
Scheduling Service Tickets in Shared Delivery

Hari S. Gupta and Bikram Sengupta

IBM Research, Bangalore, India
{hsgupta1,bsengupt}@in.ibm.com

Abstract. We study the problem of optimally scheduling tickets in
shared delivery of IT services. Such delivery models are characterized
by a common pool of skilled agents who collectively support the service
needs of several customers at a time. The ticket scheduling problem be-
comes interesting in this scenario due to the need to provide satisfactory
experience to multiple customers with different Service Level Agreements
(SLAs) in a cost-efficient and optimal way, by intelligently leveraging the
available skill set and balancing workload across agents. We present a de-
tailed description of the problem domain and introduce a novel metric
for estimating the relative criticality of tickets from different customers
at any point in time, taking into account several factors such as the dis-
tance from SLA breach, the SLA penalty and the expected volume of
tickets during the rest of the service time window. This criticality mea-
sure is used within a Mixed Integer Programming (MIP) based solution
approach to the ticket scheduling problem, where we consider the objec-
tives of SLA penalty minimization, balancing breaches across customers,
load balancing across agents, and maximizing skill match. Due to the
complexity of the problem, optimization engines may not always return
feasible or efficient solutions within reasonable time limits. Hence, we also
develop a custom heuristic algorithm that returns acceptable solutions
very fast. Detailed simulation experiments are used to compare these ap-
proaches and to demonstrate their efficiency in meeting the scheduling
objectives of shared delivery.

1 Introduction

IT service delivery organizations (henceforth called service vendors) employ
skilled practitioners to address service requests from customers. Many of these
requests are relatively small, atomic tasks that require a specific skill and may be
handled by a single practitioner within a short duration (e.g., a few minutes to
a few days). Such requirements, which the vendor receives in the form of service
tickets, may represent a specific IT problem experienced by the customer (e.g.,
“server down”, “transaction failed” etc.) or may be a request for a new capability
(e.g., “create a new disk partition”). These requirements are generally of some
business priority, with the expectation that it will be completed in a time-bound
manner, as specified in Service Level Agreements (SLAs) between the customer
and the vendor. If there are delays, then the customer’s business may be severely
impacted, leading to significant financial losses. The consequent degradation in

C. Liu et al. (Eds.): ICSOC 2012, LNCS 7636, pp. 79–95, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 H.S. Gupta and B. Sengupta

customer satisfaction may have implications on the vendor’s future business
with the customer. Moreover, vendors would need to compensate the customer
by paying a penalty for any additional breach beyond the SLA threshold. Thus
business imperatives and economic reasons call for timely, careful and intelligent
handling of service tickets.

In this paper, we will study the problem of efficiently scheduling tickets in
a service delivery organization. In particular, we study ticket scheduling in the
context of the shared delivery or factory model [5,1], which is increasingly being
used by IT vendors. What distinguishes these models is that instead of dedicated,
customer-specific teams, a common pool of agents belonging to a specialization
area (e.g., say a packaged application system) supports the needs of several cus-
tomers who need services in that area. These customers may have different SLAs
with the vendor, depending on the criticality of their business, and the price they
are willing to pay for the vendor’s services. Such shared delivery makes the as-
signment of tickets to agents an involved balancing exercise: for example, the
vendor has to strive to reduce the aggregate SLA penalty it has to pay, while
trying to maintain some parity between the service experiences provided to the
different customers; at the same time, the vendor has to ensure that, to the
extent possible, the workload of different agents are balanced (to prevent agent
fatigue or reduce idle time), and tickets are assigned to agents with high levels
of skill in the relevant areas (so that customers are satisfied with the quality of
service provided). Naturally, as the number of tickets and customers scale up,
balancing the various ticket assignment criteria and analysing the trade-offs, are
way beyond what a human dispatcher will be capable of. There is a need to
explore automated decision-making systems that can intelligently schedule tick-
ets through an expert knowledge of shared service delivery, and that is encoded
through a robust optimization or heuristic formulation.

Towards that end, this paper makes the following important contributions.
After discussing related work (Sec. 2), we present a detailed description of the
problem domain of scheduling tickets in a shared delivery system (Sec. 3), in-
cluding its differences with the traditional model of delivery via customer-specific
teams. We then develop a set of scheduling objectives for shared delivery, that at-
tempts to balance the vendor’s needs for profitability and delivery efficiency, with
the need to ensure parity in the service experience of individual customers. To
the best of our knowledge, this is the first work that investigates the complexities
of work scheduling in a shared environment to this depth. After introducing the
problem, over the next few sections, we present a number of solution approaches:
a mixed integer programming (MIP) based formulation (Sec. 4) that attempts
to optimize the scheduling objectives in a priority order; a heuristic algorithm
that attempts to balance the objectives over multiple phases guided by several
policies (Sec. 6); and two greedy algorithms (Sec. 5) that each tries to opti-
mize on a specific objective, and represent baselines with which we can compare
our approaches. In Sec. 7, we report on detailed simulation-based experiments
to study the performance of all the approaches and analyse their scheduling
effectiveness. We find that both MIP and heuristic approaches do very well in

Scheduling Service Tickets in Shared Delivery 81

balancing the various scheduling objectives for moderate-sized problems, but the
heuristic algorithm scales much better. Finally, Sec. 8 presents our conclusions
and directions for future research.

2 Related Work

There is a rich body of literature related to the general problem of scheduling
jobs on machines (job shop scheduling or JSS) [8,6], and different variants (e.g.,
online or offline scheduling, related or unrelated machines) have been investi-
gated in depth. The most common scheduling objectives of JSS are minimization
of makespan, total completion time, total tardiness, and load balancing. While
these are standard objectives with wide applicability, scheduling of tickets need
specific focus on the management of SLAs. In particular, shared delivery calls
for scheduling objectives that are sensitive to the SLA and expertise needs of
individual customer, even as they seek to maximize a vendor’s profitability and
delivery efficiency.

The allocation of tickets to agents also has (superficial) similarities with the
routing of calls in a call-center. Skill-based routing (SBR) [3,11] segments calls
based on the skills needed to handle them and routes a call to an available agent
with appropriate skill. Given the low limits of caller patience, the objective is to
minimize waiting time and calls drop rate, and thus there is no scope for batch
scheduling. In contrast, service tickets can be batched together at the start of a
shift and then at specific intervals, and dispatched to agent queues. Moreover,
unlike a call that will naturally drop off beyond a waiting time, each ticket that
arrives has to be serviced, even if its service level objective (SLO) has been
breached; these tickets thus impose an additional burden that can potentially
delay other tickets.

In recent years, there has been considerable interest on automation, measure-
ment and optimization of service delivery. For example, [4] proposes a solution
for efficient seat utilization to reduce infrastructure costs. [12] models the cost
overheads in distributed service delivery and proposes relevant metrics to assess
the same. Our work combines automation and optimization is scheduling of ser-
vice tickets in shared delivery, using the novel metric of relative ticket criticality.
There has been limited research on the topic of optimal allocation of service tick-
ets, and the few papers in the area mostly address issues that are complementary
to our work. For example, [10] studies game theoretic aspects of the problem and
designs incentive mechanisms for ticket complexity elicitation in a truthful way
from agents. In [2], an auction-based pull model for ticket allocation is proposed,
along with incentive mechanisms for agents to be truthful about expected reso-
lution time when bidding for tickets. While theoretically appealing, it is unlikely
that large-scale service delivery bound by SLAs can function effectively when it
completely depends on agents to bid for tickets. [9] develops a Markov model by
mining ticket resolution sequences of historical tickets that were transferred from
one group to another before being resolved. This model is then used to guide
future ticket transfers and reduce mis-routing. In [7], supervised learning tech-
niques are used to determine the likelihood that a service request corresponds

82 H.S. Gupta and B. Sengupta

to a specific problem symptom; prior performances of support groups are then
analyzed to identify groups that have the necessary skills to resolve these prob-
lems. While expertise is indeed an important consideration for ticket assignment,
there are other practical objectives (e.g., manage SLAs, balance load etc.) that
need to be taken into account in a real-life delivery organization.

3 Domain Description

The traditional mode of delivery of IT services has been through a dedicated
team of agents for every customer. In practice, this simplifies the task of assigning
and scheduling tickets within the team. All agents work towards a common goal
(of serving the customer’s interests in the best possible way) and this synergy of
purpose helps in prioritization of tasks, often in consultation with the customer.
However, while this model is responsive to the needs of individual customers, it
has a number of drawbacks from the vendor’s perspective. The most significant
of these are that utilization of agents may be poor/uneven across teams due to
variability in demand, and that dedicated teams tend to operate in silos making
knowledge sharing and deployment of best practices difficult. For these reasons,
many vendors [5,1] are now adopting a shared delivery model, wherein groups
of agents who specialize in a particular domain are pooled together and made
responsible for addressing the needs of multiple customers who require services
in that domain. What makes this approach feasible is that for a significant
body of IT services, the skills needed are more domain-specific than customer-
centric. Such a model can translate to reduced service costs (due to increased
sharing of resources and practices), whose benefits may then be shared with
the customer. However, in a shared delivery model, the vendor needs to assume
greater ownership of scheduling work. Tickets from different customers would
compete for the attention of the same set of agents, and this would introduce a
natural conflict into the system. How well the vendor manages this conflict will
determine the service experience of individual customers from the shared delivery
system, as well as the financial returns of the vendor. It is in this context that
we study the ticket scheduling problem.

We begin with an informal description of the problem domain, introducing the
main concepts and their relationships. An IT service vendor will be employing
a pool of agents for each specialization area that it supports (for example, man-
agement of servers, packaged application systems etc.) Within the specialization
area, different categories of service requests may arise. An agent will be skilled
in handling one or more of these request categories. Each pool of agents from
a given specialization area will be servicing tickets received from a set of cus-
tomers. A ticket usually contains a description of the problem or request, based
on which it may be assigned the appropriate service category at the time of its
creation. A ticket will also contain a priority level, which reflects its business
urgency from the perspective of the customer. The service vendor and customer
would have entered into a Service Level Agreement (SLA) for resolving tickets
within a specific time limit, based on their priority. For example, for priority 1
tickets (having the highest urgency) from customer X, the agreement may be

Scheduling Service Tickets in Shared Delivery 83

that 90% of such tickets within a given service delivery time window (e.g., a
month) will be resolved within 4 hours. If the SLA is breached, the vendor is
generally required to pay a penalty to the customer, per additional ticket that
exceeds the time limit. A Service Level Objective (SLO) represents the manifes-
tation of a SLA at a per-ticket level and is the time-limit by which a vendor
attempts to resolve each ticket of a given priority from a customer. Thus for the
SLA example introduced above, the SLO for priority 1 tickets from customer X
would be 4 hours. While an agent needs to have specific skill(s) to be eligible
to resolve a ticket of a given category, the resolution effort i.e., the time spent
by the agent on the ticket to resolve it, would depend on the agent’s degree of
expertise for the ticket (higher the expertise, lower the effort). There may be dif-
ferent ways to estimate expertise e.g., by number of relevant tickets successfully
resolved, level of training received, number of years of experience in the area
etc. In this paper, we will assume that expertise values are available, without
going into specific computation methods. We will consider the following states
of a ticket: New Arrival (a ticket has just arrived), Queued, (it has been placed
in an agent’s queue), Work-in-Progress or WIP (an agent is working on it), and
Closed (it has been resolved).

Relative Criticality Measure

In order to help a vendor prioritize tickets coming in from different customers
to the same pool of agents, we now introduce a notion of relative criticality of
tickets. For a given customer c and priority p, let

– rcp = % of tickets allowed to breach SLA
– qcp = Penalty of a SLO breach beyond SLA
– ucp = Number of tickets to be scheduled now
– vcp = Number of tickets closed in the past
– wcp = Number of tickets expected to come in future
– ncp = Number of tickets breached SLO in the past (among the closed tickets)

Given the above information, we can compute the estimated number of tickets
allowed to breach (at max) among present and future tickets (mcp) by:

mcp =
(ucp + vcp + wcp) ∗ rcp

100
− ncp

Now, we define a ticket’s criticality belonging to the given customer-priority as:

Ccp =

{
(ucp+wcp)∗qcp

mcp+1 if mcp < ucp + wcp

0 otherwise

Intuitively, the criticality of a ticket is less when the number of allowed SLO
breaches (mcp) is more; criticality is more when the volume of tickets (ucp+wcp)
over which these breaches are allowed is more; criticality is more when the SLA
penalty is more; and criticality is negligible (zero) when the number of allowed
SLO breaches that remain is more than or equal to the current and future ticket
volume. It may be noted that the criticality measure depends on knowledge of the

84 H.S. Gupta and B. Sengupta

future volume of tickets. Usually the volume of tickets from a specific customer
over a given service window can be reasonably estimated based on historical
data, and this estimate is also used by the vendor to draw up staffing plans. The
more accurate this information, the more refined will the criticality measure be.
Of course, the vendor can also update this estimate at any time during a service
window (e.g. based on some unanticipated event) and the criticality measure
would be adjusted accordingly for subsequent tickets.

Problem Objectives and Constraints

Given this background, we consider the following problem: assume we have a
pool of agents, where each agent has a queue of tickets, and may have a WIP
ticket she is working on; given a set of new tickets that have arrived, how do we
optimally allocate the new and queued tickets to the agents? Below, we introduce
our scheduling objectives in the order of their (decreasing) relative importance,
from the vendor’s perspective.

The first objective (SLA Penalty Minimization) that the vendor will try to
meet is minimization of the penalty it has to pay due to SLO breaches beyond
the SLA limit. Assume there is a ticket t from a customer c with priority p, where
the permitted number of breaches for priority p tickets from c under the SLA
has already been reached or exceeded. The vendor would then want to schedule
t in a way that it does not breach its SLO, since otherwise the vendor will have
to pay a penalty. Note that, to achieve this, the vendor may have to breach (in
some cases) other ticket(s) that are either within their respective SLA limits, or
carry a lower penalty.

The above objective helps a vendor minimize financial losses after a SLA has
already been violated. However, the vendor would want to schedule tickets in a
way that minimizes the chance of a SLA breach in the first place. This leads
to our second objective set SLO Breach Balancing and Minimization, which (i)
helps a vendor reduce SLO breaches for high criticality tickets (thereby reducing
the risk of an SLA breach) by minimizing the maximum criticality value of a
ticket with SLO breach, and (ii) minimizes the total number of SLO breaches.

Our third objective (Load Balancing) is to ensure that some agents are not
overloaded with work, while others are relatively idle. An inequitable load dis-
tribution need not always lead to an SLO breach, but it would adversely impact
agent’s motivation, thereby justifying a separate objective to ensure fairness.
In general, of course, a balanced workload distribution also helps in reducing
delays, thus this objective complements the first two introduced above.

Our fourth objective (Expertise Maximization) helps in assigning tickets to
agents who are highly skilled in resolving the associated problem categories while
maintaining the fairness across customers (achieved by a sub-objective). In par-
ticular, for the shared delivery system, we want to ensure this not only at an
aggregate level, but for each customer being supported, since it will help ensure
that tickets are resolved faster and the solution quality is high, both of which
will positively impact customer satisfaction.

Scheduling Service Tickets in Shared Delivery 85

As is usually the case with multi-objective optimization, the solutions moti-
vated by individual objectives will differ, even conflict. For example, expertise
maximization without load balance may lead to some highly skilled people being
assigned excessive work, which can de-motivate them as well as lead to delays
and SLO breaches. Hence it is essential to arrange the objectives in the right
sequence (as introduced above), so as to address the vendor’s scheduling goals
most optimally.

In addition to finding an efficient solution for the given objectives, we adhere to
a few constraints, a couple of which need some explanation. First, once a ticket has
been assigned to an agent, we do not re-assign it to another agent subsequently
(even if it improves the scheduling objectives), although, as new tickets arrive,
we may change its position in the queue. This is to prevent a ticket from hopping
from one agent to anothermultiple times, which would be an irritant for the agents
(since, they may have already reviewed tickets in queue) and will also confuse cus-
tomers (who are notified of ticket assignments). There may indeed be a few cases
where re-assignment is a practical necessity, but for now we leave it to the agents
and supervisors to identify these instances and manually re-assign. Secondly, once
a ticket has breached its SLO, we limit the number of tickets in the queue that ar-
rived later than this ticket but are placed ahead of it. This ensures that no ticket
starves, since otherwise such tickets can get indefinitely delayed as the scheduler
tries to avoid further SLO breaches in new tickets.

4 MIP Formulation

We will now develop a Mixed Integer Programming (MIP) based formulation for
optimal assignment of tickets in shared delivery. This will formalize the objectives
and constraints introduced in Sec. 3.

The set of inputs for the given problem are: (a) a set of customers SC , a set of
priorities SP , a set of ticket categories TC and a set of (Min, Max) resolution time
tuples RT for the different ticket categories; (b) a set of SLAs (SLACP) appli-
cable over a specific service time window (e.g., a month) for different (customer,
priority) combinations, from which we can further derive the sets, (i) SLOCP

representing the time-limits by which tickets of different (customer, priority)
combinations are expected to be solved, (ii) RCP , representing the maximum
percentage of tickets that are allowed to breach the SLO time-limits for different
(customer, priority) combinations, and (iii) QCP , which denotes the penalty per
additional SLO breach beyond maximum allowed percentage limits, for differ-
ent customers and priorities; (c) a set of agents SA {1, 2, ..., M}, and for each
agent a ∈ SA, (i) a set of skills SKa ⊆ TC , comprising the set of ticket cate-
gories the agent can resolve, and (ii) existing load on the agent La due to WIP
ticket’s remaining resolution time in the agent’s queue; (d) a set of (New Arrival
and Queued) tickets ST {1, 2, ..., N} that need to be assigned to the agents,
where each ticket tk contains, (i) information about the customer (Cust(tk)),
priority (Pri(tk)) and category (Cat(tk)) to which it belongs, (ii) time stamp
representing the arrival time of the ticket into the system, denoted by TSk, and

86 H.S. Gupta and B. Sengupta

(iii) information about any existing agent assignment, which needs to be main-
tained in the next run; (e) expertise value fij for each ticket j and agent i; (f)
resolution time tij for each ticket j and agent i (calculated from the min and
max resolution times of the category to which the ticket belongs, and from fij).

Note: In the MIP model of the problem, for compactness we have used the
logical expressions at several places, all of which are linearisable, and have been
linearised for the implementation.

Before describing the MIP model, we first describe the set of decision variables
used in the formulation, secondly the constraints on these variables, and finally
the objectives.

A N×M decision variables matrix (A) is used to record assignment, in which
each entry aij ∈ {0, 1} represents whether a ticket j is assigned to an agent i
or not. The value of any entry aij should result 1 if the ticket j is assigned to
agent i, or 0 otherwise. Similarly, we define two more decision variables matrices
S and E, in which each entry sij ≥ 0 (eij ≥ 0) represents the start time (end
time) of the ticket j if it is assigned to the agent i, or 0 otherwise.

We maintain another N × M Assignment History Matrix (H) to constrain
the decision matrix (A), and each entry hij ∈ {0, 1} in H is 1 if ticket j was
assigned to agent i (when j is a Queued ticket), or 0 otherwise. Therefore,

∀j ∈ ST ,
∑
i∈SA

hij ≤ 1

Let βij represents the number of tickets in Closed or WIP state, which arrived
later than ticket j, but scheduled before ticket j on agent i. We define also,
αijk ∈ {0, 1} as an indicator variable identifying whether a ticket k arrived later
than a ticket j, and is assigned to agent i ahead of j, i.e.,

αijk =

{
1 if aij = aik = 1 ∧ TSk > TSj ∧ sij ≥ eik
0 otherwise

The completion time for each ticket can be defined as the sum of its end times
on all agents, as the end time of the ticket would be 0 for the agents to whom

ticket is not assigned, i.e., ∀j ∈ ST , cj =
∑
i∈SA

eij

For a ticket j, we use bj ∈ {0, 1} to record if j will breach its SLO or not. The
variable bj = 1 if the ticket’s completion time (cj) is greater than its remaining
SLO time, and 0 otherwise Let tc is the current time (i.e., time when scheduling
starts), then

bj =

⎧⎨
⎩

1 if (Pr(j) = p) ∧ (Cust(j) = c)
∧(cj > SLOcp − (tc − TSj))

0 otherwise

Let for a customer c and priority p, ncp denotes the set of tickets with already
breached SLO’s, rcp denotes the max percentage of tickets allowed to breach
according to SLA, ucp denotes the New Arrivals and the existing tickets which
are in Queued state, vcp denotes the tickets Closed in the past and the tickets
in WIP state, wcp denotes the expected number of tickets in future, mcp denotes

Scheduling Service Tickets in Shared Delivery 87

the maximum number of tickets allowed to breach in the current and future
schedules, qcp denotes the penalty for an SLO breach beyond SLA, and zcp
denotes the number of tickets breaching SLO beyond SLA. Also, an indicator
values matrix G is given, in which each entry γjcp ∈ {0, 1}, is 1 if a ticket j
belongs to customer c and is of priority p, or is 0 otherwise. Now, we can define
mcp and zcp as follows:

mcp = 	(|ucp|+ |vcp|+ |wcp|) ∗ rcp
100

 − |ncp|

zcp = max(
∑
j∈ST

(γjcp ∗ bj)−mcp, 0)

Next we specify the set of constraints using the variables and other elements
mentioned earlier.

C1 : Each ticket is assigned to one and only one agent.

∀j ∈ ST ,
∑
i∈SA

aij = 1

C2 : A ticket can only be assigned to an agent who has the required skill to
resolve it.

∀i ∈ SA, j ∈ ST , (aij = 1 ⇒ Cat(j) ∈ SKi)

C3 : The difference between the end time and start time of a ticket i on agent i
should be equal to the resolution time tij if the ticket is assigned to the agent,
and 0 otherwise:

∀i ∈ SA, j ∈ ST , (eij − sij = tij ∗ aij)
C4 : If a ticket j is assigned to an agent i then the start time (sij) would be
≥ Li, as agent cannot start working on the ticket without closing the ticket in
WIP state with the agent, i.e.,

∀i ∈ SA, j ∈ ST , (sij ≥ aij ∗ Li)

C5 : Since a ticket assigned to an agent is never transferred to another agent in
a subsequent run of the scheduler, and to put this constrain we use the History
Assignment Matrix (H) defined earlier.

∀i ∈ SA, j ∈ ST , (hij = 1 ⇒ aij = 1)

C6 : To prevent starvation of any ticket j breaching SLO, we put a bound MDC
on the number of tickets which can be scheduled before ticket j and have arrived
later than j in the system (i.e., the number of tickets having time stamp greater
than the time stamp of ticket j):

∀i ∈ SA, ∀j ∈ ST , (bj = 1 ⇒ (
∑
k∈ST

αijk + βij) ≤ MDC)

C7 : The constraint that the tickets do not have overlapping schedule (i.e., an
agent works on one ticket at a time), is defined as follows:

88 H.S. Gupta and B. Sengupta

∀i ∈ SA, j, k ∈ ST (j �= k ⇒ (sij ≥ eik ∨ sik ≥ eij))

Subject to the constraints given above, the MIP tries to optimize for the fol-
lowing objectives. The objectives are defined in the order of their priority, as we
discussed in Sec. 3.

Objective 1: Minimizing the total penalty due to SLO breaches beyond SLA’s
of different customer-priority tickets:

minimize(
∑
c∈SC

∑
p∈SP

zcp ∗ qcp)

Objective 2: While the above objective is concerned with SLO breaches be-
yond the SLA limit, we have to try and minimize SLO breaches at each step,
well before the SLA limit has been reached. In addition, we need to ensure that
the SLO breaches, when they must occur, are balanced to the extent possible
across different (customer, priority) combinations, taking into account the rel-
ative criticality of each breach. Since a further mcp + 1 breaches will lead to a
penalty of qcp for a customer c and priority p, we estimate the criticality of each

individual breach as
qcp∗(ucp+wcp)

mcp+1 . We thus have the following two goals:

minimize(max
c∈SC,p∈SP ,mcp>0

(
qcp ∗ (ucp + wcp)

mcp + 1
∗
∑
j

bj ∗ γjcp))

minimize
∑
j∈ST

bj

Objective 3: Load balancing across agents:

minimize(max
i∈SA

(Li +
∑
j∈ST

tij ∗ aij))

Objective 4: To ensure that tickets are assigned to agents with high expertise
whenever possible, we try to maximize the aggregate agent expertise across all
tickets. However, in shared delivery, we also need to ensure that every customer
individually receives a fair share of available expertise, hence we try to maximize
the minimum average expertise of assignments received by any customer. This
is handled through the following objectives:

maximize(min
c∈SC

Fc +
∑
j∈uc

∑
i∈SA

(aij ∗ fij)

uc + vc
)

maximize(
∑
j∈ST

∑
iinSA

(aij ∗ fij))

In the above, uc =
∑
p∈SP

ucp and vc =
∑
p∈SP

vcp. Fc represents the aggregate

expertise received by customer c for all closed and WIP tickets. For a ticket

j ∈ vc, let Ag(j) return the agent who was assigned j. Then, Fc =
∑

j∈vc,Ag(j)=i

fij .

Scheduling Service Tickets in Shared Delivery 89

As the overall problem is multi-objective and there are trade-offs involved
while optimizing for these objectives, we solve for the objectives in the order of
their relative importance, and use the results from one solution as a constraint
when solving the next objective. Although one can go for a dynamic prioritization
of objectives considering the knowledge of their relative importance, but to our
knowledge the presented prioritization of objectives best referred to the current
service delivery environment.

5 Greedy Algorithms

In this section, we present two greedy algorithms which we have used to compare
the MIP approach and the heuristic algorithm that we will propose next. The
first algorithm (GTMin), tries to greedily minimize the number of tardy tickets
(i.e., tickets breaching SLO’s), while the second algorithm (GEMax), maximizes
the average expertise of ticket assignments. In a way, these algorithms represent
baselines for standard scheduling/assignment objectives.

Algorithm: Greedy Tardy Tickets Minimization (GTMin): First sort
the tickets in the increasing order of SLO time limits; Pick the tickets one by
one in the sorted order: (a) assign a Queued ticket to an agent whom it was
assigned previously, and (b) assign a newly arrived ticket to an agent a such
that the ticket’s completion time is least, if is assigned to a. Whenever a ticket
is assigned to an agent, the ticket is added in the end of the agent’s ticket queue.

Algorithm: Greedy Expertise Maximization (GEMax): First sort the
tickets in the increasing order of SLO time limits; Pick the tickets one by one in
the sorted order: (a) assign a Queued ticket to an agent whom it was assigned
previously, and (b) assign a newly arrived ticket to an agent a such that a’s ex-
pertise level is maximum for the category to which the ticket belongs. Whenever
a ticket is assigned to an agent, the ticket is added in the end of the agent’s
ticket queue.

6 Heuristic Algorithm

The heuristic algorithm runs in two phases. The first phase is a variant ofGTMin,
in which the heuristic tries to minimize the number of SLO breaches along with
load balancing (lines 1 to 6), and additionally tries to increase the expertise if
possible (line 6). In the second phase, it tries to reposition a ticket in the same
agent’s queue to whom the ticket is assigned (line 13) , or swap the tickets across
agents with repositioning after swapping (line 15), so that the total penalty
decreases. It is guided by 3 policies: pick-ticket defines the order of selecting
tickets one at a time and either repositioning it in the same queue using tuning-
policy or swapping it with some other ticket along with repositioning according
to swap-policy. Overall, the heuristic considers all objectives during its run, while
meeting constraints.

90 H.S. Gupta and B. Sengupta

Algorithm: Heuristic
Phase 1:
1. Sort the tickets in the increasing order of SLO time limits (deadlines);
2. For each ticket t in sorted order, do
3. CT = minimum completion time, if t is assigned to any agent at the last

position in the agent’s queue;
4. sa = set of agents: ∀a ∈ sa, t’s completion time is within x% (we use

x = 20) of CT , if t is assigned to a at the last position in a’s ticket-queue;
5. If t is in Queued state and previously assigned to agent a′, then

assign t back to agent a′ at last position in a′’s ticket-queue;
6. Otherwise, assign t to an agent a ∈ sa such that a’s expertise is

maximum among all the agents in sa for the category to which t belongs;
Phase 2:
7. PT = total penalty due to SLO breaches so far including past breaches,

beyond SLA’s for all customer-priority pairs;
8. For N = 1 to #tickets, do
9. Pick a ticket t using algorithm pick-ticket;
10. Ptuning = total penalty on tuning the position of t using tuning-policy;
11. Pswap = total penalty on swapping t with other tickets using swap-policy;
12. If Ptuning < PT AND Ptuning ≤ Pswap

13. Readjust the positions of the tickets as suggested by tuning-policy;
14. Else If Pswap ≤ PT

15. Readjust the positions and assignments of the tickets as suggested by
swap-policy;

Pick-Ticket: Choose a ticket from the unpicked tickets abide by the following
rules: (a) choose a ticket which is breaching SLO and for corresponding customer-
priority pair the percentage of SLO breaches is more than the SLA, (b) in case
of a tie from the rule-a, then choose a ticket, the penalty of which is maximum
among all the penalized breaching unpicked tickets, (c) to break a tie further,
choose a ticket having highest criticality value, (d) in case of further tie, choose
a ticket having least deadline (SLO time limit) which can be negative also, (e) if
more than one ticket follow all the three rules, then pick any of them and return.

Tuning-policy(t): Shift the ticket t backward and forward in the same agent’s
queue to whom the ticket is assigned, by shifting other tickets in the queue
appropriately. Pick a shift among all the positions tried, such that the total
penalty after the shift is minimum among the total penalties after other shifts,
and is also less than the total penalty before the shift. If more than one shifts
induce same amount of reduction in the total penalty, then choose the position
such that the shift is minimum from the original position. While shifting the
tickets maintain the starvation constraints (i.e., any Queued ticket is not delayed
by more than MDC number of tickets arrived later than t). Suggest the new
positions of the tickets.

Swap-policy(t): Swap the ticket t with each of the other tickets t′, one by one.
Let t is assigned to agent a and t′ is assigned to agent a′. If t and t′ are assigned

Scheduling Service Tickets in Shared Delivery 91

to same agent (i.e., a = a′) then do nothing. Otherwise, swap the positions and
assignments of the tickets (i.e., assign t to a′ and t′ to a). Tune the positions of
t in a′’s queue and t′ in a’s queue respectively, such that the reduction in total
penalty after tuning the positions is maximum. Restore the assignments and
positions of the tickets, and repeat the swapping of t with other tickets. Among
all the swaps, pick a swap such that the total penalty is minimum among all the
swaps with different tickets. Suggest the new assignments and positions of the
tickets.

7 Experiments

7.1 Methodology

To test the efficacy of our scheduling approaches (MIP, heuristic) through exper-
iments, we have designed an event driven simulator, which mimics the service
delivery system by tracking events such as: ticket generation, dispatch event,
start ticket event (which occurs when an agent picks a ticket from queue), and
ticket departure event (when a ticket is closed). For our experiments, data sets
were designed with utmost care, by studying historical data sets and through in-
teractions with service delivery practitioners. We consider 10 different ticket cat-
egories, 5 different customers and 4 priority levels P1 (highest priority) through
P4 (lowest priority). Approximate distribution of tickets across different priority
levels is as follows: P1 : 5%, P2 : 10%, P3 : 35%, P4 : 50%. For each (customer,
priority) combination, the SLOs are generated in the range of 3 to 40 time units,
the maximum allowed breaches are varied from 5% to 20%, while SLA penalties
are generated in the range of 1 to 20 monetary units. To ensure realistic SLAs,
the data generation procedure was constrained so that for each customer, SLOs
for higher priority tickets are smaller than for lower priority tickets, maximum
allowed breach level %s are lower, while SLA penalties are higher, reflecting the
higher criticality associated with higher priority. For each category c, we assume
we have a minimum (tcmin) and a maximum (tcmax) observed resolution time
(ORT), through historical analysis of tickets of that category. With each agent,
we associate between 2 to 6 categories reflecting his/her skills, generated from a
Gaussian distribution. For each (agent, category) pair, we set an expertise level
= 0 if the agent does not have the corresponding skill, otherwise an expertise
value is assigned in the range of 0.1 to 0.9, using a Gaussian distribution. We
define the Estimated Resolution Time (ERT) tij for a ticket j (of category c)
and agent i as follows, where α the expertise of the agent for the category c:

tij = tcmax − tcmax − tcmin

2
∗ α2

For an agent with very high expertise, this means that the resolution time is
estimated to be around the middle of the (min, max) ORT range. This is a
realistic approach, since the historical minimum time observed for a ticket of
a given category cannot be directly and completely linked to the expertise of

92 H.S. Gupta and B. Sengupta

the agent who had resolved it. Also, we use α2, so that ERT grows sub-linearly
with decrease in expertise. To predict the future volume (used in computing the
criticality value) corresponding to a customer and priority, we perturb the future
volume from the dataset randomly within ±20% for a period of 1000 time units.
We do all the experiments for a stream of 1000 tickets, and with number of agents
varying from 10 to 50. The frequency of scheduling is set to 0.3 time units, i.e.,
after every 0.3 time units the scheduler (MIP, heuristic, GTMin, or GEMax)
is invoked to schedule and reposition, the new arrivals within this period and
Queued tickets respectively.

We consider a Poisson model for tickets arrival, where the inter-arrival times
follow an exponential distribution, with bursts following Gaussian distribution
(as bursts are periodic, occurring mostly at the start of a service shift). To
generate the ticket arrivals, (i) first, we generate a large number of tickets (nor-
mal stream) with exponentially distributed inter-arrival times (mean arrival rate
λ = 1

avg. ERT), (ii) then, generate a sequence of bursts (burst-stream) following
Gaussian distribution with independent exponentially distributed inter-arrivals
within each burst, (iii) for each experiment, as the number of agents (m) is var-
ied, the inter-arrival times in the normal stream is adjusted uniformly to match
the arrival rate of the merged stream (normal-stream merged with burst-stream)
with the service rate (y), where m = y+ y1/3. This makes the overall utilization
more aggressive than the well-known square-root staffing approach [11]. Finally,
we set maximum delay count (MDC) to 8, to avoid starvation for tickets that
breach SLO. To solve the MIP formulation, we used Java APIs of ILOG-CPLEX,
with a time bound of 3 min. for each of the objectives.

7.2 Results

To analyze the efficacy of our scheduling algorithms for shared delivery, we mea-
sure a set of metrics in course of our simulation experiments. These metrics
follow directly from the scheduling objectives introduced earlier.

Fig. 1. Total penalty due to SLO breaches beyond SLAs of customer-priority pairs

Scheduling Service Tickets in Shared Delivery 93

The first metric (corresponding to SLA Penalty Minimization) is the total
penalty induced by the SLO breaches beyond SLAs, the results of which are shown
in Fig 1 along with the table of values in the bottom. As we see, for the first two
experiments (with 10 and 20 agents),MIP andHeuristic induce the least penalty.
GTMin causes a penalty increase of 24.4% and 21.8% overMIP penalties for the
two experiments respectively. The GEMax algorithm does not perform well, as it
is concerned mainly with the maximization of expertise in assignments. Starting
from the third experiment (with 30 agents), we found that MIP fails to return
any feasible assignment within the allotted time. On deeper investigation, we
discovered that due to bursty arrival and queued tickets, the number of tickets
to be scheduled in some runs was around 50. This led to a huge increase in the
number of internal variables and constraints (>70,000), since these are of the
order of O(MN2) where M and N refer to #agents and #tickets respectively. To
circumvent this problem, for MIP experiments with (30, 40, 50) agents, we did
not consider all the Queued tickets at every scheduling run, but fixed many of
them at their existing queue positions. This made scheduling tractable, but led
to a sharp increase in SLA penalty for MIP, as seen in Fig 1. This demonstrates
that by usually allowing ticket positions to change in a queue, we are able to
save on a lot of SLO breaches and SLA penalty.

Fig. 2. Standard deviation of average expertise of assignments of tickets belonging to
different customers

Next, we measure the S.D. of agent load at every run (corresponding to the
load balancing objective). MIP, heuristic and GTMin all did well on this metric,
showing that load is well-balanced by all of them. For example, for 20 agents,
the S.D. value for MIP ranges from (1.78 to 36.7), and is only slightly higher for
the heuristic and GTMin. Expectedly, GEMax returns poor results, with a S.D.
range of (4.09 to 631.19) across all the runs for 20 agents. This is because there
are a few multi-skilled people with high expertise in our experimental set-up,
who attract many tickets due to expertise maximization, irrespective of their
current load (which also leads to high SLA penalty, as seen above).

94 H.S. Gupta and B. Sengupta

We then compute the S.D. of average expertise of assignments across all cus-
tomers (Fig. 2). We find that while GEMax performs consistently well on the
fourth objective, the other approaches show slightly higher S.D., which means
that each customer is given a lesser balanced share of the available expertise.
We also measured the average expertise of all assignments across all customers,
and found that it ranges between [0.73, 0.86] for GEMax when aggregated over
all runs, while the corresponding values for GTMin are [0.59, 0.63]. MIP and
heuristic performed comparably with ranges from [0.60, 0.67] and [0.63, 0.71]
respectively.

Finally, we measure the average time taken by various algorithms per run.
MIP takes comparatively large time (235.8 - 416.9 sec.) per run for all the
experiments across different numbers of agents, while all other approaches take
negligible time (< 6 seconds at most). It should be noted that for the MIP, we
accepted whatever feasible solution it provided in cases where optimal solution
could not be reached in the bounded time.

8 Discussions

Our experimental results demonstrate the effectiveness of our scheduling ap-
proaches for shared service delivery. Compared to GTMin which greedily reduces
SLO breaches, the MIP and heuristic approaches give comparable or better re-
sults for SLA penalty minimization and load balancing. Another highlight of
the results is that we are able to balance individual customer interests very well,
both in terms of criticality of SLO breaches and the sharing of expertise. We also
observe that the MIP-based approach works well for moderate sized problems
but its performance degrades with scale, while the heuristic scales very well and
can rapidly generate solutions of acceptable quality. Thus a combination of the
two approaches can allow us to traverse a large problem space very effectively. In
future, we plan to empirically study a service delivery system to determine how
well we can estimate ticket resolution effort, agent expertise, and the relationship
between the same.

References

1. Application assembly optimization: a distinct approach to global delivery. White
Paper, IBM GBS (2010)

2. Deshpande, P.M., Garg, D., Rama Suri, N.: Auction based models for ticket allo-
cation problem in it service delivery industry. In: IEEE Intl. Conf. on Ser. Comp.,
SCC (2008)

3. Gans, N., et al.: Telephone call centers: Tutorial, review, and research prospects.
Manf. & Ser. Op. Mgmt. 5 (2003)

4. Gupta, P., Parija, G.R.: Efficient seat utilization in global it delivery service sys-
tems. In: IEEE SCC, pp. 97–103 (2009)

5. Kakal, C.S.: Global shared support service: Leveraging expertise, sharing costs,
and deriving value. White Paper, Infosys (May 2005)

Scheduling Service Tickets in Shared Delivery 95

6. Karger, D., Stein, C., Wein, J.: Scheduling algorithms. In: Algorithms and Theory
of Computation Handbook (2010)

7. Khan, A., et al.: Aim-hi: a framework for request routing in large-scale it global
service delivery. IBM J. Res. Dev. 53 (2009)

8. Lawler, E.L., et al.: Sequencing and scheduling: Algorithms and complexity. In:
Logistics of Production and Inventory, vol. 4, pp. 445–522. Elsevier (1993)

9. Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Efficient ticket routing by
resolution sequence mining. In: KDD (2008)

10. Subbian, K., et al.: Incentive compatible mechanisms for group ticket allocation in
software maintenance services. In: APSEC (2007)

11. Wallace, R.B., Whitt, W.: A staffing algorithm for call centers with skill-based
routing. Manufacturing & Service Operations Management 7 (2005)

12. Zhou, N., Ma, Q., Ratakonda, K.: Quantitative modeling of communication cost
for global service delivery. In: IEEE SCC, pp. 388–395 (2009)

	Scheduling Service Tickets in Shared Delivery
	Introduction
	Related Work
	Domain Description
	MIP Formulation
	Greedy Algorithms
	Heuristic Algorithm
	Experiments
	Methodology
	Results

	Discussions
	References

