recognize one with ZBar. In fact, if an observed object
with barcode is scanned with ZBar, the barcode can be found by adjusting
camera’s focus and other parts are automatically ignored. The observed barcode
is marked by words and numbers as same as the number under the barcode, and
four columns of blue points nearby four lines of the barcode can be obtained.
See (b) of Fig. 3.

Fig. 3. Steps of obtaining ordering corners from a barcode

From the four sets of points on lines, two points whose distance is the longest
are obtained as shown in (c) of Fig. 3, denoted as A and B. The two points are
on the two outer blue lines, respectively, and all other points on the lines in blue
color are not considered except for the two points. Though most blue points may
not be located on the lines of the barcode as shown in Fig. 4, including A and B,
they are very close to outer lines of the barcode. In order to find the corner points
of the barcode, the two outer lines closing to A and B are ought to be obtained.

Acquisition of Object Pose from Barcode for Robot Manipulation 303

Fig. 4. Most blue points are not on the lines of the barcode

Then, the image including the barcode is transformed from color to black and
white with an adjusted threshold. Since the image is taken in nature and the
light cannot be controlled, there are many noises in the image and it is difficult
to find a fixed threshold to differentiate the entire barcode in black and other
points around lines of barcode in white. Thus, local thresholds for local parts
in the image are calculated to reduce influence of surroundings. There are two
thresholds corresponding with A and B, denoted as TA and TB, respectively.
TA is a mean value of points in the regions of A, and TB is a mean value of
points in the regions of B. Then, T is calculated with T = (TA + TB)/2 as a
entire threshold to translate the image into black and white image, see Fig. 3
(d). With the method, most barcodes can be transformed into black color and
other points into white color.

If A and B are located outside the lines of the barcode, colors of their neighbor
points are all white; conversely, if they are inside the lines of the barcode, colors
of their neighbor points are all black. If a point is on edge of the line, the colors
of its neighbor points include both black and white. For any point p, its 8 nearest
neighbor points is denoted as 1-neighbor points; then, points whose part neighbor
points are 1-neighbor points of p are denoted as 2-neighbor of p; following the
idea, we can denote points whose part neighbor points are (n−1)-neighbor points
of p but not (n − 2)-neighbor points of p as n-neighbor of p. Searching points
from 1-neighbor to n-neighbor of A and B, it is easy to find two points on the
edges of lines close to A and B, respectively, denoted as C and D. As shown in
(a) in Fig. 5, A is located out of a line and B is located inner a line, which belong
to the outer side lines of the barcode. C and D are their corresponding points
on the contours of lines, respectively. Searching contour points from C and D,
the top-left points of the two lines can be obtained, as shown in (b) of Fig. 5,
which the left direction is more important than the top direction. Finally, two
furthest points from C and D on the same lines of the barcode can be obtained
by searching the contour points, respectively, as shown in (c) of Fig. 5. Thus,
the four points as corner points of the barcode are obtained, designed as A, B,
C and D in the following content and their indexes are 0, 1, 2, 3, respectivly. A
and B are on one line, and C and D are on the other line.

The four corner points need to be arranged in clockwise direction order, i.e.
0, 1, 3, 2 in indexes. Indexes of two points on one line are 0 and 2, and the
other two are 1 and 3, respectively. A method of ordering points is possibly

304 Y. Han et al.

Fig. 5. Schematics illustration of obtaining corner points on the barcode

achieved by comparing two distances from point 0 to points 1 and 3, and the
two points whose distance is the longest are 0 and 3. The method is correct
when the barcode image is taken from perpendicularity direction. However, if
the barcode is observed at an angle degree, it may be failed. In the work, we
use cross product to obtain clockwise direction of corner points. As shown in
Fig. 6, points A(xA, yA) and B(xB , yB) are on a line of the barcode; C(xC , yC)
and D(xD, yD) are on another line of the barcode. It is supposed that index of
A is 0 and index of B is 2. Then, the direction distance is given by

Fig. 6. Use cross product to obtain order of clockwise direction of corner points

Direction = ((xD − xA)(yB − yA)− (yD − yA)(xB − xA))

((xD − xA)(yC − yA)− (yD − yA)(xC − xA)) , (1)

if Direction < 0, the direction of the cross product of ADB is different from one
of ADC, as shown (a) and (b) in Fig. 6, and index of D is 3 and index of C is
1; otherwise, if Direction > 0, i.e., their directions are same, as shown as (c) and
(d) in Fig. 6, index of C is 3 and index of D is 1. Thus, the order of the corner
points is realigned, and new clockwise points are denoted as A′, B′, D′ and C′,
which A′ and C′ is on one line of the barcode, and B′ and D′ is on another line
of the barcode.

Then, we need to find the point which is left-top corner point and denote
it as the first point. The left-top corner point can be confirmed by considering
intersection among the numbers under barcode and two lines about A′, C′, B′

and D′. The formulas are given by

P1 = ξPA′PC′ P2 = ξPB′PD′ , (2)

Acquisition of Object Pose from Barcode for Robot Manipulation 305

where PA′ , PB′ , PC′ and PD′ present points A′, B′, C′ and D′, respectively; ξ
is a parameter to control detection of the extending lines and extending length,
predefined as 0.075 < |ξ| < 0.15 in the work; P1 and P2 are two extending points.
If line P1P2 intersects the numbers and ξ > 0, A′ is the left-top point; otherwise,
if line P1P2 intersects the numbers and ξ < 0, D′ is the left-top point, and
its index is changed to 0 and indexes of other points are changed accordingly.
An example is shown in (e) of Fig. 3. When P1P2 always intersects some black
points whether ξ is greater than 0 or not, length between intersecting points is
calculated to search the positions of the numbers. The line between two points
with the longest length is considered to intersect the number. Thus, the corner
points in order are obtained, shown in (f) of Fig. 3, which the first corner point
is one end point of green line segment.

The proposed method can be used for a barcode on a plane surface. When a
barcode is printed on a curved surface, there are two failed situations: first, if the
curvature of the curve surface is observed too big and only part of the barcode
is observed, it may be failed to find the four corner points with our method;
second, P1P2 may be intersected by other shapes but not the numbers. Thus, in
the work, the barcode is considered on a plane surface or a curve surface with
small curvature.

After ordered the corner points, one-to-one relationship between two sets of
corner points of two barcodes can be obtained, which one is recoded in image
coordinates and the other is recoded in real-world coordinates. Then, extrinsic
parameter of translation data (X , Y , Z) and rotation angle (roll, pitch, yaw)
between image data and the data in the world coordinate can be calculated if
camera calibration is obtained [11]. In this work, we use the image processing
library OpenCV [12] to obtain the camera calibration and calculate the extrinsic
parameter. Thus, all points on the observed objects can be obtained from relative
points on images with

s·m = A· [R|t]·M , (3)

where s is scale factor;m is two-dimensional point; A is camera intrinsic parame-
ter; [R|t] is extrinsic parameter including translation data (X , Y , Z) and rotation
angle (roll, pitch, yaw); M is three-dimensional point. Furthermore, robot can
use the output data to control the observed objects with the barcodes.

3 RT-Component of Obtaining Pose of Barcode

3.1 RT-Middleware and OpenRTM-Aist

RT-Middleware (Robot Technology Middleware) developed by AIST (Advanced
Industrial Science and Technology) is a common platform standard to operate
robots with the distributed object technology [13,14]. Generally, robot technol-
ogy is applied not only for robots in factory environments, but also in human en-
vironments. With RT-Middleware, a common platform can be established based

306 Y. Han et al.

on distributed object technology that supports the construction of various net-
worked robotic systems with the integration of RT-Components which are var-
ious network enabled robotic elements. Modularization of RT-Components and
RT-Middleware can raise the efficiency of robotic study and development, and
furthermore, the RT target field can be expanded and a new robot market can
be made. In any RT-Components, there are some parts including a main body
which is activated as the main process unit and a few of input ports (InPort)
and output ports (OutPort) which are data stream ports as interfaces.

OpenRTM-aist which have been developed and distributed by AIST is an im-
plementation of the RT-Middleware interface specification and RT-Component
object model. OpenRTM-aist is used to developed components of RT and run
the components with a development frame work, manager and a set of tools.
Since RT-Components made by OpenRTM-aist use same communication proto-
col, partial components can be replaced by new components without effecting
other components working in the same system. Furthermore, the components
can be reused in another robot system and so can reduce researching time.

3.2 Component of Obtaining Pose of Barcode

In this work, we use OpenRTM-aist to realize the components, including three
parts, as shown in Fig. 7: one is the CLUEReader component which evaluates
pose of a barcode with the mentioned method in above section; another is the
Imager component which provides images from camera; the other is the ObjectId-
Provider component that is used to obtain data from barcode database. Imager
component and ObjectIdProvider were developed by other robot developers.

Fig. 7. Components in our reading barcode system

The CLUEReader component has four ports which include two input ports
obtained different data from images, a service consumer which obtains infor-
mation from database of marks that is barcode here, and an output port which
provides information of barcodes. According to the CLUEReader component de-
sign, the data through output port, i.e. OutPort, is as follows: translation data
(X , Y , Z) and rotation angle (roll, pitch, yaw).

Acquisition of Object Pose from Barcode for Robot Manipulation 307

4 Evaluation Experiment

Several experiments are described in this section to show how the components
work, with two species of barcodes at different poses. The camera to be calibrated
is a 25-mm lens to obtain a clear image, the resolution of which is 640*480. With
the OpenCV functions, the camera calibration and extrinsic parameter which is
used to calculate the relative relation between the image coordinates and real-
world coordinates can be obtained. Translation data and rotation angle data are
calculated based upon four corner points of a barcode. Size of a used barcode
is measured in advance in order to calculate right positions of corner points on
screen, since different barcode has different size.

With the OpenRTM-aist software, there are some windows shown on screen,
including the OpenRTM window, windows about components of Imager, Ob-
jectIdProvider and CLUEReader. Some windows including our work are shown
on screen, and other windows are hided. Information of the observed barcode is
recoded under Location in the window of output data. The first three columns
are rotation angle data (roll, pitch, yaw), and the last column is translation
data (X , Y , Z).

The barcodes in Fig. 8 and Fig. 9 are same but observed at different angles.
The green line is extended from the first corner point, and the three red lines are
extended from the other three corner points. Their directions show the barcode’s
pose direction, and furthermore, present the object’s pose direction. Fig. 10 is

Fig. 8. The left-top window shows output data; the right-top window shows the system
including the components; and in the bottom window, four lines are drawn to describe
position, direction, and pose of the barcode

308 Y. Han et al.

Fig. 9. Barcode is as same as one in Fig. 8, which is different position, pose, and
observed angle

Fig. 10. Another barcode is different from ones in Fig. 8 and Fig. 9

Acquisition of Object Pose from Barcode for Robot Manipulation 309

another kind of barcode, and the result is similar as Fig. 8 and Fig. 9. These
examples are all real-time, and the average time of calculating a pose is about
0.0474 second.

5 Conclusion

In the paper, we proposed a method for robot to obtain poses of observed objects.
The method is achieved by finding corner points of barcodes on the observed
objects and calculating their order. Finally, we use OpenRTM-aist to create a
corresponding component for the method. The method can help robot rapidly
obtain the information of its target objects since the information in a barcode is
less than the one in an image. The component system is easily applied to other
existing robot systems based on RT-middleware implementation. Furthermore,
developers can easily add new components into the system to achieve themselves
robot systems since all RT-middleware components are independent from others.

Acknowledgment. This work is supported by NEDO (New Energy and In-
dustrial Technology Development. Organization, Japan) Intelligent RT Software
Project.

References

1. Ohara, K., Sugawara, T., Lee, J.H., Tomizawa, T., Do, H.M., Liang, X., Kim,
Y.S., Kim, B.K., Sumi, Y., Tanikawa, T., Onda, H., Ohba, K.: Visual Mark for
Robot Manipulation and Its RT-Middleware Component. Advanced Robotics 22(6-
7), 633–655 (2008)

2. Grigorescu, S.M., Macesanu, G., Cocias, T.T., Puiu, D., Moldoveanu, F.: Visual
Robust camera pose and scene structure analysis for service robotics. Robotics and
Autonomous Systems 59, 899–909 (2011)

3. Lang, S., Kleinehagenbrock, M., Hohenner, S., Fritsch, J., Fink, G., Sagerer, G.:
Providing the basis for human-robot-interaction: A multi-modal attention system
for a mobile robot. In: Proceedings of IEEE International Conference on Multi-
modal Interfaces, pp. 28–35 (2003)

4. An, S.Y., Kang, J.G., Choi, W.S., Oh, S.Y.: A neural network based retrainable
framework for robust object recognition with application to mobile robotics. Appl.
Intell. 35, 190–210 (2011)

5. Lowe, D.G.: Object recognition from local scale-invariant features. In International
Conference on Computer Vision (ICCV), Corfu, Greece, pp. 1150–1157 (1999)

6. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Interna-
tional Journal of Computer Vision (IJCV) 60(2), 91–110 (2004)

7. Ozen, S., Bouganis, A., Shanahan, M.: A fast evaluation criterion for the recogni-
tion of occluded shapes. Robotics and Autonomous Systems 55, 741–749 (2007)

8. Belongie, S., Melik, J., Puzicha, J.: Shape Matching and Object Recognition Us-
ing Shape Contexts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24(24), 509–522 (2002)

9. He, L., Han, C.Y., Everding, B., Wee, W.G.: Graph matching for object recognition
and recovery. Pattern Recognition 37(7), 1557–1560 (2004)

310 Y. Han et al.

10. ZBar bar code reader, http://zbar.sourceforge.net/
11. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern

Anal. Mach. Intell. 22, 1330–1334 (2000)
12. OpenCV, http://opencv.willowgarage.com
13. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Yoon, W.: RT-Middleware: Dis-

tributed Component Middleware for RT (Robot Technology). In: 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS 2005), pp.
3555–3560 (August 2005)

14. Ando, N., Suehiro, T., Kotoku, T.: A Software Platform for Component Based
RT-System Development: OpenRTM-Aist. In: Carpin, S., Noda, I., Pagello, E.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp.
87–98. Springer, Heidelberg (2008)

http://zbar.sourceforge.net/
http://opencv.willowgarage.com

WorkCellSimulator: A 3D Simulator

for Intelligent Manufacturing

Stefano Tonello1, Guido Piero Zanetti1, Matteo Finotto1,
Roberto Bortoletto2, Elisa Tosello2, and Emanuele Menegatti2

1 IT+Robotics srl
Contra’ Valmerlara 21, Vicenza, Italy

{stefano.tonello,piero.zanetti,matteo.finotto}@it-robotics.it
2 Intelligent Autonomous Systems Laboratory
Department of Information Engineering (DEI)

University of Padua, Italy
{bortolet,toselloe,emg}@dei.unipd.it

Abstract. This paper presents WorkCellSimulator, a software platform
that allows to manage an environment for the simulation of robot tasks. It
uses the most advanced artificial intelligence algorithms in order to define
the production process, by controlling one or more robot manipulators
and machineries present in the work cell. The main goal of this software
is to assist the user in defining customized production processes which
involve specific automated cells. It has been developed by IT+Robotics,
a spin-off company of the University of Padua, founded in 2005 from
the collaboration between young researchers in the field of Robotics and
a group of professors from the Department of Information Engineering,
University of Padua.

Keywords: Simulator, Manufacturing, Industrial Robotics, Off-line Robot
Programming Tools.

1 Introduction

Simulation has a long-standing tradition in robotics by providing a useful tool
for testing ideas on a virtual robot in a virtual setting before trying it on a
real robot in a real environment. If a few years ago, simulation was mainly used
in specific sub-communities like swarm robotics and robot learning, in the last
decade, simulation in robotics is getting more attention again thanks to the
computation power of computers which has been increasing significantly making
now possible to run computationally intensive algorithms on Personal Computers
(PC) instead of special purpose hardware. In this evolution, particular attention
should be paid to the role that simulation tools play in the industrial robotics
area. In the last twenty years these instruments are becoming more and more
diffused thanks to their capability of improving manufacturing quality, accuracy
and profitability. In fact, searching for the actions which optimize the process
directly on the real robot implies loss of time and money: simulation does not

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 311–322, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

312 S. Tonello et al.

degrade or damage the machinery (saving of money) and lets the robot to be
used in other processes during the off-line programming (saving of time). Simu-
lation results are optimal collision-free paths to be performed by the robot in the
real world with consequent increase of productivity and decrease of maintence
costs of the plant. A study conduced by The Electrical Power Research Institute
(EPRI) estimates a payback of about three months. The saving are attribuited
to reduced training costs, costs caused by environmental excursions, damage to
equipment and improved plant availability [1]. An example can be the bending
process of metal sheets: this process is often carried out automatically through
work cells in which there are robot manipulators, pressbrakes, and other ma-
chines useful for this purpose. In order to obtain a metal sheet folded as desired
is necessary to properly program the robots and the other machines. This is
an expensive process both in terms of time and programming errors which can
bring the machinery to collide with other system components, causing damage
to them. In order to solve these problems, the authors propose a robot simula-
tor software, called WorkCellSimulator, that allows to manage an environment
for manufacturing tasks. Despite of most existing robot simulators, which func-
tions are difficult to change to achieve the various requirements robot users have
(as it is similary explained in [2]), the software presented was created with the
primary aim of helping the user through the planning of bending process of
metal sheets, but then, as we shall see later, it was extended and nowadays it
is currently employed in many different fields: similarly to Robcad [3], it fully
integrates core technologies and a powerful set of process-specific applications
addressing a wide range of manufacturing processes including spot welding, arc
welding, laser and water-jet cutting, painting and spraying, and material han-
dling. At the same time, it supports the simulation of many types of robots.
In this sense it differs from the major industrial robotics simulator, such that
developed by KUKA, ABB or Fanuc [4–6], which are fully dedicated to a specific
robotic manipulator. In detail, WorkCellSimulator has been developed by using
the most advanced artificial intelligent algorithms, and motion and task planning
approaches used to automatically generate the free obstacles trajectories, which
optimize a given objective function (execution time, effort on the part, etc.) [7–
10]. Moreover, its architecture allows the definition of algorithms for advanced
task planning, such as for generating the optimal folding sequence in metal sheet
bending process [11]. This features give the product easy-to-customize capabili-
ties. WorkCellSimulator has been developed by IT+Robotics1, a spin-off com-
pany of the University of Padua, founded in 2005 from the collaboration between
young researchers in the field of Robotics and professors from the Department of
Information Engineering, University of Padua. The mission of IT+Robotics is to
increase the flexibility of industrial processes by transforming the latest results
of the academic research into industrial solutions. IT+Robotics products aim
at autonomy. After deploying IT+Robotics’ products the need for human inter-
vention is reduced and, in several cases, altogether eliminated. This is achieved
exploiting: machine vision systems, robot motion planning algorithms and arti-

1 http://www.it-robotics.it/

http://www.it-robotics.it/

WorkCellSimulator 313

ficial intelligence techniques, which were an exclusive asset of academic research
up to now.

This paper is structured as follows. In Section 2, some use cases are described.
In Section 3, an introduction to the software architecture is provided with a
detailed description of the functionalities. In Section 4, the main areas of ap-
plication in which the WorkCellSimulator has been used are presented. Finally,
in Section 5, a brief discussion about the possible future development closes the
paper.

2 Use Cases

After an analysis of the requirements that a simulation-oriented application
should have and the exam of the manufacturing processes, the main use cases
has been extracted in order to design an appropriate software architecture. The
studies performed have identified two major workflows: design of a work cell ,
and simulation of the process. During the work cell design, the user must
be able to import 3D models of components or portions thereof, and to provide
all the collateral information necessary for a complete definition of the compo-
nent. The collection of this information depends on the type of object (e.g. for
the robot manipulator will be must specify the configuration of the joints, their
constraints and dynamic parameters). The result of this process is the creation
of a library of components, which will be used for the design of the work cell. In
fact, the objective of the design of the work cell is the positioning of the com-
ponents in such a way that faithfully reflects the real plant. To this end a set of
calibration tools has been made available to the user. After the creation of the
work cell, the user can assess whether it fulfill final user requirements. E.g., the
assessment can include verification of robot reachability of main components,
suitability of robot grasping tecnology or evaluation of cycle time. The created
work cell will be used for the simulation of the process. Within the simulation,
the customer interacts with the software in order to define all stages of the pro-
cess. Considering as example the metal sheet bending process, the first step is
the definition of the product bend, using 2D or 3D CAD data. Once the process
targed has been defined, the design of the bending process begins. The process
of bending is composed of the following phases:

– Loading the piece. The robot manipulator, after checking the actual pres-
ence, takes the piece from the loader;

– Alignment of the piece. The robot places the part inside of the aligner,
then takes it again. The aim of this step is to determine the position of the
piece as correctly and repeatable as possible;

– Execution of the fold. For each bend to be made, the phases are the
following:
• Selection machine tooling . The user, based on the fold to be made,
selects the press brake tool station;

• Overturning . In the event that the product is not currently taken by
the robot from the correct side for the next bend to be made, the robot
carries the piece in a overturner, and then takes it in the opposite side;

314 S. Tonello et al.

• Positioning in press brake . The piece is brought into the press brake
by the robot. In this phase, the piece is better aligned using feedback
from the press brake’s back gauges;

• Folding . The press brake does the fold of the piece. At this stage the
robot can be inactive, or it can follows the movement of the piece during
the bending;

• Takes the parts. The robot takes the part if it has been inactive in the
previous step, and then leads the product in a safe position outside the
area of the press;

– Palletizing. After being folded, the product is placed inside the pallet. The
arrangement layout within the pallet can be configured by the user.

After the simulation, the results obtained are used by a post-processor with the
goal of generating the robot program corresponding to the simulated process.
The obtained program will be loaded into the robot for the real execution, possi-
bly after having been manually modified by the user. Although the two streams
of work are the most frequently sequential, they should be made iterative, e.g.
in order to further configure the work cell during the simulation of the bending
process.

From the previous discussion, the following actors have been identified:

– Components Builder. The user designs the components present in the
simulation. The components are placed in libraries to be used within the
work cells;

– Workcell Builder. The user uses components developed by the Component
Builder to define the work cell layout;

– Product designers. The user defines the product.

– Simulation User. The user performs off-line programming of the work
cell, defining in detail all the movements that the robot has to perform
and the signals that are exchanged between the machineries. This actor has
deepest knowledge of the problem domain, and therefore it is able to exactly
determine the best necessary operations.

– Robot Programmer. The information given to the simulation for the pro-
cess are used by the post-processor to generate the robot code.

The main use cases are identified:

– 3D Rendering. It allows viewing of the scene by the end user;

– Design of the components. The Component Builder interacts with the
software to define the various components used in the work cell;

– Design of the work cell. Workcell Builder uses components created by
Component Builder to define the work cell;

– Product design. The product designer interacts with the software to define
the product itself.

– Performing simulations. The Simulation User manages a simulation run
within the work cell;

WorkCellSimulator 315

– Design of the process. The Simulation User interacts with the software
to define the process. A scripting engine has been introduced in order to
provide to the end-user a customization of the behavior of the simulator up
to the minimum detail;

– Robot code generation. The software uses the simulation results in order
to generate the robot code. The generated code may be changed manually
by the robot programmer and finally sent to the robot for the real execution
of the simulation.

The result of this study phase was a set of useful information for the next
step: the design and development of a software architecture that was able to
manage the use cases and the main actors described above, but that was also
flexible and reusable in other industrial situations.

3 Architecture

The software architecture of WorkCellSimulator (WCS) can be divided in two
macro blocks (as shown in figure 1):

– WCS Core. It contains the modules which implement the basic function-
ality for the simulation.

– WCS Applications. It contains the modules and the applications which
compose the WorkcellSimulator suite.

While WCS Applications use the modules contained in WCS Core, WCS Core
can be considered completely independent from WCS Applications itself.

In the following section the two macro blocks are separatelly described. Later,
it will be shown how to verticalize application behavior through the development
of plug-in modules.

3.1 WCS Core

WCS Core contains the following features:

– Management of 3D and 2D geometric models, using Modelling Engine based
on OpenCasCade open-source library [12];

– Manages the rendering of the scene, using the Rendering Engine module.
The rendering engine is based on OpenSceneGraph [13];

– Management of collisions, using internally developed high performance Col-
lision Engine module;

– Verticalisation of the functionality provided by the rendering and collision
modules for the simulated work cell, through the World Manager module;

– Management of the kinematic chains and their simulation using the Numer-
ical Kernel module. This is the main component: it manages the kinematics,
the trajectories and also contains the motion planning engine;

– Management of the graphical interface and communication between different
components, using the Application Framework module.

316 S. Tonello et al.

Fig. 1. A schematic view of the software architecture

The modules contained in WCS Core comprise three libraries:

– C++ Library for the management of low-level logical and numerical algo-
rithms;

– C++/CLI Library for the management of the communication between
the C++ native environment and the .NET one. The libraries contain simple
wrapper to the functionality exposed by the C++ libraries.

– C# Library for the management of the high level application logic, persis-
tence management, and graphical user interfaces.

It worth noting that this organization allows to unify the benefits of the two
programming environments: the computational efficiency of C++, which allows
you to make better use of optimization tools such as SSE or the paralleliza-
tion through OpenMP [14], and the ease of programming for the definition of

WorkCellSimulator 317

high-level logic and graphical user interfaces using C#. The exception is the Ap-
plication Framework module, which, having to manage the graphical interfaces,
is formed by a single C# library.

3.2 WCS Applications

The WorkCellSimulator suite consists of five main components:

– Database Manager. Management of distributed database containing com-
ponents, work cells, and simulation projects;

– Component Editor. Editor for simulation components, extensible throught
plug-in modules. A general purpouse plug-in allows the definition of compo-
nents as kinematic chains. Custom plug-ins can be developed for a specific
work cell component using provided SDK, allowing to tailor user interfaces
to ease usage (figure 2(a)).

– Workcell Editor. Editor for work cells. It allows the insertion and posi-
tioning of components into the work cell. Precise positioning can be archived
using custom calibration procedures (figure 2(b)), defined in plug-in mod-
ules. Through the use of plug-in approach, editor behaviour configuration
can be customized for a particular process or specific user needs;

– Simulator. This is the main application of the suite, used to perform actual
off-line programming. This package provides the application user interface
that allows to simulate the various components and their interactions. Plug-
in modules can be defined using provided SDK to tailor user interfaces and
software behaviour. Given the provided input from the user, process tra-
jectories and signals are generated by means of an internal scripting engine
based on LUA programming language. The use of scripting engine leads
to two main benefits. First, process logic can be defined interacting with
simulated 3D environment, using a command-line console or debugging pre-
viously defined scripts (figure 2(c)). Second, since process logic is defined in
plain text code using a simply to use programming language, final simula-
tion user can fully customize process behaviour to include product-specific
optimizations or to handle a particular product requirement. As shown, the
choice of a scripting engine allows customization of the software behaviour
at every level and to the highest extent.

– Program Generator. Generates machine controller code given results from
the simulation. This is a two step process. In the first stage, simulation
data is read to generate an internal, vendor independent, rappresentation of
the controller code. This step can be customized using provided SDK. This
flexibility is required since, for simulation convenience, simulation execution
flow can be different than real world execution flow. In the second stage,
one of available post-processor are used to generate actual robot code based
on current robot vendor and controller version. Program Generator manages
also direct comunication with robot, using e.g. FTP, to upload created robot
programs.

318 S. Tonello et al.

By leveraging the capabilities offered by the Application Framework module,
developers can define the applications by integrating the various components in
a single application of by creating an application for each one. Particularly, in
the current setting, four separated applications was created. This choice provides
the advantage of creating an application which allows a clear differentiation of
users’ type (e.g. the system integrator uses the Component Editor to define the
components of the plant and the Workcell Editor to define the work cell, while
the end-user uses only the Simulator to define the work process). On the other
hand, it is possible to integrate the various components in a single application.
This choice has the advantage of facilitating the workflow definition of the end
user.

3.3 Plug-in Modules

As has been shown in the previous sections, WorkCellSimulator can be fully
customized by mean of plug-in modules. It is possible to define:

– C# Plug-in modules for the high-level logic associated with the component,
e.g. to define a parameterization of the component or to define component
specific behaviour.

– C++ Plug-in modules associated to a component which allow to customize:
• The computation of the direct or inverse kinematics. Algorithms for com-
puting direct and inverse kinematics given kinematic chain definition are
already available in Numerical Kernel but a closed form is useful both
to improve efficiency and to add new extended features. E.g., in the case
of a manipulation robot, it is convenient to create a plug-in in order to
customize the definition of the inverse kinematics. An inverse kinematics
query for manipulator robots usually has 16 valid solutions. Using the
plug-in, the user is able to constraint robot configuration or to choose
one configuration over the others;

• The calculation of the trajetory interpolation, in order to faithfully repli-
cate the behavior of the robot controller during the simulation;

• The calculation of the deformation of the 3d model during the simulation
process;

• The validation of the state of the kinematic chain. It can be usefull to
define the special constraints in the positioning of the joints (standard
axis limits are already defined by numerical kernel).

– C# Plug-in modules for the definition of a component editor;
– C# Plug-in modules for the definition of the user interface for the editor for

a particular type of work cell and its calibration;
– C# Plug-in modules for the definition of the process logic. These modules are

used to specialize system behavior during simulation of a particular process,
allowing to customize components’ behavior and interaction based on current
process. The scripting engine allows a further customization of the process
by the end user;

– C# Plug-in modules to create internal rappresentation of controller code.

WorkCellSimulator 319

(a)

(b)

(c)

Fig. 2. Screen shots of WCS user interfaces

320 S. Tonello et al.

– C# Plug-in modules for creating post-processor program to generate the
code for a given language and controller version.

In this case it worth noting that the WorkcellSimulator suite already contains
default procedures for the management of components, work cells, the off-line
programming and code generation. Plug-ins modules are used to tailor simulator
to specific requirements.

4 Applications

WorkcellSimulator is currently used in companies typically belonging to the
industrial automation sector, with application ranging from simple material
handling to metal sheet bending. WCS Core is also applied to two products
of IT+Robotics: Smart Pick 3D and SafePath.

Smart Pick 3D highlights the integration between robotics and vision: it is a
software for the visual identification of the position of items within the produc-
tion line, solving the well-known problem of bin-picking. Using standard cam-
eras and sophisticated image processing algorithms, images are acquired and
processed in order to determine product 3D position inside a bin and ensure
the correct system operation under environmental light changes. The resulting
positions are used to control the movements of the robot, so that it can pick the
items to be processed from a bin, even when all the pieces are randomly placed.
This application allows the robot to be completely autonomous: it handles the
pieces as they come from previous processing phases, avoiding the use of ad-hoc
loaders. The integration of Smart Pick 3D and WorkcellSimulator is two fold.
WCS Core is used inside Smart Pick 3D to generate collision-free trajetories for
the robot for product grasping. The other way round, a plug-in for the simula-
tor has been developed to allow parametrization of loading process using vision
based on Smart Pick 3D.

SafePath is designed for the off-line programming of numerical control ma-
chines (CNC): the software allows the definition of new processes through a 3D
simulated environment created using WorkCellSimulator. SafePath allows the
creation of programs from scratch or the modification of the programs gener-
ated by CAM (Computer-Aided Manufacturing) softwares. Through an off-line
programming the machine can continue the old production while the new process
is generated; moreover, on one hand SafePath verifies, in real time, the movement
programmed for the machine, detecting possible collisions. The user is therefore
able to identify and correct any programming errors. On the other hand the
software verifies the accuracy of the processing, ensuring that the production is
within the desired tollerance ranges.

Among others, with this work IT+Robotics is also involved in a European
Project called ThermoBot. The aim of ThermoBot is the design of an au-
tonomous robotic system for thermo-graphic detection of cracks2. WorkCell-
Simulator is used to simulate the process of quality inspection using path and

2 Available from: http://thermobot.eu/

http://thermobot.eu/

WorkCellSimulator 321

(a) (b)

Fig. 3. Typical configurations of work cell environments

motion planning algorithms. The algorithms of path planning are able to deter-
mine, given the product, the set of points that the robot must reach in order to
ensure the correct execution of the process. These points are then supplied to the
algorithm of motion planning for generating a collision-free trajectory able to
meet the timing constraints from the process of thermography. Moreover, during
the execution, an online motion planning module, based on WorkcellSimulator,
will be used to correct generated paths to optimize image contrast.

Figure 3 depicts two examples of WCS usage: in 3(a) the simulation of the
bending process of metal sheets is represented, in 3(b), instead, a robot detecting
cracks is shown according to the ThermoBot project.

5 Conclusion and Future Work

WorkCellSimulator confirms the mission of IT+Robotics: increasing the flexibil-
ity of industrial processes. The modular architecture allows the simulation of any
kind of process and the scripting system lets the customization of the process
itself to the highest extent. The software highlights the will of understanding
the customers’ needs of reliability and simplicity: it makes the programming
easier from the most complex work cell to the single machine. WCS can be used
with major robotic manipulation industrial platforms, and it’s really easy to cus-
tomize it to work with custom-made controllers. It allows to operate completely
off-line with respect to the work cell, thus allowing to minimize work cell on-line
programming phase. As previously described, once a work cell was modeled, it
allows you to plan and simulate the entire production process, generating the
corresponding robots’ controller code.

For the future, It+Robotics aims to continue its research activity in order to
improve the motion planning algorithms currently used: the integration of time
constraints within the motion planning is one of its goals, usefull to improve its
contribution inside the ThermoBot project; moreover, the company looks at the
resolution of the problem of multi-robot motion planning in order to manage

322 S. Tonello et al.

more complex work environments. In a long-term view, the integration between
simulation and vision is eligible through the integration between WorkCellSim-
ulation and ViDeE (Vision DEvelopment Environment), a software framework
producted by IT+Robotics. Moreover, two projects are in progress in order to
provide the optimality of the manufacture starting from simulation. The first
one allows to use 3D models inside the simulation of bending process. It is Un-
folding 3D: its goal is the development of an algorithm able to recognize the
folds contained in the 3D input model, in order to convert the product into a
3D unfolded model usable, with the accessory information collected, as input to
the simulator. The other aims, instead, to develop a search algorithm in order
to find the optimal sequence of bends, to make programming of bending work
cells fully automatic.

References

1. Hosseinpour, F., Hajihosseini, H.: Importance of Simulation in Manufacturing.
World Accademy of Science, Engineering and Techonology (2009)

2. Tokunaga, H., Matsuki, N., Sawada, H., Okano, T., Furukawa, Y.: A robot sim-
ulator for manufacturing tasks on a component-based software development and
execution framework. In: Proc. IEEE ISATP 2005 (2005)

3. http://www.plm.automation.siemens.com/en us/products/tecnomatix/

robotics automation/robcad/index.shtml

4. http://www.kuka-robotics.com/en/products/software/kuka_sim/

5. http://www.abb.com/roboticssoftware

6. http://www.fanucrobotics.com/products/vision-software/

ROBOGUIDE-simulation-software.aspx

7. Chirikjian, G., Amato, N., Kavraki, L. (eds.): Special issue: Robotics techniques ap-
plied to computational biology. International Journal of Robotics Research (2004)
(to appear)

8. Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4), 566–580 (1996)

9. Latombe, J.C.: Motion planning: A journey of robots, molecules, digital actors,
and other artifacts. The International Journal of Robotics Research - Special Issue
on Robotics at the Millennium 18(11), 1119–1128 (1999)

10. Carpin, S., Pillonetto, G.: Motion Planning Using Adaptive Random Walks. IEEE
Transactions on Robotics 21(1) (February 2005)

11. Duflou, J.R., Vancza, J., Aerens, R.: Computer aided process planning for sheet
metal bending: A state of the art. Computers in Industry 56(7), 747–771 (2005)
01663615

12. http://www.opencascade.org

13. http://www.openscenegraph.org

14. http://openmp.org/wp/

http://www.plm.automation.siemens.com/en_us/products/tecnomatix/robotics_automation/robcad/index.shtml
http://www.plm.automation.siemens.com/en_us/products/tecnomatix/robotics_automation/robcad/index.shtml
http://www.kuka-robotics.com/en/products/software/kuka_sim/
http://www.abb.com/roboticssoftware
http://www.fanucrobotics.com/products/vision-software/ROBOGUIDE-simulation-software.aspx
http://www.fanucrobotics.com/products/vision-software/ROBOGUIDE-simulation-software.aspx
http://www.opencascade.org
http://www.openscenegraph.org
http://openmp.org/wp/

A Meta-model and Toolchain for Improved
Interoperability of Robotic Frameworks

Johannes Wienke, Arne Nordmann, and Sebastian Wrede

Research Institute for Cognition and Robotics, Bielefeld University, Germany

Abstract. The emerging availability of high-quality software repositories for
robotics promises to speed up the construction process of robotic systems through
systematic reuse of software components. However, to reuse components with-
out modification, compatibility at the interface level needs to be created, which
is particularly hard if components were implemented in different robotic frame-
works. In this paper we propose an approach using model-based techniques for
improving component reusability. We specifically address data type compatibility
in a structured way through the development of a generic meta-model capable of
representing data types from different frameworks and their relations. Based on
this model a code generator emits serialization code which makes it possible to
seamlessly reuse the existing data types of different frameworks. The application
of this approach is exemplified by connecting the YARP-based iCub simulation
with a component architecture using a current robotics middleware. Based on our
experiences we describe requirements on robotics frameworks to further increase
the level of interoperability between available components.

1 Introduction

In order to increase the usefulness of robots, they need to be equipped with a mul-
titude of capabilities, which need to be reasonably combined into a working system.
While many capabilities have already been implemented on different robots, their in-
tegration into a single system is still an open problem. A successful integration relies
on an appropriate design of the functional architecture but often also more technical
aspects slow down and complicate the development of integrated systems. As such,
a major practical issue is the diversity of existing development frameworks like ROS
[1], YARP [2], OROCOS [3] or OpenRTM-aist [4]. Even though most of the recent
frameworks use a component-based approach and hence are composed of generally
reusable building blocks, the created components can only be reused easily within the
framework they have been developed for. This is caused by the lack of interoperation
features in most frameworks. Recent development efforts tried to approach this prob-
lem, in particular by equipping frameworks with exchangeable transport layers, e.g.
as done in OpenRTM-aist [5] with a ROS transport. Also YARP and OROCOS now
have ROS transports. While this is a step towards interoperability, several issues still
remain. Besides being able to use another framework’s protocol, full interoperability on
the transport level requires using foreign nameservices and introspection mechanisms.
Otherwise, components imported from a foreign framework expose restrictions in their

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 323–334, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

324 J. Wienke, A. Nordmann, and S. Wrede

usability compared to native components and developers need to add specific excep-
tions for these components. On a more conceptual level, different transport semantics
can prevent interoperability, e.g. if remote procedure call-based interfaces conflict with
event-based communication. Another issue is the incompatibility of data types between
different frameworks. Many frameworks developed type libraries with comparable se-
mantics but using different approaches for Interface Definition Languages (IDLs), se-
rialization schemes, and client APIs. This effectively prevents the reuse of components
across frameworks. Even if transport-level communication is established, either (de-)
serialization would fail or client components would be unable to deal with foreign data
types. This commonly results in exceptions in the architecture like adapter and bridge
components. Such solutions introduce inefficiencies and require manual work. Hence,
a more structured approach to deal with data type incompatibility is required to fully
make use the achieved transport-level interoperation support. Such an approach has to
be easy maintainable and needs to be efficient to preserve the reactivity of the robot
system.

In this paper we introduce an approach, termed Rosetta Stone, to deal with incompat-
ible data types. It employs a generic meta-model for data representation and combines
it with code generation. Section 2 starts with a discussion of how the interoperability
issue has been addressed in other frameworks so far. Afterwards, we outline the con-
ceptual ideas of our approach in Section 3. Based on a use case described in Section 4
our implementation will be explained in Section 5 and gained experiences and results
of the application in the use case are detailed in Section 6. Finally, we conclude in Sec-
tion 7 including a set of requirements which should be fulfilled by future frameworks
to support data type compatibility.

2 Related Work

Interoperability between software components implemented in different robotics frame-
works is usually achieved by applying classical software design patterns such as bridge,
wrapper or protocol translator [6]. While it is reasonable to apply these techniques to
specific interoperability problems, it imposes significant challenges for the software
design of larger robotic systems if applied in the general case. For instance, using a
dedicated bridge introduces performance penalties due to the additional reading, (de-)
serialization and writing of data from and to connectors which are bound to the different
frameworks. Furthermore, bridges are often specific to single data types and need to be
kept up-to-date with the target types of both frameworks. As a consequence, bridges
or wrappers are constantly out of date [5]. Instead, a more native level of interoper-
ation between different frameworks is highly beneficial to achieve efficient solutions.
In the following, we analyze different frameworks for features they provide towards
native interoperability. As the representation of data is the key focus of this paper, we
specifically examine these issues.

Recently, the Robot Operating System (ROS, [1]) has gained a lot of attention in the
robotics community. It combines a middleware layer for communication with an exten-
sive component collection, especially for mobile robots. Communication is statically
typed and ROS comes with a collection of types based on a custom IDL. A compiler

A Meta-model and Toolchain for Improved Interoperability 325

generates programming language types from these descriptions as well as framework-
specific serialization code. While the transport layer in ROS can be exchanged and dif-
ferent implementations exist, the serialization code cannot be varied by the user, hence
limiting interoperation with other frameworks.

A second widely used framework in robotics is OROCOS [3]. It has exchangeable
transport implementations, e.g. CORBA, mqueue as well as a ROS transport. Addition-
ally, different data representations can be used, called typekits, which are exchangeable
through a plugin system. The traditional typekit is based on user-level C++ class defi-
nitions and a compiler builds serialization code for them by parsing the C++ code. Re-
cently, support to interoperate with ROS has been added through the respective transport
and a new typekit which has to be used by client components instead of the traditional
one. This typekit is based on the ROS IDL to provide compatibility with ROS and the
remaining OROCOS transport implementations cannot be used with these types. While
transports and typekits are exchangeable, their choices are coupled and modifications
to client components are required.

Another framework with exchangeable transports is OpenRTM-aist [5]. It provides
features for hard real-time control and originally uses CORBA for data exchange be-
tween its components. Data types are defined through the CORBA IDL and in the case
of the ROS transport, a duplicated definition of the respective type using the ROS IDL
is required in order to provide the required serialization code to the ROS transport. The
reuse of existing data types in both frameworks is not discussed so far and no mapping
between them is explained in publications.

YARP [2] is a framework mainly used for the iCub robot. In contrast to the aforemen-
tioned frameworks, communication in YARP is dynamically typed, employing a custom
data representation (bottles) and serialization approach. The framework has exchange-
able transports and a partial ROS implementation is available. To combine the dynamic
typing of YARP with the static ROS messages, the ROS transport comes with a specific
compiler which generates YARP-serializable classes from the ROS IDL definitions,
which effectively replaces the existing type system visible to the client components and
hence requires modifications to them.

Summing up, while most recent frameworks provide ways to connect with other
frameworks on a transport level, the way how data types are handled in these cases is
not clearly structured. Often, special data types need to be chosen based on the transport
decision because for most frameworks there is a strong connection between the trans-
port, the applied serialization mechanism, and the exposed user-level data type API.
This restricts the possible uses cases of the interoperation features and increases the
development overhead when using such features. The issue of how to deal with seman-
tically compatible but differently expressed data types, i.e. how to map between them,
is completely neglected so far.

3 The Rosetta Stone Approach

In order to provide native data-level interoperability between different robotic frame-
works we have developed a generic approach to mediate between the different technolo-
gies, which will be described on a conceptual level in the following paragraphs. The

326 J. Wienke, A. Nordmann, and S. Wrede

approach aims at a native integration inside the frameworks for high efficiency without
the need for manual development of bridge components or a dependency on foreign
frameworks. We assume that each of the potentially relevant robotic frameworks uses a
structured and consistent approach of producing and consuming serializable data to be
sent over a network connection. This means that a unified API for data holder classes
and consistent serialization schemes for transmitted data exist, e.g. based on an IDL,
so that at least inside each framework a level of generalization with respect to the data
access is possible. Once this assumption is fulfilled, data communication in robotic
frameworks fundamentally varies in four aspects: a) the programming language used to
produce or consume data, b) the API of the used data holders in this language, c) the
(de-) serialization scheme applied to the data found in the data holders, and d) the
transport mechanism used to communicate the serialized data.

Our approach is based on a meta-model which describes data from the various robotic
frameworks in an abstract and unified way, but including the aforementioned variables.
Once the meta-model is populated with data types from different robotic frameworks it
generates serialization code. The generated code uses the serialization scheme of one
framework (A) on the network level and data types from another one (B). Assuming
that framework B has exchangeable transports and serialization mechanisms, client ap-
plications written against this framework can connect with framework A by plugging
in the generated serialization code and the transport for framework A. As a result, these
applications can continue to use their native data types and no modifications to them
are required. By using generated serialization code we can reach a high performance
without requiring a dynamic use of the meta-model at runtime and without a depen-
dency on the foreign framework’s libraries (and hence increased compilation efforts)
to import their serialization implementation. Moreover, no unnecessary serialization or
conversion step is required as in the case of bridges. Finally, the mapping of differ-
ent data types becomes a configuration aspect of the robotic system instead of being
hard-coded.

3.1 Data Representation Features

A first question that arises for the proposed approach is whether it is possible to treat
data from all recent frameworks in a common way, and if so, which features for data rep-
resentation are required in the meta-model. For this purpose we analyzed the available
representation features of common IDL-based serialization mechanisms (and hence
statically typed) as well as the ones of 3 robotics-relevant dynamically typed systems1.
The results of this analysis can be found in Table 1, indicating that besides some vari-
ations, a common and limited feature set available in most solutions can be identified,
which is feasible to represent. On this basis we constructed a meta-model which repre-
sents the majority of the found features and is hence applicable for a broad variety of
data types. In its essence, the meta-model represents data types as composed structures
of named fields, comparable to the structure of most IDLs and programming languages.

1 In our analysis we focused on features for the description of data types. Additional features
found in several IDLs like the possibility to describe RPC interfaces are ignored.

A Meta-model and Toolchain for Improved Interoperability 327

Table 1. A matrix of features commonly found in different IDLs / dynamically typed data serial-
ization solution. Features not applicable for dynamically typed solutions are marked in gray.

Si
gn

ed
64

bi
tI

nt
eg

er
s

U
ns

ig
ne

d
64

bi
tI

nt
eg

er
s

D
ou

bl
e

Ty
pe

B
yt

eB
lo

b
Ty

pe

N
ul

lT
yp

e

E
nu

m
s

C
on

st
an

ts

V
ar

ia
bl

e
L

en
gt

h
A

rr
ay

s

M
ul

tid
im

en
si

on
al

A
rr

ay
s

Fi
xe

d
L

en
gt

h
A

rr
ay

s

M
ap

s

O
pt

io
na

lF
ie

ld
s

D
ef

au
lt

V
al

ue
s

U
ni

on
s

M
es

sa
ge

N
es

tin
g

D
at

a
Ty

pe
In

he
ri

ta
nc

e

N
am

es
pa

ce
s

Ty
pe

de
fs

A
ny

Ty
pe

Static Typing
Protocol Buffers x x x x x x x x x x

ROSmsg x x x x x x x x
LCM x x x x x x x x

Message Pack IDL x x x x x x x x x x
Apache Thrift x x x x x x x x x x

Apache Avro IDL x x x x x x x x x x x x
Apache Etch x x x x x x x x x

OMG IDL x x x x x x x x x x x x
Dynamic Typing

YARP x x x x x x
ALValue x x x x

JSON x x x x x x x

Currently supported data type features are: (signed/unsigned integers with different bit
sizes, floats, strings, blobs, structs, arrays, unions.

3.2 Required Mapping Capabilities

Even though data types can be represented in a common meta-model, compatible types
from different robotic systems still need to form separate entities in the meta-model,
because for the code generation we need to be able to distinguish between them. More-
over, field names and representations usually do not exactly match between two se-
mantically compatible types from different frameworks. E.g., a field might be called
angle in one framework using radians but in the second framework it is called phi
and based on degrees. For these reasons the meta-model also needs to contain a map-
ping between types which relates different fields and converts some representational
differences. While the ability to map fields of different names is an essential require-
ment, the question arises which further capabilities are usually required. To find out an
initial set of these capabilities that copes with the majority of cases, we analyzed the
mapping of messages from the ROS common_msgs package to and from our own data
types defined in the RST library [7]. For this purpose, we first decided which data types
of one framework are semantically compatible with data types from the second, to de-
fine a set of realistic mapping candidates. For each candidate we then manually decided
which operation categories are required to achieve a mapping. The results can be found
in Table 2. Categories were chosen to reflect semantically related operations2, namely:
Arithmetic: basic mathematical operations (always selected when units were not clear
from the type description, e.g. rad vs. degrees); Array reorder: shifting of entries of

2 For brevity we excluded the obvious category of mapping varying field names.

328 J. Wienke, A. Nordmann, and S. Wrede

Table 2. Operations likely to be required when converting between ROS and RST types

ROS A
ri

th
m

et
ic

A
rr

ay
R

eo
rd

er

St
ri

ng
M

an
ip

ul
at

io
n

Im
ag

e
C

om
pr

es
si

on

Pr
ed

ic
at

e
A

ss
ig

nm
en

t

Su
bt

yp
e

L
oo

ps

R
ej

ec
tio

n

G
en

er
at

or
s

D
at

e
M

an
ip

ul
at

io
n

RST
CompressedImage.msg x x x? Image.proto

Image.msg x x x? Image.proto
JointState.msg x x JointPositionState.proto
JointState.msg x JointAngles.proto
JointState.msg x JointTorques.proto
JointState.msg x x ProprioceptionState.proto

JointTrajectory.msg x x Point2DTimeseries.proto
JointTrajectoryPoint.msg x x Point2DTimestampPair.proto

KeyValue.msg x x KeyValuePair.proto
Odometry.msg x Pose.proto

Path.msg x x x Point2DTimeseries.proto
Point.msg x Vec3DDouble.proto
Point.msg x Vec3DFloat.proto
Point.msg x Translation.proto

Point32.msg x Vec3DDouble.proto
Point32.msg x Vec3DFloat.proto
Point32.msg x Translation.proto

PointCloud.msg x x PointCloud3DFloat.proto
Polygon.msg x x PointCloud3DFloat.proto

Pose.msg x Pose.proto
Pose2D.msg x x Pose.proto

Quaternion.msg x Rotation.proto
RegionOfInterest.msg x BoundingBox.proto

TimeReference.msg x x x Timestamp.proto
Transform.msg x Pose.proto

Vector3.msg x Vec3DDouble.proto
Vector3.msg x Vec3DFloat.proto
Vector3.msg x Translation.proto
Wrench.msg x Wrench.proto

any sequence-like container, e.g. to swap planes in image types; String manipulation:
common string operations; Image compression: to decode compressed images; Predi-
cate assignment: assignment to target type values based on logical predicates; Subtype
loops: looping on and conversion of nested subtypes (composition); Rejection: abort
translation in case of a dynamically detected incompatibility (e.g. unsupported image
encoding); Generators: generation of values not found in the source type, e.g. constant
value or loop variables; Date manipulation: conversion of date formats.

Starting with the total 65 message definitions of ROS and 65 message types in RST
(by coincidence), 29 possible mapping candidates were found3. The results of this anal-
ysis are depicted in Table 2. For the majority of the mapping candidates arithmetic
operations and the possibility to handle and convert collection-like contents (e.g. a
list of floats to a list containing special JointValue objects) sufficed to achieve a
mapping of all contents that can be represented in both messages. A notable but

3 In ROS messages types often exist once without a header containing timestamps and if neces-
sary a second time including this header. We did not consider the timestamped messages for
the mapping if the comparable version without timestamp was already a valid candidate.

A Meta-model and Toolchain for Improved Interoperability 329

Compile Time

Run Time

00010010010100101001011
01101010010101001001010
01010100010011101111...

Serialized Data
(YARP Bottle)

 Data-Holder
(ProtoBuf Style)

 Generated
Code

Mapping

"Source"
Serialization
Mechanism

 "Target"
Serialization
Mechanism

target.f1 = source.f1
target.f2 = source.f2
for i from 0 to
 len(source.f3)
...

"Target" IDL
message Foo {
 required double f1 = 1;
 required uint32 f2 = 2;
...

"Source" IDL
"foo"
(
 (f1 double)
 (f2 uint32)
...

Meta-
ModelYARP binary protobuf binary

class FooConverter:
 public rsb::Converter {
...

class Foo {
 double get_f1() {
...

Fig. 1. User-supplied contents of the meta-model used to create serialization code and the appli-
cation of this serialization code

important exception is the mapping of image types. The definitions in both frameworks
are rather complex involving different byte representations, image depths, channels etc.
While the meta-data representing these different image types can be mapped with the
aforementioned operations, the actual image data needs to be manipulated if no match-
ing representation modes exist. This requires a more fine grained operation on the byte
array contained in both message types.

We also analyzed a mapping from RST to data types used in YARP-based systems
[2] and vice versa. Here the situation is different, as no formal message definitions exist.
To find out commonly used message formats we analyzed the data continuously sent by
the simulator for the iCub robot. For publisher-based data two semantically different
types could be identified:

1. messages containing joint angle information as a list of doubles
2. messages for images with the following format (Lisp-like notation):

((VOCAB mat) (VOCAB rgb) ((INT 3) (INT 230400)
(INT 8) (INT 320) (INT 240)) (BLOB 230400))

A mapping of the first message type requires arithmetic operations and potentially gen-
erators (e.g. to fill out the joint names which are not given in the bottle) and subtype
loops to convert the angle list to more specific types or vice versa. For the image type
the same remarks are valid as in the ROS case. Additionally, for controlling the robot,
messages in the following format are sent over RPC-based channels:

((VOCAB set) (VOCAB poss)
((DOUBLE 0.0) (DOUBLE 0.0) (DOUBLE 0.0)))

These messages are comparable to the joint angle lists except that also YARP vocabu-
lary items need to be generated.

330 J. Wienke, A. Nordmann, and S. Wrede

Fig. 2. Use case, connecting CCA components to the iCub simulator by using the Rosetta frame-
work to interchange proprioceptive sensor feedback and an image stream from the iCub’s internal
cameras.

Based on the aforementioned observations our meta-model contains mapping abili-
ties for the most common operations. This is realized by defining each mapping through
a Lisp-like code block with a restricted feature set that allows facilitates the static code
generation.

3.3 Application of the Meta-model for Code Generation

For being able to generate serialization code from the meta-model two additional as-
pects must be contained in the model. These are the data holder APIs and the serial-
ization schemes. The API needs to be known to provide the native interface to client
applications while the serialization scheme is required to provide transport-level com-
patibility of data types through the correct serialization scheme. Figure 1 summarizes
the required data in the meta-model (upper part, supplied by the user) and how the data
can be used to generate deserialization code for binary data received from a foreign
framework. Summing up, by using a generic meta-model for the unified representa-
tion of data types and their relation we are able to create code that efficiently translates
serialized data from one robotic framework to the native data holder API in another
framework. As a result, frameworks are connected without requiring manually written
bridge components and the native interfaces in both middlewares are preserved. This
prevents changes in components and increases their reusability.

In the following sections we are now going to introduce a use case where the con-
nection of different frameworks is beneficial. Afterwards we will describe the actual
implementation of the Rosetta Stone system and its application for the use case.

4 Use Case

As a an exemplary use case for the aforementioned approach, we decided to integrate
the iCub simulator from the RobotCub project into our component architecture CCA
(Compliant Control Architecture [8]), which is based on the RSB middleware [7]. The
use case is driven by the AMARSi4 project, where CCA was developed and the iCub

4 http://amarsi-project.org

http://amarsi-project.org

A Meta-model and Toolchain for Improved Interoperability 331

Fig. 3. Architecture overview for the Rosetta implementation

is used as one of the main robot platforms. However, development of the robot was
done in a predecessor project and diverging requirements resulted in the existence of
two frameworks. To be able to conduct experiments with CCA components on the iCub
simulator, the Rosetta approach allows CCA components to communicate over YARP,
the middleware used by the iCub simulator. For this purpose joint angles and camera
image need to be transferred, which are two diverse but very common data types in
robotics, hence reflecting a wide variety of possible applications.

In more details, the iCub simulator transmits images and joint angles as YARP bottles
and CCA uses protocol buffer representation from RST for exchanging data between
different processes. Therefore we need to translate between these two data representa-
tions. The anticipated result is that this is possible without changes in the implemen-
tation of the simulator or in CCA components, i.e. through configuration. Moreover,
performance should not be degraded, which is specifically challenging for the image
types with a significant payload size.

5 Rosetta Implementation

The Rosetta approach is realized as a compiler toolchain implemented in Common Lisp.
As shown in the static view in Figure 3, the Rosetta implementation is structured as a
traditional compiler with frontend, middleend and backend.

The frontend parses data type specifications expressed in existing IDL languages into
meta-model elements resolving dependencies between type specifications. The current

Listing 1.1. Excerpt from the mapping specification for the iCub simulator joint angles

import " r s t / k i n e m a t i c s / J o i n t A n g l e s . p r o t o "
import " bo t t l e− s t ruc tu re− i cub− t o r so−command . bo t t l e− schema "

data−holder : r s t . k i n e m a t i c s . J o i n t A n g l e s
wire−schema : ya rp . i c u b . t o r s o . command

unpack−rules :
l e n (. a n g l e s) = 3
. a n g l e s [0] = . a n g l e s . a0
. a n g l e s [1] = . a n g l e s . a1

332 J. Wienke, A. Nordmann, and S. Wrede

implementation supports parsing of protocol buffer, LCM and ROS IDL definitions.
Similarly, mapping specifications are processed by this component. Additionally, syn-
tactic as well as basic semantic checks (e.g., duplicate field names or unresolved for-
ward references) are performed by the parsers.The middleend manipulates meta-model
elements encompassing data types, mappings and serialization mechanisms. According
to the desired code generation target (either data holders or serialization code) suitable
intermediate representations are generated. The backend generates output based on the
intermediate representation and language-specific templates for different programming
languages. Currently supported are C++, Python and Common Lisp5. Generated code
artifacts include data holder classes mimicking a native API (e.g., protocol buffer) and
serialization code for different robotic frameworks (e.g., ROS or YARP).

To provide a dynamic view of the Rosetta implementation a typical sequence of
processing steps in relation to the use-case introduced in Section 4 is as follows:

1. One or more IDL files are read and parsed by the frontend (in the use-case: files
containing RST types JointAngles and Image, and the descriptions of the
corresponding YARP bottle structures6) .

2. Optionally, a mapping description is read (in the use-case: a mapping for joint-angle
types and a mapping for image types, see Listing 1.1).
At this point, data types and mappings are represented in the meta-model.

3. For the given serialization mechanism and data types the transformation rules spec-
ified in the mapping are applied (in the use-case: respective mapping rules for joint-
angle types and image types).
At this point, abstract intermediate code implementing the mapping and (de-) seri-
alization has been generated.

4. A template for the given target language is instantiated and populated (in the use-
case: C++ protocol buffer API templates).

5. The template is expanded and the result written into output file(s) (in the use-case:
C++ code in separate files for data-holder and serialization code).

The resulting serialization code needs to be used by the framework which attaches to a
foreign one, ideally through configuration changes.

6 Gained Experiences

Our use case served as a first qualitative evaluation of how the Rosetta framework im-
proves the compatibility between different robotic frameworks, without the need for
changes or adaptations on the implementation level in one of the involved frameworks
or applications. In this case we evaluated what and how much work had to be done in
i) the iCub simulator, ii) Rosetta and iii) the application (CCA components).

As anticipated, the iCub simulator was left untouched for integration with the CCA
application. We completely relied on the YARP bottle format and serialization for joint
angles and images, as required by the simulator. For Rosetta, we had to specify the

5 For Common Lisp output of the middleend is directly passed to the integrated compiler.
6 Cf. Section 6.

A Meta-model and Toolchain for Improved Interoperability 333

mapping between YARP bottles and the domain-types used in CCA. As YARP does not
provide static types and a declarative syntax for them, we had to add such a schema
description for YARP in Rosetta, in order to address fields from the YARP bottles in
the mapping. Afterwards, mappings were defined between the YARP bottle format for
images and joint angles, and the RST types used in CCA. Within the CCA applica-
tion, the transport and the data converter for network communication had to be changed
through RSB’s configuration mechanism. The relevant ports of the involved CCA com-
ponents had to be configured to publish over and listen to the tcp-yarp transport that
is available as an RSB extension. Furthermore, the generated Rosetta serialization code
(generated from IDL and mapping specifications) had to be registered for incoming and
outgoing YARP image bottles and YARP joint angle bottles.

In summary, after specifying the Rosetta mappings between data representations
and generating the serialization code, no changes were required for the simulator and
necessary changes on CCA-side were limited to configuration aspects.

In addition to this qualitative evaluation we also analyzed the performance of the
generated serialization code within the use case. For this purpose we compared the de-
serialization of a binary encoded YARP bottle containing double-precision joint angles
using Rosetta and with the native YARP implementation. Rosetta deserialized to C++
RST types while YARP used the native bottle classes in the C++ API. The encoded
message had a size of 200 bytes and was deserialized 1.000.000 times. On a Linux
desktop computer with an Intel Xeon 8 core processor at 2.4 GHz the YARP implemen-
tation required 3.96 s real time whereas our own deserialization code needed 0.13 s. Test
programs were compiled using GCC and the O2 optimization level. The huge perfor-
mance boost can can be explained by the fact that Rosetta has an additional schema of
the transmitted data (see above), while the native YARP implementation is completely
dynamic. As a consequence, the Rosetta-generated deserialization code can skip many
checks and decoding of several bytes that need to be deserialized by the native imple-
mentation to dynamically find out the structure of the bottle. This performance allows
to receive simulation results in the use case without any performance degradation.

7 Conclusion

Nowadays, the middleware layers of most modern robotic frameworks allow a direct
embedding of multiple transports acting as connectors to other frameworks. Further-
more, many of the current frameworks already employ a code generation approach
where the necessary client API classes and serialization code are generated. However,
still most of the frameworks lack a clear separation of concerns regarding the type
representation at user-level and the resulting serialization format which is beneficial
to achieve interoperability without component modification. Moreover, frameworks do
not consider type mapping and transformation as an important concern.

The Rosetta approach proposed in this contribution addresses these aspects in order
to achieve native interoperability between components of different robotics architec-
tures. Based on an analysis of features commonly found in different IDLs and necessary
mapping operations between a set of typical robotic data types expressed in different
representations, required capabilities for a type mapping language were identified in this

334 J. Wienke, A. Nordmann, and S. Wrede

contribution. On this basis a meta-model for representing types and mapping functions
was developed, which allows to generate several code-level artifacts for native robotic
system interoperabiliy. The introduced approach is so far unique, because none of the
frameworks addressed native type mapping and transformation routines in the process
of generating serialization code for seamless interoperability.

Scientifically, a common representation for data types and their mappings will fa-
cilitate, e.g., analysis and comparison of different data types used in current robotic
systems. Practically, the developed approach not only allows better interoperability and
thus reusability of software components across robotic frameworks but also contributes
to achieve integration within a single large-scale ecosystem such as ROS given the
number of semantically equivalent but syntactically different robotics data types. Fu-
ture work will concentrate on the development of a domain specific language which
eases the specification of mappings and transformations between data types in robotic
systems. Moreover, additional ways of applying the compiler architecture will be evalu-
ated. E.g., in cases where frameworks lack interchangeable transports and serialization
mechanisms Rosetta can generate serialization-to-serialization code for efficient and
configuration-defined bridge components.

Acknowledgments. This work was partially funded by the European FP7 projects
HUMAVIPS (grant no. 247525) and AMARSi (grant no. 248311). Many thanks to Jan
Moringen for his work on the Rosetta toolchain.

References

1. Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

2. Metta, G., Fitzpatrick, P.: YARP: yet another robot platform. Journal on Advanced
Robotics 3(1), 43–48 (2006)

3. Soetens, P.: A Software Framework for Real-Time and Distributed Robot and Machine Con-
trol. PhD thesis, Department of Mechanical Engineering, Katholieke Universiteit Leuven,
Belgium (2006),
http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf

4. Ando, N., Suehiro, T., Kotoku, T.: A Software Platform for Component Based RT-System
Development: OpenRTM-Aist. In: Carpin, S., Noda, I., Pagello, E., Reggiani, M., von Stryk,
O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp. 87–98. Springer, Heidelberg (2008)

5. Biggs, G., Ando, N., Kotoku, T.: Native Robot Software Framework Inter-operation. In:
Ando, N., Balakirsky, S., Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010.
LNCS, vol. 6472, pp. 180–191. Springer, Heidelberg (2010)

6. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture: A Pat-
tern Language for Distributed Computing, vol. 4. Wiley, Chichester (2007)

7. Wienke, J., Wrede, S.: A middleware for collaborative research in experimental robotics. In:
IEEE/SICE International Symposium on System Integration (SII 2011), Kyoto, Japan. IEEE
(2011)

8. Nordmann, A., Rolf, M., Wrede, S.: Software Abstractions for Simulation and Control of a
Continuum Robot. In: Ando, N., Brugali, D., Kuner, J., Noda, I. (eds.) SIMPAR 2012. LNCS,
vol. 7628, pp. 113–124. Springer, Heidelberg (2012)

http://www.mech.kuleuven.be/dept/resources/docs/soetens.pdf

Integrated Software Development

for Embedded Robotic Systems

Sebastian Wätzoldt, Stefan Neumann, Falk Benke, and Holger Giese

Hasso Plattner Institute for Software Systems Engineering
University of Potsdam, Germany

{sebastian.waetzoldt,stefan.neumann,holger.giese}@hpi.uni-potsdam.de,
falk.benke@student.hpi.uni-potsdam.de

Abstract. In the recent years, improvements in robotic hardware have
not been matched by advancements in robotic software and the gap be-
tween those two areas has been widening. To cope with the increas-
ing complexity of novel robotic embedded systems an integrated and
continuous software development process is required supporting differ-
ent development activities and stages being integrated into an overall
development methodology, supported by libraries, elaborated tools and
toolchains. For an efficient development of robotic systems a seamless
integration between different activities and stages is required. In the do-
main of automotive systems, such an overall development methodology,
consisting of different development activities/stages and supported by
elaborated libraries, tools and toolchains, already exists. In this paper,
we show how to adapt an existing methodology for the development of
automotive embedded systems for being applicable on robotic systems.

1 Introduction

In novel robotics applications steady improvements in robotic hardware is not
matched by advancement in robotic software leading to an increasing gap be-
tween those two areas. The increasing complexity of modern robotic systems
requires to further support several different software development activities such
as modeling, simulation and testing that allow the incremental development of
robot systems, starting with a single sensor and resulting in a complex appli-
cation. Elaborated tools and toolchains are required to support the different
activities and integrate them into an overall and well structured development
methodology. To realize an efficient software development process, on the one
hand, one has to provide libraries supporting individual development activities
at different levels, e.g., at the level of individual sensors and control functions
or at the level of systems or sub-systems, being incrementally composed. On
the other hand, a seamless migration between individual development activities
and stages has to be achieved. Furthermore, one crucial aspect that needs to be
considered for a large portion of robotic systems is real-time behavior.

Accordingly, the following aspects need to be considered for bridging the gap
between hardware and software development in novel robotic systems: (I) An

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 335–348, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

336 S. Wätzoldt et al.

overall methodology is required that supports (II) different development activi-
ties like modeling, simulation and testing at (III) different stages, e.g., simulation,
prototyping and (pre-)production. Such a methodology has to be supported by
(IV) elaborated tools and (V) libraries integrated into (VI) an overall toolchain
allowing a seamless migration between the different development stages and ar-
tifacts. (VII) Simulation and testing support is required for the stages, allowing
to validate created functionality, developed sub-systems or systems, e.g., by pro-
viding executable functional models, simulation environments and plant models.
(VIII) Last but not least, real-time constraints need to be reflected.

As an example, in the automotive domain large complex real-time embedded
systems are developed using different development stages, e.g., simulation, pro-
totyping, and pre-production. Advanced tools and libraries have emerged during
the recent years, integrated into sophisticated toolchains supporting different de-
velopment stages as well as a seamless migration between them. To deal with
the increasing complexity and to further reduce software development costs as
well as time, advanced frameworks for the distributed and component-based de-
velopment have been developed. In this paper, we propose adapting the existing
software development methodology used in the domain of automotive embedded
systems to support the software development of novel, complex embedded robo-
tic systems. The proposed methodology includes an overall development process
consisting of tools included into an overall toolchain as well as libraries. We ap-
ply this existing approach to the domain of robotic systems and evaluate as a
proof of concept, which modifications have to be made. The approach is eval-
uated using a mobile robot developed according to the adapted methodology.
Special attention is given to real-time constraints that need to be considered in
a slightly different way than in the case of automotive real-time embedded sys-
tems. Therefore, we show a new approach for combining hard and soft real-time
behavior in the existing automotive framework.

The remainder of this paper is organized as follows. Section 2 briefly dis-
cusses the foundations of robotic as well as automotive systems and introduces
a running example for this paper. Section 3 describes our development approach
including different stages and highlights our used tools as well as simulation
and verification possibilities. The paper discusses related work in Section 4 and
concludes in Section 5.

2 Foundations - Robotic and Automotive Systems

2.1 Robot Laboratory

For the evaluation of our research activities, we use our MDELab robot labora-
tory consisting of three Robotino robots.1 The robots can be equipped with
several sensors (e.g., laser scanner, infrared (IR) distance sensors, GPS like
indoor navigation systems) as well as different actuators (e.g., servo motors,

1 www.festo-didactic.com

www.festo-didactic.com

Integrated Software Development for Embedded Robotic Systems 337

omnidirectional drive, gripper). The general idea of our evaluation scenario is
the realization of a variable production setting, where robots are capable of
transporting small pucks (representing goods in a production system) to different
locations. Robots have to fulfill different requirement, e.g., they have to provide
basic functionality like moving and avoiding obstacles in hard real-time (reacting
on obstacles within a few milliseconds). Further, the robots have to reflect high
level goals, e.g., energy saving of the battery, short routing to the destination
points and optimizing the throughput while transporting the pucks. While basic
functionalities, such as obstacle avoidance, have to be realized in hard real-time,
we use existing libraries to realize higher functionalities such as path planning
or creating a map by evaluating measured distance values. The latter can rarely
be realized under hard real-time constraints because of insufficient libraries.2

Furthermore, we run a RTAI Linux operating system3 on the robot to enable
hard real-time execution.

As a running example, we use a single robot with the following hardware/
software configuration: The robot has three wheels realizing an omnidirectional
drive. The drive unit provides an incremental encoder to realize odometry func-
tionality, which calculates the relative position over time according to the drive
speed and the orientation of the omnidirectional drive of the robot. Due to the
fact that this odometry calculation becomes more and more imprecise over time,
we use an additional GPS like (NorthStar4) indoor navigation system to correct
the position in the long run. IR distance sensors are used to avoid obstacles
during movement. A more complex navigation logic uses these sensors for main-
taining a map2 as well as computing an appropriate route for the robot while
avoiding obstacles.

2.2 Automotive Development Process

A commonly applied development process for the development of automotive
embedded real-time systems according to [4] is depicted on the left in Fig. 2.
The development process includes three different stages, namely the simulation,
prototyping and pre-production stage. During the simulation stages models are
extensively used for realizing control functionality as well as for representing
the environment. At the prototyping stage, a transition from a model-based to
a software centric development approach is realized. Often, this is achieved by
using code generators that automatically derive source code from the models
used in the previous stage. In the pre-production stage, more and more as-
pects of the real system are involved, e.g., by using prototyping HW including
the processor type (with additional debugging support) that is later used. Fur-
thermore, parts of the real plant enable a realistic validation of the real-time
behavior.

2 For path planning and creating a map the MRPT library is used (www.mrpt.org).
3 www.rtai.org
4 www.evolution.com/products/northstar/

www.mrpt.org
www.rtai.org
www.evolution.com/products/northstar/

338 S. Wätzoldt et al.

2.3 AUTOSAR

The AUTomotive Open System ARchitecture was invented to further support
the development of complex and distributed systems. AUTOSAR5 is the new
de facto standard in the automotive domain. It defines a layered architecture,
standardized communication mechanism and a whole development methodology.
Furthermore, it supports the interaction between different car manufactures and
suppliers. Figure 1 gives an overview of the layered AUTOSAR architecture.

ECU-Hardware

Basic Software

AUTOSAR Runtime Environment

AUTOSAR
Software

AUTOSAR
Software

Component

Interface

AUTOSAR
Software

Component

Interface…

Fig. 1. The layered AUTOSAR architec-
ture according to the specification in [12]

The layer at the bottom represents
the real hardware including microcon-
troller and communication busses. An
abstraction layer on top of the real
hardware, included in the basic soft-
ware layer, offers standardized inter-
faces for accessing the HW. Further
functionality realizing the OS behav-
ior as well as functionality for realiz-
ing communication is included in the
basic software layer. The AUTOSAR
runtime environment (RTE) is re-
sponsible for realizing the communi-
cation from and to the top software
application layer. Software components (SWCs) realize application functional-
ity at the layer on top. There, the architecture style changes from a layered to
a component based approach [12]. SWCs communicate over well-defined ports
using AUTOSAR interfaces, which are realized by the RTE layer. Each SWC
consists of an arbitrary number of so-called Runnables that specify the behavior
entities of each component.6 Such Runnable entities are mapped on OS tasks,
which are scheduled and handled by the operation system included in the basic
software layer.

2.4 Automotive vs. Robotic Systems

In an automotive embedded system, usually applications are developed in such
a fashion that hard real-time capable functionalities are separated from soft
real-time applications. For example, it is quite common to deploy soft and hard
real-time functionality on disjoint execution nodes and direct communication
between them is avoided.

For robotic systems it is quite common to combine soft and hard real-time
behavior into one application. For example, a mobile robot needs to avoid ob-
stacles under hard real-time during navigation while calculating a route and
updating a map. Both functionalities need to be combined while predicting the

5 www.autosar.org
6 The functionality of a Runnable can be realized by a C/C++ function.

www.autosar.org

Integrated Software Development for Embedded Robotic Systems 339

execution time, e.g., of a route planing algorithm, is often not possible.7 Thus,
one difference between automotive and robotic systems concerning the real-time
behavior is, that soft and hard real-time capable functionalities need to be more
closely linked in robotic systems.

3 Development Environment

In this section, we describe our development environment, the tools and libraries
used in the different development stages as well as our test and verification pos-
sibilities during system development. According to [4], we distinguish three de-
velopment stages at different levels of abstraction targeting specific key aspects,
namely simulation, prototyping and pre-production. Validation and verification
activities are applied in each stage according to the given abstraction level. On
the left in Figure 2, the overall process including the different stages is shown.
In the following, we describe the applied validation and verification activities of
each stage in the form of the libraries, methods and tools used. Furthermore,
we show how to achieve an AUTOSAR conform system realizing the complex
behavior of the robot incrementally developed, validated and verified during the
different development stages.

MT/MiL

RP SiL

HiL

ST
MT = model test
MiL = model-in-the-loop
RP = rapid prototyping
SiL = software-in-the-loop
HiL = hardware-in-the-loop
ST = system test

SystemDesk

Robotino®View
Robotino®SIM

Simulation
stage

Prototyping
stage

Pre-production
stage

Matlab/ Simulink/
Stateflow

TargetLink

Fig. 2. On the left are the three development stages according to [4] in combination
with our toolchain during software and system development on the right

7 Execution time depends on the size of the map, which is usually not known before
runtime.

340 S. Wätzoldt et al.

3.1 Simulation Stage

turnRate

2.5

speedY

0

speedX

10

Position Y

Position X

Orientation

Odometry

vxIn

vyIn

omegaIn

stepSizeSec

posX

posY

phi

Constant

0.02

Fig. 3. Odometry in MATLAB,
which calculates the position from
fix drive speed and turn rate

Individual functions as well as composed
behavior, resulting from multiple individual
functionalities, are the subject of the simu-
lation stage. Data flow models in the form
of block diagrams (e.g., MATLAB/Simulink)
usually in combination with control flow mod-
els like Statecharts (e.g. Stateflow) are used
[6]. Normally, function development is done
independent from platform specific limitations
(memory capacity, floating point calculation
or effects resulting from discretization). Ad-
ditionally, environment specific signals and
other real sensor values (e.g. produced by
A/D, D/A converter or specific communica-
tion messages) are ignored for the sake of simplicity. The goal of the simulation
stage is to prove that the functional behavior can work and as a result provides
a first proof of concept for control algorithms.

As depicted in Fig. 2 and according to the aspect (IV), we mainly use the
MATLAB tool suite including the Simulink and Stateflow extension in this de-
velopment stage. Let us consider the MATLAB model shown in Fig. 3 , as an
example modeling the functionality of an odometry. It reads data from moving
sensors to calculate changes in the position over time according the actual orien-
tation and movement speed of the robot. In the simulation stage, such a model
is used to apply a so-called model test (MT), where individual functionalities
can be simulated sending static input values to the model (e.g., drive speed and
turn rate of the robot as in Fig. 3) and plotting the computed output values as
shown in Fig. 4. These one-shot/ one-way simulations are typical for the MT
step and do not consider the interaction with the environment or a plant model.
More complex behavior is constructed and validated in the form of individual
functionalities and running model-in-the-loop (MiL) simulations [4] including
preliminary environment models of the plant. At this point in time, feedback
simulations validate the developed functionality considering the dynamic behav-
ior of the environment. Outputs are sent to the plant model, which itself gives
feedback used as input for the function blocks in the next iteration of the MiL
simulation. In such a manner, the overall control law can be validated concerning
basic constraints like stability, safety or reliability of the system (VII).

In the case of robotic systems, such a plant model can be represented at dif-
ferent levels, e.g., by using models representing a single sensor, the behavior
of a single robot using multiple sensors or in the case of a complex simulation
realizing the behavior of multiple robots as well as relevant parts of the logi-
cal and/or physical environment. Using such a plant model in the context of
a MiL simulation, we must bridge the gap between our MATLAB models and

Integrated Software Development for Embedded Robotic Systems 341

the provided model of the plant (VI). For this purpose, on the one hand, we
use the RobotinoSim simulator in combination with the graphical RobotinoView
environment8 to create plant models (cf. the upper path from the simulation
stage in Fig. 2). Therefore, we implemented a block library for MATLAB in our
development environment, which allows access to sensors (e.g., distance sensors,
bumper, incremental encoder, electrical motors) and actuators according to re-
quirement (V). The sensors and actuators can be accessed individually inside a
MiL simulation supporting the validation of the models (VII). The RobotinoSim
simulator provides optimal sensor values excluding effects such as sensor noise.
Therefore, on the other hand, we can access the HW of the robot directly via a
wireless LAN connection. Due to the fact that we use the concrete HW in this
simulation setting, we could verify our functionalities and control algorithm with
real sensor values including measure errors and sensor noise.

To sum it up, the first column in Table 1 gives an overview of the three tools
used and our testing capabilities in the simulation stage as described previously.
Additionally on the right in of Fig. 2, one can follow the toolchain used via
the flow arrows.9 However, we are not limited to the RobotinoSim tool in our
development approach. We use this tool to show the proof of concept, but in
general it is possible to create block libraries in MATLAB or use existing ones10

for other robots, simulation frameworks or individual sensors/ actuators.

Table 1. Tools for testing and verification for each development stage

Tool
Stage

Simulation Prototyping Pre-production

MATLAB/Simulink/Stateflow � �
TargetLink �
SystemDesk � �
RobotinoSim/View � �
SystemDesk Simulator � �
Robotino Robot � � �

3.2 Prototyping Stage

The focus of this stage changes from design to implementation. While in the si-
mulation stage models are the main artifacts, in this stage the source code plays
a major role. In the following, we show how to support the prototyping stage
at the level of more isolated functional parts as well as at the level of the sys-
tem behavior by using the professional, commonly used tools of the automotive
domain.

8 In the following, we only mention the simulator, but we always use both tools to-
gether in combination. Tools see: www.festo-didactic.com

9 The described RP flow to the real robot is not shown in the figure.
10 For example this toolbox: http://petercorke.com/Robotics_Toolbox.html

www.festo-didactic.com
http://petercorke.com/Robotics_Toolbox.html

342 S. Wätzoldt et al.

Fig. 4. MiL (dashed
line) and SiL simula-
tion values of the odo-
metry block

Function Level – TargetLink: In the automotive do-
main, code generators are commonly used to derive an im-
plementation for the specific target platform. Usually, the
models from the simulation stage are directly used or re-
fined until a code generation step is possible. In our devel-
opment environment, the tool TargetLink from dSPACE
is fully integrated into MATLAB and can automatically
derive the implementation from behavior models in form
of C-Code. In this step, we use the same MATLAB blocks
as discusses in Section 3.1. So, we are able to seamlessly
migrate (VI) our functions and control algorithm from the
model level, realizing continuous behavior, to the imple-
mentation level, realizing a discrete approximation of the
original continuous behavior.11 We can configure several
characteristics of the desired target platform/ HW.

Software-in-the-loop (SiL) simulation is a first step from
the pure model execution to a code-based testing. Certain
assumptions can be validated by replacing more and more
models with code. While still executing the software on a
host pc and not on the real HW, different effects can be
analyzed, which result from chosen configuration parame-
ters during code generation. Just as in the MiL simulation
case, a SiL simulation can be applied in MATLAB using the generated source
code instead of the original model. The developer can switch between the MiL
and SiL simulation mode in MATLAB. Therefore, he can easily compare the si-
mulation results. Fig. 4, for example shows the monitored results of the position
as well as the orientation from the MiL and SiL simulation runs of the odometry.
The simulations run against the RobotinoSim simulator. In the MiL run (dashed
line), appropriate values for the actual position and orientation are calculated.
Because of rounding (discretization) effects in the SiL run, the calculated values
are much too low. So, the difference between pure model simulation and code
generation becomes visible.

The problem in this special example could be fixed by choosing different values
for the discretization over time. Calculating the position each 0.02 time units
(corresponds to a scheduling with a period of 20 ms, cf. the constant value in
Fig. 3) leads to very small offsets in the position, which is often rounded to zero
due to discretization. After we identified the problem, we could easily fix it in the
model. Instead of a 20 ms period, we double it to 0.04 time units for calculating
the position. After generating code again, we could validate our assumption,
which leads to a new requirement to trigger the functionality of the odometry
with a period of 40 ms. Using code generators for automatically deriving the

11 Discretization is applied at different levels. E.g., fixed point variables are used for
the implementation at the data level or time continuous differential equations are
mapped to discrete execution intervals at the timing level. For further details com-
pare [4].

Integrated Software Development for Embedded Robotic Systems 343

implementation realizing the behavior of initially created models support the
seamless migration from the model level to the implementation level as well as
allow to analyze effects arising from the implementation. Therefore, we cover the
aspects IV, VI, and VII developing robotic systems at this point.

Odometry
Runnable

Omnidrive
Runnable

}

}

Fig. 5. Mapping from MATLAB models to SWCs

System Level – SystemDesk:
For more complex sys-
tem behavior resulting
from the composition of
multiple individual func-
tionalities, we use the
component-based architec-
ture provided by the
AUTOSAR framework.
Individual functionalities
provided by the MAT-
LAB models are mapped
on components such as those depicted in Fig. 5. The generated source code
from TargetLink is mapped into the AUTOSAR SWC in the form of so-called
Runnables.

Fig. 6. SWC architecture in AUTOSAR

So, the same C-Code as in the
SiL simulation is used and thus,
a seamless integration (VI) of in-
dividual functions into the over-
all system behavior is achieved. In
our example, we split the MAT-
LAB model into two Runnables,
namely OdometryRunnable and Om-
nidriveRunnable.12 The SWC com-
municates to other ones over well
defined ports. Furthermore, the in-
put and output values are mapped to
AUTOSAR interfaces with data en-
tries and types respectively.

The AUTOSAR architecture consists of four SWCs13 (see Fig. 6). It real-
izes the autonomous movement of the Robotino robot and includes the SWCs
DriveOdometrySWC, DistanceSensorsSWC, NorthStar and NavigationLogic-
SWC. Each SWC provides the functionality such as that described previously
in Section 2.1.

System Configuration: In addition to the architecture modeling and the sep-
aration of functions in different SWCs, SystemDesk supports a task specification
for the underlying operating system. Runnables can be mapped to different tasks.
Furthermore, several task activation events including periodic and sporadic ones

12 This separation allows us to trigger the two Runnables with different periods.
13 Due to a better understanding, we choose this simple excerpt of a larger architecture.

344 S. Wätzoldt et al.

are supported and additional scheduling information like periods and priorities
can be modeled.

For a system simulation, one has to specify a concrete AUTOSAR conform
system configuration, which includes 1) a set of tasks, each consisting of one or
more Runnables, 2) one or more electronic control units, which are specialized
processors, and 3) communication capabilities (buses) with a concrete mapping
of messages, which have to be exchanged. In the following, we describe the first
point in more detail using our running example.

Fig. 7. Upper time line: scheduling of hard
real-time functions. Lower time line: com-
bined hard and soft real-time scheduling.

The Runnables DistanceSensor,
OmniDrive and CalculateDriveSpeed
are mapped to an OS task, which is
executed with a period of 20 ms. A
second task with the derived period
of 40 ms contains the Runnable Odo-
metry (cf. Section 3.2). The resulting
execution of the Runnables and the
schedule of the tasks is depicted in the
upper time line of Fig. 7. These four
basic functions run under hard real-
time constraints, so we can be sure
that all deadlines are met.

After adding more information to satisfy points 2) and 3), SystemDesk can
realize a system simulation. It automatically generates the required simulation
framework code according to the AUTOSAR standard, e.g., the RTE, mes-
sages, task bodies and trigger events. Furthermore, existing source files, gener-
ated by TargetLink (from the MATLAB models), are compiled and linked into
the tasks. The complete system runs in a special simulation environment inside
the SystemDesk tool and considers the HW configuration as well as OS task
specifics. Again, this simulation is executed on a host PC and thus belongs to
the prototyping stage. As depicted in Fig. 2 and the appropriate second column
in Table 1, we can validate the overall system behavior in the three following
scenarios considering the aspects (VI, VII, and VIII): First, we can monitor dif-
ferent output values, messages and variables inside the simulation environment
itself. Second, we can connect the Robotino simulation environment as a plant
model, which interacts with the SystemDesk tool. Finally, we are able to replace
the plant simulator with the real robot. Therefore, we have to establish a W-
LAN connection for the communication and to access the real sensors as well as
actuators. Unfortunately, this unpredictable connection can destroy the timing
behavior of the simulation, although the simulator tries to keep all deadlines. If
we find errors during our validation processes, we can change the configuration,
architecture or communication possibilities in SystemDesk and run our simula-
tions again. Furthermore, we are able to re-import SWCs into MATLAB and
therefore, switch between the different development stages.

According to the stage description in [4], Hardware-in-the-loop (HiL) simula-
tions can be applied in the prototyping stage too. In these kind of simulations,

Integrated Software Development for Embedded Robotic Systems 345

the ”unlimited” execution and testing hardware is often replaced by special eval-
uation boards with additional debugging and calibration interfaces, which are
similar to the final hardware configuration. Due to limitations of our robot labo-
ratory and missing evaluation boards, we do not use such HiL simulations. How-
ever, the integration of such boards can be carried out easily in the SystemDesk
tool by changing the HW specification during the system configuration step.

Adaptation to Robotic Systems: In contrast to classic (hard) real-time ap-
plications in the domain of automotive embedded systems, robotic systems must
realize functionalities, for which worst-case execution times (WCETs) are hard
or impossible to predict. As a result, the integration of such behavior can only
guarantee soft real-time constraints. In our application example, we use the
NorthStar sensor, which is accessed via a serial USB port. Due to the fact that
we use the default Linux OS driver, the timing behavior is unpredictable for that
port. Additionally, we implement the navigation logic, which uses this North-
Star sensor, with library function from the MRPT library (cf. Section 2.1) for
maintaining the map information of the explored topology. This includes the dy-
namic instantiation of an unknown number of C++ objects (classes) at runtime,
what hinders the WCET estimation, too. Therefore, the WCET can rarely be
estimated at the range of a few milliseconds.

Due to te fact that AUTOSAR does not directly support such a combination
of soft and hard real-time behavior, we need to adapt the framework to realize it
in such a way that: (1) the schedule guarantees the preservation of hard real-time
constraints for the basic functionality and (2) the communication between soft
and hard real-time functionality is achieved as such that only consistent data is
read.

In the first step, we separate the hard and soft real-time functions/ Runnables
and map them onto different OS tasks. A soft real-time task can be configured
with a lower priority in such a way that it will be interrupted by all hard real-
time tasks with a higher priority. Following this development guideline achieves
the first requirement (1). For the second one, we use special data events (DE) in
combination with Sender/Receiver-interfaces of the AUTOSAR standard. Such
events can be used to trigger the execution of Runnables inside an OS task. A DE
is sent from the hard real-time task (resp. Runnable) to trigger the execution of
the soft real-time Runnable. The interruptible soft real-time function produces
another DE, iff, the requested output data is in a consistent state (2). The hard
real-time task can read the data in its next period and triggers the soft real-time
function again if required.

The lower time line in Fig. 7 illustrates the combined scheduling of soft and
hard real-time tasks. The soft real-time task is triggered via a DE generated by
the OmniDrive Runnable. During execution, it is preempted in order to ensure
the timing deadlines of the other hard real-time Runnables. After the NorthStar
Runnable has finished its execution, it sends another DE to indicate completion,
which includes that the consistent data results can be read in the next period of
the OmniDrive Runnable.

346 S. Wätzoldt et al.

Our described development approach supports the prototyping stage of ro-
botic systems very well. We are able to incrementally refine more and more
information to specify the system while seamlessly integrating artifacts of the
previous stages (VI). Activities like function development and system configura-
tion can be applied in a round-trip engineering approach (I, II). First, we develop
the control functions in MATLAB (II). Afterwards, we generate code using the
TargetLink code generation capabilities (IV). At this point, we can manually
integrate additional, arbitrary functionality in C/ C++or use existing libraries
(V). As soon as sufficient code artifacts and libraries are provided, we are able to
use the code generation and simulation capabilities of the SystemDesk tool (IV,
VII). Existing SWCs, e.g., developed in a previous project can be seamlessly
integrated into the system architecture and new components can be exported
as library elements for other projects. Additionally, we have shown the idea of
creating a combination of hard and soft real-time tasks using the AUTOSAR
framework during this stage (VIII).

3.3 Pre-production Stage

Within the pre-production stage, usually, a prototype of the real system is built.
This prototype is tested against external environmental influences (such as tem-
perature, vibration or other disturbances). The goal of this stage is to prove
whether all requirements and constraints are still met on the real HW. During
this last integration of all components and system parts, upcoming problems
should be fixed as early as possible and before the final production of the prod-
uct starts [4]. In our setting, we did not built any HW prototypes. Instead, we
integrate the overall functions, components as well as the generated RTE and
tasks to a complete system, compile and run it on the target processor of the
robot14. So in this last step, we have no simulation semantic and W-LAN con-
nection to other tools. We can fully operate the behavior of the robot in hard
real-time. For verification, we use some hard real-time logging mechanism of the
robot OS. Furthermore, we can change the hardware composition of the robot
by adding or removing special sensors and actuators (see Section 2.1).

4 Related Work

Tackling the complexity of robotic and other embedded systems, we found a
great deal of previous work covering partial aspects of developing such systems.
According to our found aspects in Section 1 and our focus on the automotive
domain, we combine the existing development methodology from [4] and the
AUTOSAR standard. We evaluate our approach in a robotic production scenario
using the component-based AUTOSAR architecture [12]. Other frameworks of-
ten cover only parts of the found aspects. RT-Middleware [1,2] and ORCA [5]
focus on the specification of components including interfaces and ports (aspects

14 We can automatically transform AUTOSAR compliant applications to the RTAI
Linux.

Integrated Software Development for Embedded Robotic Systems 347

IV, V, and VII). They lack the integration of an overall methodology as well
as architecture specification. Very similar to the AUTOSAR approach but with
the focus on the robotic domain is the MOAST framework [3], which covers the
points II, III, IV, and partially VII. However, a seamless integration of an overall
methodology and the support for different tools is missing. A good comparison
with other frameworks can be found in [8].

In the embedded world, testing and simulation are the major activities to ver-
ify the behavior of the system [4]. We have made intensive use of the MATLAB,
Robotino and SystemDesk simulators. However, other simulators like Gazebo [7]
or Webots [9] are applicable as well.

Furthermore, there are other tools for modeling and simulation of AUTOSAR
conform parts of the system architecture as the Real-Time Workshop(RTW)
(MATLAB extension) from the MathWorks company.15 The RTW extension is
limited to component functionality and interfaces. The overall system architec-
ture description is needed beforehand [11]. Parts of this description can be built
by the Volcano Vehicle Systems Architect16 (VSA), which can import and export
AUTOSAR conform architecture description [10]. However, all these different
tools can be used instead of the tools presented in this paper, if the integration
in the overall methodology as well as the support for the different development
stages is guaranteed.

Considering real-time constraints and combining hard and soft real-time tasks
are important because of the support for library functionalities in different use-
cases. For example, our navigation logic in this paper cannot be done in a pre-
dictive amount of time. Combining soft and hard real-time guarantees (1) a
basic hard real-time behavior of the robotic system and (2) supports the devel-
opment of complex algorithm and higher system components. Existing robotic
frameworks as the Robot Operating System17 or Microsoft Robotics Studio18 are
well established for developing complex robotic systems. They have drawbacks
concerning the integration of hart real-time constraints.

5 Conclusion

We have shown in this paper an overall methodology (I) along with different ex-
emplary development activities as well as artifacts on different levels of abstrac-
tion (II, III). We know that not all tasks can be executed in HRT. Therefore, we
have shown the idea of combining different hard and soft real-time tasks into the
overall system using the AUTOSAR approach (VIII). Furthermore, we are able
to integrate several tools and external libraries into our overall toolchain (IV, V,
VI). However, we are not limited to the tools we show in this paper. This pro-
vided flexibility is stabilized by a clear structure of different development stages
(III) allowing a round-trip engineering for different functions, the integration of

15 www.mathworks.com/embedded-systems/
16 www.mentor.com/
17 www.ros.org
18 www.microsoft.com/robotics/

www.mathworks.com/embedded-systems/
www.mentor.com/
www.ros.org
www.microsoft.com/robotics/

348 S. Wätzoldt et al.

components as well as the simulation and testing of the development artifacts
to the point of the complete system on the target platform. Therefore, we adapt
ideas of the automotive domain to the development of robotic systems.

As future work, we want to build a complex robot production scenario apply-
ing the proposed methodology of this paper and evaluate the interaction of soft
and hard real-time system parts.

References

1. Ando, N., Suehiro, T., Kitagaki, K., Kotoku, T., Woo-Keun, Y.: RT-middleware:
distributed component middleware for RT (robot technology). In: 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pp. 3933–3938 (2005)

2. Ando, N., Suehiro, T., Kotoku, T.: A Software Platform for Component Based
RT-System Development: OpenRTM-Aist. In: Carpin, S., Noda, I., Pagello, E.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp.
87–98. Springer, Heidelberg (2008)

3. Balakirsky, S., Proctor, F.M., Scrapper, C.J., Kramer, T.R.: A Mobile Robot Con-
trol Framework: From Simulation to Reality. In: Carpin, S., Noda, I., Pagello, E.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp.
111–122. Springer, Heidelberg (2008)

4. Broekman, B., Notenboom, E.: Testing Embedded Software. Wesley (2003)
5. Brooks, A., Kaupp, T., Makarenko, A., Williams, S., Oreback, A.: Towards

component-based robotics. In: International Conference on Intelligent Robots and
Systems, pp. 163–168 (2005)

6. Giese, H., Neumann, S., Niggemann, O., Schätz, B.: Model-Based Integration. In:
Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS. LNCS,
vol. 6100, pp. 17–54. Springer, Heidelberg (2010)

7. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 2149–2154 (2004)

8. Manso, L., Bachiller, P., Bustos, P., Núñez, P., Cintas, R., Calderita, L.: Robo-
Comp: A Tool-Based Robotics Framework. In: Ando, N., Balakirsky, S., Hemker,
T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 251–262.
Springer, Heidelberg (2010)

9. Michel, O.: Webots: Professional Mobile Robot Simulation. International Journal
of Advanced Robotic Systems 1, 39–42 (2004)

10. Sandmann, G., Seibt, M.: AUTOSAR-Compliant Development Workflows: From
Architecture to Implementation - Tool Interoperability for Round-Trip Engineering
and Verification and Validation. Tech. Rep. 2012-01-0962, SAE International (2012)

11. Sandmann, G., Thompson, R.: Development of AUTOSAR Software Components
within Model-Based Design. Tech. Rep. 2008-01-0383, SAE International (2008)

12. AUTOSAR EXP LayeredSoftwareArchitecture.pdf, page id: 94ju5 (2011),
http://www.autosar.org/

http://www.autosar.org/

Combining IEC 61499 Model-Based Design

with Component-Based Architecture for
Robotics

Li Hsien Yoong, Zeeshan E. Bhatti, and Partha S. Roop

Department of Electrical and Computer Engineering
University of Auckland
Auckland, New Zealand

Abstract. The model-driven approach is an increasingly popular trend
in software design. It provides many benefits in terms of system design,
reusability, and automatic code generation. In the industrial automation
domain, the IEC 61499 standard is a recent initiative that adopts this
approach. It offers an open, platform-independent framework for design-
ing distributed control systems, whereby the interface and behaviour of
a component is described using a function block. On the other hand, in
the robotics domain, the Robotic Technology Component specification
proposes a framework that allows software components to be easily inte-
grated in a robotic system. The focus of that specification is not so much
on the definition of each component’s internal behaviour, but rather on
the management and interaction of those components. The combination
of both these standards offers a comprehensive solution for designing
robotic software components in a model-driven approach. This paper
describes a tool-chain for doing so, and illustrates its viability through
an example.

Keywords: IEC 61499, model-based design, Robotic Technology Com-
ponent, synchronous programs.

1 Introduction

The use of model-based design [11] for software development is a growing trend in
the industry. As in other engineering disciplines, the central idea behind model-
based techniques in software engineering is to facilitate the specification and
analysis of complex systems using abstractions. For the case of software, this
practice results in a software system being decomposed into components, with
each component modelling an aspect of the problem domain.

Software components used in model-based design have well-defined interfaces,
which specify the functionality of a given component in terms of input/output be-
haviour. Multiple components can be connected together through their respective
interface to form a complete software system. The adoption of component-based
practices brings many benefits to software design, implementation, maintenance,
and reuse. For instance, the interface of a component serves as a “contract” to other

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 349–360, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

350 L.H. Yoong, Z.E. Bhatti, and P.S. Roop

components, which simplifies the decomposition of the problem domain. This in
turn facilitates rapid development by providing a clear delineation of functionality
between components, as well as the ability to easily perform isolation testing.

One of the challenges faced by robot developers is the co-ordination of various
software components within an integrated system [5]. The Robotic Technology
Component (RTC) specification [10] offers an open architecture for accomplish-
ing this. It proposes a middleware layer (called RT-middleware) that provides a
simple way for integrating new functionality within a robotic system using mod-
ularized software components (called RT-components). Robotic systems built on
this architecture consist of networks of RT-components connected to each other
through their interfaces.

The need for reliable and deterministic software components has also emerged
as an orthogonal challenge, especially for robotic systems used in safety-critical
applications. Commercial pressures often require that this challenge be met with-
out increasing development time and cost unreasonably. Existing literature has
made a strong case that this goal can only be achieved by using processes that
favour error prevention over error detection and forward prediction of correct-
ness, rather than retrospective demonstration of correctness [1].

A key enabler to attain such correct-by-construction software components is
the use of mathematically-sound formal methods. However, industry practition-
ers are often hesitant to go down this path due to their unfamiliarity with for-
mal methods. A common trend in overcoming this barrier is to embed formal
programming semantics within intuitive graphical notations that are already ac-
cepted by the industry. One such example of this is the formalization of the
visual artefacts of the IEC 61499 standard [6] using the synchronous approach
[13]. That standard provides a framework for designing distributed industrial
automation systems using a component-oriented approach based on function
blocks.

This paper proposes to utilize IEC 61499 function blocks to develop reliable
and deterministic RT-components that can be used in safety-critical robotic
applications. Unlike RT-components which only provide for the component in-
terface to be specified, function blocks allow both the interface and the internal
behaviour of the component to be specified. This paper leverages the synchronous
approach for automatically generating code from function blocks [13], and ex-
tends that technique to transform the resultant code into RT-components. This
provides a pathway to obtain robotic software components using a formal model-
based approach that has already been proven in the automation domain.

The remainder of this paper will discuss how this has been achieved. In the
next section, an overview of both the component-based technologies will be il-
lustrated using an example. Then, Sect. 3 will describe the implementation of
a tool-chain which enables function blocks to be specified, and code for RT-
components to be automatically generated from that specification. Experimen-
tal evaluations of this tool-chain are provided in Sect. 4, before concluding in
Sect. 5.

Combining IEC 61499 with Component-Based Architecture for Robotics 351

Fig. 1. Layout of a production cell

Fig. 2. IEC 61499 implementation of the production cell

2 Overview

Fig. 1 shows the simplified layout of an automated production cell, which was
first described in a case study in [8]. That production cell has an elevating table
which accepts a blank plate from a feeding conveyor belt. When a plate arrives,
the table rises to the level of a robotic arm. The robotic arm then picks up the
plate and places it into a forging press. Once the plate is forged, the robotic arm
picks up that plate and puts it onto a deposit belt.

Using this as an example, the main design artefacts of IEC 61499 will be
illustrated in the following subsection.

2.1 IEC 61499

Fig. 2 shows the function block model corresponding to the production cell of
Fig. 1. The top-level function block representing the production cell has been
named as System, while the other blocks that make up the production cell has
been intuitively named as Belt, Table, Sensor, Robot, Press, and Deposit—each
corresponding to a particular physical component being modelled.

The IEC 61499 standard prescribes three different kinds of function blocks,
namely, the basic, composite, and service interface function blocks. Irrespective
of the kind, each function block has a well-defined interface, as exemplified in

352 L.H. Yoong, Z.E. Bhatti, and P.S. Roop

(a) (b)

Fig. 3. Example of a basic function block, with (a) depicting the interface, and (b) the
execution control chart

Fig. 3(a). Input ports are specified on the left, while output ports are specified
of the right side of the block. Function blocks also distinguish between event and
data ports: Event ports are drawn on the upper half of the block, while data
ports are drawn on the lower half.

The behaviour of basic function blocks is defined by a Moore-type state ma-
chine, known as an execution control chart (ECC). This is illustrated in Fig. 3(b).
States are represented by rectangles, with a bold (or double) outline used to in-
dicate the initial state. A state can be associated with zero or more actions,
which may consist of an output event to be emitted and/or an algorithm to be
executed. An action that is associated to a state is performed once on every entry
to that state. As an example, consider the INIT state in Fig. 3(b). The action
consisting of the ALG1 algorithm and the INITO output event is associated to
that state. The INIT state will be entered whenever the INIT input event is
present in the START state. Whenever that happens, the ALG1 algorithm will
be executed and the INITO event emitted exactly once.

Unlike basic function blocks, the behaviour of composite function blocks is
defined by a network of other blocks instead of an ECC. This provides a means
to hierarchically encapsulate networks of function blocks within a single block.
Service interface function blocks, on the other hand, provide the means to en-
capsulate low-level details, such as device drivers and communication protocols,
within a function block.

In Fig. 2, System is a composite function block, while all the other blocks
are basic function blocks. As can be seen, this component-oriented approach for
describing software is intuitive, and provides sufficient detail for fully executable
code to be generated from it.

2.2 Robotic Technology Component

The Robotic Technology Component specification [10] defines a component model
for robotic software (called RT-component), as well as a systematic infrastruc-
ture for composing those components (called RT-middleware) in a system. RT-
components may have two kinds of ports, namely:

Combining IEC 61499 with Component-Based Architecture for Robotics 353

1. data ports, which are used for data exchange between RT-components, and

2. service ports, which are used for service-oriented communication (e.g, com-
mands or function calls) between RT-components.

Every RT-component is created by a manager (known as the RTC manager),
which is part of the middleware. Each RT-component goes through a common
life-cycle that is made up of the Created, Alive, and End states. The Alive state
consists of several sub-states, each having an associated callback function in-
terface. The RTC manager is responsible for a component’s life-cycle, as well
as for invoking each callback associated to a given state. Thus, the behaviour
of an RT-component is specified by coding the logic for every callback function
required. As an example, the manager will call the onInitialize function after
creating an instance of an RT-component, and the onFinalize function when
the RT-component has finished. The main logic of an RT-component is imple-
mented in the onExecute function, which will get called repeatedly when the
component is in its active state.

Collectively, the states of the component and the callback functions form the
core logic of the component. When an RT-component is created, it is assigned
to an execution context, which then executes the RT-component’s core logic.

The specification provides for a number of different execution semantics that
may be applied to an RT-component, e.g., periodic sampled data processing
(also known as data flow), and stimulus response processing (also known as
asynchronous or discrete event processing). Depending on the desired execution
semantics, an RT-component needs to be assigned to a different kind of execution
context: The data flow semantics correspond to the periodic execution kind, while
the asynchronous semantics correspond to the event-driven execution kind.

So, while the RTC specification does not provide a structured model to specify
the internal behaviour of a component, like ECCs in IEC 61499, its strength lies
in the management and integration of the components. In the next section,
we will see how IEC 61499 may be combined with this specification to obtain
a more comprehensive model-driven approach for developing robotic software
components.

3 Implementation

In the model-based approach to software development, the typical workflow be-
gins with a decomposition of the requirements specification into components,
followed by a description of those models in a suitable modelling language, code
generation from those models, and compilation of the code for deployment onto
a particular target. For the approach proposed in this paper, this workflow,
together with the tools for each step, is illustrated in Fig. 4.

In that figure, Fbc refers to the function block compiler described in [12,14],
while RtcTemplate is a tool that generates templates (skeleton code and func-
tion stubs) for RT-components. RtcTemplate is part of OpenRTM-aist [2],
which is an open source implementation of the RTC specification. Fb2rtc is

354 L.H. Yoong, Z.E. Bhatti, and P.S. Roop

Fig. 4. Workflow of a model-based approach for creating robotic software components

a tool that has been developed in the context of this work for the purpose of
deriving RT-components from IEC 61499 function blocks.

All these tools, together with the C++ compiler, form a tool-chain for deriving
RT-component executables using a model-based design with function blocks.
To enable this whole process to be done seamlessly, an integrated development
environment (IDE), called BlokIDE (formerly known as TimeMe Studio) [3],
has been extended. BlokIDE allows a designer to create function blocks, and to
seamlessly generate RT-component code from them. The code generation itself
relies on Fbc, RtcTemplate, and Fb2rtc.

The following subsections will describe the code generation process and the
IDE in greater detail. We first provide a brief overview of the nature of the code
generated by Fbc and RtcTemplate. Then, we describe how Fb2rtc maps
function blocks into RT-components, before going on to show how the resultant
code from Fbc and RtcTemplate are weaved together. Finally, we describe
the IDE and explain how all these are brought together in a seamless tool-chain.

3.1 FBC and RtcTemplate

Using Fbc, code for a given function block description is generated following the
synchronous model of execution [12]. With this approach, a portion of code for
each function block within a network gets executed in a periodic cycle, called
a tick. For basic function blocks, the execution in each tick corresponds to the
evaluation of transitions in the current state of an ECC, and the subsequent
computation of action(s) in the destination state, should a transition be taken.
This use of a well-defined periodic cycle results in software with predictable
temporal properties, making this a well-suited technique for designing safety-
critical systems.

Fbc compiles every function block type it encounters into a separate C struc-
ture, whose members describe the event-data interface, as well as the local data
(if any) of that function block. The compilation process also results in at least
two functions, named <FBType>init and <FBType>run, for each function block
type. <FBType>init serves as the constructor method for the corresponding func-
tion block type, since C does not have built-in support for object constructors
common in object-oriented programming languages.

Combining IEC 61499 with Component-Based Architecture for Robotics 355

For basic function blocks, the <FBType>run function implements the exe-
cution code for the corresponding ECC. For composite function blocks, the
<FBType>run function implements a netlist that describes the interconnection
of components within the composite block. The execution of component blocks
within the composite function block is in turn invoked through their respective
<FBType>run functions. Both the <FBType>init and <FBType>run functions for
a particular function block will eventually get embedded into the corresponding
RT-component, as we shall see later.

RtcTemplate. Various types of template code can be generated for an RT-
component using RtcTemplate. RtcTemplate may be invoked with various
parameters to generate template code for RT-components having different prop-
erties, such as the desired component execution semantics and the corresponding
execution context, as well as the number and types of various input/output data
ports. The template code may be generated in C++, C#, Java, Python, or Visual
Basic .NET.

For the purpose of this work, only C++ code was generated to enable sim-
ple integration with the output of Fbc. The generated header file contains the
class definition of the RT-component, which includes members such as the in-
put/output data ports of the component. The implementation file, meanwhile,
contains stubs for the various callback functions. The main point to note here is
that the generated code is merely a “skeleton,” and does not define the compo-
nent’s behaviour in any way.

3.2 FB2RTC

Fb2rtc performs its operation in two phases:

– first, it extracts the port information from a given function block in order
to produce an RT-component with equivalent data ports;

– then, it refines the behaviour of an RT-component by embedding the code
generated by Fbc into the function stubs created by RtcTemplate.

These two phases are described next.

Generating RT-Components from Function Blocks. Fb2rtc begins this
process by extracting the port descriptions of a function block and mapping
them into equivalent data ports of an RT-component. The mapping of data
ports from function blocks to RT-components is straightforward: A simple look-
up table is all that is needed to map function block data types to RT-component
data types. However, the mapping of event ports is not so straightforward, since
RT-components do not have event ports.

With the synchronous approach, events in function blocks are either present
or absent in a tick. Unlike data, events are not persistent, meaning that events
that are present in a given tick will no longer be present in the next if it is
not again emitted in that tick. For the purpose of generating RT-components,

356 L.H. Yoong, Z.E. Bhatti, and P.S. Roop

1 RTC::ReturnCode_t FBBasicFunctionBlock::onExecute(RTC::UniqueId ec_id)

2 {

3 if (m_INITIn.isNew()) {

4 m_INITIn.read();

5 _functionBlock._input.event.INIT = m_INIT.data;

6 }

7 if (m_REQIn.isNew()) {

8 m_REQIn.read();

9 _functionBlock._input.event.REQ = m_REQ.data;

10 }

11 if (m_QIIn.isNew()) {

12 m_QIIn.read();

13 _functionBlock._QI = m_QI.data;

14 }

15 BasicFunctionBlockrun(&_functionBlock);

16 m_INITO.data = _functionBlock._output.event.INITO;

17 m_INITOOut.write();

18 m_CNF.data = _functionBlock._output.event.CNF;

19 m_CNFOut.write();

20 m_QO.data = _functionBlock._QO;

21 m_QOOut.write();

22 return RTC::RTC_OK;

23 }

Fig. 5. Code generated for the onExecute function for the function block in Fig. 3

Fb2rtc simply maps event ports to Boolean data ports in the resulting RT-
component. Events that are present are represented by a “true” value, while
those that are absent are represented by a “false” value. This mapping enables
ECC transitions that are guarded by events to be preserved. The transient nature
of events, however, requires additional code to be explicitly generated. This takes
place while weaving the outputs of Fbc and RtcTemplate together during the
second phase of Fb2rtc, which will be described next.

Once the port mappings are completed, Fb2rtc invokes RtcTemplate by
passing it the appropriate port parameters. In addition, RtcTemplate is given
parameters to generate an RT-component that adopts the data flow execution
semantics and runs using the periodic execution context. This choice of exe-
cution semantics and execution context is amenable to the synchronous model
of function blocks used in [12]. In particular, the periodic execution rate maps
directly to the notion of a tick in the synchronous approach. This results in soft-
ware components that have predictable temporal properties, which is desirable
for safety-critical applications.

Weaving the Generated Code together. The main task that Fb2rtc per-
forms in this phase is to embed the code generated by Fbc into the skeleton code
produced by RtcTemplate. A sample of the onExecute function produced by
Fb2rtc for the function block of Fig. 3 is shown in Fig. 5.

Combining IEC 61499 with Component-Based Architecture for Robotics 357

The three main places where the code generated byRtcTemplate is modified
are:

1. in the RT-component class definition, where an instance of the function block
structure generated by Fbc is created;

2. in the onInitialize function stub, where a call to the <FBType>init func-
tion is inserted; and

3. in the onExecute function stub, where a call to the <FBType>run function
is inserted (line 15 of Fig. 5). Also, additional code is generated by Fb2rtc

at this point to pass information from the input ports of the RT-component
to the encapsulated function block (lines 3–14), and from the output ports
of the function block to the RT-component (lines 16–21).

To ensure that the transient properties of events are preserved, output events
are cleared at the start of each tick, while input events are cleared at the end
of each tick within the <FBType>run function. Moreover, the isNew method is
called for each Boolean input port corresponding to an event input port before
its value is read to ensure that only fresh values can result in new input events
to the function block (lines 3–14). This ensures that the Boolean values repre-
senting events at the RT-component interface are represented faithfully to the
encapsulated function block.

3.3 BlokIDE

BlokIDE is a Microsoft Visual Studio based integrated development environ-
ment that aims to facilitate the design of safety-critical embedded systems.
BlokIDE comprises of model editors, a file-based project system, a debug en-
gine, a model verifier, and a static timing analyser. It is built on the extensibility
model [9] of Visual Studio, which provides a component-oriented architecture.
The components interact with each other through the global service provider
by providing and consuming services. The UML component diagram in Fig. 6
presents the component dependencies and interfaces.

The model editors allow a developer to create software in a model-driven
fashion using the standard visual artefacts of IEC 61499. The timing analyser is
an additional plug-in to BlokIDE that can be used to determine the worst-case
reaction time of a function block network [7]. This facilitates the development of
real-time systems. The custom debug engine allows a developer to perform cycle-
based simulation (corresponding to each tick) of a model on a desktop machine
to check its behaviour prior to the actual execution on the target platform. The
model verifier provides formal verification to prove that the model holds certain
safety and liveness properties [4]. In the case of a possible violation, the model
verifier provides a counter-example. A custom project system aggregates all the
models created by a developer, and provides the backbone for the build process,
code generation, timing analysis, and simulation features.

The main components of BlokIDE that have been extended to support the
seamless development of RT-components from function blocks are the Project

358 L.H. Yoong, Z.E. Bhatti, and P.S. Roop

Fig. 6. The component diagram for BlokIDE

System and Compiler components. A project in BlokIDE can be created with
several configurations. These configurations enable BlokIDE to interact with
the project elements using a variety of back-end tools for different purposes, such
as formal verification, timing analysis, and code generation. For this work, a new
configuration for mapping function blocks to RT-components was created. The
primary back-end tool associated with this configuration is Fb2rtc.

The Compiler component of BlokIDE was also extended to provide the nec-
essary interface to invoke Fb2rtc, as well as to report any message or error
coming from Fb2rtc. With these enhancements, BlokIDE is able to provide a
seamless environment to automatically generate code for RT-components with
their internal behaviour specified using function blocks.

4 Evaluation of the Tools

The tool-chain described in the previous section has been used to develop RT-
components for the example in Fig. 2. Through this experience, we found that
the proposed approach simplified the creation of RT-components in several ways.

In the initial development stage, BlokIDE enabled an easy decomposition
of the production cell logic into various software components. The behaviour of
each software component could be designed individually as function blocks and
tested using simulation. Once each function block’s behaviour had been verified,
the process of composing them together could be intuitively done by graphically

Combining IEC 61499 with Component-Based Architecture for Robotics 359

connecting their ports together to form a network. Integration testing was also
straightforward, as the entire network could be simulated, and specific issues
pertaining to a particular block could be localised by “stepping” into that block
while simulating the entire network.

The key advantage of the approach proposed in this paper was in the final
code generation phase. An RT-component encapsulating the full functionality
of the production cell was successfully generated and compiled using g++ for a
Linux-based platform.

We also experimented with different deployment scenarios, where the vari-
ous function blocks in Fig. 2 were generated as separate RT-components. It is
here that the strengths of the RTC specification shine: While IEC 61499 allows
for distributed deployment of function blocks through the use of special com-
munication function blocks, the distribution of RT-components is completely
transparent to the designer, as the middleware abstracts the communication be-
tween components. No changes were required in the logic of the original function
blocks for this purpose.

5 Conclusions and Future Work

The combination of the model-based approach of IEC 61499 with the component-
oriented versatility of the RTC specification offers the best of both worlds. It
provides an intuitive manner to create reliable robotic software components
following the synchronous model of execution, while enabling transparent com-
munication between those components in centralized as well as distributed de-
ployment scenarios. The interface, as well as the behaviour of an RT-component,
can be automatically generated using the proposed approach.

At present, Fb2rtc generates RT-components with the data flow execution
semantics only, as Fbc assumes a synchronous model of execution for a func-
tion block network. However, Fbc enables separate networks of function blocks
(known as resources in IEC 61499), to communicate asynchronously with each
other via special communication function blocks. We intend to enhance Fb2rtc
to generate RT-components with asynchronous execution semantics directly from
resources in the near future. The communication function blocks in each resource
will be compiled as corresponding data ports in the resulting RT-components.

The ideas espoused in this paper has been demonstrated through an actual
tool-chain capable of supporting realistic software engineering development. We
have drawn from, and have enhanced some existing tools, as well as developed
a new tool to support this endeavour. As the need for safety in robotic software
components continues to grow, we believe that our approach, which combines
model-based design, open standards, and synthesis tools founded on rigorous
methods, offers a practical solution for the future.

Acknowledgments. The authors would like to thank I-Han Kuo for the assis-
tance he provided while working with OpenRTM-aist.

360 L.H. Yoong, Z.E. Bhatti, and P.S. Roop

References

1. Amey, P., Dion, B.: Combining model-driven design with diverse formal verifi-
cation. In: 3rd European Congress on Embedded Real Time Software, Toulouse
(January 2006)

2. Ando, N., Suehiro, T., Kotoku, T.: A Software Platform for Component Based
RT-System Development: OpenRTM-Aist. In: Carpin, S., Noda, I., Pagello, E.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2008. LNCS (LNAI), vol. 5325, pp.
87–98. Springer, Heidelberg (2008)

3. Bhatti, Z.E.: A Model-Driven Approach for Safety Critical Systems. M.E. the-
sis, Department of Electrical and Computer Engineering, University of Auckland
(2011), https://researchspace.auckland.ac.nz/handle/2292/6421

4. Bhatti, Z.E., Sinha, R., Roop, P.S.: Observer based verification of IEC 61499 func-
tion blocks. In: IEEE International Conference on Industrial Informatics (INDIN),
pp. 609–614 (July 2011)

5. Biggs, G., Ando, N., Kotoku, T.: Coordinating Software Components in a
Component-Based Architecture for Robotics. In: Ando, N., Balakirsky, S., Hemker,
T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 168–179.
Springer, Heidelberg (2010)

6. International Electrotechnical Commission, Geneva: International Standard IEC
61499-1: Function blocks – Part 1: Architecture, 1st edn. (January 2005)

7. Kuo, M.M.Y., Sinha, R., Roop, P.S.: Efficient WCRT analysis of synchronous
programs using reachability. In: 48th ACM/IEEE Design Automation Conference
(DAC), San Diego, pp. 480–485 (June 2011)

8. Lewerentz, C., Lindner, T. (eds.): Formal Development of Reactive Systems. LNCS,
vol. 891. Springer, Heidelberg (1995)

9. Microsoft: MSDN: Microsoft Visual Studio Extensibility Developer Center (2010),
http://msdn.microsoft.com/en-us/vstudio/vextend.aspx

10. Object Management Group: Robotic Technology Component Specification, Version
1.0 (April 2008), http://www.omg.org/spec/RTC

11. Selic, B.: The pragmatics of model-driven development. IEEE Software 20(5), 19–
25 (2003)

12. Yoong, L.H., Roop, P.S., Salcic, Z.: Efficient implementation of IEC 61499 func-
tion blocks. In: IEEE International Conference on Industrial Technology (ICIT),
Gippsland (February 2009)

13. Yoong, L.H., Roop, P.S., Vyatkin, V., Salcic, Z.: A synchronous approach for IEC
61499 function block implementation. IEEE Transactions on Computers 58(12),
1599–1614 (2009)

14. Yoong, L.H., Shaw, G.D., Roop, P.S., Salcic, Z.: Synthesizing globally asynchronous
locally synchronous systems with IEC 61499. IEEE Transactions on Systems, Man,
and Cybernetics, Part C: Applications and Reviews Preprint(99), 1–13 (2012)

https://researchspace.auckland.ac.nz/handle/2292/6421
http://msdn.microsoft.com/en-us/vstudio/vextend.aspx
http://www.omg.org/spec/RTC

A Reuse-Oriented Development Process

for Component-Based Robotic Systems

Davide Brugali1, Luca Gherardi1, A. Biziak1,
Andrea Luzzana1, and Alexey Zakharov2

1 University of Bergamo, DIIMM, Italy
{brugali,luca.gherardi,andrea.luzzana}@unibg.it

2 GPS GmbH, Stuttgart, Germany
zakharov@gps-stuttgart.de

Abstract. State of the art in robot software development mostly relies
on class library reuse and only to a limited extent to component-based
design. In the BRICS project we have defined a software development
process that is based on the two most recent and promising approaches
to software reuse, i.e. Software Product Line (SPL) and Model-Driven
Engineering (MDE). The aim of this paper is to illustrate the whole
software development process that we have defined for developing flexible
and reusable component-based robotics libraries, to exemplify it with the
case study of robust navigation functionality, and to present the software
tools that we have developed for supporting the proposed process.

1 Introduction

The routine use of existing solutions in the development of new systems is a key
attribute of every mature engineering discipline. Software reuse is a state of the
practice development approach in various application domains, such as telecom-
munications, factory automation, automotive, and avionics. Software Engineer-
ing has produced several techniques and approaches for promoting the reuse of
software in the development of complex software systems. A survey can be found
in [3] (Sidebar A Historical Overview of Software Reuse).

In Robotics, software reuse is typically conceived as cut and paste of code lines
from program to program: this practice is called opportunistic software reuse
and might work only for the development of simple systems (e.g. for educational
purposes) or for unique systems (e.g. a research prototype).

In contrast, the development of industrial-strength robotic systems that aim to
become commodity, require a systematic approach to software reuse. Systematic
software reuse is the routine use of existing software or software knowledge to
construct new software, so that similarities in requirements, architectures and
design between applications can be exploited to achieve substantial benefits in
productivity, quality and business performance.

If a company that commercializes integrated robotic systems wants to achieve
customer value through large commercial diversity with a minimum of technical
diversity at minimal cost, the best approach to software development is the
Software Product Line (SPL)[5].

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 361–374, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

362 D. Brugali et al.

An SPL is a set of applications (products) that share many (structural, behav-
ioral, etc.) commonalities and together address a particular domain. The term
domain is used to denote or group a set of systems (e.g. mobile robots, humanoid
robots) or functional areas (motion planning, deliberative control), within sys-
tems, that exhibit similar functionality. Each new application is built from the
SPL repository of common software assets (e.g. architectural and design models,
software components). In the BRICS project we have defined a software develop-
ment process that exploits the SPL approach and accounts for two peculiarities
of the robotics field:

– Today, a huge corpus of software applications, which implement the en-
tire spectrum of robot functionality, algorithms, and control paradigms, is
available in robotic research laboratories and potentially could be reused
in many different applications. Typically, their interoperability or their ex-
tensions towards novel applications require high efforts. Any company that
aims at developing professional software for complex robotic systems has
to make an initial investment in refactoring and harmonizing existing open
source robotics libraries that implement the robot functionalities offered by
the SPL. This phase is typically called software development for reuse.

– Typically, robotic systems integrators are not software engineers and do
not master advanced software development techniques adequately. For this
reason, the proposed development process exploits the Model-Driven Engi-
neering (MDE) [15] approach. According to the MDE approach, robotic sys-
tem integrators use domain-specific languages to build models that capture
the structure, behavior, and relevant properties of their software systems.
A new application is developed by reusing these models, customizing them
according to specific application requirements, and semiautomatically trans-
form models and even generate source code using transformation engines and
generators. This phase is typically called software development with reuse.

Figure 1 illustrates the phases of the reuse-orienteddevelopment process described
in this paper. The first two phases, namely software refactoring and product line
design, are intended to produce software for reuse. The remaining two phases,
namely Variability modeling and Variability resolution, support the development
of software with reuse. In the upper part of Figure 1, the conceptual and software
tools that support the process are linked to the various phases, namelyRefactoring
Patterns [6], the BRICS Component Model (BCM)[9], the BRICS Integrated De-
velopment Environment (BRIDE)[9], and the BRICS tool for variability modeling
and resolution (FODA). In the lower part of the figure the input open source li-
braries and the intermediate products of the development process are represented,
namely the BRICS class libraries, the Product Line models, theVariability models
(features models), and the Application models.

This paper aims to illustrate the whole software development process that
we have defined for developing flexible and reusable component-based robotics
libraries, to exemplify it with the case study of the robust navigation, and to
present the software tools that we have developed for supporting the robotic engi-
neers in modeling and resolving variability in component-based robotics systems.

A Reuse-Oriented Development Process 363

BRICS
Component

model

BRIDE
Tool

Code
Refactoring

DocumentDocument
Open

Source
Libraries

DocumentDocument
BRICS
Class

Libraries

DocumentDocumentProduct
Line Model

DocumentDocumentFeature
Model

DocumentDocumentApplication
Model

Product
Line Design

Variability
Modeling

Variability
Resolution

FODA
Tool

Refactoring
Patterns

Fig. 1. The development process

The paper is structured as follows. Section 2 illustrates state of the art open
source libraries that provide robust navigation functionality. Sections 3 to 6
present the four phases of the development process and exemplify them with the
robust navigation case study. Finally Section 7 draws the relevant conclusions.

2 The Robust Navigation Case Study

Robust navigation is the ability of a mobile robot to perform autonomous navi-
gating, while avoiding dangerous situations such as collisions with obstacles. It
is a cross-sectional domain, which includes path planning, motion control and
sensor data processing.

From an algorithmic point of view, the challenging task is to organize an effi-
cient interaction between these functionalities in order to maximize performance,
safety, and robustness. Mobile robot navigation algorithms have been a research
topic for several decades (see [16] for a taxonomy). Existing algorithms could be
roughly classified as one- andmulti-step methods. One-step methods directly con-
vert the sensor data to a motion commands. Majority of one-step algorithms are
either based on classical planning or on the potential fields approaches [16]. To-
day, they are rarely used due to their inability to cope with dynamic environment
and vehicle constraints. Multi-step methods (e.g. DynamicWindow Approach [8],
Vector Field Histogram [17], Nearness Diagram [12]) overcome these limitations
by creating a local map of the environment around the robot and performing local
planning by computing possible motion directions (Nearness Diagram) and veloc-
ities (VHF) taking into account distance to the goal or to a precomputed path.

From a software development point of view, the challenge is to implement
robust navigation functionality as a set of reusable components that can be
assembled into flexible systems1. For this purpose, the BRICS project applies a
novel approach to software development, which avoids to develop from scratch
robot functionalities based on yet another software architecture. Instead, by
collecting and analyzing well known open source libraries providing robotics

1 The IEEE Standard Glossary of Software Engineering Terminology defines flexibility
as the ease with which a system or component can be modified for use in applications
or environments other than those for which it was specifically designed.

364 D. Brugali et al.

functionalities, we aim at identifying those architectural aspects (i.e. entities,
data structures, interfaces, relationships) that are common to all or most of
the implementations of the same family of functionalities, and those aspects
that distinguish one implementation from another. These common architectural
aspects represent the stable characteristics of a family of functionalities and are
likely to remain stable through future implementations of the functionalities.

By analyzing existing robust navigation libraries (see table 1) we have real-
ized that typically they refer to the same functionality using different names.
In some cases, the functionality is not even mentioned but is implicit in the
implementation.

– Motion planning (aka BaseGlobalPlanner, PathPlanner): is the process of
computing a collision-free global path in a static environment between a
given start position and a given goal position. The path is typically repre-
sented as a sequence of intermediate waypoints.

– Trajectory generation (aka ParameterizedTrajectoryGenerator, DWAPlan-
ner): is the process of refining a path for introducing velocity information.
A trajectory defines the planned positions of the robot over the time and is
typically represented as a sequence of positions with an associated velocity.

– Obstacle detection and representation (aka CostMap2D, OgMap): is the pro-
cess of using sensors information (e.g. laser scans) in order to detect the
positions of the obstacles around the robot. This information is then used
for creating and updating a map of the environment.

– Obstacle avoidance (aka Local LocalBaseNavigation, LocalNav, CAbstrac-
tHolonomicReactiveMethod): is the process of adapting the precomputed
trajectory while the robot is moving in order to avoid unexpected obstacles
that occlude the path.

– Position and velocity control (aka LocalBaseNavigation, LocalNav, Motion-
Controller): is the process of generating velocity commands to the robot in
order to move it along the computed trajectory. This functionality has a
strong dependency with the kinematics model, which is often implicit in the
library implementations.

– Localization (aka FaithLocaliser, amcl): is the process of estimating the robot
position with respect to a global reference frame. In the simplest case this
functionality is implemented by using only the robot odometry but other
sensors can be used to improve the odometric estimation.

3 Software Refactoring

Software refactoring is the process of changing a software system in such a way
that it does not alter the external behaviour of the code yet improves its internal
structure [7]. It occurs at two complementary levels: (a) Syntactical refactoring
is a behavior preserving transformation that, through the adoption of good de-
sign principles (abstraction, information hiding, polymorphism, etc.) aims at
making software artifacts modular, reusable, open. (b) Semantic refactoring is a
domain-driven transformation that, through a careful analysis of the application

A Reuse-Oriented Development Process 365

Table 1. Open source libraries for robust navigation

Type Method Library Name

Global Planners

Carrot planner, Dijkstra’s alg. ROS

ARA*, Anytime D*, ANA* SBPL/ROS

Sampling-based Planning OOMPL, BRICS MM

Trajectory Generation reactivenav::CPTG1 - CPTG7 MRPT

Local planners

VFF MRPT

VFH+ Player/Stage, ORCA

Dynamic Window ROS, Sunflower

Trajectory Rollout ROS

Nearness Diagram MRPT

Elastic Band ROS

Mapping
gmapping, costmap 2d ROS

ogNode, ogMap ORCA

Localization
amcl ROS

ICP SLAM, RBPF SLAM, ... MRPT

domain (commonality/variability and stability analysis), enhances software ar-
tifacts flexibility, adaptability, and portability. Software refactoring brings many
advantages not immediately but in a long time. The initial cost in terms of
time and effort spent for rewriting the code is balanced by the time gained
in future. This gain is due to a code more readable, more reusable and more
maintainable. The result of a refactoring process is a library of classes that are
middleware-independent, are organized in a hierarchy of abstraction levels, pro-
vide harmonized interfaces (API), and implement a variety of algorithms.

In a previous paper [2] we have described how architecture refactoring patterns
have been applied to refactor motion planning software libraries. Refactoring
patterns provide guidelines to redistribute the responsibilities among the classes
of a software library, to harmonize the common data structures and to reduce
the coupling degree.

3.1 Case Study: The ROS Navigation Stack

This section presents the architecture of an open-source library, which provides
a mobile-based navigation functionality. We selected ROS framework because
of its popularity in robotic community. Figure 2 shows a portion of the class
diagram that represents the architecture of the ROS navigation stack.

Class BaseGlobalPlanner is an interface of the global planners used in naviga-
tion stack. There are two implementations: CarrotPlanner and NavfnROS. First
one is a simplistic planner, which connects a target pose and robot actual pose
with a straight line and performs collision checks along this line. The second is
a grid-based A* path-planner for circular robots.

Multiple functionalities are tightly coupled in the implementation of class
BaseLocalPlanner, i.e. trajectory generation, adaptation and execution. It gen-
erates a number of trajectories for admissible linear and angular velocities of
the robot. Each trajectory is scored according to an objective function, which
includes goal heading, path heading and obstacle clearance. The trajectory with

366 D. Brugali et al.

MoveBaseTransformListener Costmap2D

BaseGlobalPlannerBaseLocalPlanner

CarrotPlanner NavfnROSDWAPlannerROSTrajectoryPlannerROS

TwistPose PointCloud/LaserScan MapOdometry

Fig. 2. Mobile base navigation component in ROS

maximum objective function is selected and its associated linear and angular
velocity (twist) are sent to the robot driver. Two concrete implementations of
this class are available, namely TrajectoryPlannerROS and DWAPlannerROS.
Both assume implicitly that the robot has a differential drive kinematics model.

Class CostMap2D is an implementation of 2D occupancy grid-map. It em-
beds the data structures for representing a 2D tessellated representation of the
environment. It is used for both path planning and obstacle avoidance.

The top-level class is the MoveBase class, which instantiates all the classes
that implement specific functionality and starts several threads for their con-
current execution. Concurrent access to shared resources (e.g. the map of the
environment) is synchronized by means of infrastructure mechanisms, such as
a state machine, mutexes and numerous flags and conditions across the code.
There is thus no guarantee that these functionalities are executed in real-time.

The MoveBase class is instantiated by a main function that starts a ROS
node. Thus, all the functionalities for robust navigation are provided by a single
component (ROS node). This component interacts with other components in
the system (e.g. the robot base driver and the laser driver) by exchanging ROS
messages. The set of exchanged messages represent the component interface.
Unfortunately, the component interface is not clearly separated by the compo-
nent implementation since ROS messages are produced and consumed by several
classes that implement the component. Thus, the only way to understand how
components interact with each others is to carefully look at the source code.

The ROS Navigation stack classes implementations are tightly coupled with
the ROS infrastructure, thus they cannot be reused in different environments.

4 Product Line Design

In [4] we have defined a set of architectural principles for the development of flex-
ible component-based systems that foster the separation of four design concerns
originally identified in [13], namely Computation, Coordination, Communication,
and Configuration.

According to these architectural principles, the robot functionalities are pro-
vided by Computation components that have harmonized interfaces and im-
plement specific robotic algorithms. The clear separation between component

A Reuse-Oriented Development Process 367

interface and implementation guarantees interoperability of components that
provide similar functionalities but implement different algorithms.

The mutual interactions of Computation components might change dynami-
cally according to their current internal state. In order to improve their reusabil-
ity, interaction policy should be implemented as finite state machines in
specialized Coordination components that observe state transitions in the sys-
tems by listening to events notified by Computation components.

Typically, components rely on a middleware infrastructure to exchange data
and events through the network. In order to make components implementations
independent from any specific middleware, components should be designed and
implemented according to an abstract component model (meta-model), which
defines middleware-independent communication ports. For this purpose, simi-
larly to the OMG initiative2, the BRICS project has defined a new component
model (BCM [9]), which provides the following architectural elements:

– Component: is a software package that encapsulates a set of related func-
tionalities and has its own thread of control.

– Port: represents the component interface. It explicitly defines (in terms of
data types and contract) how a component provides (output port) or requires
(input port) a service or a data-flow.

– Property: allows the component configuration. A property provides an in-
terface for setting the value of a parameter defined in the component imple-
mentation (e.g. period, algorithm parameters, . . .).

– Connector: defines the connection between an input port and an output port
and its communication mechanism.

Computation components and Coordination components can be assembled to
build applications. A family of similar applications that are built reusing a set of
software components and share the same architecture is called a Software Prod-
uct Line. The product line architecture specifies the structural (data structures
and application programming interfaces) and behavioral (data and control flow)
commonalities among the products and the variations reflected in each prod-
uct (variation points). It prescribes how software components (variants) can be
assembled to derive individual products. For example, a variation point in the
robust navigation product line is the algorithm for obstacle avoidance. Differ-
ent algorithms (i.e. dynamic window approach [8] or vector field histogram [17])
are implemented as distinct software components. The product line architecture
guarantees that these components are interchangeable.

The possible configurations of a software product line are represented in a
product line model, which specifies (a) a set of components that can be used for
building all the possible applications of the family (some of them are mandatory,
some others are instead optional) and (b) a set of connections among components
(some of them are stable, some others are variable). By selecting the optional
components, their specific implementation, the values of their configuration pa-
rameters, and the variable connections, the variability of the product line is
resolved and a specific application model is defined.

2 http://www.omg.org/spec/RTC/1.0/

http://www.omg.org/spec/RTC/1.0/

368 D. Brugali et al.

Laser Scanner Driver

laserScannerId

Trajectory Follower

robotModel

RGB Camera DriverRobot Driver

robotModel

Coordinator

Trajectory Planner

Trajectory Adapter

laserScannerId
robotModel

Marker Locator

cameraId

Pose Tracker

Odometry

Twist

Trajectory

Laser Scan

Pose RW

Image

Robot Pose & Twist

Trajectory

Marker Id

Event

Event

Goal

Marker
Pose

Event

Event

Fig. 3. The model representing the BRICS Robust Navigation Product Line

4.1 The BRICS Robust Navigation SPL

Figure 3 represents a first draft of the BRICS Robust Navigation Product Line.
Continuous lines depict the default connections between input and output ports
while dashed lines represent the optional connections that may be created to con-
figure a specific application. Continuous boxes represent mandatory components,
while dashed boxes represent optional components. Boxes inside components in-
dicate their properties. More specifically:

– Trajectory Planner implements the motion planning and trajectory gen-
eration functionalities. It gets a goal position and the current robot position
as input and produces a trajectory that is a vector of poses with twist.

– Trajectory Adapter interpolates the precomputed trajectory and pro-
duces an obstacle-free trajectory toward the next waypoint taking into ac-
count the sensor information produced by the laser scanner.

– Trajectory Follower receives the adapted trajectory and the robot esti-
mated pose and produces as output a twist for following the input trajectory.

– Robot Driver drives the physical robot. It receives twist commands and
produces the robot odometry.

– Laser Scanner Driver reads the raw data from the device and produces
as output the laser scans expressed as a vector of distances and angles.

– Pose Tracker keeps track of the current pose and twist of the robot. It fuses
odometry estimates with position estimates computed by other components.

– Marker Locator is an optional component, which is in charge of localizing
visual markers placed in the environment and computing their positions with
respect to a global reference frame. It receives as input an image and the
odometry of the robot and produces as output the absolute marker position.

– RGB Camera Driver is an optional component, which reads data from
the RGB camera and produces as output an RGB image.

A Reuse-Oriented Development Process 369

– Coordinator implements the coordination logic among components. It mon-
itors events generated by components that could represent abnormal situa-
tions (e.g. the Trajectory Adapter cannot generate a trajectory to avoid an
obstacle) and generates events that triggers state changes in other compo-
nents (e.g. the Trajectory Planner should plan a new trajectory).

There are some important differences between the proposed solution and the
ROS navigation stack discussed in Section 3. First of all the navigation func-
tionalities are mapped to finer grained components. Each component has only
one thread of control. This allows to replace individual functionalities easier and
to select the most appropriate frequency for each functionality. Accordingly, the
trajectory follower and the trajectory adapter functionalities are implemented
in two different components. This separation reflects the different operating fre-
quencies of the two components: the Trajectory Follower runs at a higher fre-
quency, as required by the closed loop position and velocity control algorithm.
On the contrary the Trajectory Adapter component computes a new output only
when receives a new laser scan or a new trajectory.

Unlike in ROS, the coordination mechanisms have been made independent
from the components implementations by introducing a Coordinator component.

5 Variability Modeling

Building software systems according to the product line approach is economic
and efficient [5]. Most work is about integration, customization, and configu-
ration instead of creation. A system configuration is an arrangement of compo-
nents and associated options and settings that completely implements a software
product. Variants may exclude each others (e.g., the selection of a component
implementing an indoor navigation algorithm excludes the choice of components
providing GPS-based localization services) or one option may make the integra-
tion of a second one a necessity (e.g., a component implementing a visual odome-
try algorithm depends on a component that supplies images of the environment).
Hence, only a subset of all combinations is the admissible configuration.

In order to model and symbolically represent the product line variation points,
their variants and the constraints between them, a formalism called Feature
Models was introduced in 1990 in the context of the Feature Oriented Domain
Analysis (FODA) approach [11]. These models make explicit the variability that
is implicitly defined during the product line design.

A feature model is a hierarchical composition of features. A feature defines
a software property and represents an increment in program functionality. Com-
posing features, i.e. selecting a subset of all the features contained in a feature
model, corresponds to select a specific product (application) that belongs to the
product line described by the model. This selection is usually called instance.

Feature models are organized as a tree and the root feature, also called con-
cept, defines the application family. Parent features are connected to children
features by means of edges, which represent containment relationships. Features

370 D. Brugali et al.

can be discerned in two main categories: mandatory and optional. Mandatory
features have to be present in all the application of the product line (common-
alities). They are graphically depicted by means of a black circle on the top.
Optional features instead can be present but they are not mandatory (variation
points). They are depicted by means of a white circle on the top.

Three types of containment relationships define containment constraints be-
tween the parent and the children features: one-to-one, or and alternative.
The one-to-one containment means that the parent feature can (or has to) con-
tain the child feature. The other two kinds of containments are containments
between the parent feature and its children features. Here the parent feature
is the variation point, while the subfeatures the variants. The or containment
means that from the children features at least one has to be present in the
application. The alternative containment (X-Or) instead means that from the
children features only one can be present in the application.

Feature models also define two kinds of constraints between the features:
requires and excludes. These constraints allow the definition of a subset of
valid configurations. The requires constraint means that if a feature A is selected,
then also a feature B has to be selected. The excludes constraint instead means
that if a feature A is selected, then a feature B cannot be selected.

[10] presents an Eclipse plugin that allows the design of feature models. This
plugin provides a formal meta-model (Ecore based), which defines the rules for
creating feature models conform to the standard specification introduced above.

5.1 Variability in the BRICS Robust Navigation SPL

Figure 4 depicts the feature model describing the variability of the BRICS Ro-
bust Navigation Product Line. Gray boxes represent the or and alternative
containments relationship and show the cardinality (1. . . n represents or and
1. . . 1 represents alternative). It contains four main variation points:

– Localization: this variation point regards the information used for localizing
the robot. Using the odometry is mandatory but a marker locator can be
used in order to improve the pose estimation.

– Navigation: this variation point regards the navigation strategy. Two vari-
ants are available: map-based and marker-based. In the first case a Trajectory
Planner computes a collision-free path according to the goal received as in-
put from its client. In the second case instead the goal is provided by the
Marker Locator and represents the position of a specific marker.

– Obstacle Avoidance: this variation point regards the algorithm used for
avoiding obstacles. Two variants are available: Dynamic Windows Approach
and Vector Field Histogram.

– Sensors: this variation point regards the sensors used in the application.
Using the laser scanner is mandatory for obstacle avoidance. However, in
order to recognize visual markers, the robot equipment can be extended by
using a front camera and a camera held on a specific support.

A Reuse-Oriented Development Process 371

Fig. 4. The model representing the variability in the BRICS RN Product Line. It was
designed with our Feature Model plugin.

The feature model also defines the following three constraints that limit the
allowable combinations of features. (a) The use of the marker-based navigation
strategies requires at least one of the two cameras. (b) The same requirements
are valid when we want to use the markers for localization. (c) The selection of
a marked based navigation excludes the use of the markers for the localization.

6 Variability Resolution

The last phase of development process regards the resolution of the variability
in the Product Line model and has the goal of producing the model of a spe-
cific application. Thanks to our tool this can be done by selecting the set of
variants (features), which reflect the application requirements, directly on the
feature model. This selection should satisfy the explicit constraints, the contain-
ments cardinalities and the selection of the mandatory features defined in the
feature model. The tool automatically checks the constraints satisfaction and
only successively generates the application model, which can be transformed
in the deployment file of a specific middleware by means of the model-to-text
transformation provided by BRIDE.

In order to define how the Product Line model has to be modified for produc-
ing the model of a specific application, we introduced the concept of transforma-
tion. A transformation is an action that modifies the architectural elements of a
Product Line model in order to replace a variation point with a specific variant.
Different kinds of transformations are available, according to the elements that
have to be modified (components implementations, connections, properties). The
developer can associate to each feature one or more transformations. A selection
of a set of features will hence result in the execution of a set of transformations.

Figure 5 illustrates how the meta-model of the feature models described in [10]
has been extended for representing the transformation associated to the features.
Currently it has been done only for the generation of Orocos RTT application.
For this reason the meta-model has three links to three elements defined in
the RTT-BCM meta-model: Task Context, Connection Policy, and Property [1].
However the approach can be easily extended to other middlewares such ROS
and SCA [14]. The following list describes the different kinds of transformations.

372 D. Brugali et al.

Fig. 5. The extension of the feature model meta-model that specifies how transforma-
tions are mapped to RTT elements (classes with the arrow on the top right corner)

– TransfImplementation : defines which implementation will be used for a
certain component, i.e. which algorithm (Computation and Coordination).
The developer specifies a link to the desired component (defined in the Prod-
uct Line model) and the class that implements its interface (by means of the
namespace and the class name).

– TransfConnection : defines how the components will be connected (Com-
position). The developer specifies a link to a connection that has to be re-
moved from the Product Line model (if needed) and a set of connections
that have to be created (with specific lock policies and the buffer sizes). As
a result of these transformations unconnected components will be removed
from the model.

– TransfProperty : defines the value of a certain property (Configuration).
The developer specifies a link to the desired property (defined in the Product
Line model) and the value he wants to assign to it.

6.1 Variability Resolution in the BRICS Robust Navigation SPL

The product line presented in the previous sections allows the deployment of
different applications that can be classified according to two navigation strate-
gies: map-based and marker-based. The different strategies can be derived by
resolving the Navigation variation point.

If a map-based navigation is chosen, then the Marker Locator, the RGB Cam-
era Driver components and all the connections between these components and
the others are not necessary. So these components can be removed from the
model. In case of marker-based navigation instead, the Trajectory Planner com-
ponent receives the goal from the Marker Locator. Hence the optional connec-
tions of Marker Locator and RGB Camera Driver have to be created.

A Reuse-Oriented Development Process 373

In addition to these connections, the Coordinator implementation and its
connections have to be defined according to the navigation strategy. The Co-
ordinator always recovers from situation in which the Trajectory Adapter is
unable to adapt the trajectory. This can happen due to the presence of obstacles
all around the front part of the robot. In these cases, the Coordinator receives
an event from the Trajectory Adapter and returns an event to the Trajectory
Planner asking it to recompute a path. When a marker-based strategy is chosen
instead, the Coordinator resolves also situations in which no markers can be de-
tected. In these cases the Coordinator receives an event from the Marker Locator
an returns an event to the Trajectory Planner asking it to create a trajectory for
moving the robot in such a way to seek new markers. This configuration needs
a connection between the Event interfaces of Marker Locator and Coordinator.

From this point several applications belonging to the two groups can be de-
rived by resolving the other variation points. The Localization based on marker
can be deployed by connecting the Pose RW interface of the Marker Locator
to the Pose Tracker. The obstacle avoidance variation point can be resolved by
setting the implementation of the Trajectory Adapter in order to use one of the
two algorithms (DWA or VHF). Finally the Sensors variation point can be re-
solved by setting the implementation of the sensors drivers and configuring the
property of the MarkerLocator in order to specify the camera Id. This value is
needed in order to retrieve the camera position from the robot kinematic model.

The feature model depicted in figure 4 defines for each feature the transfor-
mations that allow the resolution of the variation points. Some examples of the
transformations associated to the features are reported below.

– Feature Marker-based. (a) Connection transformation. New connections be-
tween: Goal interface of Trajectory Planner and Marker Pose interface of
Marker Locator, Event interfaces of Coordinator and Marker Locator, Event
interfaces of Trajectory Adapter and Coordinator. (b) Implementation trans-
formation: set the implementation of the coordinator for resolving situations
in which no markers are visible.

– Feature DWA. In this case a single Implementation transformation is defined,
which sets the implementation of the Trajectory Generator for using the
Dynamic Window Approach.

– Feature Front Camera. (a) Property transformation: set the value of the
cameraId property of the marker locator to the Id of the front camera. (b)
Implementation transformation: set the implementation of the RGB Camera
Driver for using the driver of the appropriated camera.

7 Conclusions

In this paper we have presented the BRICS software development process for
robotic component-based systems that builds on the concept of software flexi-
bility. The key to achieving software flexibility is the possibility to identify the
class of changes that are likely to occur in the environment over the lifespan of
robotic software components and that affect components and systems portabil-
ity, interoperability, and reusability.

374 D. Brugali et al.

The BRICS approach to robotic software development consists in refactoring
existing open source robotic libraries according to flexible architectures, which
clearly separate stable and variables characteristics.

By explicitly modeling software variability, it is possible to build new applica-
tions by selecting and integrating components that provide concrete implemen-
tations (variants) of robotic functionalities (variation points).

Acknowledgments. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. FP7-ICT-231940-BRICS (Best Practice in
Robotics). The authors would like to thank all the partners of the project for
their valuable comments.

References

1. The RTT meta model, http://www.best-of-robotics.org/bride/rtt.html
2. Brugali, D., Nowak, W., Gherardi, L., Zakharov, A., Prassler, E.: Component-

based refactoring of motion planning libraries. In: IEEE/RSJ Int. Conference on
Intelligent Robots and Systems (IROS), pp. 4042–4049 (2010)

3. Brugali, D., Scandurra, P.: Component-based robotic engineering (part i)[tutorial].
IEEE Robotics & Automation Magazine 16(4), 84–96 (2009)

4. Brugali, D., Shakhimardanov, A.: Component-based robotic engineering (part
ii)[tutorial]. IEEE Robotics & Automation Magazine 17(1), 100–112 (2010)

5. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley (2002)

6. Demeyer, S., Ducasse, S., Nierstrasz, O.: Object-oriented reengineering patterns.
Morgan Kaufmann (2008)

7. Fowler, M., Beck, K.: Refactoring: improving the design of existing code. Addison-
Wesley Professional (1999)

8. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoid-
ance. IEEE Robotics & Automation Magazine 4(1), 23–33 (1997)

9. Garcia, H., Bruyninckx, H.: Tool chain (bride) delivered as brics software distribu-
tion. BRICS Deliverable 4.4 (2011)

10. Gherardi, L., Brugali, D.: An eclipse-based feature models toolchain. In: 6th Italian
Workshop on Eclipse Technologies, EclipseIT 2011 (2011)

11. Kang, K.: Feature-oriented domain analysis (FODA) feasibility study. Technical
report, DTIC Document (1990)

12. Minguez, J., Montano, L.: Nearness diagram (nd) navigation: collision avoidance
in troublesome scenarios. IEEE Transactions on Robotics and Automation (2004)

13. Radestock, M., Eisenbach, S.: Coordination in Evolving Systems. In: Spaniol, O.,
Meyer, B., Linnhoff-Popien, C. (eds.) TreDS 1996. LNCS, vol. 1161, pp. 162–176.
Springer, Heidelberg (1996)

14. Service Component Architecture (SCA), http://www.osoa.org
15. Schmidt, D.: Guest editor’s introduction: Model-driven engineering. Com-

puter 39(2), 25–31 (2006)
16. Siciliano, B., Khatib, O.: Springer handbook of robotics. Springer-Verlag New York

Inc. (2008)
17. Ulrich, I., Borenstein, J.: Vfh+: Reliable obstacle avoidance for fast mobile robots.

In: IEEE Int. Conference on Robotics and Automation (1998)

http://www.best-of-robotics.org/bride/rtt.html
http://www.osoa.org

SwarmSimX: Real-Time Simulation

Environment for Multi-robot Systems

Johannes Lächele1, Antonio Franchi1, Heinrich H. Bülthoff1,2,
and Paolo Robuffo Giordano1

1 Max Planck Institute for Biological Cybernetics, Spemannstraße 38,
72076 Tübingen, Germany

{johannes.laechele,antonio.franchi,prg}@tuebingen.mpg.de
2 Department of Brain and Cognitive Engineering, Korea University, Seoul,

136-713 Korea
hhb@tuebingen.mpg.de

Abstract. In this paper we present a novel simulation environment
called SwarmSimX with the ability to simulate dozens of robots in a
realistic 3D environment. The software architecture of SwarmSimX al-
lows new robots, sensors, and other libraries to be loaded at runtime,
extending the functionality of the simulation environment significantly.
In addition, SwarmSimX allows an easy exchange of the underlying li-
braries used for the visual and physical simulation to incorporate differ-
ent libraries (e.g., improved or future versions). A major feature is also
the possibility to perform the whole simulation in real-time allowing for
human-in-the-loop or hardware-in-the-loop scenarios. SwarmSimX has
been already employed in several works presenting haptic shared con-
trol of multiple mobile robots (e.g., quadrotor UAVs). Additionally, we
present here two validation tests showing the physical fidelity and the
real-time performance of SwarmSimX. For the tests we used NVIDIAR©

PhysXR© and Ogre3D as physics and rendering libraries, respectively.

Keywords: Real-Time, Multi-Robot, Simulation Environments, Soft-
ware Framework.

1 Introduction

Software frameworks simulating the behavior of virtual environments are an
indispensable tool in most engineering sciences. Within the robotics scope, sim-
ulation environments are of paramount importance for fast development and
testing of new control algorithms for single robots or of complex behaviors for
multiple interacting robots.

In this latter case, several software suites able to simulate multiple robots at
the same time have been developed and are widely used in research. Simulators
like ARGoS [1] are capable of handling multiple robots with a pure modular
software design that allows for assigning different physics engines to different
areas of the simulation. A simulation example involving thousands of robots is

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 375–387, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

376 J. Lächele et al.

discussed, albeit only in a 2D environment. Also, the design of ARGoS is not
specialized for real-time (RT) simulation, an essential feature for hardware-in-
the-loop scenarios and for all those situations involving strict constraints on the
inner simulation timing (e.g., whenever requiring online processing/filtering of
signals acquired from the external world).

The crucial requirements that we identified for a robotics simulator have
been the following: real-time execution, physical realism, exchangeable visual
and physical representation, extendable software architecture, and full control
over inherent information of all simulated robots (see, e.g., [2–4]). To the best
of our knowledge, we were unable to find a solution meeting all of the require-
ments. Existing simulation environments, like OpenRAVE [5], MORSE [6] can be
used for multi-robot simulation scenarios. MORSE is based on the open source
3D content creation suite Blender [7] and its game engine architecture. Pro-
gram logic, algorithms or general extensions to the simulation software can be
implemented in Python.Python is a highly portable, open source programming
language and usually all code is being interpreted or compiled just-in-time (JIT).
Third party system libraries or high performance low-level code can to be loaded
and executed at runtime using wrapper mechanisms. Also OpenRAVE provides
an extensive Python API enabling the user to easily add functionality to the
simulation or any parts of it. However, using the Python approach may be a
source for errors that are hard to trace and resolve. Additional effort is required
to include libraries that in a later step may even prove difficult to interface with
the real robots. Other simulation environments such as V-REP [8] or Webots [9]
provide a more general simulation environment and may also be extended with
RT capabilities. Nonetheless, these two software systems are tightly coupled to
the underlying libraries used for the physical simulation, thus removing the pos-
sibility to exchange the technology being used in an easy fashion.

The only environment meeting almost all requirements is Gazebo [10], a ver-
satile simulation environment following a modular software architecture design.
Gazebo already supports a vast set of mobile robots and manipulators, as well
as their sensors and control algorithms and is developed by an active commu-
nity. Still, Gazebo is not orignally designed to run in real-time, hence colliding
with the requirements stated earlier. Although a custom built plugin may al-
ter the stepping of the simulation, the already provided libraries, plugins, and
sensors may not respect real-time execution. In addition, Gazebo currently only
supports the Open Dynamics Engine (ODE) as the core physics engine. The
authors believe that other libraries, e.g. NVIDIA PhysX engine [11], may yield
better, i.e. more precise, simulation results.

In this paper, we propose a novel Simulation environment, called SwarmSimX
(SSX), able to address all the aforementioned challenges. SwarmSimX, which is
currently available in a C++ implementation, is capable of simulating both the
visual and physical properties of robots acting in a user-defined environment
in real-time. Shared modules may be loaded at runtime, extending the simula-
tion with new functionalities. SwarmSimX is also designed to be independent
of the particular physics and render engines used in the simulation. The un-

SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems 377

Fig. 1. Overview of the software architecture of SwarmSimX

derlying engines can be flawlessly exchanged in the variegate assortment of the
current software depending upon the user needs (e.g., realism, efficiency, open-
source, high-accuracy for a particular robotic platform, etc.). This feature also
comes particularly in handy whenever major upgrades of the engine’s library are
released and the simulator has to follow these updates as well.

The rest of the paper is organized as follows: Sect. 2 illustrates the
design principles and software architecture behind the inner workings of
SwarmSimX, Sect. 3 reports the results of experiments aimed at vali-
dating the realism and real-time capabilities of the simulation software,
and Sect. 4 draws concluding remarks and discusses future directions. A
copy of SwarmSimX can be downloaded from the subversion repository at
https://svn.kyb.mpg.de/kyb-robotics. Additional media can be found in the
video section at http://laechele.eu/SwarmSimX/.

2 Software Architecture

The SSX simulation environment can be divided into three main parts: the vi-
sual representation; the physical representation; and Artifacts. Figure 1 gives an
overview of the elements used in the simulation and how they are related among
themselves. In the nomenclature of SSX, the visual representation is managed by
the RenderEngine with individual elements being represented by RenderNodes.
Symmetrically, the physical representation is managed by the PhysicEngine and
the individual parts are called PhysicNodes. Both, Physic- and RenderNodes
can be connected to form tree structures. Child nodes are defined w.r.t. the
parent node to which they are associated, and may contain information about
the position, orientation, mass, and similar quantities. Because of the abstract

378 J. Lächele et al.

nature of the RenderEngine and PhysicEngine the whole software framework is
not affected by a particular implementation using some specific Render Library
or Physics Library.

The visual and physical representations are related to each other, as the phys-
ical representation is used to perform the actual simulation and the visual repre-
sentation displays the behaviour of the objects being simulated. This relationship
is expressed in the parallel structure of the design layout. At every timestep of
the simulation, the execution of logical modules (namely Drivers and Sensors) is
triggered. These modules can perform any kind of computation and are used to
extend the simulation with custom logic or functionalities. Drivers implement the
behaviour of objects within the simulation environment. A Driver can represent
the control program of an Unmanned Aerial Vehicle (UAV) that applies the ap-
propriate input forces and torques to the physical object in order to attain the
desired angles received by an external navigation algorithm. Another example is
the logical module of an automated door that opens whenever an object moves
within a certain range and closes after a given period of time with no new sensor
input. Sensors are used whenever information concerning the simulated environ-
ment or the simulator variables needs to be retrieved, e.g., in order to emulate
the measurements of a real transducer or to obtain the current simulation time.
For example, this allows an easy porting of a control algorithm implemented for
real hardware to the simulation by properly emulating all the needed sensory in-
puts. One can also conceive virtual sensors able to measure the global state of the
simulated environment. These are not meant to represent real sensor units, but
rather to provide a helpful tool while developing and debugging new algorithms.

All these parts are stored together into a single object called Artifact. Artifacts
state the main concept of SwarmSimX. Everything that can be placed in the
simulation environment is represented as an Artifact. An Artifact may contain
multiple or no references to RenderNodes and PhysicNodes. Also, Sensors and
Drivers are not mandatory.

2.1 Main Execution Loop

The execution of the simulation timesteps is solely the responsibility of the
Environment. At the beginning of a timestep, the update of the PhysicEngine
gets triggered. After this event, the Drivers and Sensors of the simulation get the
chance to perform their computation. This particular step exploits the parallel
computing power of modern CPUs by triggering the execution of a separate
thread associated with each Artifact which contains at least one Sensor or Driver.
The workload of computations posed by user code is spread among the CPUs of
the system, hence increasing the performance.

The execution of the threads needs to be synchronized with the triggering
of the simulation timestep, meaning that the Environment waits until the cal-
culation of all threads is complete before proceeding. Finally, the remaining
time until the next timestep is due is calculated as tw = td − tn, with td being
the desired simulation time, i.e., the number of simulation timesteps N times
the timestep τ , and tn the current wall-clock-time (WCT). The execution of the

SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems 379

Fig. 2. Interaction involved when creating a ConcreteDriver that implements the
Driver interface and the create, destroy functions both defined in an extern "C"

{}-block

simulation is stopped for tw using precise wait methods, if and only if tw is pos-
itive, otherwise the next step is triggered immediately. In this case a warning
message is issued stating the break of the RT-constraint.

It is important to note that the aforementioned wait step is most significant
for the RT-capabilities of SSX. Several different libraries support precise meth-
ods for waiting and a previously conducted experiment showed the best results
when utilizing the boost [12] library. Note also that, in the case of an offset
between simulation time and WCT, this triggering paradigm will recover this
error assuming the execution time of subsequent timesteps is smaller than τ .

2.2 Extending the Simulation

The goal of being able to create custom robots with sensors attached and pro-
gram logic demands that the custom parts are independent from the simulation
environment. Recompiling the whole simulation environment after adding new
robots is time consuming and redundant. Even worse, exchanging projects be-
tween different users may prove difficult, as the code is tightly coupled to a
certain simulation environment.

SwarmSimX provides the possibility to load program code of Drivers and Sen-
sors at runtime. In both cases an abstract interface defines methods for creating,
configuring, running and destroying the class representing the program logic.
Drivers are always associated with an Artifact and only one Driver per Artifact
may be defined. Sensors are also associated with an Artifact but, in contrast to
the Driver, multiple Sensors per Artifact may be created.

Drivers, Sensors, and SimulationExtensions are loaded dynamically, i.e., at
runtime, exploiting the features of the system libraries. The C language provides
an easy to use library for loading and calling external libraries dynamically, called
dlopen. For this, two functions are defined in a extern "C" {}-block that are
responsible for creating and destroying the concrete class. The class itself derives
from the Driver, Sensor or SimulationExtension abstract class that define a
set of virtual methods.

380 J. Lächele et al.

Driver. The interface definition of the Driver is very slim compared to other
classes. Methods for configuring the Driver using a Descriptor, setting the associ-
ated Artifact and Environment, and calculating a simulation step are provided. In
addition to the interface definition, two functions need to be implemented for ev-
ery Driver. As mentioned before, these two functions are necessary to dynamically
load libraries and create instances of any Driver implemented by the user.

Artifacts are responsible for creating their Driver defined by the Artifact XML
file. Figure 2 shows the interaction involved in creating a Driver. First an Arti-
fact requests a Driver instance given the name. Then the ClassLoader loads the
library and calls the create-method. If all these steps were successful, the Class-
Loader returns an instance of the specified Driver. In a final step the Artifact
registers itself to the Driver and triggers the configuration.

The ClassLoader is responsible for freeing all Driver instances created during
the lifecycle of the simulation and is done when the simulation environment gets
shut down by the user. This ensures that no method call will reach an already
freed Driver, resulting in a segmentation error.

Sensor. Sensors provide information about the simulation environment. Utiliz-
ing features of the Environment, Sensors can access both engines and gain access
to all created Artifacts of the simulation. All possible information is therefore
available to the Sensor. Information provided by the Sensor is distributed to
all registered SensorCallBacks. This implementation follows the Observer Pat-
tern [13], which allows for distributing information without the need of polling
for data. In this case the Sensor itself is responsible for triggering the update pro-
cess. Loading Sensors at runtime follows the same paradigm as loading Drivers.

All Sensors are associated with the corresponding Artifact, but the Driver
is responsible for registering SensorCallbacks. This responsibility can either be
implemented in a separate class, which handles the Sensor output or within the
Driver itself. As described earlier, Drivers have access to the Environment and
therefore access to all Artifacts created in the virtual environment. The Sensor
class does not check affiliation of the registered SensorCallBack. Therefore it
is possible to register a callback at a Sensor that is associated with a different
Artifact. This allows for a very fast way of sharing information between different
robots represented by Artifacts, because no data needs to be copied, serialized
or transmitted to other robots.

SimulationExtension. Drivers and Sensors allow Artifacts to be extended in
their functionality and they may also be reused within the context of the SSX
framework. But true reusable software must not be limited to a certain frame-
work or even programming language [14].

SimulationExtensions provide a very simple interface with methods for initial-
ization and shutdown of the extension. Libraries may be loaded by these modules
to form bridges to other software frameworks. This approach ensures the reusabil-
ity of SSX as a simulation environment module that is part of a more complex
Robotics Software System. The init methods of the extensions are called by the
simulation before the actual configure and start steps of the Engines. The
shutdown-method is called after all Engines have stopped their execution. This

SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems 381

paradigm of “first in, last out” ensures that the extensions are always valid while
the simulation is running. A common use-case of this feature is the connection of
SSX with some kind of middleware that is interacting with the actual control pro-
gram of the robot. A SimulationExtension providing ROS [15] support has been
implemented and used for the experiments performed during this work. Drivers
and Sensors may request a reference to the ROS extension at runtime from the
Environment. The ROS extension stores a main ROS node and is responsible for
managing an asynchronous spinner thread. Using the main ROS node, new topics
may be published or callbacks may be registered to already existing topics.

3 Validation

Our simulation environment SSX has been successfully employed to validate
several multi-robot control algorithms proposed in recent papers by some of the
authors, see, e.g., [16–18] and http://www.youtube.com/user/MPIRobotics for
the related video selection. In the majority of these works we also performed
real-robot experiments using the same algorithms and we observed a remarkable
similarity between simulative and experimental results. In addition, in these
works we effectively used SSX in two challenging scenarios requiring real-time
simulation: (1) simulation of robots interacting with one or more human oper-
ators by means of real haptic interfaces, and (2) simulation of several obstacle
sensors providing virtual measurements to the controllers of real robots in order
to simulate virtual obstacles in the real environment. We refer the reader to
those works in order to appreciate the use of SSX in an applied robotics context
where fidelity and real-time are of extreme importance. In addition to that, in
this section we report two quantitative studies investigating the fulfillment of
two cardinal requirements of any robotic simulator: the physical fidelity, and
the real-time capabilities with multiple robots. For these tests we used a single
Linux machine running Ubuntu[19] 12.04 with the generic Ubuntu Linux kernel
3.2.0. The machine has a Intel R© Xeon R© CPU W3520 (endowed with 8 cores –
HyperThreading enabled), 12 GB of main memory and a NVIDIA R© GeForce R©

Fig. 3. Three screenshots taken from different simulations. Left: simulated quadro-
tor during the physical fidelity test. Center: stroboscopic sequence of a cooperative-
aerial grasping performed by a quadrotor and a ground robot. Right: 70 quadrotors
performing autonomous formation control on a spherical surface during the real-time
capabilities vs. number of robots test.

382 J. Lächele et al.

9800 GT GPU. The version of SwarmSimX used for all experiments utilizes
NVIDIA R© PhysX R© [11] 3.2.0 and Ogre3D [20] 1.7.4 as the Physics Library and
Render Library, respectively.

The focus of this section is the validation of the quality of the physical simula-
tion and the RT capabilities. Profound validations of the rendering performance
of SSX in general and Ogre3D in particular have been omitted. For an impression
of the quality of the rendering performed by Ogre3D we refer to Fig. 3 showing
screenshots of different experiment scenarios.

3.1 Physical Fidelity

The main purpose of a simulation environment is to test and analyze new al-
gorithms in a safe and controlled environment before porting them to the real
world case. The more the behavior of a simulated robot is comparable to that of
its real counterpart, the better the chances that an algorithm working in simula-
tion will work in reality with comparable results. This is depending almost solely
on the degree of physical fidelity of the simulation environment being used.

In order to test the physical fidelity of SSX we compared the tracking per-
formances of a real and a virtual quadrotor flying two different eight-shaped
trajectories, a vertical and a horizontal one, while maintaining a constant yaw
velocity. The global position, orientation, linear and angular velocities of the real
quadrotor have been recorded by means of an external motion capture system
and used for the comparison.

In order to minimize the effect of external factors in the comparison, we used
exactly the same flight-controller code and control parameters (e.g., gains) both
for the virtual and the real cases. In particular we implemented a standard cas-
caded controller composed by two nested control loops. The outer loop controls
the position of the center of mass of the robot: it reads the current robot state
(e.g., the robot position and velocity) and provides the appropriate orientation
and thrust to the inner control loop in order to track the desired centroid tra-
jectory. The inner loop lets the quadrotor achieve the appropriate orientation
by acting on the propeller speeds, i.e., on the total torque of the aerial vehicle.
Nevertheless, to simulate in real-time the extremely complex aerodynamics of
all the propellers is practically unfeasible. Therefore we experimentally identified
the non-linear map that relates the rotational speeds to the attained forces and
torques. This allowed us to efficiently simulate the UAV dynamics by directly
applying the forces and torques resulting from that map to the UAV body.

For the sake of fidelity we also used in simulation the same code executing the
inner loop on the real quadrotor. This is implemented using only integers, runs
on a fixed-point microcontroller, and uses the measurements coming from an
onboard Inertial Measurement Unit (IMU). For this purpose a virtual IMU has
also been implemented to provide linear acceleration and angular velocity with
noise characteristics similar to that of the IMU mounted on the real quadrotor.

The cumulative distribution of the tracking error (in short: cumulative error)
is a valid tool to give an overall view of the tracking behavior of a robot following
a desired trajectory. In order to define this function, consider a desired trajectory

SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems 383

pd defined over a time interval [t0, tf] and the actual trajectory executed by the
robot p in the same interval, the cumulative distribution function is defined as:

Fp,pd,[t0,tf](d) =
1

tf − t0

∫ tf

t0

H(‖pd(t)− p(t)‖ − d) dt,

where d ≥ 0 represents a distance, and H : R → {0, 1} is the Heaviside (or unit-
step) function, which returns 0 when its argument is negative and 1 otherwise. In
other words the cumulative error returns, for every distance d, the percentage of
time in which the actual trajectory p has been closer than d to pd. The faster F
converges to 1 for increasing d the better is the tracking behavior of the controller.

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Horizontal Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Vertical Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Horizontal Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Distance [m]

C
u
m
u
la
ti
ve

E
rr
o
r

Vertical Trajectory

0 0.05 0.1 0.15 0.2 0.25 0.30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d)

Fig. 4. Comparison between the cumulative distributions of the tracking errors. (a):
Real quadrotor hori. traj. (mean: 0.0919m, std: 0.0412 m); (b): Real quadrotor vert.
traj.(mean: 0.0654m, std: 0.0179 m); (c): Simulated quadrotor hori. traj. (mean:
0.1245m, std: 0.0444m); (d): Simulated quadrotor vert. traj. (mean: 0.0546m, std:
0.0131m).

Nevertheless, here we are not interested in the absolute tracking performances
of the two controllers but in the degree of similarity between the simulated and
real behaviors. In fact, assuming the same software is controlling each quadrotor
and using similar sensor values, a good simulator should show the same tracking
behavior compared to the real case for the same desired trajectories. Only in this
way testing a new controller in simulation can give a useful insight about the
applicability of the proposed controller in reality. The results of our experimental
test, showing the fidelity of our simulation, are reported in Fig. 4. Both in the
case of horizontal (Figs. 4(a),(c)) and vertical (Figs. 4(b),(d)) trajectories it is

384 J. Lächele et al.

possible to appreciate the similar shape of the cumulative-error plots between
the simulated and the real cases. Note also that, as usual for the quadrotor,
the vertical tracking performs much better than the horizontal one (in both the
virtual and real case).

3.2 Real-Time Capabilities vs. Number of Robots

One feature of SSX is the capability to simulate dozens of 3D robots simul-
taneously in real-time. The possibility of obtain a real-time simulation depends
mainly upon two factors: (1) the desired simulation time-step, i.e., the resolution
of the physical integration, and (2) the size of “extra” computation that all the
artifacts in the environment require at every time-step, e.g., measurement ac-
quisition, estimation/control computation, inter-robot communication. Clearly,
the influence of the second factor increases as the number of robots increases.1

For users interested in real-time multi-robot applications, a basic information
is given by how many robots can be simulated with a given physical accuracy
(simulation time-step) and a given multi-robot coordination algorithm (compris-
ing sensors, estimators, control, and communication). Therefore we conducted
a Monte Carlo study to evaluate how the execution time of a whole simulation
step is influenced by the number of simulated robots in SSX.

1 10 20 30 40 50 60 70 80 90 100
Number of quadrotors N

C
a
lc
u
la
ti
o
n
ti
m
e
[s
]

Calculation time vs. number of robots

0

0.01

0.02

0.03

0.04

Fig. 5. Box-plots of the time needed for calculating a single timestep of SSX as a
function of the number of quadrotors being simulated. Red crosses, red horizontal lines,
blue boxes, and black whiskers represent outliers, median values, percentile margins,
and max-min values (without outliers), respectively. The simulation timestep (τ =
0.02 s) is denoted with a green dashed line.

As reference scenario we considered a group of quadrotors implementing a
standard formation-control plus obstacle-avoidance algorithm based on artificial
potentials. Like in the previous experimental test, every quadrotor runs a flight

1 The influence of the number of robots on the first factor is almost negligible for
NVIDIAR© PhysXR© used by SwarmSimX, up to a few thousands of rigid bodies.

SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems 385

controller able to command the torques generated by every propeller in order
to stabilize the flight. In addition to that, in this test every robot runs the
coordination/avoidance algorithm and a range sensor simulator to retrieve the
relative position of other robots and objects within its neighboring environment.

Fig. 5 depicts our results of the comparison of the real-time capabilities of SSX
and the number of robots included in the simulation. In total 11 different cases
have been tested, each with a different number of robots being simulated simulta-
neously for a total of about 5 thousand samples of the simulation time per case. In
all cases the simulation timestep was set to 0.02 s, i.e. 50Hz, denoted with a green
dashed line in Fig. 5. For each case a boxplot displays the median, 25th and 75th
percentiles, and max/min values (using whiskers) of the computation time after
removing extreme data points considered outliers (also plotted in the figure).

The median lines, percentile boxes, and whiskers stay compact in almost all
the cases, showing a very small variance in the computational time needed to
calculate a timestep. This behavior is essential for the RT reliability of the sim-
ulation. Note also, that the median calculation time increases almost linearly
with the number of robots, resulting from the distributed formation control of
the group of quadrotors. SwarmSimX was able to hold the RT-constraint of the
timestep in almost all cases except the case with 100 quadrotors. Notice that
in this case the median and percentile box is above the 0.02 s mark, resulting
in a growing error offset between simulation and wall-clock time. Although the
RT-constraints will always be broken in this case the simulation still produces
valid results useful for offline simulation of algorithms, e.g., formation control,
sensor fusion, etc.

4 Conclusion and Future Work

In this paper we have presented a novel simulation environment, called Swarm-
SimX (SSX), tailored for the real-time simulation of multiple robots acting
within a 3D physical environment. The software architecture is designed to en-
capsulate the main parts, namely RenderEngine, PhysicEngine, and Architect,
so as to ensure independence from the underlying libraries used for simulation.

Exploiting the features of the dlopen library, new robots and sensors can be
added to the simulation environment without the need of recompiling SSX itself.
In addition Simulation extensions may be used to directly extend the features
of the simulation, e.g., to provide an easy interface to other middleware (ROS)
or other external software packages.

Aside from the description of the internal design, we also performed several
tests aimed at validating the physical fidelity and real-time capabilities of SSX.
In particular, we showed that the tracking performance of a virtual quadrotor
following a predefined trajectory can be compared to the flight behavior of a
real quadrotor following the same trajectory. These results show a very good
performance in terms of representing the actual flight behavior of a single UAV,
and in running the simulating environment in real-time. With an acceptable
time-step of 0.02 s SSX can simulate dozens (at least 90) quadrotors with their
associated sensors/controllers simultaneously.

386 J. Lächele et al.

Currently SwarmSimX is designed to simulate rigid-body dynamics only, but
future works may focus on the inclusion of additional concepts provided by mod-
ern physics engines, e.g., joints, vehicle models, cloths, fluids. A redesign of the
software architecture to allow an online exchange of the implementation of the
main modules, e.g., RenderEngine, could increase even more the independence
from specific implementations.

Acknowledgements. The authors like to thank Martin Riedel for his valuable
work on the middleware software design used for the control programs.

This research was partly supported by WCU (World Class University) pro-
gram funded by the Ministry of Education, Science and Technology through the
National Research Foundation of Korea (R31-10008).

References

1. Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M.,
Mathews, N., Ferrante, E., Di Caro, G., Ducatelle, F., Stirling, T., Gutierrez, A.,
Gambardella, L.M., Dorigo, M.: ARGoS: A modular, multi-engine simulator for
heterogeneous swarm robotics. In: 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 5027–5034 (September 2011)

2. Craighead, J., Murphy, R., Burke, J., Goldiez, B.: A survey of commercial & open
source unmanned vehicle simulators. In: Proc. IEEE Int. Robotics and Automation
Conf., pp. 852–857 (April 2007)

3. Alex, A.L., Brunyé, T., Sidman, J., Weil, S.A.: From gaming to training: A review
of studies on fidelity, immersion, presence, and buy-in and their effects on transfer
in PC-based simulations and games (November 2005)

4. Boeing, A., Bräunl, T.: Evaluation of real-time physics simulation systems. In:
Proceedings of the 5th International Conference on Computer Graphics and Inter-
active Techniques in Australia and Southeast Asia, GRAPHITE 2007, pp. 281–288.
ACM, New York (2007)

5. Diankov, R.: Automated Construction of Robotic Manipulation Programs. PhD
thesis, Carnegie Mellon University, Robotics Institute (August 2010)

6. Echeverria, G., Lassabe, N., Degroote, A., Lemaignan, S.: Modular openrobots
simulation engine: Morse. In: Proceedings of the IEEE ICRA (2011)

7. Blender Foundation: Blender, http://www.blender.org/ (accessed August 2012)

8. Freese, M., Singh, S., Ozaki, F., Matsuhira, N.: Virtual Robot Experimentation
Platform V-REP: A Versatile 3D Robot Simulator. In: Ando, N., Balakirsky, S.,
Hemker, T., Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472,
pp. 51–62. Springer, Heidelberg (2010)

9. Michel, O.: Cyberbotics Ltd. Webots TM: Professional Mobile Robot Simulation.
International Journal of Advanced Robotic Systems 1, 39–42 (2004)

10. Koenig, N., Howard, A.: Design and use paradigms for gazebo, an open-source
multi-robot simulator. In: 2004 IEEE RSJ International Conference on Intelligent
Robots and Systems, IROS IEEE Cat No04CH37566, vol. 3, pp. 2149–2154 (2004)

11. NVIDIAR©: PhysXR©, http://www.geforce.com/hardware/technology/physx

(accessed May 2012)

12. Boost: boost C++ libraries, http://www.boost.org/ (accessed May 2012)

http://www.blender.org/
http://www.geforce.com/hardware/technology/physx
http://www.boost.org/

SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems 387

13. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software, 1st edn. Addison-Wesley Professional (Novem-
ber 1994)

14. Biggs, G., Makarenko, A., Brooks, A., Kaupp, T., Moser, M.: Gearbox: Truly
reusable robot software (poster). In: Proc. IEEE/RSJ Int. Conference on Intelligent
Robots and Systems, Nice, France (September 2008)

15. ROS.org community: ROS Wiki, http://www.ros.org (accessed May 2012)
16. Franchi, A., Secchi, C., Son, H.I., Bülthoff, H.H., Robuffo Giordano, P.: Bilateral

teleoperation of groups of mobile robots with time-varying topology. Accepted to
IEEE Trans. on Robotics (2012)

17. Franchi, A., Secchi, C., Ryll, M., Bülthoff, H.H., Robuffo Giordano, P.: Bilateral
shared control of multiple quadrotors: Balancing autonomy and human assistance
with a group of UAVs. Conditionally Accepted to IEEE Robotics & Automation
Magazine (2012)

18. Robuffo Giordano, P., Franchi, A., Secchi, C., Bülthoff, H.H.: Passivity-based
decentralized connectivity maintenance in the bilateral teleoperation of multiple
UAVs. In: 2011 Robotics: Science and Systems, Los Angeles, CA (June 2011)

19. Canonical Ltd.: Ubuntu, http://www.ubuntu.com (accessed October 2012)
20. Torus Knot Software Ltd.: Ogre3D, http://www.ogre3d.org/ (accessed May 2012)

http://www.ros.org
http://www.ubuntu.com
http://www.ogre3d.org/

Evaluating the Effectiveness of Mixed Reality

Simulations for Developing UAV Systems

Ian Yen-Hung Chen1, Bruce MacDonald1, and Burkhard Wünsche2

1 Dept. of Electrical and Computer Engineering,
University of Auckland, New Zealand

{i.chen,b.macdonald}@auckland.ac.nz
2 Dept. of Computer Science,

University of Auckland, New Zealand
burkhard@cs.auckland.ac.nz

Abstract. The development cycle of an Unmanned Aerial Vehicle (UAV)
system can be long and challenging. Mixed Reality (MR) simulations can
reduce cost, duration and risk of the development process by enabling the
replacement of expensive, dangerous, or not yet fully developed compo-
nents with virtual counterparts. However, there has been little validation
of such hybrid simulation methods in practical robot applications. This
paper evaluates the use of MR simulations for prototyping a UAV sys-
tem to be deployed for a dairy farming monitoring task. We show that
by augmenting the robot’s sensing with a virtual moving cow using an
extensible Augmented Reality (AR) tracking technique, MR simulations
could help to provide efficient testing and identify improvements to the
UAV controller. User study findings reveal the importance of both virtual
and MR simulations to robot development, with MR simulations helping
developers transition to development in a more physical environment.

1 Introduction

Unmanned Aerial Vehicles (UAVs) are ideal for livestock and vegetation mon-
itoring in agriculture. The high mobility of UAVs enables fast exploration of
agriculture fields to collect information in remote areas that are otherwise diffi-
cult to access by farmers. The development of UAV systems is however difficult,
especially during testing due to potentially dangerous operations, site availabil-
ity, weather conditions, and considerable resource requirements.

Mixed Reality (MR) simulation [4] can provide a cost-effective solution to
robot experimentation. The simulator is founded on the concept of MR [11] and
enables developers to design various test scenarios for evaluating robot systems
involving real and virtual components. There have been increasing interests in
applying MR to robotics. The literature reveals that similar work exists in using
hybrid or MR simulation techniques for developing robot systems in areas such
as humanoid robotics [13,12], underwater robotics [7], and aerial robotics [8].
Existing work proposes that the use of these simulation techniques benefits de-
velopment in terms of cost and safety, however, efforts are primarily limited to
conceptual designs and software implementations with minimal evaluations.

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 388–399, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Evaluating the Effectiveness of Mixed Reality Simulations 389

This paper presents a case study evaluation of MR simulations for prototyping
a vision-based UAV system to be deployed for a cow monitoring task in agri-
culture. There are novel challenges in creating MR simulations for this task. We
assess our MR robot simulator’s [4] capability to a) provide robot developers a
safe and efficient way of creating test scenarios for this high-risk operation, and
b) accurately augment the robot’s visual sensing with virtual inputs under the
erratic motion of the UAV platform. A user study is also conducted to exam-
ine the robot developers’ use of MR simulations for prototyping UAVs, and an
analysis of its results forms one of the main contributions of this paper. Similar
user studies have been presented such as in [6], but the focus is on the visuali-
sation aspects of MR for robot development. Our previous work [5] investigated
the user’s perception of the MR simulation technology and its visual interfaces
in a robot operation task, which did not involve any implementations. In com-
parison, this paper describes a user study that identifies how MR simulations
can help robot programmers in implementing a robot software component, the
development stages and tasks which MR simulations are suitable for, and how
they compare with virtual simulations.

The remainder of the paper is organised as follows. Section 2 gives background
on the cow monitoring project. Section 3 describes the MR simulation created
for testing the UAV prototype. Section 4 presents evaluation results. Section 5
describes the user study and its findings.

2 Cow Monitoring Project Background

One of the main hurdles of efficient dairy farming is the lack of support for
monitoring and tracking cow status on the farm. The farmers are interested in
information such as a cow’s health status and temperature (for indicating signs
of pregnancy or oestrus), which affect its productivity. However, a single farmer
is typically responsible for looking after a herd size of several hundreds of cows,
which makes the process of information management difficult. In response, a
vision-based cow monitoring UAV system is proposed for this task. As a proof of
concept, the development began with a micro aerial vehicle. The Hummingbird
quadrotor from Ascending Technologies [1] is used. Hummingbird comes with an
onboard controller that implements attitude stabilisation based on the onboard
IMU. A Point Grey Firefly MV camera with 4mm lens is mounted directly
beneath the centre of the quadrotor and oriented to look downwards for the cow
monitoring task. 640x480 colour images are transferred over the firewire cable
to the ground station where the computations are performed. The goal is to
enable the UAV to autonomously detect a target cow on the ground using the
onboard camera and hover over the target so that any data of interest can be
collected by specialised instruments carried onboard the UAV. The quadrotor
should try to stay hovering above the target and follow its movement for the data
collection process. The development is at the prototyping stage, and testing is
primarily carried out in an indoor environment. Figure 1 shows the robot in the
experimentation space.

390 I. Yen-Hung Chen, B. MacDonald, and B. Wünsche

Fig. 1. Indoor UAV system test setup on
a mock-up agricultural environment. The
experimental setup is not to scale.

UAV PlatformGround Control Station

Client Programs MR Simulation

MRCamera
Object

Detector

Object
Follower

AscTec
Hummingbird

AscTec
AutopilotMRPosition

Position
Control

Camera

Fig. 2. MR simulation system diagram for
testing the UAV prototype.

Three prototype components have been implemented: 1) The Object De-
tector processes image data and identifies target location in image coordinates
(xi, yi) using a colour blob detection algorithm. 2) The Object Follower gen-
erates position commands in world coordinates (xw , yw, zw, ψw) based on the
target’s image location to keep it in the view of the robot. The Position Con-
trol implements Proportional–Integral–Derivative (PID) controllers for robot’s
x, y, z, and yaw motion. Controller feedback is in the form of vision pose esti-
mates, notably using the Augmented Reality (AR) tracking algorithm described
in Section 3.1 to provide the pose estimates in a similar way to [2].

3 Mixed Reality Simulation

The project was in need of an efficient and cost-effective method of testing the
prototype UAV system. Conducting field tests in this early stage is considered
infeasible as it could harm the real animal and the surrounding agricultural
objects in case of failures. MR simulation is able to help in testing the UAV
system by simulating a virtual animated model of the target cow to be followed.
It provides developers complete control over the virtual target and enables them
to efficiently create repeatable tests of various scenarios, e.g. moving pattern and
speed of the cow. To provide as much insight to real world tests as possible, the
real UAV is used. The MR simulation enables the robot developers to observe
the actual UAV flight behaviour as it responds to the simulated input in real
time. This is believed to have a benefit over testing using pre-recorded videos.

3.1 Augmenting the Robot’s Sensing

To facilitate interaction between the real robot and the virtual cow, the primary
task is to augment the robot’s vision input to reflect the presence of this virtual
cow. This task is, however, difficult due to the erratic motion of the UAV plat-
form. Registration of the virtual cow must be accurate since the behaviour of
the robot is directly dependent on the resulting augmented image data produced

Evaluating the Effectiveness of Mixed Reality Simulations 391

by the MR simulation. Large errors in augmentations could lead to unexpected
UAV movements and cause a serious crash.

To achieve this real-virtual interaction, we integrate an extensible AR track-
ing solution based on the Parallel Tracking and Mapping (PTAM) algorithm [9].
PTAM takes a structure-from-motion approach to track the camera while build-
ing a map of the environment in real time. Tracking is performed efficiently in a
separate thread from mapping, relying on a large number of FAST corners and a
motion model. The mapping thread incrementally builds the map from carefully
selected image frames, known as keyframes, to ensure quality, and applies bundle
adjustments to refine the pose estimates of the map elements and keyframes.

However, PTAM’s manual map initialisation process creates the base map in
an inconsistent scale and an unpredictable origin. We modify the original map
initialisation process to associate the two initial keyframes (which triangulate
the base map) with pose estimates from the markerless AR algorithm described
in [3], allowing the map to be constructed in the real world metric space and
coordinate system defined by the user. Pose estimates from the extensible AR
system are used for registering the virtual cow onto the live video imagery. This
generates augmented image data that will be delivered to the Object Detector
component of the UAV system.

A system diagram of the components in this MR simulation is shown in
Figure 2. Instead of reading images from the real camera, the Object Detec-
tor processes augmented images generated by MRCamera for cow detection.

3.2 MR Interfaces

MR interfaces are provided for monitoring the MR simulation, as shown in Fig-
ure 3. The AR interface provides users a view of the environment from the robot’s
onboard camera, reflecting the presence of the virtual cow. On the other hand,
an Augmented Virtuality (AV) interface is designed to offer multiple views of
the simulation from virtual perspectives.

4 Evaluation

The MR simulation was built on the MR robot simulator detailed in [4]. To assess
its performance in simulating the prototype UAV system, an experiment was
conducted that involved the robot following a moving virtual cow. The purpose
is to investigate whether the augmentation in the robot’s vision sensor data
would be sufficiently robust and accurate to facilitate reliable robot responses.
The virtual cow was animated to move in three different maneuver patterns
within the space covered by the aerial map on the floor. Pose estimates of the
robot given by the extensible AR tracker were recorded as it followed the cow.

The simulation results are shown in Figure 4. The robot followed the cow
in each case, demonstrating successful interactions between the real robot and
the virtual cow. The extensible AR tracker was able to cope with several sudden
and erratic motions of the UAV and accurately augmented the virtual cow in the

392 I. Yen-Hung Chen, B. MacDonald, and B. Wünsche

(a) (b) (c) (d)

Fig. 3. a) The AR interface showing a view of the scene from the robot’s perspective.
b) The AV interface with free-look camera mode: in this example, the virtual camera is
moved to focus on the target cow to be monitored. c) The AV interface with tethered
camera mode: the virtual camera follows and tracks the movement of the UAV. d) The
AV interface with fixed camera mode: similar to the tethered camera mode but with a
fixed virtual camera.

view of the camera. The AR tracking errors were measured to be approximately
0.02m in x, 0.03m in y, and 0.06m in z. Figure 5 shows screenshots from the
Object Detector window, which displays the processing being carried out on the
augmented vision data generated by the MR robot simulator. The virtual cow
remained aligned with the real world scene as it was animated to move across
the aerial map. While no significant errors were observed in the pose estimates,
it was noticed that the extensible AR tracker picked up fewer points in scenes
with large portions of grasslands due to the lack of textured content. This is
an expected behaviour of the underlying PTAM algorithm used. Nevertheless,
there were sufficient textured patches surrounding this grassland region in this
experiment to maintain the tracking quality. It must be noted that future out-
door experiments involving scenes with very few distinct features may cause the
algorithm to produce poor results.

Overall, the use of the MR simulation helped to provide initial insights into
the behaviour of the prototype UAV system for this cow monitoring task. The
UAV trajectories in Figure 4 (especially the sine wave pattern) revealed to
the robot developers the flight instability of this prototype UAV system due
to the poor control logic of the object following algorithm, identifying the need
for improvement.

5 User Study

Our user study examines the user’s development approach and preferences in
using MR simulations for implementing robot software components. It targeted a
user group of experienced robot developers and computer programmers who were
required to write software code for controlling the UAV and test their program
in simulations. The participants were provided with three development methods,
including MR simulations, and it was up to the participants how they used them.
We acknowledge that the task given may take the participants through different
development stages, and the experimental setup may need to vary accordingly
to meet their needs. Instead of restricting the participants to a single method
for the whole development process, it is more practical to let them experiment

Evaluating the Effectiveness of Mixed Reality Simulations 393

0.0 −0.4 −0.8 −1.2
0.0

0.5

1.0

1.5

Straight Pattern

y (m)

x
(m

)

0.0 −0.4 −0.8 −1.2
0.0

0.5

1.0

1.5

Cosine Pattern

y (m)

x
(m

)

0.0 −0.4 −0.8 −1.2
0.0

0.5

1.0

1.5

Sine Pattern

y (m)

x
(m

)

Fig. 4. UAV flight paths (red) from follow-
ing three moving patterns of the virtual cow
(black)

Fig. 5. Screenshots illustrating the
image processing carried out by the
Object Detector. Simple colour de-
tection was implemented as a proof
of concept for cow detection.

freely using the provided setups. The participants were video-taped for post-
study analysis. Desktop videos were also taken to examine their actions in using
the MR simulation tool and its interfaces.

5.1 Task

The participants occupied the role of a robot programmer. The primary task was
to implement an algorithm for controlling the robot’s movement and test their
implementation in simulation. They were given the fully implemented Object
Detector and Position Control components, and a skeleton code of the Object
Follower component which they had to complete. The algorithm had to generate
position commands for moving the robot in order to keep the detected target
(given in image coordinates) in its view. Three development methods were pro-
vided, two of which are MR simulations.

1. MethodOne (Virtual simulation): Simulation is provided byGazebo [10].
No complex aerodynamics is integrated in the simulation. A simple dynamics
model is used to mimic the behaviour of the UAV under the control of the PID
controller.

2. Method Two (Free-moving Camera): This setup involves manual move-
ment of the onboard camera over the aerial map. A virtual cow is placed in
the environment and augmented images are transferred to the UAV system.
The AV interface reflects the UAV movement in real time.

3. Method Three (UAV + Camera): This setup involves the real UAV
taking flight over the aerial map under the control of the Position Control
component. A virtual cow is placed in the environment and augmented im-
ages are transferred to the UAV system. The AV interface reflects the UAV
movement in real time.

394 I. Yen-Hung Chen, B. MacDonald, and B. Wünsche

The participants were free to switch between the development methods for test-
ing their implementation as the development progressed. Sample test programs
for moving the virtual cow were provided. They were asked to keep in mind
the stage of development which they considered themselves at when using the
simulations, assuming the development cycle could be divided into:

1. Stage One: Initial implementation and logic validation
2. Stage Two: Debugging and fixing errors in code
3. Stage Three: Evaluating performance of algorithm
4. Stage Four: Tuning and refining parameters

5.2 Procedure

The cow monitoring project was first explained to the participants, and the
design of the UAV system was shown. Before starting the task, a quick demon-
stration of the three simulation methods was given. When a participant indicated
task completion, the working of the system was verified in a test run that tested
whether the UAV could correctly follow the virtual cow moving in a sine wave
maneuver pattern. If the UAV failed to follow, the participant was given a chance
to refine their code and conduct further testing. A second and final test run was
held upon indication by the participant. A maximum of two and a half hours
were given for the task.

5.3 Questionnaire

The questionnaire comprised four sections. Section one collected the participant’s
demographic information. Section two collected the participant’s time distribu-
tion in using the provided development methods over the four stages of the
development cycle. Section three measured the participant’s experience in using
the different development methods on a 7-point Likert scale. The last section
collected the participant’s preferences in using the development methods.

5.4 Hypotheses

1. The participants would transition to a more physical experimental setup as
the development progresses. Method One and Method Three are believed to
be essential, while Method Two benefits users who take a more cautious and
systematic approach to testing.

2. Method One is useful for initial implementation (Stage One) and debugging
errors (Stage Two). It may also be useful for experimenting with different
object following strategies (Stage Three).

3. Method One is safer and easier to use compared to other methods. However,
it provides the participants lower confidence in the actual behaviour of the
UAV system in comparison to Method Three.

Evaluating the Effectiveness of Mixed Reality Simulations 395

4. Method Two is useful for helping users understand the robot’s field of view,
and for validating the position commands (Stage One and Stage Two) by
comparing them against the real world experimentation area before com-
mencing test flights.

5. Method Two may also be used as a safer alternative for tuning and refining
the control parameters of the algorithm (Stage Four).

6. Method Three is heavily used in the later development stage for evaluating
performance (Stage Three) and tuning and refining parameters (Stage Four).

7. Method Three is effective and results in fewer mistakes. The risk of test
flights is also higher and the method may require a longer learning curve.

5.5 User Study Results

10 participants were recruited (4 academic researchers, 5 postgraduate stu-
dents, 1 software engineer), all of whom were experienced computer programmers
(mean 8.95 years of experience, SD 6.82). 7 participants had experience in robot
development (mean 3.93 years of experience, SD 2.05). None had experience in
developing aerial robot systems. The 10 participants are coded P1, P2, P3, etc.

5.6 Participant’s Development Approach

9 participants successfully completed the task within the given time. The remain-
ing participant, P3, reported having struggled to understand the relationship
between the different coordinate systems, a respect in which the development
methods and the MR interfaces were unable to help the user.

More than half of the participants (6 participants) did not choose to use
Method Two. Responses were because the participants believed a) the method
was not useful for developing control algorithms (4 comments), and b) the same
benefit of this method could be obtained using Method One and/or Method
Three (2 comments). Interestingly, different opinions were collected from 2 par-
ticipants who used Method Two. P1 and P8 commented that it was necessary to
see the real environment to understand the robot’s field of view when determin-
ing the starting control parameters. The non-responsiveness of the robot in this
method was considered beneficial and they were able to debug their algorithms
while the robot stayed in a particular position relative to the target. The findings
supported hypothesis 4 to only some extent since only a minor proportion of the
participants used this method. A useful comment was that the benefit of us-
ing Method Two could be leveraged if the simulation provided readily available
graphical aids to help visualise the position commands in the MR interfaces.

Observations found that 9 participants began with Method One. P8 was the
only exception and decided to use Method Two to collect all the parameters and
implement the algorithm before testing it using Method One. All participants
used Method Three as the last development method. The results suggest that
the participants slowly transitioned from virtual simulation to MR simulation
(with the real UAV) as the development progressed, supporting hypothesis 1.

396 I. Yen-Hung Chen, B. MacDonald, and B. Wünsche

Table 1. Time distribution in using the
three development methods (Method One: M1,
Method Two: M2, Method Three: M3)

Stage \ Method M1 M2 M3 Subtotal

Stage One 16.5% 1.0% 3.5% 21.0%

Stage Two 7.8% 0.6% 6.1% 14.5%

Stage Three 4.5% 3.0% 14.5% 22.0%

Stage Four 6.5% 1.5% 34.5% 42.5%

Total 100%

Table 2. Users’ recommended de-
velopment methods for approach-
ing each stage of the development
cycle

Stage \ Method M1 M2 M3

Stage One 10 1 0

Stage Two 9 2 2

Stage Three 6 2 9

Stage Four 2 2 9

The average percentage of time spent in each development method at each
stage is shown in Table 1. Participants relied heavily on using Method Three for
tuning and refining control parameters of the algorithm (34.5%). Observations
also found that using virtual simulation is still important in the evaluation stage,
with a majority of the participants (8 participants) constantly switching back
to virtual simulation for evaluating their object following strategies. P8 pointed
out that the time for using Method Three was precious since it required more
time to set up and also consumed battery resources, and therefore, Method
One was a cheaper and faster alternative for testing. Table 2 shows the user
preferences if they were to develop a similar robot program in the future. Their
recommendations conform to the time distribution findings. Method One was the
most preferred method for initial implementation and debugging, while Method
Three was more suitable for evaluating performance and tuning parameters. The
results supported hypothesis 6 and the first part of hypothesis 2.

5.7 Monitoring UAV Operations

Reviewing the recorded desktop videos identified that all participants relied on
the first-person AR view for evaluating the robot’s performance, either by fo-
cusing on the AR interface or the Object Detector’s window which displayed
the same view. This enabled them to evaluate whether the robot was able to
achieve the goal of the task, i.e., keeping the target object in the view, while
ensuring the aerial map remained in the view for the Position Control compo-
nent to function correctly. It was observed that participants who used the AV
interface (4 participants) mainly chose the free-look camera and/or the tethered
camera mode. However, 3 participants commented that although the interfaces
helped to spot unusual UAV behaviour, reacting in time to prevent a crash was
difficult and required experience. Again, this suggested the need for additional
visualisations to help users foresee and take actions to prevent failures.

5.8 Statistical Analysis

The questionnaire results on the development method experience are shown in
Figure 6. Method One and Method Three were rated by all the participants, and

Evaluating the Effectiveness of Mixed Reality Simulations 397

Minimise Neg
Consequences

Safe for
Developer

Short Learning
Curve

Fewer
Mistakes

Effective
Development

Increase
Confidence

Aid
Understanding

Useful for
Tuning

Useful for
Experimentation

Development Method Questionnaire

M
ea

n
R

at
in

g

−3

−2

−1

0

1

2

3

Method 1
Method 2
Method 3

Fig. 6. Users’ experiences in using the three development methods

Method Two was rated by the 4 participants who used this method. As Method
Two had very different characteristics from the other two conditions, statistical
tests were only performed to identify significant differences between Method
One and Method Three. Method One and Method Three data were compared
using Two-tailed Wilcoxon Signed Rank tests, while user ratings on Method Two
provided an indication of how the method fits the related hypotheses.

As expected (hypothesis 3), using a real UAV had a greater impact on safety.
The participants rated Method One significantly higher than Method Three for
keeping negative consequences of failures minimal (Z = -2.20, p < 0.05), and
being safe for the developer (Z = -2.87, p < 0.05). Nevertheless, the average
ratings for Method Three in terms of safety are overall positive.

The results did not indicate that Method One had a significantly shorter
learning curve than Method Three (Z = -1.54, p = 0.12), although it should be
noted that Method Three required more preparation steps, such as initialising
AR and starting an extra Position Control process, which took more effort for
the users to set up the simulation.

The results did not indicate that Method Three was significantly more effec-
tive than Method One (Z = -1.00, p = 0.32). Similarly, there was no significant
difference between Method Three and Method One for giving users greater con-
fidence (Z = -1.56, p = 0.12), or making fewer mistakes in the development
process (Z = -0.91, p = 0.36). Consequently, the results did not support hy-
pothesis 7. However, observations and post-study video analysis identified that
an unexpected hardware influence on the UAV behaviour in Method Three may
have led some participants to create mistakes during development. Upon transi-
tioning to Method Three, the majority of the participants found their algorithm
did not produce reliable robot performance and began to make incorrect changes
to their code before performing additional testing. The true cause for this UAV

398 I. Yen-Hung Chen, B. MacDonald, and B. Wünsche

behaviour was due to the effect the camera cable had on the x-movement of the
UAV, which was not simulated in Method One. Unfortunately, MR simulations
and the interfaces were not designed to help them isolate this problem.

The participants rated Method Three significantly higher than Method One
for understanding the UAV flight behaviour as expected (Z = -2.57, p < 0.05),
since it involved the real UAV platform in simulation. The finding could change if
a high-fidelity flight dynamics model was integrated into the virtual simulation.
This needs to be investigated in the future.

Method Three was rated significantly higher than Method One for tuning con-
trol parameters (Z = -2.81, p < 0.05). The findings agreed with the development
method time distribution data analysis and the user recommendations, suggest-
ing Method Three was more suitable for the later stages of the development;
this further supported hypothesis 6.

Statistical analysis did not suggest that Method Three was more useful than
Method One for experimenting with different flight maneuvers (Z = -1.80, p =
0.07), though the result was approaching significance. While both average ratings
were positive, there was high variance in Method One ratings, thus the results
could not fully support the second part of hypothesis 2. Method Two was found
to be unsuitable for tuning, which rejected hypothesis 5. P1 and P8 commented
later in the interview that Method Two was useful for identifying (not tuning)
initial control parameters, which were later tuned using Method Three.

5.9 Discussions

The results on the overall participant’s development approach may not seem
surprising but there were specific findings which were not expected. In this study,
statistical analysis did not indicate that the use of MR simulation (with real
UAV) was significantly more effective than virtual simulation or was it more
useful for experimentation. The findings were however not unfavourable because
MR simulation does not intend to replace existing simulation methods but to
complement them during the robot development process; a hypothesis that was
supported by the results. Further research is necessary to validate the strengths
of MR simulations in a more focused, long term study that compares the use of
MR simulation alone against using only virtual simulation.

6 Conclusions

This paper contributes a case study evaluation on using MR simulations for the
development of a prototype UAV system. The simulation augmented the robot’s
onboard vision data with virtual inputs using a modified PTAM algorithm for
testing the cow monitoring operation. The use of the MR simulation has been
shown to help provide valuable insights into the UAV system performance that
are otherwise difficult to obtain in real world tests. User study results indicated
that MR simulations complemented virtual simulations, providing an interme-
diate experimental environment before moving onto testing in the real world. It

Evaluating the Effectiveness of Mixed Reality Simulations 399

helped robot programmers understand UAV flight behaviours and tune control
parameters for better robot performance. Future work includes providing more
visualisation aids to improve monitoring of UAV tasks, and conducting a user
study to identify cases where the benefits of using MR simulations are more
evident compared to traditional simulation approaches.

References

1. Ascending Technologies, http://www.asctec.de/
2. Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation

in unknown and unstructured environments. In: Proceedings of the IEEE Interna-
tional Conference on Robotics and Automation, pp. 21–28 (2010)

3. Chen, I.Y.H., MacDonald, B., Wünsche, B.: Markerless augmented reality for
robots in unprepared environments. In: Proceedings of the Australasian Confer-
ence on Robotics and Automation, Canberra, Australia, December 3-5 (2008)

4. Chen, I.Y.H., MacDonald, B., Wünsche, B.: Mixed reality simulation for mobile
robots. In: Proceedings of the IEEE International Conference on Robotics and
Automation, Kobe, Japan, May 12-17, pp. 232–237 (2009)

5. Chen, I.Y.H., MacDonald, B., Wünsche, B., Biggs, G., Kotoku, T.: Analysing Mixed
Reality Simulation for Industrial Applications: A Case Study in the Development
of a Robotic Screw Remover System. In: Ando, N., Balakirsky, S., Hemker, T.,
Reggiani, M., von Stryk, O. (eds.) SIMPAR 2010. LNCS, vol. 6472, pp. 350–361.
Springer, Heidelberg

6. Collett, T., MacDonald, B.: An augmented reality debugging system for mobile
robot software engineers. Journal of Software Engineering for Robotics 1(1), 18–32
(2009)

7. Davis, B., Patron, P., Lane, D.: An augmented reality architecture for the cre-
ation of hardware-in-the-loop & hybrid simulation test scenarios for unmanned
underwater vehicles. In: OCEANS, pp. 1–6 (2007)

8. Göktoğan, A., Sukkarieh, S.: An Augmented Reality System for Multi-UAV Mis-
sions. In: Proceedings of the Simulation Conference and Exhibition, SimTect, May
9-12. Citeseer, Sydney (2005)

9. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
Proceedings of the Sixth IEEE and ACM International Symposium on Mixed and
Augmented Reality, Nara, Japan, pp. 225–234 (November 2007)

10. Koenig, N., Howard, A.: Design and use paradigms for Gazebo, an open-source
multi-robot simulator. In: Proceedings of IEEE/RSJ International Conference on
Intelligent Robots and Systems, September 28-October 2, vol. 3, pp. 2149–2154
(2004)

11. Milgram, P., Colquhoun, H.: A taxonomy of real and virtual world display integra-
tion. In: Mixed Reality-Merging Real and Virtual Worlds, pp. 5–28 (1999)

12. Nishiwaki, K., Kobayashi, K., Uchiyama, S., Yamamoto, H., Kagami, S.: Mixed
reality environment for autonomous robot development. In: Proceedings of the
IEEE International Conference on Robotics and Automation, Pasadena, CA, USA,
pp. 2211–2212 (May 2008)

13. Stilman, M., Michel, P., Chestnutt, J., Nishiwaki, K., Kagami, S., Kuffner, J.: Aug-
mented reality for robot development and experimentation. Tech. Rep. CMU-RI-
TR-05-55, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (Novem-
ber 2005)

http://www.asctec.de/

Comprehensive Simulation of Quadrotor UAVs

Using ROS and Gazebo

Johannes Meyer1, Alexander Sendobry1, Stefan Kohlbrecher2, Uwe Klingauf1,
and Oskar von Stryk2

1 Department of Mechanical Engineering, TU Darmstadt, Germany
2 Department of Computer Science, TU Darmstadt, Germany

Abstract. Quadrotor UAVs have successfully been used both in re-
search and for commercial applications in recent years and there has
been significant progress in the design of robust control software and
hardware. Nevertheless, testing of prototype UAV systems still means
risk of damage due to failures. Motivated by this, a system for the com-
prehensive simulation of quadrotor UAVs is presented in this paper. Un-
like existing solutions, the presented system is integrated with ROS and
the Gazebo simulator. This comprehensive approach allows simultane-
ous simulation of diverse aspects such as flight dynamics, onboard sensors
like IMUs, external imaging sensors and complex environments. The dy-
namics model of the quadrotor has been parameterized using wind tunnel
tests and validated by a comparison of simulated and real flight data. The
applicability for simulation of complex UAV systems is demonstrated us-
ing LIDAR-based and visual SLAM approaches available as open source
software.

1 Introduction

Quadrotor UAVs have successfully been used both in research and for commercial
applications in recent years. Impressive results have been shown using quadrotor
aircraft of various sizes and in different scenarios. The inherently instable nature
of quadrotor flight can lead to loss or damage of UAVs easily, especially when
evaluating prototype soft- or hardware. The lack of a simulation environment for
quadrotor UAVs that covers realistic flight dynamics, camera and range sensors
and an easy integration with existing robotic middleware solutions motivated
this work. We present a comprehensive framework to simulate our quadrotor,
that has been developed during the last few years. It is based on the Gazebo open
source simulator and the Robot Operating System (ROS), that has become a de
facto standard in robotics research and facilitates integration of contributions by
other researchers. Common sensors for autonomous robots like LIDAR devices,
RGB-D and stereo cameras are already available for Gazebo and can be attached
to the robot, while plugins for other, more UAV-specific sensors like barometers,
GPS receivers and sonar rangers have been added as part of this work.

The remainder of this paper is organized as follows: After the discussion of
related work in section 2, section 3 presents the simulation model considering

I. Noda et al. (Eds.): SIMPAR 2012, LNAI 7628, pp. 400–411, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Comprehensive Quadrotor Simulation 401

geometry, flight dynamics and control and how the model is implemented in
Gazebo. Comparative results from flight tests and simulation runs as well as a
demonstration of applicability for evaluating high-level algorithms are presented
in section 4.

2 Related Work

As we aim at a comprehensive approach for simulation of quadrotor UAV sys-
tems, we provide an overview both of simulation/ground truth tracking ap-
proaches as well as quadrotor control approaches. Most approaches for quadrotor
simulation focus on vehicle dynamics for controller design, often using special-
ized tools like Matlab/Simulink [20]. Sometimes other tools like the Flightgear
open source simulation framework are used for visualization [18,9]. Using such
approaches, testing of sensor-based high level control and behaviors is not pos-
sible or requires significant additional implementation effort. Quadrotor UAVs
can be simulated using USARsim [7], but a recently published ROS integration
[2] is of limited scope. In [1], the use of a simulator also providing sensor data is
mentioned, but not made available for testing.

Several authors have proposed dynamics models for the simulation of quadro-
tor aircraft which are based on the same flight mechanical principles [10,3,9,11,20].
While dealing with different aspects in detail, none of them considers motor and
propeller dynamics, aerodynamics, external disturbances (e.g. wind), and noisy
sensor signals and state estimation in an integrated fashion.

Recently, external optical tracking for the acquisition of ground truth data has
been used with great success [8,17]. The installation of such systems however is
costly and often not feasible due to space constraints. Even if such a system is
available, testing of multi-UAV control approaches in simulation is advantageous,
as potential collisions or other faults incur no cost in simulation.

(a) (b)

Fig. 1. Mesh-based quadrotor model: (a): Model shown rendered in Blender. (b) Model
used in Gazebo. A Hokuyo UTM-30LX laser scanner is mounted below the main body.

402 J. Meyer et al.

3 Model Description and Simulation

As we aim at comprehensive simulation of all relevant components including low
level sensing, system dynamics and control, we provide an overview of these parts
independently. Gazebo provides a multi-robot simulation environment including
dynamics simulation, which is provided by the ODE or bullet physics engines.
While the simulator considers gravity, contact forces and friction by its own, it
does not cover aerodynamics and propulsion systems that are especially required
for aerial vehicles. A plugin systems enables the user to add custom controllers
for simulated robots and sensors or to influence the environment.

3.1 Geometry

The robot geometry has been modeled using the open source software Blender.
To be able to provide different colors (both texture or material based) for the
model, the visual geometry is provided using the COLLADA format, while the
collision geometry is modeled as a .stl mesh. The model is designed to have a
low polygon count and still retain the relevant aspects of quadrotor geometry.
As a trade-off between visual fidelity, collision detection and dynamics modeling
needs, the propellers are modeled as discs.

3.2 Dynamics Model

One of the main advantages of the quadrotor concept is the simplicity of its
propulsion and steering system, consisting only of four independent motors and
propellers with fixed pitch, where each pair of opposite propellers rotates in one
direction to avoid yaw torque during roll and pitch movements. As a result,
the overall system dynamics are mainly determined by the thrust and torque
induced by the individual motor/propeller units.

Flight Dynamics. The movement of a rigid body can be described by the sum
of all forces F and torques M acting on the vehicle:

ṗn = vn (1a)

v̇n = m−1Cn
bF (1b)

ω̇b = J−1M (1c)

Here, pn and vn are the position and velocity of the body’s center of gravity in
the (inertial) navigation coordinate system, ωb is its angular rate given in body
coordinates and Cn

b is the rotation matrix that transforms a vector from body
(index b) to navigation coordinates (index n).

The mass m and inertia J of the quadrotor need to be known and have
been estimated by weighing the individual components and using the geometric
model. The force vector F comprises motor thrust FM, drag forces F d and the
gravity vector F g. The torque vector M is divided into propulsion torque MM

and drag moments Md. Drag forces and moments are given by:

Comprehensive Quadrotor Simulation 403

F d = −Cd,F ·Cb
n · |vn − vn

w| (v − vw) (2a)

Md = −Cd,M · ∣∣ωb
∣∣ωb (2b)

with the diagonal drag coefficient matrices Cd,F and Cd,M and the wind vector
vn
w. Finally, the gravity force is given by

F g = m ·Cb
n ·

[
0 0 ge

]T
. (3)

With these forces and torques resulting from self motion of any system in space
and the propulsion forces and torques described in the following section, the
vehicle movement can be obtained by solving equations (1).

Motor Dynamics. The propulsion system of our quadrotor UAV consists of
four brushless DC motors. The dynamic behavior of a brushless DC motor has
been derived from [12] with some simplifications. Assuming a very low inductance
of the motor coils, the current rise time can be neglected. The motor dynamic
behavior therefore simplifies to a PT1 element and is described by Eqs. (4) - (6).
In steady state the induced anchor voltage UA depends on the rotation speed
ωM and the anchor current IA:

UA = RAIA + ΨωM (4)

The electromagnetic torque Me for each motor is given by

Me = ΨIA (5)

With the mechanical torque Mm and the motor inertia JM the change in rotation
speed can be calculated through:

ω̇M =
1

JM
· (Me −Mm) =

1

JM
·
(

Ψ

RA
· (UA − ΨωM)−Mm

)
(6)

The nonlinear term Mm describes the torque resulting from bearing friction as
well as load friction (i.e. drag) of the airscrew. It can be written as Mm = kT ·T
where T is the thrust of a single airscrew [15] which is a a broad simplification
of a former approach [21] without loss of accuracy.

Thrust Calculation. In contrast to the former approach we now use a nonlinear
quadratic approximation for thrust calculation, similar to [9]. This approach
has been selected based on wind tunnel tests (cf. Fig. 2(a)) and is sufficiently
accurate as to not require the use of more complex thrust models [10]. With
the dynamic expression of the motor’s rotational speed ωM from equation (6)
it is straightforward to calculate the thrust force T for a single motor-airscrew
combination:

T = CT,0ω
2
M + CT,1v1ωM ± CT,2v

2
1 (7)

404 J. Meyer et al.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−1

0

1

2

3

4
·10−5

performance factor J

th
ru
st

co
effi

ci
en
t
C

T

(a)

xn

yn

zn

ψ

M1

M3

M2

M4

F1

F3

F2

F4

mg

xb

yb

zb

(b)

Fig. 2. (a) Thrust coefficient CT of an airscrew as a function of its performance factor
J . Crosses mark wind tunnel measurements, while the solid line represents the ap-
proximation. (b) Sketch of the quadrotor to show the different coordinate systems and
naming conventions.

Dividing the above equation by ω2
M and using the performance factor J = v1/ωM

the thrust coefficient CT(J) is given by:

CT(J) = CT,0 + CT,1J ± CT,2J
2 (8)

where the parameters CT,i have been identified in wind tunnel test. A negative
v1 (meaning a falling quadrotor) results in a positive prefix of CT,2. In Fig. 2(a)
the polynomial approximation of CT(J) is shown. For a quadrotor helicopter the
free stream velocity v1 in general is different for each of the rotors. It can be
calculated through geometric inspection of the vehicle shown in Fig. 2(b):

(v1)i = − [0 0 1] · (vb +
(
ωb × ei

) · lM)
(9)

with the unit vectors

e1 =
[
1 0 0

]T
, e2 =

[
0 1 0

]T
, e3 = − [

1 0 0
]T

, e4 = − [
0 1 0

]T
for the four different motors. lM is the distance between the geometric centers
of motors and quadrotor. With the coordinate system conventions shown in
Fig. 2(b) the following expression for the overall wrench of the quadrotor can be
determined:

F b
M =

⎡⎣ 0
0

−Σ4
i=1Fi

⎤⎦ Mb
M =

⎡⎣ (F4 − F2) · lM
(F1 − F3) · lM

−M1 +M2 −M3 +M4

⎤⎦ (10)

The four single forces Fi are calculated by solving equation (7) while the moments
Mi are obtained through combining equation (4) and (5). The incorporation of

Comprehensive Quadrotor Simulation 405

blade flapping effects which can be used to aid state estimation [4] is subject of
future work.

We implemented two plugins that calculate propulsion and drag forces acting
on the aircraft given the internal state of the vehicle, the four motor voltages
and the wind vector. The current wind can be specified as constant vector or
provided by an external model or from real log data. Gazebo then applies the
calculated forces and torques to the quadrotor body for each simulation step.

3.3 Sensor Simulation

As attitude, position and velocity cannot be measured directly, accurate models
are needed to simulate the signals from various sensors needed for estimating the
state of the UAV. These sensors have been implemented as independent Gazebo
plugins and can be attached to the model by including them in the robot URDF
description. The plugins accept parameters covering the error characteristics and
the WGS84 position, altitude and orientation of the Gazebo reference frame in
the world coordinate system wherever necessary.

Error Model. All sensors share a common first order Gauss Markov error
model [5], permitting simulation of sensors with different error characteristics.
Each simulated measurement y(t) at time t is given by

y = ŷ + b+ wy (11a)

ḃ = − 1

τ
b+ wb (11b)

where ŷ is the true value or vector, b is the current bias and wy and wb are
independent, zero-mean white Gaussian noise variables. wy is additive noise
acting directly on the measurement and wb describes the characteristics of the
random drift with time constant τ .

Inertial Measurement Unit. The inertial measurement unit (IMU) is the
most important sensor for the stabilization of quadrotor flight as it measures
the angular velocities and accelerations of the vehicle body in the inertial frame.
Integration of these values provides a good reference of attitude and speed over
short time intervals with fast response times, but is not suitable for long-term
reference due to the significant drift of available low-cost sensors. Also note that
an observer onboard the vehicle cannot distinguish gravity from other external
forces and therefore the acceleration of the body in the world frame cannot be
measured directly without knowing the orientation of the body.

Barometric Sensor. For simulating the static pressure at the present altitude,
we use the International Standard Atmosphere (ISA) model as defined by the
International Civil Aviation Organization (ICAO), which describes the pressure,
temperature and density of the earth’s atmosphere under average conditions at
mid latitudes. The elevation of the simulation reference frame above mean sea
level and the simulated pressure (only required for the output of pressure values
in hPa) at sea level can be specified as parameters.

406 J. Meyer et al.

Ultrasonic Sensor. For controlling the height during the takeoff and landing
phases and for switching on and off the motors, the range estimate from an down-
ward pointing ultrasonic sensor is used. This device transmits short ultrasound
impulses and returns the distance corresponding to the first echo returned from
the ground or an object within it’s field of view. Available ultrasound sensors
have a maximum range of about 3 to 6 meters. The simulated ultrasonic sensor
uses the Gazebo ray sensor interface to determine ray-casting based distances to
world geometry. The distance value returned is the minimum of all rays (9 by
default).

Magnetic Field Sensor. The earth magnetic field serves as a reference for the
heading or yaw angle of the quadrotor. As using a single axis compass would lead
to significant errors with increasing roll and pitch angles, three-axis magnetome-
ters are commonly used for UAVs. With the assumption that the earth-fixed
magnetic field vector is constant within the area of operation, it is straightfor-
ward to calculate the body-fixed vector given the declination, inclination and
field magnitude. Deviation errors through interference from parts of the robot
itself are covered by the generic error model.

GPS Receiver. Pseudo range measurements and the resulting position and
velocity solution are influenced by different factors like the satellite ephemeris
errors, atmospheric errors or receiver errors [19]. These error sources are approx-
imated using the Gauss-Markov error model, with the parameters of our uBlox
receiver module having been determined experimentally. To reproduce the in-
terdependency of position and velocity errors we use the noise-affected velocity
measurement error (vGPS− v̂GPS) instead of wb in Eq. (11b) for the integration
of the position error. A more detailed consideration of GPS errors and especially
multipath effects in the vicinity of buildings is left for future work. To calculate
WGS84 coordinates from the simulated position and velocity in Cartesian coor-
dinates we use a simple equirectangular projection that is based on a flat world
assumption. This projection is accurate enough in the vicinity of the chosen
reference point and outside the polar regions.

3.4 State Estimation and Control

Although state estimation and control are not specific to simulation, both com-
ponents are required to close the loop between simulated sensor signals and the
resulting motor voltages required to stabilize and control the quadrotor.

For estimating the state of the system we use an Extended Kalman Filter
(EKF) to fuse all available measurements to a single navigation solution con-
taining the orientation, position and velocity of the vehicle as well as observable
error states like the IMU bias errors. This approach is usually referred to as
integrated navigation.

Our controller is implemented as a set of cascaded PID controllers, with the
inner loop controlling the attitude, yaw rate and vertical velocity and an outer
loop controlling the horizontal velocity, heading and altitude (Fig. 3). This

Comprehensive Quadrotor Simulation 407

PID

pitch

-

θ̂Mψ

g

PI

vx

-
v̂nxMT

ψ

vbx,d

PID

roll

-

φ̂

PI

vy

-
v̂ny

vby,d

PD

vz

-
v̂z

PI

height

-
pz,d

p̂z

vz,d

PD

yaw rate

-
ω̂z

PI

yaw

-
ψd

ψ̂

ωz,d

Mixer

U1

U2

U3

U4
vz,d

ωz,d

ax,d
θd

ay,d
φd

My

Mx

Fz

Mz

Fig. 3. The controller is realized through separate cascaded PID controllers controlling
roll and pitch movement, yaw rate and vertical velocity

approach assumes that each axis and the altitude can be controlled indepen-
dently, which is valid for moderate deviations from the hovering state. The out-
put of the inner loop are commanded torques and vertical thrust, which are
translated to motor voltages either by using a static mixture matrix or by feed-
ing them into an inverted model of the propulsion system presented in section
subsection 3.2.

For simulation we use exactly the same implementation as on the real quadro-
tor. It is based on the Open Robot Control Software (Orocos) toolchain [6],
which provides interfaces to ROS and executes tasks satisfying hard realtime
constraints on the onboard PC system. This software-in-the-loop approach offers
great flexibility for testing advanced control algorithms before the deployment on
the real vehicle and therefore minimizes the risk of damage or loss dramatically.
Implementation details can be found in previous publications [16].

4 Experiments

Different aspects of simulation are validated using experiments in this section.
We also show examples of comprehensive simulation scenarios using the flight
dynamics model as well as leveraging existing ROS open source software.

4.1 Validation of Dynamics Model

To validate the dynamics model, we let both the real and simulated UAV per-
form a test trajectory consisting of transitions between different velocities. All
measurable variables of the real quadrotor show the same characteristics as the
corresponding simulated counterparts. The power spectrum densities (PSD) of

408 J. Meyer et al.

100 101
10−2

10−1

100

|P
(f
)|

in
ra
d
/
s

ωy

100 101
10−2

10−1

100

|P
(f
)|

in
ra
d
/
s

ωx

0 5 10 15 20 25 30 35

−2

0

2

v
x
in

m
/
s

0 5 10 15 20 25 30 35

−2

0

2

v
y
in

m
/
s

0 5 10 15 20 25 30 35

−2

0

2

time in s

v
z
in

m
/
s

100 101
10−2

10−1

100

f in Hz

|P
(f
)|

in
ra
d
/
s

ωz

Fig. 4. Diagrams of simulated and measured angular and translational velocity. Dotted
lines represent measurements while solid lines are simulated data. The left side shows
the PSD of the angular rates. On the right side the estimated velocity both in simulation
and reality with the commanded speeds (dashed line) is shown.

(a) (b)

Fig. 5. Indoor SLAM simulation: (a): Screenshot of the GUI. On the left the Gazebo
simulation environment is visible. On the top right the view of the forward facing
camera is shown, with LIDAR point cloud and map data projected into the image.
A top down ortho view is visible on the bottom right (b) Final map generated after
teleoperation of the UAV through the scenario.

Comprehensive Quadrotor Simulation 409

(a) (b)

Fig. 6. Visual SLAM simulation: (a): Calibration of camera system in simulation. (b)
Screenshot of PTAM being used for visual SLAM on a quadrotor hovering above a
simulated NIST standard arena for response robots.

the angular rates and and the velocities are shown in Fig. 4. The controller
and a dead time of about 15 ms cause the quadrotor to oscillate slightly with a
frequency of about 3 Hz which is easily visible in the frequency domain. Differ-
ences in velocity between simulation and reality are mainly due to a gusty wind
of about 5 m/s which was apparent during the outdoor tests. In simulation, we
therefore defined a constant wind of 5 m/s.

4.2 Example Scenarios

In this section, different example scenarios are shown, demonstrating the com-
prehensive nature of quadrotor simulation and the interfacing with other open
source ROS software. Instructions for reproducing all presented scenarios are
provided on the hector quadrotor1 website on ros.org.

In- and Outdoor Flight Scenarios. We flew the simulated quadrotor through
two example indoor and outdoor worlds to evaluate the quality of high-level
sensor data. Using the estimated state or ground truth data, the quadrotor pose
can be visualized along with sensor data.

To demonstrate the applicability for indoor SLAM simulation, we deploy a
previously developed SLAM approach [14] on the quadrotor UAV. The Willow
Garage office environment is part of the Gazebo ROS package, demonstrating
the applicability and interoperability of the quadrotor simulation with existing
Gazebo environments. The quadrotor UAV is teleoperated using a gamepad for
this demonstration. As shown in Fig. 5(a), sophisticated visualization including
projection of visualization data into camera images is possible by leveraging
available ROS tools like rviz. The final map learned is shown in Fig. 5(b) and of
comparable quality to those learned in real world scenarios.

A video of outdoor flying is available online2.

1 http://www.ros.org/wiki/hector_quadrotor
2 http://www.youtube.com/watch?v=9CGIcc0jeuI

http://www.ros.org/wiki/hector_quadrotor
http://www.youtube.com/watch?v=9CGIcc0jeuI

410 J. Meyer et al.

Visual SLAM. To demonstrate simulated image based state estimation, we de-
ploy a modified version [22] of the original PTAM system [13] for visual SLAM.
As demonstrated in Fig. 6(a), checkerboard-based calibration of camera param-
eters can also be performed in simulation. Fig. 6(b) shows a screenshot of the
PTAM GUI while the simulated quadrotor UAV hovers above an example sce-
nario, successfully tracking features in the image and estimating the aircraft
pose. It should be noted that the default camera simulation in Gazebo is of
limited fidelity as it does not exhibit effects like motion blur.

5 Conclusion

We presented a framework for the simulation of quadrotor UAV systems em-
ploying ROS and the Gazebo simulator. The tight integration with existing (and
future) ROS tools permits the comprehensive simulation of quadrotor UAVs in-
cluding low level sensing, flight dynamics and external sensing using any sensor
available for Gazebo simulation. The level of detail can be adapted depending
on the application, e.g. by using ground truth data for control or bypassing the
propulsion model.

Acknowledgments. This work has been funded by the Research Training
Group 1362 “Cooperative, Adaptive and Responsive Monitoring in Mixed-Mode
Environments” of the German Research Foundation (DFG).

References

1. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Autonomous navigation
and exploration of a quadrotor helicopter in GPS-denied indoor environments. In:
Robotics: Science and Systems Conference (2008)

2. Balakirsky, S.B., Kootbally, Z.: USARSim/ROS: A Combined Framework for
Robotic Control and Simulation. In: ASME 2012 International Symposium on
Flexible Automation (ISFA 2012). ASME (2012)

3. Bouabdallah, S., Siegwart, R.: Full control of a quadrotor. In: IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pp. 153–158 (Novem-
ber 2007)

4. Bristeau, P., Callou, F., Vissière, D., Petit, N., et al.: The navigation and con-
trol technology inside the AR Drone micro UAV. In: 18th IFAC World Congress,
Milano, Italy, pp. 1477–1484 (2011)

5. Brown, R., Hwang, P., et al.: Introduction to random signals and applied Kalman
filtering. Wiley, New York (1992)

6. Bruyninckx, H.: Open robot control software: the OROCOS project. In: IEEE
International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2523–
2528. IEEE (2001)

7. Carpin, S., Lewis, M., Wang, J., Balakirsky, S., Scrapper, C.: USARSim: a
robot simulator for research and education. In: IEEE International Conference
on Robotics and Automation (ICRA), pp. 1400–1405 (2007)

Comprehensive Quadrotor Simulation 411

8. Ducard, G., D’Andrea, R.: Autonomous quadrotor flight using a vision system
and accommodating frames misalignment. In: IEEE International Symposium on
Industrial Embedded Systems (SIES), pp. 261–264. IEEE (2009)

9. Goel, R., Shah, S., Gupta, N., Ananthkrishnan, N.: Modeling, Simulation and
Flight Testing of an Autonomous Quadrotor. In: IISc Centenary International Con-
ference and Exhibition on Aerospace Engineering, ICEAE, Bangalore, India, pp.
18–22 (2009)

10. Hoffmann, G.M., Huang, H., Wasl, S.L., Tomlin, E.C.J.: Quadrotor helicopter flight
dynamics and control: Theory and experiment. In: AIAA Guidance, Navigation,
and Control Conference (2007)

11. Huang, H., Hoffmann, G., Waslander, S., Tomlin, C.: Aerodynamics and control
of autonomous quadrotor helicopters in aggressive maneuvering. In: IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 3277–3282 (May
2009)

12. Isermann, R.: Mechatronische Systeme: Grundlagen (German Edition). 1. Auflage
1999, 1. korrigierter Nachdruck - Studienausgabe edn. Springer (December 1999)

13. Klein, G., Murray, D.: Parallel tracking and mapping for small AR workspaces. In:
6th IEEE and ACM International Symposium on Mixed and Augmented Reality
(ISMAR), pp. 225–234. IEEE (2007)

14. Kohlbrecher, S., Meyer, J., von Stryk, O., Klingauf, U.: A Flexible and Scalable
SLAM System with Full 3D Motion Estimation. In: IEEE International Symposium
on Safety, Security and Rescue Robotics (SSRR). IEEE, Kyoto (2011)

15. Leishman, G.: Principles of Helicopter Aerodynamics, 2nd edn. Cambridge
Aerospace Series. Cambridge University Press (April 2006)

16. Meyer, J., Strobel, A.: A flexible real-time control system for autonomous vehicles.
In: 41st International Symposium on Robotics (ISR) and 6th German Conference
on Robotics (ROBOTIK). VDE (2010)

17. Michael, N., Mellinger, D., Lindsey, Q., Kumar, V.: The GRASP Multiple Micro-
UAV Testbed. IEEE Robotics Automation Magazine 17(3), 56–65 (2010)

18. Qiang, Y., Bin, X., Yao, Z., Yanping, Y., Haotao, L., Wei, Z.: Visual simulation sys-
tem for quadrotor unmanned aerial vehicles. In: 30th Chinese Control Conference,
pp. 454–459 (July 2011)

19. Rankin, J.: An error model for sensor simulation GPS and differential GPS. In:
Position Location and Navigation Symposium, pp. 260–266. IEEE (1994)

20. Rodić, A., Mester, G.: The Modeling and Simulation of an Autonomous Quad-
Rotor Microcopter in a Virtual Outdoor Scenario. Acta Polytechnica Hungar-
ica 8(4) (2011)

21. Sendobry, A.: A Model Based Navigation Architecture for Small Unmanned Aerial
Vehicles. In: European Navigation Conference. Royal Institute of Navigation (RIN)
(November 2011)

22. Weiss, S., Scaramuzza, D., Siegwart, R.: Monocular-SLAM–based navigation for
autonomous micro helicopters in GPS-denied environments. Journal of Field
Robotics 28(6), 854–874 (2011)

Author Index

Anderson, Monica 125, 287
Ando, Noriaki 275, 299
Anzalone, Salvatore M. 4
Ayusawa, Ko 209

Beetz, Michael 3
Bekris, Kostas E. 137
Benke, Falk 335
Bhatti, Zeeshan E. 349
Biziak, A. 361
Bortoletto, Roberto 237, 311
Brugali, Davide 161, 361
Bülthoff, Heinrich H. 375

Carlone, Luca 261
Chen, Ian Yen-Hung 388
Coleman, Robert 52
Comotti, Daniele 161

Degroote, Arnaud 197
Dhouib, Saadia 149
Dixon, Brandon 287
Dobson, Andrew 137
Drumwright, Evan 65

Echeverria, Gilberto 197
Estivill-Castro, Vladimir 52

Finotto, Matteo 311
Franchi, Antonio 375
Fugl, Andreas Rune 89

Gherardi, Luca 161, 361
Giese, Holger 335
Glette, Kyrre 173

Han, Yuexing 299
Hashikawa, Fumitaka 275
Hayashi, Kotaro 185
He, Fuben 237
Hexel, René 52

Ikegami, Yosuke 209
Ishiguro, Hiroshi 4

Kanda, Takayuki 185
Karg, Michael 197
Kchir, Selma 149
Kikuuwe, Ryo 77
Kilgo, Paul 125, 287
Kim, Hyun 16
Kimmel, Andrew 137
Klaus, Gordon 173
Klingauf, Uwe 400
Koch, Kai Henning 221
Koch, Pierrick 197
Kohlbrecher, Stefan 400
Krontiris, Athanasios 137
Ku�lakowski, Konrad 40
Kurowski, Stefan 251

Lächele, Johannes 375
Lacroix, Simon 197
Laumond, Jean-Paul 1
Lemaignan, Séverin 197
Lesire, Charles 197
Lier, Florian 101
Littlefield, Zakary 137
Lusty, Carl 52
Lütkebohle, Ingo 101
Luzzana, Andrea 361

MacDonald, Bruce 388
Marble, James 137
Matsumoto, Yoshio 299
Maufroy, Christophe 251
Menegatti, Emanuele 4, 311
Meyer, Johannes 400
Mombaur, Katja Daniela 221
Morioka, Kazuyuki 275

Nakamura, Yoshihiko 209
Neumann, Stefan 335
Nordmann, Arne 113, 323

Pagello, Enrico 4, 237
Park, Namshik 16
Petersen, Henrik Gordon 89

Radkhah, Katayon 251
Robuffo Giordano, Paolo 375

414 Author Index

Rolf, Matthias 113
Roop, Partha S. 349
Rosa, Stefano 261

Sankai, Yoshiyuki 2
Sartori, Massimo 237
Scholz, Dorian 251
Schulz, Simon 101
Sendobry, Alexander 400
Seyfarth, André 251
Shiomi, Masahiro 185
Sorbello, Rosario 4
Souères, Philipp 221
Stinckwich, Serge 149, 197
Suganuma, Yusuke 28
Sumi, Yasushi 299
Suzuki, Toshihiko 28
Syriani, Eugene 125
Szmuc, Tomasz 40

Takayama, Keisuke 28
Tørresen, Jim 173
Tonello, Stefano 311
Tosello, Elisa 311

Vladimirov, Blagovest 16
von Stryk, Oskar 251, 400

Wada, Kazuyoshi 28
Wätzoldt, Sebastian 335
Wienke, Johannes 323
Willatzen, Morten 89
Wrede, Sebastian 113, 323
Wünsche, Burkhard 388

Xiong, Xiaogang 77

Yamamoto, Motoji 77
Yin, Jingchun 261
Yoong, Li Hsien 349
Yoshikawa, Yuichiro 4
Yuan, Zehui 261

Zakharov, Alexey 361
Zanetti, Guido Piero 311
Zanlungo, Francesco 185
Ziadi, Tewfik 149
Ziane, Mikal 149

	Title
	Preface
	Organization
	Table of Contents
	Invited Talks
	A Geometric Perspective of AnthropomorphicEmbodied Actions
	Cybernics: Fusion of Human, Machine and Information
	If Abstraction Is the Answer, What Is the Question? — Reasoning for EverydayManipulation Tasks

	Learning and Behavior
	Towards Partners Profilingin Human Robot Interaction Contexts
	Introduction
	System Overview
	People Identification
	Topics Identification
	People Profile Grounding
	Experimental Results
	People Identification Evaluation
	Topics Identification Evaluation
	Profiling Evaluation

	Conclusions
	References

	Motivation-Based Autonomous BehaviorControl of Robotic Computer
	Introduction
	Behavior Autonomy for FRC
	Autonomous Behavior Subsystem Architecture
	Behavior and Task Selection
	Motivation Module
	User Model, Working Memory and Controller

	System Implementation
	Test Scenarios
	Curiosity Driven Behavior Task 1
	Curiosity Driven Behavior Task 2

	Conclusions
	References

	An Evaluation Method for Smart Variable Spacein Living Space
	Introduction
	Related Research
	Skeleton Infill
	Architectural Furniture
	Robotized Structurization of Living Environment
	Smart Variable Space

	Evaluation Index for SVS
	Simulator
	Housing models
	Models of Spatial Configuration Module
	Resident Model

	Experiment
	Methods
	Results

	Conclusion
	References

	Modeling Robot Behavior with CCL
	Introduction
	Robotics Models and Architectures
	CCL Library at a Glance
	CCL Notation
	CCL Software Setup

	Modeling Robot Behavior - Study Case
	Model Simulation and Formal Verification
	Summary and Future Work
	References

	Visual-Trace Simulation of Concurrent Finite-State Machines for Validationand Model-Checking of Complex Behaviour
	Introduction
	Modelling
	Illustration
	The Mine Pump
	The Microwave
	The Industrial Press

	Simulation and Monitoring Tools
	Conclusions
	References

	Modeling of Robots
	Fast Dynamic Simulation of Highly Articulated Robots with Contact via Θ(n2) Time DenseGeneralized Inertia Matrix Inversion
	Introduction
	Background
	State of the Art in Robot Dynamics Computation

	Overview of Spatial Algebra
	Spatial Transformations
	Spatial Rigid Body and Articulated Body Inertias
	Spatial Axes

	Notation and Conventions
	(n2) Inverse Inertia Matrix Computation
	Complexity Analysis
	Arithmetic Analysis

	Experiments
	Single-Threaded Inversion Experiments
	Multi-threaded Inversion Experiment
	Simulation Experiments

	Discussion
	References

	A Differential-Algebraic Multistate FrictionModel
	Introduction
	Mathematical Preliminaries
	Related Work
	LuGre Model, Elastoplastic Model and Leuven Model
	Generalized Maxwell-Slip Friction Model
	Differential-Algebraic Single-State Friction Model

	Proposed Differential-Algebraic Multistate Friction Model
	Modification of Previous Differential-Algebraic Single-State Friction Model
	Extension to Differential-Algebraic Multistate Friction Model
	Properties and Simulations

	Conclusion
	References

	Simulation of Flexible Objects in Robotics
	Introduction
	Linear Elasticity
	Deformation Description
	Strain Tensor
	Stress Tensor
	The Tensor of Elasticity
	Navier-Cauchy Equations of Motion
	Boundary Conditions

	Numerical Method by Finite Differences
	Experiments and Results
	Conclusion and Future Work
	References

	Continuous Integration for Iterative Validationof Simulated Robot Models
	Introduction
	Related Work
	Concept Setup for Iterative Model Validation
	Build Job Sequence

	Concept Realization
	The Robot - Flobi
	The Virtual Flobi - Modelling and Simulation Engine
	The Virtual Flobi - Control Model
	Motion Generation and Data Logging

	Test Design and Case Study
	Case Study Procedure
	Results - Overall Axis Angle Drift
	Results - Offset between the Virtual and Physical Robot
	Results - Visual Comparison

	Conclusion
	References

	Software Modeling and Architecture
	Software Abstractions for Simulationand Control of a Continuum Robot
	Introduction
	Challenges
	Software Abstractions and Programming Model
	Modeling of the Bionic Handling Assistant

	Technology Mapping
	Robot Control Interface
	Component Architecture
	Middleware and Integration

	Use Case
	Length Control on the Real Platform
	Common Interface for Simulation and Hardware

	Conclusion
	References
	References

	A Visual Modeling Language for RDIS and ROSNodes Using AToM3
	Introduction
	Implementation
	The RDIS Formalism
	The ROS Formalism
	ROS-RDIS Model Transformation
	Code Generators
	ROS Code Generator
	RDIS Interpreter

	Evaluation
	Modeling Speedup
	Maintenance and Refactoring
	Limitations and Assumptions

	Related Work
	Conclusion
	References

	PRACSYS: An Extensible Architecturefor Composing Motion Controllers and Planners
	Introduction
	Related Work
	General Architecture of PRACSYS
	Description of the Packages
	Ground-truth Simulation and Controller Architecture
	Planning
	Visualization
	Other PRACSYS Packages

	Use-Cases
	Showing Scalability for Multiple Agents
	Planning Over Controllers Using LQR Trees
	Controller Composition in Physics-Based Simulation
	Integration with Octave, OMPL, and MoCap Data

	Discussion
	References

	RobotML, a Domain-Specific Languageto Design, Simulate and Deploy Robotic Applications
	Introduction
	Requirements
	RobotML Domain Specific Language
	Rationale of Using an Ontology during the Design of RobotML
	Domain Model

	The RobotML Toolchain
	Case Study: Urban Challenge
	Modeling
	Code Generation

	Discussion
	Related Work
	Conclusion
	References

	A Java vs. C++ Performance Evaluation:A 3D Modeling Benchmark
	Introduction
	Java for Robotics
	Robotics Java Projects
	Java versus C++

	A Performance Comparison Case Study: The Delaunay Triangulation
	The Implementation Details
	The Java HotSpot Compilers
	Performance Analysis
	Single Program Invocation
	JVM Server Option

	Conclusions and Future Works
	References

	Simulation and Applications
	AComparison of Sampling Strategies for Parameter Estimation of a Robot Simulator
	Introduction
	Implementation
	Experiments and Results
	Conclusion and Future Work
	References

	A Framework with a Pedestrian Simulatorfor Deploying Robots into a Real Environment
	Introduction
	Related Works
	System
	Robot and Sensors
	HHI Model
	HRI Model
	Robot Controller (Position Controller and Safety System)
	Simulator

	Simulation
	Overview
	Measurement
	Results

	Field Trial
	Overview
	Measurements
	Results

	Conclusion
	References

	Simulating Complex Robotic Scenarios with MORSE
	Introduction
	Related Work
	MORSE Architecture Overview
	Morse Main Features
	Blender Integration
	Component Library and Scene Construction
	Adjustable Levels of Realism
	Middleware Configurations
	Component Overlays for Specific Software Architectures
	Multi-node and Hybrid Simulation
	The Human Avatar

	Summary and Future Work
	References

	Humanoid and Biped Robots
	Masters' Skill Explained by Visualization of Whole-Body Muscle Activity
	Introduction
	Musculoskeletal Model and Experimental Environment
	Musculoskeletal Model
	Experimental Environment

	Optimization Problem for Muscle Tension Estimation
	Overview of the Calculation
	Inverse Kinematics
	Contact Force Estimation
	Inverse Dynamics

	Experts' Motion Skills
	Tai Chi Motion
	Tap Dance
	Drum Playing

	Conclusion
	References

	Studying the Effect of Different Optimization Criteria on Humanoid Walking Motions
	Introduction
	Mathematical Models of Walking Motions of the Humanoid Robot HRP-2
	Formulation and Solution of Optimal Control Problems for the Generation of Robot Walking Motions
	Optimization Results
	Overview of Computations
	Comparison of All Objectives and Constraint Combinations
	Further Analysis of Optimization Results for Constrained ZMP and Free Foot Placement

	Conclusion and Perspectives
	References

	Modeling and Simulating Compliant Movements in a Musculoskeletal Bipedal Robot
	Introduction
	Methods
	Modeling of Contact between Feet and Ground
	Modeling of Elastic Actuators
	Scaling
	Computed Muscle Control

	Evaluation
	Conclusion and Future Work
	References

	Simulation and Experimental Evaluation of the Contribution of Biarticular Gastrocnemius Structure to Joint Synchronization in Human-Inspired Three-Segmented Elastic Legs
	Introduction
	Simulation and Experimental Setup
	Experimental Framework
	Joint Synchronization Index
	Parameter Space

	Results and Discussion
	Conclusions and Future Work
	References

	Mobile Robots
	Graph Optimization with Unstructured Covariance: Fast, Accurate, Linear Approximation
	Introduction
	Problem Formulation
	A Linear Approximation
	Experimental Analysis
	Conclusion
	References

	Mobile Robot SLAM Interacting with Networked Small Intelligent Sensors Distributed in Indoor Environments
	Introduction
	Interactive SLAM between Mobile Robot and Intelligent Space
	Outline
	System Configuration
	Generation of Grid Map
	Matching with Maps by Distributed Laser Range Sensors

	Experiment
	Conclusion
	References

	Manipulation
	Computing 2D Robot Workspace in Parallel with CUDA
	Introduction
	Applications

	Related Work
	Approach
	Solution
	Optimizations

	Experiment
	Analysis
	Conclusion
	References

	Acquisition of Object Pose from Barcode for Robot Manipulation
	Introduction
	Obtain Object Poses from a Barcode
	RT-Component of Obtaining Pose of Barcode
	RT-Middleware and OpenRTM-Aist
	Component of Obtaining Pose of Barcode

	Evaluation Experiment
	Conclusion
	References

	WorkCellSimulator: A 3D Simulator for Intelligent Manufacturing
	Introduction
	Use Cases
	Architecture
	WCS Core
	WCS Applications
	Plug-in Modules

	Applications
	Conclusion and Future Work
	References

	Tools and Middleware
	A Meta-model and Toolchain for Improved Interoperability of Robotic Frameworks
	Introduction
	Related Work
	The Rosetta Stone Approach
	Data Representation Features
	Required Mapping Capabilities
	Application of the Meta-model for Code Generation

	Use Case
	Rosetta Implementation
	Gained Experiences
	Conclusion
	References

	Integrated Software Development for Embedded Robotic Systems
	Introduction
	Foundations - Robotic and Automotive Systems
	Robot Laboratory
	Automotive Development Process
	AUTOSAR
	Automotive vs. Robotic Systems

	Development Environment
	Simulation Stage
	Prototyping Stage
	Pre-production Stage

	Related Work
	Conclusion
	References

	Combining IEC 61499 Model-Based Design with Component-Based Architecture for Robotics
	Introduction
	Overview
	IEC 61499
	Robotic Technology Component

	Implementation
	FBC and RtcTemplate
	FB2RTC
	BlokIDE

	Evaluation of the Tools
	Conclusions and Future Work
	References

	A Reuse-Oriented Development Process for Component-Based Robotic Systems
	Introduction
	The Robust Navigation Case Study
	Software Refactoring
	Case Study: The ROS Navigation Stack

	Product Line Design
	The BRICS Robust Navigation SPL

	Variability Modeling
	Variability in the BRICS Robust Navigation SPL

	Variability Resolution
	Variability Resolution in the BRICS Robust Navigation SPL

	Conclusions
	References

	UAV Simulation
	SwarmSimX: Real-Time Simulation Environment for Multi-robot Systems
	Introduction
	Software Architecture
	Main Execution Loop
	Extending the Simulation

	Validation
	Physical Fidelity
	Real-Time Capabilities vs. Number of Robots

	Conclusion and Future Work
	References

	Evaluating the Effectiveness of Mixed Reality Simulations for Developing UAV Systems
	Introduction
	Cow Monitoring Project Background
	Mixed Reality Simulation
	Augmenting the Robot's Sensing
	MR Interfaces

	Evaluation
	User Study
	Task
	Procedure
	Questionnaire
	Hypotheses
	User Study Results
	Participant's Development Approach
	Monitoring UAV Operations
	Statistical Analysis
	Discussions

	Conclusions
	References

	Comprehensive Simulation of Quadrotor UAVs Using ROS and Gazebo
	Introduction
	Related Work
	Model Description and Simulation
	Geometry
	Dynamics Model
	Sensor Simulation
	State Estimation and Control

	Experiments
	Validation of Dynamics Model
	Example Scenarios

	Conclusion
	References

	Author Index

